Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Computer Science

Hyperparameter Tunning for Local Search Algorithms

Master's thesis

Bc. Lukas Haberzettl

Study Programme: Artificial Intelligence
Field of Study: Open Informatics
Supervisor: Ing. Ji¥i Cermak, Ph.D.

Prague, May 2020






UL MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details
4 ™\
Student's name: Haberzettl Lukas Personal ID number: 435465

Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Computer Science

Study program: Open Informatics

Specialisation: Artificial Intelligence

Il. Master’s thesis details
4 ™\
Master’s thesis title in English:

Hyperparameter Tunning for Local Search Algorithms

Master’s thesis title in Czech:

Optimalizace hyperparametri pro algoritmy lokalniho prohledavani

Guidelines:

Local search algorithms are common tools applied to real-world optimization tasks, where the size or complexity of the
solved problem

prevents the use of optimal algorithms. Most of the available open-source and commercial tools allow extensive control
of the parameters

guiding the search with very little information about their meaning and interconnection. Hence automatic tools for such
parameter

optimization can greatly improve the performance of such algorithms.

- Exploration of methods suitable for optimization of parameters of black-box functions (the achieved solution quality of
local

search algorithms).

- Implementation of Bayesian optimization and possibly other promising approaches for parameter tuning of the black box
functions.

- Adaptation of the general approach for black-box parameter optimization to the domain of local search, e.g., speed-up
through

estimation of achievable solution quality for given parameters using properties of the local search algorithm.

- Experimental evaluation of the selected methods against commonly used approaches such as random or grid search
parameter

optimization using popular open-source planners (e.g., Optaplanner, Jsprit) on common benchmark domains.

Bibliography / sources:

Bergstra, J. and Bengio Y. — Random Search for Hyper-Parameter Optimization — Journal of Machine Learning Research,
2012

Snoek, J., Larochelle, H., and Adams, R.P. — Practical Bayesian Optimization of Machine Learning Algorithms — Advances
in Neural Information Processing Systems, 2012

Balandat, M., and colleagues — BoTorch: Programmable Bayesian Optimizationin PyTorch — arXiv e-prints, 2019
Gendreau, M. and Potvin, J.-Y. — Handbook of Metaheuristics — Springer, 2019

Falkner, S., Klein, A., Hutter, F. 2018. BOHB: Robust and Efficient HyperparameterOptimization at Scale. arXiv e-prints
arXiv:1807.01774

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC



Name and workplace of master’s thesis supervisor:

Ing. Jiti Cermak, Ph.D., Artificial Intelligence Center, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Date of master’s thesis assignment: 17.02.2020 Deadline for master's thesis submission: 22.05.2020

Assignment valid until:  19.02.2022

Ing. Jifi Cermak, Ph.D. Head of department’s signature prof. Mgr. Petr Pata, Ph.D.
Supervisor’s signature

Dean’s signature
(g

lll. Assignment receipt

The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC




Acknowledgements

First, I would like to thank my thesis supervisor Jif{ Cermék, whose valuable expertise
gave me the right direction when working on the challenges of this work.

[ must also express my gratitude to Petr Eichler for his valuable comments and advice
that increased the quality of this thesis.

Finally, I would like to thank to my family, who provided me with support and encour-
agement throughout my years of study.






Author statement

I herebly declare that the presented work was developed independently and that I
have listed all sources of information used within it in accordance with the methodical
instructions for observing the ethical principles in the preparation of university theses.

Prague, 22" May, 2020

author

vii






Abstrakt

Algoritmy lokalniho prohledavani jsou dnes Siroce pouzivanym nastrojem pro feseni
komplexnich optimalizacnich problému, pro které neni mozné s dostupnymi prostredky
nalézt optimalni feseni. Vnitini strategie téchto algoritmu jsou casto konfigurovatelné
prostiednictvim hyperparametru, které mohou vyznamné ovlivnit jejich béh a efektiv-
itu. Spravné nastaveni téchto parametru je vsak casto komplikované nedostatkem in-
formaci o jejich uc¢inku a vzajemnych zavislostech. Vysoka ¢asova naroénost béhu také
zamezuje pouziti béznych metod pro optimalizaci hyperparametru, zvlasté v pripadech
vysoké dimenzionality, kde prostor prohledavanych konfiguraci je ptilis velky.

V této praci studujeme metodu Bayesovské optimalizace jako vhodného kandidéata
pro optimalizaci hyperparametru ¢asové narocnych funkei a obhajujeme jeji apliko-
vatelnost pro doménu algoritmu lokalniho prohledavani. Pro feseni problému navrhu-
jeme modifikaci Bayesovské optimalizace vyuzivajici informaci béhu algoritmu pro
zrychleni optimalizacniho procesu. NaSe modifikovand metoda prokazala rychlejsi
konvergenci nez klasicky Bayesovsky pfistup ve vétsiné provedenych experimentu s
nalezenim podobnych nebo lepsich hodnot hyperparametru.

Keywords: Algoritmy lokalniho prohledavani, Optimalizace hyperparametru, Bayesovska
optimalizace, Optimalizace
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Abstract

Local search algorithms are widely used instruments for the complex optimization tasks,
where the problem of finding the optimal solution is infeasible. Commonly, the search
strategies of such algorithms can be controlled by a set of hyperparameters that can
significantly affect their performance. However, the information about their meaning
is often unclear or completely hidden, and identifying optimal values for hyperparam-
eters can be a complicated and time-consuming task. Hence, an automated tool for
such hyperparameter tunning can lead to significant performance improvement for the
algorithms.

In this work, we study the Bayesian optimization as a state-of-the-art tool for au-
tomated hyperparameter tunning of expensive black-box functions, and uphold its
usefulness when applied to local search algorithms. We propose a modification of the
Bayesian approach that adapts to the domain of local search algorithms to speed up op-
timization process. In most of the performed experiments, our modified method proved
to be faster than classic Bayesian optimization with similar or better hyperparameter
configurations discovered.

Keywords: Local search algorithms, Hyperparameter tunning, Bayesian optimization,
Optimization
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Chapter 1
Introduction

In many optimization tasks, the use of optimal algorithms is not possible due to the
size of the search space! or the complexity of the problem. In practice, local search
algorithms are used to solve such problems, searching for the locally optimal solution.
Local search algorithms are metaheuristic methods, using the approach of generic op-
timization of the initial, imperfect solution by searching in the neighborhoods and
maximizing the criterion among the set of candidate solutions. Nowadays, the appli-
cation of these algorithms is facilitated by software frameworks, providing the toolkits
to solve these computationally hard optimization problems such as Traveling Salesman
Problem (TSP), Vehicle Routing Problem (VRP), and many others. These frameworks
are commonly configurable with a set of hyperparameters that can affect the overall
performance of the algorithm. However, the lack of information about their meaning
and interconnection often makes it hard to select parameters correctly. In practice, val-
ues of these parameters are selected either manually, by empirical observations, or by
using conventional hyperparameter tunning methods like grid search or random search.
However, due to the time complexity of the local search algorithms, these methods are
typically not able to find sufficient hyperparameter configuration in a reasonable time

frame, especially for high dimensions of hyperparameter space.

1.1 Contribution

In this work, the Bayesian optimization method is studied as a state-of-the-art opti-
mization tool suitable for such hyperparameter optimization. We compare the Bayesian
approach with standard hyperparameter optimization methods and validate its appli-

cability for our case. Due to our research, we present the modification of the Bayesian

1Space of all possible solutions for the given problem



CHAPTER 1. INTRODUCTION

approach, adapted to the domain of the local search algorithms, as a framework for
automated hyperparameter tunning. Our solution uses domain knowledge to speed
up the underlying Bayesian optimization by stopping the unpromising evaluations of
the objective function (local search algorithm) earlier in the execution process. Con-
sequently, the optimization is able to evaluate more hyperparameter configurations in
order to find the high-quality one. Implementation of our method is tested on the
selection of local search algorithms and problem instances. Compared with the clas-
sic Bayesian approach, our method results in faster convergence to the high-quality

configuration in most cases.

1.2 Thesis outline

The thesis has the following structure:

e Chapter 2 describes and compares the subset of existing hyperparameter op-
timization approaches. Studied methods are grid search, random search, and

Bayesian optimization.

e Chapter 3 is dedicated to the extensive research of the Bayesian optimization
applicability to the domain of local search algorithms. Also, the possible modifi-

cation of the method is discussed and tested by experiments.

e Chapter 4 presents our Early Stop Bayesian optimization framework. Individual
components of the framework are explained along with the core concepts of our

modification of the underlying Bayesian method.

e Chapter 5 describes the results of experiments, that were performed to test our
approach. It presents the experiments that were done to compare our method
to the classic Bayesian optimization and validate its ability to generalize to the

unknown problem instances of the local search algorithms.

e Chapter 6 provides the conclusion of our work and results, and discuss the

possibilities for future work on our approach.



Chapter 2

Existing methods for

hyperparameter optimization

In this chapter, we provide an overview of existing optimization methods and discuss
their potential for hyperparameter optimization (HPO) of the local search algorithms.
Typically, it may take a long time for the local search algorithm to find a high-quality
solution. This factor limits the number of hyperparameter configurations that can be
tried out by the HPO method and makes the problem of searching through all possible
combinations infeasible (Especially for the higher dimensions of hyperparameter space).
Therefore, it is required for the optimization method to explore the search space of
parameters effectively, minimizing the number of function (local search algorithm)
calls needed for finding optimal hyperparameter configuration.

Given these requirements, we study the Bayesian Optimization method as a promising
candidate for the HPO task and discuss its possible benefits over other optimization
methods.

In Section 2.1, we provide overview of the local search algorithms. In Section 2.2, we
describe the principle of Bayesian Optimization and uphold its possible application for
the hyperparameter optimization of the local search algorithms. We then present other
optimization methods in Section 2.3 and compare them with Bayesian optimization in

Section 2.4.

2.1 Local search algorithms

Local search algorithms are used for the optimization of such problems, for which
finding the optimal solution is infeasible. Thus, rather than finding an optimal solution,

local search algorithms introduce a generic approach of searching through the space
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of candidate solutions, iteratively selecting better candidates until the near-optimal
solution is found. Algorithms typically provide a set of hyperparameters that are
used to control the search process and can influence the performance significantly. In
practice, hyperparameters found for one subset of problem instances generalizes well
on the other, unknown instances. Hence, it is easy to justify using some extra time

(computational) resources to optimize the hyperparameters for the algorithm.

2.2 Bayesian optimization

Bayesian optimization [1] is the global optimization method, which has shown its suc-
cess with several benchmark functions, outperforming other state-of-the-art global op-
timization approaches [2]. Over the last years, this approach has emerged as an efficient
optimization framework for machine learning models [3], where the well-chosen config-
uration of hyperparameters can affect the performance significantly.

This method is well suited for optimizing parameters of expensive black-box functions,
where there is only objective value for the function available, the execution of the func-
tion is expensive, and we have no information about the gradient. Since local search
algorithms typically satisfy these properties, we see the potential in this optimization
approach as an HPO tool for such domain.

As the Bayesian optimization method treats objective as a black-box function, the
only information retrieved from the function is the objective value. The method uses
these observations of the objective value from the function calls to maintain the poste-
rior distribution for the objective function. To pick the next input for the evaluation,
the posterior distribution is used to define the acquisition function, which defines how
promising it is to evaluate the objective function for a given point (in our case, config-
uration of hyperparameters). By optimizing the acquisition function, most promising
point for the next evaluation is selected. In the following subsections, we describe

individual components of the Bayesian optimization framework more extensively.

2.2.1 Optimization objective

In our context, we present the black-box objective function as a local search algorithm
being evaluated for the fixed set of problem instances with given iteration limit'. The
algorithm takes set of d hyperparameters z ¢ R? as an input, which can affect the
performance of the algorithm and can lead to different costs of the best solution found

by the algorithm.

Number of iterations that the local search algorithm is allowed to perform to find the solution
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Given this, black-box objective function for optimization is defined as
f:RY =R (2.1)

where d € N is the dimension of the function input. The optimization problem is then

defined as minimization of the objective value of the black-box function.
Mingezs () 2:2)

2.2.2 Components

Two main components are used by the Bayesian optimization method to optimize the
objective. Surrogate model is used to create a probabilistic belief about the function,
which is then exploited by the acquisition function to determine the next input for the

objective function.

Surrogate model

Surrogate model is Bayesian statistical model used for modeling the probability distri-
bution based on the previously made observations of f(z). This fact is what distin-
guishes Bayesian optimization from many other methods. Instead of relying only on
local gradient, method uses all the information observed from the previous evaluations
of f(z). This fact is a key factor for finding a minimum of the objective function in
relatively few evaluations.

One of the statistical models widely used as a surrogate for Bayesian optimization, is
Gaussian process [4]. It is also used in our experiments in Chapter 3.

A Gaussian process is a random process for which any point £ ¢ R? has assigned a
random variable g(z). For a finite set of these variables, their joint distribution is itself

Gaussian and defines a prior over functions.

p(g1X) = N(glp, K) (2.3)

where g = (g(z1),...,9(xn)), p = (m(x1),...,m(zn)) and K;; = k(z;,x;). m is the
mean function and k is a positive definite kernel (covariance) function. In other words,
Equation (2.3) assigns the probability for all the functions satisfying the mean and
covariance conditions. After some observations y are made, where each element y; of
y is the random observation of g(z;) for x; € X, prior can be transformed to poste-

rior distribution p(g|X,y). With given posterior distribution, objective values in new
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unobserved inputs X, can then be inferred by predictive distribution(Gaussian with

mean p, and K,).

p(9:Xs, X y) = /p(g*\X*,g)p(g!X,y)dg =N(g., . K.) (2.4)

For the equation, we denote values predicted for the set of input points X, as g..

Acquisition function

Acquisition function is used to select the most promising sampling point for the next
evaluation of the objective function. Formally, computing the next sample point can

be prescribed as optimization of acquisition function
xy = argmazxzu(z|Dys—1) (2.5)

where u is the acquisition function and Dy.;_; are t—1 samples {{z;, y;}|i € {1,....,t—1}}
observed from f.

Many acquisition functions were studied for the use in Bayesian optimization. Some
of the well known are maximum probability of improvement (MPI), expected improve-
ment (EI), or upper confidence bound (UCB).

Maximum probability of improvement function chooses point that is most likely to
improve upon the minimal value of f observed so far. Since the function focuses only
to the points with highest probability of improvement, unknown areas of the input
space are left unexplored, which may sometimes lead to convergence to local optima.
Expected improvement and upper confidence bound functions resolve this by introduc-
ing two terms to manipulate the trade off between exploitation and exploration. This
makes them more robust against being stuck in local optima, allowing broader explo-
ration of the input space. In this work, we select expected improvement as a promising
acquisition function above the upper confidence bound method, since it was empiri-
cally observed to perform better than upper confidence bound in some minimization
problems [2]. Also, unlike the upper confidence bound method, it does not require the
setting of its own hyperparameter. As mentioned above, EI acquisition function uses
exploitation and exploration parameters to trade off between the sample locations with
higher probability of improvement and locations for which no observations were made
yet. Suppose f’ is the highest value of the objective f observed so far. The expected

improvement can be defined as

El(z) = E[max (0, f" — f(x))] (2.6)
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Given posterior predictive with mean u(x) and standard deviation o(x), EI can be

evaluated analytically [1]

El(x) (u(z) — f = OB(Z) + o(x)d(Z), for o(z) >0 .
0, for o(x) =0
given e
PE) =T =St o(
0, for o(x) =0

where ® is Cumulative distribution function (CDF), ¢ is Probability density function
(PDF) of the standard normal distribution, and & is the parameter determining the
amount of exploration for the acquisition function. Higher values of ¢ lead to higher

amount of exploration.

For our case, we expect the observations made from the objective function to be noisy.
We assume observations to be of form {z,,y,}, where y, ~ N(f(z,),v) and v is the
variance of the noise contained in the observations. For the case of noisy observations,
Noisy Expected Improvement (NEI) acquisition function was introduced in [5]. NEI is
the extension of EI that allows the acquisition function to be optimized even with noisy
observations. The core idea lays in replacing the value of f* (because we no longer know
it when noise is contained in observations) with the Gaussian Process mean estimate
of the best function value ¢ = mingpu #(x). This approach was introduced by Picheny
et al. [6] as a "plug-in” strategy. As it is more suitable for our case, we choose NEI
over EI to be used as an acquisition function for our implemenation.

Fitting the GP model to the observed values and optimizing NEI as acquisition function

in one iteration of Bayesian optimization is shown in Figure 2.1.

Noise-free objective
—— Surrogate function
# Noisy samples

04 0.15 /
= w —— Acquisition function
1] w—— = 1
e © 0.104 ---- Nextsampling location
2
0.05

T T T T T T T T T T T T T T
-1.0 -0.5 0.0 0.5 10 15 2.0 -1.0 —-0.5 0.0 0.5 10 15 2.0

Figure 2.1: Surrogate model (on the left) is built upon the observed noisy values and
is used to optimize acquisition function (on the right) and select the most promising
sample for the next evaluation. Vertical dotted line shows the next sample chosen by
the optimization in the given iteration.
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2.2.3 Optimization algorithm

Assume we have ”black-box” function f and budget of T" function evaluations we can

run. Bayesian optimization cycle is shown in Algorithm 1

Algorithm 1: Bayesian optimization
1 Define GP prior on f

2141

3 while t <=T do

4 Ty = a?"gmaacxu(:v]Dlzt,l) // Find sample for the next evaluation
5 Yy = f(%) +v // Observe function value with noise v in sample location
6 Dy = {Dlzt—b (It,yt)} // Update the database of collected samples
7 Update the surrogate model

8 return point observed with the largest f(z)+ v

At the beginning of the optimization, surrogate model is initialized in form of prior for
the objective f (Subsection 2.2.2). On line 4, the acquisition function is called over
the surrogate model aiming to find the most promising sample point for the evaluation
of objective f. Lines 5 and 6 correspond to the evaluation of f and updating the
set of observations with a new objective value with possible noise v returned from f.
Once the observation is made, surrogate model is updated and prior is converted to
the posterior over functions (line 7). By observing more values, the surrogate model
is more accurate and the more information about the function can be exploited for
the acquisition function in every other iteration. This factor is what makes Bayesian

optimization so powerful in terms of global optimization.

2.2.4 Surrogate initialization

To avoid the need for defining the prior belief for the surrogate model in the begin-
ning of the optimization, it can be reasonable (especially for the functions with higher
dimensionality of input z € R?) to run the black-box function with few initial sample
inputs first. These sample inputs are drawn randomly from the search space and serves
as the initial observations for surrogate model to build a posterior distribution over the
functions.

Out from many approaches (see [7] for overview) we selected quasi-random sobol se-
quence [8] as it generates random points with low-discrepancy, providing evenly spaced

samples for initialization of the surrogate model.
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Quasi-random Sobol sequence

Sobol sequence is a sequence, which uses base of 2 and bitwise exclusive-or operator
to sample points in highly uniform manner. Given the set of d-dimensional points p,
where each point p; € p is the point in the sobol sequence, the coordinte p;; can be

computed as

0, fori=1
7(Dv; (1) & v(2)v;(2)®, ... fori>1
where 7;(n) are the binary digits of the value i —1, and v;(n) are uniquely defined values

called direction numbers. For extensive description of the sequence and generation of

direction numbers, we refer to [8].

2.3 Other methods

Other methods for hyperparameter optimization used by practicioners are grid search
and random search [9]. These techniques, widely used for their simplicity and readabil-

ity, have proven to be sufficient in many applications of hyperparameter optimization.

2.3.1 Grid search

Grid search is a simple procedure, which iteratively evaluates and stores the objective
function for every possible parameter combination from the search space. Once all
parameter configurations are evaluated, the model with the best performance observed
is chosen to be optimal. Method has main the disadvantage in its computational
complexity and lack of any guidance for generation of the inputs, but can be sufficient
for models, where the number of function evaluations is not an issue, or the search

space for parameters is small enough.

2.3.2 Random search

Random search is a method similar to grid search, extending the search by introducing
randomness in the generation of the parameter inputs. Random search method chooses
a predefined number of randomly drawn combinations and evaluates the objective
function. Thanks to the randomly selected samples, chances of finding optimal solution
in a limited amount of trials are comparatively higher than for grid search. This fact

was empirically proven in [9] by comparing grid search and random search applications
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for many machine learning models. Illustrative comparison between the grid search
and random search procedures for two hypothetical hyperparameters can be seen in

Figure 2.2.

e e Y

[

[

l

J

(a) (b)

Figure 2.2: For each subfigure, two axes display the values of two illustrative hyper-
parameters being optimized. Points refer to individual combinations of parameters
selected by the optimization method. Edges between points show the process of how
individual methods, grid search (a) and random search (b), search through the param-
eter space.

2.4 Comparison

While grid search and random search are widely used techniques for HPO, they are
not suited for the optimization of higher dimensional parameter spaces, especially in
cases of expensive objective functions. From all methods described in this Chapter,
Bayesian optimization seems like a best fit for our domain, as it has proven success
in many applications of global optimization for machine learning models, and is well
suited for optimization of the black-box function. Also, the flexibility in using dif-
ferent surrogate models and acquisition functions makes Bayesian optimization ideal
for research and exploration of the new approaches. These properties make Bayesian

optimization suitable candidate as an global optimization tool for our domain.
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Chapter 3

Bayesian Optimization and Local

Search Algorithms

In this chapter, we experiment with the Bayesian Optimization method and study its
applicability for the hyperparameter optimization of local search algorithms. In section
3.1, some general terms that will be used furthemore in our work, are defined. In section
3.2, we select the representative set of local search algorithms that will be used in our
experiments and choose the problem domain for evaluation of the algorithms. Section
3.3 validates the suitability of the Bayesian black-box optimization approach applied
to local search algorithms. Finally, in section 3.4, we present a possible adaptation of

the optimization approach for our domain.

3.1 Terms

To set the unified terminology for our domain, we present some general terms that will

be used furthermore in our work.

Solver
Representation of the black-box function. In our case, solver is the local search

algorithm for which the hyperparameter optimization is run.

Problem instance

Definition of the particular problem to be solved by the solver.

Iteration
As all of the local search algorithms used as a solver in our experiments are
iterative, we define iteration as a metric for measuring the time spent by the

algorithm to find solution for the specified problem instance.
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Optimization trial

Optimization trial represents one execution of the black-box function (solver)
done by optimization method. Input of the trial is hyperparameter configuration
generated by the method for the execution. Output is the cost retrieved from
the solver at the end of the execution. Maximum number of iterations the solver

can take in one optimization trial is specified by the solver budget.

Solver budget
Budget of iterations available for each execution of the solver. Budget defines

how many iterations can solver use in one execution during the optimization trial.

Optimization process (optimization)
Sequence of optimization trials managed by the given optimization method. Re-
sult of the optimization process is hyperparameter configuration with the best

cost retrieved during the optimization trials.

Optimization budget
Budget of iterations available for the optimization process. Optimization method
uses the budget by calling optimization trials repeatedly with aim to find the best

hyperparameter configuration for the given solver.

3.2 Selection of local search algorithms

In the following subsections, we are going to present the local search algorithms that
we selected to represent the solver for our research and show corresponding hyperpa-
rameters for each of them. We also define a specific problem instances, which will be
used for the algorithms evaluation throughout our work.

Since local search algorithms are going to be treated as a black-box function for the
optimization method, we do not need any knowledge about the individual hyperpa-
rameters. Therefore, range of values and type of the parameter is the only information
that needs to be specified for the optimization (as shown in tables 3.1, 3.2 and 3.3).
Ranges for all parameters were selected according to the documentation resources of

individual local search algorithms.

3.2.1 TASP

TASP (Task and Asset Scheduling Platform) [10] is the framework developed by
Blindspot Solutions [11], designed to solve NP-complete scheduling problems. Hy-
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perparameters for TASP are shown in Table 3.1.

H parameter ‘ values type H
cooling [5.0, 30.0] continuous
initial temperature ratio (0.1, 0.5] continuous
mean amount to remove [1, 50] discrete
min amount to remove [1, 15] discrete
max amount to remove [15, 70] discrete
deviation amount to remove 0.0, 1.5] continuous
dead end (0.0, 1.0] continuous
update interval [70, 80, 90, 100, 110, 120]  discrete
best solution reward [7.0, 13.0] continuous
accepted solution reward 0.1, 2.0] continuous
rejected solution reward [-2.0, -0.1] continuous
relative minimum weight 0.0, 1.0] continuous
relative maximum weight (1.0, 5.0] continuous
decay factor (0.0, 1.0] continuous

Table 3.1: Hyperparameters definition for TASP

3.2.2 Jsprit

Jsprit is open source tool [12] for solving rich Traveling Salesman problems (TSP)
and Vehicle Routing problems (VRP), based on a single all-purpose meta-heuristic.
Hyperparameters that can be configured for the algorithm are prescribed in Table 3.2.

3.2.3 OptaPlanner

Opta planner is another open source local search solver [13], capable of optimizing
complex planning and scheduling problems such as TSP, VRP, Task Assignment, School
Timetabling and many others. Due to the limited documentation resources for the
algorithm, we were not able to identify more than 4 hyperparameters for the solver
configuration. However, we consider it as an opportunity to compare the performance

of resulting optimization method on hyperparameter sets of different dimensions.
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H parameter ‘ values type H
radial best 0.0, 1.0] continuous
radial regret | [0.0, 1.0] continuous

[ )
[ ]
random best | [0.0, 1.0] continuous
[ ]
[ ]
[ ]

random regret | [0.0, 1.0] continuous
string best 0.0, 1.0] continuous
string regret 0.0, 1.0] continuous
k-min 0, 5] discrete
k-max 6, 10] discrete
l-min [5, 10] discrete
l-max [11, 40] discrete
worst best 0.0, 1.0 continuous

cluster best continuous

continuous

[ ]

worst regret | [0.0, 1.0] continuous
[ ]
[ ]

cluster regret | [0.0, 1.0

Table 3.2: Hyperparameters definition for Jsprit

H parameter ‘ values type H
entity tabu ratio 0.01, 0.99] continuous
fading entity tabu ratio 0.01, 0.99] continuous

value tabu ratio 0.01, 0.99] continuous

[ ]
[ ]

water level increment ratio | [0.01, 0.99] continuous
[ ]

Table 3.3: Hyperparameters definition for OptaPlanner

3.2.4 VRPTW

For the evaluation of the selected solvers, some benchmark problem must be speci-
fied. We choose Gehring & Homberger’s [14] VRPTW (Vehicle Routing Problem with
Time Windows) benchmark instances for 1000 customers as an input problem for the
evaluation. VRPTW is the extension of classic VRP (Vehicle Routing Problem), for
which the set of vehicles is defined to operate the set of customers. In VRPTW | every
customer has additionaly the time interval assigned, in which he can be served.

As selected instances are standard benchmark instances for combinatorial optimiza-
tion, we assume that they are complex enough for the algorithms to represent the

long-running black-box objective function. However, any other benchmark problem
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compatible with the selected algorithms and complex enough to fulfill the ”expensive-
ness” requirement would suffice. Set of problem instances used for our experiments is
prescribed in Table 3.4.

Table 3.4: Selected set of problem instances

| Name | C110_1 | C110-2 | C110.3 | C1104 | C110.5 | C1106 |

Every instance contains problem definition for 250 vehicles and 1000 customers.

3.3 Bayesian optimization analysis

In this section we aim to validate the usefulness of the Bayesian optimization method
for the HPO of the solvers presented in Section 3.2. We implement a prototype of clas-
sic Bayesian optimization method and run experiments on HPO comparing Bayesian
optimization with random search as a competitive candidate method mentioned in
Chapter 2.

3.3.1 Implementation

For our experiments, we implemented a prototype of Bayesian Optimization method.
For the purpose of our research, we used Adaptive Experimentation Platform (Ax)
[15] released by Facebook Inc. in 2019. Platform is using BoTorch [16, 17] library
for Bayesian Optimization, providing all the management functions around BoTorch.
Ax allows extensive configuration of the optimization process along with the tools for
evaluating the experiment results, which makes it a great tool for our analysis.
Bayesian optimization has many possibilities of how to set the surrogate model and
acquisition function for the method. As we expect the observations from the solvers to
be noisy! we use NEI (Subsection 2.2.2) as an acquisition function in our implemen-
tation. For Surrogate model, we choose GP (Subsection 2.2.2) as it is a model widely
used in Bayesian optimization method and can serve as a convenient baseline for the
future experiments.

To compare performance of Bayesian optimization, we also implemented prototype of

random search optimization method.

! Algorithms are not deterministic, returning different objective values (costs) for the same config-
uration when evaluated multiple times
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3.3.2 Approach verification

Given our prototype of selected optimization methods, we performed HPO experiments
for each solver in order to process and compare the results of each method with each
of the solvers optimized as a black-box.

Our experiment is defined as a set of independent hyperparameter optimization pro-
cesses of the given black-box function (solver), using one of the selected HPO methods.
Each optimization process in the experiment runs for the specified number of opti-
mization trials?, searching for the best combination of hyperparameters. Performance
of each optimization process is recorded and, once sufficient amount of optimization
processes is done, results are aggregated to display the statistical performance of the
given method for the given solver.

As our goal is to compare the performance of individual optimization methods, the

setting used to run each of the solvers was fixed as described in Table 3.5.

Solver Solver budget | Problem instance
TASP 10,000

JSprit 500 C110_1
OptaPlanner | 100,000

Table 3.5: Solver budget column defines the number of iterations, for which the solver
runs as a one black-box function call. Problem instance contains definition of the
problem, that is being solved by the given solver.

As we see in the table, the budget of iterations specified for each solver differs in
size. Since every solver defines iterations differently, we chose the values empirically
by running individual algorithms, measuring its runtime and solution costs, identifying
appropriate limits for the purpose of our experiments.

To validate Bayesian Optimization and compare it with random search method, we

performed experiments with following properties
e Every experiment consists of 10 optimization processes
e Every optimization process in the experiment is ran for 30 optimization trials

The results of experiments can be seen in Figure 3.1. For each experiment, given all
optimization processes performed during the experiment, median values of cumulative

minimums of all optimizations are displayed for each optimization trial®>. The median

20ne configuration of hyperparameters is evaluated in each trial
3Cumulative minimum for trial ¢ is minimum of all values obtained from the beginning of the
optimization until the respective trial ¢
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value was chosen as an optimal statistical property due to the noisiness in the outputs
of the selected solvers. To illustrate the distribution of optimization trials around the
median, area between 1st and 3rd quartile is shown for each method. Also, to highlight

the outcome of each optimization method, results are normalized as

1
.= — 3.1
¢ d (3.1)

where c is the original objective cost returned by the solver for the given hyperparameter
setting on the fixed problem instance and d is the objective cost retrieved by evaluating
respective solver in default hyperparameter setting (without optimization). Therefore,
for ¢, > 1 there is a higher cost found by the solver for the given hyperparameter setting
compared to the default hyperparameters in selected hyperparameter configuration,

whereas for ¢, < 1 there is an improvement achieved by optimization method.

Random search optmization 1 Random search optmization
—— Bayesian optimizatien —— Bayesian optimization
——- Default hyperparameter configuration ——- Default hyperparameter configuration

1.050
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1.000 \

0.975 4 1.00

cost
cost

0.950 4

0.925 4

0.500 1 0.98

0.875 4

5 10 15 20 25 30 5 10 15 20 25 30
trial trial

(a) TASP (b) Jsprit

Random search optmization
—— Bayesian optimization
——- Default hyperparameter configuration

1.003
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cost

1.000

0.999 4

0.998

5 10 15 20 25 30
trial

(c) OptaPlanner

Figure 3.1: Each subfigure displays comparison between Bayesian optimization (blue)
and Random search (orange). For each optimization trial, median of cumulative min-
imums of normalized costs from each optimization is shown. Horizontal dashed line
represents the cost observed for the default configuration of hyperparameters (without
any optimization).

The biggest difference between optimization methods was observed for TASP solver,
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where the Bayesian optimization outperformed Random search significantly. For other
solvers, the difference in results is less notable. Nevertheless, the Bayesian optimization
converged faster for both Jsprit and OptaPlanner. From the Figure 3.1, we can also
deduce the dependence of individual algorithms on their hyperparameter configuration.
For TASP, there is a clear dependence between chosen hyperparameters and perfor-
mance of the algorithm. For Jsprit, we see that after 30 configurations chosen by the
optimization method, performance did not improve much. This tells us that algorithm
is less prone to changes in hyperparameter configuration. For such case, optimization
method may need to run longer to achieve the significantly higher improvement. Opta
planner also did not show higher performance improvement, which could be caused by
low dimensionality of its hyperparameters.

According to the results obtained from our experiments, we consider Bayesian opti-

mization as a promising tool for a black-box optimization of the local-search algorithms.

3.4 Domain adaptation

General approach of the Bayesian optimization method is limited by the fact, that
objective function is treated as a black-box. This factor completely decouples the
Bayesian approach from the properties of the objective function, as only information
provided by the function is the objective value. Since, in our case, the domain of the
objective function is known to us, we are not limited by the assumption of the black-
box. Therefore, we see the possibility of improvement when the domain is revealed
for the optimization method. In this section, we discuss the possible extension of the
classic Bayesian approach and analyse the properties of the selected solvers that could

be used for performance improvement.

3.4.1 Solver progress curve

Typically, progress of the local search algorithms can be measured by iterations. For
every iteration, the algorithm tries to find an improvement in the solution for the given
problem. Once the limit of iterations (solver budget) specified for the solver is exceeded
or another termination condition is satisfied, algorithm stops. In every iteration, the
cost of the best found solution can either stay constant or decrease (while improvement
is found by the algorithm). Given this, we can characterize the progress of the solvers
as a monotonic time-series, where the time unit is represented by iteration and value
is the cost of the best solution found so far. Furthermore, we refer to this process as

to "solver progress curve”.
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To get the general overview on the behavior of the solvers, we performed analysis of
the progress for each of the selected solvers. We ran each solver multiple times for
different, randomly generated hyperparameter configurations to see if there are any
trends in the progress, independent of the selection of the hyperparameters. Individual
experiments displayed as a time-series are shown in Figure 3.2. All cost values in the

Figure are normalized as
c

(3.2)

Cy =
Cmin

where ¢ is the cost value and c¢,,,;, is the minimum of all cost values observed in the

experiment.
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Figure 3.2: For each subfigure, each plot line represents one run of the given local
search algorithm, where for every iteration point (x-axis) there is a normalized cost of
the found solution displayed (y-axis).

From the Figure, we see that the trend is most visible for OptaPlanner, where there is
obvious correlation for all the runs. The worst descriptive is the progress of JSprit with
the constant values until around 200 iteration. Nevertheless, with TASP solver in the
middle, we see that, despite the different hyperparameter setting, specific stochastic

trend in a progress curves is visible for each of the solvers.
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3.4.2 Early stopping

According to the performed experiments, we consider analysed time-series data as a
useful property for extension of Bayesian optimization. Given visible trend in the time-
series, hyperparameter tunning could be accelerated by predicting the future time series
data of the individual objective function (solver) evaluations and discarding those, for
which prediction is not promising. When prediction is sufficiently fast, this modification
could result in higher number of hyperparameter configurations that can be evaluated
for the optimization and so the chances of finding optimal configuration would increase.
The idea stands on the assumption, that time-series data obtained from the solver
execution, are predictable. In the following subsections, we study techniques that could
be used for extrapolation of the time-series derived from the solver progress curve, and
validate their usefulness for our case. We focus on ARIMA model and Random Forest
Regression as a promising tools for such task.

To specify the time units for the time-series of the selected solvers, we present another

term, that will be used in the following sections.

Iteration split factor

Defines the number of iterations representing one time unit of the time series data
derived from the solver progress curve. The term is used to unify the definition of time

units between different solvers.

To test the performance of the studied techniques, we created time-series dataset for
each of the solvers. To create each dataset, algorithm was executed multiple times
for the given iterations (fixed setting is prescribed in Table 3.5) and the solution cost
values were recorded according to the iteration split factor configuration?. Illustrative

example of a dataset is shown in Table 3.6.

Table 3.6: Example of time-series data

Iteration 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000
Costvalues | 1.6 | 1.5 |14 |13 [1.2 | 1.0 [ 098109509209

For each algorithm, we gathered 20 time-series (using randomly generated hyperpa-
rameter configuration for each run), each with 100 time-units. These datasets are
used furthermore to test and validate the performance of the individual prediction

techniques.

4 Assuming the factor value is k, cost values are stored for every k iterations of the solver
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3.4.3 ARIMA model

Auto Regressive Integrated Moving Average (ARIMA) is a model used in analysis and
forecast of non-seasonal time-series®. Model was applied in many fields [18, 19] and is
well known tool for prediction of those time-series data which exhibits patterns.

To dive deeper into the problematic, we mention several terms to understand how the

ARIMA model manipulates with time-series data.

Lag

Lag is a time (number of time units) between two time series.

Autocorrelation

Autocorrelation is a measurement of how the time-series is correlated with its past
values. Typically, autocorrelation is being displayed as autocorrelation function
plot, where the correlation coefficient is on the x-axis, and y-axis refers to the

number of lags.

Stationarity
Stationarity is a property of time-series, which indicates that the mean and vari-

ance of the data are constant over time.

Differencing
A method to transform non-stationary data into stationary one, done by calcu-
lating differences between time-series and its lagged version. Differencing can be

applied multiple times to make given time-series stationary.

ARIMA model is defined by three variables, that predetermine how the time-series
must be modified in order to make prediction possible, and specifies the way, how the
prediction is calculated.

I (Integration term)

Integration term refers to order of differencing needed to make given time-series sta-
tionary. Stationary data are required for the model.

P (Autoregressive term)

Autoregressive term is order of the Auto Regressive (AR) term. Variable defines num-

ber of lags that will be used as predictors for the predicted value. Using autoregressive

5Time-series without presence of regularly repeating variations
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term, function for the prediction is
Yi=a+ Y1+ BYi o+ .. +8Y, (3.3)

where Y —1 is the predicted value, Y;_; is the lag of the time-series, 3 is the coefficient of
corresponding lag that is estimated by the model and « is intercept term also estimated

by the model.

Q (Moving average term)

Moving average term defines a lag of the error component for the calculation. Error
component refers to data in time-series, which does not follow trend or seasonality.

Prediction for the model using only moving average term is
Y; =+ ¢1€t_1 + ngEt_Q + ..+ ¢q€t—q (34)

where Y, is the predicted value, « intercept term estimated by the model as well as ¢

coefficients. €, is error of the autoregressive model of lag 1.

ARIMA model is prescribed as a model, for which at least one order of differenc-
ing was used and P and Q variables are set to non-zero values. Then, the predicted

value is calculated as
Yi=a+B1Ya+5Y o+ .+ BYip + o161+ oo+ .. + dgeryg (3.5)

To build correct ARIMA model, these variables must be set according to the properties
of the data. The process of setting a variables typically includes extensive analysis of

the data and is crucial for the performance of the model.

Prototype

To validate ARIMA technique on our time-series datasets, we implemented prototype
that is able to predict the future value of the given time-series at desired time step
t + w, where t is the last observed time unit of the time-series and w is the time
window for which we want to predict the value. Prototype uses Equation 3.5 to predict
the consecutive values of the time-series until the desired time unit ¢ 4+ w is reached.
Given the prototype, we tunned the I, P and Q variables on the datasets to choose the

most convenient configuration for the model. Best performance was observed for the
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following configuration.
I+~ 1,P+1,Q+1 (3.6)

Despite the best performing configuration, the model performed poorly for all of the
time-series. Two examples of ARIMA prediction applied to time-series gathered from
the TASP algorithm are shown in Figure 3.3.

—— training 1.5 1 — waining

ual ual
149 — forecast RMSE: 0.06331326394802833 La | T Porecest RMSE: 0.15754671686573815
134 134
1.2 4

114

cost
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Figure 3.3: Cost values are displayed on y-axis for a given time unit (x-axis) of the
dataset. Blue line refers to data, from which the model is trained to make a prediction
of future values (green line). Orange line shows the real cost values that were observed
for the particular time-series.

Due to our results on ARIMA model, we do not consider the technique suitable for
our case. As it turned out, the core problem in ARIMA application on our data lies
in inconsistency of properties of individual time-series like stationarity and autocorre-
lation. Since, order of differencing needed to make data stationary can differ between
individual time-series, model would need to reinitialize multiple times when applied to
the bigger amount of data. Also, the model accuracy decreases distinctly as a window

for prediction increases, which makes the model hardly usable for our case.

3.4.4 Random Forest regression

Random Forest [20] is a machine learning algorithm, that combines multiple decision
trees together and aggregates them into an ensemble. Ensemble method makes Random
Forest less vulnerable to overfitting or being stuck in a local optima, which makes it
outperform any individual decision tree model. Model is suitable for both classification
and regression. For our case, we analyse the use of Random Forest regression for
prediction of the time-series datasets.

Random forest model was studied as a promising tool for the time-series forecasting [21]
and already showed success in several applications in a field, e.g., stock index movement

forecast [22] where it outperformed neural networks and traditional discriminant and
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logit models used for time-series prediction.

As Random Forest is, unlike ARIMA model, a general machine learning method, it
requires the feature extraction from the data as an input for training and prediction
of the model. Selection of the features is crucial for the performance of the model and
must be chosen respectively to the properties of the given time-series. Appropriate

features suitable for the time-series prediction were studied in [22, 23].

Features

From the study mentioned above, we selected 4 feature variables as a candidate features
for the Random Forest time series prediction. Features were chosen with emphasis on
balance between their computational complexity and information gain.

For the following equations, we define C; as a cost value C' observed at given step ¢

and n as a time span® for which we calculate the feature value.

Simple Moving Average
Simple Moving Average (SMA) is typical feature used for time series prediction.

It is unweighted mean of costs in previous n iterations.
1 n—1
=7 26 (37)

Momentum

Momentum measures the amount of change in cost over a given time span.

M(n) =Cy— Ci_p, (3.8)

ROC
ROC can be understood as rate-of-change. It describes the difference in current

cost and the cost n steps ago.

Cl

t—n

ROC (n) =

%100 (3.9)

Disparity

Distance of current cost and the simple moving average of n steps.
C
DP(n) = ———— %100 3.10
") = S3ram) * (3.10)

SNumber of previous steps for which the feature variable is calculated
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According to the length of solver progress curve available to the Random Forest model,
feature variables need to be chosen reasonably and their time spans cannot exceed the

number of steps available for the training of the model.

Regression task

In order to specify the regression task for the regressor, we consider the solver progress
curve as a monotonic series. Due to the nature of local search algorithms, we know
that, with increasing iteration number, the cost is always decreasing with new best
solutions found during the process.

Formally, we define the predicted cost for step ¢ as
C: - Ct - Ct,1 (311)

where C'is the cost value and t is the time step for which the prediction is called. Due to
the monotonicity of the solver improvement curve, the prediction will always be trained

7. Therefore, the monotonic constraint is

with the positive values for the regression
ensured even for the predictions done on unknown data. Since we want the prediction
values to follow the monotonicity of the original improvement curve, this is desired

property for our case.

Prototype

For the purpose of our research, we performed experimental analysis to identify the
best subset of features suitable for our case. We implemented a prototype of Random
Forest regression using sklearn [24] implementation of Random Forest Regressor. The
prototype was then trained and tested on 50 different variations of selected feature
variables extracted from our datasets, measuring the performance with RMSE met-
ric. To test the performance of the model, 5-fold cross-validation technique was used.
According to the analysis, combination of three particular features showed the best

performance for the model.
e Simple Moving Average (SMA)
e Momentum (MO)

e Rate of Change (ROC)

Combination of features that showed the best results can be seen in Table 3.7, where

column n refers to the period of lags for which the feature is calculated.

"Representing the decrease in solution cost
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Table 3.7: Feature set for Random Forest regression

Feature | n
SMA 50
SMA 30
SMA 10
MO 5
MO

MO 1
ROC 10
ROC 5
ROC 2

For the given feature set, we performed the prediction experiments for all datasets as

can be seen in Figures 3.4, 3.5 and 3.6.

Figure 3.4: Random Forest regression for TASP time-series data
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Figure 3.5: Random Forest regression for Jsprit time-series data
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Figure 3.6: Random Forest regression for OptaPlanner time-series data

— training
actual actual
— forecast (RMSE: 0.0015779630329395555 ) — forecast [RMSE: 0.003275407115284843) )

As seen in the Figures, best quality of the prediction seems to be observed for TASP,
with the prediction curve copying the actual values. Worst performance was noted
for Jsprit, for which the first half of the time-series is unusable due to the underlying
search strategy of the algorithm. However, the metrics obtained for Jsprit are still
significantly better than for ARIMA model.

3.4.5 Comparison

According to our research, Random Forest showed significantly better results for our
datasets than ARIMA model. Comparison of the RMSE metrics for both models is
shown in Table 3.8.

Random Forest | ARIMA
TASP 0.0188 0.2905
Jsprit 0.0623 0.2911
OptaPlanner | 0.0407 0.1727

Table 3.8: Mean of RMSE metrics measured for all test time-series data for both
Random Forest and ARIMA model. Minimal values are highlighted for each solver.
To make the RMSE metrics comparable, original values and the prediction values were
normalized to range [0, 1] before computing the metric.

We see main advantage of the Random Forest regression in its ability to learn from the
multiple time-series. This fact makes the method more accurate over time, when new
observations are made and model is trained with more data (unlike ARIMA model,
where prediction is always based on the properties of individual time-series). Also, it
can be deduced from the experiments, that, when correct set of features is specified,
Random Forest requires less configuration to work properly on a different time-series

data. This is what makes it more robust than ARIMA model, especially when the long
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time prediction (explained further in Section 4.3), is desired. Due to all mentioned
properties of the Random Forest regression model, we consider it as a promising tool

for prediction of the gathered time-series data.
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Chapter 4
Algorithms

In this chapter, we present our Early Stop Bayesian Optimization (ESBO) framework,
which extends the classic Bayesian Optimization algorithm by introducting the Early
Stop policy to control the run of the black-box function being optimized. Policy uses
knowledge about the progress of the black-box function (solver) and stops the run if
the progress does not seem promising for the given hyperparameter configuration.

In section 4.1, overall architecture of our optimization framework is described. Sections
4.2, 4.3, 4.4, and 4.5 are dedicated to the description of individual components and

their use in the optimization framework.

4.1 Overall architecture

General purpose of the framework is to run the optimization process to optimize hyper-
parameter configuration for the specified solver. Every optimization process triggered
by the framework has specified optimization budget, which is being spent by each opti-
mization trial until it is depleted and the best configuration is chosen from the executed
trials. The overall optimization budget needed to find high-quality hyperparameters
is decreased by integrating the Early Stop policy for individual optimization trials.
Policy discards the trial once its progress does not seem promising for the optimiza-
tion process, leaving the remaining iterations from the solver budget unused, free to
be taken by the next trials. Thanks to this selective policy, number of trials can be
increased for the given optimization budget and so the number of iterations needed
for the optimization process to find the better hyperparameter configuration can be

decreased significantly.
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ESBO framework consists of three main components, Optimizer, Evaluator and Early
Stop policy. These three components create core building blocks of the framework and
define the interface for the configuration and run of the optimization process. In order
to start the optimization process, solver and hyperparameter space specification must
be provided. Since the objective for the optimization process is treated as a black-
box function, the framework provides a clear interface that defines the communication
needed between the optimizer algorithm and the solver being optimized. The interface
consists of two parts, solver runner, which represents the interface to run and observe
the given solver implementation, and parameter provider, which defines the parameter
space for the solver. Given this specification, Optimizer component is used to run the
optimization process, calling the Evaluator component repeatedly to evaluate the given
solver with the hyperparameter configuration chosen for the optimization trial. The

overall architecture of the optimization framework is shown in Figure 4.1.

Figure 4.1: Optimization framework architecture
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4.1.1 Solver specification

Solver and its parameters are specified in form of Solver Runner and Parameter
Provider components. The interface for these components was implemented to make
the objective definition flexible and decoupled from the optimization framework. This
way, new solvers can be specified without touching the optimization framework archi-

tecture.

Solver Runner

Solver Runner implements the functionality to run and read the results of the under-
lying solver algorithm with given problem instance and hyperparameter configuration.
This functionality is being executed and supervised by the Evaluator component, which
has responsibility for evaluating the results coming from the Solver Runner component

and process them for the Optimizer component!.

Parameter Provider

Every Solver Runner needs to have corresponding Parameter Provider specified. Provider
defines the hyperparameter search space for the optimization process and follows uni-
fied structure, which fully describes the properties for each parameter. Structure is
shown in Table 4.1

Property Type
Name Varchar
Type . Enum
Fixed Choice Range
Value Number | List[Number] | Tuple[Number]

Table 4.1: Each parameter input for the optimization process consists of name, type and
value properties. Name represents its unique identifier in the context of hyperparameter
optimization. Type refers to the type of the parameter. There are three possible types.
Fixed type defines the fixed value, choice type specifies the list of discrete values that
can be tried by the Optimizer. Finally, the range type defines the range of continuous
values that the parameter can take

!Evaluator can be understood as a middleware between the Solver Runner and Optimizer compo-
nents
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4.1.2 Early Stop policy overview

As part of ESBO, the Early Stop policy is used to control the execution of the under-
lying solver. Policy is aimed to streamline the usage of the given optimization budget
by early stopping of the not promising optimization trials.

Early Stop policy consists of two main components, Predictor and Controller. Predic-
tor is responsible for making predictions of the final objective values for the executed
solver. Given data from the solver progress curve, it uses Random Forest regressor to
extrapolate the curve for future iterations and predicts the cost at final iteration point.
Controller component represents the behavior of the decision making policy. Given the
data provided by Evaluator, Controller calls Predictor to make predictions about the
curve and generates the decision about the "early stopping” of the current optimiza-
tion trial. Given this, Early Stop policy reduces the budget spent by the optimization
process and allows Optimizer component to perform more optimization trials in order

to find the best performing hyperparameter configuration.

4.2 Evaluator

Evaluator component implements a lifecycle of what we call the optimization trial,
taking responsibility for evaluating the solver and returning the cost for the hyperpa-
rameter configuration given by the Optimizer component (see Figure 4.1). The core
concept of the Evaluator lays in its communication with the Early Stop policy to
control the discardment of not promising executions of the solver and speed up the
optimization process. To fully describe the Evaluator functionality, its key aspects are

described in the following subsections.

4.2.1 Solver evaluation

As solver can be executed for different problem instances, we assume that optimal
hyperparameter configuration can differ for each individual instance. Therefore, to
make optimization process robust against overfitting for the specific problem instance,
it is required for the Evaluator to have the ability of running solvers (through Solver
Runner component) for different problem instances simultaneously, representing one
execution of the objective function for optimization process. By executing the solver
with multiple problem instances, optimization process is more likely to find the hyper-
parameter configuration optimal for broader set of problem instances, identifying the

high quality optima for hyper-parameter values.
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For every problem instance, the solution cost found by the solver can be of different
range. As Evaluator must return one cost value as a objective value for the selected hy-
perparameters?, it is necessary to aggregate the costs obtained from individual problem
solutions. The aggregation must be done in such a way, that the change in objective
value observed for individual problem instances is balanced. Therefore, ranges for so-
lution costs need to be normalized. Once the normalized cost is ensured for every
executed instance, aggregated objective cost can be provided by Evaluator.
For the normalization of the given problem instances, the Evaluator executes the Solver
Runner at the start of the optimization process with default hyperparameters. For each
instance, the execution is done with a maximum iteration budget (solver budget) and
the problem-solution costs are retrieved. Once the cost retrieval process is done, the
costs found for each instance are cached as a reference costs for the evaluation pro-
cess. Given computed reference costs, the objective value for the optimization trial is
formally defined as s
i=1 7

c= TT (4.1)
where ¢; is the cost of ith problem instance, r; is the reference cost for the ¢th instance
and n is the number of instances being executed.
Normalization function is defined as part of the Evaluator component and is necessary
in cases, when multiple instances are evaluated during the optimization trial. To im-
prove the performance of the normalization process, caching functionality is integrated
into the Evaluator, to store the reference costs for future use of the same solver specifi-
cations. Once costs are cached, they can be called by next optimization trials without

the need for executing the solver for each instance again.

4.2.2 Time series extraction

When execution of the solver is started by the Evaluator, its progress curve is trans-
formed to the suitable time-series dataset on runtime, and provided for Early Stop
policy component. Time-series are extracted using iteration split factor (described in
Subsection 3.4.2) variable to define the time units for the data. [llustrative example of
time-series extraction is shown in Figure 4.2.

Data observed during the solver execution serves as a source of information for the
decision logic of the Early Stop policy. All data observations are also stored between the
optimization trials. This makes the policy more powerful with the increasing number

of optimization trials executed.

2This loss value is used by optimization process to guide the search for optimal hyperparameter
configuration
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Figure 4.2: This is the hypothetical example of one optimization trial executed for
4 problem instances and solver budget of 1000 iterations with iteration split fac-
tor set to 100 iterations. That way, solver observations are split into 10 steps
(100, 200, 300, ..., 1000) for each problem instance. Figure (a) shows the improvement
curves for each problem instance with vertical lines representing iterations at which
the costs were stored for the Evaluator. Red dotted vertical line shows the step, from
which the Early Stop policy is able to make decisions (Due to sufficient amount of
steps stored). This threshold is defined by the configuration of the Early Stop policy
component. Figure (b) shows the structure of the costs being stored. Red dotted line
shows, as in the figure (a) moment of the first decision for the Early Stop policy
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4.3 Predictor

Predictor component is responsible for making predictions about the solution cost us-
ing solver progress curve observations. These predictions are crucial for the decision
generation of the Controller component. Given the time series data from the progress
curve (As shown in Figure 4.2) of the current solver execution, Predictor performs
a prediction of the solution cost at final step of the solver execution. For this type
of regression problem, we use the Random Forest Regressor implementation from the
scikit-learn library [24]. According to Chapter 3, Random Forest Regressor proved its
usefullness in prediction of time series data extracted from the solver progress curve.
To train the regressor, solver progress curve observations from individual optimization
trials are used. As the number of trials increases over time, regressor is provided with
the bigger dataset to be trained on.

Feature variables used by Predictor component for training and prediction of the un-
derlying regressor model were selected according to the research done in Section 3.4.2

(complete set of feature variables can be seen in Table 3.7)

4.3.1 Prediction with time window

Predictor component is aimed to be used for predicting the value in a given time win-
dow?. This type of long term forecast can also be viewed as a concatenation of multiple
"next value”® prediction calls. Our predictor solves the challenge of a long time win-
dow intuitively by appending the predicted values to the original time-series data as a
source for the next predictions. This way, the predictor is able to predict recursively
until the desired time point is reached. Three main functions of the predictor are used
in the prediction process.

Detailed description of the functions can be seen in Algorithm 2. train function ex-
pects regressor model with data as input and takes responsibility for extracting feature
variables (by calling extract function) and training the given regressor. Once the re-
gressor model is trained, forecast function can be called to predict the cost value given

historical data and specified time window.

3Prediction of the cost value at step t +m for m ¢ NT given cost values for steps {1,...,¢}
“Predicton of the cost value at step ¢+ 1 given known cost values for steps {1,...,t}
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Algorithm 2: Predictor component

Input: Extractors E
Data: Regressor model R

1
2 Function train(data):

3 y < data.get Labels()

4 X « extract(data.getValues())

5 R.train(X,y)

6

7 Function forecast (data, window):

8 H « data // Historical data
9 10 // Predictions made
10 while p < window do

11 X « extract(H)

12 x < getLast(X) // Feature set for last observed data
13 p < R.predict(x)

14 H+<H Up

15 11+ 1

16 return getLast(H) // Return last prediction
17

4.4 Controller

Controller component defines an interface for configuration and administration of the
prediction process. The primary intent is to decouple prediction logic from the other
components and provide them with easy to use, configurable interface. Controller takes
values observed from the solver progress curve as an input from the Evaluator, and
calls Predictor component to predict the cost values for the final step of the curve.
With these predictions, decision is made by the Controller and sent to the Evaluator
component as an output.

To configure the behavior of the Controller component, following parameters are de-
fined.

Discardment limit

As the accuracy of the predictor component can vary according to its configuration,
sometimes it can be beneficial for the controller to continue the evaluation even though
the predictor marked the evaluation as unpromising. In cases, where the solver progress
curve is highly unpredictable, predictions can be very noisy and contain significant

error. Therefore, when discardment limit d is defined for the controller, evaluation
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is discarded by the controller only if the predictor component marked evaluation as
unpromising d times in a row. Discardment limit variable can be understood as a "rate

of trust” in the predictor controller.

Retrain interval

Retrain interval defines the frequency for which the Predictor component is retrained
with a new values obtained from the last optimization trials. The variable must be
chosen reasonably according to the optimization process. High value can improve the
time performance with the loss of accuracy in the beginning of the process, whether
the low value increases accuracy by adapting Predictor component to the new values

more often.

First prediction step

First prediction step variable defines at which step of the solver progress curve the
Controller can start the prediction process. If the parameter is not provided, the value
is inferred from the Predictor settings and is set to the first possible step for which the

prediction can start (from the point of Predictor component).

Predictions limit

Prediction limit refers to the number of predictions the controller is able to make during
one optimization trial. This variable can impact the performance of the control process

significantly since it defines, how often the Predictor is called to make a prediction.

Threshold limit

To make a decision about whether to stop or continue the evaluation process, Controller
calculates dynamic threshold value used to split the predictions to the promising and
unpromising sets. Given the sorted set of all final cost values® {c;, cs,..c,} observed

in all previous optimization trials for which ¢; < ¢y < .. < ¢,, the threshold value is
defined as

t

o= % Z Ci (4.2)

i=1
where t is the threshold limit. Given the formal definition, threshold value is calculated

as a mean of ¢ minimal cost values observed in previous trials.

5Cost values at final step of the solver progress curve
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Controller lifecycle and its communication with Evaluator and Predictor components

is shown as activity diagram in Figure 4.3.

Figure 4.3: Controller lifecycle
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Lifecycle starts in the beginning of the optimization trial. Controller is initialized, new
threshold is calculated for the upcoming trial, and the underlying Predictor component
is trained according to the retrain interval (Subsection 4.4). After the solver is executed
by the Evaluator, new values of the solver progress curve are supplied for the Controller
as the observations are made. Once Controller has enough data to make a prediction, it
calls the Predictor component. After the final costs are predicted for each of the given
problem instances, their mean value is being compared with the calculated threshold

value and decision is made for the evaluation and sent to the Evaluator component.
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Given predicted values p = {p1, ps, ...px} for k problem instances, optimization trials is
considered unpromising for the condition p > o.

Decision process is called repeatedly by the Evaluator component, according to the de-
fined prediction limit variable. Configuration variables for the controller were designed

in order to make its lifecycle flexible and easily adaptable to different cases.

4.5 Optimizer

Optimizer component, as the name suggests, has responsibility of running the hyper-
parameter optimization process for the solver (managed by Evaluator component). The
Optimizer component runs the optimization process with the given optimization bud-
get, for which it repeatedly executes optimization trials until the budget is exceeded.
The optimization process consists of two main parts, described in the following sub-

sections.

4.5.1 Initialization trials

To initialize the optimization process, a set of first m hyperparameter configurations®
for the solver function is generated via a quasirandom Sobol sequence (Subsection
2.2.4). Quasirandom initial trials are used to obtain sufficient data about the solver
hyperparameter space. Results from these trials are used in the next part of the
optimization process to create the Surrogate model for the Bayesian optimization.
Also, this initialization gives Evaluator component opportunity to collect data from

the solver progress curve in order to initialize Early Stop policy.

4.5.2 Bayesian optimization

After the initial trials are finished, the Bayesian optimization model is initialized. The
surrogate model is built upon the data obtained from the initial trials and new hyper-
parameter configuration is generated by acquisition function for the next trial. For the
theory behind Bayesian optimization, refer to chapter 2.

Every time optimization trial is finished, the surrogate model is updated according
to the cost obtained from the trial (returned by Evaluator) and a new configuration
is generated. This process is called repeatedly until the given optimization budget is

exceeded. Once the optimization process is finished, the configuration with the best

6Parameter m is configurable for the Optimizer component and should be chosen reasonably ac-
cording to the dimension of the parameter configuration
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result is derived from the Optimizer component and returned to the caller.
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Chapter 5
Experiments

In this chapter, we evaluate the performance of our ESBO method through experiments.
First, in section 5.1 we observe the outcome of combining our Early Stop policy with
the Bayesian approach. Section 5.2 is dedicated to comparison of ESBO method with
the classic Bayesian optimization. Finally, in section 5.3, method’s ability to generalize
for different problem instances is discussed and validated with experiments.

To unify the environment for the experiments, we fix the settings for the optimization
methods. This includes defining the set of VRPTW problem instances, optimization
budget for each method and the solver budget for each of the local search algorithms
being experimented with. Fixing the iteration budgets for both optimizer and solver
gives us opportunity to compare the methods in the matter of iterations being spared
when the Early Stop policy decides to discard the optimization trial. Given this,
we focus on how the increase in the amount of performed optimization trials affects
the performance of the ESBO method. Fixed iteration budgets, problem instances,
and other parameters for individual experiments are defined in the beginning of each
section.

All experiments presented in this chapter were performed on Debian 6.3.0-184-deb9ul
machine with 16 cores / 32 threads, 256GB RAM, and 500GB SSD.

5.1 Early Stop policy analysis

We ran optimization process with multiple consecutive optimization trials controlled
by our Early Stop policy in order to analyze how the prediction of the costs for op-
timization trials can affect the performance of underlying Bayesian optimization. In
following subsections, we analyse the effect of Early Stop policy on the optimization

process for each of the solvers.
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For the experiments, we implemented simulated environment to track both the values
predicted by the Early Stop policy, and the real values obtained from the solver ex-
ecution for the full solver budget. Thus, during the experiments, if the optimization
trial is chosen to be discarded, cost predicted at the point of discardment is stored and
trial continues until it is finished. That way predicted cost can be compared with the
cost of the solution the solver found at the final iteration point and the decision can be
validated for the experiment. To simulate production scenario, actual values are only
stored for the experiment purposes, whereas the predicted costs are the ones being used
to update the surrogate function of BO model during the optimization process. In this
section, we used fixed setting for each of the solvers prescribed in Table 5.1. Also, we
fixed the configuration of the Controller component to the values prescribed in Table
5.2. Values for the Controller were chosen according to the empirical observations and

logical judgments during the development of the ESBO method.

Solver Solver budget | Optimization trials | Problem instances
TASP 10,000 20

Jsprit 500 50 C110.1, C110-2, C110-3
OptaPlanner 100,000 40

Table 5.1: Early Stop policy experiment settings

Variable Value
Discardment limit 1

Retrain interval 5

First prediction step | 50% | 70%
Prediction limit 5
Threshold limit 5

Table 5.2: Percentage value for the First prediction step variable describes the portion
of steps in the solver progress curve, from which the controller is allowed to make
predictions

5.1.1 TASP

In the Subfigure 5.1b, we see the Early Stop policy configured to start decision process
at iteration 7,000 out of 10,000. This settings showed impressively good results with
prediction values close to the real ones. Second Subfigure 5.1a describes the policy
configured more aggresively, making decisions from iteration 5,000. We see how earlier

decisions increased the error in predictions. However, predicted values still copy the
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trend of the real values, identifying promising runs correctly.

Comparing these two Subfigures together, we can see that algorithm, given the decision
threshold, let promising trials run until the final iteration and discarded the trials with
unpromising cost predictions. Early stop policy seems to work in matter of deciding
which runs are promising and which not for the TASP solver. Also, the fact that
predictions underestimated the actual costs is beneficial because we rather want to let

not promising runs finish than stop promising runs.

5.1.2 Jsprit

Early Stop policy did not perform as good for Jsprit solver as it did for TASP. As
shown in Figure 5.2, values were predicted with significant error. From Subfigure
5.2a, it can be deduced, that with lower "first prediction step” value (Subsection 4.4),
policy has problem identifying the promising trials. Since trying to predict bigger time
window can be impossible for the regression model, increasing the starting point of the
prediction process is reasonable step to make the model more accurate. Increasing the
first prediction step to iteration 7,000 resulted in lower error as shown in Subfigure 5.2b.
However, according to the properties of the Jsprit solver (studied in Subection 3.4.1),
there are obvious issues with integrating Early Stop policy into the solver evaluation,
which should be studied further.

5.1.3 OptaPlanner

For OptaPlanner, we again observed significant prediction error for the setting of low
"first prediction step” value as shown in Subfigure 5.3a. In Subfigure 5.3b, with in-
creased value of first prediction step, the increase in prediction accuracy is visible.
However, policy still identifies only the subset of promising trials, which can lead to

suppression of promising hyperparameter configurations for the optimization process.
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Figure 5.1: In the first graph (up) of each subfigure, the predicted and real cost is
shown for each trial along with the threshold value, which was calculated at respective
trial for the purpose of making a decision. Second graph (bottom) shows the decision
process of the Early Stop policy, where the green bars prescribe the trials that were
not stopped, and blue bars display discarded trials along with the iteration, at which
the decision was made by the policy. Red area shows the interval, at which the policy
was able to make decisions.
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Figure 5.2: Early Stop policy analysis - Jsprit
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Figure 5.3: Early Stop policy analysis - OptaPlanner
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5.1.4 Performance results

Due to the nature of the prediction task for Early Stop policy and its complexity,
there is a clear dependence between performance of the policy and the time window!
of the prediction.
time window can affect the prediction error for each solver. Therefore, setting the
variable correctly according to the given solver can play crucial role in the performance
and must be chosen reasonably to balance prediction error and amount of iterations

being spared for the optimization process. Performance results of Early Stop policy

From the Figures 5.1, 5.2 and 5.3, we notice how the size of the

I'Number of steps we want to predict
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observed from our experiments are summarized in Table 5.3. For TASP solver, policy
performed similarily good for both settings of ”First prediction”, identifying all of the
promising trials. Jsprit and OptaPlanner showed to be more prone to the changes in
prediction settings. Generally, for both solvers, increasing the ”First prediction” value
led to better performance with the loss in amount of iterations being spared for the

optimizatin process.

Table 5.3: Early stop policy performance results

Experiment First prediction | Iterations spared | Promising trials detected
TASP (b) 50 % 41.84 % 100 %

TASP (a) 70 % 18.96 % 100 %

Jsprit (a) 50 % 32.0 % 33.3 %

Jsprit (b) 70 % 21.9 % 60 %

OptaPlanner (a) | 50 % 34.0 6.25%

OptaPlanner (b) | 70 % 18.25 % 75 %

5.2 Comparison with Bayesian optimization

We performed comparison of our ESBO method with classic Bayesian optimization to
analyze the improvement in the optimization process on selected solvers. Experiments

were executed for all solvers with fixed setting prescribed in Table 5.4.

Table 5.4: Solver configurations used in experiments

Solver Solver budget | Optimizer budget | Problem instances
TASP 10,000 220,000

Jsprit 500 20,000 C110-1, C110-2, C110-3
OptaPlanner 100,000 1,500,000

Twenty optimization processes were run for each pair of method and solver with the
given setting. The comparison of the two methods for each solver is depicted in Figure
5.4. To describe the amount of improvement achieved by each optimization method,
cost values were normalized by the same principle as defined in Equation 3.1 in Section
3.3.2.

For the TASP solver, ESBO method statistically outperformed classic Bayesian ap-
proach. As our method extends Bayesian method with Early Stop policy, it is visible
how accelerating the optimization process led to faster convergence to the minimal
value as shown in Subfigure 5.4a. This resulted in generally better hyperparameters
found for the solver as can be derived from the area between 1st and 3rd quartile de-

picted in the Subfigure 5.4a.
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Figure 5.4: Blue and orange plots show optimization processes for each method. Ev-
ery point on the plot represents median of cumulative minimum of each optimization
process at the given trial. Filled areas display interval of 1st and 3rd quartile for each
method.

When comparing methods for Jsprit solver, we can see notable improvement for the
ESBO method, especially in the beginning of the optimization process, between 2,500
and 5,000 iterations. Nevertheless, the improvement is not of the same significance as
for TASP solver. We assume the main cause is the bad predicability of the Jsprit solver
execution, which can lead to wrong decisions done by Early Stop policy.

As can be denoted from the Subfigure 5.4b for Jsprit solver, neither of the methods
was able to find better hyperparameter configuration for the given set of problem in-
stances than the default one. Jsprit is, unlike TASP and OptaPlanner, not the general
solver, but it is specifically designed to solve VRP problems. Thus, as we execute the
solver on standard benchmark problem instances, we can expect that its parameters
are already tunned for the problem domain. This fact makes Jsprit solver debatable
as a subject of hyperparameter tunning. However, as we want to generalize the use

of our optimization method, we ignore this observation, and focus on comparison of
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inidividual optimization methods.

In results obtained for OptaPlanner, we see that the portion of improvement found
by the optimization methods is smaller than for other solvers. This may be caused
by the lower interconnection between the hyperparameters and the solver functionality
(as studied in Chapter 3). Question arises, whether the bigger improvement is possible
for the optimization in the given settings. However, with the given optimization bud-
get, our method converged much faster (around iteration 200,000) than the Bayesian
optimization (iteration 900,000), finding high quality configuration in £ of the budget
needed by the Bayesian approach.

5.3 Generalization to unknown problem instances

To validate how the improvement obtained by our ESBO method is transferable onto
different problem instances, we took the results obtained in comparison experiments
(described in section 5.2) and ran the solvers with the winner configurations on the set

of unknown problem instances. Fixed setting values can be seen in Table 5.5.

Table 5.5: Fixed settings for generalization experiments

Solver Solver budget | Problem instances
TASP 10,000

Jsprit 500 C110.4, C110.5, C110.6
OptaPlanner | 100,000

For each optimization method, set of winner parameter configurations is defined as
a set of configurations that gave the best result in each of the optimization processes
performed. Thus, for each pair of solver and optimization method, 20 winner configura-
tions were picked for the experiment. Cost values obtained from the solver executions
were normalized for each solver by dividing the original costs by the maximal cost
obtained during the experiment for the given solver (identical normalization with max-
imal values was performed for experiments in Subsection 3.4.1).

As shown in Figure 5.5, we see that improvement of our methods against the classic
Bayesian optimization was observed also for the data unknown to the optimization
method. This confirms that the improvement obtained by our ESBO method persists
when the resulting configurations are applied to the new, unseen problem instances.

Specific results for each solver can be seen in Table 5.6.
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Figure 5.5: Results obtained by evaluating solvers with winner configurations. Boxplots
show the distribution of the result costs for each method and default solver configura-
tion (without optimization). Filled areas express the area between 1st and 3rd quartile.
Horizontal lines for each boxplot show, from the bottom up, 1st quartile—1.5%xmedian,
median, 3rd quartile + 1.5 x median. Points display the outlier of the individual dis-
tributions

Solver method median | mean | min | max
ESBO 0.946 0.949 | 0.943 | 0.961
TASP Bayesian optimization | 0.952 0.956 | 0.949 | 0.97
Default 0.997 0.995 | 0.988 | 1.0
ESBO 0.983 0.981 | 0.960 | 1.0
Jsprit Bayesian optimization | 0.982 0.984 | 0.976 | 0.997
Default 0.942 0.942 | 0.942 | 0.942
ESBO 0.967 0.970 | 0.959 | 1.0
OptaPlanner | Bayesian optimization | 0.969 0.972 | 0.963 | 0.984
Default 0.972 0.970 | 0.965 | 0.974

Table 5.6: In the Table, statistical values observed for each method and each solver
are described. ”Default” value in column "method” means that values were observed
for default configuration of hyperparameters. Minimal values are highlighted per each
solver

Generalization experiment showed, that ESBO method outperforms Bayesian opti-
mization in most of the observed statistical metrics, when tested on unknown problem
instances. Even though the difference is not significant, it is a convenient baseline for
future experiments with the method. Also, despite the Jsprit solver (which was being
discussed in Section 5.2), our method gave better results than default configurations
for both TASP and OptaPlanner.
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Chapter 6
Conclusion

Local search algorithms are typically configurable by the number of hyperparameters
that impact their behavior and performance. However, setting correct parameter values
for the algorithm is often complicated by the lack of documentation on their meaning.
Also, the expensiveness of the algorithm’s evaluation prevents the use of standard hy-
perparameter tunning methods like grid search or random search when the time budget
is limited, especially for the hyperparameters of higher dimensionality.

We studied the Bayesian optimization method as a promising tool for hyperparame-
ter optimization of local search algorithms. By comparison with the random-search
method, Bayesian approach proved to be more efficient and suitable for the optimiza-
tion task.

In default setting, Bayesian optimization treats the objective function as a black-box.
This property restricts it from using the knowledge about the domain, if available.
Therefore, we studied the possible adaptation of the Bayesian method to our do-
main, and designed the modified optimization framework, which we named Early Stop
Bayesian optimization. Our modification uses Random Forest regression to extrapo-
late the curve of the local search algorithm’s internal progress. The selective policy
then uses the extrapolation results to stop unpromising evaluations of the algorithm.
The integration of such policy leads the search of the optimization method towards the
promising hyperparameter configurations, not wasting resources on unpromising ones.
We tested our method on the set of three local search algorithm implementations. In
performed experiments, our modification showed generally better results and faster

convergence to the high-quality configuration than the classic Bayesian method.
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6.1 Future work

Since our method directly relies on Random Forest regression’s performance, we see the
opportunity in broader research of the time-series forecasting techniques. That includes
the study of new, more descriptive feature variables for the time-series, and also research
of other machine learning algorithms that have potential in the time-series prediction,
like neural networks. If the accuracy of predictions would increase by incorporating new
feature variables and techniques, the ESBO method would possibly perform better and
would be able to converge even faster to the high-quality hyperparameter configuration
without providing noisy objective values for the Bayesian optimization model.

Another improvement could be made by setting a different configuration for Bayesian
optimization. In our work, we used the Gaussian process as a surrogate model and
Noisy Expected improvement as an acquisition function for the Bayesian technique.
However, many other approaches exist, that could be more suitable for our case and
has not been tested for the domain of hyperparameter tunning of the local search

algorithm.
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Appendix A

Attached files

The attached files contain the electronic version of this thesis, source files for this
thesis, source code of our optimization framework and Gehring Homberger benchmark

instance files that were used in our experiments.

thesis.pdf. ... Electronic version of the thesis
oo Folder with source files
hesbo ................ Folder with source codes for the optimization framework

BhESIS Folder with thesis source files
benchmarks.............ccoiiiiinean.. Folder with benchmark problem instances
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