
prof. Ing. Róbert Lórencz, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 13, 2020

ASSIGNMENT OF MASTER’S THESIS
 Title: Remote Keyless Entry Systems Security Analysis

 Student: Bc. David Šafrata

 Supervisor: Ing. Jiří Dostál, Ph.D.

 Study Programme: Informatics

 Study Branch: Computer Security

 Department: Department of Information Security

 Validity: Until the end of summer semester 2020/21

Instructions

Remote keyless entry systems are commonly used for accessing cars, buildings and other objects using
radio frequency (RF) communication. Software-defined radios (SDR) are low cost and accessible devices to
simply communicate on RF without any analog signal processing needed so they are used also in the field
of cybersecurity to assess various RF protocols. RF transmission is prone to eavesdropping so there exist
security protocols to ensure integrity and confidentiality. Analyze the most frequently used technologies
and protocols used for remote keyless entry systems, e.g., rolling codes and KeeLoq. Do an in-depth
analysis with a focus on implementation weaknesses, limitations and corner cases. Develop a
demonstration platform using the KeeLoq development kit to support RF attack simulation. Test selected
attacks using USRP software-defined radio.

References

Will be provided by the supervisor.

Master’s thesis

Remote Keyless Entry Systems
Security Analysis

Bc. David Šafrata

Department of Information Security
Supervisor: Ing. Jǐŕı Dostál, Ph.D.

May 28, 2020

Acknowledgements

I would like to thank my supervisor for valuable insights and guidance during
the work on this thesis. I would also like to thank my family for support
during my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 28, 2020

Czech Technical University in Prague
Faculty of Information Technology
c© 2020 David Šafrata. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Šafrata, David. Remote Keyless Entry Systems
Security Analysis. Master’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2020.

Abstrakt

Tato diplomová práce se zabývá analýzou zabezpečeńı systémů bezkĺıčového
vstupu. Obecné poznatky jsou rozš́ı̌reny o přehled několika systémů využ́ıvaj́ı-
ćıch plovoućı kódy a jejich známých slabin. V daľśıch kapitolách je podrobněji
analyzována bezpečnost systému KeeLoq, zejména se zaměřeńım na imple-
mentačńı slabiny. Tato detailńı analýza vyústila v návrh nového útoku, který
je schopen systém prolomit přibližně za jednu hodinu. Tento útok je spolu
s daľśımi vybranými útoky implementován za využit́ı softwarově definovaného
rádia USRP B210 a vývojového kitu systému KeeLoq. Závěr obsahuje auto-
rova bezpečnostńı doporučeńı na základě nabytých znalost́ı.

Kĺıčová slova RKE, bezkĺıčové systémy, bezpečnost, bezdrátová komuni-
kace, 433 MHz, plovoućı kód, KeeLoq

vii

Abstract

This diploma thesis focuses on the security analysis of remote keyless entry
systems. The general overview is followed by a summary of several systems
that use the rolling code scheme and their known weaknesses. The KeeLoq
system’s security is analyzed more in-depth in the following chapters, primarily
focusing on implementation weaknesses. This thorough analysis resulted in
a description of a new attack that can exploit the system in approximately
one hour. This attack, along with other selected attacks, is implemented using
the software-defined radio USRP B210 and the KeeLoq system development
kit. The conclusion contains the author’s security recommendations based on
gained knowledge.

Keywords RKE, keyless entry, security, wireless, 433 MHz, rolling code,
KeeLoq

viii

Contents

Introduction 1

1 Remote keyless entry systems 3
1.1 Authentication schemes . 3
1.2 Operation modes . 5
1.3 Attacks independent on specific system 6

2 Software-defined radios 11
2.1 Radio-frequency signals . 11
2.2 Digital modulation methods . 11
2.3 Data encoding . 13
2.4 Operation of SDRs . 14
2.5 USRP B210 . 14
2.6 Universal Radio Hacker . 15

3 Approach 17
3.1 Direction and goal proposal . 17
3.2 Platform choice . 18
3.3 Implementation weaknesses . 19

4 Specific rolling code RKE systems 21
4.1 AUT64 . 21
4.2 HITAG2 . 23
4.3 KeeLoq . 24

5 KeeLoq cryptanalysis 29
5.1 Related work and considerations 29
5.2 KeeLoq cipher overview . 30
5.3 Exhaustive search attack . 30
5.4 Slide attack . 31

ix

6 Attacks on KeeLoq implementation 35
6.1 Altering the message . 35
6.2 Bruteforcing the key derivation 36
6.3 Bruteforcing the encrypted part 37
6.4 Desynchronizing the counter . 37
6.5 Breaking the counter . 38
6.6 Side-channel analysis . 38

7 New attack on KeeLoq counter 41
7.1 Introduction . 41
7.2 Attack scope . 41
7.3 Exploitable properties of the system 41
7.4 Attack description . 42
7.5 Attack duration . 44
7.6 Countermeasures . 45
7.7 Future work . 46

8 Demonstration platform 47
8.1 Common hardware and software setup 47
8.2 Features . 48
8.3 Replay attack . 48
8.4 RollJam attack . 49
8.5 Counter breaking attack . 49

9 Conclusion 51

Bibliography 53

A Acronyms 57

B Contents of enclosed CD 59

x

List of Figures

1.1 Fixed code scheme . 3
1.2 Rolling code scheme . 4
1.3 Challenge-response scheme . 5
1.4 Illustration of relay attack . 7
1.5 Typical flow of RollJam attack . 9

2.1 Some basic modulation schemes . 12
2.2 Commonly used line codes . 13
2.3 Schema of typical SDR operation 14
2.4 Part of the first screen of Universal Radio Hacker 15
2.5 The second screen of Universal Radio Hacker 16

3.1 KeeLoq GUI tool, for better insight into receiver’s operation . . . 18
3.2 RKE systems and the primary work focus path 19

4.1 One round od AUT64 block cipher 21
4.2 HITAG2 RKE message structure 23
4.3 KeeLoq RKE message structure . 25
4.4 KeeLoq counter synchronization windows 26

5.1 Block diagram of KeeLoq encryption and decryption 30
5.2 Idea behind a typical slide attack 31
5.3 Illustration of meet-in-the-middle slide attack 33

7.1 Attack flow for implementations ignoring overflow bits 44
7.2 “Counter breaking” attack traversal 45

8.1 Common hardware setup of the demonstration platform 47
8.2 Terminal-based user interface . 48
8.3 Button press simulator hardware 49

xi

List of Tables

1.1 Overview of selected attacks on common RKE schemes 6

4.1 Use of selected RKE systems in automotive industry 22
4.2 KeeLoq key derivation schemes . 25

5.1 Selected cryptanalytic attacks on KeeLoq cipher 29

xiii

Introduction

Remote keyless entry (RKE) systems became a common part of everyday life
for many people. They are frequently used in car remotes, wireless garage
door openers, and similar applications. As they are intended to protect ac-
cess to valuable assets, while the radio frequency communication is prone to
eavesdropping and other possible manipulations, they typically make use of
cryptographic measures to provide security of the transmissions.

Remote controllers are usually low power battery-operated devices. Thus
they commonly implement lightweight cryptosystems, which are usually less
resource-heavy than cryptosystems used in traditional infrastructure. Some
of them even use proprietary ciphers (KeeLoq, for example), which were sub-
jected to cryptanalysis in several papers in recent years.

The first part of this thesis aims to make a complex analysis of used RKE
systems and identify all possible weak spots, as they don’t solely rely on the
used cipher. General findings are applied in a more in-depth analysis of the
KeeLoq system, focusing primarily on implementation weaknesses.

The second part of the thesis describes a new attack on the KeeLoq plat-
form and presents a demonstration platform, which uses the KeeLoq develop-
ment kit and the USRP B210 SDR to test selected attacks, including the new
one.

1

Chapter 1
Remote keyless entry systems

1.1 Authentication schemes

1.1.1 Fixed code

Fixed code was one of the first methods to provide remote keyless entry.
Transmitter always sends the same data for a particular function of a system.
This scheme doesn’t provide any authentication (or security measures at all)
and can be easily exploited by a simple replay of the signal. Some cars from
notable automotive companies were equipped with RKE system based on fixed
code scheme even around the year 2000 [1].

Prover

Prover

Verifier

Verifier

Token (fixed code)

Comparison & action

Figure 1.1: Fixed code scheme

1.1.2 Rolling code

Rolling code, sometimes called hopping code, is a common way of authen-
tication in RKE systems. It is one-way authentication where a transmitter,
sometimes called a prover, sends a message containing a nonce in its encrypted
part to a receiver, sometimes called a verifier. The nonce assures that the mes-

3

1. Remote keyless entry systems

sage is fresh, which provides replay attack protection. A value that serves as
a nonce can be implemented in several ways.

Prover

Prover

Verifier

Verifier

Auth token (rolling code)

Auth verification & action

Figure 1.2: Rolling code scheme

1.1.2.1 Random or pseudo-random nonce

In general, it’s a common way to generate a nonce with a cryptographically
secure random number generator. However, to assure that the nonce is not
reused, the verifier must hold a list of used nonces, which can lead to very high
memory requirements, so it’s not a typical approach in RKE applications.

1.1.2.2 Counter

A counter is one of the most straightforward ideas to easily provide non-
repetitive value, where the next value is incremented by one in every use. The
numbers below the current counter value are considered as used. Unlike the
random nonce, it has constant memory complexity, as both sides (prover and
verifier) only need to store the current counter value. This property brings
the main downside of the counter method, which is the need to synchronize
the value between both parties. The value stored in the verifier can be eas-
ily behind the value, as the radio frequency one-way transmission messages
from prover may not reach the verifier, due to radiofrequency interference or
being out of the range. Because of this property, typical implementations
provide dropout tolerance. The counter method is commonly used in RKE
applications, such as in HITAG2 and KeeLoq products [1, 2].

1.1.2.3 Timestamp

Another way to provide nonce is to use a timestamp. Value, which differs
from the current time of a verifier, is rejected. The need for synchronized
clock values requires a precise time source, typically achieved by using a real-
time clock (RTC), which usually increases hardware complexity and costs. It

4

1.2. Operation modes

is commonly used in one-time password generators, but rarely in the field of
RKE systems.

1.1.3 Challenge-response

If two-way communication is available, authentication can be provided by the
challenge-response protocol. Upon request, a verifier sends a challenge to
a prover, commonly containing a random sequence of bits. The verifier then
uses a shared secret to prove its authenticity. The response to the challenge is
provided by encrypting the challenge with a symmetric key or asymmetric pri-
vate key or concatenating the challenge with a password followed by hashing.
It may also combine mentioned approaches or use another similar one.

Either the authentication can be one-way, where the prover authenticates
to the verifier, or it can be mutual, where the verifier also authenticates to the
prover, in addition to the one-way authentication, to enhance the security of
the system.

Prover

Prover

Verifier

Verifier

Challenge

Response calculation

Response calculation

Auth token (with Response)

Auth verification & action

Figure 1.3: Challenge-response scheme

1.2 Operation modes

1.2.1 Active keyless entry

Active keyless entry systems are a widespread category of RKE systems.
A keypress of a keyfob usually initiates the operation. It typically uses a rolling
code scheme, but it may also use fixed code or serve as an initial message in
a challenge-response scheme, in some cases.

5

1. Remote keyless entry systems

The active property can restrict the number of attack scopes, as the only
way to initiate communication is to press the button physically, so unless the
attacker has the possession of a keyfob, the interaction with the transmitter
is only limited to signal eavesdropping in case of one-way communication.

1.2.2 Passive keyless entry

Passive keyless entry systems are gaining more popularity in recent years [3].
It allows the user to use the RKE system without pressing any button, thus
the name passive keyless entry. It is usually based on a challenge-response
scheme.

When the user triggers the verifier (for example, by pulling the car door
handle), the verifier sends a wake-up message with a challenge to the prover
(for example in the form of a keyfob), which computes the response based on
the shared secret and sends it to the verifier. So if the prover is close to the
verifier, it provides authentication without any active manipulation with the
prover device.

1.3 Attacks independent on specific system

Operation mode Active Active Passive
Authentication None/Fixed code Rolling code Challenge-resp.
Attack Replay RollJam Relay
Impact High Moderate High
User-detectability Low to none Low Low to none
Complexity Low Medium Medium

Table 1.1: Overview of selected attacks on common RKE schemes

1.3.1 Denial-of-service by RF jamming

Radio-frequency jamming is a simple attack, which disrupts the operation of
a receiver very effectively. The receiver usually filters RF signals to accept only
transmissions on a certain frequency. In order to receive the signal coming
from the transmitter correctly, the transmission power of the signal should be
on a certain level, where it’s clearly distinguishable from the environmental
noise. It is commonly referred to as a signal-to-noise ratio (SNR). The ratio
should be greater than one for the clear reception of a signal.

The signal-to-noise ratio is usually tiny when the distance between trans-
mitter and receiver is significantly long. It also decreases when noise levels
spike. Such spikes are usually caused by other transmissions in the same RF

6

1.3. Attacks independent on specific system

band, commonly called interference. These interferences may happen quite
often, especially in ISM unrestricted bands, typically used by RKE systems.
When interferences are intentional, it’s usually called jamming. Devices in-
tended to jam signal at a particular frequency just broadcast useless signals
with high output power, which effectively increases the noise level, thus de-
creases the signal-to-noise ratio for other transmissions in reach. All wireless
protocols, including the ones in RKE systems, are prone to this kind of at-
tack based on simple physical foundations of the RF communication. Signal
jamming is illegal in many countries [4].

The consequences of jamming attacks are questionable, as the RKE sys-
tems usually have mechanical alternatives to provide the same functions, like
locking the car with a mechanical key or closing garage door with a physical
button. In a sample scenario, when the attacker jams signal to close the car,
it may only succeed if the RKE system user (i.e., driver) does not check the
visual feedback (like a double blink of car lights) of the requested operation.

1.3.2 Replay/relay attack

A replay attack is probably the easiest when the attacker has hardware re-
sources that allow capturing the signal, saving it, and transmitting it after-
ward. The growth of the SDR market and rising community involvement
around cheap SDRs allowed almost anyone to dig into this area and perform
similar attacks with minimal knowledge of underlying theory. A replay attack
is sufficient to break fixed code RKE systems as the transmitted message for
a particular requested operation is always the same.

The idea of rolling code systems was driven by the need to mitigate replay
attacks [1], as the previously used codes were rejected by the receiver (more
precisely, the verifier). Even though the rolling codes sufficiently tackled the
problem of replay attacks, they remain prone to a more sophisticated replay
attack variant called relay attack.

Figure 1.4: Illustration of relay attack
on challenge-response passive keyless entry system

Relay attack is based on replay of signal from a transmitter located out of
range of the receiver. When the attacker receives the signal from the transmit-

7

1. Remote keyless entry systems

ter, it can be sent to the attacker’s accomplice within the range of the receiver,
which replays the message captured by the attacker. This setup works as an
amplifier for the messages, which wouldn’t go through to the receiver, or it can
effectively work as a man-in-the-middle making this attack dangerous even for
challenge-response based RKE systems. This statement supports research [3],
which shows that relay attack is potentially perilous for a large amount of pas-
sive keyless entry systems, as the prover device requires no user interaction.
Its operation is only based on the proximity of the keyfob, which could be
easily bypassed by the relay attack, in the two attacker scenario (see Figure
1.4). Also, the paper shows that possible countermeasure options are limited.

1.3.3 RollJam attack

RollJam attack has been popularized by famous hacker Sammy Kamkar and
presented in [5]. This attack combines jamming and replays to provide a way
to break most rolling code RKE systems. The idea is based on the fact that
the frequency bandwidth of the receiver is quite broad.

The jamming signal is transmitted at frequency f + ∆, where the f is the
center frequency of the attacked RKE system. The reception of the signal
is set to frequency f , but is set to accept only frequencies in a narrow band
around frequency f , to filter out the jamming signal at frequency f+∆, which
is intended only to jam the legitimate receiver.

At the beginning of the attack, the attacker starts with signal jamming.
When the attacker accepts the first message, it’s saved until it receives the
second message, which is also saved. Right by that time, the attacker stops
jamming and replays the first message which didn’t go through at the time
of its original transmission because of the jamming signal interfering with the
receiver. The legitimate user thinks that the second message went through as
intended, but it’s actually the first one accepted by the receiver. It allows the
attacker to replay the second message later as its counter is still fresh for the
receiver counter value, as the last message delivered contained counter lower
by one.

The practical impact of the attack is quite limited. Firstly, the second
saved message becomes useless as other messages with the following counter
values are transmitted as the value of the saved message becomes non-fresh.
Secondly, even if the attacker obtains two following messages, it is rarely ap-
plicable to exploit the subject protected by the RKE system. For example,
when the attacker executes the attack in a parking lot when someone closes
a car via the RKE system, it would only allow the attacker to close the car
again, posing no threat. When someone opens the car, it may allow the at-
tacker to open it once again, but it would be probably useless as the legitimate
user usually drives away right after and then close it again via the RKE later,
making the saved message useless.

8

1.3. Attacks independent on specific system

User

User

Attacker

Attacker

Car

Car

Jamming ON

Msg1

Msg1

Msg2

Msg2

Jamming OFF

Msg1 (replay)

Blinks

Later (User away)

Msg2 (replay)

Figure 1.5: Typical flow of RollJam attack

One possible practical scenario could be with garage door openers when
the driver uses the RKE system to open the garage door and then closes it
with a physical button in the garage once the driver exits the car. In this case,
the attacker would be able to open the garage door later. Another possible
scenario would be, when a car user opens a trunk by the RKE, as it typically
requires no further RKE messages as the car closes the central lock when the
trunk door is mechanically closed. So again, the attacker can access the car
later trough the trunk door.

9

Chapter 2
Software-defined radios

2.1 Radio-frequency signals

A signal can be described by the following function over time (t)

S(t) = A× sin(2π × f × t+ φ) (2.1)

Where A is the amplitude of the sine wave, f is the frequency, and φ is
the phase shift. The basic modulation methods are based on modifying one
of these components over time.

The modern signal processing works with quadrature signals, sometimes
called I/Q signals. They consist of two paired signals – I (in-phase) and Q
(quadrature) containing information of a reference signal. The Q signal is
shifted by 90 degrees relative to I signal.

Quadrature modulator is a circuit used for generating RF signals based
on I/Q signals. It consists of 2 frequency mixers, where one mixes the local
oscillator (LO) with the I signal, and the other one mixes the LO shifted by 90
degrees with the Q signal. The output of these two mixers is then summed,
resulting in the desired RF signal. Quadrature demodulator works on the
same principle, but the signal flow is backward.

2.2 Digital modulation methods

2.2.1 ASK

In amplitude-shift keying (ASK), the signal is modulated by changing the
carrier wave’s amplitude over time.

SASK(t) = A(t)× sin(2π × f × t+ φ) (2.2)

For binary ASK, 1 is represented by amplitude A1, and 0 is represented
by amplitude A2. There is a particular variation of binary ASK called on-off

11

2. Software-defined radios

keying (OOK), where A2 is zero. It is used in many applications as it’s easy
to implement.

2.2.2 FSK

In frequency-shift keying (FSK), the signal is modulated by changing its fre-
quency over time.

SF SK(t) = A× sin(2π × f(t)× t+ φ) (2.3)

For binary FSK, 0 is typically represented by f − δ, and 1 is typically
represented by f + δ, where f is the center frequency of the carrier wave.

2.2.3 PSK

In phase-shift keying (PSK), the signal is modulated by changing the phase
of the carrier wave over time.

SP SK(t) = A× sin(2π × f × t+ φ(t)) (2.4)

For binary PSK, 0 is represented by phase shift φ1, and 1 is represented
by phase shift φ2, typically 180 degrees apart.

ASK-OOK

FSK

PSK

Binary 0 1 0 1 1 0 0 1 0

Figure 2.1: Some basic modulation schemes [6]

2.2.4 Complex modulations

For higher data rates, more complex modulation methods may be used. It
can be improved by encoding more bits to one state of the particular scheme.

12

2.3. Data encoding

For example, quadrature PSK (QPSK) can be represented by 4 constellation
points, which means 4 possible combinations of 2 bits, by 4 distinct phase
shifts (0, 90, 180 and 270 degrees). Also, it is possible to combine several
modulation methods. For example, the newest WiFi standard (802.11ax) uses
1024-QAM modulation [7], which combines ASK and PSK, providing 1024
constellation points, which allows encoding 10 bits of data at a time.

However, these complex modulations are rarely used in RKE applications.
The remotes are usually low-cost battery-operated devices, so they usually use
one of the binary modulation methods, for example, ASK-OOK.

2.3 Data encoding

Transmitted binary data needs to be encoded before they are transmitted
over the air. There are several encoding schemes, which are commonly used.
They are called line codes, as they were designed for transferring digital data
on telecommunication transmission lines. Most common codes include Non-
return-to-zero (NRZ), Return-to-zero (RZ), Manchester (Biphase-L), Differ-
ential Manchester (Biphase-M, Biphase-S and D. M.) and Bipolar code. [8]
Sometimes other codes may be used, like PWM in case of KeeLoq [9].

Figure 2.2: Commonly used line codes [8]

13

2. Software-defined radios

2.4 Operation of SDRs

The fundamentals of operation of common SDRs are quite straightforward, as
all the signal processing is provided in the software. In simple terms, SDRs
provide analog/digital (A/D) and digital/analog (D/A) conversion capabilities
applied for RF signals.

Figure 2.3: Schema of typical SDR operation [10]

For the reception, a signal received on the antenna is filtered, mixed with
the local oscillator (LO), set to the desired center frequency, and produced
I and Q signals are filtered and sampled by A/D converters delivering a stream
of digital sample values. Sampled data are then passed to PC for further
processing, for example, via the USB interface. For transmission, the flow
is similar but goes backward. The digital samples of I and Q signals go to
D/A converters, and then they are filtered and mixed with LO producing
desired output signal, which is then amplified, filtered, and transmitted by
the antenna. [10]

2.5 USRP B210

USRP B210 is a high-end SDR made by Ettus Research, which operates in
the frequency range from 70 MHz to 6 GHz. It allows connecting up to
four antennas, two for a reception, and the other two for both reception and
transmission. The SDR supports bandwidth up to 56 MHz. The hardware is
based on Xilinx Spartan 6 XC6SLX150 FPGA. [11] USRP B210 is supported
by open-source SDK called USRP Hardware Driver (UHD), produced by the
manufacturer. It also provides bindings to other popular APIs, like GNU
Radio.

14

2.6. Universal Radio Hacker

2.6 Universal Radio Hacker

Universal Radio Hacker is a free GUI tool, which allows developers and security
professionals to investigate wireless protocols with a high level of abstraction
of the signal theory. This tool is compatible with many SDR devices, including
USRP, HackRF, RTL-SDR, and a few others.

The first screen provides basic RF processing of the captured signal via the
capture window, which allows the setting of frequency, bandwidth, sampling
rate, gain, antenna, and other relevant parameters. It’s also possible to filter
the signal to smooth out the noise. The basic RF processing also consists of
setting the center of the signal wave, the number of samples per period of
the signal, noise level, and modulation scheme. So far, URH supports only
amplitude, frequency, and phase binary modulations. Built-in algorithms also
allow the necessary parameters to be detected automatically. Based on the
experiments, they produce pretty reliable results, when the modulation scheme
is set manually. When the initial post-processing is done, it produces a binary
stream equivalent to a captured signal.

Figure 2.4: Part of the first screen of Universal Radio Hacker,
showing a snippet of KeeLoq message signal with ASK-OOK modulation

The second screen helps to investigate the structure of the protocol. The
binary data from the first screen are divided into individual message chunks,
and the user can choose proper encoding and label messages by their type.
URH allows a user to choose from the prepared decoding schemes, like Manch-
ester, NRZ, and so on, or generate own decoding scheme, which was necessary
to decode KeeLoq messages which use special PWM encoding. The labeled
messages can be further labeled on the level of their individual fields, and the
fields can have set their endianness and MSB/LSB side. These features allow
reading current and future incoming data in a user-friendly way.

The third screen allows the user to generate data for transmission. It
can be used to replay the data, which was previously analyzed or transmit
data from an XML file. This feature was used when various properties of
the KeeLoq implementation were investigated, and it tremendously increased
the work productivity, as any generated data packet was possible to transmit
reliably, under a minute.

15

2. Software-defined radios

Figure 2.5: The second screen of Universal Radio Hacker,
showing KeeLoq capture with two labeled messages

The fourth screen is intended to make simulations for more complex com-
munication schemes. It allows the user to prepare message logic flow, which
can be used for attack, where the SDR should send messages according to
received messages. This screen was used neither for the analysis, nor attack
demonstrations.

16

Chapter 3
Approach

3.1 Direction and goal proposal

As the title of this thesis suggests, the goal of this thesis is to provide a security
analysis of RKE systems. This task could be handled in several ways. It can be
either shallow analysis covering a vast amount of systems, making an overview
of state of the art. It can also be work that would cover only some technologies
with a more in-depth focus on one particular system. Nevertheless, doing
a thorough analysis of multiple RKE systems is beyond the scope of this
thesis.

A thesis focused on summarizing the work done in the whole field has its
significance, but mostly it won’t produce any novel approaches or findings.
On the other hand, the thesis, which concentrates on one topic may provide
some new exciting outcomes due to an increased time frame for the in-depth
analysis but also may fail to do it. This approach’s results could be precarious
as sometimes when similar work is done to find any new vulnerability of a sys-
tem doesn’t produce any new findings. In any case, when the work describes
the effort methodically, it could be beneficial for any following effort, as other
researchers can avoid “dead alleys”. But, when some newly discovered ap-
proach or idea is proven to have some significance, it could have a tremendous
further impact.

In order to produce some possibly beneficial results, only one path was
chosen to follow with more in-depth analysis and implementation work. From
the overview of currently known generic attacks (see Table 1.1) it can be
observed that only authentication or operation scheme without potent generic
attack is a rolling code scheme. Thus, the rolling code appears to be the most
interesting scheme from the viewpoint of the system’s overall security.

Therefore, the following chapters for mentioned reasons only focus on the
systems using the rolling code scheme, where some specific systems are intro-
duced in Chapter 4. The choice of the particular platform for more profound
analysis is explained in the following section.

17

3. Approach

The goal is to analyze common rolling code RKE systems and their known
security flaws. Then, focusing on one specific system, research relevant crypto-
graphic attacks, and analyze implementation vulnerabilities and design flaws.
In the case of discovering a new weakness, it should be described in detail to
provide valuable results. Using the SDR and development kit of the selected
platform, some attacks should be tested in a replicable way in the form of an
HW/SW demonstration platform.

3.2 Platform choice

After extensive analysis of possible systems to choose from available on the
market, it was decided to go further with the KeeLoq rolling code RKE system.
There were several reasons behind this selection, which are described in the
following paragraphs.

The products based on the KeeLoq system as the technology itself are
provided by Microchip, which is a well-established player in the semiconduc-
tor market. There are several development kits, which can be purchased
easily through standard sale channels. The chosen development kit, sold as
DM182017-4 is provided with plenty of documentation and also has decent
PC software support [2].

Figure 3.1: KeeLoq GUI tool, for better insight into receiver’s operation

18

3.3. Implementation weaknesses

The provided PC tool allows the researcher to have better insight into the
system’s internal operation, especially on the receiver side. As this system
is well-documented in several datasheets, it allows visualizing the operation
covered in these sources, making the work on this system more user-friendly.

As Table 4.1 shows, the KeeLoq system is used by several automotive
manufacturers for RKE systems and may be used in garage door openers and
similar applications [9].

Also, the amount of research work around KeeLoq suggests that this plat-
form has its significance. However, most of the work done on this topic is
focusing predominantly on the cipher itself. It leaves space for a more sophis-
ticated approach or more precisely to focus on implementation weaknesses,
which is often neglected in these papers.

RKE systems

Active

Passive AUT64

HITAG2

KeeLoq

...

Rolling code

Fixed code

...

...

Figure 3.2: RKE systems and the primary work focus path
(Full ellipses – primary focus, dashed ellipses – secondary focus)

3.3 Implementation weaknesses

“A chain is no stronger than its weakest link.” — proverb

When the perspective on the system is complex, and the analysis tries to
assess the weakest spot, the cryptanalysis of used cipher and particular imple-
mentation flaws have the same significance on the system’s overall security, as
either one of them can be the weak point.

The whole security field is based on preventing unauthorized use or access,
so research of flaws for a particular system should be made from a potential
attacker’s point of view. It means it’s necessary to pay the same attention to
vulnerabilities of a system and tied ecosystem as to underlying mechanisms,
such as used cipher.

19

Chapter 4
Specific rolling code RKE

systems

4.1 AUT64

AUT64 is a proprietary cipher, which is predominantly used in the automo-
tive area. One research [1] shows that this cipher is, for example, used in
RKE rolling code systems called VW-2 and VW-3, used by manufacturers in
automotive group Volkswagen, which has significant market share worldwide.

This iterative cipher with an unbalanced Feistel scheme operates over 64-
bit blocks and employs key-dependent permutation and round function. Volk-
swagen RKE system implementation uses 12 rounds, despite recommended 8
or 24 rounds, and the key is 120-bit. The design limitations of the permu-
tation function and the S-boxes (used in the round function), limit the key
entropy to approximately 88 bits of information. [12]

a0 a1 a2 a3 a4 a5 a6 a7

Byte permutation σ

a0 a1 a2 a3 a4 a5 a6 a7

a0 a1 a2 a3 a4 a5 a6 a7

g

Figure 4.1: One round od AUT64 block cipher [1]
(g is the round function, a0−7 is 8-byte (64-bit) block)

21

4. Specific rolling code RKE systems

The best-known attack [12] on an 8-round AUT64 variant, which needs
16 chosen-plaintext pairs, has complexity equivalent to 250.7 encryption op-
erations, which can be, according to authors, broken in milliseconds. The
24-round variant used in Atmel’s TK5561 system hasn’t been broken by con-
ventional cryptanalysis yet. However, the embedded weak key management
of this particular implementation makes the system practically broken [12].

For the non-standard 12-round AUT64 variant used by the Volkswagen
group, [1] shows, that the manufacturer uses no key diversification, which
means, that all cars with VW-2 and VW-3 systems each use global encryption
key, which means that every car using particular system uses the same key.
This weak key management crushes the overall security of the used system,
regarding the means like reverse engineering of ECU firmware or side-channel
analysis of transponder encryption operation, which can effectively recover the
key.

Car brand AUT64 HITAG2 KeeLoq Reference
Alfa Romeo • [1]
Audi • [1]
Citroen • [1]
Dacia • [1]
Daewoo • [13]
Fiat • • [1], [13]
Ford • • [12], [1]
GM • [13]
Honda • [13]
Chrysler • [13]
Jaguar • [13]
Lancia • [1]
Mazda • [12]
Mitsubishi • [1]
Nissan • [1]
Opel • [1]
Peugeot • [1]
Proton • [12]
Renault • [1]
Seat • [1]
Škoda • [1]
Toyota • [13]
Volkswagen • • [1], [13]
Volvo • [13]

Table 4.1: Use of selected RKE systems in automotive industry

22

4.2. HITAG2

4.2 HITAG2

HITAG2 is another cipher commonly used in rolling code RKE systems. It is
used across various automotive vendors, typically using the NXP microcon-
troller series PCF7946 and PCF7947 based on its reference implementation.
The car series using HITAG2 for their RKE systems include Opel, Renault,
Peugeot, Fiat, Nissan, and many other vendors. [1]

This cipher is a stream cipher based on 48-bit LSFR and non-linear func-
tion with 20 bits on input and one bit on output, XORed with part of key
and initialization vector stored in their respective shift registers, feeding the
LSFR. The non-linear function’s output produces 32-bits of the keystream,
which is used for authentication of the token. The initial state of the LSFR
consists of 32 bits of the serial number, lower 16 bits of the encryption key.
The remaining 32 bits of key, meaning the HITAG2 uses 48-bit keys, are in
the 32-bit shift register. The other 32-bit shift register with IV is initiated
with the 28-bit rolling code counter and 4-bit button status. [14]

0x0001 UID btn lctr ks 0 chk
0 16 48 52 62 9495 102

Figure 4.2: HITAG2 RKE message structure [1]

The message (see Figure 4.2) starts with 16 bits of fixed-value synchro-
nization header, and then there are 32 bits of the serial number (UID), 4 bits
of button status (btn), 10 lowest bits of the 28-bit counter (lctr), followed by
32 bits of keystream (ks) for authentication and 8 bits of the message integrity
checksum (chk).

The best-published attack [1] before 2018 used key-guessing based on cor-
relation score, calculated for a small number of keystreams extracted from
eavesdropped messages. This attack also needs to know the initial value of
the IV register, which contains 28 bits of the counter, while the plaintext
part of the authentication token contains only 10 lower bits of the counter.
However, as the counter starts from 0, the upper bits are usually predictable
(based on vehicle age) from the interval of 10-bit overflows of the exposed
counter value part, which is usually from 0 to 10. With correctly guessed
upper bits of the counter, researchers claim to be able to break this cipher
within one minute on an ordinary laptop with a relatively small amount (4 to
8) of captured messages.

In 2018, there was published new research [15], which presented so far, the
quickest way to retrieve the key, based only on the retrieved 32-bit keystream.
The attack is based on guess-and-determine principle, which exploits leakage
of information from the state register to the keystream. With the presented
optimized GPU implementation of the attack, it is possible to fully recover

23

4. Specific rolling code RKE systems

the key on consumer-grade PC in just 1.2 minutes, which makes this system
completely broken.

4.3 KeeLoq

4.3.1 System overview

KeeLoq is an RKE system manufactured by company Microchip. For clarifica-
tion, this section describes the original KeeLoq system, which is now marketed
under the name KeeLoq Classic and is the one referred across this thesis. The
Microchip recently introduced the next-generation KeeLoq system under the
name KeeLoq Ultimate, which provides multiple ways to strengthen the over-
all security of the system and uses widely-used AES-128 cipher, instead of
proprietary KeeLoq cipher. [9]

The structure and properties of the proprietary KeeLoq cipher used in the
KeeLoq system are described in 5.2.

4.3.2 RF properties

The KeeLoq can operate on a wide range of RF bands from 315 MHz to
915 MHz, including ISM band 433.92 MHz, which is used in the reference
implementation in the development kit. It supports two kinds of modulation
– FSK and ASK-OOK, also used in the reference implementation. [9]

KeeLoq supports either Manchester encoding (Biphase-L), or PWM en-
coding (where 110 ≈ 0 and 100 ≈ 1), which is used in the reference imple-
mentation.

The experiments made on the KeeLoq development kit show that the re-
ceiver can process signals with center frequency varying from 430.42 MHz to
437.42 MHz, which is +/- 3.5 MHz from the center transmission frequency of
433.92 MHz. This observation is interesting for attacks utilizing jamming like
RollJam (see 1.3.3).

4.3.3 Message structure

As the system is based on a rolling code scheme as other systems described in
this chapter, the communication consists only of one type of message under
regular operation. The transmitter also supports sending special seed message,
which is sent only during secure learn (pairing) procedure, typically only at
the beginning of the transmitter’s lifetime.

The message is always preceded by a short synchronization sequence of al-
ternating 1s and 0s. The message itself (see Figure 4.3) starts with two 0 bits,
which is followed by 4 bits of button status, where each bit corresponds to
a particular button pressed. Then the message contains the 28-bit serial num-
ber, followed by 32 bits of the encrypted part of the message. The encrypted

24

4.3. KeeLoq

Blank Ser ial Number
Function

Code
DISC

34 bits
Fixed Portion

Function
Code

Counter
Over
Flow

Sync
Counter

32 bits
Encrypted Portion

2-bits 4-bits 28-bits 4-bits 2-bits 10-bits 16-bits

Figure 4.3: KeeLoq RKE message structure [9]

part contains 4 bits of button status, 2 bits signalizing buffer overflows of
transmitter counter, 10 bits of fixed discrimination value (typically lowest 10
bits of the serial number), and 16-bit counter value.

4.3.4 Key derivation

The encrypted part is encrypted by KeeLoq cipher using a 64-bit device key.
All key derivations employ the master key, typically shared among the same
manufacturing series, as the master key used for the derivation of the device
key, must be stored in the receiver’s memory. This feature allows the receiver
to pair any transmitter from the same series by deriving the device key using
the master key. The device key is generated with the same master key during
the manufacturing process and stored in the transmitter’s memory.

Random bits Upper 32-bit seed part Lower 32-bit seed part
0 01002||SN27...0 00102||SN27...0
32 00002||SN27...0 RS31...0
48 00002||SN27...16||RS47...32 RS31...0
60 00002||RS59...32 RS31...0

Table 4.2: KeeLoq key derivation schemes [16]
(SN - serial number, RS - random seed)

KeeLoq supports 4 possible key derivation schemes [17]. The first one,
called Normal learn is based solely on the serial number. This type of deriva-
tion is user-friendly as, during pairing, there is no need to send seed packets,
which is usually initiated by pressing all buttons at one time. However, when
the master key is exposed, i.e., by side-channel analysis (see Section 6.6), the
whole system is completely broken as the attacker needs only one captured
message to derive the device key of the corresponding transmitter. Then the
attacker can produce any valid message indistinguishable from the exploited
transmitter’s message, transmitted to the receiver by SDR or similar device,
breaking the system’s security completely.

Other 3 derivation schemes are covered under Secure learn. It means
that this kind of the key derivation provides additional security to Normal
learn, as the key derivation is seed-derived, where the seed is present only

25

4. Specific rolling code RKE systems

in special packets, thus unknown to eavesdropper of regular communication.
KeeLoq documentation specifies 3 distinct seed sizes: 32 bit, 48 bit, and 60
bit. The seed packet has a similar structure as a regular packet, only the
seed bits replace the respective part (from the LSB) of the serial number, and
encrypted part combined to a 60-bit chunk. This chunk is then padded with
4 zeros on the MSB side and split into two parts of the seed. These two parts
are either decrypted by the master key or XORed with it. The two 32-bit
results of the operation are then concatenated, which forms the 64-bit device
key. However, as the attack described in Section 6.2 shows, the 32-bit and
48-bit seed variants cannot be considered secure at all, as it can be broken by
brute-force attack in a relatively short time.

4.3.5 Authentication and replay attack countermeasure

The encrypted part provides authentication of the message itself as well as
replay attack protection, by using the 16-bit counter as a nonce. The trans-
mitter counter is incremented with every transmission, and its new value is
saved to the memory of the receiver in order to check the validity of counter
values contained in the following received messages. The authentication is
provided by comparing the button status in encrypted part to the plaintext
part button status, and by checking the discrimination bits, which is usu-
ally 10 least significant bits of the serial number, which is also present in the
plaintext part of the message.

The one-way communication property of the rolling code implies that
some messages transmitted may not reach the receiver, without any detec-
tion. Thus, the receiver side has a window of a few following counter values
to be accepted, in case some messages were lost in the air.

Figure 4.4: KeeLoq counter synchronization windows [16]

26

4.3. KeeLoq

KeeLoq divides the counter period to 3 windows (see Figure 4.4) relative to
counter value saved in the receiver. The first window has a size of 16 following
values, meaning if the next received counter value contained in the message
falls into this window, the operation is performed right away, and the receiver’s
counter is set to this new value. The second window follows the first window
and has a size of 215 − 16. The receiver acts and moves its counter only if
two directly consecutive messages fall into this second window. The last third
window covers the remaining 215 counter values. When the counter contained
in the received message falls into this window, it’s immediately rejected as it’s
considered as a replay of some previously transmitted message.

27

Chapter 5
KeeLoq cryptanalysis

5.1 Related work and considerations

In recent years, there have been published numerous articles focusing on crypt-
analysis of the proprietary KeeLoq cipher used in products of the same name.
In the following sections of this chapter, there are selected only the most
promising ones, which conform criteria of the required codebook size, lim-
ited by possibly available plaintext-ciphertext pairs. In the RKE mode of
the KeeLoq system, at least 10 bits of the plaintext are always fixed (dis-
crimination bits). So the amount of possible pairs is bounded from above to
222.

Yet, still, most of the published attacks have minimal application for
KeeLoq use in rolling code RKE setup, as the attacker has access typically only
to ciphertext, which can be, unlike plaintext, eavesdropped from the wireless
communication. A lot of published attacks require 232 known-plaintext pairs,
which is the complete codebook, so unless the attacker needs the exact key
for further processing, it has no practical value, as the attacker has access to
any plaintext corresponding to ciphertext and vice versa. As a matter of in-
terest, the best attack published to this day has a complexity of 228.7 KeeLoq
encryptions and slightly over 16 GB of memory based on a slide attack and
fixed-points and requires the whole codebook.

Attack KP pairs Complexity Reference
Exhaustive search 1− 2 264 –
Slide/Algebraic 216 253 [18]
Slide/MITM 216 244.5 [19]
Slide/Fixed points 232 228.7 [18]

Table 5.1: Selected cryptanalytic attacks on KeeLoq cipher
(Complexity – is time complexity in equivalent of KeeLoq encryptions)

29

5. KeeLoq cryptanalysis

5.2 KeeLoq cipher overview [20]

Although the KeeLoq cipher diagram (see Figure 5.1) may resemble a typical
NLFSR-based stream cipher, it’s actually block cipher with highly unbalanced
Feistel scheme. The unbalanced property comes from only one bit at one side
in each round. KeeLoq cipher has 32-bit block size and 64-bit key length.
Both encryption and decryption consist of 528 rounds, which is not divisible
by 64, which is the length of the period of the key register. This property
should make slide attacks (see 5.4) more difficult.

7 0

NLF:0x3A5C742E

State

0

Key

7

Keeloq encryption

06 01 12 0 7

NLF:0x3A5C742E

State

0

Key

7

17

Keeloq decryption

02 13

7 4 02 1356

02 13

7 4 02 1356

4 3

Figure 5.1: Block diagram of KeeLoq encryption and decryption [21]

For encryption, in each round, the 32-bit state NLFSR register is fed back
to the most significant bit by XOR of the output of bits 0 and 16 of the state
register, bit 0 of the key register, and the non-linear function 0x3A5C742E
with bits 1, 9, 20, 26 and 31. The key register is rotated right by one bit in
every round.

For decryption, in each round, the state register is fed back to the least
significant bit by XOR of the output of bits 15 and 31 of the state register,
bit 15 of the key register, and the non-linear function 0x3A5C742E with bits
0, 8, 19, 25 and 30. The key register is rotated left by one bit in every round.

5.3 Exhaustive search attack

Exhaustive search or brute-force attack is the main obvious point to start. In
the case of KeeLoq cipher, as the key has 64 bits, the worst-case scenario has
a complexity of 264 KeeLoq encryptions, as the attacker needs to verify all
possible keys. On average, the attacker would find the key after trying half of
the possible key values, meaning the average complexity is 263. The advantage
of exhaustive search is that it’s “embarrassingly parallel problem” by design,
which means that trying particular keys is not dependent on other tries, and
the operation can be parallelized to numerous cracking instances. So the time

30

5.4. Slide attack

requirements of the exhaustive could be significantly reduced by using FPGA
or GPU, comparing to sequential CPU calculations.

The complexity of the brute-force attack is the essential benchmark for
all other attacks. Sometimes it’s possible to find some new cryptographic
attack, but its complexity is higher than the exhaustive search. Such an
attack is unusable, but it can affect other research work, by showing which
cryptanalytic approaches don’t suit well the cipher.

5.4 Slide attack

The main idea of slide attack is to reduce the complexity of ciphers with the
self-similar structure of their operation. It is commonly used for cryptanalysis
of ciphers with a large number of rounds, usually done to hinder traditional
cryptanalytic approaches, like differential cryptanalysis. This attack needs to
operate as a known-plaintext attack, and the cipher needs to be able to break
down to several iteration steps of identical function F .

Figure 5.2: Idea behind a typical slide attack [19]

In order to successfully execute the slide attack, a slid pair must be found.
It’s a pair of two plaintext-ciphertext pairs (P0, C0) and (P1, C1), which satis-
fies condition, that (F (P0), F (C0)) = (P1, C1), which means, that this pair is
shifted or slid by one iteration of the function F . Once this pair (PS , CS) is
found the attack on the whole cipher can be simplified to break single iteration
of the function F , as the slid pair serves as a pair of known plaintext-ciphertext
(P0, P1) = (PS , CS) for the function F .

Finding a slid pair is not an easy process, but with the birthday paradox,
(similarly applied to search for hash function collisions), the amount of re-
quired plaintext-ciphertext pairs is limited to the square root of the codebook
size. In the case of KeeLoq cipher, it means, that statistically, a slid pair
should be found in 216 plaintext-ciphertext pairs.

KeeLoq cipher does not conform to the general attack prerequisites, as the
number of rounds (528) is not divisible by 64, which is the size of the key
and its shift register period. Following attacks cope with the remaining 16
rounds specifically to reduce the number of rounds to attack to 512, which

31

5. KeeLoq cryptanalysis

can effectively transform the problem to be solvable as series of 8 iterations
of 64 cipher rounds to satisfy the slide attack requirements.

5.4.1 Slide/Algebraic attack

The best algebraic attack [18] using the sliding property, can successfully re-
cover the key in an equivalent of 253 KeeLoq encryptions. In order to success-
fully execute the attack, one slid-pair over 64 rounds of KeeLoq encryption of
function F needs to be found. Once the slid-pair (P0, P1) is found their corre-
sponding ciphertexts (C0, C1), can be also considered as slid pair of function
F , but with key rotated by 16 positions, due to extra 16 rounds denoted as
function G (see Equation 5.1).

Ek(x) = Gk(F (8)
k (x)) (5.1)

Authors of the paper used MiniSat SAT solver for 64 rounds of KeeLoq de-
scribed by boolean equations, both for regular 64 rounds of the encryption and
64 rounds with shifted key by 16 positions, to recover the key algebraically.
Without guessing any key bits, it can be done in 232 CPU clocks. This proce-
dure is applied for a significant number of possible plaintext pairs or slid-pair
candidates in order to find the slid-pair, which should be found in 232 slid-pair
candidates generated from 216 known-plaintext pairs.

Overall complexity is 232+32 = 264 CPU clocks, which is equivalent to 253

KeeLoq encryptions.

5.4.2 Slide/Meet-in-the-Middle

Understanding of the attack description depends on familiarity with linear
step, first introduced by Bogdanov’s paper [20]. It’s a way how to recover key
bits when there are two states separated by 32 rounds at maximum. Due to
the cipher structure, the transition between these two states is dependent only
on particular key bits, which can be recovered in linear time.

The attack works with the 64-bit key divided to 4 equally-sized parts by
16 bits k = (k̂3, k̂2, k̂1, k̂0). In the beggining, lowest 16 key bits (= k̂0) are
guessed. This allows to partially encrypt plaintexts and partially decrypt
ciphertexts, from the known-ciphertext pairs, using 16 rounds of the KeeLoq
cipher with the guessed k0 part of the key.

Then lower 16 bits of Pj∗, which denotes result of partial decryption of
plaintext Pj by k̂3, are guessed. For each guess, the k̂3 part of the key is deter-
mined by the linear step. Using the determined k̂3, Yj is partially decrypted
to value Yj∗ and the upper 16 bits of Pj∗ are known from the Pj . The tuple
of (Pj∗, Yj∗, k̂3) is then saved to the hash table for future recovery.

As the upper 16 bits of Xi∗ are equal to lower 16 of Pj∗ (by the structure of
the cipher) and Xi generated in the beginning, it is possible to recover k̂1 part

32

5.4. Slide attack

of the key by linear step for each plaintext Pi. With k̂3 it is possible to partially
encrypt Ci to Ci∗. Then as the upper 16 bits of the Ci∗ should be equal to
lower 16 bits of Yj∗. It is then possible to look for such collisions to values
contained in the hash table. Once the collision is found, k̂2 is determined by
linear step from Xi∗ and Pj∗ and k̂′2 same way from Ci∗ and Yj∗. If the k̂2 is
equal to k̂′2, it has high likelihood (it can be checked), that the Pi and Pj is
a slid pair, as they satisfy the slide property for the function F of 64 KeeLoq
rounds with recovered key k = (k̂3, k̂2, k̂1, k̂0).

Figure 5.3: Illustration of meet-in-the-middle slide attack [19]

According to the authors’ calculations, the complexity of this attack is
equivalent to 245 KeeLoq encryptions. A generalized form of this attack has
even slightly reduced complexity, equivalent to 244.5 KeeLoq encryptions. The
memory complexity of both variants is negligible, in lower units of MB.

33

Chapter 6
Attacks on KeeLoq

implementation

6.1 Altering the message

This diploma thesis focuses on the security analysis of remote keyless entry
systems. The general overview is followed by a summary of several systems
that use the rolling code scheme and their known weaknesses. For experiments
described in the following two subsections, there was used Python 3 script,
which produced arbitrary messages based on input data, like counter value,
function bits, overflow bits, and serial number. The generated data were
written into XML, which were after that transmitted via Universal Radio
Hacker, with USRP 210 SDR connected.

It allowed instantiating a virtual transmitter with a serial number of
a choice. With the ability to produce valid seed messages and knowledge
of the master key in the development kit’s default setting, it was possible to
pair it with the receiver by the The secure learn procedure and then completely
emulate functionality of a physical transmitter.

6.1.1 Plaintext part

The plaintext (unencrypted) part of the KeeLoq message consists of 2 fixed
zero bits, 4 bits for button status, and 28 bits of a serial number. When the
serial number is changed to a value that does not correspond to any previously
learned value, the message is rejected. If the button status does not correspond
to button status contained in the encrypted part of the message, the message
is rejected as well.

From the experiments, it seems like both the button status and the discrim-
ination value in the encrypted part of the message are by default compared to
values extracted from the plaintext part of the message to check the integrity
of the decryption.

35

6. Attacks on KeeLoq implementation

6.1.2 Ciphertext part

Besides the button status and discrimination value already covered in the
previous subsection, the encrypted part also contains 2 overflow bits and 16
bits for the actual counter value. Experiments showed that the overflow bits
are completely ignored by the receiver, which is supported by [22].

Discrimination value is usually equal to the lowest 10 bits of the serial
number. The discrimination value based on the serial number allows the
learning procedure to stay simple, as the value is directly contained in the
regular message. KeeLoq system specification allows manufacturers to choose
an arbitrary number as the discrimination value. However, as the number has
only 10 bits, which means 210 or 1024 possible values, choosing manufacturer-
specific derivation of the discrimination value does not provide any substantial
improvement of the overall security of the cryptosystem, because when the de-
vice key is disclosed, it can be easily obtained from any eavesdropped message.

6.2 Bruteforcing the key derivation

In 2009 [23] presented a brute-force attack with special FPGA-based cracking
hardware COPACOBANA with the capability of massive parallelization of
the KeeLoq decryption operation. The authors used pipelining and multiple
units running in parallel to maximize the cracking power of the device.

The attack is focusing on the recovery of the device key based on only
two captured messages from the transmitter, which can be easily obtained by
passive sniffing of wireless communication. With knowledge of the manufac-
turer key and the knowledge of the key derivation algorithm, which consists
of decryptions of the 64-bit seed divided into two 32-bit halves, the device key
may be found by an exhaustive search among possible seed values. Procedures
with the ability to obtain the manufacturer key are more profoundly described
in 6.6. The entropy of the seed is determined by the bit length of the used
seed word, so it limits the guessing space to either 232, 248, or 260 possible
seed values.

The paper shows that 32-bit and 48-bit seeds cannot be considered as
secure. One instance of COPACOBANA cracking hardware is capable of
revealing the device key derived from 32-bit seed in less than 1 second and
device key derived from 48-bit seed in less than 6 hours. The 60-bit seed
authors consider as secure enough, as the one instance of COPACOBANA
would need 1011 days to crack the device key based on this seed. By using
100 instances of COPACOBANA, the time can be reduced to approximately
10 days. However, the tremendous cost of the hardware limits the practical
use of the attack for the strongest possible 60-bit seed-based device key, which
is also the one used by the reference implementation in the development kit.

The version of COPACOBANA used for the attack described in the pa-
per, according to one of its authors, Martin Novotný, consisted of 120 Xilinx

36

6.3. Bruteforcing the encrypted part

Spartan3-1000 FPGA boards. The cost of such hardware makes it less avail-
able for a general audience.

However, newer research [24] presented improved attack using only one
high-end FPGA from Xilinx Virtex family. Their improvements of the under-
lying decomposition of the cipher and using particular features of the Virtex-6
FPGA makes this attack more than 2 times faster than COPACOBANA. Even
with cheaper Virtex-4 FPGA, the time needed to crack the device key derived
from 48-bit seed is about 17 hours. These results make this attack applica-
ble for 32-bit and 48-bit seed-derived keys, even without expensive hardware
resources.

6.3 Bruteforcing the encrypted part

Papers about the security of a particular cryptosystem usually focus on brute-
forcing the cryptographic algorithm itself to recover the key. There are 232 pos-
sible keywords in the KeeLoq cryptosystem. Regarding the fact that KeeLoq
accepts codes in a window of 16, it reduces the complexity of brute-force at-
tempts to guess the correct encrypted message to 228, calculated as 232/16.
The probability of guessing two consecutive numbers in the resynchronization
window is negligible.

For example, [16] calculates with a theoretical value of 10 guesses per sec-
ond, which means one transmission every 100 ms. However, an experiment
made during work on this thesis shows that minimal required time for trans-
mission correctly received by the receiver side on the official development kit
cannot be squeezed under 150 ms when using the default ASK-OOK modula-
tion at 433.92 MHz. This attack, with approximately 466 days (150 ms ∗ 228)
for the worst-case scenario, is useless in practice.

6.4 Desynchronizing the counter

The intention of an attacker does not have to be only gain of access to an
asset protected by a remote keyless entry system. The attacker may want to
prevent legitimate users from regularly using the system. There are several
ways of how a denial-of-service can be provided.

Except a simple RF signal jamming (already covered in Subsection 1.3.1),
another way to make a DoS attack to the KeeLoq RKE system is to desyn-
chronize the counter value stored for a particular transmitter in the receiver.
In order to change the counter value to a substantially higher number, two
consecutive messages with counter values close to the upper bound of the
resynchronization window must be transmitted. This could make the trans-
mitter non-functioning for up to the next 32768 (215) key presses when the
resynchronization is performed multiple times to value close to the end of
resynchronization window.

37

6. Attacks on KeeLoq implementation

Nevertheless, to transmit two consecutive messages within the resynchro-
nization window, the attacker either needs to know the device key of the
transmitter, or replay previously eavesdropped messages.

Possible ways to recover the device key are mostly described in Chapter
5 and Section 6.6. With the knowledge of the device key, the attacker can
easily forge the necessary message in software and send them (for example,
via SDR) to the receiver.

Two things need to be taken under consideration regarding the possibility
of the replay of previously eavesdropped messages. As the experiments stated
in the first subsection of this chapter, the receiver may ignore the overflow
bits contained in the encrypted parts of the message, so when the counter
overflows, messages from the previous cycle of the counter can be possibly
replayed.

However, when we use the KeeLoq assumption [9] of an average of 10
operations per day, first possible moment, when the replayed message would
be considered as a valid message would happen approximately after 9 years
(precisely (215 + 1)/(365 ∗ 10) years), which makes this variant of DoS attack
practically unusable under these theoretical assumptions.

6.5 Breaking the counter

The newly presented attack is covered separately in Chapter 7.

6.6 Side-channel analysis

6.6.1 Differential power analysis

The amount of work related to side-channel power analysis is growing since
its introduction to the cryptanalytic community. Until the release of a paper,
which showed practical differential power analysis (DPA) attacks on standard
KeeLoq implementations [22], side-channel attacks were mostly described to
already vulnerable platforms or for unrealistic setups, like with artificial trigger
signals for trace alignment. Researchers were able to produce practical attacks
on black-box hardware, just with the knowledge of cipher properties.

The research shows that typical transmitters from Microchip line HC-
Sxxx are equipped with hardware implementation of KeeLoq encryption, while
the receivers based on PIC microcontrollers use software implementation of
KeeLoq decryption.

As the transmitter in KeeLoq hopping code mode of operation doesn’t
provide plaintext of encrypted data, the attack flow is backward from the
last encryption round, as the value of the last round result is known, as it’s
equal to the ciphertext part of the message, which can be easily eavesdropped.
For the attack itself, researchers used DPA, based on the Hamming distance

38

6.6. Side-channel analysis

power consumption model, which models leakages of the state register and
extracted peaks from traces. With the use of an oscilloscope with a sampling
rate of 200 MS/s and just 30 power traces, measured by hooking the probe
to a simple shunt resistor, it’s possible to, by described algorithm, recover
any key for any transmitter from line HCSxxx. The whole attack (including
trace measurements, preprocessing of data, and the algorithm itself) can be
performed within one hour.

The second described attack focuses on the software implementation in
receivers. As the authors stated, observed properties showed that decryption
implementation flow is probably data-dependent, so the attack with a model
based on Hamming weight needed about 10000 power traces to recover the
full 64 bits of the manufacturer key using a similar algorithm as for hardware
implementation. Even though this attack is not that convenient as the one
on hardware implementation, it allows to exploit the manufacturer key, which
is usually shared across large amounts of receivers from the same manufac-
turer, thus performing this attack once should be enough, when the attacker
concentrates on targets from particular manufacturing series.

When the attacker has access to the manufacturer key, it can exploit the
whole ecosystem using the key. For example, when the serial-based key deriva-
tion is used, it’s possible to clone any transmitter by eavesdropping just one
message, as the device key is easily recoverable (by known key derivation for
the serial number-based scheme) from plaintext part of the message. The
current counter value can also be recovered by decrypting the ciphertext part
of the message with the derived key. The knowledge of the manufacturer key
can be used even for recovering device keys based on some seed-based key
derivation schemes, as shows the attack described in 6.2.

6.6.2 Simple power analysis

As authors of [22] (mentioned in the previous section) suggested, the software
implementation may include data-dependent operation flow. The following
work [25] proved that assumption right. This paper, describing the possi-
bilities of simple power analysis (SPA) for software implementation shows,
that typical implementation of KeeLoq decryption done in software, contains
almost textbook SPA vulnerability. The attack was provided with an oscillo-
scope hooked to shunt resistor, with a sampling rate 125 MS/s.

By disassembling the code and visually analyzing the traces after peak ex-
traction, authors discovered that the number of peaks in each decryption round
modulo 2 equals the value of corresponding key bits. Such weakness allows
exploiting the manufacturer key just with access to one power trace. This
discovery may have devastating consequences for systems based on KeeLoq
(as described in 6.6.1), as this flaw is contained in several distinct KeeLoq
receivers, that authors tested.

39

Chapter 7
New attack on KeeLoq counter

7.1 Introduction

Deep research of the KeeLoq RKE system and the complex viewpoint on
the implementation of the KeeLoq system gained throughout the work on this
thesis resulted in an attack, which enables the exploitation of the whole system
in about an hour, in a practically undetectable way by a regular legitimate
user.

This attack is unique by requiring zero knowledge about the used encryp-
tion algorithm and its properties, which makes it distinct from all other de-
scribed attacks in this thesis based on related research papers. It also requires
only limited hardware resources, as it may be executed from regular PC with
connected SDR and a device to perform button presses on the transmitter.

7.2 Attack scope

The main limitation of this attack is the necessity of having physical access
to the transmitting keyfob, but only for a limited time. However, even this
requirement doesn’t make the attack completely unfeasible, as side-channel
attacks work with the same prerequisite.

Approximately one hour is a relatively short time, in which the legitimate
user can leave the keyfob unattended or until the user realizes, for example, in
case of the lost keyfob, that it’s missing. The same thing applies to car rental
companies as the key is in possession of a potential attacker for much longer
than needed for the attack itself.

7.3 Exploitable properties of the system

The limited bit length of the counter, which is used to prevent a replay attack,
is the main weakness, making this attack applicable to exploit the KeeLoq

41

7. New attack on KeeLoq counter

RKE system. The counter has only 16 bits, which equals to a period of 65536
values. With the manufacturer assumption [26] of an average of 10 operations
(i.e. lock, unlock, ...) per day, means that the counter should overflow after
approximately 18 years (see calculation in 6.4), which is satisfactory regarding
the typical lifespan of an asset (like a car) protected by KeeLoq RKE system.
However, when this assumption is broken, and messages are sent in the max-
imum possible rate, it squeezes the required time to perform the attack to
approximately one hour, as stated at the beginning of this section (6.5) and
precisely calculated in 7.5.

As stated in 6.1.2, the receiver in the reference implementation, provided
in the development kit (which contains MCS3142 transmitter/keyfob), com-
pletely ignores two counter overflow bits. This observation supports [22],
which states that only two Microchip KeeLoq RKE products, which belong
to product line HCS2xx, implement this feature correctly. Other products,
like from line HCS3xx, don’t implement this feature according to the authors’
findings.

According to the KeeLoq documentation [26], when the overflow bits are
set to 1 in transmitter’s memory during the manufacturing process, the first
bit is cleared (set to 0), when its counter overflows for the first time, which
happens after 216 transmitted messages. The second bit is cleared when the
counter overflows for the second time. Other overflows don’t modify the over-
flow bits, as the clearing of the bits is permanent. When implementation
ignores the overflow bits, or the bits are already set to 0 during the manufac-
turing process, it makes all messages transmitted 216 apart from one another
equivalent, which makes the attack a few times faster, than in case of imple-
mentation according to the specifications using overflow bits.

7.4 Attack description

7.4.1 Capture part

Once the transmitter is hooked up to the hardware attack setup, the actual
attack may start. It is supposed that the transmitter is out of the range
of the receiver. In the beginning, the SDR is set to record the incoming
signals at the transmitter’s operating frequency, which is in case of the default
configuration of the KeeLoq development kit set up to 433.92 MHz. Once
the recording is started, one button (i.e., corresponding to close function) is
pressed twice by the press simulator. The double operation is done for future
resynchronization capability. Other buttons need to be pressed just once after
these initial two presses. The maximum number of connected buttons to the
KeeLoq transmitter is 4, which means that only up to 5 messages (let’s call
this number K) need to be captured at this phase. After the capture of these
K presses, the SDR recording is stopped.

42

7.4. Attack description

The press simulator is then set to dispatch (215 −K) messages. The SDR
is then started to record once again. One button is pressed 2 times, followed
by single presses of each other buttons, which results in K captured messages
again. The SDR recording is stopped afterward as well. The double messages
are then used for resynchronization of the timer.

If the attacker can replay some messages to the receiver before the legiti-
mate user of the transmitter tries to use the transmitter used in the capture
part, no more actions with the transmitter are necessary, and the capture
part may end at this moment. Otherwise, the attacker needs to dispatch
other (215 −K) messages, which sets the transmitters counter to the original
value, as it increased by 216, which overflows the counter. This additional
step would allow the legitimate user to use the transmitter as before with no
obstructions. In this case, the transmitter is no longer needed.

7.4.2 Replay part

When the attacker executed the attack with (215 +K) emulated presses and
can replay some messages before the legitimate user uses the transmitter (one
used in the capture part), the attacker replays first pair (double operation)
from the first capture, followed by the first pair of the messages from the
second capture. This procedure resynchronizes the receiver’s counter to value
a few presses below (Θ + 215 + 2) the current counter value of the transmitter
(Θ + 215 + K), where Θ is the counter value at the beginning of the attack.
This traversal allows the legitimate user to use the transmitter right away, as
the next number contained in the message by the transmitter will most likely
be in a valid window of 16 messages, relative to the resynchronized value.

The two captured pairs (double operation) apart 215 messages from each
other allows the attacker to traverse between both halves of the counter pe-
riod (see Figure 7.2). When one double operation is replayed, the relative
resynchronization window includes double operation form the other half of
the period, as shows dashed line in Figure 7.2. This capability applies for
both pairs (215 values apart), which allows the attacker to be always able
to transmit messages valid for the receiver at any time using one traversal
at maximum. It also allows the attacker to return back to the appropriate
half of the period, where the legitimate user’s counter is synchronized after the
second press as it falls to the corresponding window for the counter resynchro-
nization. This feature makes the manipulation of the counter by the cautious
attacker basically undetectable for legitimate users.

Let’s assume the following scenario. An attacker successfully executed
the capture part on the car keyfob with the resynchronizing replay. After
some time it is almost certain, that the current value is somewhere between
(Θ + 215 + K) and Θ (see 7.4.2). When the attacker wants to break into
the car, he needs to replay the first double operation (i.e., close) and then
replay open operation, which was captured in the capture phase right after

43

7. New attack on KeeLoq counter

Transmit & capture two consecutive messages
(i.e. close operation) and save it as C1

Transmit & capture other message
(i.e. open operation) and save it as C2

Transmit any (2^15)-3 messages

Transmit & capture two consecutive messages
(i.e. close operation) and save it as C3

Transmit & capture other message
(i.e. open operation) and save it as C4

Able to replay before user?yes no

Replay C1

Replay C3

Transmit any (2^15)-3 messages

Figure 7.1: Attack flow for implementations ignoring overflow bits

the first double operation. Once the attacker burglarizes the car, he replays the
second double operation from the second half of the counter period (starting
at Θ + 215), and the attack is over. When later legitimate user tries to open
the car, the first message fails to open the car, as the receiver is waiting on the
second consecutive message, which would probably be sent by the user right
after and would not raise any suspicion at that time.

7.5 Attack duration

To make transmission stable, regarding the logic timing of the transmitter,
the message transmissions (or more precisely simulated keypresses) need to

44

7.6. Countermeasures

Double operation
(i.e. 2 × close)

Other operations
(i.e. open, ...)

Semicircle =
215 counter values

Figure 7.2: Illustration for better understanding of traversal
between both halves of the counter period

be apart from one another in some arbitrary time intervals. The author’s
experiments showed that the minimum time interval of emulated key presses
is 115 ms. It means, that in the ideal case, when the attacker is not limited
by the inability to replay some messages before the legitimate user, the whole
attack would take only slightly more than one hour, as shows equation 7.1,
which assumes K = 3 (2 distinct buttons to record, i.e., close and open).

t = 115 ms×(215 + 3) = 115 ms×32771 = 3768665 ms < 63 minutes (7.1)

Let’s calculate with 63 minutes as the time to go through one half of the
counter period. The time needed for the case, when the attacker is not able
to replay before the legitimate user (right branch in Figure 7.1), would be
approximately doubled, meaning total time below 2 hours and 6 minutes.

In case that the attack is performed on implementation, which uses over-
flow bits properly, it would be necessary to execute the longer flow of the at-
tack (right branch in Figure 7.1) 2 times, as the current counter value would
most likely be not overflowed. Later it would be needed to replay C1 and
C3 double operations in captured order for both flows before the described
procedure may be applied. This would increase the time calculated previously
by approximately 4 hours and 12 minutes ((2× 2× 63) = 252 minutes).

7.6 Countermeasures

This vulnerability is deeply embedded in the KeeLoq system’s design, so there
are not many countermeasures that developers utilizing the KeeLoq system

45

7. New attack on KeeLoq counter

can implement. One possibility is to take into consideration overflow bits in
a way that extends the effective period of the counter twice (when the first
overflow bit is set). In this case, the receiver would reject messages coming
from the transmitter having both overflow bits cleared, meaning two overflows
occurred. It would allow mitigating this attack, and it wouldn’t interfere with
regular use of the transmitter, as with manufacturer assumptions [26] it would
last for approximately 36 years (2 × 18 years), which is most likely longer
than the lifespan of the system. But in case of this countermeasure being
implemented, if someone would try to apply this attack, the keyfob would
become unusable and would need to be replaced. In most cases, the cost of
the keyfob is much lower than the loss caused by a criminal opening a car,
garage, or house in a practically undetectable way, causing further damage by
issues with insurance policies.

7.7 Future work

The following work should test this attack on some specific real KeeLoq appli-
cations, where the demonstration platform presented in Chapter 8 may help
with the executions of the attack.

Also, the button press simulator now works on a purely electronic base
(transistor switching the circuit, see Figure 8.3), where the access to PCB of
transmitter is needed. So, it would be nice to have a device that simulates the
button presses on a mechanical basis, limiting the need for invasive actions on
the transmitter.

46

Chapter 8
Demonstration platform

8.1 Common hardware and software setup

The hardware setup consists of SDR USRP B210, with two connected anten-
nas, one for the transmission and another for the reception. It also contains
the KeeLoq DM182017-4 development kit, which contains display for visual
feedback of the last processed event in the receiver. One of the transmitting
keyfobs is used for demonstration for replay and RollJam attacks, and the
other one is dedicated to the counter breaking attack.

Figure 8.1: Common hardware setup of the demonstration platform

47

8. Demonstration platform

Software is written in the Python 3 language, and it depends on several
libraries, like UHD (for SDR), NumPy, threading, and few others. Develop-
ment and testing were done on a Linux machine running Ubuntu 20.04. The
user interface is terminal-based and uses Simple Terminal Menu library for
menu-like selectors, which are used several times, when user interaction is
needed. All the libraries are freely available through system repositories or
Python package index PyPI. The software is initiated by executing the main
script from the terminal.

Figure 8.2: Terminal-based user interface

The software is written as a multi-threaded application. The main thread
process the UI events, prints logs, saves and loads captured data, and manages
SDR operations. In the case of Counter breaking attack implementation (see
8.5), it also takes care of sending commands to the button press simulator and
timing between presses.

The SDR operations are limited to receive and transmit signals for a spec-
ified time. They start to run from a separate worker thread, which is initiated
from the main thread. It’s possible to stop the running operation, before
a specified timeout, from the main thread. When the specified action time-
outs or is stopped early, the worker thread terminates and then is joined by
the main thread.

8.2 Features

The software support attacks described in the following sections. All attacks
are initiated by choosing a particular option from the main menu. Some of the
captures made during attack flows are accessible to replay via another option
in the main menu.

8.3 Replay attack

The replay attack is straightforward. The program receives a signal for 5 sec-
onds and then prompts the user if the replay should be done right away. If
not, it’s possible to replay the received capture later from the main menu by
the replay choice.

48

8.4. RollJam attack

8.4 RollJam attack

RollJam attack implementation is based on the flow described in Figure 1.5.
For better orientation, the attack is divided into 4 phases. The user is always
prompted to make a transition to the next phase.

In phase 1, the first message is captured. In phase 2, the second message
is captured. Immediately after phase 2, at the time, when jamming should
stop, phase 3 starts, and the first message is replayed. Phase 4 is optional, and
if the user doesn’t want to replay the second message right away, the attack
ends. It’s possible to replay the second message going to the replay section
accessible from the main menu.

8.5 Counter breaking attack

8.5.1 Specific setup

By having full access to the development kit hardware, the hardware at-
tack setup is provided by the second transmitting keyfob, which is decapped
from its plastic housing, and button pads are attached to a microcontroller’s
(ESP8266) GPIO pins. This MCU was chosen for support of the MicroPy-
thon environment, which makes quick prototyping development easy, thanks
to high-level APIs. It’s widely available and has adequate support for GPIO
manipulations necessary for this attack.

Figure 8.3: Button press simulator hardware

The button pad of the transmitter is under normal circumstances con-
nected to the transmitter’s ground when a particular physical button is pressed.

49

8. Demonstration platform

GPIO pins connected to button pads are set up as open-drain outputs, which
connect the pin to the ground by activating an inner transistor assigned to
this particular GPIO unit. This setup makes connecting required button pads
to the ground possible through the microcontroller’s software, which emulates
button press actions.

The microcontroller software setup is relatively simple, as it only needs
to emulate button presses, by closing a circuit via GPIO for 20 ms, which
is enough for transmitter’s pin debouncing procedure. Computer software
sends commands to ESP8266 over the built-in serial (UART) connection. The
command describes which one of two buttons should be “pressed”.

8.5.2 Description

Counter breaking attack, the new attack described in this thesis, follows the
flow described in Figure 7.1. It is also for better orientation divided into
4 phases. All phases, except the replay, are possible and recommended to
perform outside the receiver range.

In phase 1, the SDR records double operation, which is initiated by two
messages asking to emulate press of button 2 (∼ close), and single operation,
also with the corresponding command to emulate press of button 1 (∼ open).
These two captures are saved. In phase 2, the SDR is idle, and software
executes (215 − 3) emulated key presses. It could be either one button and
implementation uses button 2. This phase takes more than one hour to com-
plete. Phase 3 is equivalent to phase 1. After phase 3, the user is prompted if
he’s able to replay at the moment. If so, phase 4 consists of replaying double
messages from phases 1 and 3. The replay may be skipped if it can be exe-
cuted later, so phase 4 is skipped in this case. If the replay cannot be sent
to the receiver before a legitimate user uses the transmitter, software execute
(215 − 3) emulated key presses in phase 4, while the SDR is idle. This addi-
tional step effectively resets the transmitter’s counter to its original value by
overflowing the counter, as 216 presses are executed in total.

Captures of a double and a single operation may be replayed from the
replay section in the main menu. By having the captures saved persistently,
it’s possible to execute any operation, either corresponding to button 1 or
button 2 anytime later. It may be necessary to traverse between the counter
period halves and return in the same manner to the proper half of the counter
in order not to restrict legitimate user’s use of the system.

50

Chapter 9
Conclusion

The objectives of this thesis were to analyze commonly used RKE platforms
(Chapters 1 and 4), proceed with in-depth security analysis with increased
focus on implementation weaknesses (Chapters 5, 6 and 7) and implement
some selected attacks using SDR (Chapter 8). The author is convinced, that
all these objectives have been met.

With the perspective of all information gathered during the work on this
thesis, the ideal RKE system should have the following properties. It should
be an active RKE system to prevent relay attacks, which are especially potent
in the case of passive keyless entry systems. It should use a provably secure
encryption algorithm (like AES); as the HITAG2 case showed, it may be only
a matter of time until proprietary cipher becomes broken. Also, it’s cru-
cial to implement a robust and secure key distribution scheme because even
without an applicable cryptanalytic attack, the security of the system may
be compromised by weak key management, like with some variants of RKE
systems based on AUT64 or KeeLoq. It should use non-repeating nonces,
like RTC timestamps, which can also prevent replay-based attacks, like Roll-
Jam. Finally, both HW and SW should be designed with side-channel attacks
countermeasures in mind.

This thesis also presents a new attack (in Chapter 7), which allows ex-
ploiting the KeeLoq RKE system, when an attacker has physical access to
a transmitter. Unlike in the mentioned DPA attack case, this attack may
be performed without costly hardware equipment (like an oscilloscope), as it
uses only an SDR and a device simulating button presses. This attack exploits
weaknesses in the system design of the rolling code counter and another flaw
in the system’s implementation. In a practical described scenario, this attack
is feasible to perform in time of approximately one hour. The author believes
that with some proposed improvements, this attack has the potential to be
published as a standalone article.

51

Bibliography

[1] Garcia, F. D.; Oswald, D.; et al. Lock it and still lose it—on the (in)
security of automotive remote keyless entry systems. In 25th {USENIX}
Security Symposium ({USENIX} Security 16), 2016.

[2] Microchip Technology Inc. MCS3142 Dual KEELOQ Encoder Wireless
Remote Control Development Kit User’s Guide [online]. 2014, [Cited
2020-05-20]. Available from: http://ww1.microchip.com/downloads/
en/DeviceDoc/40001746A.pdf

[3] Francillon, A.; Danev, B.; et al. Relay attacks on passive keyless entry
and start systems in modern cars. In Proceedings of the Network and Dis-
tributed System Security Symposium (NDSS), Eidgenössische Technische
Hochschule Zürich, Department of Computer Science, 2011.

[4] Pardhasaradhi, A.; Kumar, R. R. Signal Jamming and Its Modern Ap-
plications. International Journal of Science and Research, volume 2.

[5] Kamkar, S. Drive it like you hacked it: New attacks and tools to wirelessly
steal cars. Presentation at DEFCON, volume 23, 2015.

[6] Modulation and multiplexing [online]. https://notes.eddyerburgh.me/
computer-networking/modulation-and-multiplexing#baseband-
transmission, [Cited 2020-05-25].

[7] What is WiFi 6? (802.11 ax) – TP Link [online]. https://www.tp-
link.com/us/wifi6, 2020, [Cited 2020-05-25].

[8] Line code – Wikipedia, The Free Encyclopedia [online]. https://
en.wikipedia.org/w/index.php?title=Line_code&oldid=953268976,
2020, [Cited 2020-05-25].

[9] Microchip Technology Inc. MCS3142 Dual KEELOQ Technology Encoder
Data Sheet [online]. 2014, [Cited 2020-05-20]. Available from: http://
ww1.microchip.com/downloads/en/DeviceDoc/40001746A.pdf

53

http://ww1.microchip.com/downloads/en/DeviceDoc/40001746A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/40001746A.pdf
https://notes.eddyerburgh.me/computer-networking/modulation-and-multiplexing#baseband-transmission
https://notes.eddyerburgh.me/computer-networking/modulation-and-multiplexing#baseband-transmission
https://notes.eddyerburgh.me/computer-networking/modulation-and-multiplexing#baseband-transmission
https://www.tp-link.com/us/wifi6
https://www.tp-link.com/us/wifi6
https://en.wikipedia.org/w/index.php?title=Line_code&oldid=953268976
https://en.wikipedia.org/w/index.php?title=Line_code&oldid=953268976
http://ww1.microchip.com/downloads/en/DeviceDoc/40001746A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/40001746A.pdf

Bibliography

[10] LuaRadio – New to SDR? [online]. https://luaradio.io/new-to-
sdr.html, [Cited 2020-05-25].

[11] Ettus Research. USRP B200/B210 Bus Series [online]. 2019, [Cited 2020-
05-25]. Available from: https://www.ettus.com/wp-content/uploads/
2019/01/b200-b210_spec_sheet.pdf

[12] Hicks, C.; Garcia, F. D.; et al. Dismantling the AUT64 Automotive Ci-
pher. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems, 2018: pp. 46–69.

[13] Eli Biham, S. I. N. K., Orr Dunkelman; Preneel, B. How To
Steal Cars – A Practical Attack on KeeLoq [online]. https://
www.cosic.esat.kuleuven.be/keeloq, [Cited 2020-05-25].

[14] Courtois, N. T.; O’Neil, S.; et al. Practical algebraic attacks on the
Hitag2 stream cipher. In International Conference on Information Se-
curity, Springer, 2009, pp. 167–176.

[15] Verstegen, A.; Verdult, R.; et al. Hitag 2 Hell – Brutally Optimizing
Guess-and-Determine Attacks. In 12th USENIX Workshop on Offensive
Technologies (WOOT 18), Baltimore, MD: USENIX Association, Aug.
2018. Available from: https://www.usenix.org/conference/woot18/
presentation/verstegen

[16] Enderlein, R. R. KeeLoq. 2010. Available from: http://www.e7n.ch/
data/e10.pdf

[17] Microchip Technology Inc. Secure Learning RKE Systems Using
KEELOQ Encoders [online]. 1996, [Cited 2020-05-25]. Available from:
http://ww1.microchip.com/downloads/en/AppNotes/91000a.pdf

[18] Courtois, N. T.; Bard, G. V.; et al. Algebraic and slide attacks on KeeLoq.
In International Workshop on Fast Software Encryption, Springer, 2008,
pp. 97–115.

[19] Indesteege, S.; Keller, N.; et al. A practical attack on KeeLoq. In An-
nual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Springer, 2008, pp. 1–18.

[20] Bogdanov, A. Cryptanalysis of the KeeLoq block cipher. IACR Cryptol-
ogy ePrint Archive, volume 2007, 2007: p. 55.

[21] Eisenbarth, T.; Kasper, T.; et al. Keeloq. Boston, MA: Springer US, 2011,
ISBN 978-1-4419-5906-5, pp. 671–673, doi:10.1007/978-1-4419-5906-5
587. Available from: https://doi.org/10.1007/978-1-4419-5906-5_
587

54

https://luaradio.io/new-to-sdr.html
https://luaradio.io/new-to-sdr.html
https://www.ettus.com/wp-content/uploads/2019/01/b200-b210_spec_sheet.pdf
https://www.ettus.com/wp-content/uploads/2019/01/b200-b210_spec_sheet.pdf
https://www.cosic.esat.kuleuven.be/keeloq
https://www.cosic.esat.kuleuven.be/keeloq
https://www.usenix.org/conference/woot18/presentation/verstegen
https://www.usenix.org/conference/woot18/presentation/verstegen
http://www.e7n.ch/data/e10.pdf
http://www.e7n.ch/data/e10.pdf
http://ww1.microchip.com/downloads/en/AppNotes/91000a.pdf
https://doi.org/10.1007/978-1-4419-5906-5_587
https://doi.org/10.1007/978-1-4419-5906-5_587

Bibliography

[22] Eisenbarth, T.; Kasper, T.; et al. Physical Cryptanalysis of KeeLoq Code
Hopping Applications. IACR Cryptology ePrint Archive, volume 2008,
2008: p. 58.

[23] Novotný, M.; Kasper, T. Cryptanalysis of KeeLoq with COPACOBANA.
In Workshop on Special Purpose Hardware for Attacking Cryptographic
Systems (SHARCS 2009), 2009, pp. 159–164.

[24] Sheetrit, I.; Wool, A. Cryptanalysis of KeeLoq code-hopping using a Single
FPGA. Tel Aviv University, 2011.

[25] Kasper, M.; Kasper, T.; et al. Breaking KeeLoq in a flash: on extracting
keys at lightning speed. In International Conference on Cryptology in
Africa, Springer, 2009, pp. 403–420.

[26] Microchip Technology Inc. HCS301 KEELOQ Code Hopping En-
coder [online]. 2001, [Cited 2020-05-25]. Available from: http://
ww1.microchip.com/downloads/en/devicedoc/21143b.pdf

55

http://ww1.microchip.com/downloads/en/devicedoc/21143b.pdf
http://ww1.microchip.com/downloads/en/devicedoc/21143b.pdf

Appendix A
Acronyms

API Application programming interface

ASK Amplitude-shift keying

DoS Denial of Service

DPA Differential power analysis

FPGA Field-programmable gate array

FSK Frequency-shift keying

GPIO General purpose input output

GPU Graphics processing unit

GUI Graphical user interface

ISM Industrial, scientific and medical (radio bands)

KP Known-plaintext

LO Local oscillator

MCU Microcontroller unit

NLFSR Nonlinear-feedback shift register

OOK On-off keying

PCB Printed circuit board

PSK Phase-shift keying

RF Radio-frequency

RKE Remote keyless entry

57

A. Acronyms

RTC Real-time clock

SDR Software-defined radio

SNR Signal-to-noise ratio

SPA Simple power analysis

URH Universal radio hacker

XML eXtensible Markup Language

58

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

code.........the directory of demonstration platform implementation
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

59

	Introduction
	Remote keyless entry systems
	Authentication schemes
	Operation modes
	Attacks independent on specific system

	Software-defined radios
	Radio-frequency signals
	Digital modulation methods
	Data encoding
	Operation of SDRs
	USRP B210
	Universal Radio Hacker

	Approach
	Direction and goal proposal
	Platform choice
	Implementation weaknesses

	Specific rolling code RKE systems
	AUT64
	HITAG2
	KeeLoq

	KeeLoq cryptanalysis
	Related work and considerations
	KeeLoq cipher overview
	Exhaustive search attack
	Slide attack

	Attacks on KeeLoq implementation
	Altering the message
	Bruteforcing the key derivation
	Bruteforcing the encrypted part
	Desynchronizing the counter
	Breaking the counter
	Side-channel analysis

	New attack on KeeLoq counter
	Introduction
	Attack scope
	Exploitable properties of the system
	Attack description
	Attack duration
	Countermeasures
	Future work

	Demonstration platform
	Common hardware and software setup
	Features
	Replay attack
	RollJam attack
	Counter breaking attack

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

