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Abstrakt

Expanze na trhu chytrých telefon̊u umožňuje kuřák̊um zač́ıt odvykat kouřeńı s pomoćı
jejich mobilńıch zař́ızeńı. Mobilńı aplikace mohou uživateli pomoct proj́ıt celým procesem
odvykáńı. Tato práce se zaměřuje na analýzu a vizualizaci uživatelských dat z jedné takové
aplikace.

Uživatelská data byla rozdělena na dvě hlavńı skupiny - data jako jsou demografické
údaje či postup aplikaćı, u kterých lze hodnoty automaticky interpretovat, a nestrukturovaná
textová data. Prvńı skupina dat byla následně vizualizována pomoćı vlastńıho rozš́ı̌reńı
Django administrace, které umožňuje autorizovaným uživatel̊um filtrovat a dále zpracovávat
uživatelská data a volit požadovaný typ grafu pro danou vizualizaci.

Analýza nestrukturovaných textových dat se zaměřila na návrh klasifikátoru s pomoćı
algoritmu K-Nearest Neighbors, který by byl schopen přǐradit v́ıce označeńı k jednotlivým
hlavńım d̊uvod̊um uživatel̊u pro odvykáńı. Pro tento účel byla definována sada 7 možných
označeńı: peńıze, zdrav́ı, vztahy, těhotenstv́ı, osobńı hodnoty a estetika. Klasifikátor dosáhl
84% přesnosti. Klasifikátor byl následně použit na množinu 1822 uživatelských odpověd́ı. Z
klasifikace bylo odhadnuto, že 60,3 % uživatel̊u se rozhodlo skončit ze zdravotńıch d̊uvod̊u,
37,5 % z finančńıch d̊uvod̊u, 18,6 % kv̊uli jejich životńım ćıl̊um a/nebo osobńım hodnotám,
15,6 % kv̊uli rodině či přátel̊um, 10,3 % kv̊uli dopadu na jejich psychiku, 1,3 % kv̊uli
těhotenstv́ı a 0,4 % z estetických d̊uvod̊u.

Kĺıčová slova: odvyknut́ı kouřeńı, vizualizace dat, analýza textu, multi-label klasifikace
textu

Překlad názvu: Analýza a vizualizace uživatelských dat mobilńı aplikace pro odvyknut́ı
kouřeńı

Abstract

With the expansion of the smartphone market, smokers have the ability to enroll in a virtual
smoking cessation programme on their phones. Such mobile applications can help users with
the whole smoking cessation process. This thesis focuses on analyzing and visualizing user
data from one such application.

User data was split into two main groups - data such as demographics and application
progress, for which the values can be automatically interpreted, and free text input. The first
group was then visualized through a custom extension of Django’s administration interface
that gives authorized users the ability to filter and process user data, as well as select the
desired chart type.

Free text input analysis focused on designing a K-Nearest Neighbors classifier that would
assign multiple labels to responses users entered as their main reasons for quitting. A set
of 7 possible labels was defined: money, health, relationships, pregnancy, personal values,
and aesthetics. The classifier was able to achieve 84% accuracy. Using this classifier on
a dataset of 1822 user responses, it was estimated that 60.3% of users were quitting for
health-related reasons, 37.5% for financial reasons, 18.6% because of their life goals and/or
personal values, 15.6% because of their family/friends, 10.3% for their state of mind, 1.3%
because of pregnancy, and 0.4% for aesthetic reasons.

Keywords: smoking cessation, data visualization, free text input analysis, multi-label text
classification
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1 INTRODUCTION

1 Introduction

Tobacco use is currently one of the biggest public health threats according to the World
Health Organization, killing over 8 million people globally each year [1]. To raise awareness
of its negative effects on health, countries are implementing warnings printed on tobacco
products, usually in the form of pictures.

While being aware of the health risks could reduce the number of new smokers, it may not
be as effective for active smokers who are struggling with an addiction. The technological
expansion on the smartphone market, however, introduces a new way of dealing with such
addiction. People can simply download an application and enroll in a virtual smoking
cessation programme. One of the advantages of this solution is that the application can
provide help whenever the user needs.

This thesis aims to analyze and visualize data from one of these mobile applications for
smoking cessation.

1.1 The Application for Smoking Cessation

The mobile application for smoking cessation analyzed in this thesis is available for both
Android and iOS devices. It provides users with a two-month interactive therapy. During
each day of the therapy, the user goes through a dialog with a virtual therapist. This
serves as a way for them to personalize the whole experience, as well as reflect on their
achievements throughout the therapy.

The whole therapy is split into the following main phases:

1. The EE Phase is a preparation phase with the main focus being to engage the user,
elicit change talk and evoke motivation to make positive changes through motivational
interviewing.

2. The EQ Phase is a quitting phase that starts usually 10 days after starting the first
session of the EE Phase.

3. The FU Phase is a follow-up phase that starts once the user confirms quit attempts.
It is also the final phase of the treatment.

Apart from the aforementioned phases, there is also the SUR Phase (consisting of ques-
tionnaires at 6 weeks and 6 months after quitting) and the FIN Phase (signifying that
the user’s contact information can be deleted and their data anonymized).

1.2 Terminology

In this thesis, the reader may encounter words that could seem ambiguous or unclear. To
avoid possible confusion, here is a list of definitions that may be specific to the application:

• PHASE describes a specific portion of the cessation programme with a specific goal,
such as the EE Phase with the goal of preparing the user for quitting smoking.

• SESSION represents a collection of pages, conditions, and actions that is meant to
be viewed/interacted with during a single day and is a building block for phases.
These include sessions such as EE01 (the first session of the EE phase) and EE07
(the session where users define what common situations pose a high risk of inducing
smoking cravings).

1



1 INTRODUCTION 1.2 Terminology

• PAGE is a viewable content unit used for building sessions. It can contain texts,
input fields, images, etc. An example of a page would be EE01.1 which is the first
page of the EE01 session where the user is greeted and asked their name.

• VARIABLE is, in the context of user data, synonymous with a data field. It rep-
resents a specific property of a user, such as their age, current phase and phase step,
responses to various questions, etc.

2



2 USER DATA ANALYSIS

2 User Data Analysis

Throughout the smoking cessation programme, various types of user data are being collected,
including, but not limited to, demographics, application progress, and smoking habits and
aspects. Due to this diversity, however, it was necessary to perform an analysis of a large
enough subset of data fields in order to build a general framework for data visualizations,
as there may exist limitations to specific types of data.

2.1 Categorization of Selected Data Fields

To identify potential limitations and/or specific requirements, it was necessary to focus on
how the data is processed when being visualized. First, the data has to be retrieved. Next,
there needs to be the ability to filter entries to avoid having to manually process data of
all users. Then, it must be possible to aggregate the entries based on common attributes.
Finally, it is useful to have the option to post-process the results.

Given this pipeline, only the filtering step does not perform any transformation of the
original data, it only removes entries. Both aggregation and post-processing imply trans-
formation and thus need to be examined further. It could be argued that even the fetching
step does not transform any data. Upon further examination, however, use cases can be
found in which it can be beneficial to allow the fetching step to transform the contents of a
data field (see 2.1.4).

The analysis identified the following traits that have impact on the aforementioned steps:
data type, dimensionality, meaning, parameters.

2.1.1 Data Type

Above all, the data representation, or data type, has to be taken into consideration - either
numerical or textual. The reason for this distinction stems from the various ways the data
can be aggregated. Given a set of users’ ages, for instance, it might be of interest to find
the minimum, maximum, average, and other statistical properties of the dataset to better
understand the customer base.

On the other hand, given the set of users’ names, the same aggregation may not per-
formed. In case of finding the minimum and maximum of the set, it could be based on
lexicographical order but such results are most likely of no use.

Finally, not all data fields must always have a value. This is most noticeable on fields
such as user’s list of high risk situations which is defined several days into the cessation
programme. On the subject of lists, it should be said that a user entry with multiple values
returned by a single field, i.e. a list of values, can be thought of as having multiple entries
of the same user with the individual values of that field in each entry. Also, if a data field
should contain an object (i.e. a collection of any of the previously mentioned data types) it
should be split into its components.

2.1.2 Dimensionality

In most cases, a user’s data field contains a single value. When a list of values is encountered,
it may be split into individual values as described earlier. However, this is only possible if
no connection among the values exists, i.e. they are independent of each other, and thus no
information is lost by splitting them.

3



2 USER DATA ANALYSIS 2.2 Data Fields Selected for Visualization

On the other hand, there may be cases in which there is a connection among the values
and they must be treated as a single entity, an n-tuple, rather than a collection. One
example could be tracking progress of users that registered on a specific date. This would
imply a 2 -tuple of registration date and current step that loses its original meaning once
split.

To generalize the idea, an n-tuple for any natural value of n should be anticipated as
input for the aggregation step.

2.1.3 Meaning

The next aspect is purely code-related and stems from the fact that in most use cases, it is
beneficial to avoid repetition by introducing symbolic values in place of the real, full values.

One example of this is user’s sex. It can be represented by a single number instead of
a string of characters. Not only is this more memory efficient but it also allows for easier
internationalization of the application, since a single symbolic value can represent multiple
versions of the same text in different languages.

Since the symbolic values are not easy to interpret by a human, it is required to add
value translation from symbolic to explicit values as part of the post-processing step where
applicable.

2.1.4 Parameters

When trying to understand how a user interacts with the application, it is useful to, for
instance, see how much time they spend going through a specific session, or on a single
page. This insight might be useful for optimizing content length of individual pages since it
is possible that a user might skip reading a page if it seems too long.

Given that there are many individual pages and sessions, it would not be practical to
create a separate data field for each and every page and session. This problem, however,
can be solved if parameters are allowed to be passed to data fields. That way, there is only
one entry point for retrieving similar data which also helps with code readability.

2.2 Data Fields Selected for Visualization

While the aim of this thesis was to develop a general framework for visualizing any data
field available, only a small portion was selected to be the default set of fields. Those default
fields would be pre-configured and thus ready-to-use.

Firstly, there are fields that are almost purely business-oriented and can be used to
measure the application’s success. The following fields have been selected for this purpose:

• In-app rating [CZ: Hodnoceńı]: a star-based rating system available to the user after
using the app for a certain period of time (from 0 to 5 stars),

• Registration date [CZ: Datum registrace]: a timestamp representing the exact mo-
ment a user joined the cessation programme,

• EE step given registration date [CZ: Dosažený krok EE od registrace]: a custom
metric for visualizing users’ progress with respect to the date on which they joined
the cessation programme,

4



2 USER DATA ANALYSIS 2.2 Data Fields Selected for Visualization

• Paid or ended in trial [CZ: Zaplatili vs. skončili v trial ]: a binary indicator of
whether the user decided to stop using the app after trial period or paid for the full
version.

The next set of fields aims to better understand users’ progress throughout the cessation
programme:

• Phase [CZ: Fáze]: one of predefined values representing their current phase of the
cessation programme,

• EE step [CZ: Krok EE fáze]: a numeric value corresponding to user’s current progress
in the EE Phase (empty if not reached yet or already finished),

• Relapse [CZ: Počet kouřeńı v FU ]: the number of times a user has reported smoking
in the FU phase,

• Session time [CZ: Čas na sezeńı]: the amount of time a user has spent in a given
session.

The previously mentioned EE step given registration date would also fall into this category
but its original purpose, when deciding on what fields to visualize, was to see the effectiveness
of promotional campaigns.

The final set of data fields provides a better insight into the users’ personal situation,
their addiction, and their goals. For all of the following fields, the user is asked to select a
subset of a predefined set of possible values:

• Desires [CZ: Touhy / Cı́le]: goals the user desires to achieve by quitting smoking
(e.g. save money, achieve inner peace of mind, better one’s physical performance),

• Topics [CZ: Témata k probráńı]: topics the user wishes to learn about during the
course of the cessation programme (e.g. How should I stop smoking without gaining
weight? How will I cope with stress without cigarettes?),

• High-risk situations [CZ: Rizikové situace]: situations that pose a high risk of
smoking (e.g. after a meal, on vacation, when feeling sad),

• Strategies [CZ: Strategie]: actions that the user chooses to take when having cigarette
cravings (use nicotine substitutes, wait, get support from their friends, family, etc.),

• Values [CZ: Hodnoty ]: personality traits, life views, objects, etc. that the user values
(e.g. courage, family, enjoying life).

5



3 FREE TEXT INPUT ANALYSIS

3 Free Text Input Analysis

As a part of the cessation programme, the users are asked to answer questions where selecting
from a list of predefined answers may not be the most appropriate solution. This might
be because too many options would be required to accommodate the whole spectrum of
users and the overall experience might seem less personalized. Allowing for free text input
solves this issue but, at the same time, makes it more difficult to analyze users’ responses
automatically, as it requires implementing natural language processing capabilities.

3.1 Data Fields

All of the available free text inputs can be split into two basic groups: text-related and
smoking-related. The text-related fields are of no use in the context of this thesis, as they
include data such as user’s name declension (namely the first and the fifth case). From the
smoking-related group, the following three free text input fields were identified as potentially
interesting for visualizations:

• main reason for quitting (code name ReaQui),

• smoking urge plan (code name SmoUrPlan),

• high-risk situation plan (code name HRSitPlan).

However, it should be noted that those are not the only free text input fields available.
Each of these data fields is introduced during a different step of the EE Phase - in the

same order as they are listed here. Since any two steps are at least one day apart and
users may stop using the application after a certain amount of time, the later the field is
introduced, the higher the chance of it being empty. The following table shows the absolute
frequency of each data field as well as the response rate given the number of users that have
started the appropriate phase step:

Code Name Step Number of
users

Number of
responses

Response
rate

ReaQui EE02 1956 1877 95.96%
SmoUrPlan EE04 1419 1302 91.75%
HRSitPlan EE07 594 569 95.79%

Table 1: Overview of free text input fields answer frequencies (April 2020).

Given the topic and structure diversity among all three of these fields and the relatively
low number of responses, only the first field (ReaQui) was selected for visualization. Also,
understanding the main reasons for quitting provides an insight that could be used for better
targeting new users, e.g. through specially tailored ads.

3.2 Classification Labels

The goal of the classifier is to assign appropriate labels to users’ answers. While the descrip-
tion of the ReaQui field states it should be the main reason, we should not assume the users
would only enter a single value. Moreover, even a single reason could be assigned more than
one label. Due to this fact, it should be treated as a multi-label classification problem.

6



3 FREE TEXT INPUT ANALYSIS 3.3 User Response Analysis

In order to assign labels to strings of text, a set of all available/expected labels has to
be defined. In a 2013 study on smokers’ reasons to quit [2], the reseachers identified the
following groups of reasons: present health, future health, pregnancy or child birth, imposition
by partner/family, recommendation by physician, economic cost of cigarettes, other reasons.
Based on their results and a preliminary analysis of users’ responses in the application, the
following set of labels was devised:

• Money: cigarette prices, one’s income, plans to save money, financial situation, etc.

• Health: illnesses, diseases, physical performance issues, etc.

• Relationships: family, partner, friends, colleagues, etc.

• State of mind: expression of feelings, description of mental health, etc.

• Pregnancy: state of pregnancy, childbirth, newborn baby, etc.

• Values: life values and goals, life style, one’s philosophy and desires, etc.

• Aesthetics: cigarette smoke odor, wrinkles, yellow teeth, etc.

3.3 User Response Analysis

Before selecting a classification method, it might be beneficial to first analyze at least a
subset of the currently available responses. The following list summarizes points of interest
that resulted from the preliminary data analysis (NOTE: approximate values):

• average response length is 41 characters,

• average word count per response is 8 words,

• most frequent word count per response is 3,

• 64% of answers contain accented / local characters (such as ı́, ý),

• 3% of answers contain duplicate characters in a sequence.

It should be noted that these statistics were performed on a slightly pre-processed dataset
to avoid negative effects of punctuation and whitespaces on letter/word counts. Since most
of the userbase, at the time of writing this thesis, is from the Czech Republic and Slovakia,
only Czech/Slovak answers shall be considered for the analysis further into this text. This
is important when performing vectorization of the sentences.

Based on these statistics, we can assume that the answers are rather short in terms
of word count and may or may not contain local characters. Also, the probability of a
sequential character repetition occurring in user’s response (such as typing ’moooc’ instead
of ’moc’ - EN: very much) is in the context of this thesis almost negligible and, in specific
cases, it might actually be the correct spelling of a word. Thus the real percentage may be
even smaller. This might otherwise affect potential vocabulary look-up if required. Another
aspect, however, that could have the same negative effect as character repetition is grammar
- both in terms of grammatical errors and usage of prefixes/postfixes that a pre-trained
vocabulary may not include.

7



3 FREE TEXT INPUT ANALYSIS 3.4 Vectorization

3.4 Vectorization

Vectorization is an important step when processing text data. It is the process of transform-
ing a string of characters (in this case) into a vector of numbers. There are various ways of
achieving this goal.

One possible approach is to prepare a vocabulary where each word corresponds to a
dimension of the resulting vector. This way, a sentence vector is simply a sum of word
vectors where each component signifies the corresponding word’s frequency. That, however,
affects the vector’s magnitude which may not be desirable, e.g. having the same word 5
times in a row might have the same meaning as having it in a sentence just once. In such
cases, each vector component can be limited to being only 0 or 1.

On the other hand, each word need not be represented by a single binary indicator. A
popular approach is to represent each word in a distributed manner [3]. This way, words
similar in meaning tend to be close to each other. On top of that, it can be potentially
improved by representing each word as a set of n-grams, i.e. subwords of fixed length. This
might be especially useful for languages such as Czech where declension is common and
extensive. For that reason, the FastText1 library and its pre-trained model2 for the Czech
language shall be used for the purpose of this thesis to minimize the effect of incorrect
spelling and/or grammatical errors that can occur when typing on a mobile device.

3.5 Classification Method

There are various vector-based classification methods, including Support Vector Machines,
K-means, and K-Nearest Neighbors. When selecting the appropriate method, it should be
taken into consideration that the currently available dataset is rather small (fewer than 2000
samples) and it requires the ability to assign multiple labels at once.

In their paper, Gulisong and Kouzani compared various multi-label classification meth-
ods [4]. Based on their findings, the K-Nearest Neighbors algorithm was selected for the
purpose of this classification task, as it is able to perform well even on smaller datasets.

The main logic of the K-Nearest Neighbors algorithm in general is to first save a set of
labelled vectors. To classify a new vector, the algorithm finds a set of K closest vectors
from the training dataset with respect to a predefined metric. Based on their labels, the
classifier then has to decide which of these labels to assign to the new vector. Two different
approaches of assigning labels shall be compared in this thesis - naive and statistical. The
naive approach disregards any additional knowledge about the training dataset while the
statistical approach uses maximum a posteriori principal to estimate label probability based
on the dataset.

Let us consider the following notation:

• k ∈ N . . . number of nearest neighbors to be evaluated,

• k ∈ {0, 1, . . . ,m}k . . . set of indices (rows) of the k nearest neighbors,

• m ∈ N . . . number of known samples,

• n ∈ N . . . number of known labels,

• d ∈ N . . . sentence vector dimensionality,

1https://fasttext.cc/
2https://fasttext.cc/docs/en/crawl-vectors.html
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3 FREE TEXT INPUT ANALYSIS 3.5 Classification Method

• X ∈ Rm×d . . . training set of m sentence vectors,

• Y ∈ {0, 1}m×n . . . training set of m label assignments,

• y ∈ {0, 1}n . . . label assignment vector,

• ε ∈ [0.5, 1) . . . activation threshold for the naive approach,

• Hi
0 . . . event of tested vector having i-th label not assigned,

• Hi
1 . . . event of tested vector having i-th label assigned,

• Ei
c . . . event of i-th label occurring exactly c times among the tested vectors’s nearest

neighbors,

where 0 denotes not assigned and 1 denotes assigned in terms of label assignment.
The naive approach splits the classification problem into individual, independent label

evaluations. In order to assign a specific label to a vector, its relative frequency among the
nearest neighbors must be greater than or equal to a pre-defined threshold. The threshold
can be then subject to optimization on a given dataset to minimize the number of false
positives and false negatives. This rule can be re-written as follows:

yi =

{
0 if 1

k

∑
j∈k Yj,i < ε

1 otherwise
(1)

where yi is the i-th component of the label assignment vector y and Yj,i is the i-th label
assignment indicator of the j-th training sample.

The statistical approach, like the naive approach, splits the classification into in-
dividual label evaluation. Instead of relying only on the nearest neighbors, however, it
classifies based on the conditional probability of specific label being assigned given its fre-
quency among the neighbors and tries to maximize it [5]. Using the Bayesian rule, it can
be re-written as:

yi = argmax
b∈{0,1}

P (Hi
b)P (Ei

c|Hi
b), (2)

where yi is the i-th component of the label assignment vector y and:

c =
∑
j∈k

Yj,i
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4 Solution Architecture

All of the users’ data, as well as the content users can see in the mobile application, is
handled by a single website. Authorized users can then view stored data and update the
content through the website’s administration interface. Given this solution, it was decided
that the visualizations should be implemented as a part of the administration interface.

4.1 Requirements

In order to build such extension, a set of functional requirements had to be collected. The
following list contains all of the main functional requirements:

F1. The solution supports visualization of the selected user data fields (see 2.2).

F2. Visualized user data can be filtered based on user profile (sex, group, registration date,
current phase, etc.).

F3. Visualized data can be exported to CSV.

F4. Multiple user data visualizations can be filtered at the same time (global filters).

F5. Visualization supports multiple chart types (table, pie chart, column chart, line chart).

F6. The application supports visualization of statistics from Google’s Play Console and
Apple’s App Store.

F7. The application supports visualizing selected KPIs.

F8. Data filtering supports regular expressions.

4.2 Backend

The project is built on top of Django which is a Python web framework for rapid develop-
ment3. It organizes the whole project into smaller packages called applications - the solution
developed as a part of this thesis is located in the stats application. Such application can
access the database through models, i.e. special classes directly mapped to a table. It can
also map URLs to specific pages (called views). In this solution, all of the views are very
similar to each other. They are almost empty HTML templates that get populated with
data using JavaScript and therefore will not be described further.

The core functionality required on the backend is an API that can fetch, filter, aggregate,
and post-process data which the user wants to visualize. To achieve this, a URL endpoint
accessible to authorized users, which performs the aforementioned list of actions and returns
the desired data, had to be created.

With the addition of F6 and F7, it became necessary to add custom models to store and
represent reports from both Play Console and App Store as well as application-specific KPI
reports. Since such data is generated by third parties, the solution also needed the ability
to periodically synchronize data with remote servers.

3https://www.djangoproject.com/
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4.2.1 API

To obtain visualization data for the frontend, authorized users have access to an API end-
point with the following URL format:

/admin/stats/api/{SRC}/{VAR}/{FLT}/{AGG}/{PRM}

Explanation of the endpoints parameters can be seen in Table 2 bellow.

Parameter Definition Example Reference
SRC model from which the data should be

retrieved
users.models.User 4.2.2

VAR model’s visualizable variable to be pro-
cessed

phase 4.2.3

FLT string-encoded set of filters none 4.2.4
AGG aggregation type used on retrieved

data
freq 4.2.5

PRM optional: URL-encoded parameters
passed to visualizable methods

page id=300 4.2.6

Table 2: Explanation of API endpoint parameters.

Each API call first evaluates validity of the passed parameters, in the order of their
definition, and terminates on the first error it encounters. For debugging purposes, the
error messages were designed to be verbose. For instance, if the data source validation fails,
it offers the closest possible match as a suggestion. More details on the error messages can
be found in their respective sections (see Reference in Table 2).

Once the initial validation passes, the API executes two database queries for the given
data source. The first query is without the filters applied while the second query applies
requested filters - unless no filters were requested in which case only one query is executed.
Both filtered and unfiltered data then gets aggregated.

As mentioned in 2.1.3, not all values saved in the database are intended to be directly
visualized but require a form of transformation from symbolic to explicit values. Once the
data is aggregated, all symbolic values get translated prior to sending the API response.

4.2.2 Data Sources

Originally, all of the visualized data was directly linked to specific users (e.g. age or current
phase). Later into the development, however, it became obvious that, in certain cases, the
ability to pull data from models other than the User model would be necessary. Such cases
would include the previously mentioned reports from Play Console and App Store from
which we can get the number of application downloads for their respective platform. In the
context of this thesis, a data source represents specific model that has been added to the
API’s configuration. All of the available data sources then form a subset of all the models
created as a part of the whole project.

As of writing this thesis, there are exactly 5 registered data sources:

• users.models.User: each instance represents a user that is registered in the appli-
cation,

11
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• stats.models.GoogleInstallsReport: each instance represents a single installations
report from the Play Console (i.e. statistics for one day),

• stats.models.AppleSalesReport: each instance represents a single daily sales re-
port from the App Store,

• stats.models.KPIReport: each instance contains values required to calculate KPIs
for given day (i.e. number of downloads, number of newly registered users, etc.),

• payments.models.Payment: each instance represents a single payment that can be
paired to a user.

To avoid possible name conflicts in the future, full class identifier was chosen over class name
only.

In order for a model to be among the registered data sources, it has to be added to the
dictionary of allowed sources in the DataSource class. Each source entry requires the key
to be the full identifier of the model. This entry then has 2 required attributes - model and
alias. The model must be assigned a reference to the actual class. The alias must be a
string - its sole purpose is to allow assigning additional, user-friendly name to the model
which can then be utilized on frontend.

4.2.3 Visualizable Variables

In 2.1, it was described how the format of the visualized data may vary from variable to
variable. Since it was established the format affects multiple steps of the data retrieval,
there are essentially two ways of resolving this issue from the code’s perspective - analyze
the data and determine the correct properties automatically or allow the programmer to
configure each variable on their own.

Let us consider the first option, i.e. no configuration required on programmer’s side. The
data type and dimensionality can both be easily determined from the data and any additional
parameters could be detected by looking at the method’s definition programatically. The
issue is with values’ meaning. Without any additional knowledge, it is not possible to
reliably estimate whether the values should be translated or not. And even if it were
possible, there would still need to be a way to determine which value mapping to use.
This could be remediated if the methods returned already translated values but that would
require re-writing large portion of the codebase and could potentially affect the performance
of aggregation. Also, it limits any additional configuration, such as user-friendly names.

On the other hand, if all of the configuration is done by the programmer, no ambiguity
arising from format prediction is possible. Not only that but the programmer can also define
additional details about the variable that could potentially improve code readability, as well
as improve user experience on the frontend by displaying additional information. For these
reasons, the manual configuration approach was selected.

Variable configuration is done through a newly defined visualizable decorator. It is those
methods decorated as visualizable that can be accessed via the API, i.e. variables cannot
be visualized unless decorated appropriately. The full parameter list can be seen in Table 3
bellow. The visualizable decorator can be used on both regular methods and methods
already decorated as property. The former is treated as a parametric visualization while the
latter cannot take any parameters. In order to retrieve the visualization data, it is required
to enter the method’s name as the variable in an API request (e.g. phase, sex, time on page,
etc.).

12
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Parameter Description Format Default Legacy
alias user-friendly name string None no
dict name of value translation map-

ping
string None no

values inline translation mapping dictionary None no
dimen dimensionality integer 1 no

numeric should expect number? boolean False yes
dependencies names of variable dependencies list [ ] no

labels label for each axis tuple (”, ’četnost’) no
ignore zero ignore the value 0? boolean False no

format expected format for each di-
mension

string/tuple ’text’ no

params expected parameters and their
values

dictionary {} no

Table 3: Description of visualizable decorator’s parameters (legacy signifies whether the
parameter is used only by the old API).

4.2.4 Data Filtering

While only the decorated methods can be visualized, each instance of the data source can
be filtered based on any of its fields. Not only that, but it allows the same capabalities as
Django’s object filtering, i.e. can filter even by fields of other objects paired by foreign keys.
For cases where there is no need for filtering, the filter processor4 has a special keyword
registered: none . In any other case, the filter string must either be a rule following the
Django’s syntax or a concatenation of such rules separated by the vertical line symbol ( | ).

The filtering rule has the following general format:

< target field > < comparison operator >=< specific value >

where target field is the identifier of a non-relational field (e.g. date joined for users). To
take advantage of the relational capabilities, the user can chain fields, separating them
with two underscores ( ), until the desired non-relational field is reached (e.g. ac-
cess code business pk for users). The comparison operator can be any of the operators
allowed by Django5, such as eq for value equality or gte for greater than or equal to given
value.

It should be noted that using multiple filters at the same time behaves as logical AND,
i.e. all conditions must be met in order for the data source instance to be visualized. No
other logical operator is currently supported.

4.2.5 Data Aggregation

Aggregation can be of great help when trying to understand large sets of data. Depending
on the task, specific aggregation types can be more useful than others. Table 4 summarizes
all of the implemented types.

The main reason for (un)limited dimensionality of the aggregated data is that, in the
early stages of development, all of the data was only one-dimensional, i.e. a single value per

4FilterProcessor : class responsible for parsing filter strings
5https://docs.djangoproject.com/en/3.0/topics/db/queries/
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Code Name Title Description Max. dimension
freq, exact Frequency counts frequency of each unique tuple any

stats Statistical finds minimum, maximum, and mode
of a numerical dataset

1

histo Histogram builds histogram data using the
Freedman Diaconis Estimator6

1

none None does not aggregate any

Table 4: Overview of all available aggregation types with their descriptions. NOTE: The
exact code name is for backwards-compatibility only, as it was used with the old frontend /
backend.

model instance. Later into the process, however, the ability to calculate frequency of two-
dimensional data, i.e. 2-tuples, became necessary. In order to avoid another functionality
update in the future, the code was generalized to allow for any n-dimensional case. There
is currently no use for such functionality, though.

4.2.6 Parameters

With the introduction of variables such as time per page, it was required to allow passing
additional parameters to the models’ methods to avoid code repetition.

Given a parametric variable to process, the API determines what parameters to expect
(based on the visualizable configuration) and checks them against the parameters received
from the API call. The parameter string follows a format similar to filter string - multiple
parameters are separated by the vertical line symbol ( | ) and are subject to following general
format:

< parameter name >=< value >

Such string is then parsed and only if all expected parameters are found does the API
proceed with the request.

4.3 Frontend

The main goal of the frontend part was to provide a user-friendly graphical interface for the
API. To achieve this, it was decided that the interface (= the application) would consist
of multiple pages where each page would serve as a container for multiple independent
visualizations. Since the structure of each page is the same, we shall focus only on the
visualizations, as the pages themselves are used for organizational purposes rather than for
functionality.

To build the frontend, various technologies were utilized on top of the three common
web-oriented languages - HTML, CSS, and JavaScript. Firstly, it is the Vue framework
- a progressive JavaScript framework for building user interfaces. Vue was chosen for its
incremental adoptability and its gentle learning curve7. It also encourages better code
organization and reusability through single file components.

This, however, required the addition of a compiler, as such components are not in a
format known to the browser. A popular module bundler Webpack was used for that. Given

6abc https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.histogram.html
7https://vuejs.org/v2/guide/
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a configuration file, it allows for processing, compiling, and bundling various types of source
files. Although, Webpack itself only understands JavaScript and JSON files8. Additional
functionality, such as compiling Vue templates, is done through third-party plugins and
loaders that can be added to the pipeline.

To better organize style sheet snippets, the CSS extension language SASS was used.
It adds features such as variables and nested declarations9 on top of the CSS language.
Like Vue templates, SASS requires a compiler which can be easily added to the Webpack
workflow by using appropriate third-party plugins.

Finally, the Google Charts JavaScript library was used for the graphical representations
themselves. Google Charts make it easy to transform tables into different types of charts,
including pie charts, column charts, and line charts.

4.3.1 Vue Components

Decomposing larger layouts into components can help organizing code, as well as help avoid-
ing repetition. The main idea was to have a general container for multiple visualizations
where each visualization should have a title, the actual visualized data, a way of configuring
the visualization (e.g. filters and aggregation), and buttons for additional actions, such as
export or refresh. This rough idea could then be used to start designing components that
shall be described in the following paragraphs. The final result can be seen in Figure 1.

VisualizerPage is the main, root component for all visualizations. Its main purpose is
to load, save, and update page configuration. Such configuration defines what visualizations
should be present on given page, in what order they should be displayed and how many
visualizations can be shown next to each other (i.e. number of columns in a grid layout). It
then persists the configuration through browser’s localStorage instance and thus the user can
continue working even after leaving the page. It should be stressed that the configuration
is stored in user’s browser and is in no way synchronized with the server. Therefore, it is
available on that specific device only. Another one of its responsibilities is to load Google
Charts. This is necessary because its terms of use do not allow for local hosting of the
library10 - otherwise it could have been bundled with the rest of the frontend code using
Webpack and would have been loaded at the same time as the component. And finally,
VisualizerPage allows the user to add more visualizations.

Visualizer is the key component of the application. It represents a single, independent
visualization that is directly connected to the API endpoint. Each Visualizer instance
receives the last saved configuration from its parent VisualizerPage which contains all of the
following fields: title of the visualization, endpoint parameters (see subsubsection 4.2.1),
preferred chart type, and whether to display the filtered or unfiltered data. Each Visualizer
consists of its header, chart area, action panel, and configurator.

Header is a container for the vizualization’s title and the filter toggle. Apart from
passing forward the event of filter toggle switching to Visualizer, its role is to allow user to
drag and drop the visualization from its current position to another available slot which, in
this case, is the space occupied by any other visualization. This way, the user can personalize
their experience without having to remove visualizations and then adding them again in the
desired order.

8https://webpack.js.org/concepts/
9https://sass-lang.com/guide

10https://developers.google.com/chart/interactive/faq
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Chart is a custom Google Charts wrapper that adds error/warning messaging capabili-
ties. It is through the Chart component that the visualization data export happens. Based
on the current state of the filter toggle it can either display all data or only the filtered en-
tries. As both of these dataset are sent back with each request, it does not need additional
API call and thus allows for quick switching between filtered and unfiltered data.

ActionPanel is where all action buttons are placed. Those include the refresh button
which initiates a new API request, the configuration button which opens the configurator,
buttons for both exportable types, and the delete button which removes the Visualizer from
page’s configuration.

Configurator is the last component of a Visualizer instance that can be seen in Figure 2.
This component is responsible for building configuration object, i.e. JavaScript object,
for API calls. For convenience, it consists of 3 subcomponents. The first subcomponent,
Configurator general, is where the user can enter their own title of the visualization, preferred
chart type, information level (used for either showing or hiding additional data, namely
column value percentages), and aggregation type. Next, Configurator data, is the component
that controls what data source is used as well as the visualized variable. In case the selected
variable is parametric, it also offers the parameter selection. Finally, Configurator filters is
responsible for building and managing applied filters.

4.4 Older Solution

Initially, only requirements F1 to F5 were identified when designing the solution. This
allowed for the development of a more user-oriented (as in the User model) solution. In such
scenario, it was easy to implement global filtering, as required by F4, since all visualizations
were connected to the same model with the same available fields.

This solution was, however, quite limited. The design choices would make it difficult to
extend the API in terms of possible data sources, filtering fields and several more aspects.
Also, the user could experience worse performance under certain conditions due to the
specifics of the implementation. For that reason, the new version (on both frontend and
backend) was created to overcome these issues. The only problem with the new solution
was that it had not been decided how to handle global filtering - since it allows users to add
any number of visualizations connected to potentially all available data sources, each one
having different fields for filtering.

Given that most of the desired visualizations would still be user-oriented, where the
ability to filter multiple visualizations at once is very useful, it was decided to let both
versions coexist. This way, the user experience stays the same until the preferred approach
is selected at which point the old version can be fully replaced by the new version.
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Figure 1: Decomposition of the Visualizer component - excluding the configurator.

17



4 SOLUTION ARCHITECTURE 4.4 Older Solution

Figure 2: Preview of the Configurator component.
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5 Text Classification

Classifying textual data can be, and in this case is, a computationally demanding process.
For vectorization, the FastText library was utilized with a pre-trained model that is approx-
imately 7 GB in file size. Therefore, it should be stressed that it would not be feasible to
integrate the classifier into the website, as the whole model needs to be loaded into memory.
To overcome this issue, both testing and the final classification were done locally.

5.1 Dataset

To implement the K-NN classifier, a set of already labeled data needs to be prepared. Such
dataset can then be vectorized and loaded into the classifier’s memory for later evaluation of
new sentence vectors. For this purpose, a subset of the already saved answers was manually
labeled. The size of the dataset is 600 entries out of roughly 1800 in total. Answers that
were in a language other than Czech or Slovak were removed for the purpose of this classifier.

5.2 Hyperparameters

In general, a K-NN classifier only has one hyperparameter that can be optimized - the
value of K. In subsection 3.5, however, two different approaches to the classification were
introduced: naive and statistical. In the former case, a threshold was defined that could
potentially be optimized as well. The latter did not introduce any additional parameter.

For the optimization, value ranges of the hyperparameters had to be defined. Experi-
ments for this thesis used the following sets of values:

• k ∈ {x ∈ N | 1 ≤ x ≤ 40},

• ε ∈ {∅, 0.5, 0.6, 0.7, 0.8},

where the threshold ε = ∅ signifies that the statistical approach should be utilized instead
of the naive approach.

In subsection 3.5, it was mentioned that the K-Nearest Neighbors algorithm uses a
predefined metric to identify neighbors. To evaluate distance between vectors a, b in this
case, the cosine distance was utilized, i.e.:

d(a, b) = 1− a · b
‖a‖ ‖b‖

5.3 Classifier Accuracy

A key piece of information about the classifier is an estimate of how well it might perform
on a previously unseen dataset. To calculate this value, we need to define how to get such
estimate for the labeled dataset and how we score a single evaluation.

Let us focus on the evaluation scoring first. From subsection 3.2, there are exactly 7
possible labels where each one is either assigned or not assigned. Each sentence evaluation
is then represented as a 7-dimensional assignment vector with its components being either
0 (= not assigned) or 1 (= assigned). Then the accuracy can be defined as:

ST = 1− 1

|T |
∑

(x,y)∈T

1

n
‖KNN(x)− y‖1 (3)
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where ST is the accuracy function for given dataset T = {(x1,y1), (x2,y2), . . . (xm,ym)},
m is the number of samples in dataset, (x,y) is a pair of a sentence vector x and its correct
assignment vector y, KNN(x) is the assignment vector generated by the classifier, and n is
the dimension of the vectors, i.e. the number of known labels. This approach assumes that
both false positives and false negatives are equally undesirable.

To evaluate accuracy, a set of labeled data needs to be available. One possible method
is to split the dataset into two subsets depending on the desired ratio of training to testing
data, e.g. 4:1. However, the available dataset is quite small and thus a possibly more
appropriate approach is k-fold cross-validation. Its logic can be summarized as follows:

1. shuffle the dataset,

2. split the dataset into k chunks,

3. select one chunk for testing (one that has not been selected yet) and use the rest for
training,

4. train and test the classifier (saving its score for later),

5. go back to (3) unless all chunks have been used as testing datasets,

6. average the scores to get the final accuracy.

This way, the accuracy evaluation is less prone to bias in training / testing dataset which
could otherwise result in an unreliable score (e.g. too optimistic).

5.4 Classifier Evaluation

A series of classifier evaluations were performed to find the optimal hyperparameters. Based
on the sets defined in subsection 5.2, all possible combinations were generated and then,
using 10-fold cross-validation, scored.

Firstly, the naive approach generally achieved accuracy of 80% or higher as can be seen
in Figure 3, with the only exception being threshold ε = 0.8. And, for most of the K values,
the optimal threshold was ε = 0.6 while also being the most stable (meaning incrementing
the K value by 1 does not change the classifier’s accuracy significantly).

Secondly, the statistical approach was able to achieve similar results to the naive ap-
proach with ε = 0.6. Comparison of their results can be seen in Figure 4. The experiment
has shown that the maximum score is approximately 84.286% and is achievable for K = 23
with the statistical approach . Therefore, this configuration was selected for the final clas-
sification of the whole dataset.

5.5 Classification Results

Using the best configuration found during hyperparameter optimization, the classifier was
given the full labeled dataset for reference and the classification was performed on the full
dataset of 1822 responses. The results can be seen in Figure 5. Relative frequencies of
individual labels from most frequent to least frequent can be seen in Table 5 bellow.
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Figure 3: Naive approach performance over multiple values of K.

Figure 4: Comparison of the statistical approach and the best performing naive approach.
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Label Relative Frequency
health 60.318%
money 37.541%
values 18.551%
relationships 15.642%
state of mind 10.263%
pregnancy 1.262%
aesthetics 0.439%

Table 5: Relative frequencies of labels among data from the ReaQui variable.

Figure 5: Frequency of individual labels assigned to users’ main reason(s) for quitting
smoking.

5.6 Exploring the Results

The K-Nearest Neighbors algorithm has proven its ability to achieve good results even for
smaller datasets. To further check the validity and the nature of the classifier’s weaknesses,
a sample of 20 responses was randomly selected (5 of which were part of the classifier’s
knowledge). Using the accuracy function (see Equation 3), an overall score of approxi-
mately 87.143% was achieved. The most frequent classification error was not assigning the
relationships label (in 5 out of 20 cases). Similar issue was with the state of mind label
which was falsely not assigned 3 out of 20 times.

These finding may suggest that the relationships label is defined too broadly given its
representation in the labeled dataset. Broader definition could then lead to a higher chance
of label occurrence being dependent on another label which, in turn, may introduce a bias to
the known dataset. Let us consider a scenario where there are many known vectors assigned
only label A. Then, we pass a sentence to the classifier where we expect a combination of
labels A and B. However, label B may be overlooked simply because there are more examples
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of label A than label B (assuming the vector representing the new sentence is close enough
to an average of any two known vectors assigned only label A and only label B).

Both the pregnancy and aesthetics labels are worth examining further due to their very
low frequency among user responses. If we assume that the average user is similar to an
average participant of the 2011 study [2], we should expect a much higher relative frequency
of the pregnancy label. Although, this might be a very strong assumption given the dif-
ferent time frame of the experiment, as well as potentially very different sociodemographic
characteristics. Nonetheless, frequencies of both aforementioned labels emphasize the core
problem of the naive approach, i.e. given the value of K = 23, it could easily encounter
a situation where under-represented label can never be assigned. This issue, however, is
mitigated by the use of the statistical approach which takes into account the number of
label instances in the whole dataset.
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6 Conclusion

The aim of this thesis was to analyze and process user data from a smoking cessation
programme mobile application. The first part of the analysis focuses on data such as user’s
cessation programme progress or their age where the possible values are well defined, i.e.
are set by the application automatically, are selected by the user from a predefined set of
options, or are strictly limited to numerical values. This type of data is then categorized
by its data type (number or text), dimensionality (size of the returned n-tuple), meaning
(symbolic or explicit), and parameters (no parameters or a list of parameters), as each of
the categories may limit the way the data can be processed.

The second part of the analysis focuses on a more complex problem - free-text input
analysis. During certain steps of the cessation programme, users are allowed to enter any
textual value they want. During the first steps, the user is asked to enter their main reason
for quitting. This field was selected as the main area of interest in terms of text analysis, as
it provides a unique and important insight and it also offers the largest dataset. The goal
was to build a classifier capable of assigning multiple labels to each user response. Using
findings from a 2011 study [2] combined with preliminary analysis of the already entered
user responses, a set of 7 labels was defined. To perform the classification, the K-Nearest
Neighbors algorithm was selected for its ability of achieving good results even for smaller
datasets. Two different approaches of using the algorithm for multi-label classification were
proposed - naive and statistical. The naive approach only analyzes the labels assigned to the
nearest neighbors while the statistical approach takes advantage of prior knowledge about
whole dataset as well, taking into account probability of individual labels occurring under
different circumstances.

After the analysis, an extension of Django’s administration interface was described. This
solutions consisted of an API for retrieving, filtering, and preprocessing user data and an
appropriate frontend to visualize it. The API’s architecture was built directly on top of
the knowledge acquired from the first part of the analysis, utilizing a 4-step procedure of
locating data (the source and the field), applying requested filters, aggregating according to
selected rule, and translating from symbolic to explicit values when necessary. It was then
extended to allow for non-user data, such as reports from third-party websites (Google’s
Play Console and Apple’s App Store). The proposed frontend solution consisted of multiple
pages with the same structure, allowing the user to organize visualizations into groups. Each
page is then described as a collection of independent visualizations where each visualization
is a wrapper for the API and the Google Charts library.

The final section was dedicated to the implementation and results of the K-Nearest
Neighbors classifier. Both proposed approaches were compared and discussed, showing the
advantages and slightly better accuracy of the statistical approach when compared to an
optimized version of the naive approach. The classifier with optimized hyperparameters,
i.e. statistical approach for K = 23, was then used on analyzing 1822 responses given by
the users.
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