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Abstract

Machine learning-powered malware detec-
tion systems became a necessity to fight
the rising volume of malware. Malware au-
thors create more sophisticated programs
to overcome always improving antivirus
engines. Windows OS remains the most
targeted system, and the malicious pay-
load commonly comes in the Portable ez-
ecutable (PE) file format. PE files can be
analyzed with the static analysis methods,
which are suitable for processing large
amounts of data. Many engines disassem-
ble binaries and study the code, which car-
ries valuable insight into binary behavior.
The assembly code is divided into func-
tions that carry the functionality. The
relations between functions form a Func-
tion Call Graph (FCG). FCG has been
studied in the literature, and the graph
structure was employed to find similari-
ties between files. Recently, Graph Neural
Networks (GNNs) have been adapted to
work upon FCGs and are claimed to be
performing well. In this work, we study
and compare different GNN models and
their architectures. After selecting the
best GNN model, we compare it with a
non-structural model to verify if an FCG
structure improves classification models.
We perform our empirical study on a large
dataset of more than 5 million PE files.

Keywords: static analysis, malware
classification, function call graph, graph
neural networks
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Abstrakt

S rostoucim mnozstvim skodlivych sou-
bort se stalo vyuziti strojového uceni pro
jejich detekci nezbytnosti. Autori skod-
livych soubora vytvari dimyslnéjsi pro-
gramy, aby prekonali stale se zlepsujici
antivirovou ochranu. Windows OS zi-
stava nejcastéjsim cilem utokt. Viry se
casto 81t ve formatu Portable Executable
(PE). PE soubory mohou byt zkoumény
pomoci metod statické analyzy, které se
hodi pro zpracovavani velkého mnozstvi
dat. Mnoho antivirovych systému disas-
sembluje soubory a zkoumé jejich kéd,
ktery nabizi{ vhled do funkcionality sou-
boru. Assembly kéd je ¢lenén do funkci.
Vztahy mezi funkcemi zachycuje graf vo-
lani funkci (GVF). Tento graf byl zkou-
mén v literatute a jeho struktura byla vy-
uzita k hledani podobnosti mezi soubory.
V posledni dobé zacaly byt tispésné vyu-
zivany grafové neuronové sité (GNN) ke
zpracovani téchto graf. V nasi préaci zkou-
mame ruzné druhy a architektury GNN
a vzajemné je porovnavame. Po tom, co
vybereme nejlepsi GNN model, ho srov-
name s modelem, ktery nevyuzivéd grafo-
vou strukturu GVF, abychom zjistili zda
tato struktura zlepsuje klasifika¢ni mo-
dely. Nasi studii provadime na velkém da-
tasetu o vice nez 5 milionech PE souborti.

Kli¢ova slova: staticka analyza,
klasifikace skodlivych soubort, graf
volani funkci, grafové neuronové sité

Pteklad nazvu: Detekce skodlivych
soubort na zakladé podobnosti grafu
volani funkci



Contents

1 Introduction

2 Portable executable file 5
2.1 PE format .................... 5l
2.2 Assembly language............. 0]
2.2.1 Abstraction levels ........... rd
2.2.2 Assembly elements ..........
2.2.3 Disassembling .............. 9]
2.2.4 Anti-disassembly techniques .
2.2.5 Binary packing ............
3 Related work
3.1 Malware detection ............ 15l
3.1.1 Raw bytes approach ........
3.1.2 Opcodes approaches . ... ....

3.2 Code modelling...............
4 Graph neural networks 21
4.1 Graph...... ... .. i
4.2 Graph classification ...........
4.3 Convolutional graph neural
networks. .. ... 22
4.3.1 Graph Convolution Layer . ..
4.3.2 Readout layer .............
4.3.3 Multi Layer Perceptron . . ...
4.3.4 Softmax Layer.............
4.3.5 Training a neural network . . .
5 Dataset 29
5.1 Data collection ............... 291
5.2 Data labelling . ...............
5.3 Data analysis ................
5.3.1 Malware families ...........
532 0pcodes ..................
5.3.3 Function call graphs........
5.4 Resulting dataset .............
5.4.1 Two-class dataset .......... 34

vii

5.4.2 Multi-class dataset

5.5 Evaluation metrics . ...........

5.5.1 Two-class classification metrics [35]

5.5.2 Multi-class classification

matrix ......... ... 36
6 Method 39
6.1 GNN architecture............. 139l
6.1.1 Features .................. 40
6.1.2 Convolutional layer.........
6.1.3 Readout layer .............
6.1.4 Classifier.................. 41
6.2 Structure-agnostic model ... ...
7 Results 43
7.1 Convolutional layers comparison
7.1.1 Multi-class classification . ...
7.1.2 Binary classification ........
7.2 Hidden layer size comparison . . .
7.3 Stacking multiple convolutional
layers ...
7.4 Aggregation function comparison
7.5 Readout comparison ..........
7.6 Comparison with a
structure-agnostic model . ........
7.6.1 Multi-class classification . ... [50)
7.6.2 Binary classification ........
7.7 Node-degree model............
7.8 Training time comparison . ... ..
7.9 Comparison with other models .
8 Conclusion 59
A Bibliography 61
B Thesis attachments 65



Figures

1.1 Total number of malware as
observed by AV-test. [I]

2.1 Structure of PE file [2]. .........

2.2 Machine code and its translation
into assembly instruction "XOR CL
12"

2.3 An example of antidisassembly
technique: Jump Instructions with
the Same Target. [3]

2.4 An example of antidisassembly
technique: A Jump Instruction with
a Constant Condition. [3]

2.5 An example of antidisassembly
technique: Impossible Disassembly.

4.1 GNN model structure..........
5.1 40 largest malware families in our
dataset. ............. ... ... .... 31

5.2 The 20 most prevalent mnemonics

in our dataset...................
5.3 Histogram of mnemonics in our
dataset. Y axis is in log scale. . ...

5.4 FCGs of two samples from Qqpass
malware family (a) More structured
graph with many vertices and edges
(b) Smaller graph with only a few

vertices and edges. ..............
6.1 Linnet model structure.........
7.1 Comparison of various

convolutional layers on multi-class

classification task. The evolution of

each metric during training is

shown. ........................

7.2 Confusion matrices for GraphConv
model which is the best performing
GNN model with a single
convolutional layer of dimension

viii

7.3 Comparison of the GNN model
with Linnet on multi-class
classification task. The evolution of
each metric during training is
shown. ........................

7.4 Confusion matrices for Linnet
model which is a structure-agnostic
model.

7.5 ROC curves of GNN models and
Linnet on binary classification task.
Zoomed in at top left corner. .. ...

7.6 Comparison of time needed for an
epoch of training. The format of
name is {method name}-{inner
dimension }-{number of conv.

5]



Tables

5.1 Distribution of files in our dataset.
(a) shows number of files obtained
during data collection. (b) shows
number of files that could be
successfully disassembled. (c) shows
number of remaining files after
filtering out files with only a single
function having only one opcode. .

5.2 Statistics of graphs in our dataset.

5.3 Statistics of the multi-class dataset
which is comprised of the 10 largest
malware families in our data. ... ..

7.1 Comparison of various
convolutional layers on multi-class
classification task. The best
performing model on each split is in
bold. ...... ... ...

7.2 Comparison of various
convolutional layers on binary
classification task. The best
performing model on each split is in
bold. ...... ... ..

47

7.3 Comparison of various dimensions
of the hidden layer in various
convolutional layers on multi-class
classification task. The value in
brackets denotes the dimension. The
best performing model on each split
isinbold......... ... ... L.

7.4 Comparison of models with two
convolutional layers with their simple
counterparts on multi-class
classification task.

7.5 Comparison of GraphConv models
with different aggregation functions
on multi-class classification task. The
aggregation function used is in
brackets. The best performing model
on each split is in bold. ..........

ix

7.6 Comparison of GraphConv models
with different readout layers on
multi-class classification task. The
readout function used is in brackets.
The best performing model on each
splitisinbold. .................

7.7 Comparison of GraphConv model
with Linnet on multi-class
classification task. The best
performing model on each split is in
bold. ........ ... ...

7.8 Comparison of GNN models with
Linnet on binary classification task.
The best performing model on each
splitisin bold. .................

7.9 Comparison of GraphConv model
with baselines on multi-class
classification task. The best
performing model on each split is in
bold. ...... ... .. .

7.10 Comparison of GNN models,
Linnet with PE-GBM model on
binary classification task. The best
performing model on each split is in
bold. ........ ...

511

52

531






Chapter 1

Introduction

According to AV-test [1], the total number of malware in the wild reached
903.14 million samples in May 2019 (recent numbers are shown in Fig. |1.1)).
The number is still rising, with 376,639 new samples detected on average
per day. As in previous years, Windows OS is the most targeted system,
with 51.08% of the total malware samples in 2018. Portable executable (PE)
is the third most common file type used in malicious emails [4]. Malicious
programs keep getting more sophisticated to overcome continually improving
detection engines defending users. The attackers target sensitive data, steal
bank account credentials, blackmail victims after encrypting their data, use
the computation power of the victims for coin mining [1]. While financial gain
is the most common (71%) motivation of attacks, espionage is the motive in
25% cases, as stated by Verizon [5]. We see that cyberattacks are a threat to
our computers as well as for whole countries.

It is necessary to develop systems that would protect computers from the
ever-rising threat of a cyber attack. These systems should be able to work on
a large scale to process the large volume of potentially malicious files. Machine
learning methods have been studied extensively and successfully adapted
to this task. Static analysis methods aim to detect malicious files without
actually executing them. This approach can process vast amounts of data
[6]. Dynamic analysis executes files in a controlled environment to capture
their behavior. The execution traces are then analyzed to discover malicious
actions. However, the execution is too expensive and time-consuming to be
performed on large volumes of data. It is also necessary to create execution
scenarios that would expose the malicious activity [6]. Therefore, we focus
on static analysis systems in our work.

Static malware detection systems usually use features extracted from PE
header of the file, strings found in bytes of the executable, byte sequences, etc.
[6]. There are also approaches discovering the functionality of an executable
by disassembling it [7] [8] [9]. The disassembled code can be further analyzed
and scanned for malicious patterns. Researchers also studied Function Call
Graphs (FCGs) [10][11][12][13], which capture the structure of a program and
relations between its functions. Many of those approaches used manually
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Figure 1.1: Total number of malware as observed by AV-test. [I]

designed heuristics to compute the similarity between graphs. These also
could not scale to large volumes of data and large graphs [14], which was the
reason for the adoption of Graph Neural Networks (GNNs) [I5] [I4]. GNNs
provide state-of-the-art performance in many tasks [16] [I7]. They exploit
the structure of a graph and propagate information from each node through
the graph.

Recent works claimed that GNNs could exploit a structure of an FCG
and use it to produce accurate verdicts for files [I4] [15]. In the GNN, each
function gets a context of functions calling it so that it can create better
representations of functions and consequently, the whole files. We want to
use GNNs to find similarities between FCGs because we expect the graphs
to be similar within e.g., malware families, or minor updates of the same
applications. We try to replicate successes of GNNs and verify that the graph
structure is indeed beneficial for the classification task. We test the models on
a large set of real-world data with more than 5 million samples. We discuss
and compare different variants of GNNs and show their ability to model PE
files. Finally, we empirically prove that unexpectedly the structure-agnostic
model produces better results than GNN, even at a lower computational cost.
We believe that our work will encourage more researchers to investigate this
phenomenon.

This thesis is organized as follows: In Chapter |2, we describe the structure
of the PE file format. We explain how we can obtain an assembly code of a
binary and which obstacles we can face during the task.

In Chapter |3, we review articles published about malware classification.
We focus on machine learning methods, modeling of code, and graph neural
networks.

In Chapter 4l we define all terms needed for graph tasks and further explain
details about various GNN models.
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In Chapter[5, we state our requirements on a dataset, review public datasets,
and finally introduce our dataset together with its analysis.

In Chapter |6, we introduce models used in this work. We give details about
the features and architectures that we use.

In Chapter |7, we study the proposed models. We compare various archi-
tectures of GNN models and compare their classification performance as well
as their training time. After designing the GNN model, we compare it to the
non-structural model.

We conclude this thesis in Chapter |8 and add suggestions for future work.






Chapter 2

Portable executable file

Almost all files with executable code are distributed in the form of a Portable
Executable (PE) file format on Windows OS. It is also commonly used for
spreading malware. PE files provide us several opportunities to detect their
usage for malicious intent. On the other hand, malware authors are presented
with the means to thwart the analysis of their programs. We describe the PE
format in detail to describe the challenge we are facing. Firstly, we show how
the PE format is defined. Secondly, we explain the machine code that forms
the executables and its representation in human-readable form. Finally, we
describe techniques that can be incorporated by malware authors to evade
automatic analysis.

. 2.1 PE format

Several file types come in a PE format. These are:

®m cxe files - executables

® dll files - dynamic-link libraries which are supposed to be used by other
programs

8 object code - code generated by a compiler

The structure of a PE file is depicted in Fig. We can see that it starts
with headers. PE header provides necessary information for a Windows OS
loader. The loader starts when a file is executed. It allocates memory for the
data of the executable, resolves imported libraries and passes execution to
the program.

PE header is a valuable source of information for an analyst. Interesting
fields in the header are:

#® Time Date Stamp - the time when a binary was compiled

® Subsystem - indicator whether a binary is a console or GUI program

5
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MS-DOS MZ HEADER

MS-DOS REAL-MODE
STUB PROGRAM

PE FILE SIGNATURE
PEW0\0

PE FILE HEADER

PE OPTIONAL HEADER

SECTION HEADERS

rsre section header

SECTIONS

Figure 2.1: Structure of PE file [2].

B Section headers - information about each section including name and
size

B Imports - imported functions from other libraries

B Exports - exposed functions to be called by other files

There are more interesting fields in the header that can be successfully used
to detect malicious files, as shown in our previous work [I§].

Analyzing a PE header is a good start when analyzing a binary, which
helps to estimate its functionality. However, we usually need to dig deeper
into a binary to get the complete picture. This is where analyzing its code
comes into play.

| ) Assembly language

The source code of a PE file might be a valuable source of information as it
helps us understand its functionality. In the case of dynamic analysis, we need
to craft inputs and scenarios to trigger events. Alternatively, when having
the actual code, we can go through it and discover the complete functionality
of the executable. We introduce a human-readable language that can be
obtained from the raw data of a PE file. We start by reviewing basic concepts
of programming languages with emphasis on assembly language. For more
detailed explanation see [3].



2.2. Assembly language

XOR CL
101 [10000000]11110001]/00010010| 10

Figure 2.2: Machine code and its translation into assembly instruction "XOR
CL 12".

B 2.2.1 Abstraction levels

A computer system is comprised of several levels of abstraction. These
levels make it easier to develop programs by abstracting their code from the
underlying hardware.

In our problem, these levels are important:

8 Machine code - Consists of binary data that represent operations in the
processor. It is further translated for the processor into microcode better
known as firmware. Machine code is created during compilation from
high-level languages.

8 Assembly language - Human-readable language representing processor
instructions.

® High-level language - Provides abstraction from the hardware level.
Includes C, C++, etc.

B 2.2.2 Assembly elements

Although there are many dialects of assembly language (x86, x64, MIPS,
ARM, etc.), we focus on x86. It is the most popular architecture, and
Windows OS is designed to run on x86. Therefore, malware authors target
x86 as well. We provide details of its elements.

I Instructions

Instructions are the building block of the language, and they correspond to
machine code instructions - opcodes. An instruction has a mnemonic and
zero or more operands. A mnemonic is an operation to be performed, and
operands are its arguments. An example of instruction is in Fig. 2.2 It
performs xor operation between a number and a value in the register cl.

Operands can identify three types of data used by the instruction:

1. Immediate - numeric constant value, e.g. 0x11
2. Register - e.g. eax

3. Memory address - reference to a location in memory, e.g. [ESI+EAX]

7
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Register is fast storage available to CPU. A program is faster when it does

not have to load data from RAM or drive but instead saves data in registers
and loads them fast from there. There are four kinds of registers [3]:

1.

General registers - Used by the program during its execution. They store
data or addresses.

Segment registers - Used to keep track of currently used segments of
data.

Status flags - Contain the current status of the CPU.

Instruction pointers - Points to the next instruction to be executed.

We give examples of some frequently used instructions:

mov destination source - copies data from destination to source
lea - load effective address
sub destination value - subtract value from value at destination

je loc - jump to location, occurs after cmp instruction because it depends
on its result and flags set by it

There are hundreds of instructions in x86 architecture we refer an interested
reader to [19].

Functions

A function is a sequence of instructions that performs a specific task. Stack
and registers are prepared before the function call and restored after the
function finishes. These procedures are subject to conventions.

1.
2.

al K B B B

Push arguments on the stack

Return address is stored on the stack

The function is called using call instruction
Space is allocated for local variables
Function runs its code

Stack is restored, local variables are freed

The function returns by calling ret instruction.

We omitted details about the allocation/deallocation of the memory. We

can see that functions form specific constructs within the assembly code.
Undoubtedly, it is beneficial to detect them in order to analyze the application
in a more structured fashion, which eases the analysis significantly.

8



2.2. Assembly language

B Function Call Graph

Function Call Graph (FCG) represents calling relations between functions. A
node in the graph represents a function. An edge (e, j) indicates that function
e calls function j. FCG is a valuable source of information because it gives us
further details of how functions interact between themselves. We can examine
in which contexts a function is called and whether it affects its meaning.

B 2.2.3 Disassembling

We usually have only a binary form of the executable, i.e., machine code.
Deriving assembly code out of it is called disassembling. There are several
challenges for a disassembler:

® Any inaccuracy in reading and interpreting bytes can result in a com-
pletely different outcome. This is a problem when locating an entry
point or in case of variable length instructions.

B Malware writers are proactively trying to evade disassembling of their
programs.

® Disassembler should run without the actual execution of the file. If we
run the code, we could unintentionally break the computer when running
the disassembly.

There are several disassemblers published that can be comfortably used.
They all use some variations of two disassembly algorithms. We describe them
and point to their weaknesses. Then, we describe several anti-disassembly
techniques.

B Linear disassembly

The linear disassembly or linear sweep iterates over bytes disassembling
instructions one by one linearly. This approach will generally disassemble too
much code. The main drawback is that it cannot differentiate between code
and data. If there is data mixed with a code, it will try to disassemble the
data, resulting in nonsense instructions.

B Flow-oriented disassembly

The flow-oriented disassembly follows execution paths in the code. It does so
to avoid erroneous disassembling of data as in the case of linear disassembly.
The complicated nature of a program causes these errors. Linear disassembly
assumes that instructions are stacked one after another, but it is not the
case. Common binaries contain jump instructions, pointers, exceptions, and
conditional branching. All these constructs break the linear nature of the

9



2. Portable executable file

program. So when the algorithm encounters jump or branch instruction
during a linear sweep, it follows it and disassembles its destination. After
that, it can continue in the linear sweep.

B Binary ninja disassembler

We use Binary Ninja [20] disassembler in this work. It is a reverse engineering
tool developed by Vector 35. It uses a combination of previously mentioned
algorithms to perform disassembly. Unfortunately, vendors do not disclose
details about their disassemblers, and Binary Ninja gives only a few details.
In their blog post [21] they give some details about techniques used to detect
functions:

B Recursive Descent - flow-oriented disassembly starting from defined entry
points

® Call Target Analysis - they aggregate destination of a call instructions
which are then passed to the recursive descent algorithm for analysis

® Control Flow Graph Analysis - analysis of Control Flow Graph and
intraprocedural control-flow constructs bring new entrypoints that are
then passed to the recursive descent.

® Tail Call Analysis - helps discover tail call functions used as an optimiza-
tion in the compiler

They do not disclose other details publicly. However, we checked with
analysts that their disassembly listings are accurate.

B 2.2.4 Anti-disassembly techniques

Malware authors do not want their programs to be analyzed easily. In fact,
they want to make (at least automatic) analysis as difficult as possible. We
give some examples of anti-disassembly techniques taken from [3]:

® Jump Instructions with the Same Target - this technique is illustrated
in Fig. 2.3l We can see two instructions jz and jnz with the same
target. Together they form an unconditional jump to loc_4011C4+1.
The key part is +1. It points at the second byte of the call instruction. A
basic disassembler will continue disassembling bytes after the two jump
instructions resulting in call instruction. However, the real instruction
which is executed starts with the byte 0xE8 which corresponds to pop
eax instruction.

® A Jump Instruction with a Constant Condition - this technique is illus-
trated in Fig. [2.4. We can see a conditional jump jz. However, there is a
xor eax, eax, which will always result in zero. Therefore, the condition

10



2.2. Assembly language

74 03 jz short near ptr loc_4011C4+1
75 01 jnz short near ptr loc_4011C4+1
loc_4011C4: ; CODE XREF: sub_4011Co

; @sub_4011C0+2j
E8 58 C3 90 90 Ocall near ptr 9oDoD521h

Figure 2.3: An example of antidisassembly technique: Jump Instructions with
the Same Target. [3]

33 Co Xor eax, eax
74 01 jz short near ptr loc_4011C4+1
loc_4011C4: ; CODE XREF: 004011C2j
; DATA XREF: .rdata:004020ACo
E9 58 C3 68 94 jmp near ptr 94A8D521h

Figure 2.4: An example of antidisassembly technique: A Jump Instruction with
a Constant Condition. [3]

will always be satisfied, and the jump will be taken. As in the previous
case, the destination of the jump is loc_4011C4+1 that is byte OxES8.
Usually, disassemblers start with the false branch of a jump instruction,
so they will disassemble a jmp instruction first. In fact, they should start
disassembling at the next byte, which is 0x58. The correct instruction
would be pop eax.

® Impossible Disassembly - this technique is shown in Fig. 2.5l The
example starts with a two-byte instruction jmp -1, which points to the
start of another instruction inc eax. We can see that the same bytes can
be used in multiple contexts, and each time they can have a completely
different meaning. Unfortunately, these situations cannot be handled in
disassemblers. We cannot interpret a single byte as multiple instructions.
See [3] for a more elaborate example. These situations require the work
of an analyst or carefully designed macros that would clean the code.

We have presented examples of techniques to overcome automatic disas-
sembly routines. Samples incorporating anti-disassembly techniques demand
the work of an analyst, which is generally more expensive than an automated
analysis. These examples exploited assumptions that disassemblers make
during their work and the fact that instructions have multiple bytes.

We do not have any means to overcome the issues described in this section.
We can only trust the disassemblers and choose the ones that are maintained
and up-to-date with the current state of malware. We point to these problems
to stress the limitations of our approach. Although we cannot fight them
directly, we can design our methods to detect them. We also should be aware
of these cases when analyzing results and misclassified samples that we are
going to get.
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Figure 2.5: An example of antidisassembly technique: Impossible Disassembly. [3]

B 2.2.5 Binary packing

Another obstacle in the way of static analysis is a binary packing. Packers
are used both in legitimate and malicious software. The reasons are:

® Size shrinkage

® Analysis prevention

Packers transform a program into a new one storing the original application
as data. If we look at a packed binary, we see only an unpacking stub, and
any analysis can be worthless. We show how binaries are packed and the
possibility of unpacking. Although we do not perform unpacking in our work,
we believe it is necessary to mention it as a limitation not only of our method
but all static analysis methods.

B Unpacking stub

An executable is wrapped by a different program called unpacking stub during
a process called packing. When the unpacking stub is executed:

1. Unpacks the original binary into memory
2. Resolve all the imports

3. Pass the execution to the original binary

The original binary is stored as data and can be additionally compressed and
even encrypted. Therefore, first, the stub needs to load the original binary
into memory and perform decryption or decompression if necessary. Malware
authors sometimes hide imported functions from the analyst, so the Import
Address Table (IAT) in the PE header contains only a few or none imports.
The stub needs to resolve all the imports, or it needs to reconstruct the IAT.
Finally, the execution is forwarded to the original binary.

B Packed binaries challenge

We explained how a packed binary looks. It is obvious that analyzing a
packed binary without unpacking can be problematic.

There are several approaches to the challenge:

12



2.2. Assembly language

Treat a packed binary as any other - When we disassemble a packed
binary, we will get the unpacking stub code. Analyzing the stub can yield
a reasonable result, e.g., if the packer is characteristic for a malware family.
Then, detecting the unique packer can provide the ability to detect the
malware family. In the case of commonly used packers, analyzing the
stub will not provide enough information to detect maliciousness of the
file.

Detect packed files and filter them out - Packed binaries can be left for a
dynamic analysis or a manual analysis by an analyst. However, detecting
binary packing is not a trivial task, as well. There exist signatures that
can help to detect common packers [22]. Other methods can be based
on a combination of symptoms, e.g., higher entropy of sections, only a
few imports, a small amount of code recognized, etc.

Detect a packer and perform unpacking - This should be the preferred
approach. However, unpacking is difficult and may require manual
analysis, which is unbearable on a large scale.

We choose the first approach in this work. Packer detection and unpacking
are problems that we leave for future work.

B Unpacking

Unpacking transforms a packed binary into the original one. It is necessary
when we want to analyze the real behavior of the file. If we analyzed the packed
binary, we would more likely be analyzing the unpacking stub. Unpacking
can be automated in some cases, but generally, it is a difficult and expensive
process.

There are 3 types of unpacking [3]:

1. Automated static unpacking - Fastest method, which automatically

decompresses the executable. It does not execute the binary. Possible,
for example, for UPX packer.

Automated dynamic unpacking - The unpacker runs the executable and
waits for the unpacking stub to finish. However, it is difficult to recognize
the end of the stub and the beginning of the original binary. It is also
necessary to run the unpacking in a safe and controlled environment.

Manual unpacking - This approach needs to be chosen when the previous
ones failed. In this case, an analyst needs to detect an algorithm that
was used for the packing. After that, he/she can design a program that
can revert the packing. Another approach is to run the unpacking stub
and wait for it to finish. Then, it is possible to dump the executable
from memory.

13



2. Portable executable file

We described ways of unpacking executables. Since we are designing
a system that can work on scale, we would need an automated unpacker.
However, we did not find a publicly available unpacker that would suit our
needs. Therefore, we leave unpacking for future work.
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Chapter 3

Related work

It is necessary to develop malware detection systems that can handle large
volumes of data since the total number of malware is continuously rising [1J.
Researchers addressed this issue in numerous works [6]. We focus on works
using performing static analysis, i.e., without actual execution of the file.
We start by reviewing various malware detection methods, and we end up
at methods that use neural networks to model assembly code and exploit
Function Call Graph (FCG) structure.

. 3.1 Malware detection

Detecting malware using static analysis methods has been addressed in many
works during the last decade. We review methods on different levels of a
binary. We start by models that operate on raw binary code, then move to
assembly code that can be obtained via disassembling. Finally, we summarise
approaches that make use of FCGs.

B 3.1.1 Raw bytes approach

The problem of learning malicious patterns in raw bytes of files has been
addressed in numerous papers. Raff et al. [23] proposed training Convolutional
Neural Network on the full binary content of a file. Their largest model was
trained on a dataset of 2 million samples and had accuracy 94.0 on a test set
of 43,967 malicious and 21,854 benign files. The training took one month on
a system with 8 GPUs.

Jain et al. [24] proposed selecting the most relevant byte n-grams sequences
and training various classifiers upon them. The most relevant byte n-grams
are chosen based on classwise document frequency. They tested their approach
on a dataset of 1,018 malicious and 1,120 benign samples. They obtained an
accuracy of 99.0 and found out that classifiers perform the best on 3-grams.
Random forest was the best performing model in their work outperforming
Naive Bayes, Instance-Based learner, Decision Tree, AdaBoost.
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B 3.1.2 Opcodes approaches

Many articles go beyond the simple ingestion of raw bytes and operate on
operational codes (opcodes) sequences. Santos et al. [7] proposed a framework
that studies the possibility of using opcode sequences for malware detection.
They claim that bytes based models can be fooled by code obfuscation.
Therefore, they extracted 1-grams and 2-grams of opcodes from each file
and selected 1000 the most relevant ones based on Information Gain. They
trained several classifiers on these features, including k-NN, Decision Tree,
SVM, Bayesian networks. They tested their method on a dataset of 17,000
malicious files, including 585 malware families, and 1,000 benign files. They
tested different lengths of n-grams, for n = 1 there were 348 different opcode
sequences, 51,949 for n = 2, 1,360,744 for n = 3, and 10,309,792 for n = 4.
However, they completed the feature selection step only for n=1 and n=2.
Better results were obtained for longer n-grams, and almost every classifier
had accuracy above 90%.

Nagano et al. [25] tried natural language processing method to model
disassembly listings, imports, and hexdump. They trained a paragraph vector
of dimension 100 for each feature category. K-nearest neighbor (KNN) and
SVM classifiers were trained on these features. The approach was tested
on a dataset of 3600 binaries using 10-fold cross-validation. They measured
the performance of each feature separately as well as all combined. KNN
provided superior results when used on each set of features separately, having
the highest accuracy at 0.995278 on a paragraph vector of assembly code.
SVM had slightly better results when all features were concatenated. The
accuracy was 0.9944, precision 0.9940, recall 0.9950 and F-measure 0.9945.

Lu [9] proposes using LSTM to model opcodes. They disassemble exe-
cutables using IDA Pro and extract their opcodes. However, they extracted
assembly code only from a .text section. Opcodes embeddings are obtained
by training a paragraph vector. These vectors are fed into two-stage LSTM,
and a model is trained. The first LSTM layer consumes opcodes of each
particular function, whereas the second layer works upon the output of the
first LSTM layer. Outputs of the second-layer LSTM are averaged and used as
an input to softmax. Their approach was tested on a dataset of 969 malware
and 123 benign samples. Their best performing model on binary classification
task has accuracy 97.87% and 94.51% on multi-class classification.

Kolosnjaji et al. [§] utilized Convolutional Neural Networks (CNN) for
malware detection. They combined features extracted from PE header,
imported functions, and opcodes. Imported functions and opcodes are one-
hot encoded, whereas PE header features are real values. PE header features,
together with import features, are fed into a feedforward neural network. The
CNN processes opcodes with filter height 3, and the result is run through the
max-pooling subsampling layer. They tested their approach on a dataset of
22,694 malicious and 63 legitimate samples. The model learned to predict 14
labels where labels correspond to clusters of malicious binaries, and one label
stands for legitimate samples. They obtained precision and recall 0.93 with
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F1-score 0.92.

B 3.1.3 Function call graph approaches

Various works use the similarity of Function Call Graphs (FCG) for malware
detection. FCGs are usually extracted using static analysis after disassembling
a binary. In many tasks, it is useful to compare FCGs for which a similarity
metric is needed. Many works use Graph Edit Distance (GED) as a metric
for comparing graphs. GED measures a minimum number of edit operations
required to transform one graph into another. However, GED is an NP-
complete task, so approximation algorithms are needed.

Kinable et al. [10] presented an algorithm approximating GED and its usage
for malware classification. They start the computation of GED by matching
external functions. The remaining functions (nodes) are then matched using
simulated annealing in a way that GED is minimized. The resulting GED is
a normalized number of inserted/deleted vertices, a number of unpreserved
edges, and a number of mismatched external functions. Later, they use their
similarity metric to perform k-medoids and DBSCAN clustering and test it
on a dataset of 194 malware samples from 24 families. They concluded that
they successfully identified malware families.

Hu et al. [I1] used similar approach as Kinable [I0]. They use an approxi-
mation of GED distance to run queries for similar samples. Several tricks for
speeding up GED computation were introduced. Firstly, they match library
functions with the same names. Secondly, they match functions based on
their mnemonic sequences. Thirdly, they match functions by computing edit
distance between mnemonic sequences where functions above a certain thresh-
old are matched. Finally, they match the remaining functions by running
the Hungarian algorithm [26]. They also presented an efficient way of storing
data to make the queries faster. Their experiments are more focused on the
effectiveness of their approach but also provide results regarding their classifi-
cation performance. They obtained a success rate of 80.10%, representing the
ratio of queries that correctly found a sample from the same family among 5
returned samples.

Hassen et al. [12] uses clustered functions to compare FCGs of files. Firstly,
they construct an FCG of a file and label each vertex. Vertices representing
external functions are labeled by their name. However, local functions do not
have any reasonable name because they were lost during compilation. They
argue that edit distance between opcodes of two functions is a suitable metric,
but its computational complexity is too high. Therefore, they compute a
hash of each local function using Local Sensitivity Hashing. The resulting
hash is used as a label for a function. We can think of the hashing as of
the clustering of functions. Then, they create a vector for each graph by
counting labels of vertices and corresponding edge types (determined by
hashes of the two corresponding vertices) within the graph. They create a
vectorized representation of a graph that reflects the FCG structure. Finally,
they train a random forest classifier on their dataset of 10,260 samples from
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Microsoft Malware Classification Challenge. They obtained an accuracy of
0.979 outperforming work of Kinable et al. [I0] having 0.840.

Xu et al. [13] proposed heuristics for matching FCGs. The similarity
score is computed based on a normalized number of common edges. Finding
common edges happen in several steps:

1. Matching external functions based on their names

2. Matching local functions by the same called external functions - Functions
are matched if they call more than two same external functions.

3. Matching local functions based on the opcodes - They divide opcodes
to 15 categories based on functionality (data, string, loop, etc.). They
extract color for each function (15-bit number each bit corresponding
to one opcode category) and a vector with the number of instructions
in each category. Then for each function with the same color, they
compute the cosine similarity between their vectors. They also compute
the similarity of lengths and degrees. If all those similarities are above
specified thresholds, they match the functions.

Finally, the number of matched edges is computed, and its ratio to all edges
is used as a similarity matrix. They tested their approach on several tasks:
measuring similarity between malware variants, classification of different
malware families, binary classification of malicious and legitimate binaries.
They did not provide a single metric that could report their results but rather
confusion matrices. They concluded that their approach could recognize
malware variants and different malware families.

B 3.2 Code modelling

Yan et al. [I5] proposes using Deep Graph Convolutional Neural Network
(DGCNN) on the Control Flow Graph (CFG) for malware classification. CFG
has basic blocks as vertices that are connected with an edge either by jump
instruction or simply by consecutiveness in a code. Each node is described
by 11 features, including a count of numeric constants, total instructions,
degree, etc. Features are fed to the neural network and propagated through
convolutional layers. Outputs of all convolutional layers are concatenated at
the end, and AdaptiveMaxPooling Layer is applied. AdaptiveMaxPooling
transforms the input into fixed-sized output by adapting stride and filter size
to produce an output of a given size. Series of convolutional layers is applied
on the output and fed into a fully connected layer with perceptron at the end.
They also tested a different approach for pooling the data called SortPooling
together with different methods to convert matrices into single vectors for
each graph. However, those approaches had an inferior result. They tested
their approach on Microsoft Malware Classification Challenge [27] (10,868
malware samples) and the YANCFG dataset [28] (16,351 malware samples)
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and obtained accuracy 99.25. They present only per family results on the
YANCFG dataset.

Alon et al. [29] presented an approach of learning embeddings of a code.
Their work focuses on learning vectors representing the semantic properties
of code snippets. Abstract Syntax Tree (AST) is built for each code snippet,
and it represents various possible paths in the code. A bag of path-contexts is
extracted from an AST where a single path context is a pair of two terminals
and a path between them. Each terminal and path has its embedding, and
these three embeddings are concatenated together into a single context vector.
All context vectors of a snippet are fed into a fully connected layer, which
combines those three different embeddings. Then, an attention mechanism
is applied on top, and a code vector is obtained. Attention weights are
nonnegative and sum up to 1. They tested the approach on the task of
predicting method names of Java methods. Their work significantly improved
prediction scores over previous works.

Phan et al. [14] proposed a convolutional network working on labeled
directed graphs called DGCNN. Their network operates on an FCG, and
each node (function) has a representation based on its instructions. Two
convolutional layers process the graph. Representations of particular nodes
are aggregated using max-pooling. The resulting vector representing the
graph is fed to two fully connected layers, and softmax to produce a label.
They tested their approach on two tasks. The first one is software defect
detection, and the second one is malware analysis. In case of malware analysis,
their dataset has 2,937 samples. They obtained an accuracy of 0.9731 and
average AUC 0.9722.
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Chapter 4

Graph neural networks

Many algorithms have been proposed for various tasks on graphs. We focus on
a class of algorithms called Graph Neural Network (GNN). It takes advantage
of a structure of the graph while having the power of neural networks. GNNs
were applied in various areas of research [16]:

® Structural tasks - Data has a graph structure naturally, e.g., social
networks, recommender systems.

8 Non-structural tasks - The graph relations are not explicitly in the data,
e.g., images, text.

® Other tasks - Tasks such as building generative models.

In many cases, they brought a performance boost and proved to be efficient
even on large graphs [17].

Depending on the task we are solving GNN models can be further distin-
guished by the level they operate on [17]:

8 Node-level - node regression, node classification task
® Edge-level - edge classification, link prediction

® Graph-level - graph classification

In this chapter, we start by defining the terms needed to understand GNN.
We further focus on the graph classification task and introduce Convolutional
Graph Neural Networks. We describe different kinds of convolutional layers
that we use in this work. We further explain what other layers are used in
the GNN and how we can train a model. We study GNNs in detail so we will
be able to build a reasonable model for our task.

B a1 Graph

Firstly, let us define a graph:
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Figure 4.1: GNN model structure.
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Definition 4.1. A Graph is a pair G = (V, E) where V is a set of vertices
(nodes) and E a set of edges.

We denote the total number of nodes in a graph as |V| = n.

Definition 4.2. A directed edge e € E is an ordered pair (u, v), where u,v € V.
An undirected edge is similarly an unordered pair of vertices.

Definition 4.3. A neighborhood of a vertex v is defined as N(v) = {u €
Vl(u,v) € E}.

So far, we have defined a general graph. We enrich the graph with node
attributes (features):

Definition 4.4. A matrix X € R4 is an attribute matrix. z, € R? is a
feature vector of a node v, and d is the number of features.

Graphs are used to represent many real-world problems because they
capture relations between entities (nodes) in the graph.

B a2 Graph classification

We are focusing on graph-classification in this work, but the concepts described
here can be transferred to other tasks as well. A general net architecture for
graph classification task is in Fig. 4.1l The graph, as defined before, does
not need any other preprocessing and enters as an input. We can see that we
build the network by repeating a graph convolution, followed by an activation
function.

Graphs in a dataset do not usually have the same number of nodes, so
it is not possible to directly classify the whole graph. Each node has a
vector representing its state, and we need to aggregate these vectors to get a
single one representing the whole graph. Therefore, we have to add readout
layer, which builds the graph representation. This layer can be followed by a
multi-layer perceptron and a softmax layer to produce a graph-level label.

. 4.3 Convolutional graph neural networks

There are several types of neural networks operating on graphs, i.e., Graph
Neural Networks (GNN). We have seen tremendous improvements in many
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fields due to Convolutional Neural Networks (CNN) and recently ConvGNN
generalized convolution from grid data to graphs [17]. ConvGNNs gained
attention due to their ability to capture relations in data and use them for a
performance boost.

Standard CNN performs convolution upon two-dimensional matrices (e.g.,
images) where each element in the matrix is a pixel. The pixels are naturally
order based on their appearance in the image. We can not reorder pixels
in the image without losing the original image. There is a rigorous way of
stacking the elements into the matrix representing a sample. However, there
is not a natural order in a graph. We can arbitrarily rearrange the vertices in
space, but the graph would remain the same. In order to linearize a graph
into a matrix, we would have to explore several (if not all) possible orderings.
GNNs tackle the problem by performing convolution on a node level while
ignoring the ordering. Generally, GNN updates an embedding (hidden state)
of a node v by aggregating embeddings of its neighbors N(v). In that way,
the information in graphs is propagated.

There are two types of ConvGNNs [17]:

8 Spectral-based ConvGNNs perform convolution using filters known in
signal processing. These filters require computation of eigenvalue decom-
position of the graph Laplacian. The filter gg = diag(©) can be written
as:

ge *x = UggUTx
where U is a matrix of eigenvectors of the graph Laplacian:
L=Iy-D 2AD 2 = UAUT

where D is a diagonal matrix of node degrees D = >, 4;;. A is an
adjacency matrix and A is a diagonal matrix of eigenvalues.

Computing eigenvalue decomposition is many times not feasible because
its complexity is O(n?). Therefore, an approximation of the filter is used
instead. Another problem of spectral models is its dependence on the
Laplacian eigenbasis. Any changes in the graph result in a change of
eigenbasis, which causes the method to be dependent on a graph structure.
It means that a model trained on a particular graph structure can not
be directly used on a graph with a different structure [16]. This problem
is again solved by approximation to make the method independent of
the actual values of eigenvectors.

® Spatial-based ConvGNNs perform convolution directly on graphs using
spatial relations of nodes. The representation of a node is obtained via
aggregation of neighbors’ representations where information is passed
over edges.

B 4.3.1 Graph Convolution Layer

There are several variants of convolutional layers [I7][16]. We give a descrip-
tion of particular variants that can be part of the network. We do not provide
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an exhaustive list but rather focus on those relevant to this work. For more
complete overview of GNN variants see [17][16].

Bl ChebConv

ChebConv [30)] is a spectral-based ConvGNN model. It approximates the
filter gg by Chebysev polynomials up to K** order. Chebysev polynomials
are defined recursively as:

Ti(x) = 2xTp_1(x) — Tr_2(x),
To(X) =1
Tl( ) X

We use them to approximate the filter:

K
g *x X ~ Z 0, Tr(L)x
k
where 5
L= L-1
Amax N

and Ay i the largest eigen value of L. The filters in ChebConv are localized
in space so they can extract features independently of graph size and without
the need of computing eigenvectors.

To transfer it into our task. The new representation of nodes X’ is obtained
as:

K
). Z 7(k) . @k
k=1
zM =X
72 —1,.X (4.1)
7)) — o . {,.7zk-1) _ z(k-2)

Where X is the attribute matrix, K is the filter size, which is a hyperpa-
rameter, and L is a normalized Laplacian as described before.

B GraphConv

Moris et al. [3I] relates GNN to 1-dimensional Weisfeiler-Leman graph
isomorphism heuristic. The method they propose uses a simple GNN model
GraphConv. It computes the new representation of a node x,, in the following
way:
x&t) _ :J:Sf DwW + Z (t 1) W(t

vEN (u)
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()

where x;” € RXdteat i a representation of a node i in time t, Wy, Wa €
RoutXdreat are matrices of learnable parameters with a hyperparameter doyt.
The sum can be replaced by other functions invariant to order of neighbors
e.g. mean or max. This method represents a spatial-based model which
weighs all node’s neighbors the same during aggregation, but the node itself
is multiplied by a different weight matrix.

B SageConv

Hamilton et al. [32] proposed GraphSage, which is a framework to generate
embeddings of nodes from their neighbors. They described a general algorithm
that uses an aggregation function to collect embeddings from neighbors, which
are then multiplied by a weight matrix. Aggregation function should be
invariant to permutations of neighbors because they do not have any natural
order. They examined three different aggregation functions:

1. Mean aggregator takes element-wise mean of neighbours.

2. LSTM aggregator uses LSTM architecture to combine representations
of neighbours. LSTM is not invariant to the order of neighbors because
they process them as a sequence. They deal with this issue by applying
the LSTM to a random permutation of the node’s neighborhood.

3. Pooling aggregator feeds neighbor’s embedding through a fully-connected
neural network and aggregates the result by taking the element-wise
maximum.

They concluded that LSTM and Pooling aggregators outperform others
but the gain over the mean aggregator was only marginal. The resulting
GraphConv layer with mean aggregation has the following form:

mgf) —w® -meanve{N(u)Uu}xgt_l)

where W € Rut¥deat s 5 matrix of learnable parameters with a hyperpa-
rameter do,t. This method is a spatial-based model. During aggregation, it
multiplies the node and its neighbors by the same weight matrix. Therefore,
it has less parameters compared to GraphConv.

Bl GCNconv

GCN [33] is a method closely related to ChebConv. It limits the convolution
to K =1 and approximates Apax = 2, so we get:

go * X ~ Opx — ®1D_%AD_%X
which has two sets of parameters Oy, 0. We set © = Oy = —07 to get:

go xx~ O(Iy + D*%AD*%)X
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Kipf et al. [33] further used normalization trick and replaced Iy +D :AD 2
by D 2AD % where A = A + Iy and D;; = PP Aij. Finally, for a signal
X € R¥XC with C input channels and F filters we get the convolved signal
as:

X' =D AD:XO,

where ® € RE*F is a matrix of learnable parameters. Authors claim that
limiting K = 1 reduces the risk of overfitting on a local neighborhood in the
graph. However, it has less parameters than ChebConv so it can loose its
expressive power.

l GATConv

GATConv [34] incorporates attention mechanism into the aggregation of
neighbours’ vectors. GraphConv and GraphSage assumes that weights of
the neighbours are identical as opposed to GATConv that learns the weights.
The convolution is defined as:

X; = Oém'@xl' + Z Oéi’j@Xj,
JEN(3)

where ® are learnable parameters, X; is a representation of a node i and «
measures the connection strength. We compute « as:

exp (LeakyReLU (aT[G)x,- I G)xﬂ))
Qi = .
J Y ken(iyufiy exp (LeakyReLU (a'[@x; || ©xy]))

where a is a vector of learnable parameters,|| denotes concatenation of vectors,
LeakyReLU is an activation function similar to standard ReLu but it allows
small gradients when the unit is not active.

B 4.3.2 Readout layer

Readout layer merges representations of all nodes into a single vector rep-
resenting the whole graph. The final representation of a graph hg has a
form:

he = R(zl|v € G)

where R(-) is the readout function. Examples of readout functions are mean,
max, or sum. The readout layer is necessary for graph classification tasks.
We can not simply concatenate vectors of all neighbors because graphs vary
in the number of nodes. Therefore, we extract a single vector representing
the whole graph.
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B 4.3.3 Multi Layer Perceptron

Multi Layer Perceptron (MLP) consists of one or more linear layers, each
followed by a non-linear activation function. It is a common part of neural
networks. In the case of GNN, it is used as a classifier of graph representations.
MLP learns a function f : R* — R° where d is a dimension of input and o is
a dimension of output.

One layer | of MLP takes the following form:
27 = Wlal + bl

altl = o(21t)

where z € R? is an input vector. We set z° equal to input features of the
whole network. W € R°*? is a weight matrix, and b € R° is a vector of
biases, both are randomly initialized in the beginning and updated during
the training. o is a differentiable non-linear function. We use rectified linear
unit (ReLU) in our work:

f(x) = max(0, z)

ReLu is well suited for usage in neural networks because it can be computed
efficiently, helps with gradient propagation in deep networks, and has many
other advantages.

In our case, MLP follows the readout layer, so d in the first layer is the
dimension of the vector representing the whole graph, and o in the last layer
is the number of classes we are classifying.

B 4.3.4 Softmax Layer

Softmaz is used as the last layer of neural networks to transform the output
into probability-like distribution. It is defined as:

e

= E]- pe

It takes a vector z with a dimension equal to the number of classes being
predicted and transforms it to sum up to 1. Then, this vector can be
interpreted as probabilities.

o(z);

B 4.3.5 Training a neural network

Suppose we have a training set T' = {(21,91), ..., (Tm, Ym)} where m is the
number of samples. Each sample x; has its corresponding label y;. We define
a cost function J called negative log likelihood:

m K
J==> lyi = k] log g

i=1k=1
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The outer sum is a sum over all training samples, K is the number of classes
and [-] is an indicator function. For a sample i from the class k, the loss is a
logarithm of the output of the softmax ;.

The loss function can be optimized using a backpropagation algorithm,
which propagates the loss through the network to update its parameters
accordingly. In case of a linear layer, an iteration of a gradient descent looks
as follows:

Wi —w® a2 sawi)
ow,

ij

Bl =) — a%J(W, b)
0b;

where « is called a learning rate, which controls the step size when moving
toward a minimum. Gradient descent is an optimization algorithm, and
as we can see, we need a derivative of the loss function with respect to
the parameters. The chain rule is adopted for the effective computation of
derivatives. We do not give derivatives of all layers in the network because
frameworks like torch perform automatic gradient computation. In our work,
we use an extended variant of a gradient descent algorithm called Adam
[35] that incorporates adaptive learning rate and momentum during the
optimization. Adam is standardly used in other works to train a GNN [36].
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Chapter 5

Dataset

A collection of data is necessary for machine learning algorithms to work.
However, a proper dataset must comply with several requirements:

® Dataset should be large - More data helps to prevent overfitting of learned
models.

® Broad-scale of samples should be present - Different samples help to
learn different behaviors of files.

® Real-world scenario should be simulated - Dataset should contain data
coming from the real world (not synthetic). Data should be gathered in
a consecutive period to capture the evolving nature of malware.

An ideal dataset should also be publicly available to make a comparison
with other approaches possible. Unfortunately, there are no public datasets
suitable for our task. These are datasets broadly used in literature about
static analysis:

® Microsoft challenge malware dataset [27] - more than 20,000 malware
samples in the form of disassembly code and byte code. This dataset
was published in 2015; thus, it can be outdated now. It does not include
legitimate samples. Moreover, it does not come with function call graphs.

® Ember dataset [37] - 1 million files collected in 2018. The authors parsed
the PE header of the files and extracted features out of them. Although
this dataset may be large enough, it does not contain disassembled code.

We created our dataset that complies with our requirements. We provide
details about data collection and labeling in the following sections.

. 5.1 Data collection

We collected binaries between September 1st and October 14th from a Threat-
Grid (TG) [38] service. We split the data into one month of training data and
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5. Dataset

(a) Original (b) Disassembled (c) Count after

count successfully filtering trivial
Trainine set Malicious 4,030,370 3,911,889 3,842,747
& Legitimate | 599,434 483,819 312,922
Testing o | Malicious | 1,664,040 1,621,996 1,601,427
CSHE SCL 1 eoitimate | 274,489 928,757 153,654

Table 5.1: Distribution of files in our dataset. (a) shows number of files obtained
during data collection. (b) shows number of files that could be successfully
disassembled. (c) shows number of remaining files after filtering out files with
only a single function having only one opcode.

two weeks of testing data. This split simulates a real world scenario where
we take collected samples, use them to train a model and use the model on
previously unseen data. We obtained 6,569,242 files in total. Surprisingly,
the dataset is heavily imbalanced towards malicious file. This fact is given by
the nature of the TG service. TG is advanced tool for malware analysis so
malicious files are uploaded there more often. We do not balance our dataset
in any way, we rather adapt our methods to this scenario. Although, there
are usually more legitimate files in real-world scenarios.

B 5.2 Data labelling

We obtained labels for the binaries from Reversing Labs’ service called
Titanium Cloud [39]. It provides File Reputation and Intelligence. They
combine multiple sources to produce verdicts about files. They claim their
database consists of 8 billion unique file records. All of them were processed
by Active File Decomposition (AFD). AFD automatically performs several
analysis techniques to extract Proactive Threat Indicators. It starts with
static analysis techniques that extract underlying structures of the file by
unpacking, de-archiving. Then, TC analyses network indicators, certificate
indicators, known exploits, results from other AV vendors, and many other
sources. Combining all their features, they are able to produce one of the
three labels malicious,legitimate,suspicious together with family labels. We
use files with malicious and legitimate labels and omit files with suspicious
label because they do not have any clear description and could easily fool
learning methods. Distribution of labels in our dataset is shown in Table [5.1.

B 53 Data analysis

In this section, we analyze our dataset to get insight into the data so we can
develop suitable methods for the problem we are solving. In our analysis, we
focus on information relevant to our task, i.e., disassembly and FCG.
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Figure 5.1: 40 largest malware families in our dataset.

B 5.3.1 Malware families

Malware can be divided into malware families based on its authorship or
functionality. Therefore, we want to exploit the similarity between samples
to detect their variants. We check the distribution of malware families in our
dataset to see which ones are present and which are the most prevalent ones.
We obtained family labels from the TC service that creates the labels mainly
from detections of other AV vendors. Usually, reasonable names are given,
but sometimes the detection is only a generic one. The 40 largest families
are shown in Fig. We can see that there are several families with more
than 100,000 files, but smaller families are more common.

We give a description of some malware families based mainly on Talos [40]:
B (Qgpass - malware stealing QQ messenger passwords
m Upatre - backdoor trojan downloading a malicious payload

B Kryptik - generic detection of a Windows trojan collecting system infor-
mation or dropping other payloads

® Virut - widespread virus infecting other files in the computer, establishing
IRC-based backdoor

® Dinwod - polymorphic dropper, obfuscated with anti static analysis tricks
8 Small - downloader distributed over spam e-mails

#® Coinminer - cryptocurrency miners or miner droppers

We can see that our dataset contains various malware families with diverse
behavior, so it presents an interesting task for malware classification.
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Figure 5.3: Histogram of mnemonics in our dataset. Y axis is in log scale.

B 5.3.2 Opcodes

By running BinaryNinja [20], we obtained a disassembly listing of each
executable as described in Section We were able to successfully dis-
assemble 95% (4,395,708) of our 4,629,804 binaries in the training set and
95% (1,850,753) of 1,939,438 in the testing set. We can see that 81.5%
of legitimate samples were disassembled successfully compared to 97.2% of
malicious samples. Detailed numbers are in Table [5.1]

We computed the statistics of mnemonics in our training set. There were
1,139 unique mnemonics in total. The 20 most prevalent ones are shown in
Fig. We can see that the most prevalent is mov followed by push and
call. We show a histogram of the number of instructions in a single file in
Fig. We can see that many files have only a few instructions. There are
also some files with more than 400,000 opcodes.
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5.4. Resulting dataset

B 5.3.3 Function call graphs

During our disassembly procedure, we also extracted the Function Call Graph
(FCG), which represents caller-callee relations between functions within a file.
Examples of FCGs of two samples from the Qgpass family are in Fig. [5.4.
We can see that the shape of FCG varies significantly, even within the same
malware family.

After manual analysis, we found out that in some cases, there are graphs
with only a single node containing only a single instruction. These binaries
usually contain only a call to a virtual machine, so no other instructions could
be found. These graphs do not carry enough information for our task, so we
filter them out. More samples should probably be filtered out to increase the
reliability of the method, but we leave it for future work. 4,155,669 graphs
remained in our training set and 1,755,081 in the testing set. We work only
with these binaries in further work. Detailed numbers can be found in Table
5.1l

Graphs in our dataset are very heterogeneous. We computed the statistics
of all graphs in the training set. Results are presented in Table [5.2] and we
briefly discuss them:

® Number of edges in a graph - We can see that the median is 12 while
mean being 258 with a large standard deviation. This indicates the
presence of outliers. Truly, we can see that the largest graph has 27.581
edges.

® Number of vertices in a graph - Median is 12 and mean 112. Again, we
see exceptions of very large graphs with thousands of vertices.

® Node degree - All functions (nodes) were extracted, and we computed
their degrees. We can see that the median is 3, which indicates that
nodes are well distributed and separated.

Extracted statistics show a great variety in our data. We would like to
emphasize two cases:

® Graphs with only a few nodes but with many opcodes - These cases will
examine the quality of features describing each function.

® Graphs with many functions containing only a few instructions - These
samples should verify the ability to exploit graph structures.

B 54 Resulting dataset

We created two datasets in our work. The first one serves for the task of
detecting malicious and legitimate files. The second one is used to solve the
task of malware family classification. Unfortunately, we can not publish our
datasets. However, we believe that testing our approach on data collected in
the wild is valuable to the community even without publishing the data.
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5. Dataset

mean  std min 25% 50% 75% max

Number of edges 258.03 572.14 0 1 12 287.00 27581
Number of vertices 112.89 218.70 1 2 12 150 10524
Node degree 4.57 7.03 0 2 3 5 3074

Table 5.2: Statistics of graphs in our dataset.

Training set | Testing set

Qgpass 211673 69548
Upatre 193926 102551
Virut 157479 57660
Kryptik 154710 52701
Dinwod 146244 69389
Small 137387 52892
Coinminer | 122828 136561
Wabot 105246 33389
Gandcrab | 86109 31785
Ipamor 84304 8482

Table 5.3: Statistics of the multi-class dataset which is comprised of the 10
largest malware families in our data.

B 5.4.1 Two-class dataset

Two-class dataset contains all the files as detailed in Table [5.1. Each file is
labeled either as malicious or legitimate. In our experiments, we use data that
passed the filtering phase, i.e., disassembled successfully and with non-trivial
functions. There are &~ 10x more malicious samples than the legitimate ones.
The methods should be adapted to this scenario.

B 5.4.2 Multi-class dataset

The multi-class dataset contains samples of the 10 largest families in our
dataset. These families are Coinminer, Dinwod, Gandcrab, Ipamor, Kryptik,
Qgpass, Small, Upatre, Virut, Wabot. The dataset statistics are shown
in Table 5.3l We see that Qqpass is the largest family in the training set,
followed by Upatre and Virut. However, the distribution of the families is quite
different in the testing set. Qqpass is the 3rd largest family, Upatre remains
2nd, and Virut is 5th. The largest family in the testing set is Coinminer,
which was Tth in the training set. The difference in the distribution can cause
troubles during the training and evaluation, so we should be aware of that.

. 5.5 Evaluation metrics

It is essential to measure the quality of a model/algorithm in order to start
improving it. A suitable metric should reflect the real use case of the developed
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method. Subsequently, this metric can be directly or undirectly optimized.
We measure different metrics for malware detection task and malware family
classification task. We do so because there are different requirements in both
cases.

B 5.5.1 Two-class classification metrics

In the case of malware detection, the task is:

1. Maximize the number of detected malicious files

2. Minimize the number of false alarms

We want our system to detect malicious files so we can alert a user that
he/she might be infected. However, triggering alarms on legitimate files too
often would result in users disabling the system. We use standard metrics
to measure these requirements. We operate with terms positive and negative
which are common in classification tasks. In our case, positive refers to
malicious files.

B True positive rate

True positive rate (TPR) (also called recall) measures the ratio of correctly
recognized malicious samples. It is defined as:

TP

- TP +FN’

where T'P (true positives) are malicious samples classified as malicious and
F'N (false negatives) are malicious samples classified as legitimate.

TPR

B False positive rate

False positive rate (TPR) measures the ratio of incorrectly classified legitimate

samples. It is defined as:
FP

" FP+ TN’
where F'P (false positives) are legitimate samples classified as malicious and
TN (true negatives) are legitimate samples classified as legitimate.

FPR

M ROC curve

Receiver operating characteristic (ROC) is a plot that shows a classifier’s
performance for various discrimination thresholds. The plot has FPR on its
x-axis and TPR on the y-axis. The higher the curve is in the plot, the better
is the model’s ability to separate two classes. Many times, we compute an
Area under curve (AUC). AUC helps us understand the model and compare
multiple models [41].
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5. Dataset

B 5.5.2 Multi-class classification matrix

We want to categorize malicious files into malware families. Knowing the
family of a file can help understand the file’s behavior and speed up the
subsequent analysis. Therefore, we want to classify correctly as many samples
as possible.

B Accuracy

Accuracy measures the ratio of correctly classified samples. It is especially
useful for multi-class classification. Accuracy is defined as:

n

. 1 .
ACC(y,y) = — ) [ = vil
n

1=0

where n is a number of samples, y is a vector of true labels, ¥ is a vector of
predicted labels, and [-] is an indicator function.

B F1 score

F'1 score is a harmonic mean of precision and recall. Firstly, let us define
precision as:
tp

recision =
P tp+ fp’

Then, F1 score is defined as:

precision X recall

F1 =2 X — .
precision + recall

as seen in the formula the contribution of precision and recall is the same.
We want to compute F1 score in multi-class classification so we must define
an averaging scheme. We use weighted version of the score:

> lwl Fu(u i)

_
ZlGL ‘yl‘ leL

where L is the set of labels, y is a vector of true labels, ¥ is a vector of
predicted labels. We want to reflect different sizes of groups of samples so we
weight them by their group sizes.
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Figure 5.4: FCGs of two samples from Qgpass malware family (a) More struc-
tured graph with many vertices and edges (b) Smaller graph with only a few
vertices and edges.
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Chapter 6
Method

We introduce several models that can be used for large scale classification
of PE files. They employ the disassembled code of binaries to recognize
their malicious intent. Firstly, we give details about GNN models that take
advantage of FCGs to detect similarities in program structures. Secondly, we
describe models that do not take the structure of an FCG into account.

In our work, we go beyond a raw bytes representation of a PE file, which
can be easily obfuscated [23] [24]. Prior art proved that using assembly
instructions can be successfully employed for malware classification [8] [7]
[9]. We utilise FCGs together with assembly code of each function to detect
structural similarities of binaries as successfully done in previous works [10]
[11] [12] [13]. However, we go beyond the heuristic matching of graphs and use
neural networks to do the task. We follow works which use neural networks
to model code [29] more specifically graph neural networks (GNNs) as in [15]
[14].

Having the GNN model, it can be compared with a model that does not
take the structure of FCG into account. Comparing structure-agnostic models
with GNNs was stressed in prior art [36]. By comparing the models, we can
understand whether the graph’s structure matter. We implemented all the
models using Pytorch geometric (PyG) [42] framework.

. 6.1 GNN architecture

We want to build a GNN model that would classify PE files either as mali-
cious/legitimate; and a second one that would classify files into according
malware families. We explained a structure of GNN in Chapter |4 along
with its components. We are going to adapt GNNs to extract structural
information from FCGs. FCG is a graph with a set of vertices V where v € V'
corresponds to a function. An edge e = (u,v) signifies that a function u calls
a function v.

Since we want to classify the whole files, we are doing a graph classification
task. The structure of our model is shown in Fig. 4.1 GNN will create a
meaningful representation of each node in the graph. Afterward, we aggregate
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all nodes to create a single vector representing the whole graph, which is then
passed to MLP to produce a label. We are going to describe which methods
we implemented in each part.

B 6.1.1 Features

Each node (function) in a graph has a vector x € R%eat with features describing
it. There is no general rule for selecting the features. We were inspired by
works using instructions to perform malware classification [7]. We extracted
all instructions of each function and stripped them of their operands. We
wanted to decrease the number of distinct instructions like that. Then, we
selected the 20 most prevalent mnemonics in the training set and used their
counts as features. The selected mnemonics are:

® mov, push, call, cmp, pop, add, lea, je, test, jmp, jne, xor,
retn, sub, and, inc, or, movzx, dec, jb

Finally, we summed occurrences of other mnemonics in the function and
appended this sum to the vector. The resulting vector describing the function
has a dimension dg,; = 21.

Several works suggested using node degrees as features [36] [32]. A node
degree is a number of edges connected to the node. We explored this feature,
as well.

We note that different features should be investigated and compared to
our approach. We were more interested in getting the notion of GNNs, their
behavior, and their relation to non-structural models. We see opportunities
in different parsing of instructions where we completely omitted operands.
We also represent the mnemonics only in a bag-of-words fashion, and more
elaborate approaches could be tried [43]. We leave those challenges for future
work.

B 6.1.2 Convolutional layer

We start by performing convolution upon the graphs. There are many possible
convolutional layers [16] [17]. We use the ones explained in Section 4.3.1}
ChebConv, GraphConv, SageConv, GCNConv, GATConv. A convolutional
layer has a weight matrix W corresponding to it. These weights are learnt
during the training. The dimension of the weight matrix dyjq € R%id*dfeat (we
call it inner dimension) is a hyperparameter which can be tuned. Multiple
convolution layers can be stacked in order to propagate the information further
in the network. By stacking the layers, we incrementally pass and aggregate
the information deeper in the network. We stack up to two convolution layers
to test if multiple convolutional steps improve the model. We did not go
further because increasing the number of layers also increases the training
time.
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6.2. Structure-agnostic model

B 6.1.3 Readout layer

When the data pass through convolutional layers, we aggregate the embeddings
from the whole graph to extract a single vector representing the whole graph.
This vector has the same dimension as the individual embeddings i.e. dpiq. We
described the readout layer in Section 4.3.2. We try three different functions:
sum, mean, and max.

B 6.1.4 Classifier

We use Multi Layer Perceptron (MLP) followed by softmax as a model used
to classify the graphs. We described the MLP and softmax in Section |4.3.3.
We fixed the architecture of the MLP in our work in order to measure only
differences in GNN architecture.The model has 3 fully connected layers each
one followed by a ReLu activation function. The dimensions of the fully
connected layers:

1. 1st layer dgrapn X 128
2. 2nd layer 128 x 64

3. 3rd layer 64 x number of classes

B 6.2 Structure-agnostic model

Errica et al. [36] made an argument that a structure-agnostic model should
accompany each GNN model. Moreover, several works claimed that GNN
could exploit FCG [15] [14]. Therefore, we expect that including the graph
structure improves the model. We introduce a new model to verify this fact.
The structure-agnostic model, which we call Linnet, does not use the graph
structure.

If the performance of a GNN model is close to this baseline, it can have
two reasons:

1. The task does not need structural information to be solved.

2. GNN does not exploit the graph structure sufficiently.

A human expert can validate the first case. However, validation of a large
dataset would be too time-consuming. The second case is even more difficult
to asses. There can be several reasons causing it [36]. Starting by the bias
induced by the architecture of the network and its hyperparameters. Another
significant factor is the amount and distribution of the training data.

The model has the same structure as the GNN model except for the graph
convolutional layer. The Linnet model is shown in Fig. |6.1 The convolution is
replaced by a linear layer mapping the input features to the higher dimension
dnia- A ReLU activation function follows the linear layer. These embeddings

41



6. Method

Linear net MLP
Graph a ™\ g \ y
Linear (9]
layer :
R (0]
Aot |E (] softmax
> Readout P O = |
x L Q
dig (U o
hid ‘
o
N ) &

Figure 6.1: Linnet model structure.

in the higher dimension are then aggregated in the readout layer. Finally,
graph embedding is fed to MLP, and a class label is produced. Obviously,
edges in the FCG are not respected at all.
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Chapter 7

Results

Since GNN has started developing quite recently and only a few works adapted
them to malware classification, we compare several GNNs and study effects
of tweaking their parameters. We start by comparing different kinds of
convolutional layers. There have been many works published [17] [16], but
only a few have been tested on the malware classification task. Therefore, we
study the impact of each type on the classification performance. We also asses
different sizes of hidden layers in the network. We go further and compare
different ways of aggregating features from a node’s neighborhood as well as
from the whole graph. Finally, we compare our best GNN model with the
structure-agnostic model to see whether the graph structure matters. We
believe these experiments will serve as an excellent introduction to GNNs
and will shed some light on their adoption for malware classification.

We performed our experiments on two classification tasks. The first one
is a binary classification where we classify a PE file either as malicious or
legitimate. The second task is a multi-class classification where we classify
malicious files into 10 malware families. All models were implemented using
Pytorch geometric (PyG) [42] and trained on AWS machine r5a.16xlarge.
We use default parameters of PyG 1.4.3 if not stated otherwise. We fix the
learning rate at 10~4 across the experiments because it ensured the smooth
convergence of the models compared to different values.

All the experiments are performed on the dataset that we introduced in
Chapter [5. We additionally created two validation sets:

1. Binary classification validation set - we randomly select 20% of the
training set and use it as a validation set.

2. Multi-class classification validation set - we randomly select 10% samples
from each malware family in the training set and use it as a validation
set.

The validation set represents unseen data during the training, so we use it to
select the best model after the training. We simply choose the model with
the lowest error on the validation set.
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We run all experiments under these circumstances:

® We use the same data, and the same data splits (training, validation,
testing set)

® Each model was trained for 20 epochs for binary classification and 30
epochs for multi-class classification. After those epochs, we did not see
much improvement.

® The architecture of the neural network is fixed except switching the
convolutional layer.

B If not stated otherwise, the dimension of the weight matrix in the
convolutional layer was set to 128.

B If not stated otherwise, we concatenate the output of max and mean
readout creating a new representation of the graph where dgrapn = 256.

® The data were fed to the network in batches of size 512.

B In case of binary classification, the weight of legitimate samples was set
to 10 because we have =~ 10x more malicious samples than legitimate
ones

B 7.1 Convolutional layers comparison

Many different kinds of convolutional layers have been published; thus, new-
comers might get lost in them pretty easily. Therefore, we empirically compare
several works to see their impact on classification performance.

B 7.1.1 Multi-class classification

We compare ChebConv, GraphConv, SAGEConv, GCNConv, and GATConv
in this experiment. The progress of loss function, accuracy, f1 score during
the training is shown in Fig. [7.1. The name of a model corresponds to the
convolutional layer used. We can see that the loss is steadily decreasing, and
accuracy and fl scores are rising in all cases. GATConv, GCNConv, and
SAGEConv are performing noticeably worse than other models.

We select a model for each method based on the minimal validation loss.
The results of all the models are shown in Table [7.1. We can see that the
model using GraphConv has the best performance on the testing set: Accuracy
0.9416 and F1 score 0.9421.

GraphConv is very similar to SAGEConv but uses two weight matrices
instead of one. The first one is used to transform weights of each particular
node and the second one to transform vectors of neighbors before aggregation.
Having two weight matrices seems to give GraphConv a significant perfor-
mance gain. Another difference is that SAGEConv computes the mean of
neighbors and the current node, compared to GraphConv, which computes
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7.1. Convolutional layers comparison

the sum of vectors. Later, we show that the GraphConv model with mean
aggregation still has much better performance than GraphSage.

We see that ChebConv models, both with the K parameter set to 2 and
3 perform similarly, and both have a similar performance as GraphConv.
We see that ChebConv (K=2) is performing the best out of all models on
the training and validation set. However, it probably slightly overfitted the
training set because the performance on the testing set is not increasing much
after the 14th epoch. GraphConv ends up having better performance on the
testing set. ChebConv (K=2 or K=3) also outperformed GCNConv, which is
their simpler version. It seems that having more expressive power gives an
advantage to ChebConv over GCNConv.

Bringing attention to the aggregation function does not help the perfor-
mance. GATConv still does not match other methods that assign the same
weight to each connection with a neighbor. This particular method can suffer
from broad diversity in graphs where node degrees vary significantly.
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Figure 7.1: Comparison of various convolutional layers on multi-class classifica-
tion task. The evolution of each metric during training is shown.
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7. Results

Accuracy F1 score

Training | Validation | Testing | Training | Validation | Testing
ChebConv (K=2) | 0.9379 | 0.9375 0.9325 | 0.9392 | 0.9387 0.9328
ChebConv (K=3) | 0.9359 0.9342 0.9323 | 0.9370 0.9353 0.9323
GraphConv 0.9358 0.9361 0.9416 | 0.9370 0.9373 0.9421
GATConv 0.9058 0.9270 0.9060 | 0.9067 0.9279 0.9058
GCNConv 0.9001 0.9168 0.8973 | 0.9009 0.9175 0.8966
SAGEConv 0.8889 0.9106 0.8846 | 0.8893 0.9109 0.8834

Table 7.1: Comparison of various convolutional layers on multi-class classification
task. The best performing model on each split is in bold.

B The best model analysis

We have found out that the best performing model with a single convolutional
layer is GraphConv model. We show its confusion matrices in Fig. 7.2l We
see some cases when a large portion of a malware family is misclassified, and
we further looked into that.

Many samples are mistakenly labeled as Dinwod family, e.g., Qqpass,
Upatre, and Kryptik samples. We analyzed these misclassified samples and
found out that many of them have exactly the same graph structure and
features. After digging deeper into those samples, we found out that most of
them were packed by the Petite packer. We are very likely analyzing only
the unpacking stub, which is the same in all the cases. We would need to
perform unpacking to differentiate these samples. In our case, most of those
samples are labeled as Dinwod in the training set, so they all get classified as
Dinwod.

We have seen that many samples get misclassified because of packing. We
do not perform unpacking in this work because it is not a trivial task, and
we leave it for future work. Our approach seems to detect packers right so
that it could be possibly adapted for the task of packer detection.

Motivated by the packed binaries, we analyzed how many unique samples
we have in our dataset. We analyzed the validation set because it is small
enough to perform a unique operation. We concatenated all edges and features
in the graphs, and we found out:

® There are 19,164 graphs out of 139,994 (13.69%), which have a unique
set of edges and features.

® There are 18,597 graphs out of 139,994 (13.28%), which have a unique
set of features.

® There are 14,233 graphs out of 139,994 (10.17%), which have a unique
set of edges.

It is only a rough estimate of the unique number of samples, but it still
provides an interesting insight into the data. We see that there are only
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7.2. Hidden layer size comparison

TPR FPR
Training | Validation | Testing | Training | Validation | Testing
GraphConv | 0.9758 0.9751 0.9676 | 0.0447 0.0459 0.0530
ChebConv | 0.9767 | 0.9759 0.9671 | 0.0312 | 0.0336 0.0390

Table 7.2: Comparison of various convolutional layers on binary classification
task. The best performing model on each split is in bold.

13.69% unique samples based on the validation set. There are even less unique
graph structures, which brings the question of whether the structure itself
carries any information. The duplicate samples are spread across multiple
families, as shown previously. The classifier can get stuck optimizing these
samples during the training even though it obviously cannot differentiate
between them. This problem can be solved by unpacking the samples or, in
some cases, by creating more elaborate feature representations of nodes.

B 7.1.2 Binary classification

We have seen that ChebConv (K=2) and GraphConv were the best performing
models for multi-class classification task. We trained the same models also
for a binary classification task where we classify a file either as malicious or
legitimate. The results are shown in Table |7.2. Both models have similar
performance and are able to effectively recognize malicious files. GraphConv
model has a TPR 0.9676 with FPR 0.053 on the testing set. ChebConv model
has TPR 0.9671 with FPR 0.039 on the testing set.

B 7.2 Hidden layer size comparison

We tried changing the dimension of the weight matrix used in the convo-
lutional layer. Increasing the dimension brings more learnable parameters
into the network. More parameters result in a more complex model that
can be susceptible to overfitting. We compared models with GraphConv and
ChebConv convolutional layers because they proved to perform the best. The
results are shown in Table [7.3l

We can see that ChebConv, with dimensionality 256, is the best performing
model on the testing set. It reaches an accuracy of 0.9462 with an F'1 score
of 0.9468. Decreasing the dimensionality to 128 more or less preserves the
performance on the training and validation set but worsens results on the
testing set to an accuracy of 0.9325 and F1 score 0.9328. However, we see
that decreasing the dimension from 128 to 32 counter-intuitively helps the
performance on the testing set, which suggests that the differences are more
likely due to random initialization effects.

GraphConv has the best performance on the testing set for the inner
dimension 128. Increasing or decreasing the dimension slightly improves
performance on the training and validation set, but it drops on the testing
set.
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7. Results

Accuracy F1 score

Training | Validation | Testing | Training | Validation | Testing
ChebConv (128) | 0.9379 | 0.9375 0.9325 | 0.9392 | 0.9387 0.9328
ChebConv (256) | 0.9374 0.9367 0.9462 | 0.9385 0.9379 0.9468
ChebConv (32) 0.9355 0.9358 0.9409 | 0.9367 0.9370 0.9413
GraphConv (128) | 0.9358 0.9361 0.9416 | 0.9370 0.9373 0.9421
GraphConv (256) | 0.9379 | 0.9384 0.9353 | 0.9390 0.9396 0.9352
GraphConv (32) | 0.9361 0.9365 0.9322 | 0.9374 0.9377 0.9324

Table 7.3: Comparison of various dimensions of the hidden layer in various
convolutional layers on multi-class classification task. The value in brackets
denotes the dimension. The best performing model on each split is in bold.

It is worth mentioning that although increasing the dimension of weight
matrices can improve the models, it also notably increases the training time.

B 73 Stacking multiple convolutional layers

In the GNN model, we can stack multiple convolutional layers on top of
each other to propagate information deeper in the network. Adding a second
convolution will give each node information from neighbors of the neighbors.
We wanted to verify if more information will help the classifier to make better
decisions. We trained three models in this experiment:

1. ChebConv with two consecutive hidden layers of dimension 32
2. GraphConv with two consecutive hidden layers of dimension 128

3. SageConv with two consecutive hidden layers of dimension 128

We compare these models, with two convolutional layers, with models
having only one. The comparison is provided in Table 7.4, ChebConv model
provides a good performance considering we used dimension only 32 of the
weight matrix. Adding one more convolutional layer improved the model’s
performance from the accuracy of 0.9409 to 0.9469 and an F1 score of 0.9413
to 0.9474. In the GraphConv model, we see that the results improved on the
training and validation data but got worse on the testing data. This fact might
indicate that overfitting occurs. In the SageConv model, the performance got
significantly worse even on the training set - accuracy dropped from (0.8889
to 0.8586. Other than that, the results indicate that stacking more layers can
be beneficial, but we need to mind overfitting.

. 7.4 Aggregation function comparison
When we defined spatial-based ConvGNNs, we said that they perform aggrega-

tion of neighbors’ vectors in each node. Several possible aggregation functions
can be used. The function needs to be invariant to the order of neighbors.
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7.4. Aggregation function comparison

Accuracy F1 score

Training | Validation | Testing | Training | Validation | Testing
ChebConv 0.9355 | 0.9358 0.9409 | 0.9367 | 0.9370 0.9413
(1 conv. layer)
ChebCony 0.9366 | 0.9377 | 0.9460 | 0.9378 | 0.9388 | 0.9474
(2 conv. layers)
GraphConv

0.9358 | 0.9361 0.9416 | 0.9370 | 0.9373 0.9421
(1 conv. layer)
GraphConv

0.9366 | 0.9378 0.9381 | 0.9378 | 0.9390 0.9383
(2 conv. layer)
SageCony 0.8889 | 0.9106 0.8846 | 0.8893 | 0.9109 0.8834
(1 conv. layer)
SageCony 0.8586 | 0.9012 0.8517 | 0.8587 | 0.9014 0.8505
(2 conv. layer)

Table 7.4: Comparison of models with two convolutional layers with their simple
counterparts on multi-class classification task.

Accuracy F1 score

Training | Validation | Testing | Training | Validation | Testing
GraphConv 1 9358 | 0.9361 0.9416 | 0.9370 | 0.9373 0.9421
(sum aggr.)
GraphConv

0.9361 0.9372 0.9310 | 0.9372 0.9383 0.9312
(max aggr.)
GraphConv

0.9372 0.9374 0.9389 | 0.9384 | 0.9385 0.9390
(mean aggr.)

Table 7.5: Comparison of GraphConv models with different aggregation functions
on multi-class classification task. The aggregation function used is in brackets.
The best performing model on each split is in bold.

We study whether changing the aggregation function has an impact on the
classification performance. We performed our experiment on a GraphConv
model with a single convolutional layer having the inner dimension of 128. We

tried three possible aggregation functions: sum (default in PyG), mean, max.

These three models differ only in the chosen aggregation function; otherwise,
they have the same architecture. The results are shown in Table |7.5.

GraphConv model with sum aggregation performs the best on the testing
set. It has an accuracy of 0.9416 compared to 0.9389 in the mean model
and 0.9310 in the max model. The model with mean aggregation function
has higher accuracy and F1 score on the training and validation set, but it
has lower performance on the testing data. The max model has very similar
performance as the mean model on the training and validation data, but it
has lower results on the testing data. To sum up, we can conclude that using
the sum aggregation is the best choice among others.
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7. Results

Accuracy F1 score

Training | Validation | Testing | Training | Validation | Testing
GraphConv 0.9300 | 0.9313 0.9237 | 0.9312 | 0.9324 0.9233
(sum readout)
GraphConv

0.9342 0.9344 0.9282 | 0.9354 0.9355 0.9280
(max readout)
GraphConv

0.9324 0.9345 0.9381 | 0.9335 0.9356 0.9385

(mean readout)

Table 7.6: Comparison of GraphConv models with different readout layers on
multi-class classification task. The readout function used is in brackets. The
best performing model on each split is in bold.

. 7.5 Readout comparison

We explained that a readout layer is necessary for the GNN when performing
graph classification. Before the layer, each node has its own vector representing
it. It is necessary to combine these nodes’ vectors to create a single vector
representing the whole graph, which is exactly done in the readout layer.

In this work, we compare the simple yet effective approaches: mean, sum,
and max readout. We used the GraphConv model with an inner dimension
of 128 and alternated only the readout layer. The results are shown in Table
7.6. We see that the models have similar results, but mean and max readout
perform slightly better. The model with mean readout attains the best
accuracy 0.9381 and F1 score 0.9385 on the testing set. The model with
max readout has an accuracy of 0.9282 and an F1 score of 0.9280. We used
concatenation of sum and max readout in other models. This experiment
confirms that it is a reasonable choice.

B 76 Comparison with a structure-agnostic model

Linnet is a structure-agnostic model, for details see Section [6.2. We compare
this model with the GNN model to check if the structure of FCG helps
to make better predictions. In the Linnet model, we set the dimension of
the weight matrix to 128, which is the same as the inner dimension in the
GraphConv model.

B 7.6.1 Multi-class classification

Firstly, we compare models on the multi-class classification task. We show the
training progress in Fig. [7.3|to see how much the models differ in convergence.
The Linnet model has consistently better performance than the GNN model
except for a few peaks.

We compare the performance of the models in Table [7.7. We can see that
Linnet outperforms the GNN model on all the splits. It is surprising because
adding structure to the model does not seem to bring any advantage, and
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7.7. Node-degree model

Accuracy F1 score
Training | Validation | Testing | Training | Validation | Testing
GraphConv | 0.9358 0.9361 0.9416 | 0.9370 0.9373 0.9421
Linnet 0.9396 | 0.9398 0.9501 | 0.9408 | 0.9410 0.9507

Table 7.7: Comparison of GraphConv model with Linnet on multi-class classifi-
cation task. The best performing model on each split is in bold.

the GNN model is performing worse. We believe it is due to the combination
of these factors:

8 There is not enough variance in the graph structures. We have found
out that only a small portion of the data has a unique structure of the
graph.

® The dataset contains very similar samples (or polymorphic malware).
There are large clusters of data in the dataset that can be detected
just by using simple features. Then, adding the structure confuses the
classifier.

8 More advanced techniques to build a GNN should be used. We built
only a simple GNN, which can be further improved.

Our findings are similar to the work of Errica et al. [36]. They found out that
GNNs are outperformed by structural-agnostic models on several datasets
standardly used for graph classification.

We further plot the confusion matrix for the Linnet model in Fig. [7.4 We
can see that the largest difference between models is in the Gandcrab family,
which is often confused in the GraphConv model. These samples should be
further analyzed to see why the GNN model is falling behind.

B 7.6.2 Binary classification

We compare ChebConv and GraphConv with the Linnet model on the binary
classification task. The results are shown in Table [7.8. We see that Linnet
has TPR 0.9668, which is similar to ChebConv having 0.9671 and GraphConv
with 0.9676. However, Linnet reaches a lower FPR of 0.0309 compared to
ChebConv with 0.0390 and GraphConv with 0.0530. We plot testing set ROC
curve in Fig. [7.5l We can see that the performance of the Linnet model is
slightly above the other two models. Linnet model has AUC 0.9945 compared
to ChebConv with 0.9935 and GraphConv with 0.9916. Again, we see that
the Linnet model outperforms the GNN models.

B 77 Node-degree model

Motivated by the results in the previous section, we created a model that
would exploit only the graph structure, ignoring the opcode features. Each
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7. Results

TPR FPR
Training | Validation | Testing | Training | Validation | Testing
GraphConv | 0.9758 0.9751 0.9676 | 0.0447 0.0459 0.0530
ChebConv | 0.9767 | 0.9759 0.9671 | 0.0312 0.0336 0.0390
Linnet 0.9748 0.9738 0.9668 | 0.0210 | 0.0242 0.0309

Table 7.8: Comparison of GNN models with Linnet on binary classification task.
The best performing model on each split is in bold.

Accuracy F1 score
Training | Validation | Testing | Training | Validation | Testing
GraphConv 0.9358 0.9361 0.9416 | 0.9370 0.9373 0.9421
Linnet 0.9396 | 0.9398 0.9501 | 0.9408 | 0.9410 0.9507
Node-degree GNN | 0.7246 0.7264 0.7420 | 0.7142 0.7156 0.7423

Table 7.9: Comparison of GraphConv model with baselines on multi-class
classification task. The best performing model on each split is in bold.

node is described by a single number, which is the node degree. It is a
recommended approach for featureless graphs [36]. The results are shown in
Table [7.9. We see that Node-degree GNN has an inferior performance. It has
an accuracy of 0.7420 on the testing set compared to 0.9416 of the GraphConv
model and 0.9501 of the Linnet model. Therefore, it again indicates that the
graph’s structure itself does not carry much useful information.

. 7.8 Training time comparison

We have shown how different parameters affect the classification performance
of GNNs. Stacking multiple convolutional layers or increasing the inner
dimensions of the layers can improve the performance. However, more
parameters may require more epoch passes to converge. Then, training time
may be of the essence, e.g., because of time constraints. We also want to
compare the cost of training Linnet and GNN models.

We measured the mean time needed to train for a single epoch. We show the
times in Fig. [7.6l We see that generally, ChebConv is faster than GraphConv.
Increasing the inner dimension from 128 to 256 increases the training time
for GraphConv by ~ 52%, and for ChebConv by ~ 18%. Setting K = 3 in
ChebConv slows the training time by & 18% compared to K = 2. Stacking
two convolutional layers increases the training time by ~ 116% for ChebConv,
~ 94% for SageConv, but only ~ 49% for GraphConv. Linnet model is faster
than all the GNN models with the same dimension and provides superior
performance at the same time.
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7.9. Comparison with other models

TPR FPR
Training | Validation | Testing | Training | Validation | Testing
GraphConv | 0.9758 0.9751 0.9676 | 0.0447 0.0459 0.0530
ChebConv | 0.9767 0.9759 0.9671 | 0.0312 0.0336 0.0390
Linnet 0.9748 0.9738 0.9668 | 0.0210 0.0242 0.0309
PE-GBM 0.9973 | 0.9973 0.9953 | 0.0086 | 0.0080 0.0193

Table 7.10: Comparison of GNN models, Linnet with PE-GBM model on binary
classification task. The best performing model on each split is in bold.

B 79 Comparison with other models

The models tested in this work provided pretty satisfying results despite using
only simple features. We wanted to compare them with a different model
to see where they stand globally. We used Cisco’s internal static analysis
engine (we call it PE-GBM here), which uses various features extracted from
PE header and strings. It is similar to a model described in [I8]. The model
was trained for the binary classification task using the same training set as
in the rest of this work. The results are shown in Table [7.10l We see that
PE-GBM outperforms all the models. The main reason is that PE-GBM has
much more features that help to make better decisions. Features extracted
from PE header and strings seem to be very useful features. They should
be included in a model for real deployment because they can significantly
improve the model. Their adoption in GNN models can be an interesting
direction of research.
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7. Results
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Figure 7.2: Confusion matrices for GraphConv model which is the best perform-
ing GNN model with a single convolutional layer of dimension 128.
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Figure 7.3: Comparison of the GNN model with Linnet on multi-class classifica-
tion task. The evolution of each metric during training is shown.
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Figure 7.4: Confusion matrices for Linnet model which is a structure-agnostic
model.
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7.9. Comparison with other models
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Chapter 8

Conclusion

In this thesis, we studied Graph Neural Networks (GNNs) and their usability
on the malware classification task of PE files. We described how a GNN
model could be built to work on Function Call Graphs (FCGs) and overviewed
different components that compose it. All our experiments were performed
on a large dataset of more than 5 million PE files, which is much larger than
the ones commonly used in the literature.

We compared five types of GNN convolutional layers and found out that
GraphConv and ChebConv have the best performance out of them. Other
models had significantly worse results. The weighting of neighbors during
the aggregation step in GATConv did not bring any improvements in models.
This particular method can suffer from broad diversity in graphs where node
degrees vary significantly. GCNConv model is very similar to ChebConuv,
but it is more shallow. The results showed that more expressive power in
ChebConuv helps the performance. SAGEConv is considered a good baseline
model for graph classification tasks. However, it had the lowest performance
in our experiments. It is a similar model to GraphConv, which uses one weight
matrix for a current node and a different one for its neighbors. GraphConv’s
weighting scheme evidently leads to better results.

We further found out that stacking multiple ChebConv convolutional
layers is beneficial for the performance. Increasing the dimensions of weight
matrices in convolutional layers improved again only the ChebConv model.
The same happened when we decreased the dimension, which suggests that
the differences are more likely due to random initialization effects.

Having studied different kinds of GNNs, we were able to select the best
performing GNN models on our data. Finally, the GNN models were compared
to a Linnet model - a model that does not take the FCG structure into
account. We expected this model to have lower performance because it
performs only a simple aggregation of nodes’ representation. It does not
propagate information to neighbors over FCG’s edges as in GNN. Nevertheless,
the structure-agnostic model outperforms the GNN models on both binary
and multi-class classification problems.

In the case of multi-class classification, the best performing GNN models
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8. Conclusion

with a single convolutional layer are GraphConv with an accuracy of 0.9416
and weighted F1 score 0.9421; and ChebConv with an accuracy of 0.9462 and
weighted F'1 score 0.9468. The Linnet model has an accuracy of 0.9501 and a
weighted F1 score of 0.9507.

From our experiments, we conclude that the graph structure of the PE file
does not bring advantages regarding classification performance. GNN models
we tried are not able to exploit the graph’s structure yet. It points to the fact
that the PE files classification might be done reasonably accurately without
employing the structure; or other effects like data distribution and model’s
architecture can cause the error as well. In our particular case, we found out
that FCGs in our dataset did not contain enough variance, and most of them
were identical. Additionally, a model using only the graph structure with
node degrees as features exhibited poor results. The FCGs do not seem to
carry enough structural information. Interestingly, other works observed the
same effect on other datasets standardly used in graph classification research
- the structure-agnostic models outperformed GNNs as well [36]. Obviously,
it is not only a problem with the malware classification task, so researchers
should focus on explaining this phenomenon.

Furthermore, we analyzed our results and found out that the packing of
binaries is a massive obstacle for our method and, consequently, to other
static analysis methods. Packed binaries exhibited the same structures of
FCGs, so the analysis methods cannot differentiate between them.

Comparing the previous models with an industrial static analysis engine
showed that the data contain more information that can be utilized. It was
able further to improve the TPR by = 3% while decreasing FPR. The model
did not perform unpacking of the files but only used a different set of features,
especially those extracted from the PE header. Our GNN models used very
simple features, so more elaborate ones should be included in the model to
obtain better results.

In future work, the FCG structure’s contribution should be further investi-
gated to explain the phenomenon of the lower performance of GNN models
when compared to non-structural models. GNN models should be tested
on different datasets and carefully analyzed whether they exploit the graph
structure at all. Secondly, the FCG should be enriched by more sophisticated
features describing nodes. Thirdly, time should be invested in the unpacking
of samples. It would significantly increase the reliability of the method. Ad-
ditionally, methods for explaining GNN have been published [44]. They can
be used to analyze the nets and also help to identify important functions in
the FCG.
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Appendix B

Thesis attachments

Attachment to this thesis contains Python code, which was used for the
training of the models. It is necessary to supply the code with your data.
We can not, unfortunately, disclose our data due to privacy regulations. The
training script saves results in AWS S3. The results contain predicted and
true labels, the model, and metrics exported for Tensorboard. We attach
tensorboard data for all the models we trained.

The files are structured as follows:
® /dvorast6_diploma_thesis.pdf is an electronic version of this thesis.
8 /src/ contains Python scripts used to train the models.

B /tensorboard/ contains output generated into a format readable by
Tensorboard.
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