CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Faculty of Information Technology

F 8 Department of Theoretical Computer Science

Master's Thesis

SWM - Simple Window Manager

Jan Bina

May 2020

Supervisor: Ing. Filip Kfikava, Ph.D.






Acknowledgement

I would first like to thank my thesis
supervisor, Ing. Filip Krikava, Ph.D.,
for the introduction to this topic and
thesis guidance. 1 would also like to
thank the Czech Technical University in
Prague and the University of Helsinki
for providing me with a high-quality
education.  Finally, T would like to
express my very profound gratitude to
my parents, family, and friends for pro-
viding me with unfailing support and
continuous encouragement throughout
my years of study.

/ Declaration

I hereby declare that the presented the-
sis is my own work and that I have cited
all sources of information in accordance
with the Guideline for adhering to eth-
ical principles when elaborating an aca-
demic final thesis.

I acknowledge that my thesis is subject
to the rights and obligations stipulat-
ed by the Act No.121/2000 Coll., the
Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I
hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, in-
cluding any and all computer programs
incorporated therein or attached there-
to and all corresponding documentation
(hereinafter collectively referred to as
the “Work”), to any and all persons
that wish to utilize the Work. Such per-
sons are entitled to use the Work in any
way (including for-profit purposes) that
does not detract from its value. This
authorization is not limited in terms
of time, location and quantity. How-
ever, all persons that makes use of the
above license shall be obliged to grant
a license at least in the same scope as
defined above with respect to each and
every work that is created (wholly or in
part) based on the Work, by modifying
the Work, by combining the Work with
another work, by including the Work
in a collection of works or by adapting
the Work (including translation), and
at the same time make available the
source code of such work at least in a
way and scope that are comparable to
the way and scope in which the source
code of the Work is made available.

In Prague on 28th May 2020



Abstract

This thesis deals with the design and
implementation of a stacking window
manager for the X Window System. A
window manager is the core component
of any modern graphical desktop — it
is responsible for the placement and
appearance of application windows on
the screen. While there is a plethora of
window managers, especially on the X
Window System, most of them are ei-
ther heavyweight window managers that
are part of a desktop environment or
lightweight tiling managers. In this the-
sis, we try to fill the gap by developing
a lightweight stackable window man-
ager that complies with the freedesktop
standards such as ICCCM and EWMH,
and that follows the UNIX philosophy
of doing one thing and doing it well.
The focus has been on simplicity, code
readability, testability, and making it
easy to use and extend.

Keywords:  window manager, stack-
ing window manager, X Window Sys-
tem, X11, Xorg, ICCCM, EWMH, Go,
golang, open source

/ Abstrakt

Tato prace se zabyva navrhem a im-
plementaci klasického (nedlazdicového)
spravce oken pro X Window System.
Spravce oken se stard o rozmisténi a
vzhled oken jednotlivych aplikaci na
obrazovce a je tedy klicovou soucasti
jakéhokoliv. moderniho pocitace s
grafickym rozhranim. Ackoliv jiz ex-
istuje mnoho spravcu oken, zejména
pro X Window System, chybi zde
jednoduchy nedlazdicovy. Tato prace se
snazi jeden takovy vytvorit. Cilem bylo,
aby splnoval freedesktop standardy
ICCCM a EWMH a drzel se UNIXové
filozofie délat jednu véc a délat ji dobre.
Dtraz byl také kladen na jednoduchost,
¢itelny a testovatelny kéd, a na to, aby
byl spravce oken snadno pouzitelny a
rozsititelny.



Contents /

1 Introduction ........................ 1
Goals of the Thesis .............. 2
Structure of the Thesis .......... 2

2 Background ......................... 3

2.1 Windowing System .............. 3
2.2 Desktop Environment and
Window Manager ................ 4
2.3 Types of Window Managers..... 5
2.3.1 Stacking Window
Managers.........c.c.oun... 5
2.3.2 Tiling Window Managers ..5
2.4 Window Managers ............... 6
241 Cwm..oovoiiiiiin i 6
2.4.2 Openbox.........coveuinn... 7
243 Dwm....oooiiiii 8
244 Bspwm .......coiiiiiiin.... 9
245 03 oo 10
2.4.6 Summary ................. 11
2.5 The X Window System........ 12
2.5.1 History ..........cooouenn. 12
2.5.2 Architecture.............. 12
2.5.3 The X Protocol .......... 12
2.5.4 Properties and Atoms ... 13
2.5.5 Window Hierarchy ....... 13
2.5.6 X Client Libraries........ 14
26 ICCCM.....ovviiiiii 15
2.6.1 Selection.................. 16
2.6.2 Clients Actions........... 16
2.6.3 Creating a Top-Level
Window .................. 16
2.6.4 Client Properties......... 18
2.6.5 Changing Window
State.......oooviiiiii. 20
2.6.6 Configuring the Win-
dow ..oooiiiiii 20
27 EWMH ... 21
2.7.1 Pagers and Taskbars..... 21
2.7.2 Scope of EWMH ......... 22
2.7.3 Additional States ........ 22
2.7.4 Large Desktops .......... 22
2.7.5 Virtual Desktops......... 22
2.7.6 Sticky Windows.......... 23
2.7.7 Activation ................ 23
2.7.8 Root Window Proper-
ties. oo 23

2.7.9 Other Root Window
Messages .......ooeunnn..
2.7.10 Application Window
Properties ................
2.7.11 Stacking Order...........
3 Design...................
3.1 Tools ...
3.1.1 Xdotool ..................
3.1.2 Wmetrl ...l
3.1.3 Sxhkd ...l
3.2 Configuration and Control-
ing oo
3.3 Swmctl and Swmre ...........
3.4 Desktops — Groups ............
4 Implementation ..................
4.1 Tools ...
411 Go oo
4.1.2 X Libraries for Go ......
4.1.3 Xephyr ...ccoviiiiiiit
4.1.4 Xvfb ..o
4.2 Project Structure ..............
4.3 Inter-Process Communica-
tion ..o
4.4 Desktops — Groups ............
4.5 Becoming a Window Man-
Y <)
4.6 Window Decorations and
Reparenting ...................
4.7 Moving and Resizing ..........
4.8 Stacking ...l
4.9 Window Cycling ..............
4.10 Scriptability ....................
4.11 ICCCM and EWMH Com-
pliance ............ ... il
4.12 Testing ......coveviiiiiiii.
4.12.1 Testing Architecture.....
4.12.2 Testing Process ..........
4.12.3 Test Coverage ............
4.13 Code Management and Con-
tinuous Integration ............
4.13.1 Code Style ...............
4.13.2 Continuous Integration ..
5 Conclusion ........................
Future Work ...................
References ........................
A Acronyms ..................ooenn.



B Contents of enclosed SDcard .... 62

Vi



2.1. Window properties ..

Tables / Figures

2.2, Summary of Window Man-

ager Property Types

Vii

2.1.
2.2,
2.3.

2.4.
2.5.
2.6.
2.7.
2.8.
2.9.
2.10.
2.11.
4.1.
4.2.
4.3.

4.4.
4.5.

4.6.
4.7.
4.8.

4.9.

X architecture scheme ........... 4
Wayland architecture scheme....4
Stacking window manager

layout ... 5
Tiling window manager layout ..6
Cwm desktop ...t 7
Openbox windows and menu ....8
Dwm desktop..................... 9
Bspwm desktop ................ 10
i3 desktop ....oooiiiiii, 11
Pager ... 21
Taskbar ... 21
Xephyr running swm........... 36
Source code structure.......... 38
Info box showing group mem-

bership...........coooiiiiit 40
Window decorations ........... 42

Window decorations of
Evince and Google Chrome.... 42

Window cycling UL............. 45
Windows in a grid layout ...... 46
Failing CI checks preventing

10015 <X < P 52
Passed CI checks ............... 53



2.1.

2.2.

2.3.

3.1.
3.2.
3.3.

4.1.

4.2.
4.3.
4.4.
4.5.
4.6.
4.7.

4.8.
4.9.
4.10.
4.11.

Listings

Window property lookup us-

ing XIib...oooooiniiiion, 15
Window property lookup us-

ing XCB ... 15
Selection acquiring mecha-

100 1S) 00 17
Xdotool commands............. 29
Wmctrl commands ............. 30
Example configuration file

for sxhkd ...............ooll 30
Window property lookup us-

ing XGB ...l 34
Xgbutil API showcase.......... 35
Xevent loop........cocovvuiint 35
Xgbutil event handling......... 36
Go module configuration file .. 37
Cycling commands usage ...... 45
Script to organize windows

on desktop.............oill 46
Testing script................... 48
Test output ...............oon. 49
Test case example .............. 50
Example of a well-formed Go

code.. ..o 52

viii



Chapter 1
Introduction

Window manager is a tool that controls the placement and appearance of windows
on the screen. It is probably one of the most important parts of a graphical user
interface of today’s personal computers. Generally, we can divide window managers
into two categories, stacking window managers and tiling window managers. Stacking
window managers provide the traditional desktop metaphor and are the most widely
used type. They allow users to stack windows on top of each other, move them around,
and resize them freely. Tiling window managers, on the other hand, organize windows
on the screen so they do not overlap and use all available screen space.

The first computer shipped with a working WIMP (windows, icons, menus, pointer)
GUI was the Xerox Alto in the 1970s, which used a stacking window management [1].
Its successor, Xerox Star, was the first commercial personal computer using the desktop
metaphor, and it used tiling for most main application windows [1]. The first win-
dow manager for X11 was the Ultrix Window Manager (uwm), which was released
in 1985 [2]. It was soon replaced by the Tab Window Manager (twm) [3], which is
still standard with X.Org Server and is available as part of many X Window System
implementations. Probably the first desktop environment for Unix was the Common
Desktop Environment (CDE) [4], announced in 1993 [5]. It was developed as a uni-
fied desktop environment for many commercial proprietary Unixes that dominated the
workstation market: IBM’s AIX, Digital’s Tru64, or Sun’s Solaris [6]. Then, KDE [7]
was announced in 1996 with a goal of creating an environment in which users could
expect things to look, feel, and work consistently [8]. Its first version was then re-
leased in 1998 [9]. By that time, other desktop environments were already released,
such as Xfce [10] (1996), or Enlightenment [11] (1997), and they were soon followed by
GNOME [12] (1999) [5]. Xfce, Enlightenment, KDE, and GNOME are among the most
popular desktop environments to this day [13].

Desktop environments target a wide range of users and provide lots of built-in appli-
cations and utilities, so they can be used without much configuration. They also come
with stacking window managers, because those are controlled using a pointing device
and thus easier for most users. Among power users though, lightweight desktops are
becoming more and more popular lately, because they are light on system resources
and thus fast. This leads to the increasing popularity of tiling window managers, which
are keyboard-oriented and target power users as well. One of the first lightweight tiling
window managers was dwm [14], which was created in 2006. This has sparked the de-
velopment of dozens of other tiling managers.

While lots of lightweight tiling window managers have been created in recent years,
lightweight and keyboard-oriented stacking window managers seem to be missing. Fx-
isting stacking window managers are either part of a desktop environment and thus not
keyboard-oriented, or they are outdated, written in an unmaintainable and inextensi-
ble style, and lacking crucial features like EWMH support. Therefore, we feel a need



1. Introduction

for a lightweight, keyboard-oriented stacking window manager, that will be easy to use
and extensible.

I Goals of the Thesis

The goal of this thesis is to design and implement a stacking window manager for the
X11 Window System on Linux. This window manager should be small, easy to use, and
implemented in a modern system programming language. It should be compliant with
the Inter-Client Communication Conventions Manual (ICCCM) [15], and Extended
Window Manager Hints (EWMH) [16], the two window manager standards for X defined
by freedesktop [17]. Its core features should include:

m stacking window management,

m virtual desktops,

m basic window decorations,

m basic tiling (moving windows to half/thirds of the screen),
m extensibility, and

m scriptability.

The implementation should be easy to read, and tested.

I Structure of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, we describe the windowing
system, desktop environment, and window manager. Different types of window man-
agers are discussed and some window managers are described in detail. We talk about
the X Window System, its history, architecture, and the X protocol. We also discuss
two standard protocols defined on top of the X protocol, ICCCM, and EWMH. Chap-
ter 3 is about the design and philosophy of the proposed window manager. Finally,
Chapter 4 describes the implementation process. We go through the tools used in the
process, discuss some implementation details, and the testing process.



Chapter 2
Background

B 2.1 windowing System

A windowing system is a collection of software that creates the basic GUI (graphical
user interface) on computer display screens, including the drawing of windows and other
graphics primitives for application programs [18]|. From a programmer’s point of view, a
windowing system implements graphical primitives such as rendering fonts or drawing
a line on the screen, effectively providing an abstraction of the graphics hardware from
higher-level elements of the graphical interface like window managers [19].

The most popular windowing system among Linux users is the X Window System [20],
and its reference open-source implementation X.Org Server provided by the X.Org
Foundation [21]. The X Window System (also referred to as X or X11) originated
at MIT in 1984 [22]. Another windowing system is Wayland, which is intended as
a simpler replacement for X [23]. Wayland started in 2008 and comes with different
architecture, trying to solve problems in X’s approach.

The main problem in X’s approach that Wayland aims to solve, is that it does not isolate
applications from each other. As a result, all X applications have access to everything
on the screen, all can register to receive every keystroke, even if they do not have input
focus, and they can even inject keystrokes into other windows [24]. The architecture
schemes of X and Wayland are depicted in Figures 2.1 and 2.2. The numbers show the
flow of the events from the input device to the point where the change it affects appears
on the screen. The only difference between those two schemes is the compositor, which
is responsible for rendering the entire screen contents. Since the window location on
the screen is controlled by the compositor and may be transformed in several ways (e.g.,
scaled-down, rotated), the X server does not have the information to decide which client
should receive the event. The X server acts as a middleman that introduces an extra step
between applications and the compositor and an extra step between the compositor and
the hardware. In Wayland, on the other hand, the compositor is part of the display
server. The Wayland protocol lets the compositor send the input events directly to the
clients and lets the client send the response directly to the compositor [25].

Even though Wayland is meant to replace X in the future, it is not happening quite
yet. One of its problems is apps compatibility — software engineer Samuel Walladge
said in his 2019 article “Are we Wayland yet?” [26]: “I soon discovered that many many
apps either only supported X11, or crashed on Wayland.” Those apps then require
XWayland, which provides an embedded X server for apps that do not support Wayland
yet. Another problem is that “screen recording or sharing apps just do not work” [26],
which is caused by the Wayland architecture that isolates each client. Walladge also
mentions stability issues and concludes that the time for switching to Wayland did not
come yet. Similar problems and conclusions are also outlined in articles “X11 Sucks...
So What’s Up With Wayland?” [27] and “Wayland v/s Xorg : How Are They Similar



X client X client Wayland client Wayland client

b 7 b

4
X server Qg Compositor Wayland
5 compositor
KMS evdev KMS evdev
Kernel Kernel
Figure 2.1. X architecture scheme Figure 2.2. Wayland architecture scheme

& How Are They Different” [28]. Because of that, we decided to build swm for the X
Window System.

I 2.2 Desktop Environment and Window Manager

A desktop environment is an implementation of the desktop metaphor, which was in-
troduced by Alan Kay at Xerox PARC in 1970 to help users interact with the computer
more easily [29]. The first commercial personal computer to use the desktop metaphor
was the Xerox Star [1]. The developer of its interface, David Smith, described it in 1982
article [30]: “Every user’s initial view of the Star is the desktop, which resembles the
top of an office desk, together with surrounding furniture and equipment. It represents
a working environment, where projects and accessible resources reside. On the screen
are displayed pictures of familiar office objects, such as documents, folders, file drawers,
in-baskets, and out-baskets. These objects are displayed as small pictures, or icons.”

A desktop environment, as we know it today, bundles together a variety of components
to provide common graphical user interface elements such as icons, panels, wallpapers,
and desktop widgets [13]. Most desktop environments also include a set of integrated
applications and utilities, such as text editor, file manager, or web browser. One of
the most important parts of a desktop environment is a window manager. While the
desktop environment provides its own window manager, it can be usually replaced with
another compatible one [13]. There is a great offer of desktop environments for Linux,
for example, Arch Wiki [13] lists more than 20 of them. Some of the most popular are
KDE [7], GNOME [12], or Xfce [10].

A window manager is system software that manages windows. That means, it controls
the placement and appearance of windows within a windowing system in GUI [31]. It
allows windows to be opened, closed, resized, moved, maximized, minimized, and more.
The window manager is also responsible for tracking which window is currently active
and thus receiving the user’s input. Some window managers are specifically developed
to be part of a desktop environment, others are instead designed to be used standalone.
Using a standalone window manager allows the user to create a more lightweight and
customized environment, tailored to his own specific needs [31]. There is a great offer
of window managers for Linux. For example, Arch Wiki provides a list of window



2.3 Types of Window Managers

managers categorized by type [31], that lists more than 60 of them. In Section 2.4, we
will pick some of them and discuss them in more detail.

I 2.3 Types of Window Managers

Window managers are usually divided into two classes, based on how windows are
drawn on the screen.

Bl 2.3.1 Stacking Window Managers

Stacking window managers, also known as floating, provide the traditional desktop
metaphor used in commercial operating systems like Windows and OS X [31]. Win-
dows act like pieces of paper on a desk — they can be stacked on top of each other,
moved around, and resized freely by the user. Moving or resizing one window does not
affect the position or size of other windows, only their visible area. Window manager
must maintain the stacking order of windows and only the top window on the stack
is guaranteed to be fully visible. A window is usually moved to the top of the stack
by the window manager when the user starts to interact with it. Example layout of a
stacking window manager is depicted in Figure 2.3. Windows are overlapping and only
focused window (highlighted in blue) is fully visible.

777777 77777

Figure 2.3. The layout of a stacking window manager

Bl 2.3.2 Tiling Window Managers

Tiling window managers tile the windows so that none are overlapping and they usually
use all the available screen space. They typically make very extensive use of keyboard
shortcuts and have less or no reliance on the mouse [31]. It is not possible to move or
resize windows freely — enlarging a window shrinks its adjacent windows and vice versa,
moving is typically done by swapping the window’s position with another window. Some
types of windows, such as dialogs and pop-up windows, are not suited for tiling though.
Most tiling window managers detect those windows and leave them in a floating state,
keeping them above the windows that are tiled. Example layout of a tiling window
manager is depicted in Figure 2.4.

Tiling window managers could be split into two more categories:

m Dynamic tiling window managers tile windows based on preset layouts. They usually
offer many different layouts of window placement and the user can dynamically switch



2. Background

between them. For example, one of the most common tiling layouts is called master-
stack layout, in which one window (master) is considered the most important and
has dedicated half of the screen space, while the rest of the windows are displayed
one below the other on the second half of the screen.

m Static (manual) tiling window managers do not use layouts. They let the user decide
where windows should be placed. Most typically, when a new window is created, one
of the existing windows is shrunk to half its width/height and the new window takes
freed up space. The user can choose the window that will be shrunk and also the
direction (vertical or horizontal). Sometimes, the user can also choose the default
split ratio, so that the new window does not take half, but, for example, only a third
of the existing window space.

/ i

//,//

N0

///

Figure 2.4. The layout of a tiling window manager

I 2.4 Window Managers

As mentioned before, there is a great offer of window managers for Linux. In this
section, we will go through some of them, mainly those that inspired swm in some way.

B 241 Cwm

Cwm (Calm Window Manager) is a stacking window manager for the X Window Sys-
tem. It describes itself as a “window manager which contains many features that con-
centrate on the efficiency and transparency of window management while maintaining
the simplest and most pleasant aesthetic” [32]. It is the default window manager on
OpenBSD.

Cwm is oriented towards heavy keyboard usage — resizing, moving, hiding, raising, or
lowering windows, all can be done using keyboard shortcuts [33]. It could be even
configured to move the mouse cursor using the keyboard so that one could use the
computer without any pointing device. The user can either define custom shortcuts
using cwm’s configuration file or use the defaults.

Interface of cwm is very minimal — it only draws a one-pixel border around windows
by default, the width of the border and its color can be configured though. Cwm offers
several menus, which can be used to launch applications or switch between running
applications. The principle of these menus is that cwm shows a list of relevant content



and user can search in it and finally pick one of the filtered options [34]. Windows are
searched by their current title, old titles and by their label, which is a custom string
user can assign to every window.

Instead of the traditional virtual desktop concept, cwm is using groups. There are nine
groups with IDs 1-9 and a special “sticky” group with ID 0. Each window is assigned
to one of those groups, the user can then change its group with a keyboard shortcut.
While the sticky group is always visible on the screen, the normal group can be either
visible or hidden. This means that unlike virtual desktops, multiple groups could be
visible at the same time. The visibility of the group can be controlled by keyboard
shortcuts as well.

Figure 2.5 shows a cwm desktop with two windows and one of those menus. This menu
lists all the managed top-level windows, there are various information included:

m the group ID on the left,

m “!” indicates active (focused) window,

m “&” indicates hidden windows,

m the label of the window in square brackets,
m and finally the title of the window.

All the cwm’s configuration is done using configuration file . cwmrc. The user may add,
modify or remove shortcuts, change colors and other aspects of window management
behavior [34]. One of the drawbacks of cwm is that it does not support most of the
EWMH protocol.

window_»«
el (3) I[] fish /home/johny

(0) &[doc] Untitled 1 - Mousepad
(5) [1 New Tab - Google Chrome

Figure 2.5. Cwm desktop with two windows and a menu showing all managed windows

B 2.4.2 Openbox

Openbox is a stacking window manager. It describes itself as a “minimalistic, highly
configurable, next generation window manager with extensive standards support” [35].
It is designed to be fully compliant with [CCCM and EWMH protocols. It is the default
window manager of desktop environments LXDE [36] and its successor LXQt [37],
and it is also offered as one of the options for default window manager in many Linux
distributions, for example Lubuntu [38] and Manjaro [39].



Although Openbox claims to be minimalistic, it is much more advanced than cwm. Its
default Ul could be seen in Figure 2.6. It comes with full-featured window decorations
that include a border around the window and title bar with window title and buttons
to minimize, maximize, and close the window. It also includes a root menu on the
desktop. Using this menu, one can launch applications, bring minimized windows up
again, or start various Openbox configuration tools. Openbox does not come with a
bundled taskbar, though, and advices its users to use one of many stand-alone EWMH
compatible taskbars.

Openbox is configured by two configuration files, rc.xml and menu.xml. The first one
(rc.xml) is the main configuration file, responsible for determining the behavior and
settings of the overall session, including keyboard shortcuts, theming, virtual desktops
settings etc. [40] The second one (menu.xml) defines the type, behavior, and items of
aforementioned desktop menu. Although the default provided is a static menu (it will
not automatically update when new applications are installed), it is possible to employ
the use of dynamic menus that will automatically update as well [40].

Configuration files are not meant to be easily readable or editable — Openbox comes
with applications to edit them, one for rc.xml, called obconf and one for menu.xml,
called obmenu. Using obconf, user can, for example, easily switch Openbox theme,
that controls the looks of window decorations and menus. Obconf itself includes many
themes to choose from, more themes are available online and one can also easily create
new or modify existing theme using provided GUI application [40].

|x fish fhome/johny o=
Applications I:l
e ACCEsSsOries 3 s
oneonny
—"I= Editors 3 kel SEL
= Graphics 3
EETTEE— |
Cffice k| Opera
Multimedia F| Konqueror
Terminals k| Epiphany
File Managers ¥ pidgin Instant Messenger
System Kopete Instant Messenger
System b | ¥Chat
Log Cut

Figure 2.6. Openbox with two opened window and a menu

B 24.3 Dwm

Dwm (Dynamic Window Manager) is a dynamic tiling window manager. It manages
windows in tiled, monocle and floating layouts. All of the layouts can be applied dynam-
ically, optimising the environment for the application in use and the task performed. [14]

Dwm follows the philosophy of its authors, suckless.org, that is about keeping things
simple, minimal and usable [41]. All their projects focus on advanced and experienced
computer users. They believe that ingenious software is simple and that as the number
of lines of code in software shrinks, the less the software sucks [41]. Following this
philosophy, dwm’s source code is intended to never exceed 2 000 source lines of code and
it has no configuration file, it can only be configured by editing its C source code [14].



Dwm is extremely lightweight and fast and its interface is very minimal. It only draws
a small customizable border around windows to indicate the focus state. Windows could
be spread across nine desktops called tags and it is possible to show windows from
multiple tags at once. It comes with its own status bar which displays all available
tags, the layout, the number of visible windows, the title of the focused window, and
the text read from the root window name property [14]. It is not really possible to use
third party taskbars, because dwm does not support EWMH.

As stated before, dwm comes with three layouts by default. In tiled layout, windows are
managed in a master and stacking area. The master area contains the window which
currently needs most attention, whereas the stacking area contains all other windows.
In monocle layout, all windows are maximized to the screen size and in floating layout,
windows can be resized and moved freely.

Interesting concept of dwm are patches. Since the core dwm source code is very minimal
and is kept under 2000 lines of code, a lot of functionality is missing, and so users
started to create patches to add functionality they wanted. Those patches are in a
form of simple git diff files!, and could be found on dwm’s project website [42]. Most
of those plugins implement new types of layout (e.g., deck, fibonacci, grid), or modifies
behavior or style of the status bar.

[]= fish /fhomes/jochny

5

5

Figure 2.7. Dwm desktop with the status bar and four open windows in its default layout

B 244 Bspwm

Bspwm (binary space partitioning window manager) is a manual tiling window manager.
It represents windows as the leaves of a full binary tree, supports multiple monitors and
is configured and controlled through messages [43—44]. It supports a subset of ICCCM
and EWMH protocols, it does not state what is supported and what is not, though [43].

Bspwm is very minimalistic in terms of Ul — it only draws a simple solid color border
around its windows and has no build-in taskbar or menus. Bspwm only responds to
X events, and messages it receives on a dedicated socket. It comes with a standalone

! https://git-scm.com/docs/git-diff


https://git-scm.com/docs/git-diff

command-line application called bspc, that writes messages on the bspwm’s socket [43].
It also does not handle any keyboard or pointer inputs. For this it relies on a third
party program that translates keyboard and pointer events to bspc invocations [43]. Tt
recommends sxhkd [45] (developed by the same author). Upon startup, bspwm runs its
configuration file, bspwmsre, which is simply a shell script that calls bspc (and, possibly,
other utilities) [43].

Since bspwm represents windows as the leaves of a full binary tree, each inner node has
exactly two children and each leaf node holds exactly one window. Each inner node is
responsible for splitting its screen space in two parts and this split is defined by two
parameters: the type (horizontal or vertical) and the ratio (a real number from interval
(0,1)) [43]. New windows are inserted into a window tree at the specified insertion
point using specified insertion mode, which is configurable [43].

“/ config/bspem % I 5]

“ s “ %[

Figure 2.8. Bspwm desktop with four open windows in its default layout

B 245 i3

i3 is a dynamic tiling window manager that is primarily targeted at developers and
advanced users [46]. It uses a tree as a data structure for windows, which, according to
its authors, allows for more flexible layouts than the column-based approach used by
other window managers [46].

Unlike dwm, i3 does not try to be as minimal as possible, but it does not want to
be bloated either. This is described in one of its initial goals [46] like this: “Don’t
be bloated, don’t be fancy (simple borders are the most decoration we want to have).
However, we do not enforce unnecessary limits such as a maximum amount of source
lines of code. If it needs to be a bit bigger, it will be.”

The default Ul of i3wm is depicted in Figure 2.9. It is not that simple as Ul of dwm
or bspwm, but it is not very complex either. Windows have a simple border and also a
title bar, that only shows the name of the window. It also comes with its panel called
i3bar, which is used by default (see screenshot). Since i3 supports EWMH, any other
standalone panel could be used as well, though.

10



i3 offers three layouts for windows:

m split vertically /horizontally — windows are sized so that every window gets an equal
amount of space. This can be done either vertically or horizontally.

m stacking — only focused window is displayed. On top of it is a list of the rest of the
windows.

m tabbed — only focused window is displayed. On top of it are tabs representing the
rest of the windows.

All those layouts can be combined on the screen using so-called containers. This means
that inside a container that is tabbed can be another container that is using a split
layout, for example. An example is depicted in Figure 2.9. The leftmost window is
in fact a container that is using a tabbed layout and has two windows. Similarly, the
container right next to it has two windows in a stacking layout. A window can be also
completely removed from the tiling layout and managed as a floating window.

i3 is highly configurable using its configuration file. User can configure the UI (border
width and color for multiple window states, fonts, etc.), keyboard shortcuts, i3bar, and
the behavior of the window manager overall. For example, the user can choose that
windows will not be focused upon opening, or that specific window will be in a floating
state by default.

fish fhome/ johny

51

fish /haome/johny =g D

510

fish [home/johny
~ g D

Figure 2.9. Desktop of i3 with four containers and six open windows

Hl 2.4.6 Summary

In this section, we discussed five window managers. We picked some from each cate-
gory — cwm and Openbox represented stacking window managers, dwm, bspwm, and
i3 represented tiling window managers. In each category, we also showed different
approaches. Cwm and dwm represent minimal window managers with very minimal
UI, configuration, and no EWMH support. Bspwm stands somewhere in the middle,
with its minimal UI, but quite advanced functionality and EWMH support. Finally,
Openbox and i3 represent window managers with advanced Ul (full-fledged themeable
window decorations in Openbox, title bars and tabs in i3) and advanced configuration.

11



There are many more window managers out there, both stacking and tiling, their func-
tionalities are not much different from those presented here, though. To mention a few
more window managers, we can name Xfwm [10] or Kwin [7], which are both stack-
ing window managers and both are developed as a part of a desktop environment, Xfce
and KDE, respectively. For tiling window managers, we can mention awesome [47] or
xmonad [48], which were both inspired by dwm and they build upon it. Another popu-
lar tiling window managers are herbstluftwm [49] or Qtile [50]. For an extensive list of
both stacking and tiling window managers, we can recommend Arch Linux Wiki [31].

B 25 The XWindow System

The X Window System is a network transparent window system that runs on a wide
range of computing and graphics machines [51].

In this section, we will cover how the X server works, with a focus on communication
with its clients. We will not cover how the X server handles resources, color, graphics,
text, or input as it is not that important for window management.

Bl 2.5.1 History

The X Window System was created in the mid-1980s at the Massachusetts Institute of
Technology. To support further development, a member-funded consortium was formed
in 1988, which was later moved out of MIT, creating an independent, stand-alone
organization — the X Consortium. All rights to the X Window System were assigned to
the X Consortium in 1994. When the X Consortium closed its doors in 1996, all rights
to the X Window System were transferred to The Open Group (known as the Open
Software Foundation). The X.Org Foundation was formed in 2004 as the successor to
the X.Org Group at The Open Group. The purpose of the X.Org Foundation is to foster
the development, evolution, and maintenance of the X Window System. Membership
in the X.Org Foundation is free and open to anyone. The X.Org Foundation hosts a
public git repository of the source code on freedesktop.org. [22]

The X protocol has been at version 11 since September 1987 [52]. Many revisions have
been released since then, the latest one being X11R7.7 released in June 2012 [52].

B 2.5.2 Architecture

The X Window System is based on a client-server model. The server controls display
and input devices, such as keyboard and mouse. The client is an application that
receives input events from the server and sends output and information requests to the
server. The X architecture allows the clients and the server either to run on the same
machine or on different machines that are connected by a network. [53]

The window manager is a special X Server client that has control over the layout of
windows on the screen. To enforce this authority, the window manager is using certain
X protocol features that will be discussed later on.

Hl 2.5.3 The X Protocol

The X Protocol is a standard protocol that is used by the X Window System to exchange
information between the X Server and its clients [54]. Information is exchanged by
sending messages. The X protocol defines these four types of messages [54]:

12


freedesktop.org

m Request — generated by the client and sent to the server.

m Reply — sent from the server to the client in response to some requests.
m Event — sent from the server to the client.

m Error — like an event, but it is handled differently by clients.

To get some information about the window, for example, the client can send the
GetProperty request, to which server responds with the GetProperty reply (or er-
ror, eventually). This could be seen in Listing 2.2. X Server does not send a reply
to all requests, though. For example, to change the size and location of the window,
the client will send the Configure request. This request is processed by the window
manager, which sends the ConfigureNotify event in response, describing how the size
and location of the window was (or was not) changed.

To receive events, the client must register for them. When doing so, the client must
specify event types that it is interested in, only those will be sent to him by the X
Server. After initialization, typical X Server client runs an event loop — an infinite loop
that waits for events coming from the X Server and responds to them.

Bl 2.5.4 Properties and Atoms

Properties are arbitrary data attached to the window [54]. Each property is charac-
terized by a name, a type, and a value [54]. The client can get any property of any
window by issuing the GetProperty request mentioned before. The client can also
change some properties of its windows, or send ChangeProperty request to request
property change of some other client’s windows — only window managers and other
special clients (pagers) typically do this.

For example, Table 2.1 shows some of the properties retrieved from the top-level window
of an application using the zprop utility [55]. We can see, for example, a property
named _NET_WM_DESKTOP with type CARDINAL and value 1. This property is set by the
window manager and tells other clients on which virtual desktop this window resides.
We will discuss the meaning of some significant properties later on in more detail.

Apart from the property name, which is an ASCII string, each property also has a
unique integer ID called an atom. Atom is just a nickname for a property, so that
arbitrary-length property name strings do not have to be transferred back and forth
between the client and the server [56]. A property is uniquely identified by an atom
and a window [56].

One of the most important uses of properties is to communicate information from
applications to the window manager and vice versa [56]. The application sets properties
on its top-level window, window manager retrieves them and use them in some way. For
example, application sets the WM_NAME property (see Table 2.1) and window manager
will display this name in the title bar of the window. Another example can be the
_NET_WM_ALLOWED_ACTIONS — this one is set by the window manager and tells the
client which actions are supported by the window manager for that specific window.

Bl 2.5.5 Window Hierarchy

X windows are arranged in a tree hierarchy. At the top of this hierarchy is so-called root
window that has no parents, all other windows always have exactly one parent window.
The root window fills the entire screen and is created by the X Server on startup. [57]

13



2. Background

Property name and type Value
WM_STATE (WM_STATE) window state: Normal
icon window: 0x0
_NET_WM_ALLOWED_ACTIONS (ATOM) _NET_WM_ACTION_MOVE,
_NET_WM_DESKTOP (CARDINAL) 1
_NET_WM_WINDOW_TYPE (ATOM) _NET_WM_WINDOW_TYPE_NORMAL
_NET_WM_STATE (ATOM) _NET WM_STATE MAXIMIZED VERT,
WM_PROTOCOLS (ATOM) WM_DELETE WINDOW, WM_TAKE FOCUS
WM_CLASS (STRING) jetbrains-goland, jetbrains-goland
_NET_WM_NAME (UTF8_STRING) swm [~/projects/swm] - .../cmd/swm/main.go
WM_NAME (STRING) swm [~/projects/swm] - .../cmd/swm/main.go

Table 2.1. Window properties retrieved using xprop [55]

When a client of the X Server creates its first window, it is created as a child of the
root window. The children of the root window are called top-level windows and those
are managed by the window manager. Each top-level window can also have its own
children, but those are managed by the client itself. Typically, a client creates many
windows inside its top-level window to create application features such as buttons and
text boxes. [57]

B 2.5.6 XClientLibraries

Two official helper libraries that provide API for talking to the X Server exist, xlib and
XCB [58].

Xlib

Xlib, also known as 1ibX11, is the original C language X11 API, released in 1985. It
was designed to look like a traditional library API, hiding the fact that calls result in
protocol requests to a server. Calls that don’t require a response from the X server are
queued in a buffer to be sent as a batch of requests to the server. Those that require
a response flush all the buffered requests and then block until the response is received.
This mix of synchronous and asynchronous behavior causes some problems because it
is not obvious which calls implicitly flush the buffer and which do not.[58]

XCB

XCB is a second attempt at defining a C language binding for X11. It was first released
in 2001, after many years of experience with Xlib, learning from it, as well as from
other protocol interface libraries. XCB makes the client-server nature of the protocol
explicit in its design. The client decides when to flush the request buffer, when to read
results, and when to wait for the server to respond.[5§]

Comparison

In Listings 2.1 and 2.2 (both taken from the official developer’s guide [58]), we can see
a comparison of those two libraries on the task of looking up a window property. Xlib
generates the request to the X server to retrieve the property and appends it to its buffer
of requests. Because this type of request requires a response, Xlib flushes the buffer to
send its contents to the X Server. When Xlib receives the reply from the X Server, it
returns it to the client. If there were requests preceding the client’s request, the client

14



a A W N =

g bh W N =

2.6 ICCCM

must wait until the X Server processes all of them. XCB functions, on the other hand,
map directly onto the protocol. There are separate functions to put requests into the
outgoing buffer and to read results back from the X Server. Thanks to that, one can
send many requests to the X Server at once and then wait for all the replies at once,
minimizing the communication overhead. [58]

XGetWindowProperty (
dpy, win, atom, 0, 0, False,
AnyPropertyType, &type_ret, &format_ret,
&num_ret, &bytes_after, &prop_ret

)

Listing 2.1. Window property lookup using Xlib

cookie = xcb_get_property(
dpy, False, win, atom, XCB_GET_PROPERTY_TYPE_ANY, O, O
);
// do something while waiting for the response
reply = xcb_get_property_reply(dpy, cookie, NULL);

Listing 2.2. Window property lookup using XCB

Xlib and XCB are compatible, meaning that one can mix calls to the first with calls
to the other. This compatibility was achieved by rebuilding 1ibX11 as a layer on top
of libxcbh. They share the same X server connection and pass control of it back and
forth. That option was introduced in 1ibX11 version 1.2, and since version 1.4, released
in 2010, it is always present (not only optional).[58]

Most applications should call Xlib and XCB sparingly, and rather utilize higher-level
toolkits that provide more efficient programming models [58]. Window managers have
to usually call XCB or Xlib directly, though. For the implementation of swm, we used
the X Go Binding library [59], which is Go wrapper of XCB. We will talk about it in
more detail in Chapter 4.

B 26 iccem

It was an explicit design goal of X Version 11 to specify a mechanism, not a policy. Be-
cause of that, a client that communicates with an X11 server using the protocol defined
by the X Window System Protocol (discussed in Section 2.5) may operate correctly in
isolation but may not coexist properly with others sharing the same server [15].

Standardized communication is important especially for window managers and other
special clients like docks, toolbars or pagers, because they need to communicate with the
rest of the clients as well as with each other. Inter-Client Communication Conventions
Manual is one of two standards that define how X Window System clients should interact
with one another. It was designed at the X Consortium in 1988. Its latest version 2.0
was released in 1994 [15].

In this section, we will cover parts of [CCCM that are related to window managers and
therefore important for us. ICCCM manual [15] will be constantly referenced here, so
we will explicitly refer only other sources if they are used.

15



2. Background

B 2.6.1 Selection

Selections are the primary mechanism that X11 defines for the exchange of information
between clients. There can be an arbitrary number of selections, each of them is named
by an atom, and they are global to the server. Each selection can be owned by some
client and attached to a window created by that client.

For our window manager use case, we will be concerned about ownership of a selection
named WM_Sn, where n is the screen number. To do its job, the window manager needs
to register for SubstructureRedirect events on the root window of the screen it wants
to manage (we will discuss this in more detail in Section 4.5). Since only one client can
be registered for substructure redirection on any given window at any given time, we
need some mechanism to inform the client that is currently registered for it that we (on
behalf of the user) want to replace it. Selection provides this mechanism.

To see this in practice, look at Listing 2.3 (code is in Go, some of its constructs are
explained in a comment where needed). Firstly, on line 2, we retrieve the owner of
the selection we want to manage (WM_S2). We then check if another client owns this
selection, in which case we should get confirmation from the user that our application
could replace it. If there is no owner or we have the user’s permission to replace it,
we send the SetSelectionOwner request, specifying the selection atom (WM_S2) and
the window to which the selection would be attached (X.Dummy() in this case). If the
selection was owned by another client, we then have to wait for its termination, that
is, wait for the DestroyNotifyEvent of the window that owned the selection. After
that, we can finally register for SubstructureRedirect events on the root window of
screen 2, since we now own the selection WM_S2. The last thing we have to do to comply
with ICCCM is to listen for the SelectionClearEvent. We will receive this event
when another client sends the SetSelectionOwner request (just like we did earlier)
and we have to release managed resources (substructure redirection on root window)
and destroy the window that owns the selection. In our case, we simply quit, as there
is no point for the window manager to run without the substructure redirection.

Il 2.6.2 ClientsActions

Clients should do exactly what they would do in the absence of a window manager,
with following exceptions:

m They should hint to the window manager what resources they would like to obtain.

m They should accept the resources they are allocated, even if they are not those
requested.

m They should be prepared for resource allocations to change at any time.

Bl 2.6.3 Creating a Top-Level Window

Top-Level window is a window whose override-redirect attribute is false. It must either
be a child of a root window, or it must have been a child of a root window immediately
prior to having been reparented by the window manager. From the client’s point of
view, the window manager will regard its top-level window as being in one of three
states:

m Normal
m Iconic

16



0w N O U A W N =

W W W W W w w w w wNNNNDNDNDNDNDNDN=S =2 3 2 D a3 a2 d
©W 0 N O U0 b W N = O © 0N O 0 »hh WN -2 O O 0 ~NO U b~ wN-= 00

2.6 ICCCM

// Get selection owner of the screen we want to manage
reply := xproto.GetSelectionOwner (X.Conn(), "WM_S2").Reply()

if reply.Owner != xproto.WindowNone {
// another client owns this selection
// if user did not explicitly allow us to replace it,
// we should exit here

}

// if there is no selection owner or we want to replace it,
// send the set selection owner request for our window (X.Dummy())
xproto.SetSelectionOwner (X.Conn(), X.Dummy(), "WM_S2")

// if another client owned the selection, wait for its termination
if reply.Owner != xproto.WindowNone {
for { // timeout mechanism is omitted

e := X.Conn() .PollForEvent ()

// check that type of e is "DestroyNotifyEvent"

if destroyEvent, ok := e.(DestroyNotifyEvent); ok {

if destroyEvent.Window == reply.Owner {
break

}

¥

// now we can register for SubstructureRedirect events
// on the root window
X.RootWin() .Listen(EventMaskSubstructureRedirect) ;

// when another client sends the set selection owner request,
// we will receive the SelectionClearEvent, and by the ICCCM,
// we have to release managed resources and destroy the window
// that owned the selection - we just quit, which does the job
xevent.SelectionClearFun(func (X #*XUtil, e SelectionClearEvent)) {
if e.Selection == "WM_S2" {
xevent.Quit (X)
}
}) .Connect (X, X.Dummy())

Listing 2.3. Selection acquiring mechanism (code is simplified and would not compile as
is)

m Withdrawn

Newly created windows start in the Withdrawn state. Transitions between states hap-
pen when the top-level window is mapped and unmapped and when the window manager
receives certain messages. For historical reasons related to some initial implementa-
tions, showing a window in the X11 protocol is called mapping a window, and hiding
a window is called unmapping [60]. Transitions between those states will be described
in Section 2.6.5.

17



2. Background

Il 2.6.4 Client Properties

Client can inform the window manager of the behavior that it desires by placing prop-
erties on its top-level windows. Window manager is free to assume values it finds
convenient for any properties that are not supplied. The window manager will not
change properties written by the client. Contents of these properties are examined
by the window manager upon transition from the Withdrawn state, some properties
are also monitored for changes while the window is in the Iconic or Normal state. For
example, a file manager usually changes WM_NAME property when the user navigates to
different directories, and the window manager is expected to observe these changes and
reflect them in its UI.

In Table 2.2, we can see a summary of all client properties defined by ICCCM. Some
of them will be covered in detail.

Name Type
WM_CLASS STRING
WM_CLIENT MACHINE TEXT
WM_COLORMAP_WINDOWS WINDOW
WM_HINTS WM_HINTS
WM_ICON_NAME TEXT
WM_ICON_SIZE WM_ICON_SIZE
WM_NAME TEXT
WM_NORMAL_HINTS WM_SIZE HINTS
WM_PROTOCOLS ATOM
WM_STATE WM_STATE
WM_TRANSIENT _FOR WINDOW

Table 2.2. Summary of window manager property types

WM _CLASS

The WM_CLASS property contains two consecutive null-terminated strings. These specify
the Instance and Class names to be used by both the client and the window manager for
looking up resources for the application or as an identifying information. For example,
in Table 2.1, we have seen a window with WM_CLASS set to “jetbrains-goland, jetbrains-
goland”.

WM _NAME,WM_ICON NAME

The WM_NAME property is an uninterpreted string that the client wants the window
manager to display in association with the window (for example, in a window title
bar). Window managers are expected to make an effort to display this information,
ignoring WM_NAME is not acceptable behavior, unless the user has taken an explicit
action to make it invisible. The WM_ICON_NAME property is similar, but it is used when
the window is in Iconic state.

WM _NORMAL HINTS

The WM_NORMAL_HINTS property is used by clients to specify the minimum size that
the window can be for the client to be useful, as well as the maximum size. Window
managers should honor them, even though they do not have to. Clients can also specify

18



2.6 ICCCM

base size and size increments. If they are specified, the window manager should not
just resize the window to an arbitrary size, but the size should reflect those values in
this way: size = base_size + i x size_increment. This is used, for example, by terminal
emulators that want to fit an exact number of characters into the window.

WM _PROTOCOLS

The WM_PROTOCOLS property is a list of atoms. Each atom identifies a communication
protocol between the client and the window manager in which the client is willing to
participate. Atoms can identify both standard protocols and private protocols specific
to individual window managers. There are three protocols defined by the ICCCM at
the moment:

m WM_TAKE_FOCUS — assignment of input focus.
m WM_DELETE_WINDOW — request to delete top level window.
m WM_SAVE_YOURSELF — request to save client state (deprecated).

WM _STATE

The WM_STATE property is placed on each top-level client window that is not in
the Withdrawn state by the window manager. It specifies the state of the window
(Withdrawn, Normal, or Iconic), and ID of icon window (if the window is in Iconic
state and the window manager is displaying some).

The WM_STATE property is often used as an indicator of a top-level window. For example,
some clients (such as xprop [55]) need to find a top-level window under the pointer (user
clicking on a window). They can do it by searching the window hierarchy beneath the
selected location for a window with the WM_STATE property.

WM _TRANSIENT FOR

The WM_TRANSIENT_FOR property might contain ID of another top-level window. The
implication is that this window is a pop-up on behalf of the named window, and win-
dow managers may decide not to decorate transient windows or may treat them dif-
ferently in other ways. In particular, window managers should present newly mapped
WM_TRANSIENT_FOR windows without requiring any user interaction, even if mapping
top-level windows normally does require interaction. Dialogs, for example, are an ex-
ample of windows that should have WM_TRANSIENT_FOR set.

WM_HINTS

The WM_HINTS property is used to communicate information that does not need sep-
arate properties to the window manager. For our use case, particularly useful fields
would be flags, initial_state, and window_group. Field flags contains boolean
value for UrgencyHint, which is set to true when the window needs user attention.
Window manager should communicate this to the user — for example, change color
of window’s border. The value of the initial state field determines the state the
client wishes to be in when the top-level window is firstly mapped. It could be either
NormalState (window is visible) or IconicState (icon is visible) — see Section 2.6.3.
The window_group field lets the client specify that this window belongs to a group of
windows. Window manager can use this hint to manipulate the group as a whole.

19



2. Background

B 2.6.5 Changing Window State

As already mentioned in Section 2.6.3, window manager will assign each top-level win-
dow one of three states:

m Normal — top-level window is visible.

m Iconic — top-level window is iconic. That usually means that top-level window is
not visible, but its icon_window, icon_pixmap or WM_ICON_NAME is.

m Withdrawn — neither top-level window nor icon is visible.

Newly created top-level windows are in the Withdrawn state. Once the window has
been provided with suitable properties, the client is free to change its state as follows:

m Withdrawn — Normal — when window is mapped with WM_HINTS.initial_state be-
ing NormalState.

m Withdrawn — Iconic — when window is mapped with WM_HINTS.initial_state be-
ing IconicState.

m Normal — Iconic — clint sends ClientMessage event.

m Normal — Withdrawn — client unmaps window and sends a synthetic UnmapNotify
event.

m Iconic — Normal — client maps the window, content of W_HINTS.initial_state is
irrelevant in this case.

m Iconic — Withdrawn — client unmaps window and sends a synthetic UnmapNotify
event.

B 2.6.6 Configuring the Window

Clients can resize and reposition their top-level windows by using the ConfigureWindow
request. The attributes of the window that can be altered with this request are as
follows:

m The [z, y] location of the window’s upper left-outer corner.

m The width and height of the inner region of the window (excluding borders).
m The width of the border of the window.

m The window’s position in the stack.

The coordinate system in which the location is expressed is that of the root (irrespective
of any reparenting that may have occurred). Client configure requests are interpreted
by the window manager in the same manner as the initial window geometry specified
by the WM_NORMAL_HINTS property. Clients must be aware that there is no guarantee
that the window manager will allocate them the requested size or location and must
be prepared to deal with any size and location. Window manager can respond to a
ConfigureRequest request in three different ways:

m Not change the size, location, border width, or stacking order of the window at all.
A client will receive a synthetic ConfigureNotify event that describes the (un-
changed) geometry of the window. The client will not receive a real ConfigureNotify
event because no change has actually taken place.

m Move or restack the window without resizing it or changing its border width.

A client will receive a synthetic ConfigureNotify event following the change that
describes the new geometry of the window.

20



2.7 EWMH

m Resize the window or change its border width.
A client will receive a real ConfigureNotify event, provided that it has selected for
StructureNotify events.

B 27 ewmnH

Extended Window Manager Hints is the second standard that defines how X Window
System clients should interact with one another. It builds on the ICCCM, providing
ways to implement many features that modern desktop users expect [16]. It originated
as a sets of extensions to the ICCCM developed by the GNOME and KDE desktop
projects. Those were eventually unified into a standardized set of ICCCM additions
that any desktop environment can adopt. Its latest version 1.5 was released in 2011 [16].

In this section, we will cover parts of EWMH which are related to window managers
and therefore important for us. EWMH specification [16] will be constantly referenced
here, so we will explicitly refer only other sources if they are used.

B 2.7.1 Pagers and Taskbars

Throughout this section, we will talk about special X Server Clients. We already know
what window manager is, now we will also use term pager to refer to desktop utility
applications, such as pagers and taskbars.

Pager shows a miniature view of the desktops, representing managed windows by small
rectangles and allows the user to initiate various window manager actions by manipu-
lating these representations. Typically offered actions are activation, moving, iconifica-
tion, maximization and closing. On virtual desktops, the pager may offer ways to move
windows between desktops and to change the current desktop.

Taskbar typically represents client windows as a list of buttons labelled with the window
titles and possibly icons. Pressing a button initiates a window manager action on the
represented window, typical actions being activation and iconification.

]

e

Figure 2.10. Pager displaying four desktops with some windows on each of them

|— || —— || — |

Figure 2.11. Taskbar displaying three windows

21



2. Background

B 2.7.2 Scope of EWMH

EWMH tries to address the following issues:

m Allow clients to influence their initial state with respect to maximization, shading,
stickiness, desktop, stacking order.

m Improve the window manager’s ability to vary window decorations and maintain the
stacking order by allowing clients to hint the window manager about the type of their
windows.

m Improve the compositing manager’s ability to apply decorations and effects to
override-redirect windows.

m Enable pagers and taskbars to be implemented as separate clients and allow them to
work with any compliant window manager.

Bl 2.7.3 Additional States

The ICCCM allows window managers to implement additional window states, which will
appear to clients as substates of Normal and Iconic states. As a two common examples,
we can name mazimized and shaded states. A window manager may implement these
additional states as proper substates of Normal and Iconic states, or it may treat them
as independent flags, allowing for example a maximized window to be iconified and to
re-appear as maximized upon de-iconification.

m Maximization — maximizing should give window as much of the screen area as pos-
sible. This may not be the full screen area, but only a smaller work area, because
window manager may reserve some space for other windows, such as taskbars. A win-
dow manager is expected to remember the geometry of a maximized window and
restore it upon demaximization. Modern window managers typically allow separate
horizontal and vertical maximization.

m Shading — an alternative to iconification. A shaded window typically shows only the
titlebar, the client window is hidden, thus shading is not useful for windows which
are not decorated with a titlebar.

B 2.7.4 Large Desktops

The window manager may offer to arrange the managed windows on a desktop that
is larger than the root window. The screen functions as a viewport on this large
desktop. Different policies regarding the positioning of the viewport on the desktop
can be implemented: The window manager may only allow the viewport position to
change in increments of the screen size (paging) or it may allow arbitrary positions
(scrolling).

To fulfill the ICCCM principle that clients should behave the same regardless whether a
window manager is running or not, window managers which implement large desktops
must interpret all client-provided geometries with respect to the current viewport.

Bl 2.7.5 Virtual Desktops

Most X servers have only a single screen. The window manager may virtualize this
resource and offer multiple so-called 'virtual desktops’; of which only one can be shown
on the screen at a time. There is some variation among the features of virtual desktop

22



2.7 EWMH

implementations. There may be a fixed number of desktops, or new ones may be created
dynamically. The size of the desktops may be fixed or variable.

A window manager which implements virtual desktops generally offers a way for the
user to move clients between desktops. Clients may be allowed to occupy more than
one desktop simultaneously.

Bl 2.7.6 Sticky Windows

A window manager which implements a large or virtual desktops typically offers a way
for the user to make certain windows sticky. That means that these windows will stay
at the same position on the screen when the viewport is moved on large desktop.

B 2.7.7 Activation

In the X world, activating a window means to give it the input focus. This may not
be possible if the window is unmapped, because it is on a different desktop. Thus,
activating a window may involve additional steps like moving it to the current desktop
(or changing to the desktop the window is on), deiconifying it, or raising it.

Il 2.7.8 RootWindow Properties

As stated in Section 2.5.4, clients of X Server are communicating with each other using
properties. EWMH defines many new properties. In this section, we will take a look
at some of those properties that are set on the root window. Root window properties
are useful for communication between the window manager and pagers.

_NET_SUPPORTED

This property must by set by the window manager to indicate which hints it sup-
ports. If the hint has some states, both the hint and all its supported states must
be set — for example _NET_WM_STATE and its states, _NET_WM_STATE_MODAL and
_NET_WM_STATE_STICKY.

_ NET_CLIENT_LIST, NET_CLIENT LIST STACKING

These properties contain list of all windows managed by the window manager. While
_NET_CLIENT_LIST is ordered by initial mapping time, starting with the oldest win-
dow, _NET_CLIENT_LIST_STACKING has bottom-to-top stacking order. These proper-
ties should be set and updated by the window manager.

_NET_NUMBER_OF _DESKTOPS

This property should be set and updated by the window manager to indicate the number
of virtual desktops. A pager can request a change in the number of desktops, window
manager is free to honor or reject this request. If the number of desktops is shrinking,
clients that are still present on desktops that are out of the new range must be moved
to the very last desktop from the new set and their _NET_WM_DESKTOP property must be
updated. If the _NET_CURRENT_DESKTOP is out of the new range of available desktops,
it must be set to the last available desktop from the new set.

_NET_CURRENT_DESKTOP

An integer from interval [0, _NET_NUMBER_OF_DESKTOPS) that specifies the index of the
current desktop. It must be set and updated by the window manager. A pager can
request to switch to another virtual desktop by sending a message to the root window.

23



2. Background

_ NET_DESKTOP NAMES

The names of all virtual desktops. This is a list of NULL-terminated strings in UTF-8
encoding. It might be changed by a pager or the window manager at any time. Number
of names could be different from number of desktops:

m If there is less names than desktops, desktops with high numbers are unnamed.
m If there is more names than desktops, excess names are reserved in case the number
of desktops is increased.

_ NET_ACTIVE_ WINDOW

The window ID of the currently active window or None if no window has the focus.
This is a read-only property set by the window manager. Client may request to activate
another window by sending a message to the root window. The window manager may
decide to refuse the request.

_NET_SUPPORTING WM _CHECK

This property must be set by the window manager on the root window to be the ID
of a child window created by himself, to indicate that a compliant window manager is
active. That child window must also have this property set to the ID of child window.
The child window must also have the _NET_WM_NAME property set to the name of the
window manager.

l 2.7.9 Other Root Window Messages

Client messages sent to the root window that are not connected with any property (they
are stateless).

_NET_CLOSE_WINDOW

Message to be sent to the root window by pagers wanting to close a window. Win-
dow manager must attempt to closed the specified window. This is preferred to the
WM_DELETE message or killing the client directly by pager.

_NET_WM_MOVERESIZE

This message allows clients to initiate window movement or resizing. They can define
their own move and size grips, whilst letting the window manager control the actual
operation. This means that all moves/resizes can happen in a consistent manner as
defined by the window manager.

Il 2.7.10 Application Window Properties

Application window properties are set on the top-level window either by themselves or
by the window manager or pager. Some of them are updated throughout the lifetime
of the application, so window managers and pagers should listen for these changes and
update accordingly. We will cover those that are important for our window manager.

24



2.7 EWMH

_NET_WM_DESKTOP

Index of the desktop the window is on (or wants to be). It must must be an integer
from interval [0, _NET_NUMBER_OF_DESKTOPS), or a special value OxFFFFFFFF. If it is
not specified by the client upon transition from the Withdrawn state, window manager
should place it as it wishes. Value OxFFFFFFFF indicates that the window should appear
on all desktops. Client can request a change of desktop for non-withdrawn window by
sending a client message to the root window.

_NET_WM_WINDOW TYPE

This should be set by the client before mapping to a list of atoms indicating the func-
tional type of the window. It should be used by the window manager in determining
the decoration, stacking position and other behavior of the window. Extensions can
define new window types, but each client must include at least one of the basic types
defined here. The most important window types are as follows, listed without the
_NET_WM_WINDOW_TYPE_ prefix:

m NORMAL - indicates that this is a normal, top-level window, either managed or
override-redirect.

m DESKTOP — indicates a desktop feature. For example single window containing desktop
icons.

m DOCK — indicates a dock or panel feature. Those windows would be typically kept on
top of all other windows by window manager.

_NET_WM_STATE

A list of hints describing the window state. Window manager should honor the state
whenever withdrawn window requests to be mapped. Window manager must keep this
property updated to reflect the current state of the window. Possible states are as
follows, listed without the _NET_WM_STATE_ prefix:

m MODAL — indicates that this is a modal dialog box.
m STICKY — indicates that the window manager should keep the window’s position fixed
on the screen, even when the virtual desktop scrolls.
MAXIMIZED_VERT, MAXIMIZED_HORZ — indicates that the window is Vertically/horizon—
tally maximized.
SHADED - indicates that the window is shaded.
SKIP_TASKBAR — indicates that the window should not be included on a taskbar.
SKIP_PAGER — indicates that the window should not be included on a pager.
HIDDEN — should be set by the window manager to indicate that a window would not
be visible on the screen if its desktop/viewport were active and its coordinates were
within the screen bounds. The canonical example is that minimized windows should
be in the HIDDEN state. Pagers and similar applications should use this state instead
of WM_STATE to decide whether to display a window in miniature representations of
the windows on a desktop.

m FULLSCREEN — indicates that the window should fill the entire screen and have no
window decorations. Additionally the window manager is responsible for restoring
the original geometry after a switch from fullscreen back to normal window.

m ABOVE, BELOW — indicates that the window should be on top of/below most windows.
See Section 2.7.11 for details. They are mainly meant for user preferences and should
not be used by applications.

25



2. Background

m DEMANDS_ATTENTION — indicates that some action in or with the window happened.
This state may be set by both the client and the window manager. It should be
unset by the window manager when it decides the window got the required attention
(usually, that it got activated).

m FOCUSED — indicates whether the window’s decorations are drawn in an active state.
Clients must regard it as a read-only hint. It cannot be set at map time or changed
via a _NET_WM_STATE client message. The window given by _NET_ACTIVE_WINDOW
will usually have this hint.

An implementation may add new atoms to this list. Implementations without exten-
sions must ignore any unknown atoms, effectively removing them from the list. These
extension atoms must not start with the prefix _NET.

A client can request a change of the state by sending a client message to the root
window. This message contains mainly id of the window to which the change should be
applied, the action, which is one of REMOVE, ADD, TOGGLE, and one or two properties to
alter. It allows two properties to be changed simultaneously, specifically to allow both
horizontal and vertical maximization to be altered together.

_NET_WM_ALLOWED ACTIONS

Set by the window manager to indicate which operations it supports for this window.
The window manager must keep this property updated to reflect the actions which are
currently available for a window. Taskbars, pagers, and other tools use this property
to decide which actions should be made available to the user. Possible atoms, listed
without the _NET_WM_ACTION prefix:

MOVE

RESIZE
MINIMIZE
SHADE

STICK
MAXIMIZE_HORZ
MAXIMIZE_VERT
FULLSCREEN
CHANGE_DESKTOP
CLOSE

ABOVE

BELOW

An implementation may add new atoms to this list. Implementations without exten-
sions must ignore any unknown atoms, effectively removing them from the list. These
extension atoms must not start with the prefix _NET.

_NET_WM_STRUT_PARTIAL, NET_WM_STRUT

Property _NET_WM_STRUT_PARTIAL in newer variant of property _NET_WM_STRUT and
adds some additional parameters. This property must be set by the client if the window
is to reserve space at the edge of the screen. The property contains 4 cardinals specifying
the width of the reserved area at each border of the screen, and an additional 8 cardinals
specifying the beginning and end corresponding to each of the four struts.

26



2.7 EWMH

The purpose of struts is to reserve space at the borders of the desktop. This is useful
for a docking area, a taskbar or a panel, for instance. The window manager should
take this reserved area into account when constraining window positions - maximized
windows, for example, should not cover that area.

B 2.7.11 Stacking Order

To obtain good interoperability between different desktop environments, the following
layered stacking order is recommended, from the bottom:

windows of type _NET_WM_TYPE_DESKTOP

windows having state _NET_WM_STATE_BELOW

windows not belonging in any other layer

windows of type _NET_WM_TYPE_DOCK (unless they have state _NET_WM_TYPE_BELOW)
and windows having state _NET_WM_STATE_ABOVE

m focused windows having state _NET_WM_STATE_FULLSCREEN

Windows that are transient for another window should be kept above this window.

The window manager may choose to put some windows in different stacking positions,
for example to allow the user to bring currently active window to the top and return it
back when the window looses focus.

27



Chapter 3
Design

The primary design goal for swm was to be small, easy to use yet hackable stacking
window manager. To design such window manager, we based it on one of the core
principles of Unix philosophy, that programs should do one thing well, as stated by
Doug Mcllroy, one of the founders of the Unix tradition, in the Bell System Technical
Journal [61]: “Make each program do one thing well. To do a new job, build afresh
rather than complicate old programs by adding new features.”

To honor this principle, swm does not come with its own panel or application launcher,
as some window managers do. Instead, it focuses on that one thing, window manage-
ment, and the rest is left for third party applications. Thanks to ICCCM and EWMH
specifications, third party applications can interact with swm seamlessly and the user
can choose any application that fits his needs instead of using the one bundled with the
window manager.

For example, there are many open source panel implementations, like polybar [62],
lemonbar [63], or pypanel [64], just to name a few. To mention some application
launchers that could be used with swm, we can name dmenu [65] or rofi [66].

In this chapter, we will discuss some of the design choices made during the development
of swm into detail.

I 3.1 Tools

In this section, we will describe some tools that can be used to control swm.

B 3.1.1 Xdotool

Xdotool is a simple command-line tool for communication with the X server. While its
main use case is to fake input from the mouse and keyboard, it also supports some parts
of EWMH protocol, and thus lets you perform various window manager actions [67].
Actions important for our use-case are:

m (get|set)_desktop — get and set the current desktop.

m (get|set)_num_desktops — get and set number of desktops.

m (get|set)_desktop_for_window — get and set the desktop for window.

m windowactivate — activate a window. Sends _NET_ACTIVE_WINDOW, window manager
should do necessary changes so that specified window could be shown, for example,
switch to the desktop the window is on, and then activate it (give it input focus).

m windowminimize — minimize a window.

To specify a window on which the action should be performed, one can either directly
provide its ID, or use one of those three commands to obtain it:

28



3.1 Tools

m getactivewindow — get an ID of active window.

m selectwindow — get an ID of a window by clicking on it.

m search — get IDs of windows whose name or class is matching the search term.
Various filters are available, one can, for example, limit the search only to windows
located on the specified desktop.

Xdotool can chain commands, so you can use one command to get a window ID first and
then perform an action on it. See Listing 3.1 for some examples of xdotool commands.

xdotool windowactivate 56623105
xdotool getactivewindow windowminimize
xdotool search "chromium" set_desktop_for_window 3

Listing 3.1. Xdotool commands

B 3.1.2 Wmctrl

Wmctrl is a command-line tool for communication with the X server, similar to xdotool.
Unlike xdotool, wmctrl is specialized directly on interaction with EWMH compatible
window manager, though. It is a bit more complex than xdotool, because, as stated in
its documentation, it provides access to almost all the features defined in the EWMH
specification [68]. This means that it can do all the window manager related tasks
xdotool can do and much more, but the commands are usually not as straightforward.
That is also caused by arguments being named by a single letter, which mostly seems
to be chosen by random. We will show two commands which will be important for our
use case, the rest could be seen in the documentation [68].

m wmctrl -c <WIN> — gracefully close specified window.

m wnctrl -r <WIN> -b <STATE> — change the state of the specified window. This
command could be used, for example, to make the window maximized, minimized,
or fullscreen. It sends the _NET_WM_STATE client message as specified in EWMH. The
format of the state argument is: (removel|add|toggle) ,<PROP1>[,<PROP2>], and
the following properties are supported:

= modal,

= sticky,

= maximized_vert, maximized_horz,
shaded,

skip_taskbar, skip_pager,
hidden,

fullscreen,

above, below.

The window, on which the action should be performed, could be specified in one of
these ways:

m By default, window argument is interpreted as a string matched against the window
title and the first matching window is used.

m Using the -i option, the argument will be interpreted as a numerical window ID
represented as a decimal or hexadecimal (prefix 0x) number.

m Special strings :ACTIVE: and :SELECT: may be used to use the currently active
window or to let the user select the window by clicking on it, respectively.

29



0w N O U A WN =

3. Design

wmctrl -c -i 56623105
wmctrl -r "spotify" -b toggle,below
wmctrl -r :ACTIVE: -b toggle,maximized_vert,maximized_horz

Listing 3.2. Wmctrl commands

Wmctrl can be used to, for example, close the window or toggle its maximized state.
See Listing 3.2 for some examples of wmctrl commands.

B 3.1.3 Sxhkd

Sxhkd, standing for Simple X hotkey daemon, is an X daemon that reacts to input
events by executing commands [45]. You provide it with one or more configuration
files, which define the associations between the input events and the commands.

Example configuration file can be seen in Listing 3.3. It demonstrates how sxhkd
makes it very easy to map multiple shortcuts to multiple commands at once. It is
done using syntax {_,A,B} + X, which will define three shortcuts — X, A + X, and
B + X. Underscore is representing an empty sequence element — this is useful if we
want to have different variants of command based on modifiers used (as in the example,
line 7).

ctrl + alt + {h,j,k,1}
swmctl resize -{w,s,n,e} 20

super + alt + m : {h,j,k,1}
swmctl move -{w,s,n,e} 20

{_,shift + ,super + }XF86MonBrightness{Down,Up}
bright {-1,-10,min,+1,+10,max}

Listing 3.3. Example configuration file for sxhkd

Sxhkd can execute defined commands both on key press (default behavior) and on key
release (using modifier “@”). It has also very interesting feature called chord chain —
one can specify multiple chords separated by semicolons, the command will then only
be executed after receiving each chord of the chain in consecutive order. One can also
use colon instead of semicolon to indicate that the chord chain shall not be aborted
when the chain tail is reached — see the example, line 4. That means that if we take
our example, upon pressing super + alt + m, moving mode will be activated and we
can then move the window just by pressing keys h, j, k, 1.

I 3.2 Configuration and Controlling

Most of the window managers are using configuration files with lots and lots of options
you can configure. With swm, we decided to take a different approach:

m There is no need for swm to have commands for actions like maximizing or minimizing
the window — since it supports EWMH and there are tools for sending EWMH
messages (xdotool, wmctrl), we can just make use of them.

30



3.3 Swmctl and Swmrc

m There is no need to handle keyboard shortcuts — users can use sxhkd that does it
better than we could ever do.

This means that to maximize and minimize the window, as well as to do many more
actions, the user can use sxhkd in combination with xdotool or wmectrl and swm does
not have to be involved at all (apart from implementing the EWMH protocol).

Not everything could be done through the EWMH and third party tools, though. To
address those cases, swm comes with two tools — swmctl and swmrc — that will be
discussed in the next section.

I 3.3 Swmctl and Swmrc

Swmctl is a simple command-line utility that can be used to send commands to swm.
It is primarily meant to be used in combination with sxhkd to invoke the commands
with keyboard shortcuts, but it can also be used directly from the command-line. This
makes it easy to test the command first and edit the configuration file only after it
works exactly how one wants it to.

All the swmctl’s commands will be discussed one by one in Chapter 4 later, but to get
an idea of how swmctl works and why it is better than simple configuration file, lets
have a look at following example.

To move a window using keyboard in cwm, one has to bind keyboard shortcuts in its
configuration file like this:

moveamount 1
bind CM-k window-move-up
bind CMS-k window-move-up-big

As you can see, there is an option moveamount, which defines how many pixels the
window will move. Then, there are two commands for each direction window-move-X
and window-move-X-big. The first one moves the window by moveamount pixels, the
second one moves it by ten times the moveamount pixels.

In swmctl, on the other hand, there is a move command, that takes arguments for all
the directions and amount of pixels to move the window by. User can then bind this
command to keyboard shortcut using sxhkd like this:

ctrl + alt + {h,j,k,1}
swmctl move -{w,s,n,e} 20

This approach is both much more simple and versatile than cwm’s:

m while cwm is limited to two move amounts (and one is even dependant on the other),
swm can handle arbitrary move amount,

m swm can move the window in multiple directions in one command, and it can even
be moved by different amount of pixels in each direction.

Swmrc is just a shell script that is executed upon startup of swm. It is executed after
all the initialization has been done, so the window manager is running and can accept
any command (swmctl’s one, EWMH message sent using xdotool), but right before all
the existing windows are adopted by swm. This makes it ideal for all the configuration
commands — one can, for example, set the names of the groups, color of borders, etc.

31



3. Design

I 3.4 Desktops - Groups

Virtual desktops, sometimes called workspaces or window groups, offer a way of orga-
nizing applications. Switching to different desktop hides all the applications from the
previous desktop and shows applications from a new desktop. This way, the user can
group applications that are used together and switch between different tasks easily.

Many slightly different models of virtual desktops exist among window managers. The
most standard model is using multiple desktops, one of them being visible at any given
time and window always belonging to exactly one of them. In other models, more than
one desktop could be visible at a time and a window can belong to more than one group.

Firstly, lets briefly summarize what EWMH tells us about virtual desktops [16]:

m only one desktop can be shown on the screen at a time,

m there may be a fixed number of desktops, or new ones may be created dynamically,
m window manager offers a way for the user to move clients between desktops,

m clients may be allowed to occupy more than one desktop simultaneously.

For more detailed description, see Section 2.7.5.

For swm, we decided to build on cwm’s group model and design it in a similar way.
There is an unlimited amount of standard groups (cwm has a fixed amount of nine
groups), and one special group (called sticky), that is always visible. Every standard
group could be either visible or hidden and each window can belong to an arbitrary
number of groups. A window is visible if any of its group is visible, otherwise hidden.

Although this group model violates EWMH specification (“only one desktop can be
shown on the screen at a time”), it is the most versatile solution and, in a way, a
superset of all others. Depending on the implementation (which will be discussed in
Section 4.4), the user can always opt to have only one group visible at a time and each
window assigned to exactly one group.

32



Chapter 4
Implementation

In this chapter, we will describe the implementation process of swm. We will go through
the tools used for the implementation and testing and describe the implementation
and testing process. We will also look at code management, publishing, and continuous
integration.

I 4.1 Tools

In the section, we will go through the tools used in the implementation process — the
Go programming language, libraries used to access X11 API, and tools used for testing.

B 41.1 Go

Go programming language [69] in version 1.14 was used for the implementation of
both swm and swmctl. Firstly released in 2009, Go is a statically typed, compiled
programming language. It was designed at Google by Robert Griesemer, Rob Pike,
and Ken Thompson [69]. Go refers to itself as being expressive, concise, clean, and
efficient [69].

Go was designed to combine the efficiency and safety of languages like Java or C++
and fluidity of Python. It tries to reduce clutter and complexity. Go has no forward
declarations or header files — everything is declared exactly once. Variable types are
derived when using the declare-and-initialize construct, so the type has not to be spec-
ified explicitly. It is an object-oriented language — it has types and methods and allows
an object-oriented style of programming. There is no type hierarchy though, only in-
terfaces. Interfaces are not implemented explicitly — a type automatically satisfies any
interface that specifies a subset of its methods.

One of Go’s most important features, and feature which puts it apart from other system
programming languages (such as C, C++, Rust), is garbage collection. According
to authors of Go, managing the lifetimes of allocated objects is one of the biggest
sources of bookkeeping in system programs. Manual memory management consumes
a significant amount of programmer time and is often the cause of bugs. Go wants
to eliminate such programmer overheads by garbage collection. Its introduction to go
language was possible thanks to advances in its technology in the last few years prior
to Go launch. Go authors are confident that it can be implemented cheaply enough,
and with low enough latency, that it could be a viable approach even for networked
systems [69].

B 4.1.2 X Libraries for Go

There are two unofficial libraries for accessing X11 API from Go, XGB [59] and
xgbutil [70].

33



a b~ W N =

4. Implementation

XGB, standing for X Go Binding, is closely modeled after XCB, so it is just a low-
level API to communicate with the core X protocol and many of the X extensions
(such as ICCCM, EWMH or Xinerama). It claims to be thread safe and according to
benchmarks, it gets immediate improvement from parallelism [59].

To compare XGB with XCB, we will use the example of window property lookup. Win-
dow property lookup using XCB was shown in Listing 2.2, the same call implemented
using XGB can be seen in Listing 4.1. As expected, both versions are very similar, the
only difference is that in XGB, we can simply call Reply method on the cookie object
returned from GetProperty function, instead of passing the cookie to another function.

cookie := xproto.GetProperty(
conn, false, win, atom, xproto.GetPropertyTypeAny, O, O,
)
// do something while waiting for the response
reply, err := cookie.Reply()

Listing 4.1. Window property lookup using XGB

Xgbutil, on the other hand, is higher level utility library working on top of the XGB.
Its main goal is to make various X related tasks easier [70]. Those are, for example:

m binding keys,

m using the EWMH or ICCCM specs with the window manager,
m moving and resizing windows,

m assigning function callbacks to particular events, and others.

To get an idea about the design of xgbutil, we can have a look at some functions in List-
ing 4.2. Functions like icccm.WmNormalHintsGet could be used to get specific window
property (WM_NORMAL_HINTS in this example). Internally, it calls xprop.GetProperty,
which is a wrapper for xproto.GetProperty from XGB. It has no cookie/reply mecha-
nism though, so we are losing the asynchronicity of XCB here. We can, however, always
fall back to using XGB for cases in which we need to be asynchronous. To process raw
GetPropertyReply, which itself is just a byte array with some meta data, xgbutil de-
fines set of functions like PropValNums () and PropValWindows (). These extract slice
of integers or slice of window identifiers, respectively, out of the GetPropertyReply.
Users of the xgbutil library have the possibility to either use high-level functions like
iccem.WmNormalHintsGet, or stay with the XGB, optionally utilise those helper func-
tions from xgbutil.

Xgbutil can help us also with event handling, core part of each application interacting
with the X server using X protocol. Applications usually deal with X events using
so-called event loop, its typical implementation can be seen in Listing 4.3. It is an
infinite for loop, which starts by waiting for next X event and then branches based
on the type of the event. Application will usually have to handle much more than
three events and there will also be another branching for each of them, because, for
example, events on root window are handled differently than events on application’s
top level windows. Because of multiple branching and many possible cases, this will
quickly become unclear and difficult to maintain. Xgbutil offers callback mechanism
to handle X events. You can simply define functions (callbacks) and specify the event
type and window for which that callback will be executed. Whole event loop is then

34



0w N O U A W N =

S '
A W N =2 OO

0w N O U A W N =

S S
g A W N = O O

4.1 Tools

// WM_NORMAL_HINTS
func WmNormalHintsGet (

xu *xgbutil.XUtil, win xproto.Window,
) (*NormalHints, error)

prop, err := xprop.GetProperty(x, win, atomName)

func PropValNums (
reply *xproto.GetPropertyReply, err error
) ([Juint, error)

func PropValWindows (
reply *xproto.GetPropertyReply, err error
) ([Jxproto.Window, error)

Listing 4.2. Xgbutil API showcase

for {
xev, err := x.WaitForEvent ()
if err !'= nil {
// handle error
continue

b
switch e := xev. (type) {
case xproto.DestroyNotifyEvent:

// handle destroy notify event
case xproto.PropertyNotifyEvent:

// handle property notify event
case xproto.ConfigureRequestEvent:

// handle configure request event

}

Listing 4.3. X event loop

implemented inside xgbutil’s xevent.Main function, which calls appropriate callbacks
for each event type and window. Example callbacks definition can be seen in Listing 4.4.

Xgbutil also defines xwindow.Window structure which is a wrapper around standard X
window identifier (unsigned integer). This structure contains several methods for easier
manipulation with windows, such as Move, Resize, Map, Unmap and much more.

Xgbutil was a great help in implementation of swm and its higher-level functions
and mechanisms were used whenever it was possible/beneficial. ~ There were a
few usecases for which no high-level api was available and in those cases, XGB
was used. Omne example is setting border width of the window, which is not
possible using the xwindow.Window.Configure method from Xgbutil, so XGB’s
xproto.ConfigureWindowChecked must have been used.

B 4.1.3 Xephyr

Xephyr is a nested X server that runs as an X application [71]. This is very useful for
testing the window manager during the development, because one can make the window

35



0 N O U1 A W N =

1
12
13
14
15
16
17

4. Implementation

xevent .DestroyNotifyFun (
func(x *xgbutil.XUtil, e xevent.DestroyNotifyEvent) {
// handle destroy notify event on window *win
T,

) .Connect (X, win)

xevent .PropertyNotifyFun (
func(x *xgbutil.XUtil, e xevent.PropertyNotifyEvent) {
// handle property notify event on window *winx

i

) .Connect (X, win)

xevent.ConfigureRequestFun (
func(x *xgbutil.XUtil, e xevent.ConfigureRequestEvent) {
// handle configure request event on window *winx

I

) .Connect (X, win)

Listing 4.4. Xgbutil event handling

2020/05/05 01:57:17 Drag move step: 390, 169, 1390, 1169
2020/05/05 81:57:17 Drag move step: 390, 1468, 1398, 1148
2020/05/05 01:57:18 Drag move end: 390, 168, 1390, 1168

2020/05/85 01:57:20 Drag move begin: 195, 175, 183, 147

2020/05/05 01:57:20 Drag move step: 195, 176, 1195, 1176
2020/05/85 01:57:20 Drag move step: 196, 176, 1196, 1176
2020/05/05 01:57:21 Drag move step: 197, 176, 1197, 1176
2020/05/85 01:57:21 Drag move step: 197, 175, 1197, 1175
2020/05/05 01:57:21 Drag move step: 198, 175, 1198, 1175
2020/05/85 01:57:21 Drag move step: 198, 174, 1198, 1174
2020/05/05 01:57:21 Drag move step: 199, 174, 1199, 1174
2020/05/85 01:57:21 Drag move step: 280, 174, 1208, 1174
2020/05/05 01:57:22 Drag move end: 200, 174, 1200, 1174

2020/05/85 01:57:27 Handle root client message: _NET_CURRENT_DESKT
0P (ClientMessage {Sequence: 9118, Format: 32, Window: 970, Type:
238})

2020/05/05 01:57:28 Got command from swmctl: "cycle-win-end"
2020/05/85 01:58:32 Got command from swmctl: “"group" "add" "-g" "1
30

[

~/projects )| |

Figure 4.1. Swm running in Xephyr which runs in another instance of swm

manager manage the Xephyrs display and see its debug log in the terminal right next
to it. This is depicted in Figure 4.1.

B 4.1.4 Xvfb

Xvih, standing for X virtual framebuffer is an in-memory display server implementing
the X11 display server protocol [72]. Xvfb acts exactly like normal X display server,
serving requests and sending events as appropriate, but performing all graphical op-
erations in virtual memory without showing any output on the screen. This makes it
ideal for testing X clients, including window managers, on machines with no display
hardware and no physical input device.

I 4.2 Project Structure

The project structure is based on Go modules. Go modules were first introduced in Go
version 1.11 and became the default in version 1.13 [73]. It is basically a dependency
management system which makes dependency version information explicit and easier
to manage [73]. A module is a collection of Go packages stored in a file tree, backed

36



0w N O U A W N =

4.2 Project Structure

by go.mod file. In Listing 4.5, you can see excerpt of swm’s go.mod file. It defines
the module path, which is also the import path used for the root directory, version of
Go, which should be used for compilation, and dependency requirements, which are the
other modules needed for a successful build [73].

module github.com/janbina/swm
go 1.14

require (
github.com/BurntSushi/xgbutil v0.0.0-20190907113008-ad855c713046
/...

Listing 4.5. Go module configuration file

Since there is no official guide on how to structure packages inside Go module, we took
inspiration from Standard Go Project Layout [74]. They propose a structure with four
top-level directories, cmd, internal, pkg and vendor. This structure is based on the
structure of some popular Go projects, such as Docker [75] or Kubernetes [76], as well
as on choices made by Go team in Go’s standard library.

m cmd directory should contain main applications for the project — in our case, that
is swm and swmctl. Common practice is to have small main function which imports
and invokes the code from the internal and pkg directories.

m internal directory should contain private application and library code — the code you
don’t want others importing in their applications or libraries. Since swm is not a
library and doesn’t contain any code which could be reused in other applications, all
of its code will reside inside this directory. As of Go version 1.14, Go compiler itself
prevents others from importing the code inside this directory [77].

m pkg directory should contain code that’s meant to be used by other applications. If
the project is small, it is not necessary to put packages inside pkg directory — unlike
internal, it does not provide any extra value, so those packages could stay in root
directory. It can be, however, useful for large projects or projects with lots of non-Go
components.

Complete project structure with all the packages, helper files and directories could be
seen in Figure 4.2. All the source code for swm and swmctl is in directories ¢md and
internal. According to the recommendation, main functions of both swm and swmctl
are very minimal and they basically only invoke the code from the internal directory.
Then, there is directory with examples, which contain example configuration file for
sthkd and example swmrc startup script. They are useful for newcomers, to show
them what is possible to do and provide them with some basic usable configuration.
Directory test contains tests, which are written in Go as well, with an accompanying
shell script which does the compilation and prepares the testing environment. Finally,
go.mod and go.sun files are module configuration files used by Go compiler to fetch
and verify dependencies.

37



4. Implementation

| cmd
t SWIL ¢ ¢ e ettt e et e e e e e e swm executable
SWINCTE L oo swmctl executable
N T Y P the documentation
| examples........oiiiiiiiiii directory with example configuration files
| _intermnal
communication................... communication between swm and swmctl
COME d g holds configuration
o U =T = PP holds loaded X cursors
decoration ........ ... interface for window decorations
OGS focus management
GLOUPIMANAZET « vt eette ettt ettt et e group management
heads .........oviiiiiiiiiiiiiie holds screens and their configurations
StacCk. ... stack management
L 75 0 utilities
window.................. window structure and operations on single window
windowmanager ......... ... window management
I = o v tests
Y=o Y0 11T Yo P go configuration file
L B0 SUIM. e ettt et go configuration file

Figure 4.2. Source code structure

I 4.3 Inter-Process Communication

Communication between swm and swmctl is done using unix sockets, which is a socket
family used to communicate between processes on the same machine efficiently [78], and
therefore ideal for our needs. Sockets bound to a filesystem pathname are used. For this
purpose, swm creates its own directory inside user’s runtime directory defined by an en-
vironment variable XDG_RUNTIME_DIR, which usually points to /run/user/$USER_ID/.
Each socket is named like “:$1.$2”, where $1 is X display number and $2 its default
screen. The socket address can then look like this:

/run/user/1000/swm/:0.0

This guarantees that multiple swm instances can run on different X screens simultane-
ously (for example using Xephyr) and they all have different communication channel.

Communication is done by sending null-terminated strings back and forth over the
socket. Swmctl is designed to be as simple as possible — it only collects its command-
line arguments, sends them to the socket and waits for reply. All the heavy lifting is
done inside swm itself — it listens on the socket for command, parses it, and sends back
a reply. Reply is just an arbitrary null-terminated string which is then written to the
standard output by swmctl.

Updating existing or adding new command then requires changes inside swm only,
swmctl does not have to be modified.

38



4.4 Desktops — Groups

I 4.4 Desktops - Groups

As described in design section, virtual desktops in swm are replaced with groups. Each
window belongs to at least one group. Each group could be either visible or hidden,
except for sticky group, which is always visible. In this section, we will discuss groups
from the implementation point of view.

Since we tried to stay as EWMH compatible as possible, all the EWMH properties are
honored and updated by swm in a way that makes the most sense:

m Root window property _NET_NUMBER_OF_DESKTOPS is fully supported — number of
desktops corresponds to number of groups and is updated by swm upon change. Re-
quests to change the number of desktops are always honored and results in changing
the number of groups. When the change leads to removal of some groups, windows
whose only groups is going to be removed are reassigned to a different, valid group.

m Root window property _NET_CURRENT_DESKTOP is supported. It is set by swm to ID
of the group which is visible and which was made visible most recently. Request to
change the current desktop are honored by making the group of corresponding ID
the only visible group.

m Root window property _NET_DESKTOP_NAMES is fully supported. It is updated by
swm to the names user sets using swmctl and request to change it are honored and
names reported by swm updated accordingly.

m Client property _NET_WM_DESKTOP is supported and is set to list of IDs in ascending
order of all groups the window is part of. Even though ewmbh states that “clients may
be allowed to occupy more than one desktop simultaneously” (see Section 2.7.5), it
is not very common and most tools treat _NET_WM_DESKTOP as a single integer. To
address this issue, swmctl provides a command to retrieve all the groups the window
is part of.

The only feature that cannot be captured by any existing EWMH property is the
possibility to have more groups (desktops) visible at the same time. This makes sense,
because it goes against the EWMH specification, which says: “only one virtual desktop
can be shown on the screen at a time.” To address this, swmctl provides a command
to obtain all visible group IDs, but also, we crated custom root window property called
_SWM_VISIBLE_GROUPS. It is set by swm to list of IDs (in ascending order) of all groups
which are visible. This might be useful for existing tools which already make use of
some root window properties — they will not need to incorporate swmectl, but instead,
they will look just for one more property. For example, polybar [62] provides module
for EWMH desktops [79]. It has an indication of active desktop, which makes use
of _NET_CURRENT_DESKTOP. Using _SWM_VISIBLE_GROUPS property, it should be quite
easy to modify it to indicate not only active desktop, but also all visible groups of swm.

To achieve the functionality described in design section, swmctl provides this set of
commands:

swmctl group mode (sticky|auto)

swmctl group (toggle|show|hidel|only) <GROUP-ID>

swmctl group (set|add|remove) [-id <WINDOW-ID>] [-g <GROUP-ID>]
swmctl group names <NAME> [<NAME>...]

swmctl group get [-id <WINDOW-ID>]

swmctl group get-visible

39



4. Implementation

m mode (stickylauto) configures the grouping mode. If the group mode is sticky,
newly created windows are always assigned to sticky group. If the mode is auto,
_NET_WM_DESKTOP client property is used to determine group for window and if it is
not set, window is assigned to the group which is visible and was made visible most
recently (same logic as _NET_CURRENT_DESKTOP).

m (togglel|show|hide|only) <GROUP-ID> is there to change the visibility of the
group. Option only makes only the group with provided ID visible, the rest of
groups will be made invisible (except for sticky group).

m (set|add|remove) [-id <WINDOW-ID>] [-g <GROUP-ID>] changes the groups the
window is part of. You can set its group, which will make it belong to specified
group only, add a group, which will add specified group to all the groups the window
is already part of, or remove the window from specified group. If you remove the
window from its only group, new group will be automatically assigned to it, since
every window has to be part of some group. This group is based on grouping mode.
Both the group ID and window ID arguments are optional. If not provided, window
ID defaults to active window and group ID to current group.

m names <NAME> [<NAME>...] sets the group names.

m get [-id <WINDOW-ID>] returns list of group IDs the window belongs to. Window
ID argument is optional and defaults to active window.

m get-visible returns list of group IDs which are in visible state.

Swm also indicates the group membership of window in its Ul. Every time the group
membership changes, either using swmctl command or EWMH client message, small
info box in the top left corner of the window is shown for three seconds. This info
box lists names of all the groups the window is member of. Example can be seen
in Figure 4.3. The window in the example is member of groups named 5, G.14 and
S, where S is the name used for the sticky group. This info box is also shown upon
execution of swmctl group get command.

~fprojects ) group a g 1
~fprojects )

Figure 4.3. Info box showing group membership

I 4.5 Becoming a Window Manager

In Section 2.5.2, it was already said that “window manager is a client that has authority
over the layout of windows on the screen” and that “certain X protocol features are used
only by the window manager to enforce this authority” [53]. In this section, we will
look at this mechanism in more detail and discuss how can X client become a window
manager.

The first thing swm has to do after the start is to get a connection to the X server,
which is the case for all applications that want to communicate with the X server, not
only for window managers. After swm connects to the X server, it becomes its regular
client. They can already communicate with each other, smw can, for example, send a
request to create a window.

40



4.6 Window Decorations and Reparenting

To do its job, the window manager needs to intercept requests of other clients to change
the state of their top-level windows. This is done using mechanism called substructure
redirection. Substructure refers to the size, position, and overlapping order of the
children of a window. Substructure redirection allows a window manager to intercept
any request by an application to change the size, position, border width, or stacking
order of its top-level windows on the screen. [56]

This means that to become a window manager, client has to register for substructure
redirection on the root window. Xlib programming manual says [56]: “When the win-
dow manager selects SubstructureRedirectMask on the root window, an attempt by
any other client to change the configuration of any child of the root window will fail.
Instead an event describing the layout change request will be sent to the window man-
ager. The window manager then reads the event and determines whether to honor the
request, modify it, or deny it completely.” For this to work, the X server only allows
one running program to register for substructure redirection on any given window at
any given time [80]. If there is already a window manager running, attempts to register
for substructure redirection on the root window will fail.

After connecting to the X server, swm tries to register for substructure redirection on
the root window. If it does not succeed, swm assumes there is already another window
manager running, writes that information to the standard output, and quits. There is,
however, an option for swm to replace the running window manager. To do that, the
user has to run swm with -replace flag.

To replace running window manager, swm makes use of mechanism called selection,
which is part of the ICCCM specification and was discussed in Section 2.6.1. Swm
sends the SetSelectionOwner request, resulting in running window manager receiving
the SelectionClear event. It must react to it by releasing all resources it has man-
aged and must then destroy the window that owned the selection. ICCCM specifically
says: “For example, a window manager losing ownership of WM_S2 must deselect from
SubstructureRedirect on the root window of screen 2 before destroying the window
that owned WM_S2.” Swm is therefore, after sending the SetSelectionOwner request,
waiting for DestroyNotify event, indicating that previous window manager destroyed
its window and then tries to register for substructure redirection again — this time it
should succeed. This was also shown in Listing 2.3.

Unfortunately, many window managers do not support this selection mechanism.
For example, out of the window managers that we discussed in Section 2.4, only
Openbox supports the selection mechanism and quits when another client sends
the SetSelectionOwner request. Cwm, dwm, bspwm, and i3 do not support it.
However, if such a window manager supports at least EWMH, there exists one last
possibility for swm to replace it. EWMH requires supporting window managers to set
_NET_SUPPORTING_WM_CHECK root window property to be the ID of a child window cre-
ated by themselves, as described in Section 2.7.8. Swm could obtain this ID, forcibly
kill that window, and take the substructure redirection for itself.

I 4.6 Window Decorations and Reparenting

Window manager usually adds its own graphical elements to top-level windows, called
window decorations. Window decoration could be anything — from simple one-pixel
border to a title bar with window name and buttons to manipulate it. An example

41



4. Implementation

of such a window decoration is shown in Figure 4.4. It depicts a window with a blue
border and a title bar with three buttons — those buttons are typically used to mini-
mize, (de)maximize, and close the window. Another common functionality of window
decorations is moving and resizing the window using a pointing device — by dragging
its borders or title bar.

Window decorations are usually created and managed by the window manager, mainly
to unify the looks across all applications. However, some applications opt for custom
implementation. In this case, they need to give a hint to the window manager not to
draw any other decorations. To implement the moving and resizing functionality, they
can use the _NET_WM_MOVERESIZE EWMH client message (see Section 2.7.9), minimiz-
ing, maximizing, and closing the window is also possible through EWMH protocol. This
might be beneficial for applications that need to show some kind of toolbar in their Ul
anyway, so they include window manipulating buttons and borders as well for better
integration. For example, Figure 4.5 shows windows of document viewer Evince and
web browser Google Chrome, that come with custom window decorations.

Figure 4.4. Window decorations — borders, title bar, buttons

SWM -- Simple Window Manager

m 42 Fa 100% Q = = o x
©) janbina/swm: simplestac. x = 4
&« c 0 8 github.com/janbina/swm w . H

Figure 4.5. Custom window decorations of Evince and Google Chrome

Swm’s window decorations are pretty minimal, but configurable. There is no title bar
with buttons, just a simple solid color border around the window and rectangle box
indicating group membership — see Figure 4.3. All the colors, the width of the borders,
as well as the font and color used for group names, are customizable using following
swmctl’s commands:

swmctl config border 2 BOBEC5 00BCD4 F44336
swmctl config border-top 5 BOBEC5 00BCD4 F44336
// also border-bottom, border-left, border-right

swmctl config font "/usr/share/fonts/TTF/JetBrainsMono-Bold.ttf"

swmctl config info-bg-color 00BCD4
swmctl config info-text-color FFFFFF

It is possible to configure all the borders at once or each one separately using
config border-top command and its variants. This means each border could have

42



4.7 Moving and Resizing

different width and color. There are three colors for each border — they are used to
indicate one of three possible window states:

m normal,
m active (focused),
m attention (see state _NET_WM_STATE_DEMANDS_ATTENTION in Section 2.7.9).

When it comes to window decorations, an important topic is reparenting. As mentioned
in Section 2.5.5, X window hierarchy is tree-based, and all top-level application windows
are created as direct children of so-called root window. Window manager might step
into that and, before it maps the application window, create a new window (child of
the root), and reparent application’s top-level window, using the newly created window
as its parent. This is very important for advanced window decorations, like title bars,
because they need to be created as separate windows. If we do not do reparenting, we
will then have to manipulate all those decoration windows separately, which would be
quite difficult. If we, on the other hand, reparent the application’s top-level window,
as well as all the decoration windows, we can manipulate just their parent window.

Reparenting is quite complicated, though. As stated by Peter Hofmann, the author of
window manager called katriawm [81]: “Reparenting is not as easy as you might think.
Reparenting adds an additional layer of complexity — or maybe even more than one
layer. Plus, reparenting does not magically fix all your problems. For example, Java
expects to run under a reparenting window manager by default. If it does not, then
you might only get a grey window. Surely, when you write a reparenting WM, even a
simple one, this must be fixed, right? No, it won’t be fixed. I ended up with either half
of the window being grey or with misplaced menus.”

While developing swm, we faced those issues as well. If the window manager is non-
reparenting, applications using the standard Java GUI toolkit are rendered as a plain
gray boxes instead of rendering the GUI [82]. One solution to this might be to set
the name of the window manager to one of those that are hard-coded in the Java GUI
toolkit as non-reparenting [82]. This solution was used in early days of development of
swm. The best solution, though, is to actually reparent the windows.

In the end, we chose to reparent all the windows in swm. Not only it did solve the
problems with apps using the Java GUI toolkit, but it also made it possible to provide
better window decorations that might be easily extended in the future.

I 4.7 Moving and Resizing

For moving and resizing windows, smwctl provides three commands, move, resize and
moveresize. Their syntax is as follows:

swmctl move [-id <WINDOW-ID>]
[-n <NUM>] [-e <NUM>] [-s <NUM>] [-w <NUM>]

swmctl resize [-id <WINDOW-ID>]
[-n <NUM>] [-e <NUM>] [-s <NUM>] [-w <NUM>]

swmctl moveresize [-id <WINDOW-ID>]
[-o <ORIGIN>]
[-x <NUM>] [-y <NUM>] [-w <NUM>] [-h <NUM>]
[-xr <NUM>] [-yr <NUM>] [-wr <NUM>] [-hr <NUM>]

43



4. Implementation

The first two commands will just alter current position or size of the window — they
will move it or resize it by a specified amount of pixels in a specified direction. The
window ID argument is optional and the active (focused) window is used by default.
The movement is specified by cardinal directions, north, east, south, and west. It is
possible to combine them, so to move the window 20 pixels north and 10 pixels east,
one can issue this command:

swmctl move -n 20 -e 10

and to enlarge the window by 10 pixels in each direction, this command:
swmctl resize -n 10 -e 10 -s 10 -w 10

To shrink the window, one can simply provide a negative number of pixels.

The moveresize command can be used to set the exact position and size of the window.
The window ID argument is again optional, defaulting to active (focused) window.
There are two ways of how to provide position and size: absolute and relative. Absolute
is just the amount of pixels, relative takes the screen size and multiplies it with provided
decimal number to get the amount of pixels. Arguments for position and size are -x,
-y, —w, and -h, for x and y coordinate, width and height. For relative, one can use the
variants -xr, -yr, -wr, and -hr. Lastly, there is one more argument, -o for origin, that
defines the origin for x and y coordinates. Origin is specified by cardinal directions and
the default value is nw, meaning that origin is in the top left corner. Origin makes it easy
to constraint window to any side, without the need to calculate x and y coordinates.
For example, to make the window half the width and half the height of the screen and
place it to any corner, this command can be used:

swmctl moveresize -o {nw,ne,sw,se} -wr .5 -hr .5

I 4.8 Stacking

The stacking is done in the way recommended by the EWMH — see Section 2.7.11.
Each window belongs to some layer, based on its _NET_WM_WINDOW_TYPE property,
and within each layers, windows are ordered chronologically — window raised earlier
will be below those raised later Window can be also brought layer up or down using
_NET_WM_STATE_ABOVE or _NET_WM_STATE_BELOW states, as well as. all the way to the
top using _NET_WM_STATE_FULLSCREEN.

The stacking logic is encapsulated inside of the stack package. For every window, we
track the layer it belongs to and the time it was last raised (brought to the top of its
layer) there. Raising a window then means to update the time it was last raised, sort
all the windows based on the layer and time, and inform the X server about the new
stacking order, which will make it redraw affected windows.

Raising usually happens when the window is activated (for example by user clicking on
it). This means, raising usually only involves single window. Because of swm’s group
model (multiple groups visible at the same time), we need to be able to raise multiple
windows at once as well, though. That is the case when a group is made visible while
some other groups are already visible. In this case, we want to raise all the windows
of newly visible group above the rest of the windows (respecting layers). Swm handles
this situation correctly by updating the raise time of all the windows in the group with
respect to their previous raise time — the stacking order within the group stays the same.

44



o o~ W N =

4.9 Window Cycling

B 2.9 window cycling

Window cycling is another common window manager feature. It is directly tight to
keyboard shortcut, usually alt + Tab and it provides simple and fast way to switch
between recently active windows. Most window managers comes with Ul that lists all
the windows user can cycle to, highlighting currently chosen window — see Figure 4.6.
In minimalistic window managers, this Ul is usually missing, though. This is the case
for cwm, for example.

Swm provides very simple window cycling functionality as well. It is controlled via
three swmctl commands — example sxhkd mapping could be seen in Listing 4.6. Swm
does not come with any window cycling UI, it just temporarily raises particular win-
dow to the very top of the stack — even above fullscreen windows, so it can always
be seen. User can cycle in both directions, using commands swmctl cycle-win
and swmctl cycle-win-rev. After the cycling operation is done, that is, after
swmctl cycle-win-end is called, window that was selected is raised permanently, this
time respecting its layer though, and given the input focus (activated).

Window cycling functionality can be implemented by third party applications as well.
There is, for example, open source application called alttab, that describes itself as
“X11 window switcher designed for minimalistic window managers or standalone X11
session” [83]. It comes with decent Ul and claims that “it’s lightweight and de-
pends only on basic X11 libs, conforming to the usage of lightweight window man-
ager” [83]. It works well with swm, the only problem is that it lists windows based on
the _NET_CURRENT_DESKTOP EWMH property, and thus not showing windows from all
visible groups in swm, that makes it only semi-usable.

alt + Tab

swmctl cycle-win
alt + shift + Tab

swmctl cycle-win-rev
QAlt_L

swmctl cycle-win-end

Listing 4.6. Cycling commands usage

! SWM - Simple Window Manager
@ johny - File Manager

@ Manjaro - enjoy the simplicity - Mozilla Firefox

Figure 4.6. Window cycling UI in xfce

B 4.10 scriptability

One of the requirements for swm was scriptability. Scriptability is possible thanks to
swm’s compliance with EWMH and tools like xdotool and wmctrl, and also thanks to
swmctl. Commands provided by swmctl, xdotool, and wmctrl were showed earlier in

45



4. Implementation

this chapter, now we can have a look at a more complex example. In Listing 4.7, we
can see a script that can organize four windows from the current desktop in a grid-like
layout — the outcome is depicted in Figure 4.7. Firstly, the script makes use of two
xdotool commands to get the id of the current desktop and to get a list of windows
from that desktop. Then, it goes through those windows, taking maximally four of
them, and moving them to different parts of the screen using swmctl’s moveresize
command. The only thing that has to be changed for each window is the origin, which
determines the corner to which the window will be moved.

With just a few more lines of code, we can create a script that will organize an arbitrary
number of windows, not only four of them. We might also use different layout based
on the number of windows

#!/bin/bash

# Get up to four windows from the current desktop
# and organize them on the screen

D=$(xdotool get_desktop)
I=0

0w N O U A W N =

S Y ('
N O o0 W N =2 O ©

ORIGIN=("HW" nneu "SW" "SQ")

xdotool search -desktop $D -class "" | while read ID; do
if [[ $I -gt 3 11; then exit 0; fi
swmctl moveresize -id $ID \

((I++))

done

-o ${ORIGIN[$II} \
-xr .05 -yr .05 \
-wr .425 -hr .425

Listing 4.7. Script to organize windows on desktop

“s1

=5

=5

Figure 4.7. Windows in a grid layout produced by the script from Listing 4.7

=5

46



4.11 ICCCM and EWMH Compliance

B 4.11 1cccM and EWMH compliance

One of the goals of swm was to be more ICCCM and EWMH compliant than cwm.

As for ICCCM, swm tries to be fully compliant. It is not easy and straight-forward
task though, because ICCCM is known for being ambiguous and difficult to correctly
implement [84]. With swm, we tried hard and implemented even selection atoms that
are not essential for the window manager to work and are usually left out (see Sec-
tion 4.5). There are some ICCCM properties that are not used by swm, though. For
example, swm does not make any use of WI_ICON_NAME, because it does not show any-
thing when the window is in iconified state — that is left for third party task bars and
pagers. It does not mean that WM_ICON_NAME is not supported, though — it just is not
used because of the design and architecture of swm.

As for EWMH, swm tries to be fully compliant as well. Swm groups differ a bit
from EWMH’s virtual desktop interpretation, which also affects some desktop related
properties defined by EWMH — this was described in Section 4.4. Finally, following
EWMH properties are not supported, because they do not make sense for swm for
some reason:

m _NET_DESKTOP_VIEWPORT — swm desktops (groups) do not have viewports.

m _NET_VIRTUAL_ROOTS — according to EWMH specification [16], this property must
be set by window managers using technique of virtual roots. Swm does not use this
technique and so it does not set this property.

m _NET_DESKTOP_LAYOUT — this property is set by pagers according to EWMH specifi-
cation [16]. Swm does not have any functionality that is dependant on the desktop
layout chosen by the user, so it does not inspect this property.

m _NET_SHOWING_DESKTOP — desktop showing feature is not implemented in swm.

m NET_WM_NAME, NET_WM_VISIBLE_NAME — swm is not showing window name any-
where in its Ul and thus it is not making use of _NET_WM_NAME property nor it is
setting NET_WM_VISIBLE_NAME property.

m NET WM_ICON_NAME, NET_WM_VISIBLE_ICON_NAME — same as above.

m NET WM_STATE_SHADED, NET WM_ACTION_ SHADE — swm does not draw title bars for
windows and thus shaded state does not make sense for it.

I 4.12 Testing

Since nearly everything the window manager does is based on communication with the
X server (receiving its events and responding to them), it is impossible to thoroughly
test the window manager without the X server running. There are few parts that might
be tested in isolation (Unit tested), though. For example, it would be possible to test
stack, focus and groupmanager packages this way. They all maintain their internal
state (e.g., stacking order), so we might call methods they provide and test that this
internal state is updated accordingly. In the end though, we want to test that the
window manager reacts to the respective X events and that the internal state is also
applied to the X state anyway. Because of that, we went with integration testing to
test swm.

Martin Floser, former maintainer of KDE’s window manager KWin, said in his 2012
article [85] about window manager testing: “Given that we would have to basically

47



© 0 N O o0 b W N =

N — = —a —
O © O N O U b W N = O

4. Implementation

start the full-blown KWin to perform tests which interact with the X-Server, unit tests
are out of scope and only integration tests seem feasible.” He also described how could
the setup for window manager testing look like [85]: “We basically need a dedicated
testing framework which starts a (nested) X Server, starts KWin, performs a test and
shuts down both KWin and the X Server. A framework which is decoupled from the
running system.”

In this chapter, we will describe how was the testing done for swm, as well as what is
tested.

B 4.12.1 Testing Architecture

In Section 4.1, we described two tools that can run nested X Server, Xephyr (4.1.3),
and Xvfb (4.1.4). Both of them would be usable for testing purposes, Xvfb is much
better though — we do not need any graphical output for testing, and Xvfb does just
that. This allows us to run tests even on machines with no display hardware, like test
servers.

Tests are, as well as swm itself, written in Go, and same helper libraries were used —
XGB and xgbutil (4.1.2). To run the tests, there is single shell script that could be seen
in Listing 4.8. It compiles swm, swmctl and test app, starts Xvfb with swm and runs
the test application on it.

The testing application runs various tests, outputting the test name and whether it
finished correctly or with some errors, in which case those errors are printed to the
output as well. Example output could be seen in Listing 4.9.

# build swm, swmctl and test app

go build github.com/janbina/swm/cmd/swm

go build github.com/janbina/swm/cmd/swmctl
go build github.com/janbina/swm/test

# start xvfb
Xvfb :111 -screen 0 1024x768x16 &
XVFB_PID=$!

# start swm, discard output logs
./swm > /dev/null 2>&1 &

# run test and save the exit code
./test; EXIT_CODE=$7

# shut down nested X server and cleanup
kill -15 $XVFB_PID

rm swm swmctl test

exit $EXIT_CODE

Listing 4.8. Testing script

48



© 0 N O o0 b W N =2

_ 4 A a4
A W N = O

4.12 Testing

Testing cycling ... 0K

Testing desktop names ... OK

Testing group basics ... OK

Testing group window creation ... OK

Testing group window movement ... OK

Testing group visibility ...
error: groups.go:191: Window should be mapped
error: groups.go:198: Window should be mapped

Testing group membership ... OK

Testing moving command ... OK

Testing resizing command ... OK

Testing moveresize command ... OK

Testing window states ... OK

Total number of errors: 2

Listing 4.9. Test output

B 4.12.2 Testing Process

One particular problem in testing is the asynchronicity of X. Because of it, it is not
possible to send a request and check if it succeeded right after. For example, after
sending a request to change a window state, we need to wait before checking that it
was really changed. One option to do that would be to actually wait (i.e., sleep) before
checking. This has shown to be a possible, but not an ideal solution — one has to choose
the appropriate sleep time, long enough to be sure that the changes already took affect,
but not very long at the same time. This leads to the state that the tests are both slow
and can fail randomly at the same time. A better solution is to wait for an appropriate
X event, which is not as easy but is failproof and much faster.

Example test case is shown in Listing 4.10. It tests whether window size changes
correctly after sending a request to make it horizontally maximized. Firstly, a dummy
window is created, and both the window geometry and the root window geometry are
retrieved. After that, a request to add _NET_WM_STATE_MAXIMIZED_HORZ state to the
window is sent. Then, the test application waits for ConfigureNotify event, which is
issued upon changing window size. After that, window geometry (supposedly changed)
is retrieved again and compared to what is believed to be the correct geometry in the
horizontally maximized state — window height and y coordinate stay the same, while
the x coordinate and width are those of root window.

Bl 4.12.3 Test Coverage

Implemented tests cover the core functionality of swm, as well as the communication
between swm and swmctl, and correct reaction to various X events, mainly those defined
by EWMH. Tests are separated into eleven functions, their brief description follows:

m Cycling — tests that the window cycling works correctly. Issues swmctl commands to
cycle windows back and forth and test that correct window gets activated.

m Desktop names — tests that desktop (group) names are set correctly (by EWMH
conventions, see Section 2.7.8) by the swmctl command.

m Group basics — tests basic group manipulations using EWMH properties. That is,
that the number of groups could be changed by requests to change root window

49



© 0 N O 00 b W N =2

- a A a A A
W N O U0 b W N = O

. Implementation

win := createWindow()
initGeom := win.Geometry ()
screenGeom := X.RootWin() .Geometry ()

_ = ewmh.WmStateReqExtral(
X, win.Id, ewmh.StateAdd,
" NET_WM_STATE_MAXIMIZED HORZ", "", 2,
)
waitForConfigureNotify ()
newGeom = win.Geometry ()
assertGeomEquals (
xrect.New(
screenGeom.X (), initGeom.Y(),
screenGeom.Width(), initGeom.Height(),
)5
newGeom,
"invalid geometry",

Listing 4.10. Test case example

property _NET_NUMBER_OF_DESKTOPS, and that current group could be changed by
requests to change _NET_CURRENT_DESKTOP root window property.

Group window creation — test two swm’s group modes, sticky and auto. Changes
current group mode using swmctl command, creates some windows, and tests that
they were assigned the correct group.

Group window movement — tests that windows could be moved to different group by
requests to change their _NET_WM_DESKTOP property. Also tests that if some groups
are removed, windows from those groups are moved to another group.

Group visibility — makes different groups visible/hidden by issuing swmctl commands
and tests that windows are appropriately mapped/unmapped based on their group
membership.

Group membership — tests that one window could be member of multiple groups.
Adds/removes window from different groups and tests that correct groups are re-
ported by swmctl command.

Moving command — tests swmctl move command. Issues the command with different
set of arguments and tests that window geometry changed appropriately.

Resizing command — tests swmctl resize command. Issues the command with different
set of arguments and tests that window geometry changed appropriately.
Move-resize command — tests swmctl moveresize command. Issues the command with
different set of arguments and tests that window geometry changed appropriately.
Window states — tests that windows react properly to requests to change their
_NET_WM_STATE EWMH property (see Section 2.7.10). For example, making the
window maximized, fullscreen, hidden, focused, etc.

50



4.13 Code Management and Continuous Integration

I 4.13 Code Management and Continuous Integration

The source code is managed using Git! version control system (VCS) and is published
on GitHub? under the MIT license [86]. GitHub is the biggest and most important host
of open-source code in the world and is used by companies like Google, Facebook, or
Twitter [87].

B 4.13.1 Code Style

To maintain consistent formatting and code style across the project, we make use of
some officially provided Go Tools [88], namely gofmt, goimports, and govet:

m gofmt is a tool that automatically formats Go source code. It takes care of indenta-
tion, brace positions, and more.

m goimports updates the imports, adding missing ones, and removing unreferenced
ones. It also groups the imports into two groups — packages from the standard library
and third-party packages — and sorts them alphabetically within those groups. In
addition to fixing imports, goimports also formats code in the same style as gofmt.

m govet examines source code and reports suspicious constructs. For example, useless
assignments, unreachable code, or unused results of calls to some functions.

A short example of a well-formed Go code could be seen in Listing 4.11. Notice how
the imports are split into two groups and sorted alphabetically, and how type names
are aligned inside the structure declaration. Note that gofmt uses tabs for indentation.
While tabs are usually displayed as 8 characters wide, we opted for 4 characters wide
tabs in listings in this thesis to save some horizontal space.

Although most IDEs that support Go already include those tools and format the code
automatically upon file save, we want to be sure that no badly formatted code makes
its way into our codebase. To ensure that, we can make use of mechanism provided by
Git VCS — Git hooks. Git hooks are scripts that Git executes before or after events
such as commit or push [89]. We defined a pre-commit Git hook that runs goimports
on all files changed since the last commit and govet on the whole project (govet has
to be run on the whole project, otherwise it would report, for example, an undeclared
name that is declared in a different file). If they find any issues, they prevent the user
from committing those changes until they are fixed. Since goimports is also able to
automatically fix all the issues it finds, the user just needs to verify the changes and
add them to the commit. Issues reported by govet have to be fixed manually.

Il 4.13.2 Continuous Integration

“Continuous Integration is a software development practice where members of a team
integrate their work frequently. Each integration is verified by an automated build
(including test) to detect integration errors as quickly as possible.” [90]

There are many solutions and tools for CI. For our project, we used GitHub Actions [91].
GitHub Actions are part of GitHub where the code is hosted, so it was very easy to set
them up, and they are free for open-source projects. We can use them to run arbitrary
scripts on Linux, macOS, and Windows machines. Actions can be configured to run

! https://git-scm.com/
2 https://github.com/janbina/swm

51


https://git-scm.com/
https://github.com/janbina/swm

0 N O U A W N =

S S U (i Sy
W N O U0 W N = O ©

4. Implementation

package window

import (
Illogll
"time"

"github.com/BurntSushi/xgb/xproto"
"github.com/BurntSushi/xgbutil"
"github.com/janbina/swm/internal/config"
"github.com/janbina/swm/internal/decoration"

type Window struct {
win *xwindow.Window
infoTimer *time.Timer
decorations decoration.Decorations
moveState *MoveState

Listing 4.11. Example of a well-formed Go code

when specific activity on GitHub happens, at a scheduled time, or when an event outside
of GitHub occurs [91]. For example, the most typical use-case is to run tests for all pull
requests.

In our project, we defined two actions that run on each push to the master branch, as
well as for all pull requests to the master branch. The first action builds both swm and
swmctl, and runs tests. The second action does the static analysis — it runs goimports
and govet in the same fashion we described in the previous section. If anything fails, it
is not possible to merge the pull request. Figure 4.8 shows an example of a pull request
with failing checks, which prevents it from being merged. Figure 4.9 shows an example
of a pull request which passed all the checks and was already merged.

O 2 failing and 1 successful checks Hide all checks

b4 Static check / Format (pull_request) Failing after 56s GEGTTIERR Details
v O Build and test / Build and test (pull_request) Successiulin 44s BEGTTIELR Details
x Static check / Vet (pull_request) Failing after 55s BEGITIERR Details

Required statuses must pass before merging
All required statuses and check runs on this pull request must run successfully to enable automatic
merging.

or view command line instructions.

Figure 4.8. Failing CI checks preventing merge

52



4.13 Code Management and Continuous Integration

@ [ janbina merged commit 672558 into master 4 days ago Hide details | | Revert

3 checks passed

v Build and test Details
v Format Details
v Vet Details

Figure 4.9. Passed CI checks

53



Chapter 5
Conclusion

In this thesis, we described the working mechanisms of the X Window System Protocol
and two standard protocols defined on top of it, ICCCM and EWMH. Those mecha-
nisms and policies were described especially concerning window managers, special X
Server clients that control the placement and appearance of windows on the screen. We
also described what a window manager is, its different types, and features it usually
offers, demonstrated on some existing implementations. Finally, a new stacking win-
dow manager called swm was designed in such a way that it is small, extensible, and
scriptable. It was implemented in Go, a modern system programming language. It is
ICCCM and EWMH compliant, and its core features include stacking window man-
agement, advanced window grouping mechanism, and basic window decorations. It is
extensible and scriptable and comes with a command-line utility that makes it easy to
manipulate windows in a simple but powerful way. We also described how a window
manager could be tested and how tests for core features of swm were implemented.

I Future Work

Swm is an open-source project, its source code is published on GitHub! under the MIT
license. It was designed and implemented in a way to be built upon, to be extended with
new functionalities, and adapted to various use cases and user preferences. Therefore,
there is a potential for it to be extended by third parties, either in a way of contributions
or by starting a new project using swm as a starting point.

! https://github.com/janbina/swm

54


https://github.com/janbina/swm

References

[1] Nathan Lineback. Graphical User Interface Timeline. [online]. 2012.
http://toastytech.com/guis/guitimeline.html. [cit. 2020-05-26].

[2] Steven Mikes. X Window System Program Design and Development. Addison-
Wesley Publishing Company, 1992. ISBN 0201550776.

[3] Tom LaStrange. twm — Tab Window Manager for the X Window System. [online].
1987.
https://www.x.org/releases/X11R7.6/doc/man/manl/twm. 1.xhtml. [cit. 2020-05-
26).

[4] The Open Group. Common Desktop Environment. [online]. 1993.
http://www.opengroup.org/cde/. [cit. 2020-05-28].

[5] Bryan Lunduke. A visual history of OS desktop environments. [online]. 2014.
https://www.networkworld. com/article/2359355/156246-A-visual-history-of-
0S-desktop-environments.html. [cit. 2020-05-28].

[6] Liam Proven. Party like it’s 1999: CDE Unix desktop REBORN. [online]. 2012.
https://www.theregister.co.uk/2012/08/09/cde_goes_opensource/. [cit. 2020-05-
28].

[7] KDE. KDE. [online]. 1998.
https://kde.org/plasma-desktop. [cit. 2020-04-29].

[8] Matthias Ettrich. New Project: Kool Desktop Environment (KDE). [online]. 1996.
https://groups.google.com/forum/#!msg/de.comp.os.linux.misc/SDbiV3Iat_s/
zv_D_2ctS8sJ. [cit. 2020-05-26].

[9] Jim Hall. How the Linux desktop has grown. [online]. 2019.
https://opensource.com/article/19/8/how-linux-desktop-grown. [cit. 2020-05-
28).

[10] Xfce Development Team. Xfce. [online]. 1996.
https://www.xfce.org/. [cit. 2020-04-29).

[11] Carsten Haitzler. Enlightenment. [online|. 1997.
https://www.enlightenment.org/. [cit. 2020-05-28].

[12] The GNOME Project. GNOME. [online]. 1999.
https://www.gnome.org/. [cit. 2020-04-29].

[13] Arch Wiki. Desktop environment. [online]. 2020.
https://wiki.archlinux.org/index.php/Desktop_environment. [cit. 2020-04-29].
[14] suckless.org. Dwm. [online]. 2006.
https://dwm.suckless.org/. [cit. 2020-05-13].

[15] David Rosenthal, and Stuart W. Marks. Inter-Client Communication Conventions
Manual. [online]. 1994.
https://wuw.x.org/releases/X11R7.6/doc/xorg-docs/specs/ICCCM/icccm. html.
[cit. 2020-05-13].

55


http://toastytech.com/guis/guitimeline.html
https://www.x.org/releases/X11R7.6/doc/man/man1/twm.1.xhtml
http://www.opengroup.org/cde/
https://www.networkworld.com/article/2359355/156246-A-visual-history-of-OS-desktop-environments.html
https://www.networkworld.com/article/2359355/156246-A-visual-history-of-OS-desktop-environments.html
https://www.theregister.co.uk/2012/08/09/cde_goes_opensource/
https://kde.org/plasma-desktop
https://groups.google.com/forum/#!msg/de.comp.os.linux.misc/SDbiV3Iat_s/zv_D_2ctS8sJ
https://groups.google.com/forum/#!msg/de.comp.os.linux.misc/SDbiV3Iat_s/zv_D_2ctS8sJ
https://opensource.com/article/19/8/how-linux-desktop-grown
https://www.xfce.org/
https://www.enlightenment.org/
https://www.gnome.org/
https://wiki.archlinux.org/index.php/Desktop_environment
https://dwm.suckless.org/
https://www.x.org/releases/X11R7.6/doc/xorg-docs/specs/ICCCM/icccm.html

References

[16] X Desktop Group. Eztended Window Manager Hints. [online]. 2011.
https://specifications.freedesktop.org/wn-spec/wm-spec-1.5.html. [cit. 2020-
05-13].

[17] Freedesktop.org. Freedesktop.org. [online]. 2020.
https://www.freedesktop.org/wiki/. [cit. 2020-05-28].

[18] The Linux Information Project. Windowing System Definition. [online]. 2005.
http://www.linfo.org/windowing_system.html. [cit. 2020-05-12].

[19] STANDS4 LLC Definitions.net. Windowing system. [online]. 2020.
https://www.definitions.net/definition/windowing+system. [cit. 2020-05-12].

[20] Arch Wiki. Xorg. [online]. 2020.
https://wiki.archlinux.org/index.php/Xorg. [cit. 2020-05-12].

[21] The X.Org Foundation. X.Org. [online|. 2019.
https://www.x.org/wiki/. [cit. 2020-05-12].

[22] X.Org Foundation. XOrgFoundation — X.Org Foundation information. [online].
https://www.x.org/releases/current/doc/man/man7/X0rgFoundation.7.xhtml. [cit.
2020-04-19].

[23] freedesktop.org, and others. Wayland. [online]. 2008.
https://wayland.freedesktop.org/. [cit. 2020-05-12].

[24] Jack Wallen. Linux’s X.org server is vulnerable. Here’s how to stay safe. [online].
2017.
https: / / www . techrepublic . com/ article / a-lesser-known-reason-to-migrate-
from-x-org/. [cit. 2020-05-23].

[25] freedesktop.org, and others. Wayland Architecture. [online]. 2008.
https://wayland.freedesktop.org/architecture.html. [cit. 2020-05-12].

[26] Samuel Walladge. Are we Wayland yet? [online]. 2019.
https://www.swalladge .net/archives/2019/10/14/are-we-wayland-yet/. |[cit.
2020-05-23].

[27] Robot Guy. X11 Sucks... So What’s Up With Wayland? [online]. 2017.
https: //guyrobottv . wordpress . com/2017 /04 /05/x11-sucks-so-whats-up-with-
wayland/. [cit. 2020-05-23].

[28] Shivam Singh Sengar. Wayland v/s Xorg : How Are They Similar & How Are They
Different. [online]. 2018.
https://www.secjuice.com/wayland-vs-xorg/. [cit. 2020-05-23].

[29] Wayne E. Carlson. Computer Graphics and Computer Animation: A Retrospective
Overview. [online]. 2017.
https://ohiostate.pressbooks.pub/graphicshistory/. [cit. 2020-04-29].

[30] David C. Smith, Charles Irby, Ralph Kimball, and Bill Verplank. Designing the
Star User Interface. Byte. 1982, 242-282.

[31] Arch Wiki. Window manager. [online]. 2020.
https://wiki.archlinux.org/index.php/window_manager. [cit. 2020-04-29].

[32] Marius Aamodt Eriksen. cwm. [online]. 2004.
https://man.openbsd.org/cwm. 1. [cit. 2020-05-5].

[33] Rodolfo Gouveia. Getting started with cwm. [online]. 2009.
https://undeadly.org/cgi?action=article;sid=20090502141551. [cit. 2020-05-5].

56


https://specifications.freedesktop.org/wm-spec/wm-spec-1.5.html
https://www.freedesktop.org/wiki/
http://www.linfo.org/windowing_system.html
https://www.definitions.net/definition/windowing+system
https://wiki.archlinux.org/index.php/Xorg
https://www.x.org/wiki/
https://www.x.org/releases/current/doc/man/man7/XOrgFoundation.7.xhtml
https://wayland.freedesktop.org/
https://www.techrepublic.com/article/a-lesser-known-reason-to-migrate-from-x-org/
https://www.techrepublic.com/article/a-lesser-known-reason-to-migrate-from-x-org/
https://wayland.freedesktop.org/architecture.html
https://www.swalladge.net/archives/2019/10/14/are-we-wayland-yet/
https://guyrobottv.wordpress.com/2017/04/05/x11-sucks-so-whats-up-with-wayland/
https://guyrobottv.wordpress.com/2017/04/05/x11-sucks-so-whats-up-with-wayland/
https://www.secjuice.com/wayland-vs-xorg/
https://ohiostate.pressbooks.pub/graphicshistory/
https://wiki.archlinux.org/index.php/window_manager
https://man.openbsd.org/cwm.1
https://undeadly.org/cgi?action=article;sid=20090502141551

[34] ddc. Introduction: calm window manager. [online]. 2011.
https://www.osnews . com/story/25359/introduction-calm-window-manager/. [cit.

2020-05-5].

[35] Dana Jansens, and Mikael Magnusson. Openboz. [online]. 2002.
http://openbox.org/wiki/Main_Page. [cit. 2020-05-11].

[36] The LXDE Team. LXDE. [online]. 2006.
https://wiki.lxde.org/en/Main_Page. [cit. 2020-05-11].

[37] LXQt. LXQt. [online]. 2013.
https://1lxqt.github.io/. [cit. 2020-05-11].

[38] Lubuntu Community. Lubuntu. [online]. 2011.
https://lubuntu.me/. [cit. 2020-05-11].

[39] Manjaro GmbH & Co. KG. Manjaro. [online]. 2011.
https://manjaro.org/. [cit. 2020-05-11].

[40] Arch Wiki. Openboz. [online]. 2020.
https://wiki.archlinux.org/index.php/openbox. [cit. 2020-05-12].

[41] suckless.org. Philosophy. [online]. 2015.
https://suckless.org/philosophy/. [cit. 2020-05-13].

[42] suckless.org. Dwm patches. [online]. 2006.
https://dwm.suckless.org/patches/. [cit. 2020-05-13].

[43] Bastien Dejean. Bspwm. [online]. 2012.
https://github.com/baskerville/bspwm. [cit. 2020-05-12].

[44] Arch Wiki. Bspwm. [online]. 2020.
https://wiki.archlinux.org/index.php/Bspwm. [cit. 2020-05-12].

[45] Bastien Dejean. Simple X hotkey daemon. [online]. 2013.
https://github.com/baskerville/sxhkd. [cit. 2020-04-29].

[46] Michael Stapelberg. 3. [online]. 2009.
https://i3wm.org/. [cit. 2020-05-6].

[47] Julien Danjou. awesome. [online]. 2007.
https://awesomewm.org/. [cit. 2020-05-27].

[48] Jason Creighton Spencer Janssen, Don Stewart. zmonad. [online]. 2007.
https://xmonad.org/. [cit. 2020-05-27].

[49] Thorsten Wissmann. herbstluftwm. [online|. 2011.
https://herbstluftwm.org/. [cit. 2020-05-27].

[50] Aldo Cortesi. Qtile. [online]. 2008.
http://www.qtile.org/. [cit. 2020-05-27].

[51] X.Org Foundation. X - a portable, network-transparent window system. [online].
https://www.x.org/releases/current/doc/man/man7/X.7.xhtml. [cit. 2020-04-19].

[52] X.Org Foundation. Releases. [online].
https://www.x.org/wiki/Releases/. [cit. 2020-04-19].

[53] Adrian Nye. X Protocol reference manual for version 11 of the X window system,
Vol. 0 (Definitive Guides to the X Window System). Third edition. O’Reilly Media,
1992. ISBN 0937175501.

[54] The Open Group. X Window System Protocol. [online]. 2004.
https://www.x.org/releases/X11R7.7/doc/xproto/x11lprotocol.html. [cit. 2020-
05-28].

57


https://www.osnews.com/story/25359/introduction-calm-window-manager/
http://openbox.org/wiki/Main_Page
https://wiki.lxde.org/en/Main_Page
https://lxqt.github.io/
https://lubuntu.me/
https://manjaro.org/
https://wiki.archlinux.org/index.php/openbox
https://suckless.org/philosophy/
https://dwm.suckless.org/patches/
https://github.com/baskerville/bspwm
https://wiki.archlinux.org/index.php/Bspwm
https://github.com/baskerville/sxhkd
https://i3wm.org/
https://awesomewm.org/
https://xmonad.org/
https://herbstluftwm.org/
http://www.qtile.org/
https://www.x.org/releases/current/doc/man/man7/X.7.xhtml
https://www.x.org/wiki/Releases/
https://www.x.org/releases/X11R7.7/doc/xproto/x11protocol.html

References

[55] Mark Lillibridge. xzprop. [online]. 2019.
https://www.x.org/releases/X11R7.5/doc/man/manl/xprop.1.html. [cit. 2020-05-
22].

[56] Adrian Nye. Xlib Programming Manual for Version 11, Rel. 5, Vol. 1 (Defini-
tive Guides to the X Window System). Third edition. O’Reilly Media, 1994.
ISBN 1565920023.

[57] The Open Group. Xlib - C' Language X Interface. [online]. 2002.
https://www.x.org/releases/current/doc/1ibX11/1ibX11/1ibX11.html. [cit. 2020-
05-28].

[58] X.Org Foundation. The X New Developer’s Guide: Xlib and XCB. [online]. 2013.
https://www.x.org/wiki/guide/x1ib-and-xcb/. [cit. 2020-04-20).

[59] Andrew Gallant. X Go Binding. [online]. 2012.
https://github.com/BurntSushi/xgb. [cit. 2020-05-13].

[60] Jasper St. Pierre, and others. X Window System Basics. [online].
https://magcius.github.io/xplain/article/x-basics.html. [cit. 2020-05-13].

[61] B. A. Tague M. D. Mcllroy, E. N. Pinson. UNIX Time-Sharing System: Forward.
1978.

[62] Michael Carlberg. Polybar. [online]. 2016.
https://github.com/polybar/polybar. [cit. 2020-05-13].

[63] The Lemon Man. Lemonbar. [online]. 2012.
https://github.com/LemonBoy/bar. [cit. 2020-05-13].

[64] Jon Gelo. PyPanel. [online]. 2003.
https://github.com/jgelo/pypanel. [cit. 2020-05-13].

[65] suckless.org. Dmenu. [online]. 2006.
https://tools.suckless.org/dmenu/. [cit. 2020-05-10].

[66] Sean Pringle. Rofi. [online]. 2012.
https://github.com/davatorium/rofi. [cit. 2020-05-10].

[67] Jordan Sissel. zdotool. [online]. 2007.
https://github.com/jordansissel/xdotool. [cit. 2020-04-27].

[68] Tomas Styblo. wmctrl. [online]. 2003.
http://tripie.sweb.cz/utils/wmctrl/. [cit. 2020-04-27].

[69] The Go Authors. Go. [online]. 2009.
https://golang.org/. [cit. 2020-04-27].

[70] Andrew Gallant. XGBUtil. [online]. 2012.
https://github.com/BurntSushi/xgbutil. [cit. 2020-05-13].

[71] Matthew Allum. Xephyr. [online]. 2004.
https://www.freedesktop.org/wiki/Software/Xephyr/. [cit. 2020-04-27].

[72] David P. Wiggins. Xufb. [online].
https://www.x.org/releases/X11R7.7/doc/man/manl/XvEb.1.xhtml. [cit. 2020-04-
27].

[73] Tyler Bui-Palsulich, and Eno Compton. Using Go Modules. [online|. 2019.
https://blog.golang.org/using-go-modules. [cit. 2020-05-4].

[74] Kyle Quest. Standard Go Project Layout. [online]. 2017.
https://github.com/golang-standards/project-layout. [cit. 2020-05-4].

[75] Docker Inc. Docker. [online]. 2013.
https://github.com/docker/cli. [cit. 2020-05-4].

58


https://www.x.org/releases/X11R7.5/doc/man/man1/xprop.1.html
https://www.x.org/releases/current/doc/libX11/libX11/libX11.html
https://www.x.org/wiki/guide/xlib-and-xcb/
https://github.com/BurntSushi/xgb
https://magcius.github.io/xplain/article/x-basics.html
https://github.com/polybar/polybar
https://github.com/LemonBoy/bar
https://github.com/jgelo/pypanel
https://tools.suckless.org/dmenu/
https://github.com/davatorium/rofi
https://github.com/jordansissel/xdotool
http://tripie.sweb.cz/utils/wmctrl/
https://golang.org/
https://github.com/BurntSushi/xgbutil
https://www.freedesktop.org/wiki/Software/Xephyr/
https://www.x.org/releases/X11R7.7/doc/man/man1/Xvfb.1.xhtml
https://blog.golang.org/using-go-modules
https://github.com/golang-standards/project-layout
https://github.com/docker/cli

[76] The Kubernetes Authors. Kubernetes. [online]. 2014.
https://github.com/kubernetes/kubernetes. [cit. 2020-05-4].

[77] The Go Authors. Go 1.4 Release Notes. [online]. 2020.
https://golang.org/doc/gol.4. [cit. 2020-05-4].

[78] The Linux man-pages project. Linuz Programmer’s Manual (uniz-sockets for local
interprocess communication). [online]. 2020.
http://man7.org/linux/man-pages/man7/unix.7.html. [cit. 2020-05-6].

[79] Michael Carlberg. Module: zworkspaces. [online]. 2016.
https://github.com/polybar/polybar/wiki/Module:-xworkspaces. [cit. 2020-05-6].

[80] Chuan Ji. How X Window Managers Work, And How To Write One (Part I).
[online]. 2014.
https://jichu4n.com/posts/how-x-window-managers-work-and-how-to-write-one-
part-i/. [cit. 2020-05-7].

[81] Peter Hofmann. katriawm: The adventure of writing your own window manager.
[online]. 2016.
https://www.uninformativ.de/blog/postings/2016-01-05/0/POSTING-en.html. [cit.
2020-05-9].

[82] Arch Wiki. Java. [online]. 2020.
https://wiki.archlinux.org/index.php/Java. [cit. 2020-05-10].

[83] Alexander Kulak. Alttab. [online]. 2016.
https://github.com/sagb/alttab. [cit. 2020-05-11].

[84] Conrad Parker. [chat] Re: [SLUG] Ximian / Gnome and Xalf. [online]. 2001.
https://raw.githubusercontent.com/kfish/xsel/
1alc5edf0dc129055£7764c666da2dd468df6016/rant . txt. [cit. 2020-05-11].

[85] Martin Floser. Unit Testing a Window Manager. [online]. 2012.
https: //blog . martin-graesslin . com/blog /2012 /06 /unit-testing-a-window-
manager/. [cit. 2020-05-10].

[86] Open Source Initiative. The MIT License. [online]. 1987.
https://opensource.org/licenses/MIT. [cit. 2020-05-24].

[87] Klint Finley. For Open Source, It’s All About GitHub Now. [online]. 2019.
https://www.wired.com/story/open-source-all-about-github-now/. [cit. 2020-05-
25).

[88] The Go Authors. Go Tools. [online]. 2012.
https://github.com/golang/tools. [cit. 2020-05-24].

[89] Matthew Hudson. Git Hooks. [online]. 2012.
https://githooks.com/. [cit. 2020-05-24].

[90] Martin Fowler. Continuous Integration. [online]. 2006.
https://martinfowler.com/articles/continuousIntegration.html. [cit. 2020-05-

24].
[91] GitHub Inc. GitHub Actions. [online]. 2019.
https://github.com/features/actions. [cit. 2020-05-24].

59


https://github.com/kubernetes/kubernetes
https://golang.org/doc/go1.4
http://man7.org/linux/man-pages/man7/unix.7.html
https://github.com/polybar/polybar/wiki/Module:-xworkspaces
https://jichu4n.com/posts/how-x-window-managers-work-and-how-to-write-one-part-i/
https://jichu4n.com/posts/how-x-window-managers-work-and-how-to-write-one-part-i/
https://www.uninformativ.de/blog/postings/2016-01-05/0/POSTING-en.html
https://wiki.archlinux.org/index.php/Java
https://github.com/sagb/alttab
https://raw.githubusercontent.com/kfish/xsel/1a1c5edf0dc129055f7764c666da2dd468df6016/rant.txt
https://raw.githubusercontent.com/kfish/xsel/1a1c5edf0dc129055f7764c666da2dd468df6016/rant.txt
https://blog.martin-graesslin.com/blog/2012/06/unit-testing-a-window-manager/
https://blog.martin-graesslin.com/blog/2012/06/unit-testing-a-window-manager/
https://opensource.org/licenses/MIT
https://www.wired.com/story/open-source-all-about-github-now/
https://github.com/golang/tools
https://githooks.com/
https://martinfowler.com/articles/continuousIntegration.html
https://github.com/features/actions




Appendix A

Acronyms
API m Application programming interface
CI m Continuous Integration

EWMH m Extended Window Manager Hints

GUI m Graphical User Interface

ICCCM m Inter-Client Communication Conventions Manual
VCS m Version Control System

XGB m X Go Binding

61



Appendix B
Contents of enclosed SD card

/
BTG the directory of source codes
tswm ................. the directory of Go source codes of the implementation
thesis.....ooovveinnn.. the directory of plainTEX source codes of the thesis
DP Bina Jan 2020.pdf...............c........ the thesis text in PDF format
readme.txXt .......ooviiiiiiiii. .. the file with SD card contents description
showcase.mpd.........coiiiiiiiiiiiieann. the video with a showcase of swm

62



	TITLE
	Acknowledgement/Declaration
	Abstract/Abstrakt
	Contents
	Tables/Figures
	Listings
	Introduction
	Goals of the Thesis
	Structure of the Thesis

	Background
	Windowing System
	Desktop Environment and Window Manager
	Types of Window Managers
	Stacking Window Managers
	Tiling Window Managers

	Window Managers
	Cwm
	Openbox
	Dwm
	Bspwm
	i3
	Summary

	The X Window System
	History
	Architecture
	The X Protocol
	Properties and Atoms
	Window Hierarchy
	X Client Libraries

	ICCCM
	Selection
	Clients Actions
	Creating a Top-Level Window
	Client Properties
	Changing Window State
	Configuring the Window

	EWMH
	Pagers and Taskbars
	Scope of EWMH
	Additional States
	Large Desktops
	Virtual Desktops
	Sticky Windows
	Activation
	Root Window Properties
	Other Root Window Messages
	Application Window Properties
	Stacking Order


	Design
	Tools 
	Xdotool 
	Wmctrl 
	Sxhkd 

	Configuration and Controlling 
	Swmctl and Swmrc 
	Desktops -- Groups 

	Implementation
	Tools 
	Go 
	X Libraries for Go 
	Xephyr 
	Xvfb 

	Project Structure 
	Inter-Process Communication 
	Desktops -- Groups 
	Becoming a Window Manager 
	Window Decorations and Reparenting 
	Moving and Resizing 
	Stacking 
	Window Cycling 
	Scriptability
	ICCCM and EWMH Compliance 
	Testing 
	Testing Architecture
	Testing Process
	Test Coverage

	Code Management and Continuous Integration
	Code Style
	Continuous Integration


	Conclusion
	Future Work

	References
	Acronyms
	Contents of enclosed SD card

