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Abstract

Computation of the shortest distance from one node to another in a graph is a common
problem in computer science. Many applications contain a component for the shortest dis-
tance computation. This thesis focuses on the problem of shortest distance computation
in directed weighted graphs. The thesis explores methods that precompute some auxiliary
structures from the input graph to speed up the queries. This approach is suitable in cases
where a large amount of queries needs to be answered and the graph does not change be-
tween the queries. The result of this thesis is a library for shortest distance computation
using three such methods called Contraction Hierarchies, Transit Node Routing, and Transit
Node Routing with Arc Flags. The library can preprocess directed weighted graphs to ob-
tain the auxiliary structures needed by the three methods and then answer shortest distance
queries quickly by utilizing those structures. The implementation is evaluated on graphs
obtained from real road networks. The implementation of the Transit Node Routing with
Arc Flags method based on Contraction Hierarchies present in the library answers random
shortest distance queries more than 10 000 times faster than Dijkstra’s Algorithm on the
largest test graph, while only needing about 50 times the amount of memory.

Keywords: Shortest distance problem, Contraction Hierarchies, Transit Node Routing,
Arc Flags, Road networks, Travel time computation
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Abstrakt

Výpočet nejkratší vzdálenosti mezi dvěma vrcholy v grafu je častým problémem v infor-
matice. Spousta aplikací obsahuje nějakou komponentu pro výpočet nejkratších vzdáleností.
Tato práce se zaměřuje na problém výpočtu nejkratší vzdálenosti ve vážených orientovaných
grafech. Práce prozkoumává metody, které ze vstupního grafu předpočítají nějaké pomocné
struktury, které poté urychlují samotné dotazy. Tento přístup je vhodný v situacích, kdy
je potřeba zodpovědět velké množství dotazů a graf se nemění mezi jednotlivými dotazy.
Výsledkem této práce je knihovna pro výpočet nejkratších vzdáleností pomocí tří metod naz-
vaných Contraction Hierarchies, Transit Node Routing a Transit Node Routing s využitím
Arc Flags. Výsledná knihovna dokáže pro libovolný vážený orientovaný graf předpočítat
pomocné struktury potřebné pro dané tři metody a následně je využít pro rychlý výpočet
nejkratších vzdáleností. Výkon implementace byl vyhodnocen na grafech získaných z reál-
ných silničních sítí. Implementace metody Transit Node Routing založené na Contraction
Hierarchies s využitím Arc Flags obsažená ve výsledné knihovně dokáže vypočíst nejkratší
vzdálenost mezi dvěma náhodnými vrcholy grafu 10 000krát rychleji než Dijkstrův Algorit-
mus pro největší z testovaných grafů, a přitom potřebuje pouze 50krát více paměti.

Klíčová slova: Problém nejkratší vzdálenosti, Contraction Hierarchies, Transit Node
Routing, Arc Flags, Silniční sítě, Výpočet doby jízdy
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Chapter 1

Introduction

Finding the shortest distance between two points is, without a doubt, one of the most iconic
problems in computer science. An algorithm for computing the shortest distance between
two points is often a part of a larger system and can greatly influence the performance of
the whole system.

Figure 1.1: A typical application that needs a component that computes shortest distances
- Google Maps.

One domain where the shortest distance problem is often tackled is transportation. Ap-
plications from the transportation domain that require shortest distance computation are
for example GPS navigation applications (one example is given in figure 1.1 1), systems for
logistics companies that may need to transport products efficiently, applications for simu-
lating transport systems, and many more. One thing that is specific for those applications is
the fact that real road networks have a specific structure. When we think of road networks

1The picture was taken from Google Maps on 05/08/2020. <https://www.google.com/maps/>

1

https://www.google.com/maps/


2 CHAPTER 1. INTRODUCTION

as graphs, they are almost planar graphs (only tunnels or overpasses cause edge crossings),
and the average node degree in those graphs is fairly low (there are no intersections of 20 or
more roads in real road networks). Due to this, it makes sense to develop specific algorithms
for those use cases.

Many of the use cases need to answer large amounts of shortest distance queries in a
short time. If the graph does not change between the queries, it makes sense to precompute
some auxiliary structures that speed up the queries. This thesis focuses on some of the
methods that work well for real road networks. For our implementation, we have decided to
combine the Transit Node Routing framework with Contraction Hierarchies and Arc Flags to
achieve significant speedup while keeping the memory overhead caused by the precomputed
structures reasonable.

The result of this thesis is a library that can produce auxiliary structures for directed
weighted graphs and then use those structures to quickly answer shortest distance queries.
The library provides multiple precomputation methods that have different performance and
memory requirements. While this library was developed mainly for usage in the AgentPolis
framework into which it was integrated during this thesis, it can also be used in other
projects. Since the number of use cases for which this library might be beneficial is large,
we believe it might be useful for other researches and developers as well.

1.1 Goals

The main goal of this thesis is to implementTransit Node Routing based on Contraction
Hierarchies extended by Arc Flags. This is a state-of-the-art approach for precomputing
auxiliary structures to speed up shortest distance queries. At the time of writing this thesis,
there does not exist any public implementation of this approach to our knowledge. The
implementation should be usable from an existing Java simulation framework for model-
ing transportation systems called AgentPolis that is being developed by the Smart Urban
Mobility cluster at the Czech Technical University in Prague.

We can, therefore, divide the thesis into four goals. The first goal is to study the relevant
literature and understand the described methods. The second goal is to efficiently implement
the algorithms. This implementation must be able to precompute the necessary auxiliary
structures and then use them to speed up shortest distance queries. The third goal is to
test the correctness of the implementation and evaluate its performance. We need to ensure
that the distances computed by the implementation are correct and we also need to compare
the performance of the implementation with some baseline algorithms. The fourth and
final goal is to integrate the implementation into AgentPolis so that the framework can
switch between existing methods for shortest distance computation and the new methods
implemented during this thesis.

1.2 Thesis Outline

Chapter 2 formally defines the problem we are dealing with in the rest of this thesis and we
establish a theoretical background. Chapter 3 describes the existing methods that can be
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used to compute shortest distances in a road network. We describe the basic algorithms as
well as the state-of-the-art approaches.

In chapter 4 we describe the methods used in our implementation in more detail. The
methods we use are Contraction Hierarchies, Transit Node Routing and Arc Flags. We
explain how to precompute the structures needed by those methods and how those structures
can be utilized by the query algorithm to answer queries faster.

Chapter 5 then describes the implementation. We discuss the structure of our imple-
mentation and we describe the capabilities of our implementation. The integration into the
AgentPolis framework is then described in chapter 6.

In chapter 7 we describe how we ensured the correctness of the implementation and
how we evaluated the implementation to determine its benefit. We provide tests conducted
using only our implementation independently as well as tests performed in the AgentPolis
framework. We report the results and we draw some conclusions from them.
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Chapter 2

Problem Description

Our goal is to quickly answer distance queries in a given graph. We use real road networks
in our experiments, but the described principles, as well as the library, work for any correct
directed weighted graph. We assume that the user will issue multiple queries for the same
graph. Therefore it makes sense to precompute some structures that will help us answer
subsequent queries faster. The more queries we need to answer the more sense it makes
to spend some time precomputing, as the overhead required for the precomputation will be
smaller than the cumulative time saved due to the faster query answer time.

In section 2.1 we describe all the terminology used in the rest of this work. In section 2.2
we then describe the problem we are dealing with itself.

2.1 Terminology

In this work, we will mostly be working with directed weighted graphs. A directed graph
G = (V, E) consists of a set of nodes V and a set of edges E. We denote the number of nodes
by n = |V | and the number of edges m = |E|. For directed graphs, each edge is an ordered
pair of nodes, ∀e ∈ E : e = (s, t), s ∈ V, t ∈ V . For each edge e = (s, t), we will call the node
s source node of that edge, and the node t target node of that edge. In an undirected graph,
each edge is an unordered pair of nodes. In such cases, we can transform the undirected
graph G′ = (V ′, E′) into a directed graph G′′ = (V ′′, E′′) by replacing each edge e′ = {s′, t′}
by a pair of edges e′′

1 = (s′, t′), e′′
2 = (t′, s′).

For each node v ∈ V , we define an outdegree of v denoted deg+(v) as the number of edges
for which v is the source node: deg+(v) = |{e′ : e′ ∈ E, e′ = (v, x), x ∈ V }|. Analogically,
we define an indegree of v denoted deg−(v) as the number of edges for which v is the target
node deg−(v) = |{e′ : e′ ∈ E, e′ = (x, v), x ∈ V }|. The degree of the node v denoted deg(v)
is then defined as the sum of its outdegree and indegree deg(v) = deg+(v) + deg−(v). The
average degree for a graph G = (V, E) is the arithmetic mean of degrees of its nodes.∑

v∈V deg(v)
|V |

(2.1)

When talking about directed weighted graphs, we add a weight function W : E → N0
assigning each edge a non-negative integer. Since we will be computing shortest distances

5
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between points, we will be using those weights to compare possible candidate paths. When
working with road networks, which is the case for this thesis, the most straightforward option
is to use actual lengths of edges (roads) as weights. A better metric for road networks is
the travel time, because usually when working with road networks we care more about the
time than the actual distance (imagine for example a delivery service that needs to deliver
packages as quickly as possible). Travel time can be estimated by dividing the length of
the edge by the speed limit for the corresponding road. Those are, however, only examples
of possible weight functions that work well on real road networks. For specific use cases or
use cases from other domains than transportation, other weight functions might make more
sense.

We want our graphs to be free of parallel edges (sometimes called multiple edges) and
loops. Parallel edges mean that two or more edges have the same source and target node.
Loops are edges for which the source and the target node are the same node. Graphs
containing parallel edges or loops are usually called multigraphs. If our input graph contains
loops, we can easily get rid of them by simply removing them as they will never occur in any
shortest path (remember that we require our weights to be non-negative). Analogously, if
our input graph contains parallel edges, we can only keep the edge with the smallest weight
for each pair of source and target nodes. Graphs without parallel edges and loops are called
simple graphs. Many algorithms expect simple graphs as input. When using algorithms
that can handle multigraphs, parallel edges and loops only decrease performance, while not
changing the results.

Real road networks can be transformed into weighted directed graphs rather easily. The
junctions are transformed into nodes, and the roads connecting those junctions to edges.
One useful property of real road networks is that the graphs obtained from them are almost
planar. Planar graphs are graphs that can be drawn on a plane in such a way that their
edges intersect only at their endpoints. There are structures in road networks that prevent
them from being planar such as bridges and tunnels, but still, the average degree of road
networks is fairly low. This property of road networks is beneficial for a lot of the methods
described further. Most of those methods work on arbitrary graphs, but their performance
is better on graphs with a lower average degree such as road networks.

Some methods that were developed with road networks in mind also need geographical
positions of nodes to work. In such cases, each node also has a geographical position specified
by its latitude and longitude. An obvious downside of such methods is the fact that they
can not work with graphs that do not have spatial coordinates. Contraction Hierarchies
and Transit Node Routing used in our implementation do not work with any geographical
positions, and can, therefore, be used even for graphs where we do not have this information.

2.2 Problem Formulation

Assume we have a weighted directed graph G = (V, E) and a pair of nodes s and g. Our
problem is to find the shortest distance from s to g in G. We will call node s the start node
and node g the goal node.

The shortest distance from s to g is the minimum weight of a path from s to g. If
there exists a path p from s to g, then this path consists of k nodes: p = (v1, . . . , vk).
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Path p is a valid path from s to g if ∀i = 0, . . . , k − 1 : (vi, vi+1) ∈ E, v0 = s, vk = g
and additionally no node occurs twice in the path. The weight of path p denoted w(p) is
computed as w(p) =

∑k−1
i=0 W ((vi, vi+1)). The shortest distance from s to g denoted d(s, g)

then corresponds to the minimum weight of a path from s to g. We define P to be the set of
all valid paths from s to g, so p ∈ P ⇔ p is a valid path from s to g. The shortest distance
from s to g is then defined as d(s, g) = min∀p∈P w(p). If there exists no valid path from s to
g in the graph (P = ∅), then d(s, g) = ∞. There can be multiple shortest paths for a pair
of start-goal nodes s and g.

In our case, we assume that there are multiple pairs of s and g for which we need to
compute the shortest distance. We assume that the graph does not change in between those
queries. Because of this, we can allow our algorithms to precompute some structures for the
given graph in order to answer subsequent queries faster. To obtain those structures, the
algorithm will need some time, which we denote as the preprocessing overhead of the method.
When comparing query times, we do not consider this overhead. We simply assume, that if
the amount of queries gets large enough, the time saved by the query speedup will outweigh
the preprocessing overhead significantly and the proportion of the overhead for one query
converges to zero.

Note that in this work, we focus on distance queries, meaning we want to return the
distance d(s, g) as quickly as possible. We do not want to obtain actual paths, only distances.
The performance of various methods can change significantly if we also require to obtain
actual paths and not just distances.
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Chapter 3

Survey

Since the computation of the shortest distances between two places is a very common problem
in computer science, there are many articles regarding this topic. In this part, we will present
various possible approaches for computing the shortest distances. We will limit ourselves to
approaches that work well for real road networks. As mentioned previously, one useful
attribute of road networks is the fact, that they are almost planar graphs. This means that
the average degree of those graphs is fairly low. This structural property of road networks
is beneficial for many of the mentioned methods and their performance would diminish on
graphs with large average degrees.

The methods can be distinguished into two basic categories. One category consists of
methods that do not use any preprocessing of the input graph and only answer queries with
the information contained in it. The other category consists of methods that use some sort
of preprocessing of the input graph to obtain a different representation of the input graph,
which is then used to answer queries. Those methods differ in what is precomputed and
how.

The most basic approach for computing the shortest distance between two points s and g
in a graph is the well-known Dijkstra’s algorithm [1]. This algorithm incrementally builds a
shortest-path tree from the start node s. When the goal node g is settled, the distance to it
from the node s in the tree is the shortest distance d(s, g). The downside of this algorithm is
the fact, that each query is processed individually and each time the graph must be searched
again. Dijkstra’s algorithm is, therefore, a representative of the first category, as it only uses
information contained in the original graph.

A trivial improvement of the Dijkstra’s algorithm is the Bidirectional Dijkstra [2]. We
can run two Dijkstra searches, one from s expanding forward (outgoing) edges and one from
g expanding backward (incoming) edges. When the two searches meet, we get a candidate
for the shortest distance. This reduces the search space approximately by a factor of 2.
Modified variants of Bidirectional Dijkstra are used in some of the more complex methods.

If we know that we will need to answer multiple queries and the graph will not change
between the subsequent queries, it makes sense to precompute some auxiliary structures that
can be used to answer the queries faster. The precomputation will take some time, but we
only need to precompute the structures once. The more queries we then answer, the more
we benefit from the precomputation and it becomes more meaningful to actually do the
precomputation.

9
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The easiest precomputation method is precomputing a distance matrix. One can easily
precompute a matrix of all distances between all pairs of points in time O(n3) (where n is
the number of nodes in the graph) using the Floyd–Warshall algorithm or even faster using
n runs of the Dijkstra’s algorithm with a good heap implementation of the priority queue.
Queries can then be answered by a simple table lookup so in time O(1).

The downside of this approach is the fact, that the resulting distance matrix gets large
quite quickly, as the memory complexity for the distance matrix is Θ(n2). For example,
a road network of Prague with the closest surroundings consists of 28 686 nodes. A full
distance matrix (when representing each distance as a 4-byte integer) already needs more
than 3 GB of space (for reference, the graph representation of the same network required for
the Dijkstra’s algorithm only needs around 2 MB of memory). If we want to precompute a full
distance matrix for a whole country, we quickly run into problems. For example, a complete
road network for Florida used in the 9th DIMACS Implementation Challenge 1 consists of
over one million nodes. This means that we would need over 4 terabytes of memory for the
full distance matrix for such network. This makes this approach inapplicable for large road
networks in most of the cases.

On the other hand Dijkstra’s algorithm does not have any memory overhead. Only the
actual graph needs to be stored in memory. The downside is then the time required to
answer queries because an actual search has to be done for each query. For our example
road network of Prague, one random query took over 6 milliseconds using this algorithm.
For applications that need to answer billions of such queries, we would have to wait multiple
months for the results. Ideally, we would like to decrease the time needed to answer large
query sets to at most units of hours, but without the huge memory overhead required for
the distance matrix.

There are a lot of methods that lie somewhere between those two extremes. Most of
those methods rely on some sort of preprocessing of the input road network. Usually, those
methods add new edges to the graph, precompute a distance matrix for some subset of nodes
(not the full distance matrix though), or they add some additional attributes to the nodes
or edges in the graph to speed up the queries. When choosing a method, there is a certain
trade-off we need to consider. Most of the time, methods with faster query times also require
a bigger memory overhead. The size of the available memory and the size of the input graph
should be therefore considered where choosing a method.

3.1 Best-First Search Based Approaches

Some methods can answer random queries faster than the basic Dijkstra’s algorithm without
requiring any preprocessing. Those methods are usually based on the best-first search idea.
Those methods explore the graph by always expanding the most promising node at the given
moment, usually based on some heuristic.

A typical representative is the A* search algorith [3]. This algorithm works similarly as
the basic Dijkstra’s algorithm, only when choosing a node to expand at the given moment,
A* chooses the node v that minimizes f(v) = g(v) + f(v) where g(v) is the weight of the

1Information about the 9th DIMACS Implementation Challenge on shortest paths can be found on <http:
//users.diag.uniroma1.it/challenge9/>.

http://users.diag.uniroma1.it/challenge9/
http://users.diag.uniroma1.it/challenge9/
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path from the start node to v, and h(v) is an estimation of the weight from v to the goal
node. This estimation is acquired using some heuristic. If the heuristic estimates the weights
well enough, this can speed up the search significantly as nodes in the direction of the goal
node are preferred. Many heuristics can be used in A* search with various properties. This
is outside the scope of this work but we refer the interested readers to [4] where properties
of heuristics and their design are discussed. For real road networks where more subsequent
queries have to be answered, best-first search based approaches are generally outperformed
by methods that preprocess the input graph in some way [3].

3.2 Highway Hierarchies

One of the first methods that uses preprocessing of the road network in order to speed up
the queries is called Highway Hierarchies [5, 6]. This approach is based on the fact, that
we can usually split the road network into multiple levels based on the importance of the
individual roads. For example, highways will be mostly in the highest level, because they
will be used in a lot of the queries when going far away, while small roads connecting some
small villages will be in the lower levels, as those roads are only used in a small subset of
very specific queries.

In Highway Hierarchies, we first define a neighborhood for each node to consist of its H
closest neighbors. Then an edge (u, v) is called a highway edge if there is some short path
⟨s, . . . , u, v, . . . , t⟩ such that neither u is in the neighborhood of t nor v is in the neighborhood
of s. The unification of all highway edges then defines the first level of the highway hierarchy.
We then contract the network, meaning we remove low degree nodes, and then find highway
edges in the new network again, obtaining the next level of the hierarchy. This process is
applied recursively (identifying the highway edges followed by contraction). This way we
obtain the highway hierarchy.

For queries, the idea is that when we are far away from start or goal, only high-level
edges need to be considered (when going from Paris to Barcelona, we will probably use
some highways and not some small roads). The search algorithm is, therefore, a modified
Bidirectional Dijkstra that starts in the lowest level of the hierarchy. When the search gets
far enough from the start node (or goal node in the other direction), the algorithm switches
to a higher level of the hierarchy. Edges in lower levels of the hierarchy are then not relaxed.
The farther away s and g are from each other, the more edges are skipped during the search
as the algorithm gets to higher levels of the hierarchy. Because of the structure of real road
networks, this approach is very successful. [7]

3.3 Contraction Hierarchies

Contraction Hierarchies is a method that is similar to Highway Hierarchies but takes the
idea even further. In Contraction Hierarchies [8, 9, 10], we also obtain a hierarchy for the
network. The difference is that in this case, each node has its own level of the hierarchy
called rank. Nodes with higher importance (such as highway entrances and exits) have high
ranks while junctions on small roads have lower ranks.
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During the preprocessing phase, all nodes in the graph are contracted. The contraction
of a node is a process during which the node is removed, but new edges might have to be
added into the graph to preserve the shortest distances between nodes that have not been
contracted yet. Those edges are called shortcut edges. The edge set for the graph used for
the queries is obtained as a union of the original edges and the shortcut edges. Additionally,
the ranks of each node determined by their order during the contraction process are utilized
in the query algorithm.

The queries work in a bidirectional fashion. A modified Dijkstra’s algorithm is run both
from the start node and the goal node. In each direction, only edges going from nodes with
lower ranks to nodes with higher ranks are relaxed. Each time a node is settled in one
direction that has already been settled in the other direction, we get a candidate for the
shortest path. [8]

3.4 Transit Node Routing

The main idea of Transit Node Routing [7, 11, 12] is that for every road network, there is
a fairly small subset of nodes that are used in a large portion of the queries. This subset
usually consists of the large important junctions, highway entrances and exits. The nodes
of this subset are called transit nodes. If we precompute pairwise distances for all pairs of
transit nodes and also distances to closest transit nodes (called access nodes) for all nodes in
the graph, we can then answer a large portion of the queries by combining those precomputed
distances. Since the transit nodes set is fairly small, the memory required to store the pre-
computed pairwise distances for this set and the memory required to store the closest transit
nodes for all nodes will be much smaller than the memory that would be required for the
full distance matrix.

Queries, where the precomputed distances for the transit node-set can be utilized, can
be answered very quickly. If we want to obtain the shortest distance from s to g, we have
to obtain all access nodes for both s and g, then for each pair of a access node of s and
b access node of g, we just compute obtain new candidate for the shortest distance as
d(s, a) + d(a, b) + d(b, g). We then choose the minimum from all the a and b combinations.
Since we have all three terms in the sum already precomputed, obtaining those candidates
means only three table lookups and two sum operations. The problem is that for queries
where s and g are relatively close to each other, the precomputed distances can not be
utilized, because the shortest path might not contain any transit nodes. When you are for
example going from a hotel to a restaurant just a few blocks away, there is a big chance that
you will not need to go through any large important junctions. Those queries are called local
queries. For those, we have to fall back to some other method. We can either use Dijkstra
or some other method such as previously mentioned Highway Hierarchies or Contraction
Hierarchies.

3.5 Arc Flags

In Arc Flags [13, 14] the input graph G = (V, E) if split into k regions. For each edge e ∈ E,
we will store k boolean flags called arc flags. Flag i ∈ 0, . . . , k − 1 for edge e is set to true,
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if there exists a shortest path to some node in region i that contains edge e, otherwise it is
set to false. The query algorithm is then a slightly modified Dijkstra. When computing the
shortest distance from s to g, we first obtain the region r for the node g, and then we run a
Dijkstra search only expanding edges for which flag r is set to true. We can also obtain the
region for s and then use a modified Bidirectional Dijkstra.

The performance of Arc Flags depends on the partitioning of the input graph into k
regions. There are various approaches to obtaining those partitions. If we are working with
a real road network, a simple option is to geometrically split the graph into k rectangular cells
of equal size. More sophisticated approaches based on for example Quad-trees or kd-Trees
tend to provide better speedups.

The trade-off between speedup and memory overhead can also be controlled by choosing
the appropriate number of regions k. For a larger amount of regions, the query times are
lower, because more edges can be discarded during the search speeding up the query. On
the other hand, since we have to store k flags for each edge in the graph, by increasing the
number of regions k, we are also increasing the memory overhead needed by the flags. [13]

3.6 Hub Labels

Hub Labels [15, 16, 17] is the fastest of the mentioned methods, only slower in terms of
queries than the full precomputed distance matrix. For an input graph G = (V, E), this
method computes a forward label Lf (v) and a backward label Lb(v) for each node v ∈ V .
The forward label Lf (v) consists of a sequence of pairs (w, d(v, w)) where w is a node w ∈ V
called hub and d(v, w) is the distance to the hub from the node v. The backward label is
constructed in a similar fashion, except there are pairs (w, d(w, v)). The labels must obey a
so called cover property, which says that for each pair of nodes s and g, the set Lf (s)∩Lb(g)
must contain at least one hub v that is a part of some shortest path from s to g. The queries
are then very straightforward, if we want to obtain the shortest distance from s to g, we just
find the node v ∈ Lf (s) ∩ Lb(g) that minimizes d(s, v) + d(v, g).

The main downside of Hub Labels is the fact, that its memory overhead is the largest of
all the mentioned methods (again when not counting the full precomputed distance matrix).
Storing all the labels requires up to two orders of magnitude more space than storing the
graph itself. This is by orders worse than for the other methods mentioned so far making
this approach impractical for large input graphs.

3.7 Hub Labels Compression

Since the main problem of Hub Labels is the large memory overhead, it is a good idea to try
to compress the labels somehow to decrease the memory overhead of the method while still
keeping the query times reasonably low. A great compression technique is described in [15].
It is based on the idea that hub labels can be represented as trees. We can represent a label
L(u) as a tree Tu rooted at u and having the hubs in L(u) as vertices. For each two vertices
v, w ∈ L(u), there is an arc (v, w) in Tu if the shortest path from v to w in the input graph
contains no other vertex from L(u).
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The compression then exploits the fact that trees representing labels of nodes that are
close to each other in the graph are similar in the sense that they have a lot of subtrees in
common. We can only store each distinct subtree only once with a unique id, and then in
the label for u we can only store the ids of the subtrees forming the tree Tu. The authors also
use lossless compression for the actual subtrees based on a recursive representation saving
further space. [15]

The compression can significantly decrease the memory overhead, but the price for that
is the fact that when answering a query, we must first recover (decompress) the labels for
both nodes before we can answer the query as described in section 3.6.

3.8 Combinations

Some of the methods can be combined to achieve further performance improvements. The
individual methods can be mostly divided into two groups. One is hierarchical approaches,
where we impose some hierarchy on the input graph. Highway Hierarchies, Contraction
Hierarchies and Transit Node Routing all fall in this category as all of those methods make
use of the idea that we can split the network into roads and junctions of various importance.
The other category is goal-directed approaches that try to direct the search towards the goal
node as quickly as possible by preferring nodes or edges that are getting the search closer
to the goal node. This can be viewed as a heuristic approach. Arc Flags represent this
approach.

In practice, combining hierarchical and goal-directed methods usually yields great re-
sults [18]. Combinations of Highway Hierarchies with Arc Flags, Contraction Hierarchies
with Arc Flags, and Transit Node Routing with Arc Flags all work very well in practice. Es-
pecially the combination of Transit Node Routing with Arc Flags is very practical because
the query times get very close to the query times of Hub Labels (just by tens of percent
worse) while having significantly smaller memory overhead. For further information about
possible combinations and their performance, we refer the interested readers to [18].



Chapter 4

Solution Approach

In this thesis, we use Transit Node Routing based on Contraction Hierarchies extended by
Arc Flags. We decided to go with this approach because this is the second-fastest currently
known method only being slower than Hub Labels. Hub Labels require significantly larger
memory overhead though and the performance gain is not that significant [19]. In this chapter
we describe all three methods in more detail. We first describe Contraction Hierarchies in
section 4.1, then Transit Node Routing in section 4.2 and then Arc Flags in section 4.3.

4.1 Contraction Hierarchies

Let us now focus on Contraction Hierarchies in more detail. Contraction Hierarchies take
advantage of the hierarchical nature of real road networks. While Highway Hierarchies build
a hierarchy consisting of multiple levels of roads of increasing importance as described in
section 3.2, Contraction Hierarchies take this approach even further and each node has its
own level in the hierarchy.

The main idea of the method is that we order the nodes in the graph by their importance.
We then start contracting the nodes in order of ascending importance. When contracting a
node, the node is removed from the graph, but to preserve the shortest distances between
the remaining nodes, new edges might need to be added into the graph. Those edges are
called shortcut edges. This method, therefore, alters the original input graph by adding new
edges into the graph.

Additionally, the query algorithm for Contraction Hierarchies also uses the importance
ordering of the nodes when finding the shortest distance. The algorithm works in a bidi-
rectional fashion, so we start a forward search from the start node and at the same time a
backward search from the goal node. In both directions, we only expand edges going from
lower priority nodes to higher priority nodes. This allows the query algorithm to skip a lot
of edges when processing each node, and due to the added shortcuts, the algorithm will still
find the optimal solution. [8]

Let us now talk about the individual steps of the algorithm.

15
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4.1.1 Contraction

The primary process of Contraction Hierarchies is the actual node contraction. We need to
contract all nodes in the input graph in a certain order to obtain shortcuts in the graph.
The order in which we contract the nodes can be arbitrary, the order does not affect the
correctness of the algorithm. Some orders are better in terms of performance of the obtained
hierarchies than others though. We will discuss how to obtain good orders in the next
subsection. For now, let us assume that we already have an order and we can start contracting
nodes using that order.

When contracting node v, we are dealing with a graph G′ = (V ′, E′). This graph can
already contain fewer nodes than the original graph because some nodes could already be
contracted, and the edge set can be already expanded by new shortcut edges during those
contractions. When contracting the node, we will obtain a new graph G′′ = (V ′′, E′′) where
V ′′ = V ′ \ {v} and E′′ = E′ ∪ {∀e : e is a necessary shortcut}. This means, that we actually
remove the node from the graph, but to preserve the shortest distances, we might need to
add some new shortcut edges into the graph.

Here we need to consider all nodes u such that (u, v) ∈ E′ and w such that (v, w) ∈ E′.
For each pair u, w we need to check if there exists some shortest path in the graph that
contains edges (u, v) and (v, w). Let us now assume that there exists such shortest path and
it goes from some node a to some node b. If there does not exist a different shortest path in
the graph from a to b that does not go through v, then after the removal of v, the shortest
distance from a to b would not be preserved. Therefore we need to add a shortcut edge from
u to w with the weight c(u, v) + c(v, w). In the worst case, we might need to add a shortcut
edge for each pair u, w. An example of the node contraction process is given in figure 4.1.
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Figure 4.1: Node contraction example. We are contracting node v. In this case, we have to
add all the green shortcut edges to preserve shortest distances among a, b, c and d (neighbors
of v). The red shortcut from a to c does not have to be added. If we do not add it, there still
exist a shortest path from a to c with the same length as the one going through v. Adding
it does not affect the correctness of the query algorithm though.
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To obtain all the shortcuts that need to be added when removing node v, we could
perform a shortest-path search in G′ from each possible start node, ignoring node v, until all
forward neighbors of v have been found. From the computed distances, we can then decide
which shortcuts are needed.

Since this would require an extensive amount of individual Dijkstra’s algorithm runs,
this could slow the whole preprocessing process a lot. Therefore an approximation approach
inspired by [20] is often used. One can realize, that adding shortcuts even if they are not
necessary does not harm the algorithm in a sense, that even if we add unnecessary shortcuts,
the algorithm will still return the actual shortest distances. We could theoretically add a
shortcut for each pair u, w. This would lead to an excessive amount of new edges in the
graph though, so it would increase the memory overhead by a fair amount.

We want to add as little shortcuts as possible, but we also do not want to spend too much
time determining which of the shortcuts are needed and which can be omitted. For this, we
can perform a process called a single-hop backward search. For each edge (x, w) ∈ E′ we
store a bucket entry (W (x, w), w) with node x. We can then limit the forward search from
u to distance

d(u, v) + max
w:(v,w)∈E′

W (v, w) − min
x:(x,w)∈E′

W (x, w). (4.1)

When reaching a node x, we scan its bucket entries. Fr each entry (C, w), we can infer
that there is a path from u to w of length d(u, x) + C.
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Figure 14: The local 1-hop search starting at node v scans through all remaining incident edges.

starting at v, scans b(x) for each edge (v, x) ∈ E ′ \ {(v, u)}. For each pair (w, d) stored in b(x),
it sets D[w] to min {D[w], w(v, x) + d}. After that, if D[w] is larger than w(v, u) + w(u,w),
a shortcut edge (v, w) is added. To find 1-hop witnesses of the form (v, w), we can just scan
the bucket b(v) after all backward searches. We use as cost of contraction (priority term) the
number of bucket entries plus the number of scanned edges during the 1-hop forward search.
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Figure 15: The 1-hop backward search from w stores distance w(x,w) into bucket b(x), repre-
sented by dotted arrows. The following 1-hop forward search from v scans bucket b(x) to get
distance to w over x, represented by dashed arrows.

1-Hop Backward Search. To speed up a local search from node v ∈ S with hop limit a ≥ 3,
we can first perform a (a − 1)-hop forward search using a modified Dĳkstra’s algorithm. The
distance to a node w ∈ T , whose shortest path from v has no more than a edges, is either
already known because w is settled (≤ a−1 edges) or can be found by a 1-hop backward search
using

dv(w) = min {dv(x) + w(x,w) | (x,w) ∈ E ′ and x settled} .

The distance limit to the forward search changes, we now stop the search if the last settled
node exceeds the distance

w(v, u) + max {w(u,w)−min {w(x,w) | (x,w) ∈ E ′} | (u,w) ∈ E ′ \ {(u, v)}} .

An example with a = 5 is illustrated in Figure 16.

3.3.2 On-the-fly Edge Reduction

CHs are based on the concept of node contraction. There is no subsequent edge reduction
phase with considerable time needs like for HHs [31, 32, 35]. Nevertheless edge reduction is

25

Figure 4.2: Example of the bucket entries utilization. When we are relaxing the edge from v
to x, we can immediately scan the bucket entries of x. In this case, we immediately obtain
the cost of the shortest path from v to w going through x without actually processing x. [21]

The buckets serve us as a sort of look ahead. Each time when scanning the bucket of
some node, we can obtain some shortest path witnessing the unnecessity of some shortcut
without actually processing the node. A schema showing how the buckets are utilized is
shown in figure 4.2.

While using this bucket approach, we can also limit the number of hops (edges) used in
any path ⟨u, . . . , w⟩, and we can limit the total search space size of a forward search. The hop
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limit denotes the maximum number of edges on paths that we will consider when deciding
whether a shortcut is really necessary. Because each shortcut replaces exactly two edges, the
alternative shortest path proving that the shortcut is unnecessary usually does not contain
many more edges. Limiting the number of hops and the search space size allows us to speed
up the contraction process. As long as we make sure to always add a shortcut (u, w) when we
have not found a path from u to w witnessing that the shortcut is unnecessary, subsequent
queries will still be answered correctly. [8]

Limiting the number of hops and search spaces can speed up the contraction process.
The bigger the limit, the more shortcuts will get added into the graph, because we will
possibly add shortcuts that are not necessary, only we were not able to find a witness. This
means, that by limiting the number of hops and the search space size, we can speed up
the preprocessing phase, but the performance of the obtained Contraction Hierarchy will be
slightly worse because it will contain more unnecessary edges.

4.1.2 Node Ordering

As mentioned in section 4.1.1, the performance of the obtained Contraction Hierarchy is
greatly influenced by the order in which we contract the nodes. We want to contract the
nodes in order of ascending importance, meaning we want to contract nodes that will need
to be expanded in more of the queries later. To obtain the actual importance of the nodes,
we would need to know all the queries that our hierarchy will be used to answer in advance.

We instead try to approximate the importance of nodes by a linear combination of dif-
ferent importance terms. The most commonly used terms are:

• Edge Difference. The difference between the number of shortcuts added by removing
the node and the original degree of the node. We prefer to contract nodes where not
many new shortcuts will be added earlier.

• Uniformity. We do not want to contract nodes that are close to each other in the graph
soon after each other. We should try to contract nodes in various parts of the graph
uniformly often to obtain hierarchies with good performance for random queries.

• Deleted neighbors. We can also take the number of neighbors that have already been
contracted into account. This heuristic turns out to be quite effective in practice.

• There are other possible terms that could be utilized. For example Voronoi Regions
are mentioned in [8].

Since the described terms can change in time due to some nodes in the graph being
contracted, we usually store the nodes along with their priorities in a priority queue. Each
time when contracting a node we choose the node with the lowest priority currently in the
queue, and we update priorities for its neighbors. [8]

The final order of the node contractions assigns a rank to each node. These ranks are
then used in the query algorithm to speed up the search.
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4.1.3 Query

We already know how to contract nodes and how to obtain good orderings of nodes for the
contraction process. The only thing that is left to be answered is how to actually use the
structures obtained by the preprocessing phase for the actual queries.

An output of the preprocessing phase is a graph G containing all the original nodes and
edges from the input graph, but also additional shortcut edges added into the graph during
contraction of some nodes. Additionally, each node has a rank assigned, determined by the
order in which the nodes were contracted. Nodes contracted later have higher ranks.

Let us now split G into an upward graph G↑ and a downward graph G↓. Graph G↑
contains such edges (u, v) that the rank of u is lower than the rank of v, while G↓ contains
such edges (u, v) that the rank of u is higher than the rank of v.

Assume that we want to answer a query which asks about the shortest distance from some
start node s to some goal node g. The actual query algorithm is a modified bidirectional
Dijkstra’s algorithm that starts a search from s in G↑ and simultaneously a search from g
in G↓. The algorithm alternates between a forward and a backward search. Whenever a
node is settled in one direction that is already settled in the other direction, we get a new
candidate for the shortest path. We can abort the search in one direction if the weight of
the smallest element in the queue for that direction is at least as large as the best candidate
path found so far. Two examples of queries answered by the Contraction Hierarchies query
algorithm are given in figure 4.3. [8]

u = vk and u′ = vk+1. By the definition of Gu and Gu′ , Gu = G[Vk] and Gu′ = G[Vk+1]. So
G[V1] = G and since u ∈ V \ vn arbitrarily chosen, for each ` ∈ 1, 2, . . . , n− 1, G[V`+1] is an
overlay graph of G[V`] finally proving that G is an multi-level overlay graph.

In a nutshell, Algorithm 1 iteratively constructs overlay graphs for a given node order
resulting in an multi-level overlay graph with n distinct levels. So the query algorithms for
HNR can be applied, the topic of the next section.

3.5 Query

Our query algorithm is a symmetric Dĳkstra-like bidirectional procedure. We use the asyn-
chronous, aggressive variant from highway-node routing, see [35]. We will shortly repeat the
most important definitions and algorithms and emphasize their characteristics applied to con-
traction hierarchies followed by a correctness proof. After that, we describe how to unpack a
shortest path, i.e. how to get a shortest path in the original graph without any shortcut edges.
Finally, the query speedup technique stall-on-demand is explained.

The query algorithm does not relax edges leading to nodes lower than the current node.
This property is reflected in two search graphs. The upward graph

G↑:= (V,E↑) with E↑:= {(u, v) ∈ E | u < v})

and, analogously, the downward graph

G↓:= (V,E↓) with E↓:= {(u, v) ∈ E | u > v}).

We perform forward search in G↑ and a backward search in G↓, see Figure 19 for two examples.
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Figure 19: Two examples of queries. The graph is directed, the numbers on the edges denote
the edge weights. Normal arrows denote edges in the original graph, dashed arrows denote
shortcuts and thick arrows the path found by the query algorithm. The forward and backward
search space is framed.

Forward and backward search are interleaved, we keep track of a tentative shortest-path
length and abort the forward/backward search process when all keys in the respective priority
queue are greater than the tentative shortest-path length (abort-on-success criterion). Note
that we are not allowed to abort the entire query as soon as both search scopes meet for the
first time. The reason for this is illustrated in Figure 20. A interleaved, bidirectional Dĳkstra
search is started from source node s and target node t. At first, the forward search settles s
and the backward search settles t. In the second step, both search scopes settle x and they
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Figure 4.3: Two Contraction Hierarchy queries. Normal lines denote original edges, dashed
lines denote shortcut edges, red thicker arrows correspond to the found path. The blue frame
encapsulates all the nodes processed in the forward search from the start node and the red
frame encapsulates all the nodes processed in the backward search from the goal node. [21]

4.1.4 Negative Memory Overhead When Using Contraction Hierarchies

One interesting property of the Contraction Hierarchies query algorithm is, that it always
expands edges going from nodes with lower ranks to nodes with higher ranks. This property
allows us to store each edge only once at the node with the lower rank because it will never
be expanded when processing the node with the higher rank. This also holds for bidirectional
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edges. Those edges will be expanded by the search in G↑ in one direction and by the search
in G↓ in the other direction.

When performing a Dijkstra’s algorithm search in the original graph, we need to actually
store bidirectional edges at both of their endpoints, so we essentially need to store those edges
twice. Due to this property, the memory overhead of Contraction Hierarchies data structures
might actually be negative. In the ideal case, each road in the original graph is a bidirectional
road, so the memory required for those edges in the Contraction Hierarchies data structure
will be half of the memory required for the Dijkstra’s algorithm. Additionally, Contraction
Hierarchies will contain some shortcuts, but if there are fewer shortcuts than half of the
edges in the original graph, then the complete memory overhead of Contraction Hierarchies
is negative, meaning the structures required for the Contraction Hierarchies query algorithm
need less memory than the actual graph representation for the Dijkstra’s algorithm.

4.2 Transit Node Routing

Transit Node Routing is based on the idea, that when traveling far away, you usually join
some of the larger roads close to your starting point, and when you get close to your des-
tination, you also leave some larger road using some exit. Those access points and exits
are called transit nodes. Usually, for each location, there is only a small amount of relevant
access points and exits. When you, for example, want to travel from Paris to Barcelona, it
does not matter where exactly in Paris you will start your journey, because you will probably
try to get to some highway as soon as possible, and then you will travel along highways until
you get close enough to your destination in Barcelona. Then you will exit the highway using
some exit and navigate to your final destination along some smaller roads.

Transit Node Routing tries to somehow identify a set of access points and exits in the
graph that will be used very often when traveling. The full distance matrix containing
distances between all pairs of transit nodes is then computed, along with the forward and
backward access nodes for each node in the graph. Forward access nodes for a node v is such
a set of transit nodes that when going far enough, you will always pass through one of these
nodes. Analogically, backward access nodes for a node w is such a set of transit nodes, that
when arriving to w from far away, you will always pass through one of these nodes.

Distance from v to all of its access nodes (in both directions) is also precomputed and
stored with the access nodes. When a query then asks for the shortest distance from a start
node s to a goal node g, then assuming s and g are far enough from each other, the query can
be answered by trying all forward access nodes a of node s and all backward access nodes b
of node g. For each pair of a, b, we get a new candidate d(s, a) + d(a, b) + d(b, g). Since all
three of those distances are already precomputed, obtaining this candidate consists only of
three table lookups and the addition of the values. If we try all possible combinations of a
and b, the shortest obtained distance is the actual shortest distance in the graph.

One thing to note here is that we have been talking about the fact, that the nodes must
be far enough from each other in order to answer the query as described previously. If we are
only traveling a short distance, for example, if we want to get from a hotel in Paris to a close
restaurant in Paris, it is very likely that we will not pass through any of the transit nodes in
the graph. Those queries are usually called local queries. The pre-computed values do not
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help us with those queries, so we need to answer those using some different fallback method.
Using Dijkstra’s algorithm as a fallback method already yields solid results, because for the
local queries we already know that the start and target nodes will be close to each other so
the algorithm will only expand a small part of the graph. Queries, where a big portion of the
graph would need to be expanded, are answered using the transit nodes. A more sophisticated
method for the local queries could be also used. We use Contraction Hierarchies to answer
the local queries in our implementation. We also need a way of determining whether a query
is a local query and we need to use the fallback algorithm, or if we can use transit nodes to
answer the query. [11]

4.2.1 Transit Node Routing as a Framework

As the previous part suggests, Transit Node Routing is more a framework than a single
algorithm. There are various approaches to the implementation of Transit Node Routing.
Each of those implementations must tackle the following problems:

• Obtaining a set T ⊆ V of transit nodes.

• Computing a distance table DT : T × T → R+
0 of shortest distances between all pairs

of transit nodes.

• Finding access nodes for each node. This means obtaining a forward (backward) access
nodes mapping A↑ : V → 2T (A↓ : V → 2T ) such that for any shortest s-g-path P
containing transit nodes, A↑(s) (A↓(s)) must contain the first (last) transit node on P .

• Obtaining a locality filter L : V × V → {true, false} such that L(s, g) is always true
when no shortest path from s to g is covered by a transit node. Note, that false
positives are allowed, this means L(s, g) can be true even when the shortest path
contains a transit node. This only means that we would use our fallback algorithm to
answer a query that could have been answered using transit nodes. While this does
not affect the correctness, it affects the performance negatively, since obtaining the
distance using the fallback algorithm takes more time than obtaining it using transit
nodes. [22]

There are many approaches to solving those problems. A grid-based implementation
based on splitting the input into rectangular cells of equal size (here actual geographic po-
sitions of nodes have to be used) and an implementation based on Highway Hierarchies are
presented in [11]. A more sophisticated (and also faster) implementation based on Contrac-
tion Hierarchies is then suggested in [22].

4.2.2 Transit Node Routing Based on Contraction Hierarchies

Let us now describe how Contraction Hierarchies can be used to solve the problems from the
Transit Node Routing framework.

Obtaining a set of transit nodes using Contraction Hierarchies is really simple. We can
just choose k nodes with the highest rank in the Contraction Hierarchy. Remember that
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nodes with higher ranks should mean more important nodes, so usually for example highway
exits will have higher ranks. One benefit of this approach is that we can choose any k we
want. A lower amount of transit nodes means that the memory overhead will be smaller,
as we will only need a distance matrix for fewer transit nodes, but the performance will be
slightly worse because the average distance from nodes to their access nodes will be higher
(as there are fewer transit nodes in the graph), which means more queries will be classified
as local queries and those have to be answered by a slower fallback algorithm. Also consider
the fact, that when k = n, Transit Node Routing degrades to a full distance matrix, because
in that case every node is a transit node and we will precompute distances for all pairs of
nodes in the graph.

There are multiple options for computing the distance matrix for transit nodes. A simple
approach is to run the Dijkstra’s algorithm k times from each transit node until it settles
all the other transit nodes. The distance matrix can be computed faster by adjusting the
method described in [20].

When computing forward access nodes for node s, all we have to do is run a forward
Contraction Hierarchies query from s, that will not relax edges leaving transit nodes. When
the search runs out of nodes to settle, the settled transit nodes form the set of forward
access nodes for s. Computing backward access nodes works similarly, only we perform a
backward Contraction Hierarchies query. Proof of correctness for this procedure along with
some possible improvements is included in [22].

The last thing we need is the locality filter. The simplest locality filter is based on search
spaces. When computing the access nodes, we can also save the forward and backward search
spaces for each node. The forward search space of node s contains all nodes settled by the
forward Contraction Hierarchies search from s that are not transit nodes. The backward
search space is obtained analogically. When we want to obtain the shortest distance from
some start node s to some goal node g, we can check forward search space of node s and the
backward search space of node g. If these two search spaces are disjoint, all shortest paths
from s to g must go through some transit nodes, and therefore we can set L(s, g) = false. On
the other hand, if the intersection of those two search spaces is non-empty, there might be a
shortest path not going through any of the transit nodes, and therefore we set L(s, g) = true.

4.2.3 Query

Once we have all the necessary structures ready, queries can be answered really quickly.
When given a start s and a goal g, we must first check the locality filter L(s, g). If

the locality filter returns true, we have to use our fallback algorithm, because the shortest
path might not contain any transit nodes. Dijkstra’s algorithm or for example Contraction
Hierarchies can be used in this case (we use Contraction Hierarchies).

If the locality filter returned false, then we can consider all nodes a that are forward
access nodes of s and all nodes b that are backward access nodes of g. For each such pair
a, b, we obtain a new shortest distance candidate obtained as d(s, a) + d(a, b) + d(b, g). Since
all those three values are already precomputed (d(a, b) in the transit nodes distance table and
d(s, a) and d(b, t) are stored together with the access nodes for the respective nodes), we can
obtain those distances very quickly. We then just have to check all possible pairs and return
the best candidate. A schematic representation of this process is shown in figure 4.4. [22]



4.3. ARC FLAGS 23

最 

Figure 4.4: Schematic representation of Transit Node Routing. [7]

4.3 Arc Flags

We have already described the main idea of Arc Flags in section 3.5. This idea can be slightly
modified and then used on top of Transit Node Routing to speed up the queries even further.
The main difference when using Arc Flags together with Transit Node Routing is the fact
that when using Arc Flags alone, we compute flags for each individual edge of the graph,
while for the combination with Transit Node Routing we compute flags for pairs (v, w) where
v is a node from the graph and w is its access node. This makes sense because in Transit
Node Routing we do not relax individual edges, but instead, we only compare distances for
pairs of access nodes.

4.3.1 Partitioning

When combining Arc Flags with Transit Node Routing, we first split the graph into k
arbitrary regions. There are no requirements for this partitioning, except for the fact that
each node must be assigned to exactly one region. Partitionings that are in some way uniform
and try to gather nodes that are close to each other in one region will perform the best, but
the approach works with any partitioning.

We use a simple partitioning that in the beginning randomly chooses k nodes as the
representatives for the regions. Each region is then expanded by gradually adding nodes
closest to it. We use single-linkage, meaning the distance from a node to a region equals
the distance from the node to the closest node in the cluster. We expand the regions in a
round-robin manner (we expand the regions one after another) to ensure that the regions will
contain an equal number of nodes. With this approach, it might happen that one region will
consist of multiple unconnected clusters (if the region we are expanding is unreachable from
all the nodes, we simply expand it by adding some other unassigned node into the region,
starting another cluster). This simple clustering method already improves the performance
significantly.

4.3.2 Computing Arc Flags for the Access Nodes

Assume each node has a region assigned. We then precompute arc flags for each pair of v, w
where v is a node in our graph, and w is an access node of v. For each such pair, we will
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have k flags. Flag i (0 ≤ i < k) is set to true if there exists a shortest path from v to some
node in region i going through the node w, otherwise it is set to false.

We can compute the distances from both v and w to all the other nodes in the graph
using for example Dijkstra’s Algorithm. By comparing those distances, we can then obtain
the arc flags. If there exists a node x from a region i such that d(v, w) + d(w, u) = d(v, u),
then for the access node w we set the flag for region i to true, because a shortest path from
v to u goes through w (in theory, there can be another shortest path with the same weight
not going through w, but setting the flag to true in this case is a conservative approach that
ensures the results will be correct). If there exists no such node x from a region i, we set the
flag to false.

4.3.3 Utilizing Arc Flags for Queries

The precomputed arc flags can be used during the Transit Node Routing query algorithm
to reduce the number of access nodes we have to check in both directions. Let us assume
that we want to answer a query about a distance from a start node s to a goal node g. Let
us further assume that the region of s is i and the region of g is j. Now when considering
forward access nodes of s, we only need to try such nodes for which the arc flag j is set to
true (meaning there exists a shortest path through it to some node in the region of the target
node). Analogically, when considering backward access nodes of g, we only need to try access
nodes with arc flag i set to true. This obviously speeds things up, as fewer combinations of
access nodes have to be tried. One example of such query is given in figure 4.5.

Arc flags need additional memory for the region numbers for all nodes and then for the
flags stored with each access node. For each node in the graph, we need to store one integer
denoting the region of the node. This is linear with respect to the number of nodes in the
graph. As for the flags, in this thesis we use 32 regions, so for every access node, we need
to store an additional 4 Bytes of information (32 boolean flags). Since for large transit
node-sets the memory required for the transit node-set distance table outweighs the memory
required for the access nodes significantly, the arc flags that are attached to the access nodes
do not make a big difference in terms of memory overhead when working with large transit
node-sets.
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Figure 4.5: Example Transit Node Routing query using Arc Flags. We need to compute the
shortest distance from s to g. The start node s belongs to region i and has three access
nodes a, b and c. The goal node g belongs to region j and has three access nodes d, e and
f . In this example, for access node a the arc flag j can be set to false, as there is no node
in region j for which the shortest path from s goes through a. For both b and c the flag j
must be set to true. For b there exists a shortest path going from s through b to some node
in region j, in this case the node in region j is g, the goal of the query (the path is indicated
by dark green). The path from s through c to g is not the shortest path from s to g, but
there exists another node in region j for that the shortest path goes through c and this node
is h (the shortest path is indicated by dark purple). The curves in this picture show paths,
that might consist of multiple individual edges.
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Chapter 5

Implementation

To achieve the best possible performance, we have decided to use the C++ language for our
implementation. The implementation is split into two major components. Those components
are the preprocessor and the library. The preprocessor is an executable application that
allows the user to precompute data structures that can be used to answer queries quickly.
The preprocessor also allows benchmarking of the computed data structures on a given query
set. The library is implemented as a shared library, that can be invoked from Java since
one of our main goals is to integrate our implementation into AgentPolis. The preprocessor
is described in more detail in section 5.1 and the library is described in section 5.2. The
main components of our implementation and their belonging to either the preprocessor or
the library (or both) are illustrated in figure 5.1.
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structuresLoaders

CH API
TNR API
TNRAF API

API

Dijkstra’s Alg.
CH
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TNRAF
Distance Matrix

Shortest 
distance query 

algorithms
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TNR
TNRAF
Distance Matrix
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Figure 5.1: Schematic representation of the main components of our implementation.

Our implementation has a minimal number of dependencies. The preprocessor is self-
contained and does not require any additional libraries apart from the standard C++ library.
The library depends on Java Native Interface (JNI) 1 to connect the C++ code with the

1Java Native Interface on Wikipedia: <https://en.wikipedia.org/wiki/Java_Native_Interface>.
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Java code. This is included in the Java Development Kit. We use CMake 2 to build the
project. This combination allows the implementation to run on a variety of platforms. The
implementation includes a documentation generated using Doxygen 3.

The final implementation can be downloaded from GitHub 4. The commit corresponding
to this thesis cbacc39cf000f4c5af3ddb360d945a655600f446. The project might be further
developed in the future.

5.1 Preprocessor

The preprocessor is an executable application that provides a simple command-line interface
for precomputing the structures required by the shortest distance algorithms of Contraction
Hierarchies, Transit Node Routing and Transit Node Routing with Arc Flags. Additionally,
the preprocessor allows the user to benchmark the data structures using a set of queries.
The preprocessor will answer the queries and report the time needed to answer them along
with the returned distances. Those distances can be used to verify the correctness of the
structures.

The input of the preprocessor must be a directed weighted graph represented in a sup-
ported format (currently, there are two supported formats, one is our proprietary format
called XenGraph, and the other format is called DIMACS and was used for the 9th DI-
MACS Implementation Challenge on Shortest Paths). The formats are described on the
GitHub page of the project 5.

Section 5.1.1 describes what structures can be precomputed by the preprocessor, sec-
tion 5.1.2 describes the benchmarking capabilities of the preprocessor. The command-line
interface is briefly described in section 5.1.3 (it is described in more detail on GitHub).

5.1.1 Preprocessing Capabilities

The preprocessor allows the user to precompute structures for Contraction Hierarchies, Tran-
sit Node Routing and Transit Node Routing with Arc Flags. The preprocessing for each
method is a straightforward implementation of the principles described in chapter 4.

For Contraction Hierarchies the nodes in the input graph are contracted in an order based
on their edge difference and the number of their already contracted neighbors. During this
process, new shortcut edges are added into the graph. In the end, all the data necessary for
the query algorithm are output into a binary file with a .ch suffix that can be then used by
the library to answer queries or by the preprocessor for benchmarking. Both original edges
and shortcut edges need to bestored in the output file. Additionally, node ranks for all the
nodes are stored since those are also used by the query algorithm.

2CMake is a family of tools that simplify the process or building C++ projects. More information on
<https://cmake.org/>.

3Doxygen is a standard documentation generation tool for C++ projects. More information on <http:
//www.doxygen.nl/>.

4The implementation on GitHub: <https://github.com/aicenter/shortest-distances>
5Description of the formats used in our implementation can be found on <https://github.com/aicenter/

shortest-distances/blob/master/FORMATS.md>.

https://cmake.org/
http://www.doxygen.nl/
http://www.doxygen.nl/
https://github.com/aicenter/shortest-distances
https://github.com/aicenter/shortest-distances/blob/master/FORMATS.md
https://github.com/aicenter/shortest-distances/blob/master/FORMATS.md
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When precomputing data structures for Transit Node Routing, the user can determine
the transit node-set size k that will be used. As described in section 4.2.2, more transit nodes
usually mean better performance, but at the cost of larger memory requirements. The input
graph is then first preprocessed in the same way as for Contraction Hierarchies, but after
that, the preprocessing continues by obtaining the transit node-set, which means finding out
the k nodes with the highest rank assigned by the Contraction Hierarchies precomputation.
A shortest distance table containing distances for all pairs of transit nodes is then computed
before access nodes for all nodes and search spaces used for the locality filter can be computed.
In the end, all the data required by the TNR query algorithm are again output into a
binary file with a .tnrg suffix. This binary file contains all the data the file for Contraction
Hierarchies would contain, and additionally contains the transit node-set, its distance table,
the access nodes for all nodes, and the data for the locality filter.

For Transit Node Routing with Arc Flags, the user can again determine the transit node-
set size. After that, we need to obtain all the data required by ordinary Transit Node
Routing, but when finding access nodes, we additionally compute arc flags for them. In the
end, all the data required by the TNRAF query algorithm are output into a binary file with
a .tgaf suffix. This file contains all the data the file for ordinary Transit Node Routing
would contain, and additionally, it also contains all the arc flags data.

The formats of the individual binary files used to store the data structures are described
on the GitHub 6 page of the project. The binary format was chosen to allow fast loading of
the structures when we want to answer queries.

5.1.2 Benchmarking Capabilities

The preprocessor application also allows the user to easily benchmark the precomputed data
structures to either ensure the distances the query algorithms will return using those data
structures are correct, or to evaluate the performance of the methods. The preprocessor
allows the user to benchmark Contraction Hierarchies, Transit Node Routing, Transit Node
Routing with Arc Flags, and additionally Dijkstra’s Algorithm. Dijkstra’s Algorithm serves
as a baseline, we can use the distances computed by Dijkstra’s Algorithm as ground truth,
and we can compare the running times of the other methods with Dijkstra’s Algorithm.

5
0 1
1 3
2 0
4 0
2 4

Figure 5.2: An example of a query set file that can be used to benchmark a method using the
preprocessor. This query set contains 5 queries, each line represents one query (for example
the first line corresponds to a query asking the shortest distance from node 0 to node 1).

6Description of the formats used in our implementation can be found on <https://github.com/aicenter/
shortest-distances/blob/master/FORMATS.md>.

https://github.com/aicenter/shortest-distances/blob/master/FORMATS.md
https://github.com/aicenter/shortest-distances/blob/master/FORMATS.md
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If we want to benchmark any of the four methods, we need to give the preprocessor the
corresponding data structure (For example for Contraction Hierarchies it will be a file with
the .ch suffix. For Dijkstra’s Algorithm, the input is the original graph in the XenGraph
format) and a set of queries that will be used for the benchmark. The queries must be in a
plain text file that starts with a line that contains exactly one number q that denotes the
number of queries in the set, this line is then followed by exactly q lines each representing
one query. Each of those lines contains two integers separated by a space ”s g” where s is
the start node for the query and g is the goal node of the query. An example of such a file is
given in figure 5.2. The preprocessor will run all the queries in the query set and report the
complete time required to answer all the queries in seconds and the average time needed for
one query in milliseconds. The user can also provide an optional output file argument with
a file path where the preprocessor should output the computed distances. If this argument
is provided, the preprocessor will output a simple plain text file that starts with a line that
contains the file path to the query set used for the benchmark followed by q lines, each
containing the result of one query. This output file can then be used to for example verify
the correctness of the distances computed by the structures (for example using the diff tool
in Linux or the FC tool in Windows).

Graph in 
AgentPolis

Graph in 
our library

Custom Mapping
1443635450048671

1443624150047993

1457637350091049

0

1

2

Query in AgentPolis Transformed Query

Figure 5.3: An example showing how a custom mapping for the node indices is used in
AgentPolis. AgentPolis internally uses sixteen digits indices obtained from GeoJSON. Since
our implementation internally works with identifiers in the range from 0 to n − 1, we must
use a custom mapping to transform the start and goal nodes of the queries from the indices
used in AgentPolis to indices used in our library.

It can happen that the indices that will be internally used in our implementation do not
correspond to the indices the user uses for his input graph. In this case, the preprocessor
allows the user to specify a node mapping that will be used to transform indices in the
query set to indices used internally in our implementation. The user can then use arbitrary
positive integers (assuming they fit into the long long unsigned int data type) as indices.
The user can, therefore, use a mapping to transfer those indices. An example showing how
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the mapping is utilized for AgentPolis is given in figure 5.3. The mapping file format is again
pretty simple:

• The file starts with a line in the format ”XID n” where n denotes the number of nodes
in the graph. XID is a fixed string constant that serves as a magic constant.

• The first line is followed by exactly n lines each only containing one positive number i.
The j-th line represents the original ID of the (j-2)-th node. So the second line contains
the original ID of the node with the ID 0 in our application. The third line contains
the original ID of the node with the ID 1, and so on up to the line n+1 contains the
original ID for the node with the ID n-1 in our application.

When benchmarking, the user can decide if he wants to use a custom mapping or not.
If a custom mapping is used, then the file containing the query set must contain the queries
represented using the custom indices. For the AgentPolis framework, we use a mapping
from indices obtained from the GeoJSON representation of the nodes to indices used by our
implementation.

5.1.3 Interface

The preprocessor has a simple command-line interface (CLI) that allows the user to pre-
compute the structures and then benchmark their performance. This CLI is supports two
basic commands create and benchmark. After the command, the next argument must be
the chosen method. Here, the user can choose between Contraction Hierarchies, Transit
Node Routing, and Transit Node Routing with Arc Flags. When benchmarking, Dijkstra’s
Algorithm can also be used. The rest of the arguments differs based on the command and
the selected method. We give one example to illustrate the CLI:

• create tnraf xengraph slow 5000 graph.xeng outputgraph.

This command precomputes the data structures required for Transit Node Routing with
Arc Flags. The third argument denotes the format of the input graph. The fourth argument
denotes the preprocessing mode. Some of the methods support multiple preprocessing modes
that differ in their speed and memory requirements. The fifth argument denotes the desired
size of the transit node-set, and the last two arguments are the input file path and the output
file path respectively. A suffix based on the chosen method is automatically appended to the
output file path. The obtained data structure can then be used for benchmarks using:

• benchmark tnraf nomapping outputgraph.tgaf queryset.txt [results.txt].

In this case, the third argument indicates whether the query set contains node indices
corresponding to the indices used inside the library, or if a custom mapping will be used.
The fourth and fifth arguments are the path to the data structure and the query set that
will be used for the benchmark. Using the last optional argument, the user can supply a file
name into which the results of the individual queries will be stored. This makes it easier to
check the correctness of the computed values. All the options that can be used along with
more examples are described in more detail on GitHub 7.

7The GitHub project page: <https://github.com/aicenter/shortest-distances>

https://github.com/aicenter/shortest-distances
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5.2 Library

The second component of our implementation is the library. This component is a shared
library that provides an interface for loading the structures precomputed by the preprocessor
and answering queries using those structures. The library can be used in other C++ projects
and it also contains the code necessary for the usage of the library from Java. We describe
the integration into Java in chapter 6. The library allows the user to use any of the three
implemented methods (Contraction Hierarchies, Transit Node Routing, and Transit Node
Routing with Arc Flags).

For each method, there is a special class called QueryManagerAPI (for example TNRAF-
QueryManagerAPI for Transit Node Routing with Arc Flags) than loads the corresponding
data structure from a binary file obtained from the preprocessor. The user can also specify
a custom node mapping. This class can then be used to answer queries using the chosen
shortest distance algorithm.

5.2.1 Interface

The library provides an interface in the form of three classes (each representing one supported
method). The classes are the CHDistanceQueryManagerAPI, TNRDistanceQueryManagerAPI
and TNRAFDistanceQueryManagerAPI. Each of those classes has exactly three functions. The
first function is initializeCH (or initializeTNR and initializeTNRAF for the other meth-
ods) and it loads the data-structures required for the chosen shortest distance algorithm from
a file precomputed by the preprocessor. The second function is findDistance, which answers
queries. It must be called after the initialization function, and it uses the structures to obtain
the shortest distance using the chosen method. The last function is clearStructures. This
function frees all the memory required by the structures, and should, therefore, be called
after the last query. When using the library from Java, this is required, as the garbage
collector in Java is otherwise not able to free the memory allocated by the library. The
interface is depicted in figure 5.4.

CHDistanceQueryManagerAPI

- qm
- graph

+ initializeCH(chFile, mappingFile)
+ findDistance(start, goal) : unsigned int
+ clearStructures()

TNRDistanceQueryManagerAPI

- qm
- graph

+ initializeTNR(tnrFile, mappingFile)
+ findDistance(start, goal) : unsigned int
+ clearStructures()

TNRAFDistanceQueryManagerAPI

- qm
- graph

+ initializeTNRAF(tnrafFile, mappingFile)
+ findDistance(start, goal) : unsigned int
+ clearStructures()

Figure 5.4: The library interface. The qm private variable stands for the corresponding
query manager that will answer the queries using the chosen algorithm. The graph private
variable contains the data-structure required for the chosen method and is used by the query
manager. The initialization functions expect a mapping file, but the user can supply a
dummy mapping that maps node indices to themselves in case he or she does not want to
use a custom mapping.



Chapter 6

Integration

One of the main goals of this thesis was to allow an existing framework called Agentpolis to
use the fast distance computation methods, especially Transit Node Routing with Arc Flags
as it is the fastest variant. Agentpolis is a framework for modeling transportation systems.
Since it is written in Java, we needed to integrate our implementation with Agentpolis in
a way where it would be possible to call the C++ code from Java. To accomplish this, we
have decided to use Java Native Interface (JNI) which is a framework that enables Java
code running in an Java Virtual Machine (JVM) to call (and possibly also be called) native
applications and libraries written in other languages. Since JNI requires a lot of wrapper code
on both sides, we also used a software development tool called SWIG (Simplified Wrapper
and Interface Generator) that simplifies the process. 1

6.1 Using SWIG to Generate the Glue Code

SWIG uses proprietary interface files to determine which parts of the C++ code the user
wants to be able to call from the application written in another language (in our case from
Java). When those interface files are supplied to SWIG, it generates ”glue code” necessary
for the integration. In our case it generates a file called shortestPathsInterface_wrap.cxx
on the C++ side, that needs to be included in the shared library. It contains the wrapper
functions that will be called from the Java application. This file also includes the jni.h
header which means that this file is the reason why JNI is enforced in the CMakeLists.txt
file. On the Java side, we obtain multiple files.

For each QueryManagerAPI class (mentioned in section 5.2) we obtain one Java class
that corresponds to the C++ class and provides the same functions. We also obtain a file
called shortestPathsJNI.java that registers all the callable functions of our shared library
in Java.

We are integrating the C++ code into Java, but the nice property of the SWIG interface
files is that they make it fairly simple to also integrate our C++ code into another language.
If there would be a need to integrate our implementation into another language in the future,
we can just use the existing SWIG interface files without any changes to generate ”glue code”

1SWIG is a software development tool to connect C++ code with other languages. More on <http:
//www.swig.org/>.
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for another language, and with those files, the integration would then need very little work.
This way we could integrate our code into any language supported by SWIG. The list of all
languages supported by SWIG can be found on the homepage of the tool 2.

6.2 Travel Time Providers in Java

<<interface>>
TravelTimeProvider

+ getTravelTime(positionA, positionB)

CHTravelTimeProvider

+ getTravelTime(positionA, positionB)
...

TNRTravelTimeProvider

+ getTravelTime(positionA, positionB)
...

TNRAFTravelTimeProvider

+ getTravelTime(positionA, positionB)
...

Our	implementation

AStarTravelTimeProvider

+ getTravelTime(positionA, positionB)
...

EuclideanTravelTimeProvider

+ getTravelTime(positionA, positionB)
...

DistanceMatrixTravelTimeProvider

+ getTravelTime(positionA, positionB)
...

Figure 6.1: Travel Time Providers in AgentPolis. Each provider must implement the
TravelTimeProvider interface. We have implemented three new providers.

The AgentPolis framework uses a component called the Travel Time Provider to compute
the shortest distances between two locations in a road network. The Travel Time Provider
is invoked each time any of the other components requires the shortest distance from one
node to another node. Prior to our thesis, there were already three Travel Time Providers
available in the framework. The first one was an A* Travel Time Provider that returned
exact distances but was too slow for more complex scenarios. The second one was an Eu-
clidean Travel Time Provider that approximated the shortest distances by the euclidean
distance between the two nodes. The approximation was good enough for some scenarios
but insufficiently precise for others. And finally, the third one was a Distance Matrix Travel

2A complete list of languages supported by the SWIG tool can be found on <http://www.swig.org/
compat.html#SupportedLanguages>

http://www.swig.org/compat.html#SupportedLanguages
http://www.swig.org/compat.html#SupportedLanguages
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Time Provider that used a precomputed complete Distance Matrix to return the distances.
While this approach is obviously the fastest possible solution, the memory requirements of
this provider are unfulfillable for large road networks.

We added three new providers into AgentPolis that can be now also used to com-
pute the distances. We added a provider for each of the methods, so there is a Con-
traction Hierarchies provider, Transit Node Routing provider, and Transit Node Routing
with Arc Flags provider. Those providers can load the corresponding data structures
and then use them to answer queries. Fugre 6.1 shows our new travel time providers
along with the already existing providers. We have also implemented parallelization of
the providers. When initializing the provider, we create p instances of the QueryMan-
agerAPI class where p is the amount of available threads on the system (acquired using
Runtime.getRuntime().availableProcessors() in Java). Each query is then assigned to
one of the QueryManagerAPI instances if there is one available, otherwise it waits until one
of them finishes answering its current query, and then it is assigned. This parallelization
scheme is shown in figure 6.2. From a parallelization point of view, this is an input data
partitioning approach.
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Figure 6.2: Parallelization scheme of the travel time providers. We create p instances of the
corresponding QueryManagerAPI class. We then use a semaphore to ensure that at most p
queries are being processed at any time.

AgentPolis provides a config.cfg file that contains file paths to various files required
by the framework along with some settings. We have extended this config file so that the
paths to the data structures required by our Travel Time Providers can be configured easily
using a local config. The config is also used to set the file paths to the structures required
for our new Travel Time Providers (the structures precomputed by the preprocessor).
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6.3 Running Agentpolis with Our Library

To use our library in the Agentpolis framework, the user must take a few steps. The process
is described in depth with examples on the GitHub page of the project. 3.

1. The user must compile the library for his architecture. This can be achieved using the
prepared CMakeLists.txt that was tested on Linux using gcc (version 7.5.0) and on
Windows using MSVC (version 16.5.4).

2. If the user does not have any files containing structures required for the library, he
must compile the preprocessor and use it to precompute some structures depending on
the method the user wants to use. This step can be skipped if the user already has
some precomputed files for example downloaded from some other user.

3. The user must create a local config for AgentPolis (or adjust an existing one) to set
the file paths to the file containing the data that will be used by the library.

4. AgentPolis must be able to find the library obtained in the first step on the user’s
system. Since the library is loaded using System.loadLibrary("shortestPaths"),
we just need to ensure that the directory containing the library obtained in the first
step is included in the java.library.path property when running AgentPolis. This
can be achieved by either moving the compiled library into some directory contained
in the PATH environment variable or adjusting the variable by adding the directory
containing the library.

After those steps the new Travel Time Providers added during this thesis can be used
in the existing scenarios in AgentPolis. Before this thesis, the chosen Travel Time Provider
was selected directly in the code. It was necessary to build the project again each time the
user wanted to change the Travel Time Provider. This did not cause any problems, as the
chosen provider was not changed often. We have adjusted the existing config to allow easier
choice of the desired provider. Currently, we can select the desired Travel Time Provider
by only changing the local config. Figure 6.3 shows an example of a typical interaction of
AgentPolis with our implementation.

3A step-by-step tutorial on how to use the library with Agentpolis: <https://github.com/aicenter/
shortest-distances/blob/master/AMOD_README.md>

https://github.com/aicenter/shortest-distances/blob/master/AMOD_README.md
https://github.com/aicenter/shortest-distances/blob/master/AMOD_README.md
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TNRTravelTimeProvider

TNRDistanceQueryManagerAPI

TNRDistanceQueryManagerWithMapping

obtain
distance

Ridesharing
Algorithm	in
Agentpolis

findDistance(x,	y)

getTravelTime(x,	y)
distanceQuery(x,	y)

Figure 6.3: Diagram showing the typical interaction of AgentPolis with our implementation.
The existing ridesharing algorithm in AgentPolis initiates a shortest distance query. Our
Travel Time Provider on the Java side (depicted in green) forwards the query to the library.
The library API (TNRDistanceQueryManagerAPI in this case) further forwards the query to
the actual query manager on the library side, which then processes the query. The query
manager transforms the node indices using the mapping and then evaluates the locality filter
to decide whether the query is a local query. Then it obtains the shortest distance either
using transit nodes or using the fallback algorithm for local queries. This result is then
transferred to the ridesharing algorithm in AgentPolis. We have used Transit Node Routing
for this example, but the process is similar for the other methods.
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Chapter 7

Testing and Evaluation

In this chapter, we discuss the tests and benchmarks we performed with our implementa-
tion. We first describe how we ensured that our implementation gives the correct results in
section 7.1 and then present the results of conducted performance benchmarks in section 7.2.

All tests were conducted on a machine equipped with a Ryzen 5 3600X processor paired
with 32 GB of RAM running on 3200 Mhz. We used the Linux Mint 19.3 operating system
(for the compilation we used gcc version 7.5.0). We have also verified that the implementation
works correctly on Windows 10 when using the MSVC (Microsoft Visual C++) compiler
(version 16.5.4).

7.1 Ensuring Correctness of Our Implementation

During the implementation part of this thesis, we needed to ensure that the implementation
works correctly and returns the correct values for queries all the time. We have established
various checks and tests that help us with this. We are using tests of our implementation
alone to make sure the algorithms are implemented correctly, tests of the Java API to ensure
the library can be used from Java applications and then tests in the AgentPolis framework
that test whether everything is set up correctly to make the library work with AgentPolis.

7.1.1 Testing the Correctness of the Algorithms Implementation

During the implementation of all the methods, we needed to ensure that they return the
correct shortest distances at any point during the implementation. To do this, we used
Dijkstra’s Algorithm [1]. Our code contains an implementation of this algorithm. We first
manually verified that this implementation computes the correct distances for a small set of
queries. From then on, we used this implementation to verify that the more complex meth-
ods in our implementation return the same distances as this reference Dijkstra’s Algorithm
implementation.

We prepared a set of 50 000 random queries and each time the implementation of some
of the more complex methods changed, we verified that the new implementation of the
complex method returns the same distances as the reference Dijkstra’s Algorithm on this set
of queries. When finalizing the implementation at the end of the development, we used an
even larger set of 100 000 random queries for those tests.
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7.1.2 Automatic Tests of the Java Interface

The next step in our process was to make sure that the library can be invoked from Java
and that the distances returned in Java are correct. For this we have built a simple Maven 1

managed Java project. This project is also provided on GitHub 2. This project contains
two tests for each of the methods provided by the library interface (Contraction Hierarchies,
Transit Node Routing, and Transit Node Routing with Arc Flags). The project contains
the precomputed data structures as well as the correct distances. The tests then verify, that
the data structures can be correctly loaded and that the distances computed by the library
correspond to the precomputed values.

Those tests can be all run by executing mvn test or they can be executed individually
using mvn -Dtest=desiredTest test. The tests are also run automatically when the user
tries to package or install the Java project. If those tests finish successfully, then the Java
Virtual Machine was able to find the library and it is working correctly.

7.1.3 Automatic Tests in the AgentPolis Framework

Being a large Maven managed Java project, AgentPolis contains a large number of tests that
are run during each build to ensure all components are working correctly. Our goal was to
add new tests that would verify that the library works correctly when used with AgentPolis.

We added a test for each of the methods provided by the library interface (Contraction
Hierarchies, Transit Node Routing, and Transit Node Routing with Arc Flags). In each
test, we use a set of 400 queries and compare the values returned by the library with values
computed by the existing A* Algorithm implementation. If those tests pass, they ensure
that when using the library to compute the shortest distances, the scenarios in AgentPolis
will evaluate the same way as when using the A* Algorithm.

7.2 Evaluation of the Performance of Our Implementation

After we have ensured that the implementation works correctly, we needed to evaluate the
benefit of using the implementation instead of some other methods. We first run a series
of benchmarks of our C++ implementation to evaluate the performance of various methods
with various settings. We used three graphs obtained from real road networks for our ex-
periments. The graphs were obtained by a transformation of the GeoJSON obtained from
OpenStreetMap 3 to graphs usable in our implementation. The obtained graphs contained
some bidirectional edges (they represent two-way roads). We transformed each such edge
into two edges.

We compare the performance of our implementation with some baseline methods on each
of the graphs in sections 7.2.1, 7.2.2 and 7.2.3. In sections 7.2.4 and 7.2.5 we then discuss
how much the transit node-set size influences the performance and the memory requirements
of Transit Node Routing and Transit Node Routing with Arc Flags using one of the graphs

1Maven is a software project management and comprehension tool. More on <https://maven.apache.
org/>

2The GitHub project page: <https://github.com/aicenter/shortest-distances>
3OpenStreetMap is a collaborative mapping project. More on <https://www.openstreetmap.org/>.

https://maven.apache.org/
https://maven.apache.org/
https://github.com/aicenter/shortest-distances
https://www.openstreetmap.org/
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as an example. All of the results presented in those sections were obtained using a query
set containing 100 000 random queries. We made 20 runs of all the tests with the query set
and present the average values. The exact code used for this evaluation can be found on the
GitHub page of this project 4.

Since one of our goals was to improve the capabilities of the AgentPolis framework by
integrating our implementation into it, we also evaluated the performance of a complex
scenario in AgentPolis when using our library for the shortest distance computations. We
present the results in subsection 7.2.6.

7.2.1 Comparison of Various Methods on the Graph of Prague

Figure 7.1: Geographical area corresponding to the graph of Prague.

The first graph we have used for our benchmark is a graph of Prague. This graph 28 686
nodes and 68 331 edges (some of those edges are bidirectional). The geographical area
corresponding to this graph is shown in figure 7.1. We have evaluated five methods on this
graph using a query set containing 100 000 random queries. Those methods were:

• Classic Dijkstra’s Algorithm. For this algorithm, we used the original graph as input,
but we simplified the graph before answering the queries, as it contained parallel edges
and cycles.

• Contraction Hierarchies (CH).

• Transit Node Routing (TNR) with a transit node-set containing 2 000 nodes.

• Transit Node Routing with Arc Flags (TNRAF) also with a transit node-set containing
2 000 nodes.

• Distance Matrix (DM) computed from the original graph.
4The GitHub project page: <https://github.com/aicenter/shortest-distances>

https://github.com/aicenter/shortest-distances
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We compare those five methods in terms of their time and memory requirements. Fig-
ure 7.2 shows the results. Both of the axes have a logarithmic scale in this case. On the
x-axis we can see the memory needed for the data structure required for a given method
while on the y-axis we can see the average time needed by the method for one query in
microseconds.
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Memory and time comparison of various methods on the graph of Prague

Figure 7.2: Comparison of the methods on the graph of Prague

The exact measurements are also presented in the table 7.1. From the values, we can
see that Contraction Hierarchies were 25.55 times faster than Dijkstra’s Algorithm, Transit
Node Routing was 2 079.55 times faster than Dijkstra’s Algorithm and Transit Node Routing
with Arc Flags was 3 307.07 times faster than Dijkstra’s Algorithm. We can also see that
Transit Node Routing with Arc Flags needed 25.03 times the amount of memory of Dijkstra’s
Algorithm to accelerate the queries 3 307.07 times. On the other hand, when comparing
Transit Node Routing with Arc Flags and Distance Matrix, the Distance Matrix needs 62.71
times the amount of memory of Transit Node Routing with Arc Flags, but only accelerates
the queries 12.86 times (against TNRAF).

In section 4.1.4, we mentioned that in some cases, Contraction Hierarchies can have
negative memory overhead. As we can see, this does not happen for our graph of Prague.
This is caused by the fact that a lot of shortcut edges are added into the graph when
preprocessing the graph of Prague, outweighing the space saved by representing bidirectional
edges only once in Contraction Hierarchies data structure. If we wanted to use Bidirectional
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Method Time for one query in µs Memory in MB
Dijkstra 6 431.995 2.00

CH 251.719 3.78
TNR 3.093 28.72

TNRAF 1.945 50.06
DM 0.151 3 139.06

Table 7.1: Measurements for the methods on the graph of Prague.

Dijkstra though, we would need to represent all the edges twice, so the representation for
Bidirectional Dijkstra would need 4 MB of space, while Contraction Hierarchies already use
a bidirectional approach and only need 3.78 MB of space. This means that Contraction
Hierarchies have a negative memory overhead with regards to Bidirectional Dijkstra, while
at the same time accelerating queries 25.55 times when Bidirectional Dijkstra only speeds
up the queries up to 4 times [23].

We can see that all of thee evaluated methods are cost optimal in a sense that there is no
method that would provide better query times than some other methods while needing less
or the same amount of memory. The choice of the ideal method, therefore, depends on the
specific use case. Some times the memory requirements of some of the methods might be
too demanding. Other times fastest possible query times might be necessary and we might
be left with no other option than the Distance Matrix approach. Those results however
show, that for example Transit Node Routing with Arc Flags is not that far behind Distance
Matrix in terms of performance, while being significantly less memory demanding.

7.2.2 Comparison of Various Methods on the Graph of Berlin

As our second graph for the benchmark, we have used a graph of Berlin that contains 44 698
nodes and 115 910 edges. The geographical area corresponding to this graph is depicted in
figure 7.3. We have used the same five methods as in section 7.2.1, but for both Transit
Node Routing and Transit Node Routing with Arc Flags we have used a transit node-set
containing 5 000 nodes in this case.

Figure 7.4 shows the results. Both of the axes have a logarithmic scale. The exact
measured values are reported in table 7.2.

Method Time for one query in µs Memory in MB
Dijkstra 10 807.605 3.27

CH 452.609 6.46
TNR 3.182 115.76

TNRAF 1.770 146.60
DM 0.177 7 621.43

Table 7.2: Measurements for the methods on the graph of Berlin.

In this case, Transit Node Routing was 3 396.72 times faster than Dijkstra’s Algorithm,
while needing 35.40 times the amount of memory. Transit Node Routing with Arc Flags
was 6 106.14 times faster than Dijkstra’s Algorithm while needing 44.83 times the amount
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Figure 7.3: Geographical area corresponding to the graph of Berlin.

of memory. Note that in this case we are also using a larger transit node-set than in sec-
tion 7.2.1 for both Transit Node Routing and Transit Node Routing with Arc Flags. We
discuss the influence of the transit node-set size on performance and memory requirements
in sections 7.2.4 and 7.2.5. The Distance Matrix is 10.03 times faster than Transit Node
Routing with Arc Flags and needs 51.99 times the amount of memory.

The measured values also show, that in this case Transit Node Routing with Arc Flags
needs 26.64 % of additional memory in comparison to Transit Node Routing. For the graph
of Prague in section 7.2.1, Transit Node Routing with Arc Flags needed 74.30 % of addi-
tional memory. This indicates that for larger graphs (and also larger transit node-sets), the
proportional difference between Transit Node Routing and Transit Node Routing with Arc
Flags in terms of memory decreases.

We also tried using a transit node-set containing only 2 000 nodes for the graph of
Berlin. Transit Node Routing with Arc Flags with this transit node-set was only 2 626
times faster than Dijkstra’s Algorithm while needing 26.76 times the amount of memory.
Our experiments indicate, that for graphs corresponding to road networks of real cities,
transit node-sets containing around 10 % of nodes in the graph offer a great combination
of performance and reasonable memory requirements. The number can differ based on the
structure of a specific graph (city). Sections 7.2.4 and 7.2.5 show how the performances and
memory requirements of Transit Node Routing and Transit Node Routing with Arc Flags
change when changing the transit node-set size using the graph of Prague as an example.
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Figure 7.4: Comparison of the methods on the graph of Berlin

7.2.3 Comparison of Various Methods on the Graph of Southwest Bo-
hemia

For our third benchmark, we decided to use a graph containing a larger part of the Czech
Republic than just a single city. We chose a rectangular cutout bounded by Prague in one
corner and Pilsen in the other corner. This graph contains 70 781 nodes and 173 122 edges.
The geographical area corresponding to the graph is shown in figure 7.5. We have used the
same five methods as in section 7.2.1, but for both Transit Node Routing and Transit Node
Routing with Arc Flags we used a transit node-set size of 7 000.

The results are shown in figure 7.6. Both of the axes have a logarithmic scale. The exact
measured values are presented in table 7.2.

In this case, Transit Node Routing with Arc Flags is 10 720.79 times faster than Dijkstra’s
Algorithm while needing 51.87 times the amount of memory. The Distance Matrix is 8.03
times faster than Transit Node Routing with Arc Flags while needing 74.28 times the amount
of memory.

One interesting thing is that we also tried to use 5 000 transit nodes for Transit Node
Routing with Arc Flags on the graph of Southwest Bohemia, and we achieved an average
query time of 1.9 µs and the structure required 177.89 MB of memory. This is interesting,
because in section 7.2.2, we used 5 000 transit nodes and the average query was 6 106.14
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Figure 7.5: Geographical area corresponding to the graph of Southwest Bohemia.

Method Time for one query in µs Memory in MB
Dijkstra 16 781.984 4.96

CH 355.226 8.38
TNR 2.623 214.81

TNRAF 1.565 257.29
DM 0.195 19 111.44

Table 7.3: Measurements for the methods on the graph of Southwest Bohemia.

times faster than in the case of Dijkstra’s Algorithm while needing 44.83 times the amount
of memory. Here on a larger graph with the exact same settings (same number of transit
nodes), the average query is 8 804.82 times faster than in the case of Dijkstra’s Algorithm
while only needing 35.86 times the amount of memory. This means that on a larger graph,
we achieve better speedup with a proportionally lower memory overhead. This is caused by
the fact that graphs that contain multiple cities and connections between them have a better
structure that the algorithms can exploit.

Graphs that contain multiple cities have a more significant road hierarchy. For all queries
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Figure 7.6: Comparison of the methods on the graph of Southwest Bohemia

going from one city to another, it is very common that we enter some highway behind our
start city and leave this highway shortly before our goal city. For example in the graph of
Southwest Bohemia, every time we want to travel from any location in Prague to any location
in Pilsen, we will take the D5 highway. Transit Node Routing can identify this structure
and will choose the access points to the highway as transit nodes. Since the amount of those
access points is usually not that high, the average number of access nodes in the Transit
Node Routing data structure will be fairly low. This is reflected in better query times and
also lower memory requirements, as fewer access nodes need to be stored. For graphs only
containing one large city, the road hierarchy is usually not that evident. When going from
one corner of Prague to the opposite corner, the optimal path often depends on the exact
start and goal locations. In such cases there must be different access nodes for different
start and goal locations, which will be reflected in slightly worse performance and memory
efficiency.

This shows, that the performance does not only depend on the size of the graph and the
size of the transit node-set, but also on the structure of the graph. It might happen that on
larger graphs Transit Node Routing (with or without Arc Flags) will achieve better results
with a smaller transit node-set than on some smaller graphs, due to the structure of the
graphs. It is, therefore, a good idea to try multiple transit node-set sizes for the given graph
and then choose to option with the desired performance.
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7.2.4 Comparison of Various Transit Node-Set Sizes for Transit Node
Routing

One useful property of Transit Node Routing is the fact that we can control the performance
by changing the size of the transit node-set. A larger transit node-set usually means better
performance for the price of bigger memory overhead. When we have more transit nodes,
the average number of access nodes for each node should decrease, accelerating the queries
as fewer combinations of access nodes need to be tried. On the other hand, we need to store
the full distance matrix for the transit node-set in memory, which increases the memory
requirements.

To see how much the size of the transit node-set influences both the performance and the
memory requirements, we tried 6 different transit node-set sizes on the graph of Prague. We
tried 200, 500, 1 000, 2 000, 5 000, and 10 000 transit nodes. Figure 7.7 shows the results.
Again, both of the axes have a logarithmic scale. The obtained values can then be seen in
table 7.4.
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Figure 7.7: Comparison of various transit node-set sizes for TNR on the graph of Prague.

From the values, we can see, that the performance truly increases when the size of the
transit node-set also increases. For the memory requirements, we can see that for example
when using only 200 transit nodes, the memory requirements are larger than when using
500 transit nodes. This is caused by the fact, that the average number of access nodes for
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Transit node-set size Time for one query in µs Memory in MB
200 95.021 42.46
500 11.867 24.27
1 000 5.554 21.51
2 000 3.093 28.72
5 000 1.641 105.66
10 000 0.863 390.33

Table 7.4: Measurements for various transit node-set sizes for TNR on the graph of Prague.

nodes in the graph is higher since transit nodes are on average farther away from the nodes.
Also, the search spaces that need to be kept for the locality filter will be fairly large and
therefore will require a significant amount of memory as well. Even though the distance
matrix required for 200 transit nodes is small (needs only 156.25 KB), the memory needed
to store the access nodes and search spaces outweigh the memory needed for the transit
node-set distance table in this case. When we choose larger transit node-sets, the memory
needed for the transit node-set distance table starts to outweigh the memory needed for
other components of the data structure and has the biggest influence on the overall size of
the structure (in case of 5 000 transit nodes, the distance table takes 95.37 MB out of the
total 105.66 MB, while in the case of 10 000 transit nodes it takes 381.47 MB out of the
total 390.33 MB).

This shows that when choosing the optimal transit node-set size, we should take multiple
aspects into consideration. It usually does not make sense to choose too small transit node-
sets, as they provide worse performance than larger transit node-sets while also needing more
memory. On the other hand, too large transit node-sets bring us closer to the full distance
matrix approach, as the memory requirements increase quadratically with the increase of
the transit node-set size.

7.2.5 Comparison of Various Transit Node-Set Sizes for Transit Node
Routing with Arc Flags

For Transit Node Routing with Arc Flags, we can alter the size of the transit node-set in
the same way as for Transit Node Routing. We again tried 6 different transit node sizes on
the graph of Prague. The results can be observed in figure 7.8. Both axes of the table have
a logarithmic scale. The exact measured values are reported in table 7.5.

Transit node-set size Time for one query in µs Memory in MB
200 90.970 97.24
500 8.513 60.63
1 000 3.563 50.42
2 000 1.945 50.06
5 000 1.114 119.39
10 000 0.716 399.47

Table 7.5: Measurements for various transit node-set sizes for TNRAF on the graph of
Prague.
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Figure 7.8: Comparison of various transit node-set sizes for TNRAF on the graph of Prague.

The additional memory overhead in Transit Node Routing with Arc Flags is caused by
the fact that for each access node, we also need to store its Arc Flags. In our implementation,
those Arc Flags take additional 4 Bytes for each access node. We also need to store regions
for all nodes in the graph, but those data do not change when changing the transit node-set
size.

The measured values show that for smaller transit node-sets, the additional memory
overhead caused by the Arc Flags has a significant influence on the total memory required
for the data structure. For larger transit node-set sizes, the influence of the Arc Flags
becomes less noticeable, as the memory needed for the transit node-set distance table starts
to greatly outweigh the memory required for the other components of the data structure. For
example for 10 000 transit nodes, Arc Flags only require an additional 9.14 MB of memory
when compared with the memory requirements of the data structure needed for Transit Node
Routing without Arc Flags. This is only 2.28 % out of the total 399.47 MB needed for the
data structure. Due to this, we recommend to always use Transit Node Routing with Arc
Flags when using larger transit node-sets. When using smaller transit node-sets, it could
make sense to only use Transit Node Routing without Arc Flags to decrease the memory
requirements, as in those cases the data for Arc Flags represent a bigger portion of the overall
data structure size.
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7.2.6 Benefit of Our Implementation for the AgentPolis Framework

To evaluate whether the library will be beneficial for the AgentPolis framework, we used
an existing complex scenario in AgentPolis. The scenario deals with an online ride-sharing
problem. The problem is as follows. There is a large fleet of vehicles (for example from
a taxi service) scattered over Prague and a large number of customers that want to get
from their location to some other location. The problem changes in time, new customers
appear, meaning the optimal plan for some set of customers might stop being optimal when
considering the new customers. The goal is to minimize the waiting time of the customers.

An algorithm for solving the ride-sharing problem is already implemented in AgentPolis
and its principle is not important for this thesis. What is important, though, is the fact that
the algorithm needs to compute a large amount of shortest distances. The algorithm needs
to know the distances from all vehicles to all the customers and also distances from all the
goal locations of customers to the start locations of all the other customers.

We can simulate various time intervals. We first started with a short time interval of
five minutes and compared the time needed for the whole simulation when using the existing
A* implementation to compute the travel times, the time needed when using Transit Node
Routing with Arc Flags, and the time needed when using Distance Matrix. When using A*,
the simulation needed about 4 300 seconds on average. When using Transit Node Routing
with Arc Flags for the travel times computation, the simulation only took about 26 seconds
on average. With Distance Matrix, the simulation only took about 17 seconds on average.
The difference between Transit Node Routing with Arc Flags and Distance Matrix is not
that significant for such a short simulation, because there are other components of the ride-
sharing algorithm that outweigh the time needed for the travel time computation in this
case.

Travel Time Provider 5 minutes simulation 90 minutes simulation
A* 4 300 not measured

TNRAF 26 3 200
Distance Matrix 17 520

Table 7.6: Average times needed for the simulation with different Travel Time Providers.
All times are in seconds.

We have, therefore, also tried a more realistic time interval of 90 minutes. Similar time
intervals are also used in practice for real scenarios in AgentPolis. The longer the simulation
is, the more complex the problem becomes, because new customers arrive every once in a
while, but the already present customers might not be transported before new customers
appear, which complicates the process of finding the optimal plan. Because of this the time
needed for a longer simulation is not linearly proportional to the increase of the simulated
time interval. For our 90 minutes time interval, the simulation took 3 200 seconds on average
with Transit Node Routing with Arc Flags. When using Distance Matrix to compute travel
times, the whole simulation took about 520 seconds on average. If we wanted to use A*,
we would have to wait several days for the simulation to finish (based on times obtained
with the 5 minutes time interval). This means, that using our library, we got from days in
the case of A* to under an hour with our library. With our library the whole 90 minutes
simulation takes 6.15 times longer than with Distance Matrix. The speedup of the whole
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simulation achieved by using the Distance Matrix is smaller than the speedup measured in
section 7.2.1 because there are also other components of the ride-sharing algorithm than
travel time computation and those are not influenced when the travel time providers change.
The times needed for the simulation are presented in table 7.6. During the 90 minutes long
simulation, the Travel Time Provider answers over 1.85 billion travel time queries needed
by the ride-sharing algorithm. Note that the Transit Node Routing with Arc Flags travel
time provider already uses parallelization as described in section 6.2. The time needed for
the simulation without the parallelization would be higher.



Chapter 8

Conclusion

Computing the shortest distance between two nodes in a graph is a common problem in
computer science. In a lot of the cases, multiple queries have to be answered while the graph
does not change between the queries. For such scenarios, it makes sense to precompute
some auxiliary structures that allow us to answer subsequent queries faster. Since in many
of the use cases the shortest distance computation takes a significant portion of the whole
computation, speeding up the component responsible for the shortest distance computation
results in a significant speedup of the whole application.

This thesis had two main goals. One main goal was to implement one such method that
makes use of precomputed structures to answer queries faster. This method is called Transit
Node Routing with Arc Flags. The second main goal of this thesis was to integrate the imple-
mentation of this method with an existing framework. A large number of applications that
could benefit from faster shortest distance computation component along with the challenge
of implementing a method based on the state-of-the-art approaches and then integrating it
into an existing project was the main motivation for this thesis.

We have successfully implemented Transit Node Routing with Arc Flags based on Con-
traction Hierarchies. One result of this thesis is a C++ library that can compute the shortest
distances using three different methods. Those methods are Contraction Hierarchies, Transit
Node Routing, and Transit Node Routing with Arc Flags. This library is now available on
GitHub 1 and can be used by other researches and developers in the future. We have also
successfully integrated our implementation into the AgentPolis framework. This integration
allows the framework written in Java to use our library written in C++ as a component for
computing the shortest distances.

The implementation was extensively tested to ensure it provides correct results. Auto-
matic tests were added to AgentPolis. The performance of the implementation was measured
and the results show that the implementation provides significant speedup when compared
with Dijkstra’s Algorithm while having a reasonable memory overhead. On the largest
tested graph, our implementation of Transit Node Routing with Arc Flags is over 10 000
times faster than Dijkstra’s Algorithm while only needing about 50 times the amount of
memory. The average query time for Transit Node Routing with Arc Flags on the graph of
Prague is 1.95 microseconds, which makes the implementation usable even in the AgentPolis

1The implementation on GitHub: <https://github.com/aicenter/shortest-distances>

53

https://github.com/aicenter/shortest-distances


54 CHAPTER 8. CONCLUSION

framework where the scenarios often require to answer billions of shortest distance queries
in a reasonable time.

Future work could expand the library even further. The referenced literature mentions
various improvements that could improve the performance of our implementation. This
includes different locality filters for Transit Node Routing (both with and without Arc
Flags) [22], other priority computation strategies for the contraction process in Contrac-
tion Hierarchies [8] or other graph clustering approach for the Arc Flags [13]. The library
could be also expanded by adding more methods such as Hub Labels that provide even bet-
ter query times than Transit Node Routing with Arc Flags for the price of bigger memory
requirements.
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Appendix A

List of Used Abbreviations

CH Contraction Hierarchies

CLI Command-Line Interface

JNI Java Native Interface

JVM Java Virtual Machine

TNR Transit Node Routing

TNRAF Transit Node Routing with Arc Flags
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Appendix B

Contents of the Attached CD

readme.txt ....................A brief description of the individual contents of the CD
shortest-distances ..............................Contains the whole implementation

src........................................The source codes of the implementation.
doc............................The project documentation generated using Doxygen
thesisTestsData.........All the input data used for the tests present in this thesis
CMakeLists.txt.........A script that allows simple building of the implementation

thesis
cvachmic_thesis.pdf...............................This thesis in the PDF format
src................................Source files for this thesis in the XƎLATEX format
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