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Abstract
This thesis aims to describe and imple-
ment the method of moments in elec-
tromagnetics using graphical process-
ing units utilizing CUDA technology.
Speedups are evaluated with respect to
the already existing implementation in
Antenna Toolbox for MATLAB and ver-
ified with respect to commercial soft-
ware. An effective implementation of the
method of moments allows us to speed
up automated antenna design process. In
the part focused on shape synthesis, we
theoretically evaluate and describe its be-
havior together with experimental use of
machine learning algorithms like genetic
algorithms and artificial neural networks
for data classification.

Keywords: method of moments in
electromagnetics, antennas, CUDA,
shape synthesis, optimization, machine
learning, classification

Supervisor: doc. Ing. Miloslav Čapek,
Ph.D.

Abstrakt
Tato práce je zaměřena na popis a im-
plementaci metody momentů v elektro-
magnetismu pro grafické akcelerátory s
technologií CUDA. Je zhodnoceno realné
zrychlení oproti již existující implementaci
v anténním toolboxu AToM vyvíjeném v
prostředí MATLAB. Správnost implemen-
tace je porovnána s komerčním softwarem.
Efektivní implementace metody momentů
navíc umožní zrychlení automatizovaného
procesu návrhu antén. V části pracující s
tvarovou syntézou antén k automatizova-
nému návrhu je teoreticky zhodnoceno a
popsáno chování algoritmu společně s ex-
perimentálním použitím algoritmů umělé
inteligence jako jsou genetické algoritmy
a umělé neuronové sítě ke klasifikaci dat.

Klíčová slova: metoda momentů v
elektromagnetismu, antény, CUDA,
tvarová syntéza, optimalizace, strojové
učení, klasifikace

vi



Contents
1 Introduction 1

2 The Method of Moments in
Electromagnetics 5

2.1 Mathematical Formulation . . . . . . 5

2.2 Method of Moments (MoM) . . . . . 6

2.3 Electromagnetic Problem . . . . . . . 6

2.4 Basis Functions . . . . . . . . . . . . . . . . 9

2.5 Impedance Matrix Partitioning . . 9

2.6 Integration with Numerical
Quadrature . . . . . . . . . . . . . . . . . . . . 11

2.7 Gaussian Quadrature . . . . . . . . . . 12

2.8 Singularities of Near and
Overlapping Terms . . . . . . . . . . . . . . 12

3 Modern Parallel Architectures 15

3.1 GPU Architecture . . . . . . . . . . . . 15

3.2 CUDA . . . . . . . . . . . . . . . . . . . . . . 16

4 GPU Implementation of Method
of Moments in MATLAB 21

4.1 GPU Code in MATLAB . . . . . . . 21

4.2 Implementation Details of Method
of Moments . . . . . . . . . . . . . . . . . . . . 25

4.3 Evaluation of the Impedance
Matrix – Benchmarks . . . . . . . . . . . 27

4.4 Comparison with Commercial
Software . . . . . . . . . . . . . . . . . . . . . . . 32

5 Shape Optimization 35

5.1 Potential Solutions to the Shape
Synthesis . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Shape Optimization of Antennas 36

5.3 Optimized Antenna Parameters . 39

5.4 Discussion . . . . . . . . . . . . . . . . . . . 42

6 Exploitation of Approximation
Models in Shape Optimization 43

6.1 State Space Sampling . . . . . . . . . 43

6.2 Classification of Solutions . . . . . . 46

7 Conclusion 53

A Bibliography 55

B Content of the Enclosed CD 61

vii



Figures
1.1 Timeline of the CPU development
over time1. . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Evolution of top GPU models in
Nvidia Titan series. . . . . . . . . . . . . . . 3

1.3 Evolution of top CPU models in
Intel Xeon series. . . . . . . . . . . . . . . . . 3

2.1 Surface equivalence principle. . . . . 8

2.2 RWG basis function. . . . . . . . . . . . 9

3.1 Nvidia microarchitecture timeline. 16

3.2 Chip surface visualization of a
CPU and a GPU. . . . . . . . . . . . . . . . 16

3.3 Arrangement of the blocks and the
threads. . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 GPU memory hierarchy. . . . . . . . 20

4.1 Computation time of matrix
multiplication on a CPU and a
GPU. . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Computation time comparison of
matrix inversion and solving system
of linear equations in MATLAB. . . 23

4.3 Computation time of saxpy
function from Listing 4.4. . . . . . . . . 24

4.4 The MoM implementation on a
CPU with numerical quadrature of
the order one. . . . . . . . . . . . . . . . . . . 28

4.5 The MoM implementation on a
CPU with numerical quadrature of
the order four. . . . . . . . . . . . . . . . . . . 28

4.6 The MoM implementation on a
GPU with numerical quadrature of
the order one. . . . . . . . . . . . . . . . . . . 29

4.7 The MoM implementation on a
GPU with numerical quadrature of
the order four. . . . . . . . . . . . . . . . . . . 29

4.8 Speedup of the GPU
implementation as compared to the
CPU implementation using numerical
quadrature of order one. . . . . . . . . . 30

4.9 Speedup of the GPU
implementation as compared to the
CPU implementation using numerical
quadrature of order four. . . . . . . . . 31

4.10 Relative speedup of the single
precision computation as compared
to the double precision. The used
numerical quadrature is of the fourth
order. . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.11 A PEC dipole 1× 42.5mm,
placed 10mm above a 60× 60mm
PEC plate. . . . . . . . . . . . . . . . . . . . . . 33

4.12 Comparison of RCS results for
the model depicted in Figure 4.11
and illuminated by a plane wave of
perpendicular incidence angle and
polarization along the dipole. . . . . . 33

5.1 A domain Ω and its triangular
discretization ΩT . . . . . . . . . . . . . . . . 35

5.2 A discretized domain ΩT with
basis functions. . . . . . . . . . . . . . . . . . 37

5.3 Flowchart of the shape
optimization algorithm based on
exact reanalysis. . . . . . . . . . . . . . . . . 38

5.4 Examples of structure regularity
(the black parts are cut-out, i.e.,
metallization is replaced by
vacuum). . . . . . . . . . . . . . . . . . . . . . . 41

6.1 Initial basis function vectors g. . 45

viii



6.2 Basis function probabilities in the
final design evaluated for fitness
function F1, α = 0, β = 0 after 2000
Monte Carlo algorithm iterations. . 45

6.3 Basis function probabilities in the
final design evaluated for fitness
function F2, α = 0, β = 0 after 15
iterations of the genetic algorithm
with 15 agents. . . . . . . . . . . . . . . . . . 46

6.4 The structures used for
classification. . . . . . . . . . . . . . . . . . . . 47

6.5 Distribution of Q-factor in
generated datasets. . . . . . . . . . . . . . 49

6.6 Results of the binary classification
for the 2× 4 structure. . . . . . . . . . . 50

6.7 Results of the binary classification
for the 4× 8 structure. . . . . . . . . . . 50

6.8 Results of the N -class classification
for the 2× 4 structure. . . . . . . . . . . 51

6.9 Results of the N -class classification
for the 4× 8 structure. . . . . . . . . . . 52

Tables
2.1 Values of variables for positive and
negative triangles. . . . . . . . . . . . . . . 11

2.2 The Gaussian quadrature points
and weights for the order n = 2. . . 12

4.1 Specification of used CPUs. . . . . 32

4.2 Comparison of the selected MoM
implementations. The benchmark
was run with a structure discretized
into 3704 triangles (5447 unknowns)
and depicted in Figure 4.11. The
frequency range spans from 2GHz to
4GHz with the step 0.01GHz. . . . . 33

6.1 Optimized hyper-parameters space
for a neural network. . . . . . . . . . . . . 48

6.2 Datasets for the 2× 4 structure. 49

6.3 Datasets for the 4× 8 structure. 49

6.4 Hyperparameter values obtained
after the optimization with minimal
validation loss. . . . . . . . . . . . . . . . . . 50

6.5 Hyperparameter values obtained
after the optimization with minimal
validation loss. . . . . . . . . . . . . . . . . . 51

6.6 N -class classification dataset sizes
for the 2× 4 structure. . . . . . . . . . . 51

6.7 N -class classification dataset sizes
for 2× 4 structure. . . . . . . . . . . . . . . 52

ix



Abbreviations

Adam Adaptive Moment Estimation

ALU Arithmetic Logic Unit

API Application Programming Interface

AToM Antenna Toolbox for MATLAB

AVX-512 Advanced Vector Extensions 512

CAD Computer-Aided Design

CC Compute Capability

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

GPGPU General-Purpose computing on Graphics Processing Units

GPU Graphics Processing Unit

HPC High-Performance Computing

MoM Method of Moments

MPI Message Passing Interface

NP Non-Polynomial

NSGA-II Non-dominated Sorting Genetic Algorithm II

PEC Perfect Electric Conductor

PTX Parallel Thread Execution

RAM Random Access Memory

RCI Research Center for Informatics

RWG Rao-Wilton-Glisson

SIMT Single Instruction Multiple Threads

SMX Streaming Multiprocessor

x



Chapter 1

Introduction

Small antennas are ubiquitous, from computers to wearable electronics like
smartwatches, RFID chips and so on. It is necessary to make them as efficient
as possible, usually with the desired shape and size. It puts high demands on
the design of such antennas.

Antenna Toolbox for MATLAB (AToM) [1] is a software developed primar-
ily for antenna design and optimization. It discretizes radiating bodies into
triangular meshes [2] and implements electromagnetic solvers for radiating
problems, one of them being Method of Moments (MoM) [3].

Most of the algorithms which use matrices (especially large matrices with
millions of elements) can exploit speedups on modern graphic cards. From ar-
tificial intelligence to the systems of everyday use like weather predictions [4],
programmers migrate their computationally expensive parts of the code to
parallel execution and especially to Graphics Processing Unit (GPU). GPUs
outperform processors in tasks with a huge number of independent computa-
tions (millions and more).

The emphasis in Central Processing Unit (CPU) design since 2005 has
been put into parallelization rather than an increase of frequency (see Fig-
ure 1.1). Even though this change in design led to increased performance of
CPUs, trends in the evolution of GPUs followed a similarly steep curve. For
comparison of performance evolution, see Figure 1.2 and Figure 1.3.

1
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Figure 1.1: Timeline of the CPU development over time1.

Nowadays, modern clusters already have multiple GPUs installed to compu-
tation nodes. The most of them use Nvidia’s proprietary technology Compute
Unified Device Architecture (CUDA) [6], which evolved into so-called indus-
try standard in the past years [7]. Nodes can communicate using Message
Passing Interface (MPI) [8] in order to distribute workload among them.
This is supported with the fast development of all kinds of high-performance
libraries which offer an Application Programming Interface (API) for parallel
computation.

The performance evolution directly motivates the beginning of this work.
MATLAB [9] as a scientific computing engine offers wrappers as well as direct
access to CUDA with easy-to-use APIs. It is fairly easy to prototype GPU
code and even launch compiled CUDA code that can achieve even higher
speedups than non-native code. Our aim is to transform computationally
demanding CPU code from AToM to a GPU implementation and leverage
speedups offered by GPUs.

Ultimately, we want to theoretically study the process of automated an-
tenna design which remains one of the unresolved problems in computational
electromagnetics [10]. Namely, we want to study properties of the shape
synthesis [11] and employ modern machine learning approaches which can
effectively deal with huge datasets produced during the design process.

1Series datasets downloaded from [5].
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Figure 1.2: Evolution of top GPU models in Nvidia Titan series.
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Figure 1.3: Evolution of top CPU models in Intel Xeon series.

Goals of the Thesis

The thesis is focused on the fast implementation of MoM and theoretical
study of machine learning methods for antenna shape optimization. For the

3



1. Introduction .....................................
successful conclusion of the thesis, it is necessary to accomplish the following
points:

. To review MoM in electromagnetics and present its discrete form which
can be employed in connection with triangular meshes (see Chapter 2).. To describe modern parallel architecture with emphasis on the use of
graphical processing units with CUDA technology (see Chapter 3).. To implement and evaluate performance of GPU of MoM inside AToM
which can compute large (thousands by thousands) impedance matrices
for analysis and synthesis of electrically small antennas (see Chapter 4).. To describe the process of antenna shape optimization, optimized param-
eters and to identify computationally demanding parts (see Chapter 5).. To propose use of machine learning algorithms in the process of the
shape optimization, evaluate results and discuss potential improvements
(see Chapter 6).
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Chapter 2

The Method of Moments in
Electromagnetics

2.1 Mathematical Formulation

Let us first define a mathematical apparatus which will be used to solve the
physical problem. Our goal is to transform integro-differential equations into
the algebraic form so that they can be solved by existing solvers (mostly
by performing matrix inversion). This will be accomplished by using linear
spaces and linear operators.

A linear operator A must satisfy the following conditions [3]

A(f + g) = Af +Ag, (2.1)
A(cf) = cAf , (2.2)

where c is a constant and f and g are complex vector functions.
In addition, we will also employ the inner (symmetric) product of two

complex vector functions as [3]

〈f , g〉 =
∫
V

f · g dV, (2.3)

which satisfies the following conditions:

〈f , g〉 = 〈g,f〉, (2.4)
〈αf + βg,h〉 = α〈f ,h〉+ β〈g,h〉, (2.5)

〈f∗,f〉 =
{
> 0 if f 6= 0,
= 0 if f = 0,

(2.6)

where α and β are scalars and f∗ is a complex conjugate of f .

5



2. The Method of Moments in Electromagnetics.......................
2.2 Method of Moments (MoM)

We show a basic scheme for solving linear system called the MoM [3] Firstly,
we start with an in-homogeneous equation

L(f) = g, (2.7)

where L is a linear operator, g is a known function, and f is an unknown
function. In electromagnetics, typically, L is an integro-differential operator,
g is an excitation and f is a function representing source quantities, e.g.,
current densities. For the formulation of the MoM, we start from (2.7) and
substitute the function f given as a series of functions

f =
∑
n

αnfn, (2.8)

where αn are yet unknown constant coefficients. From now on, we will call
the functions fn basis functions, [12]. The basis functions will approximate1

the solution on a discrete structure. By substituting (2.8) into (2.7) and
utilizing linearity of operator L we get∑

n

αnL(fn) ≈ g. (2.9)

Formula (2.9) forms one equation for N unknowns. Adopting a set of testing
(weighting) functions wm and performing testing via inner product (2.3) gives∑

n

an〈wm, L(fn)〉 = 〈wm, g〉, (2.10)

which is a system of linear equations Ax = b with

Amn = 〈wm, L(fn)〉, (2.11)
bm = 〈wm, g〉. (2.12)

2.3 Electromagnetic Problem

Let us start with a radiation equation for the electric field intensity E which
is derived for a scatterer made of Perfect Electric Conductor (PEC) and
obeying the Maxwell equations [13]. The derivation of the wave equation
is thoroughly described, e.g., in [14]. The non-homogeneous wave equation
reads [14]

∇2E + k2E = jkZ0J −
Z0
jk ∇(∇ · J)−∇×M , (2.13)

1For rare canonical cases like a sphere with an appropriately chosen basis functions, the
MoM can be computed analytically.

6



............................... 2.3. Electromagnetic Problem

where J and M are electric and magnetic current, respectively, k is the wave
number, and Z0 is the vacuum impedance. For PEC problems, the magnetic
currents M on the right-hand side of (2.13) are zero [13], therefore, they are
further omitted from the derivation.

We want to convert (2.13) into an integral equation. This is done using the
Green’s function technique which represents our system’s impulse response
(it can be also called transfer function). We are looking for the Green’s func-
tion G(r, r′) satisfying three-dimensional scalar Helmholtz partial differential
equation in a form [15]

∇2G(r, r′) + k2G(r, r′) = −δ(r, r′). (2.14)

With the presumed knowledge of G(r, r′) in (2.14) we can transform (2.13)
into integral form for scattered field Es(r)

Es (r) = −jkZ0

∫
Ω

G(r, r′)
(

1 + 1
k2∇

′∇′·
)
J(r′) dr′ (2.15)

with 1 being unit dyadic. We need to transform (2.14) into spherical coordi-
nates. Solving three-dimensional case of (2.14) (derivation omitted, can be
found in [14]) leads to

d2(RG)
dR2 + k2(RG) = 0, (2.16)

where

R = |r − r′| (2.17)

with r′ ∈ Ω pointing to the source region Ω and r denoting an observation
point. Then the homogeneous solution of (2.16) is

G(R) = A
e−jkR

R
+B

e jkR

R
. (2.18)

The second term, B exp {jkR} /R, is non-physical because it grows with
increasing R. Leaving it out gives

G(R) = A
e−jkR

R
(2.19)

with the last task being the determination of a constant A. Following the
procedure from [14] we get A = 1/(4π) and the resulting Green’s function is

G(R) = e−jkR

4πR . (2.20)

Before we move any further, it is necessary to introduce the principle of
surface equivalence [14]. Equations (2.13) and (2.15) can be used when we
know the currents J (and M).

7



2. The Method of Moments in Electromagnetics.......................

PEC
Ω

J

Ei
Es

µ0

ε0

Figure 2.1: Surface equivalence principle.

The surface equivalence equates two specific scenarios, depicted in Fig-
ure 2.1. Considering a PEC obstacle with incident field Ei, the scattered
field Es is produced. Equivalently, it can be shown [3] that the obstacle can
be replaced by a surface current J which produces the same scattered field Es.
By applying the boundary condition valid for the PEC obstacle, i.e. [13],

n̂× (Ei +Es) = 0, (2.21)

and assigning the scattered field with (2.15), we receive an integral equation
for the unknown current density J , which can be solved via MoM for the
known incident field Ei.

Substituting now (2.20) into (2.15), applying (2.8) for yet unknown surface
currents and applying testing (2.3) with a set of testing functions being equal
to the set of the basis functions fn (i.e., Galerkin method, [3]), we arrive at

ZI = V, (2.22)

where V = [Vm] is a known excitation vector, defined element-wise as

Vm =
∫
Ω

fm(r) ·Ei dV (2.23)

and Z = [Zmn] is the impedance matrix, defined element-wise as

Zmn = jkZ0

∫
Ω

fm(r) ·
∫
Ω

fn(r′)G(r, r′) dr′ dr

+ jZ0
k

∫
Ω

fm(r) ·

∇∇ · ∫
Ω

fn(r′)G(r, r′) dr′
 dr.

(2.24)

We can see that (2.24) requires a twice differentiable basis functions. This
is not very suitable for our problem and we need to rewrite the equation
(derivation can be found in [14]) as

Zmn = jkZ0

∫
Ω

fm(r) ·
∫
Ω

fn(r′)G(r, r′) dr′ dr

+ jZ0
k

∫
Ω

∇ · fm(r)
∫
Ω

∇′ · fn(r′)G(r, r′) dr′ dr.
(2.25)

8
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v+
nv−n

T+
nT−n

ln
ρ+
nρ−n

O
r

Figure 2.2: RWG basis function.

2.4 Basis Functions

Commonly used basis functions for 3D surface problems are Rao-Wilton-
Glisson (RWG) triangular basis functions [16]. We use them to expand the
sum in (2.8). It is assumed that an obstacle is discretized into a triangular
mesh grid. The RWG functions are defined as

fn(r) = ln

2A+
n

ρ+
n (r) r in T+

n , (2.26)

fn(r) = ln

2A−n
ρ−n (r) r in T−n , (2.27)

fn(r) = 0 otherwise, (2.28)

where T+
n and T−n form a pair of triangles with a shared inner edge n; ln is

the length of the common edge n, position vector r is defined with respect to
the coordinate origin O, and vectors ρ+

n (r) and ρ−n (r) are defined as

ρ+
n (r) = v+

n − r r in T+
n , (2.29)

ρ−n (r) = r − v−n r in T−n , (2.30)

where v+
n and v−n are the free vertices of the T+

n and T−n triangles, respectively;
see Figure 2.2. For further purposes, the surface divergence of fn is [16]

∇ · fn(r) = ln

A+
n

r in T+
n , (2.31)

∇ · fn(r) = − ln

A−n
r in T−n , (2.32)

∇ · fn(r) = 0 otherwise. (2.33)

2.5 Impedance Matrix Partitioning

The purpose of this section is to normalize the impedance matrix (2.25)
with respect to the size of a scatterer and to separate its formulation into
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2. The Method of Moments in Electromagnetics.......................
smaller blocks to be advantageously evaluated one by one. Let us start with
reordering (2.25) and substituting the Green’s function (2.20) yielding

Zmn = jZ0

∫
Ω

∫
Ω

(
kfm(r) · fn(r′)− 1

k
∇ · fm(r)∇′ · fn(r′)

) e−jkR

4πR dr′ dr.

(2.34)

The following decomposition into four matrix products will be further ex-
ploited during the implementation

Z = jZ0a
2
(
ka
(
ZM,k + ZM,0

)
− 1
ka

(
ZE,k + ZE,0

))
, (2.35)

where the matrices are defined element-wise as

ZM,k
mn = 1

a3

∫
Ω

∫
Ω

fm(r) · fn(r′)e−jkR − 1
4πR dr′ dr, (2.36)

ZM,0
mn = 1

a3

∫
Ω

∫
Ω

fm(r) · fn(r′) 1
4πR dr′ dr, (2.37)

ZE,k
mn = 1

a

∫
Ω

∫
Ω

∇ · fm(r)∇′ · fn(r′)e−jkR − 1
4πR dr′ dr, (2.38)

ZE,0
mn = 1

a

∫
Ω

∫
Ω

∇ · fm(r)∇′ · fn(r′) 1
4πR dr′ dr, (2.39)

and where variable a is defined as

a = max
r,r′∈Ω

=
{
R

2

}
, (2.40)

that represents a radius of the smallest sphere fully circumscribing the scat-
terer Ω. Consequently, the matrix products ZE,0,ZE,k,ZM,0 and ZM,k are
dimensionless, which mitigates the problems with the numerical errors asso-
ciated with computation of very small or very big structures [17]. One can
notice that the matrix impedance matrix Z is symmetric and mostly dense in
contrast to the systems in finite element methods. This symmetry property
can be further exploited in the implementation.

Considering electrically small region, say ka < 1, it is often useful to
compute the stored energy matrix [18] which is the normalized derivative
of Z with respect to angular frequency ω = kc0

ω
∂Z
∂ω

= jZ0a
2
(
ka
(
ZM,k + ZM,0 − jkaTM

)
− 1
ka

(
ZE,k + ZE,0 + jkaTE

))
,

(2.41)

where the matrices TM and TE are defined element-wise as

TM
mn = 1

a4

∫
Ω

∫
Ω

fm(r) · fn(r′)e−jkR

4π dr′ dr, (2.42)

TE
mn = 1

a2

∫
Ω

∫
Ω

∇ · fm(r)∇′ · fn(r′)e−jkR

4π dr′ dr. (2.43)
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......................... 2.6. Integration with Numerical Quadrature

2.6 Integration with Numerical Quadrature

Most of the engineering problems are solved in a discrete form because the
analytical form is either unknown or it can be found only for canonical
cases [19]. The process starts with designing the model in Computer-Aided
Design (CAD) software. It allows engineers to represent models in a way
which preserves mathematical description, i.e., in the form of B-splines [20].
Once the model is prepared, it is converted to a set of geometric primitives
compatible with chosen sets of basis and testing functions. This process
is called discretization [21] for which we most commonly choose triangles
(for surface objects) or tetrahedra (for volumetric objects) which can well
approximate objects of various shapes. Another possibility is, e.g., to use
quadrilateral elements [22]. Additionally, we want the discretization to have
some favorable properties in order to get optimal results from the underlying
numerical solver. These properties are most commonly preserved in the form
of Delaunay triangulation [23], i.e., to have ideally equilateral triangles of
similar sizes.

By applying M -point numerical quadrature [24], (2.25) can be transformed
into

ZXYmn = jZ0
πk

χXYm,n

M∑
p=1

M∑
q=1

wpwq

(
k2

4 ρ
X
m(rp) · ρYn (r′q)− 1

)
e−jkRXY

mnpq

RXYmnpq
, (2.44)

where ρ(r) are converted to simplex coordinates

ρXm(r) = λ1v1m + λ2v2m + λ3v3m + vXm , (2.45)
ρYn (r′) = λ′1v1n + λ′2nv2 + λ′3v3n + vYn , (2.46)

with v1,v2 and v3 being vertex coordinates, vXm and vYn being vertices opposite
to the shared edge of trianglesm and n, and where RX,Ym,n,p,q is distance between
quadrature points

RXYmnpq =
√

(xp − xq)2 + (yp − yq)2 + (zp − zq)2, (2.47)

with values for X and Y being substituted from Table 2.1.

X Y χX,Ym,n vXm vYn

− − lmln v−m v−n
− + −lmln v−m v+

n

+ − −lmln v+
m v−n

+ + lmln v+
m v+

n

Table 2.1: Values of variables for positive and negative triangles.
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2. The Method of Moments in Electromagnetics.......................
For the non-singular terms, we get the following equations:

TE,XY
mn =

χXYm,n
π

M∑
p=1

M∑
q=1

wpwqe−jkRXY
mnpq , (2.48)

TM,XY
mn =

χXYm,n
4π

M∑
p=1

M∑
q=1

wpwqρ
X
m(r) · ρYn (r′)e−jkRXY

mnpq , (2.49)

ZE,k,XY
mn =

χXYm,n
π

M∑
p=1

M∑
q=1

wpwq
e−jkRXY

mnpq − 1
RXYmnpq

, (2.50)

ZM,k,XY
mn =

χXYm,n
4π

M∑
p=1

M∑
q=1

wpwqρ
X
m(r) · ρYn (r′)e−jkRXY

mnpq − 1
RXYmnpq

. (2.51)

It can be seen that the majority of the terms (triangle areas, quadrature
weights, and basis vectors together with radius vectors) can be precomputed.
The computationally intensive part consists of the complex exponential eval-
uation including distances between the integration points. The complexity of
evaluation increases quadratically with the number of quadrature points.

2.7 Gaussian Quadrature

Quadrature points are determined according to the symmetrical Gaussian
quadrature rule presented in [25] where a number of integration points M
does not grow quadratically with the quadrature order N but M < N2. Both
points in simplex coordinates and their respective weights are determined,
e.g., for quadrature rule of the second order we get three points as shown in
Table 2.2. AToM implements quadrature rules up to the order 12 where all
of them are tabulated.

i λ1 λ2 λ3 w

1 2
3

1
6

1
6

1
3

2 1
6

2
3

1
6

1
3

3 1
6

1
6

2
3

1
3

Table 2.2: The Gaussian quadrature points and weights for the order n = 2.

2.8 Singularities of Near and Overlapping Terms

In the case of the near or overlapping source and testing triangles the dis-
tance R between two integration points limits to zero and the fraction on the

12
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right-hand side of (2.39) and (2.37) grows as

lim
R→0

1
R
→∞. (2.52)

Therefore, the solution becomes numerically unstable. The computation of
the matrices ZM,0 and ZE,0 is therefore evaluated using different approach
presented in [26] where inner integral is computed analytically. This treat-
ment allows us to evaluate impedance matrices even with meshes containing
overlapping triangles. This method reduces complexity of (2.39) and (2.37)
to just one sum over quadrature points instead of two.
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Chapter 3

Modern Parallel Architectures

3.1 GPU Architecture

Graphical processing units started as graphical processors for computer
graphics. Nowadays, we use them as multipurpose processors for various
types of computations. We often refer to this type of application as General-
Purpose computing on Graphics Processing Units (GPGPU). Such cards
frequently do not even have any graphical output. GPUs are mainly suitable
for matrix computations of independent tasks which can be parallelized.

The state-of-the-art technology for GPGPU computations is CUDA. It
gives access to the GPU’s instruction set and parallel elements necessary for
launching GPU kernels. This technology is proprietary for Nvidia graphic
cards. It is designed to work with programming languages C, C++ and
Fortran. Nvidia launched the first micro-architecture Tesla in 2006 with
CUDA Compute Capability (CC) 1.0. The latest micro-architecture is Ampere
(CC 8.0). Over time, many important features were added, namely integer
atomic operations (CC 1.1), double precision operations (CC 1.3), half-
precision operations (CC 5.3), double atomic addition (CC 6.0) [27]. See
evolution of CC and Nvidia architectures over time in Figure 3.1.

CPU vs GPU

Many modern applications like mathematical and physical simulations utilize
high level of parallelism. Even though CPU manufacturers stopped increasing
frequency of cores and started adding more cores around year 2005 as seen
in Figure 1.1, the demand for even higher parallelism was also increasing.
The not so obvious solution was to use graphic cards which had been used
primarily for graphical computations until that time. Graphical cards offered
the possibility to run rather simple computations by thousands of threads in
parallel.
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2006 2010 2012 2014 2016 2017 2018 2020

Tesla

CC 1.0, 1.1, 1.2, 1.3

Fermi

CC 2.0, 2.1

Kepler

CC 3.0, 3.2, 3.5, 3.7

Maxwell

CC 5.0, 5.2, 5.3

Pascal

CC 6.0, 6.1, 6.2

Volta

CC 7.0, 7.2

Turing

CC 7.5

Ampere

CC 8.0

Figure 3.1: Nvidia microarchitecture timeline.

.Multi-core CPUs: Modern CPUs get more cores and wider vector lanes,
e.g., Intel Xeon Platinum 9282, 56 cores × 2 threads, Advanced Vector
Extensions 512 (AVX-512)..Many-core GPUs: Highly specialized cores with low control logic and
high bandwidth memory, e.g., Nvidia V100 with 5120 cores.

As depicted in Figure 3.2a and Figure 3.2b, GPUs have significantly more
chip surface dedicated to computation called Arithmetic Logic Unit (ALU).
They contain less control logic than modern CPUs because the simplified ex-
ecution model does not use speculative and out-of-order execution. CPUs are
optimized for low-latency access to the cache memory, GPUs are architecture
tolerant to memory latency due to warp scheduling. GPUs need less cache
memory due to the missing jump prediction.

Control
ALU ALU

ALU ALU

Cache

DRAM

(a) Schematics of a CPU chip.

DRAM

(b) Schematics of a GPU chip.

Figure 3.2: Chip surface visualization of a CPU and a GPU.

3.2 CUDA

Before we start with CUDA implementation of MoM, we need to show some
basic properties of this technology. This is crucial for the understanding of
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different programming paradigms compared to imperative programming for
CPUs.

GPU Basics

. Host: the CPU and its memory.. Device: the GPU and its memory.. Streaming Multiprocessor (SMX): an operation unit which executes
blocks of threads, it has Single Instruction Multiple Threads (SIMT)
architecture.. Threads: execution stream, many threads are executed simultaneously
on a GPU..Kernel: a function launched on a thread..Warp: a minimal batch of threads launched on an SMX. All Nvidia
micro architectures operate with fixed warps of size 32. Multiple warps
are scheduled to minimize memory latency.. Block: 3D configuration of threads..Grid: 3D configuration of blocks.

Configuration of threads and blocks in a grid can be visualized as a 3D matrix
(see Figure 3.3). This allows us to easily map threads to elements of a vector
or 2D/3D matrices.

We begin with an example of simple matrix addition, see Listing 3.1. The
code adds two square matrices of size n in each dimension and stores the
result in the third matrix (output matrix).

1 __global__

2 void addMatrices(double* result, double* mat1, double* mat2, ...
int n) {

3 const int x = blockDim.x * blockIdx.x + threadIdx.x;
4 const int y = blockDim.y * blockIdx.y + threadIdx.y;
5

6 if(x < n && y < n) {
7 result[x*n + y] = mat1[x*n + y] + mat2[x*n + y];
8 }
9 }

Listing 3.1: CUDA kernel for matrix addition.

Indexing can be performed using special CUDA variables threadIdx (index
of a thread in a block), blockIdx (index of a block in the grid), blockDim
(number of threads in a given block dimension), gridDim (number of blocks
in a given grid dimension). All variables can be treated as 3D points by using
.x, .y, .z structure members.
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Grid

block(0, 0)

block(0, 1)

block(1, 0)

block(1, 1)

block(2, 0)

block(2, 1)

block

block (1, 1)

thread(0, 0)

thread(0, 1)

thread(0, 2)

thread(1, 0)

thread(1, 1)

thread(1, 2)

thread(2, 0)

thread(2, 1)

thread(2, 2)

thread(3, 0)

thread(3, 1)

thread(3, 2)

Figure 3.3: Arrangement of the blocks and the threads.

Each function has a declaration specifier. It can be either __global__,
such a function can be called from both device and host code and must return
void, or __device__ which are always called from device code and can
have a return value. Variable dim3 is an integer 3-dimensional vector type
that is used in kernel invocation. At least one dimension must have a specified
size. Unspecified dimensions are set to one.

1 dim3 threadsPerBlock (64, 64) ;
2 int blockX = ceil(n / threadsPerBlock.x);
3 int blockY = ceil(n / threadsPerBlock.y);
4 dim3 numBlocks (blockX, blockY);
5 addMatrices <<<numBlocks , threadsPerBlock>>>(result, mat1, ...

mat2, n);

Listing 3.2: Launch configuration of a kernel adding two matrices.

A kernel launch example is in Listing 3.2. Notice we often launch more
blocks/threads than necessary. Code on line 2 in Listing 3.2 rounds the
number of blocks to upper bound. This ensures that all matrix elements are
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covered by spawned threads. Without this treatment, some elements would
not be computed when the dimension of a matrix modulo block dimension
is not zero. Threads that would operate on elements outside the matrix
boundary would skip the actual summation due to the condition on line 6 in
Listing 3.1.

Memory

The host has a separate memory from the device. Typically, a host memory
spans from tens of gigabytes up to one terabyte in modern cluster nodes.
Device memory is much more limited. Consumer GPU cards have only
units of gigabytes. A state-of-the-art cluster GPU Nvidia V100 has 32GB
of device memory. Kernels executed on the device can only access device
memory. This means that all data must be copied from the host to the device
memory before the kernel initialization. After the computation on the device
is done (kernel finishes execution) data must be copied back before the host
tries to access them. It imposes restrictions to host-device synchronization.
Some functions need to explicitly call synchronization routine (i.e., in C++
cudaDeviceSychronize()). This ensures all queued operations ahead
the synchronization will finish before the execution can continue.

GPUs implement a similar concept of memory hierarchy as CPUs. The
operational memory of a typical computer has multiple levels. The fastest
and at the same time the smallest memories are directly on a CPU (registers,
L caches). If the desired memory block is not found in cache, then Random
Access Memory (RAM) or disk space is queried [28]. Similarly, GPUs use
memory hierarchy to speed up memory access as described in [29]. The
following description corresponds to the hierarchy depicted in Figure 3.4.
Each SMX has a very limited number of registers, which are the fastest
memory type. Data which do not fit into registers are saved in a local
memory that has similar access speeds as the global memory. Shared memory
sits speed-wise between registers and local memory. This memory type must
be explicitly declared in kernels and allocated before kernel execution. It is
two orders of magnitude faster than local and global memory. Global memory
is the largest memory space with the highest latency. Last type is constant
memory which is read-only inside of kernels. It is always cached because it
only contains values that can not be changed inside kernels.

Shared memory is not only used for its speed but also for in-block thread
synchronization. It is possible to use __syncthreads() barrier which
ensures succeeding computations are executed after all threads in a block reach
the barrier. There is no communication between streaming multiprocessors
nor between different blocks. Each block is always executed on one SMX. All
threads within a block can access the same shared memory. Each SMX has
its shared memory.
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Grid

Host

Constant Memory

Global Memory

block(0, 0)

Shared Memory

Registers Registers

thread
(0, 0)

thread
(0, 1)

Local

Memory

Local

Memory

block(0, 1)

Shared Memory

Registers Registers

thread
(0, 0)

thread
(0, 1)

Local

Memory

Local

Memory

Figure 3.4: GPU memory hierarchy.

Atomic Operations

A typical processor instruction has undefined output when multiple threads
write to the same memory space without proper synchronization. If this
happens, e.g., the memory can be modified by two write operations and the
result is the value of the thread which comes last. In contrary, a series of
multiple reads of a single memory space without a write is a safe operation.
Atomic operations solve this problem by serializing operations of multiple
threads. A read-modify-write operation is performed atomically when no
other thread can access the memory space until the operation finishes. CUDA
supports 32-bit or 64-bit read-modify-write operations at an address in global
or shared memory. These operations are performed serially by thousands of
threads and can become a bottleneck. Hardware support of floating-point
atomic operations is not available until cards with CC 6.0. For cards with CC
lower than 6.0, floating-point atomic operations can be implemented using
long long int data type.
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Chapter 4

GPU Implementation of Method of
Moments in MATLAB

We now want to implement MoM derived in Chapter 2 in MATLAB. We want
to write most of the code in CUDA which should allow us to evaluate large
structures in reasonable time. The code must be compatible with AToM. We
review three approaches of GPU programming in MATLAB (see Section 4.1),
describe MoM implementation in CUDA (see Section 4.2) and evaluate its
performance and correctness (see Sections 4.3 and 4.4).

4.1 GPU Code in MATLAB

Naive GPU Code

MATLAB [9] has a list of GPU-ready functions [30]. These functions can
be used with gpuArray object which stores data in GPU’s memory. Once
gpuArray is passed to a GPU-ready function, the code is performed on a
GPU. The memory works in the same manner as described in Section 3.2,
where the workspace memory is the host memory. Basic manipulation with
GPU matrices in MATLAB is shown in Listing 4.1.

N = 100;
A = eye(N);
% Transfers data from MATLAB workspace to GPU memory.
gpuA = gpuArray(A);

% Directly creates matrix in GPU memory.
gpuB = eye(N, 'gpuArray');

% Transfers data from GPU memory to MATLAB workspace.
B = gather(B);

Listing 4.1: Allocation and manipulation with gpuArray in MATLAB.
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% CPU matrix multiplication
A = rand(n,n);
B = rand(n,n);
C = A*B;

% GPU matrix multiplication
A = rand(n,n, 'gpuArray');
B = rand(n,n, 'gpuArray');
C = A*B;

Listing 4.2: CPU vs GPU matrix multiplication in MATLAB.

Benchmarks of GPU-Ready Functions

We will demonstrate the speedups of a CPU implementation in MATLAB
with respect to their GPU equivalents for some basic functions. The tests
were conducted using Intel Xeon Gold 6150 processor and Nvidia Tesla V100.
All tests are run without parpool which allows us to run CPU code in more
threads on multiple cores.

We start with a simple algorithm of matrix multiplication in Listing 4.2.
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e
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Figure 4.1: Computation time of matrix multiplication on a CPU and a
GPU.

We can see from Figure 4.1 that the graphic card is not enough saturated
for smaller matrices. On the other hand, CPU computation time grows
according to multiplication algorithm complexity which is O(N3) where N is
the size of a matrix.

Similarly, we can evaluate the performance of matrix inversion and backslash
operator (see Listing 4.3) which will be later used for evaluation of the
excitation vector V. The performance results of these two operations are in
Figure 4.2.
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% CPU inversion
A = rand(n, n);
B = inv(A);

% GPU inversion
A = rand(n, n, 'gpuArray');
B = inv(A);

%%
% CPU solving system of linear equations
b = rand(n, 1);
A = rand(n, n);
x = A\b;

% GPU solving system of linear equations
b = rand(n, 1, 'gpuArray');
A = rand(n, n, 'gpuArray');
x = A\b;

Listing 4.3: CPU vs GPU matrix inversion and solving system of linear
equations in MATLAB.
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(a) Matrix inversion.

103 104

10−2

100

102

CPU
GPU

matrix size N

co
m
pu

ta
tio

na
lt
im

e
(s
)

(b) Solving system of linear equations.

Figure 4.2: Computation time comparison of matrix inversion and solving
system of linear equations in MATLAB.

Element-wise Operations

The second approach which can be leveraged in MATLAB is closer to the
native CUDA code. The executed code is the same for each matrix element in
most of the cases. We can separate our MATLAB code into a helper function
which encapsulates instructions performed on GPU. Once called inside the
arrayfun [31] function with a gpuArray parameter, the helper function is
compiled into native code. We demonstrate that with a basic linear algebra
operation saxpy which computes a vector multiplied by a constant plus a
vector (see Listing 4.4). This technique still does not involve any CUDA
programming knowledge but performs better than the naive version as seen
in Figure 4.3.
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function result = saxpy(x, y, a)

result = a*x+y;
end

% Create input matrices
N = 1000;
x = gpuArray.randi(100, N);
y = gpuArray.randi(100, N);
a = gpuArray.randi(100, N);

% Run naive MATLAB version
resultNaive = a*x+y;

% Run saxpy function
resultFunction = arrayfun(@saxpy, a, x, y);

Listing 4.4: Saxpy GPU code using naive implementation and compiled
function.
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Figure 4.3: Computation time of saxpy function from Listing 4.4.

Native CUDA Code

It is also possible to run code that was written using CUDA directly from
MATLAB. The native code must be compiled using nvcc compiler into a
Parallel Thread Execution (PTX) file. This file contains pseudo assembly
code that can run on a data-parallel computing device (abstraction of a
GPU).

Firstly, we need to create a CUDA kernel object. This is done using
a PTX file and the original CUDA source file. Optionally, we can spec-

24



......................4.2. Implementation Details of Method of Moments

N = 1000;
A = rand(N, N, 'gpuArray');
B = rand(N, N, 'gpuArray');
result = zeros(N, N, 'gpuArray');

kernel = parallel.gpu.CUDAKernel('addMatrices.ptx',
'addMatrices.cu', 'addMatrices');

kernelSize = floor(sqrt(kernel.MaxThreadsPerBlock));
kernel.ThreadBlockSize = [kernelSize, kernelSize, 1];
kernel.GridSize = [ceil(N/kernelSize), ceil(N/kernelSize)];

[result] = feval(kernel, result, A, B, N);

result = gather(result);

Listing 4.5: Creating a CUDA kernel from example in Listing 3.1.

ify an entry point. Each kernel has two launch configuration properties –
ThreadBlockSize and GridSize. ThreadBlockSize must be set with
respect to kernel properties of a GPU device – MaxThreadsPerBlock and
MaxThreadBlockSize. GridSize is computed for our problem domain
given ThreadBlockSize.

The kernel is launched by calling the feval [32] function. All kernel param-
eters must be gpuArray objects. Finally, we collect output data from GPU
by calling gather [33] function which implicitly blocks MATLAB’s execution
until the kernel finishes. See Listing 4.5. CUDA kernels in MATLAB can only
have floating-point, integer, boolean and character type parameters [34]. No
user-defined types and structures are allowed compared to CUDA executed
from C/C++ code.

4.2 Implementation Details of Method of
Moments

We can see from equations (2.48), (2.49), (2.50), (2.51) in Section 2.6 that
every element of all electric and magnetic sub-parts needed for assembly of
impedance matrix Z are independent thus they are suitable for parallel GPU
implementation. We decided to compute each matrix by a single CUDA kernel.
Since all these matrices are symmetric thanks to the Galerkin method, only
the upper/lower triangular part is required. The full matrices are completed
after the evaluation.

Non-static matrices TE,TM,ZE,k, and ZM,k are complex due to the imagi-
nary unit in the exponential. C++ does not have any explicit support for
complex numbers, therefore, we need to use a different approach. Real and
imaginary parts are separated into respective matrices and combined into
one complex matrix directly in MATLAB which has explicit complex number
support. The complex exponential is evaluated using Euler’s formula.
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Besides, each kernel is written as a template. Every kernel is then compiled

for single precision and double precision representation. The user can choose
precision for the computation and the respective entry point is then chosen
during runtime.

Basis vectors in simplex coordinates, quadrature point weights and triangle
areas are precomputed in advance in the preprocessing part, and then reused
multiple times. Each element of a decomposed impedance matrix Z is com-
puted from a variable number of integration points based on the order of the
Gaussian quadrature for triangles [25]. AToM supports table values of numer-
ical quadrature up to order 12. This means each element can be computed as
the sum of the maximum of 4356 elements (quadrature of order 12 uses 33
points where every combination between neighboring triangles is used four
times). It leads to a parallel reduction problem where we want to sum all
vector/matrix elements into one scalar value. This problem and its effective
implementation were well explained in [35]. Such a technique involves warp
unwrapping, usage of shared memory and avoiding bank conflicts in shared
memory. Unfortunately, computation of impedance matrix does not have so
well structured data alignment for this type of treatment. We implemented a
parallel reduction with the above-mentioned improvements for quadrature
orders three and eight, where we have 4 and 16 quadrature points, respectively.
This would work only for block sizes of 16×16 and 32×32, but unrolling warps
in code for specific quadrature extends the binary size of a kernel, thus some
kernels hit the limit for registers. When this happens, the maximum number
of threads which can be executed in a block decreases. This behavior is not
well documented and cannot be easily predicted. It may also differ GPU by
GPU. Without a correct block size, we can not assume the in-block alignment
of all summed elements. We decided to go just with atomic operations, which
seem to be comparably fast for this implementation. Besides, using atomic
operations is simpler and easier to read. Furthermore, the kernel memory
requirements are lower, e.g., on Nvidia V100 some double-precision kernels
increased cap for the maximum number of threads in a block back to 1024,
which is also the maximum for this specific card.

Another key aspect of High-Performance Computing (HPC) GPU code is
the handling of memory consumption on GPU. Typically, modern cards have
either 8GB or 16GB of global memory. The state of the art HPC Nvidia
GPUs have up to 32GB of global memory (with larger memories yet to come
together with Ampere architecture). Even for a simple operation like matrix
addition C = A + B, we need to allocate three times the resulting matrix
memory (allocate and copy memory from host to device for matrices A and B,
allocate device memory for C). This may be very limiting for large scale
problems. We need to either decompose the problem or in the worst case
solve the problem in RAM on a CPU. This is the case for matrix inversion
on GPU. We use MATLAB’s backslash operator for linear equations solution,
i.e., direct inversion is employed, expecting that the size of the impedance
matrix will be maximally in thousands by thousands. An inversion of very
large impedance matrix Z may in this case hit the memory limit. When this
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happens, the computation is finished on CPU.

4.3 Evaluation of the Impedance Matrix –
Benchmarks

CPU benchmarks were run on Intel Core i7-8750H processor with base fre-
quency 2.20GHz and maximum turbo frequency 4.10GHz [36]. All GPU
benchmarks were tested on Nvidia Tesla V100 with 32GB of device mem-
ory [37] on the cluster of Research Center for Informatics (RCI) [38].

RCI cluster is HPC infrastructure. It consists of 33 computing nodes where
20 nodes are CPU-only with 24 physical cores each. 12 nodes have 36 physical
CPU cores each as well as additional 4 Nvidia Tesla V100 connected with
NVLink. Each of these nodes has 384GB RAM. A node n33 is CPU only
and offers up to 192 physical cores with 1536GB RAM and is suitable for
large-scale data structures. In total, 72 CPUs with 864 physical cores and 48
Nvidia V100 GPUs are available with 13824GB of RAM. Data storage up to
160TB is utilized.

The evaluation of matrices TE, TM, ZE,k, and ZM,k was measured sepa-
rately on a CPU opposing to ZE,0 and ZM,0 which share a significant part of
the CPU code. The GPU version implements computation of ZE,0 and ZM,0

separately which makes it possible to compute just one of these matrices at
the time. Preprocessing contains all data preparation (quadrature weights,
triangle areas, and tranformation of basis vectors into simplex coordinates)for
impedance matrix computation from triangular mesh discretization. Bench-
marks were conducted using an increasing number of basis functions for
quadrature orders one (point matching technique [12] utilizing center point
of each triangle only) and four.

Single Core Double Precision Performance

We start with the original CPU MoM code written in MATLAB. It evaluates
impedance matrix column-wise to take advantage of MATLAB’s instruction
vectorization. We can see from Figures 4.4 and 4.5 that the algorithm is
dominated by the computation of dynamic electric and magnetic sub-products
of impedance matrix Z.
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Figure 4.4: The MoM implementation on a CPU with numerical
quadrature of the order one.
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Figure 4.5: The MoM implementation on a CPU with numerical
quadrature of the order four.

This is even more visible when we increase the quadrature order where
preprocessing, computation of ZE,0 and ZM,0 are negligible. It is mainly due
to the ineffective use of memory when the number of quadrature points is
increased. The CPU implementation scales approximately quadratically with
the increasing number of quadrature points.
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Figure 4.6: The MoM implementation on a GPU with numerical
quadrature of the order one.
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Figure 4.7: The MoM implementation on a GPU with numerical
quadrature of the order four.

In comparison to the CPU implementation, preprocessing in the GPU
version takes significant amount of computation time because the code is
shared with the CPU version. This part of the code prepares data for GPU
computation which are later copied to a device memory. The GPU code
shows no significant slowdown when the quadrature order is increased from
one to four. This can be explained by the massively parallel architecture
of a GPU which requires often millions of threads executed at once to fully
saturate the card. Every quadrature point is computed on a single thread.
The relative speedup of the GPU implementation as compared to the CPU
implementation is studied in Figures 4.8 and 4.9. Only the parts that were
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Figure 4.8: Speedup of the GPU implementation as compared to the CPU
implementation using numerical quadrature of order one.

offloaded to GPU from CPU are visualized. The GPU is sufficiently saturated
around 3000 basis functions. The number of operations executed during the
evaluation of static matrices ZE,0 and ZM,0 depends on the number n of
quadrature points in a triangle by O(n) (compared to matrices TE, TM, ZE,k,
and ZM,k where the count of operations grows with O(n2)). This explains
why the speedup is lower compared to non-singular matrices (one order of
magnitude compared to two orders of magnitude in Figure 4.9).

The vector of expansion coefficients I is the only part of the code that
leverages built-in MATLAB GPU function (namely backslash operator) and
the speedup is much lower than other parts that are written in CUDA.
This is mainly caused by the fact that we need to solve the system of
linear equations which is usually computationally slow, O(N3), and memory
demanding, O(N2), for dense matrices. It is also hard to predict a real memory
consumption for this algorithm because MATLAB can switch between multiple
implementations based on the properties of the matrix on the input. This
part of the code may fail to compute on a GPU for large matrices due to
limited memory. If it does, the system is computed on a CPU as a fallback.

Single vs Double Precision Performance on a GPU

As the code is written as a template, we can simply call its single precision
version by changing one parameter in MATLAB. From Figure 4.10, we can
see that speedups of the kernels ZE,0 and ZM,0 converge close to two. This is
what we ideally want to achieve because Nvidia V100 has twice higher single
precision performance than double performance [37].

The kernels for TE, TM, ZE,k, and ZM,k matrices have around the same
single precision performance as the double precision (speedup oscillates around
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Figure 4.9: Speedup of the GPU implementation as compared to the CPU
implementation using numerical quadrature of order four.

one), which is caused by the used atomic add. This makes an instruction to
serialize and no speedup is achieved. By contrast, no atomic instruction were
used in ZE,0 and ZM,0 kernels.

The evaluation of the current vector I involves backslash operator which is
MATLAB’s built-in function. Its implementation is proprietary and cannot
be further optimized. The speedup of a vector I computation, depicted in
Figure 4.8 jumps up and down very likely due to underlying implementation
which uses various heuristics to choose a suitable algorithm for a given matrix.
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Figure 4.10: Relative speedup of the single precision computation as
compared to the double precision. The used numerical quadrature is of the

fourth order.
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CPU fCPU (GHz) NCPU Nins

i7-4930K 3.4 6 4
Xeon Gold 6150 2.7 18 8

Table 4.1: Specification of used CPUs.

4.4 Comparison with Commercial Software

Comparison with AToM’s CPU code in the previous section may be too
favorable for the GPU code if CPU implementation is slow by design. There-
fore, we also provide comparison with a commercial software which fully
implements MoM.

In order to use the same triangularized model for all the computations, the
software Feko [39] was chosen to verify the validity of the GPU code and to
compare the computational times. Unfortunately, due to limited licensing, we
were unable to perform the simulation on the same machine both for GPU
implementation in MATLAB and for Feko evaluation. Thus, we decided to
relate results to peak performance of a given processing unit. We measured
three cases – Feko on a CPU, AToM on a CPU, and a GPU.

Feko version 2019.3-660 was run on a machine with 6 core Intel i7-4930K
CPU with 32GB of RAM memory, running Windows 7, SP1. The AToM’s
CPU implementation was run on a RCI cluster node with 18 core Intel Xeon
Gold 6150 with 384GB RAM, running CentOS Linux 7. It was restricted only
to 6 cores and 32GB RAM. The AToM’s GPU code used a single Nvidia V100
with 32GB of device memory. The version of MATLAB was 2019b.

Peak performance P of a CPU is computed according to (4.1) with values
in Table 4.1.

P = fCPUNCPUNins, (4.1)

where fCPU is processor’s frequency in GHz, NCPU is number of physical
cores and Nins is number of instructions per clock cycle.

The example used for the benchmark consists of a thin-strip dipole oriented
above a finite ground plane. Both objects are made of PEC, the dimensions
of the plane are 60× 60mm, dimensions of the dipole are 1× 42.5mm. The
plane is confined with x-y plane. The dipole is at height 10mm above it,
see Figure 4.11. Radar cross section (RCS) was evaluated to check the
validity of the code. The PEC structure was excited by a plane wave of
perpendicular incidence angle with polarization alongside the dipole. The
computation consisted of the impedance matrix Z assembly and the solution
of I = Z−1V. It was repeated for 201 distinct frequencies. Because Feko uses
dynamic quadrature inside its computation, we decided to fix quadrature
order to five for benchmarks in AToM. Benchmark results are in Table 4.2
with relative time being number of seconds to one GFlops of the maximum
chip performance.

1limited to 6 cores
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Figure 4.11: A PEC dipole 1× 42.5mm, placed 10mm above a 60× 60mm
PEC plate.

software performance P (GFlops) MoM run-time (s) relative time
Feko 8.64 · 101 1.75 · 104 2.03 · 102

AToM CPU1 1.30 · 102 2.79 · 104 2.15 · 102

AToM GPU 7.80 · 103 1.03 · 103 1.32 · 10−1

Table 4.2: Comparison of the selected MoM implementations. The
benchmark was run with a structure discretized into 3704 triangles (5447
unknowns) and depicted in Figure 4.11. The frequency range spans from

2GHz to 4GHz with the step 0.01GHz.
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Figure 4.12: Comparison of RCS results for the model depicted in
Figure 4.11 and illuminated by a plane wave of perpendicular incidence angle

and polarization along the dipole.
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Chapter 5

Shape Optimization

A common engineering problem is to find a structure with given properties.
This optimization problem is called synthesis [40], an opposite procedure
to the analysis. Such tasks may vary from finding thickness of materials to
finding optimal shape which can withstand a given load [41]. These problems
are usually solved numerically rather than analytically, being encumbered
with non-uniqueness, instability [40], and Non-Polynomial (NP)-hardness [42].

Let us start here with a discretization of a region Ω, see Figure 5.1b, and
consider it being fixed for the entire optimization. Since the discretized
domain allows an exponential number of configurations of enabled/disabled
degrees of freedom, we are potentially dealing with an NP-hard problem. It is
not feasible to solve this efficiently, i.e., in polynomial time [42]. Rather than
finding an optimal solution, we usually settle with a near-optimal solutions
and try to find them as fast as possible with as low fitness function value as
possible (in the case of a minimization problem).

(a) A domain Ω. (b) A triangular discretization of the
domain ΩT .

Figure 5.1: A domain Ω and its triangular discretization ΩT .
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5.1 Potential Solutions to the Shape Synthesis

A rigorous definition of the optimization problem can be represented as an
integer linear programming problem

minimize
g

IHA(g)I
subject to IHBi(g)I = pi

IHBj(g)I ≤ pj
Z(g)I = V
g ∈ {0, 1}N ,

(5.1)

where A defines the matrix operator yielding the optimized metric, matri-
ces Bi and Bj define the equality and inequality constraints, and g is a binary
representation of the structure (degrees of freedom are either disabled or
enabled).

In order to find a solution to (5.1), we can use approximation algorithms
that work with graph representations or can try to solve linear programs di-
rectly [43]. Furthermore, we often use local or global optimization algorithms.
Global algorithms had boom at the turn of the millennium with nature-
inspired heuristic algorithms [44]. Among the others, the most prominent
class is formed by genetic algorithms [45] which use gene recombination and
mutation to achieve a better solution (e.g., Non-dominated Sorting Genetic
Algorithm II (NSGA-II) [46]) and swarm optimization which exploits multiple
agents which concurrently work towards improving the solution by sharing
community information (e.g., Ant-colony optimization [47] or particle swarm
optimization [48]). Local techniques involve gradient methods which continu-
ously improve a solution. While they converge rapidly to the local minimum,
they often get stuck there and cannot escape it. The adjoint formulation
of topology optimization [49] is a good example of such a gradient-based
approach.

5.2 Shape Optimization of Antennas

We begin with the domain Ω, see Figure 5.1a, which is discretized into the
set T of triangles ti, see Figure 5.1b, which form discretized domain

ΩT =
T⋃
i=1

ti, (5.2)

with T = |T | being the number of the triangles in the set T . This tri-
angular discretization is afterwards utilized for introduction of RWG basis
functions fn(r), see Section 2.4. The set of basis functions delimits the
available degrees of freedom for the memetic algorithm introduced in [11] and
used in this work. Its working principle is recapitulated in this section.
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Enabled and disabled basis functions are represented in a vector g where
logical 1 represents enabled and logical 0 disabled respective basis function
(see Figure 5.2).

(a) A domain with half of the basis
functions enabled.

(b) A domain with all basis functions
enabled.

Figure 5.2: A discretized domain ΩT with basis functions.

The same structure can be instead represented via the vector of triangles t.
It is also a vector of logical zeros and ones, but this time, it marks enabled and
disabled triangles instead of basis functions. A mapping from basis functions
(g) to triangles (t) is, generally, unique. The opposite is, however, not the
case (the same metallization given by a vector t can be formed by different
vectors g). The mapping matrix between basis functions and triangles is an
incidence matrix between the nodes and edges of a Voronoi graph defined for
a Delaunay discretization ΩT .

The topology sensitivity algorithm implemented in AToM involves inversion-
free modifications of the impedance matrix [50], based on so-called exact
reanalysis procedure [51]. This allows us to follow the direction of the best
local improvement and make a step to a neighboring vector of basis functions
(one different bit). Inversion-free evaluation of impedance matrix, available
thanks to the Shermann-Morisson-Woodbury identity [52], is by orders of
magnitude faster than the inversion itself.

The algorithm, depicted in Figure 5.3, starts with a domain Ω discretized
into T where the basis functions are assigned to the inner edges. The
impedance matrix Z is then computed. Since the discretization is fixed during
the optimization, the impedance matrix Z of the initial object (bounding
box) fully describing all sub-structures remains unchanged. The next step
is the evaluation of all matrices required for the computation of the fitness
function (A, {Bi}, {Bj}). Those will be evaluated only once and their
definition for particular optimization problems is described later on. Finally,
the optimization procedure combining so-called global and local steps (cycles)
starts.

The global cycle repeats until a given number of repetitions N is reached.
In every iteration of the global cycle, a new vector of basis functions gi is
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Ω,Z i < N generate gi

Ŷ = Z−1(gi)

Ω∗

τ = argmin
Î

−(F (I)− F (̂I))

τ > 0

modify gi

yes

no

yesno

Figure 5.3: Flowchart of the shape optimization algorithm based on exact
reanalysis.

generated. This can be done, e.g., with Monte Carlo or a genetic algorithm.
The initial impedance matrix Z is truncated according vector gi (the columns
and rows corresponding to zeros in gi are removed) and inverted.

Within one global cycle, the local cycle is iteratively repeated, see the
flowchart in Figure 5.3. The local improvement is based on an evaluation of
the topology sensitivity τ [11] via exact reanalysis [51], being able to evaluate
all structures differing in vector gi by the Hamming distance equal to one
from the actual shape, i.e., all the nearest neighbors are evaluated without
necessity of inverting the actual impedance matrix. It computes a fitness
function F of a candidate’s current Î and evaluates improvement to the
current best candidate I. The best candidate is chosen, i.e., Greedy algorithm
is adapted, the structure is updated, and the optimization continues with
the next step. The local cycle is repeated until the termination criterion is
met. This can happen either by getting stuck in a local minimum or the fact
that the relative improvement is smaller than the preset value. The entire
algorithm operates over degrees of freedom, which are the basis functions.
Consequently, the basis functions are removed or added back depending on
the topology sensitivity and the initial seeds given by the heuristic algorithm.

The inversion-free solution of (5.8) is computed using block inversion [52]
which is algebraically derived as

Ybb =
[

A B
C D

]−1

=
[

A−1 + A−1BE−1CA−1 −A−1BE−1

−E−1CA−1 E−1

]
, (5.3)

38



.............................5.3. Optimized Antenna Parameters

where

E = D−CA−1B. (5.4)

This will allow us to compute current I as I = YV for appropriately chosen Y.
For addition of an edge [e] to the system of [a] enabled basis functions, we
get matrix

Ybb = Z−1
bb =

[
Zaa Zae
Zea Zee

]−1

, (5.5)

where Zaa is the original impedance matrix and terms Zae,Zea and Zee are
taken from the row and the column belonging to the basis function [e].

Similarly, we can perform a removal of an edge by modification of the
admittance matrix Ỹbb with known (original) impedance matrix Z

Ỹbb =

 Yaa + 1
Yee

ỸaeỸea −YaaZaeYee
−YeeZeaYaa Yee

 , (5.6)

where the edge [e] is removed. The admittance matrix after removal is
evaluated as

Yaa = Ỹaa −
1
Yee

ỸaeỸea. (5.7)

It can be easily seen that (5.7) is computationally more efficient than (5.5).
The modified domain after N iterations is returned as an optimized shape,
represented by the vector gi which is the unknown from (5.1), of topology
sensitivity algorithm.

Both Monte Carlo algorithm and the genetic algorithm can be well par-
allelized with almost linear speedup. This allows us to evaluate plethora of
samples in every iteration and increase the diversity of solutions.

5.3 Optimized Antenna Parameters

Practically all antenna parameters can be defined as either quadratic or linear
forms of current, evaluated as

Ii = Z−1(gi)V. (5.8)

Their definitions vary in matrices used and in complexity of formulas to be
evaluated. A few examples of interest in electrically small region are presented
in this section, see, e.g., [53] or [54] for further details.
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Antenna Metrics

Electrically small antennas are known to be narrowband [55]. The bandwidth
is inversely proportional to Q-factor [56], therefore, to increase the bandwidth,
we have to minimize the Q-factor. It is defined as [57]

Q = max{IHXmI, IHXeI }
IHRI , (5.9)

where Xm and Xe are computed from the imaginary part of the impedance
matrix as

Xm = 1
2(W + X), (5.10)

Xe = 1
2(W−X), (5.11)

Z = R + jX, (5.12)

W = ω
∂X
∂V

. (5.13)

Substituting for unknown currents I from (5.8), we get

Q = max {VHZ−H(g)XmZ−1(g)V,VHZ−H(g)XeZ−1(g)V}
VHZ−H(g)RZ−1(g)V , (5.14)

i.e., it is seen that the value of Q-factor is a complicated non-linear function
of the shape, represented by a genus g and excitation V. The evaluation
of (5.14) is expensive since the matrix inversion of complexity O(N3) and
quadruple matrix multiplication of complexity O(N3). However, considering
fixed excitation V, all the local perturbations can be evaluated in O(N2) as
proposed in Section 5.2.

The next parameter which we will use in fitness functions is dissipation
factor δ defined as [58]

δ = IHLI
IHRI , (5.15)

where the loss matrix L = [Lmn] is defined element-wise as

Lmn = σ

∫
Ω

fn(r) · fm(r) dV, (5.16)

where σ is surface resistivity.
Finally, the third parameter, which will be optimized, is called voltage

reflection coefficient Γ defined as

Γ = Zin − Z0
Zin + Z0

, (5.17)

where Z0 is characteristic impedance of the transmission line and Zin is
antenna input impedance defined as

Zin = IHZI
|Iin|2

, (5.18)

and where Iin is the port input current.
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Regularization

Optimization of physical parameters does not tell us anything about how
big antenna’s surface is or how it is shaped. Let us introduce regularization
parameters that can steer the algorithm away from undesirable shapes (see
Figure 5.4) or creating unnecessarily large antennas. We start with the relative
antenna area Arel. It describes area of the metallic part with respect to the
full configuration. Its values are between 0 and 1 and it can be computed as
follows

Arel(g) = a(g)∑
n
an
, (5.19)

where a(g) returns area induced by vector g and an is area of triangle n.
The next parameter is the geometric divergence G. It represents how

regular the structure is. The zero value of parameter G is delivered by
a continuous structure completely filling the bounding box or by vacuum
without any scatterer at all, and the value one is approached by the most
irregular curves. It is defined here as

G(g) = 1
N

N∑
n=1

(1− |2Bg− 1|) , (5.20)

where B is the adjacency matrix constructed from the connectivity list of the
basis functions.

(a) A structure with G = 0.0844. (b) A structure with G = 0.5494.

Figure 5.4: Examples of structure regularity (the black parts are cut-out,
i.e., metallization is replaced by vacuum).

Optimized Fitness Functions

In order to demonstrate how to merge the antenna metrics and the geometry
regularization together, two fitness functions are introduced, the first being
minimized, while the second being maximized.

The first fitness function deals with the reflection coefficient to be minimized
and, at the same time, the antenna shape being as regular as possible and
spanning as small area as possible. This composite function is written as

F1(g) = (1 + |Γ |2)(1 + αG(g))(1 + βArel(g)). (5.21)
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where α and β are the hyperparameters weighting the priority in shape
regularity and spanned area, respectively. The fitness function is composed as
to have one as the minimum and infinity as the maximum. This subsequently
leads to the multi-objective optimization.

The second fitness function that we define is the total efficiency which
holds [15]

F2(g) = −(1− |Γ |2)
1 + δ

(1− αG(g))(1− βArel(g)). (5.22)

It is computationally expensive to evaluate the presented functions but it
allows us to generate huge datasets at the same time for problems with exact
solutions that can not be found in feasible time.

5.4 Discussion

Before we dive into details of parameter and fitness functions optimization,
let us summarize some observations related to the shape synthesis. The
problem of the shape synthesis is considered unsolved. This applies to the
antenna synthesis as well. The methods like exact reanalysis can help us
to understand the underlying problem by extensive testing of its properties.
We can ask if the algorithm can converge into a single or multiple minima.
It is also necessary to know if a different way of initialization significantly
improves the result.

The step of the vector gi generation in Figure 5.3 can be implemented in
various ways. It may be implemented as Monte Carlo sampling, maximization
of vector distances between generations based on a generalized Latin hyper-
cube sampling [59] or a genetic algorithm. The hypothesis which we want to
investigate is to replace the existing closed-form with an approximative model.
It should predict the behavior of parameters based on learned knowledge from
a set of samples. Such a model can be e.g., represented by a neural network.

42



Chapter 6

Exploitation of Approximation Models in
Shape Optimization

The type of optimization problems presented in Chapter 5 is mostly hard to
efficiently tackle by any known algorithm. It consists of a huge state space
which is searched through by algorithms needing another set of hyperparam-
eters ranging from number of agents to gradient step size. In this chapter,
we try to evaluate dependencies between samples, the impact of vector ini-
tialization on the genetic algorithm’s result and incorporate classification
algorithms of artificial intelligence to categorize samples by their optimized
parameters.

6.1 State Space Sampling

A problem which we immediately encounter is related to sampling methods.
We may generate different initial vectors g but still get the same (or similar)
vector(s) t. Therefore, there exist the same structures (metallizations) with
the same definition of enabled triangles which, however, may have different
values of parameters and consequently different values of a fitness function.
The question is how to sample such a space which is not well behaved in small
perturbations to achieve good gene diversity and homogeneity of samples.

Random Sampling

Let us consider random sampling which may give us a rough estimate of the
domain. An example in the form of a waterfall diagram is in Figure 6.1a. The
first drawback is given by the property of uniform sampling which returns
in average a half of the basis functions enabled and a half disabled. In this
case, we do not have any guarantee for the maximization of the Hamming
distance between multiple samples. The random process may also generate
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the same sample multiple times, which may be undesirable. Therefore, it may
be needed to remember and compare generated samples between generations
of the genetic algorithm and throw away repeating samples. This imposes
higher memory and computational requirements for storing information about
previous initialization vectors.

Equidistant Sampling

Ideally, we would like to sample N -dimensional hypercube vertices aggregated
in a set H in our state space (where each bit of the vector g represents one
dimension), while maximizing the Hamming distance [60] between them. This
can be mathematically formulated as follows

H = argmax
G

∑
i,j

dH(gi,gj), (6.1)

where G is a set ofM samples from N dimensional state space. The Hamming
distance between two vectors gi and gj is denoted as dH(gi,gj). It returns
the number of positions at which the vectors are different

Generally, there exist exponentially many distinct samples. If we consider
all samples from zero enabled basis functions to full configuration of N enabled
basis functions, we get formula

N∑
k=0

(
N

k

)
= 2N . (6.2)

We assume in this work that one basis function is fixed and serves as a
feeding1, therefore, we have N − 1 degrees of freedom. The dataset sizes for
fixed dH and N were in the past tabulated [61]. The problem of the Hamming
distance maximization for bit words of a given length and a given number
of samples remains unsolved until nowadays. Due to the complexity of this
approach, we will further investigate state spaces by random sampling.

1Without loss of generality, we consider only one-port antennas in this work. This
restriction is common for electrically small antennas. The theory presented here, however,
works without any major changes for multi-port antennas and scattering problems as well.
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Figure 6.1: Initial basis function vectors g.

Probabilistic Distribution of Solutions

We now run the algorithm presented in Section 5.2 with our fitness functions F1
and F2. We want find to out probabilities of basis functions in the final designs
after the optimization process. For the comparison of the solutions, we also
run Monte Carlo algorithm where we expect smoother probability transitions.
Figure 6.2 and Figure 6.3 show visualization of probabilities for a 8 × 16
pixelized structure.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6.2: Basis function probabilities in the final design evaluated for
fitness function F1, α = 0, β = 0 after 2000 Monte Carlo algorithm iterations.
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Figure 6.3: Basis function probabilities in the final design evaluated for
fitness function F2, α = 0, β = 0 after 15 iterations of the genetic algorithm

with 15 agents.

Probability maps show that minimization of Q-factor is equivalent to
maximization of the polarizability of the antenna structure. It is then visible
as the charge separation on the sides of a structure [62].

6.2 Classification of Solutions

Our goal is to train a classifier that can filter promising basis vectors in
the first step of the optimization process, see Figure 5.3. Its input should
be a vector of basis functions g and it outputs a class based on the values
of Q-factor. The choice of Q-factor for the classification was motivated by its
non-linearity and computational complexity where its explicit evaluation is
the speed bottleneck of optimization algorithms, cf. (5.14).

We try to show the feasibility of the concept with two illustrative structures.
The first structure is a 2 × 4 pixelized plate with 18 basis functions in
Figure 6.4a. In this case, the small number of basis functions allows us to
enumerate all combinations. The second structure is a 4× 8 plate of the same
physical size but with a denser mesh in Figure 6.4b. It has 84 basis functions
and it is already computationally infeasible to enumerate all combinations.

Classification Model

Our chosen model is a multi-layer perceptron [63]. The input layer has the
number of inputs based on degrees of freedom – basis functions on a structure.
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(a) A 2 × 4 structure. (b) A 4 × 8 structure.

Figure 6.4: The structures used for classification.

For binary classification, we have a linear layer with sigmoid activation [64]
which evaluates as

σ(x) = 1
1 + e−x . (6.3)

Its outputs are scaled on the interval between zero and one. The resulting
class can be obtained by thresholding the output. The loss function used for
binary classification is binary cross entropy [65] defined as

`(x, y) = y ln(x) + (1− y) ln(1− x), (6.4)

where x and y are scalar values representing predicted and target values.
The multi-class prediction [66] has the number of outputs equal to the

number of classes. The used activation function is softmax

Si(x) = exi

N∑
j=1

exj

(6.5)

which computes class probability for each of the N possible classes. The loss
in the N -class case is multinominal cross entropy [65], which is computed as

`(x, c) = − ln(Sc(x)) = −xc + ln

 N∑
j=1

exj

 , (6.6)

where c is index of the target class. Notice that multinominal cross entropy
is defined using the softmax function. This has practical consequences for
implementation when both of them are often combined into one layer.

The optimizer of our choice is Adaptive Moment Estimation (Adam) [67].
This optimizer can outperform, by speed and accuracy, other optimization
algorithms (e.g., stochastic gradient descent) [68]. We kept the parameters β1,
β2, and ε of Adam optimizer set to their default values, i.e., β1 = 0.9,
β2 = 0.999, and ε = 10−8 as proposed in [67].

Optimized Parameters

A neural network is a complex model with many parameters, some of them
need to be chosen beforehand – we call them hyperparameters [69]. Apart
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from learning of the weights of the neural network by backpropagation [69],
we need to select feasible values for the algorithm’s hyperparameters. Namely,
we optimize the learning rate of the optimizer, the batch size, the number
of hidden layers and the size of hidden layers. The size of hidden layers is
relaxed as one parameter, therefore all hidden layers have the same size. We
restricted hyper-parameters’ space to values in Table 6.1.

We can use multiple strategies to find the best combination of parameters.

parameter minimal value maximal value
learning rate 10−5 10−3

batch size 64 512
number of hidden layers 1 3
size of a hidden layer 20 1000

Table 6.1: Optimized hyper-parameters space for a neural network.

The simplest one for implementation is random search. We generate a random
value for each parameter from a given interval and evaluate it. Similarly,
we can employ enumerative (grid) search that sweeps parameter intervals
with a given step. Both algorithms can be well parallelized as there is no
dependency between the iterations.

The algorithm of our choice is heuristical Tree-structured Parzen Estimator
implemented in hyperopt package [70]. It models probabilities P (x | y) and
P (y) where y is a quality score (in our case the test loss) and x represents
hyper-parameters. As this approach can be computationally very expensive
even on a GPU, we run 250 hyperparameter optimization iterations, each
with 150 epochs.

Datasets

We now want to create datasets which will contain information about the
structures. We created three datasets for each structure where data represen-
tation of a structure is in the form of a basis vector g and its respective Q
value. Firstly, we need a training dataset which is used for the optimization
of the model’s parameters (e.g., weights of a neural network). The second
dataset is called validation dataset and it is used for hyperparameters tuning.
Lastly, we measure generalization performance of a fully trained model with
a test dataset. It is presumed that all three datasets are generated from the
same underlying distribution.

The dataset for the 2× 4 structure was generated by enumeration of all
possible combinations with 218−1 = 131072 valid samples. The random sam-
pling was chosen for the 4× 8 structure where, in total, we generated 281613
unique samples. The distribution of Q-factor across all three datasets can be
seen in Figure 6.5.
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(b) The 4 × 8 structure.

Figure 6.5: Distribution of Q-factor in generated datasets.

Binary Classification

The datasets for both structures were split into positive and negative samples
by thresholding Q values. The small 2 × 4 structure has positive samples
with Q ≤ 15. Similarly, the large 4 × 8 structure has positive samples
with Q ≤ 50. The dataset sizes for the small structure are in Table 6.2 and
for the large structure in Table 6.3.

class training validation test
positive samples 56088 16089 8087
negative samples 35693 10125 5020

Table 6.2: Datasets for the 2× 4 structure.

class training validation test
positive samples 58483 16518 8344
negative samples 138647 39804 19817

Table 6.3: Datasets for the 4× 8 structure.

The optimal values of the hyperparameters for both structures found after
250 optimization iterations can be seen in Table 6.4. We can see that both
learning rate values are of the same order of magnitude. On the other hand,
the classification of the smaller structure performs better with a shallow
neural network with many hidden units, whereas the larger structure can be
classified better with a three-layer network with few hidden neurons in each
layer.

We then set hyperparameters to the values depicted in Table 6.4 and trained
the network for ten cycles. The training progress of the binary classification
training for the 2×4 structure can be seen in Figure 6.6. The network performs
well for this simple example with the test accuracy (0.9942± 0.0007)%.
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parameter 2× 4 structure 4× 8 structure
learning rate 7.91 · 10−4 9.77 · 10−4

batch size 496 209
number of hidden layers 1 3
size of a hidden layer 787 21
minimal validation loss 1.50 · 10−2 1.34 · 10−1

Table 6.4: Hyperparameter values obtained after the optimization with
minimal validation loss.
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Figure 6.6: Results of the binary classification for the 2× 4 structure.

A neural network for the large structure was evaluated in the same way as
for the small structure. Training and testing values of the training process
are depicted in Figure 6.7. In this case, the accuracy reached the value
of (0.9382± 0.0024)%.

The results show that the binary classification of solutions can be done with
fairly good accuracy. Nevertheless, it still may be computationally expensive
to train a neural network even for smaller structures.
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Figure 6.7: Results of the binary classification for the 4× 8 structure.
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Classification into N Classes

Similarly to the previous section where we thresholded Q by a single value,
we now split Q into multiple intervals. This will allow us to create multiple
classes and transform the problem into N -class classification. The classes
and dataset sizes are defined in Table 6.6 for the 2× 4 and in Table 6.7 for
the 4× 8 structure.

The optimization and evaluation process was the same as for the binary case
(see Table 6.5 for optimized hyperparameter values). We achieved accuracy
of ε = (0.9803± 0.0009)% for the small structure. The training process is
depicted in Figure 6.8.

parameter 2× 4 structure 4× 8 structure
learning rate 5.64 · 10−4 7.62 · 10−4

batch size 340 215
number of hidden layers 1 3
size of a hidden layer 865 48
minimal validation loss 4.38 · 10−2 2.48 · 10−1

Table 6.5: Hyperparameter values obtained after the optimization with
minimal validation loss.

class training validation test
class 1, Q ∈ [1, 8] 28128 8210 4026
class 2, Q ∈ (8, 15] 27960 7879 4061
class 3, Q ∈ (15, 30] 25355 7241 3558
class 4, Q ∈ (30, inf] 10308 2884 1462

Table 6.6: N -class classification dataset sizes for the 2× 4 structure.
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Figure 6.8: Results of the N -class classification for the 2× 4 structure.

The same evaluation process as above was also repeated for the 4× 8 struc-
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ture (see Figure 6.9) with significantly lower accuracy of (0.8971± 0.0023)%.

class training validation test
class 1, Q ∈ [1, 20] 19725 5576 14403
class 2, Q ∈ (20, 35] 16014 4459 8615
class 3, Q ∈ (35, 100] 61326 17494 2310
class 4, Q ∈ (100, inf] 100065 28793 2833

Table 6.7: N -class classification dataset sizes for 2× 4 structure.

0 50 100 150

0.2

0.3

0.4

0.5

training

test

epoch

lo
ss

(a) Loss.

0 50 100 150
0.8

0.85

0.9

0.95

training

test

epoch

a
cc
u
ra
cy

(%
)

(b) Accuracy.

Figure 6.9: Results of the N -class classification for the 4× 8 structure.

Discussion

We can notice that the values in Table 6.4 for binary classification and in
Table 6.5 for N -class classification are of the same magnitude. It leads us to
the conclusion that the complex structures would need deeper architectures
for better performance. Additionally, we conclude that accuracy for the large
structure is already bellow the bound of usability. A huge drawback of this
approach is the time needed for hyperparameter optimization. We need to
find optimal parameters for each new structure. This may take hours even
with good hardware and it grows rapidly with the depth of a neural network
and the increasing size of datasets.
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Chapter 7

Conclusion

In this thesis, we briefly reviewed the implementation of the method of
moments for perfectly conducting obstacles and its use for electrically small
antennas. It was implemented using Nvidia’s proprietary technology CUDA,
and it can be run on graphical processing units from MATLAB’s interface
in cooperation with existing code in AToM. Moreover, the validity of the
code was proved by comparing the results with the simulation performed
in Feko suite. The achieved speedups are by order of magnitude compared
to the already existing implementation in AToM. The code can be already
downloaded from the AToM website.

In the next part of the thesis, we described the idea of antenna shape
optimization and focused on a new algorithm based on the topology sensitivity
which significantly speeds up the process. It was shown in Chapter 6 that
the current shape optimization algorithm based on the topology sensitivity
converges to similar solutions even with different initial vectors. We were
unable to satisfyingly extrapolate the underlying dependencies of parameter Q
from vectors of basis functions by neural networks. The complexity of the
state space seems to be too high for our rather simple model.

Future Work

We have proved it is conceptually a good idea to transform suitable parts of
CPU code to GPUs. Another step is to rewrite the volumetric method of
moments operating with tetrahedrons, which is developed at the Department
of Electromagnetic Field as well. This code needs even more careful treatment
as it solves problems by order of magnitude larger than surface MoM. These
problems might be already too large for current capacities of GPU memories
and it might be necessary to divide computation in smaller computational
blocks.

Lastly, we want to incorporate the results and observations from this thesis
into the shape synthesis algorithm to accelerate it even more. It will very
likely require to rethink the algorithm and rewrite it from scratch.
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Appendix B

Content of the Enclosed CD

AToM...........................................directory with antenna toolbox
+models

+solvers

+MoM2D...............................surface MoM implementation
+gpu................................GPU MoM implementation

computeBlockSize.m

createKernel.m

solveIVec_GPU.m

solveTE_GPU.m

solveTM_GPU.m

solveZE0_GPU.m

solveZE_GPU.m

solveZM0_GPU.m

solveZM_GPU.m

cuda...............................MoM CUDA source files
atomicAddTemplate.cu

helpers.cu

ITT.cu

mathematicalFunctions.cu

solveTE.cu

solveTM.cu

solveZE.cu

solveZE0.cu

solveZM.cu

solveZM0.cu

symmetrize.cu

transpose.cu

solveGPU.m............................a user callable function
RCS_GPU_Benchmark.m...................GPU MoM example
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B. Content of the Enclosed CD ..............................
Classification.................directory with basis functions classification

classificationBinary24.py......binary classification 2× 4 structure
classificationBinary48.py......binary classification 4× 8 structure
classificationNClass24.py.....N -class classification 2× 4 structure
classificationNClass48.py.....N -class classification 4× 8 structure
trainSet24.py

trainLabels24.py

validationSet24.py

validationLabels24.py

testSet24.py

testLabels24.py

trainSet48.py

trainLabels48.py

validationSet48.py

validationLabels48.py

testSet48.py

testLabels48.py
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