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Abstrakt / Abstract

Tato práce se zabývá možnostmi
aproximace dat fuzzy konjunkcemi,
neboli trojúhelníkovými normami.

Cílem bylo zjistit, jaké metody jsou
vhodné pro prokládání dat parametri-
zovatelnými trojúhelníkovými normami,
jak charakterizovat kvalitu proložení a
jak vstupní data ovlivní výslednou apro-
ximaci.

Pro tyto účely byla nejdříve de-
finována ztrátová funkce a poté byly
uvedeny některé algoritmy pro optimali-
zaci této funkce. Byl použit jednoduchý
algoritmus ternárního vyhledávání, ale
i komplexnější metoda – optimalizace
hejnem částic. Dále byly zavedeny
znaky charakterizující kvalitu aproxi-
mace a nakonec byly zkoumány faktory
ovlivňující výsledné proložení.

Dále byla diskutována alternativní
metoda aproximace využívající generá-
tory t-norem a byla představena možná
vylepšení již existujícího postupu vyu-
žívajícího této metody.

V závěru je naznačeno, jaké expe-
rimenty by bylo vhodné v budoucnu
vykonat, aby bylo možné vybrat me-
todu aproximace vhodnou pro různé
typy problémů.

Klíčová slova: Fuzzy konjunkce; apro-
ximace, trojúhelníkové normy; t-normy;
prokládání dat.

Překlad titulu: Aproximace fuzzy
konjunkcemi

This thesis discusses ways of approx-
imating data using fuzzy conjunctions
(triangular norms).

The aim of the project was to find out
which methods are feasible to fit data
by parametric triangular norms, how to
characterize the quality of the approxi-
mation and how the input data influence
the result of the approximation.

For this, a loss function was defined
and some algorithms for optimizing this
function were introduced. The simple
Ternary Search algorithm was used, as
well as a more complex method of Parti-
cle Swarm Optimization. Furthermore,
indicators characterizing the quality of
the approximation were explored. Fi-
nally, the factors influencing the result-
ing approximation were discussed.

An alternative method of approxima-
tion using generators of t-norms was also
discussed and improvements to an ex-
isting procedure based on this method
were presented.

In the conclusion we suggest what
experiments would be helpful to con-
duct in the future to help us choose
the best technique for different types of
problems.

Keywords: Fuzzy conjunction; ap-
proximation; triangular norms; t-norms;
data fitting.
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Chapter 1
Introduction

This thesis outlines basic techniques of approximating data using fuzzy conjunctions.
These are usually modeled using triangular norms, although other options exist [2]. We
will focus solely on triangular norms. Although the term triangular norm first appeared
in the context of statistical metric spaces [10], they have spread into other branches of
mathematics as well. They are being used in the fuzzy set theory and in fuzzy logic,
where they serve as conjunctions; meanwhile their counterparts, triangular co-norms,
are used for modeling disjunctions.

Approximating functions is one of the most deeply studied problems in science and it
can be found in countless scientific fields. There are numerous techniques of regression
analysis and function fitting. In general, the goal is to find a function f̂ that represents
the best approximation of another function f , i.e., f̂ ≈ f . For this, we only have a
finite set of values of the function, usually determined empirically.

Using fuzzy conjunctions for approximating data is an idea that is yet to be explored
in depth, although the concept itself is simple and its potential could be great. One
might need to create a fuzzy decision-making system based on some input data, or tune
a fuzzy regulator to meet needed characteristics. In both cases the goal is to fit a given
set of points by a triangular norm. As t-norms are by definition associative and thus
are easily extended to take in more than two arguments, the input data could even be
of higher number of dimensions.

The approximating t-norm can be one of the parametric families of t-norms which
are determined by a parameter r, in which case we are trying to find the best value
of the parameter for which the approximation is the most precise; alternatively we can
approach the problem in a more general manner using the so-called additive generators,
which are one-dimensional functions that completely determine a triangular norm. The
first approach is very useful when we have a priori information about the input data
source; for example which class of t-norms the approximated one belongs to. The second
approach offers more flexibility in terms of the ability to generate an approximation of
any possible t-norm.

Both approaches have their strengths and weaknesses and this thesis aims to describe
and compare these techniques, while evaluating the robustness of the approximation,
which points influenced the approximation the most and which data had a low or zero
value for the approximation purposes.
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Chapter 2
T-norms

Let us first recall the basic concepts of fuzzy logic. The notion of many-valued logic
was originally defined by Jan Łukasiewicz in years 1913 [8] and 1920 [9]. He proposed a
three-valued logic, which, besides true and false, also admits a third value of “possible”.
Later, Lotfi A. Zadeh introduced the fuzzy set theory in 1965 [17]. This theory deals
with sets that have a “continuum of grades of membership”. That means that elements
can not only be or not be part of a set, they could also be a part of it just to “some
extent”. This, by extension, created the foundations for fuzzy logic, where the allowed
truth values are not only true (1) or false (0), but anything in between, which means
that it is an infinite-valued logic. To be practically usable, fuzzy logic needs to have
operators dealing with membership values. The commonly used are the Zadeh Operators
that implement conjunction (and, ∧) using the min function, disjunction (or, ∨) using
the max function and negation (not, ¬) by subtracting the input value from 1. These
operations are computationally cheap and are usable in simple scenarios. However,
triangular norms proved to be even more suitable for modeling conjunctions in fuzzy
logic.

The first appearance of the term triangular norm (t-norm for short) dates back to
1942, when the paper by Karl Menger called Statistical Metrics [10] was published in
a renowned American scientific journal.1 The term was used to generalize the classical
triangle inequality to be used in probabilistic metric spaces. T-norms garnered even
bigger attention after Berthold Schweizer and Abe Sklar published Espaces Métriques
Aléatoires in 1958 [14]. They offered a more complete set of axioms defining these
operations which they also used in their later works [15–16]. The same axioms are still
used as the definition of t-norms.

2.1 Definition
A t-norm is a binary operations generalizing logical conjunction in fuzzy logic [5]. It is a
function T : [0, 1]×[0, 1] 7→ [0, 1] that satisfy the following axioms for all x, y, z ∈ [0, 1]:

T (x, y) = T (y, x) (commutativity)
T (x, T (y, z)) = T (T (x, y), z) (associativity)
y ≤ z =⇒ T (x, y) ≤ T (x, z) (monotonicity)
T (x, 1) = x (neutrality of 1)

Based on the definition, we can see that for all x ∈ [0, 1], all t-norms coincide on the
boundary of the unit square. That is,

T (0, x) = T (0, x) = 0 (commutativity + monotonicity)
T (1, x) = T (x, 1) = x (commutativity + neutrality of 1)

Notably, when putting 0 or 1 as the input arguments, the output of any t-norm is
the same as if we used the boolean logic conjunction.
1 Proceedings of the National Academy of Sciences of the United States of America
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2.2 Basic types of t-norms
There are infinitely many t-norms as there are infinitely many functions satisfying the
axioms. However, we do not need to discuss them all. Instead, we consider two groups of
t-norms characterized by whether or not they are parametrized. Thus, we distinguish
between the non-parametric t-norms and the parametric t-norms. Later on we will
also discuss another way of defining t-norms, that is, using additive or multiplicative
generators.

2.2.1 Non-parametric t-norms
The most basic types are those that are not parametrized. Some of these t-norms are
the minimum t-norm TM (also called the Gödel t-norm), the product t-norm TP, the
Łukasiewicz t-norm TL and the drastic t-norm TD:

TM(x, y) = min(x, y)

TP(x, y) = x · y

TL(x, y) = max(x+ y − 1, 0)

TD(x, y) =
{
x if y = 1,
y if x = 1,
0 otherwise.
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Drastic t-norm

x0 0.2 0.4 0.6 0.8 1y

0.0
0.2

0.4
0.6

0.8
1.0

T(x, y)

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

y

Figure 2.1. Surfaces and contours of the non-parametric t-norms

The minimum t-norm and the drastic t-norm represent the highest and lowest values,
respectively, that any t-norm can have for all x, y ∈ [0, 1].1 That is, for every t-norm
T and any values x, y ∈ [0, 1] we have:

TD(x, y) ≤ T (x, y) ≤ TM(x, y)
1 That is the reason why they are also called extremal.
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2. T-norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.2 Parametric t-norms

For the purposes of approximating data, parametric t-norms are more useful. Their
values are determined not only by their arguments, but also by the value of their
parameter r.1 They are represented by so-called families of t-norms. Some of them are
the Frank t-norms TF

r , the Hamacher t-norms TH
r and the Yager t-norms TY

r . They
are given by [5]:

(
TF
r (x, y)

)
r∈[0,∞] =


TM(x, y) if r = 0,
TP(x, y) if r = 1,
TL(x, y) if r =∞,
logr

(
1 + (rx−1)(ry−1)

r−1

)
otherwise.

(
TH
r (x, y)

)
r∈[0,∞] =


TD(x, y) if r =∞,
1, if r = 0 and x = y = 1

xy
r+(1−r)(x+y−xy) otherwise.

(
TY
r (x, y)

)
r∈[0,∞] =


TD(x, y) if r = 0,
TM(x, y) if r =∞,
max(0, 1− ((1− x)r + (1− y)r)1/r) otherwise.

Each of these t-norm families behave very differently in extreme values of their pa-
rameter. While the Frank t-norms approach the minimum t-norm with r → 0, for r
approaching 1 the limit of a Frank t-norm is equal to the product t-norm and with big
values of r they converge to the Łukasiewicz t-norm. The Yager t-norms converge to
the drastic t-norm for r → 0, Łukasiewicz t-norm for r → 1 and minimum t-norm for
big r. Hamacher t-norms converge to the drastic t-norm for big r as well, but for small
values of r they do not resemble any of the non-parametric t-norms.
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Frank t-norm with r = 1 × 1012
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Figure 2.2. Surface and contours of the Frank t-norms

Hamacher t-norm with r = 0.1
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Hamacher t-norm with r = 100
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Figure 2.3. Surface and contours of the Hamacher t-norms
1 More parameters are also possible, but we will consider only single-parameter t-norms.
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Yager t-norm with r = 0.1
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Yager t-norm with r = 100
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Figure 2.4. Surface and contours of the Yager t-norms

In this work we will not be considering the non-parametric t-norms to be used in
approximation. Rather, we will be dealing only with the listed parametric t-norms
and, later, also with the generator-based t-norms in Section 5.1. With the parametric
t-norms, the optimization task lies in one-dimensional optimization of the parameter r,
with respect to a chosen optimization criterion.

2.3 Classification and properties of t-norms
In this work, we shall use several important classes of t-norms. There are many ways
to describe t-norms and to group them together, but for our purposes just a few of the
most important notions and classes of t-norms are needed.

Idempotent values of a t-norm are those values x, for which T (x, x) = x. All t-norms
have the so-called trivial idempotent elements 0 and 1. All idempotent values inside
]0, 1[ are called non-trivial. Notice that all values x ∈ [0, 1] are idempotent elements of
TM. In fact, due to the monotonicity requirement, TM is the only t-norm for which this
is true. Proof can be found in [5].

A continuous t-norm is called Archimedean if every sequence xn, n ∈ N, where x1 < 1
and xn+1 = T (xn, xn), converges to zero [11]. For example the product t-norm TP is
Archimedean, while the minimum t-norm TM is not.

Thanks to the associativity property of triangular norms, we can also define an n-ary
operation for each n-tuple (x1, x2, · · · , xn) ∈ [0, 1]n using induction [5]:

n

T
i=1

xi = T

(
n−1
T
i=1

xi, xn

)
If we have x1 = x2 = · · ·xn, we can write:

x
(n)
T = T (x, x, · · · , x)

This allows us to define Archimedean t-norms in a slightly different way, as it is
defined in [5]: A t-norm T is called Archimedean if for each (x, y) ∈ ]0, 1[2 there is an
n ∈ N with x(n)

T < y. The two definitions are equivalent.
An element x ∈ ]0, 1[, is called a nilpotent element of t-norm T if there exists some

n ∈ N such that x(n)
T = 0. All values of x ∈]0, 1[ are nilpotent elements of the drastic

t-norm TD. On the other hand, TM has no nilpotent elements.
An Archimedean t-norm T is strict if T (x, x) > 0 for all x > 0. Archimedean t-norms

that are not strict are called nilpotent. This also means that strict t-norms have no
nilpotent elements. We can see that while the Frank and Hamacher t-norms are strict,
the Yager t-norm is not. Moreover, all values x ∈ [0, 1[ are nilpotent elements of TY

r .
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Chapter 3
Data

3.1 Generating random data
While it would be beneficial to have real-world data for our experiments, the focus of
this work is on approximating the data, not on modeling any real situations. In addition,
we did not find any database dealing with approximation by triangular norms. That
means we can generate the data on our own and later try to apply our methods on data
obtained by observations or by conducting surveys.

Because of the monotony requirement which all t-norms must follow, we placed the
same requirement on our random data that were going to be approximated by a t-norm.
However, in reality the measured data might be subject to noise and/or measurement
imprecisions, so small deviations from strict monotony could be considered. It ap-
peared that this restriction is not trivial to follow and generating data that meet all
our requirements is not a straightforward task.

First, we suppose that the desired values of a t-norm to be approximated are given
in a rectangular grid M ×M , where M = {x1, x2, . . . , xn} ⊂ ]0, 1[ and the sequence
(x1, x2, . . . , xn) is increasing. The desired value at node (xi, xj) will be denoted by yi,j ,
i, j ∈ {1, . . . , n}. Not all of the values need to be specified. This assumption can be
used without loss of generality; sparse data can be always completed to a domain of
this form. For simplicity, we denote x0 = 0, xn+1 = 1. We do not assume the sequence
(x0, x1, x2, . . . , xn, xn+1) to be equidistant, although we mostly use this special case.

One of the ways to generate such data could be generating a random associative
copula as those are special continuous triangular norms [6, 12]. For that, we sample
nonnegative numbers rk,m, k,m ∈ {1, . . . , n+ 1}, and put

yi,j =
i∑

k=1

j∑
m=1

rk,m .

In order to satisfy the boundary conditions, we need

∑n
k=1
∑n

m=1 rk,m = 1,∑i
k=1
∑n

m=1 rk,m = xi , i = 1, . . . , n ,∑n
k=1
∑j

m=1 rk,m = xj , j = 1, . . . , n .

The first condition can be easily satisfied by a normalization, but the others (containing
it as a special case) make it a problem. We need a distribution over a complex polytope.
If this distribution should be approximately uniform (or, at least, not very concentrated
in a small part of it), the problem could be rather complicated. We did not proceed this
way. Instead, we iteratively generated the values from yn,n to y1,1 using the following
algorithm.
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3.1.1 Algorithm

1. Suppose the sequence (x0, x1, x2, . . . , xn, xn+1) is equidistant. As an exam-
ple, let n be equal to 10. That means we get the following set of points:
M = {0, 0.1, 0.2, . . . , 0.8, 0.9, 1}. The complete set of grid points will then be
M ×M = {(0, 0), (0, 0.1), (0, 0.2), . . . (1, 0.8), (1, 0.9), (1, 1)}.

2. The values on the boundaries of the unit square are known as they are fixed for all
t-norms. Next, we initialize the values of all nodes (xi, xj) for all i, j ∈ {1, . . . , n}:

yi,j =
{min(xi, xj), if xi = 1 or xj = 1,

0 otherwise
The values that do not belong to the boundary will be changed in the next phase.
We set them to zero here only for the purpose of having all the values initialized at
the start of the algorithm.

3. Now iterate over the nodes that do not belong to the boundary. Beginning in the top
right corner (xn, xn), traverse the diagonals going from left to right, top to bottom,
as is visualized in Fig. 3.1, where the solid blue lines represent the sequential data
generation while the red dashed lines represent moving to the next diagonal.

4. For each point (xi, xj) ∈ M ×M generate a random number pi,j in the range ]0, 1]
using a probability distribution of our choice. Now, to accommodate monotonicity,
we need the value yi,j = (xi, xj) to be lower than both yi+1,j and yi,j+1. We do that
simply by putting yi,j = pi,j ·min(yi+1,j , yi,j+1).

5. Finish with the set P = {(x1, x1, y1,1), . . . , (xn, xn, yn,n)}.
This way of generating data ensures monotony, making the data usable for approx-

imation by t-norms. At the same time, the data offer great variability – they can
approach both the minimal t-norm, which represents the set of maximum values any
t-norm can reach, and also the drastic t-norm, which represents the set of minimum
values reachable by any t-norm.
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Figure 3.1. Process of data generation

An example of the data generation process can be seen in Fig. 3.1. After the grid
initialization step, we iterate over diagonals of the inner area of the unit square. The
green field in the figure will have a value of p ·min(0.11, 0.13) = p · 0.11.

To summarize the process of data generation using this algorithm – we proceeded
from yn,n to y1,1 as follows: We computed the upper bound required by monotonicity.

7



3. Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Then we multiplied this bound by a random factor from ]0, 1] and took this value. What
remains is to choose the distribution in the random factor. If it was a proper constant
(less than or equal to 1) and the nodes were equidistant, we would get the product
t-norm scaled by this constant, which could be considered a desirable “prototype” of
strict t-norms.

3.1.2 Choosing the probability distribution

We can generate the random number p in several ways by using different probability
distributions. The decision of which distribution to choose largely depends on how the
generated should look like. For example, when we have a priori knowledge about the
input data, for instance which t-norm are they based on.

The easiest method of generating p is using the uniform distribution. However, that
has some inconvenient drawbacks. The problem with using uniform distribution for
picking p is that the values towards the upper right corner of the unit square have a
lot greater influence over the subsequent values to be generated. That is because the
values towards the lower left corner are always limited by the values already generated.
By picking p from the uniform distribution independently of the previous values, the
generated numbers are consequently pushed towards zero. In this essence, the values
being generated are exponentially decreasing. This can be seen in Fig. 3.2. This grid
of size 5x5 points represents mean values of 1 000 000 data sets. Notice how the values
are very low already in the first few indices in the grid.
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0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0052 0.0185 0.0689 0.2500

0.0000 0.0185 0.0556 0.1667 0.5000

0.0000 0.0688 0.1667 0.3753 0.7500

0.0000 0.2500 0.5000 0.7500 1.0000

Figure 3.2. µ, Uniform distribution
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0.0000 0.0281 0.0681 0.1361 0.0000

0.0000 0.0662 0.1362 0.2167 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000

Figure 3.3. σ, Uniform distribution

An improvement can be made by taking the square root of p. That is, for each point
(xi, yi), having mi equal to the smallest non-zero number in the same column and ni
to the smallest non-zero number in the same row, the value at (xi, yi) will be equal to
zi = √pi ·min(ni,mi)).

As can be seen in Fig. 3.4, this gives us larger mean values. Also, the values in the
center of the grid have greater standard deviations, see Fig. 3.5. This means that we
get more diverse data, which is useful for testing our approximation techniques.
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Figure 3.4. µ, Uniform distribution, using
square root
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Figure 3.5. σ, Uniform distribution, using
square root

Another approach is to use the beta distribution. The probability distribution func-
tion of the beta distribution for x ∈ [0, 1] is defined as follows:

f(x) = xα−1(1− x)β−1

B(α, β) ,

where B is the beta function:

B(α, β) =
∫ 1

0
tα−1(1− t)β−1dt

The integers α and β are parameters which can be tweaked to change the charac-
teristics of the beta distribution. In our case it is best to shift the mean value during
the algorithm so that on average we generate higher values of p for the upper right
corner of the unit square and lower values for the lower left corner. That mitigates the
problem of diminishing the values of the generated points. Here is the pseudocode for
calculating p for a given point (x, y):

r = min(x, y)

a = a1 * r + a2 * (1 - r)
b = b1 * r + b2 * (1 - r)

p = beta(a, b)

Here, the values of a1, a2, b1 and b2 are parameters that are set before generating
the data. They represent the start and end values of alpha and beta. That is, values
that we need at the upper right corner of the unit square (where r will be high) and
values needed at the lower left corner (where r will be low).

The parameters can be set to whichever values we need. For our experiments, these
values served as a good starting point:

a1 = 20, a2 = 1.5, b1 = 2, b2 = 1.5
These concrete values are only usable for the grid size of 5x5. They need to be

tweaked in order to be used for generating data for grids of different sizes.
With these values we get the following distributions at r = 1, r = 0.5 and r = 0, see

Fig. 3.6, 3.7 and 3.8. As you can see, we are essentially forcing the random variable
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p to be greater when generating values in the upper right corner, while allowing small
values in the opposite corner.
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Figure 3.6. PDF, r = 1
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Figure 3.7. PDF, r = 0.5
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Figure 3.8. PDF, r = 0
When using the beta distribution, we get similar mean values and standard deviations

to those obtained in the previous case, see Figures 3.9 and 3.10. However, now we have
the option of modifying the parameters so that the characteristics of the generated data
can be tweaked as needed.
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Figure 3.9. µ, Beta distribution
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Figure 3.10. σ, Beta distribution
This procedure can also be interpreted so that each value was computed as a multiple

of several samples of random factors (and bounds). In a logarithmic scale, this can be
described as a sum of exponents, similar to the first method described above. There are
three important differences. First, we start the computation from the point (1, 1) (in
practice, from (xn, xn)), instead of (0, 0). Second, we do not sum all random exponents,
only along one (maximal) path from (1, 1) to the point in question. As a consequence,
we do not have problems with the boundary conditions, which are easily implemented in
the algorithm. Third, the first method generates values of some copula, which satisfies
some restrictions (it has to be 1-Lipschitz). Not all t-norms satisfy this condition. Our
method also is not restricted to 1-Lipschitz functions.

If the nodes are not equidistant, we can proceed the same way; generating yi,j , we
just multiply the random exponent by a scaling factor to reflect the distance from the
previous points, e.g. by the length of the respective interval, xi+1 − xi or xj+1 − xj ,
depending on which bound is active. We could also generate a dataset with equidistant
points and only take a subset (perhaps randomly) of it which would create a dataset
that is less regular and with nodes that have varying distance from each other.

3.1.3 Non-monotonicity
It is not strictly required to have the input data monotonic. In practice, the gathered
data could be noisy or could be a result of more complex computations than merely a
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fuzzy conjunction. Or, when the data are human-based, e.g. collected through surveys,
they might not be monotonic simply because humans are not always very precise when
thinking abstractly.

Our method could be easily extended to yield also non-monotonic data, for example
by adding random noise to the final generated set of points. For our experiments,
however, we did not do that.

3.1.4 Non-commutativity
The data can violate commutativity. In such a case, we can have yi,j 6= yj,i, although
each t-norm has the same value at (xi, xj) and (xj , xi). So we have two different desired
data items for a single value. This need not be a problem; in approximation, we can
also admit more values at the same node. The loss function that we define later in
Section 4.1 is not influenced by this. If we really needed to, we could modify the data
to be monotonic while having no influence over the approximation. For this, we can use
the symmetry of all t-norms – their commutativity. We can freely move any point to the
opposite side of the unit square across the diagonal simply by switching its coordinates
xi and xj . That is, approximating points (xi, xj , yi,j) and (xj , xi, yj,i) would be equal
to approximating two points (xi, xj , yi,j) and (xi, xj , yj,i). So, to achieve commutativity
in our generated data, we could simply create a copy of each point with the switched
coordinates. That is, having created a dataset P1, we would create a new set of points
P2 = {(xj , xi, yi,j) | (xi, xj , yi,j) ∈ P1}. The final set would be equal to P = P1 ∪ P2.

Another method of generating data satisfying commutativity, and perhaps the sim-
plest, could be generating the data only in one half of the unit square, that is, points
yi,j for all i, j ∈ {1, . . . , n}, i ≤ j and then copying tha values to the other half, or
rewriting the generated values by the average of the two opposing values on each side
of the unit square’s diagonal, that is, yi,j = (yi,j + yj,i)/2 and then yj,i = yi,j .
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Chapter 4
Optimization of parametric t-norms

4.1 Criteria for optimization
There are several options for choosing optimization criteria. The criterion that we used
is the sum of squares of the error terms for each point in the generated set. Given a
point (x, y, z) and a t-norm Tr, an error term is calculated as the difference of the z
value and the value of the t-norm at (x, y).

lTr(P ) =
∑

(x,y,z)∈P

(z − Tr(x, y))2 (1)

As can be seen in (1), the optimization method is in fact the well known Least Squares
method:

r∗ = argmin
r

lTr(P ) = argmin
r

∑
(x,y,z)∈P

(z − Tr(x, y))2

Let us denote the value of the optimization criteria for the optimal value of r by
l∗T (P ).

4.2 Algorithm 1 – Ternary Search and Golden Section
Search algorithms

One of the simplest approaches to finding the global minimum of a function is using
the Ternary Search1 algorithm. The algorithm operates with a function that is convex
and unimodal on an interval [a, b]. This means that the function has only a single min-
imum on the interval [a, b]. The need for unimodality, which arises from the algorithm
principle, usually does not represent a significant problem. However, in some cases the
function of optimization criteria w.r.t. parameter r is not convex and unimodal on
the whole interval. Namely, the Yager t-norms are nilpotent, causing an area of values
that are exactly zero. Data in this area cannot be optimized due to the fact that the
change of the parameter r does not induce a change in the error terms connected with
this data. This leads to the loss function having multiple minima on the interval [a, b]
and the Ternary Search algorithm might (and will) have problems finding the global
minimum.

Parametric t-norms generally operate with values of r in the interval [0,∞), which
is not feasible in real world situations. In real use, it is sufficient to work with a closed
interval. During the first phase of the algorithm, we find an interval sufficiently large
so that it contains the minimum. In the next phases we locate the minimum.
1 Note that there is also an algorithm for finding a certain element in a sorted array with the same name.
Here we mean the algorithm for finding an extreme value of an unimodal function inside a given interval.
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The steps of the algorithm are as follows:

1. Begin with an interval [a0, b0] = [1 · 10−15, 10]. Suppose that r∗ > a0. Thus, l(r∗) <
l(a0). We need to find an interval [a0, b0] such that l(r∗) < l(a0), l(r∗) < l(b0) and
r∗ ∈ [a0, b0], meaning that the function l is decreasing on [a0, r

∗] and increasing on
[r∗, b0]. We can do that by moving the right bound until the value of l(b0) starts to
rise. That is, update the value b0 = 2 · b0 until l(b0) ≥ l(2 · b0). Now we know that
r∗ < 2 · b0. So, we multiply b0 by 2 once more so that the optimal value lies inside
the interval [a0, b0]. This will be the interval [a, b] we will be searching in.

2. Start searching with an interval [a, b], assuming the minimum of the function l(r) is
located inside this interval. In this interval, choose two points m1 and m2. There are
several ways of choosing these points and they have an impact on the convergence
rate of the algorithm. Let us pick them by dividing the interval to three segments of
the same size1:

m1 = a+ b− a
3 , m2 = b− b− a

3 (2)

Consequently, the size of the interval [m1,m2] will decrease in each iteration by a
factor of 2/3 ≈ 0.667 in the worst-case scenario, i.e., when the optimal value never
lies in the center of the interval.

Other algorithms based on different options of choosing these points exist. For
example the Golden Section Search [13], which uses the following formula for choosing
the next point:

m1 = a+ (b− a) · 3−
√

5
2 , m2 = b− (b− a) · 3−

√
5

2
Here, the size of the interval [m1,m2] decreases by a factor of (

√
5 − 1)/2 ≈

0.618 in the worst-case scenario. We can see a slight improvement here and indeed,
this algorithm proves to be optimal when the extreme is sampled from the uniform
distribution.

Another option might be the Fibonacci Search2, which makes the intervals [a,m2]
and [m1, b] to have the same ratio as two consecutive Fibonacci numbers.

Both the Golden Section Search and the Fibonacci Search algorithms were discov-
ered by Jack Kiefer in 1953 [4].

3. One of the following conditions will apply for the points m1 and m2:
. l(m1) > l(m2) – r∗ cannot be lower thanm1, therefore it must be inside the interval

[m1, b]. The next iteration will operate on the interval [a, b] = [m1, b].. l(m1) < l(m2) – r∗ must be lower thanm2, therefore must lie in the interval [a,m2].
The search interval for the next iteration will be [a, b] = [a,m2].. l(m1) = l(m2) – points m1 and m2 either lie inside an interval, where the function
l(r) is constant3, or they have mapped to the same value by chance and the min-
imum will be between these points. In either case, for the next iteration we have
[a, b] = [m1,m2].

4. After obtaining a new interval for searching of the minimum, we first check the
width of this interval d = b − a. If it is lower than a predefined value (arbitrarily
small positive number ε), we can assume that, up to some accuracy, the minimum

1 Hence the name Ternary Search
2 Not to be confused with the same named algorithm for searching in a sorted array
3 This can occur with nilpotent t-norms
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corresponds to any point inside this interval. Without loss of generality, we can
declare that we have found a sufficiently good approximation of the optimum r∗ = a.
Similarly, if we reach a predefined limit of iterations, the algorithm is terminated
as well. If any of the terminating conditions is not met, we continue with the next
iteration with the new interval [a, b].

While being relatively fast and efficient, the Ternary Search algorithm and other al-
gorithms of this type are not usable for multimodal optimization as they could converge
into a local minimum. For those we need to use other techniques.

4.3 Algorithm 2 – Particle Swarm Optimization
As previously stated, in some cases we might have to find the global minimum of a
function on an interval on which the function is not unimodal. This is also the case of
the loss function lr for the Yager t-norm. The precise explanation of why this happens
will be given in chapter 4.4.

Suppose we are given the following loss function:
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Figure 4.1. Multimodal loss function

As we can see, the function has two local strict minima at r1 = 0.410 and r2 =
0.475, which is also the global minimum. One of the ways to find global extrema on
multimodal functions is to use one of the population-based strategies, which operate
with multiple possible solutions at once. One of such techniques is called Particle
Swarm Optimization, or PSO for short.

The algorithm was introduced by J. Kennedy and R. Eberhart in 1995 [3]. It is a
population-based, stochastic optimization algorithm that was inspired by the behavior
of bird flocks and fish schools. The algorithm is initialized with a population of random
solutions, called particles, that are updated in each step. In this regard, it is similar
to genetic algorithms. However, it does not use any evolution operators to combine
or modify the solutions. Instead, the particles fly through the problem space and are
drawn to the currently best solution.

The algorithm here is a slightly modified version of the one given by Kennedy and
Eberhart. In general case, the algorithm can be used for multi-dimensional optimiza-
tion. Here we are optimizing the loss function l(r), which is one-dimensional.

Each particle i has its current position pi,t and velocity vi,t at iteration (time) t, its
best known position p∗i,t and best known value l∗i,t. It also knows the position of the
globally best particle P ∗t and its value L∗t .
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The steps of the algorithm are as follows:

1. Create a population of N particles with their initial positions uniformly distributed
over the maximum interval of r so that the distance between two neighboring particles
is constant. The interval depends on the family of t-norms we are optimizing. For
example, the starting interval for the Yager t-norms could be [1 · 10−15, 100], which
gives us enough range. In fact, higher values of r than 100 are problematic for the
Yager t-norm because of numerical instability. For strict t-norms, the interval can
be found iteratively in the same way as in the previous algorithm.

2. At each iteration t, do the following:
. For each particle i, update its current position and the velocity for the next itera-

tion. The current position equals the previous position plus current velocity:

pi,t = pi,t−1 + vi,t

Randomly sample two numbers r1 and r2 in range [0, 1] using the uniform distri-
bution. The new velocity will be equal to the current velocity plus the vector1

towards its own best known position plus the vector towards the globally best
position:

vi,t+1 = vi,t + 2r1(p∗i,t − pi,t) + 2r2(P ∗t − pi,t)

If the new value of the loss function of the particle is lower than its best known
value, update the particle’s best known position and value:

p∗i,t+1 =
{
pi,t, if li,t < l∗i,t,
p∗i,t otherwise

l∗i,t+1 =
{
li,t, if li,t < l∗i,t,
l∗i,t otherwise

. Find the particle m with lowest lt and update the globally best value and position:

L∗t+1 = lm,t

P ∗t+1 = pm,t

. After updating the globally best value and position, find the particle m with the
greatest difference of its value from the globally best value. If this difference
is smaller than a predefined value (arbitrarily small positive number ε), we can
assume that up to some accuracy the minimum corresponds to any of the particles.
Without loss of generality, we can assume that we have found a sufficiently good
approximation of the optimum r∗ = P ∗t . If we reach a predefined limit of iterations,
the algorithm is also terminated. If any of these conditions is not met, we continue
with the next iteration t+ 1.

The progress of the optimization can be seen in the following figures. In Fig. 4.2
we can see the initialization step, where the population is uniformly distributed over
the input function. Then the particles start to gather around the global optima, where
they settle around iteration 80, as can be seen in Fig. 4.5.

1 In our case, the vector is one-dimensional. In general case, it can have more than one dimension.
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Figure 4.2. PSO initialization
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Figure 4.3. PSO at iteration 10
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Figure 4.4. PSO at iteration 40
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Figure 4.5. PSO at iteration 80

4.4 Measure of quality of approximation

It turns out that in real world applications, the loss function l(P ) is not enough to give
us full understanding of how well a t-norm approximates some data. This is because
the data may have been obtained with uncertainty, the measurements may have been
imprecise, and then we would need to know the uncertainty of the found optimum.
Or, the data might be incomplete, requiring that new points be added to our input
data. Consequently, we need to know how well the t-norm is able to adapt to these
new circumstances.

4.4.1 Tolerance interval

Let us define tolerance interval as an interval of values r, for which the ratio of the loss
function lTr(P ) and the optimal loss l∗T (P ) is less than or equal to a predefined value
k + 1:

ST (P, k) = [r1, r2] | ∀r ∈ [r1, r2] : lTr(P )
l∗T (P ) < k + 1

4.4.2 Integral of a t-norm over tolerance interval

To see how much a given t-norm changes with values r ∈ ST , we can take its integral over
the unit square and over the tolerance interval. Assuming that the family of t-norms
depends monotonically on the parameter, which is the case of all families considered
here, we can write:
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IS =
1∫

0

1∫
0

∣∣∣∣∣∣
r2∫
r1

Tr(x, y) dr dx dy

∣∣∣∣∣∣ =
∫∫
A

∣∣∣∣∣∣
r2∫
r1

Tr(x, y) dr dx dy

∣∣∣∣∣∣ ,
where A is the area of the unit square. Of course, this can also be written as:

IS =
∫∫
A

|Tr2(x, y)− Tr1(x, y)|dx dy

The value of IS gives us a measure of how much the t-norm has to flex in order to
have a specific deviation from Tr∗ . What does it tell us? Let us demonstrate that on
an example using the Hamacher t-norms.

We will show what happens when we try to modify data that are concentrated around
the center of the unit square and when the data are closer to the edge of the unit square.
We will denote these two cases by indices A and B.

4.4.3 Example – case A

In the first case, consider having input data like this:

PA = {(0.4, 0.4, 0.02), (0.6, 0.4, 0.07), (0.4, 0.6, 0.3), (0.6, 0.6, 0.5)}
After fitting these points, we get the following values for the optimal parameter and

the respective loss and tolerance interval (k = 0.0001):

r∗A = 1.4276, l∗TH (PA) = 0.06925, ISA
= 0.001151

Note the value of ISA
(integral over the tolerance interval), we will return to it later.

Let us add a new point pA1 to our set:

PA1 = PA ∪ {(0.5, 0.5, 0.4)}
The new values after optimization will be:

r∗A1 = 0.8557, l∗TH (PA1) = 0.09375

r∗ l∗TH (P ) lTH (pA1)
P = PA 1.4276 0.06925 0.03033
P = PA ∪ {pA1} 0.8557 0.09375 0.01978

Table 4.1. Overview of case A, adding point in the center

Before adding the last point, the t-norm would have the value THr∗
A
(0.5, 0.5) = 0.2259,

so the loss for this point would be l = 0.174142 = 0.03033. After optimization, the t-
norm tries to compensate for the loss caused by this point by flexing itself in the point’s
direction. The new loss of the new point for optimized the t-norm will be l = 0.01978.
So the approximation brought down the loss to 65.23 % of its original value for that
point.

What happens when, instead of adding a point in the center, we add a point that is
closer to the edge? Let us add a point to our original set PA that would have the same
loss as the point pA1 in PA1, but instead lies at x = 0.9, y = 0.5. For that, we calculate
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the value of the t-norm with these arguments and add the distance of pA1 from the
t-norm before optimization. By doing that, we get a new input data set:

PA2 = PA ∪ {(0.9, 0.5, 0.6143)}
Now after optimization we obtain:

r∗A2 = 1.1477, l∗A2 = 0.09846

r∗ l∗TH (P ) lTH (pA2)
P = PA 1.4276 0.06925 0.03033
P = PA ∪ {pA2} 1.1477 0.09846 0.02094

Table 4.2. Overview of case A, adding point closer to the edge

The new point now has its own loss equal to l = 0.02094, which is 69.04 % of its
original value, that was the same as for point pA1.

We can see that the data in the center got approximated better – the resulting loss
is lower for a point added close to the center than the one added closer to the edge.
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Figure 4.6. Initial data around the center

4.4.4 Example – case B

Now let us consider case B, that is, input data that are closer to the edge of the unit
square. To be able to compare the results with the previous case, we choose the input
data in such a way that the optimal parameter is equal to the one in the previous case:

PB = {(0.2, 0.2, 0.02), (0.8, 0.2, 0.07), (0.2, 0.8, 0.3), (0.8, 0.8, 0.5726)}
When we approximate these points, we get:

r∗B = 1.4276, l∗B = 0.03227, ISB
= 0.002006

The optimal parameter r∗B is equal to r∗A, as was intended. Beside that, we can
immediately notice that the value of the tolerance integral IB is almost twice the value
of IA. That means that for approximating data, the t-norm will be able to change its
shape more profoundly while maintaining the same precision of the approximation.

Now add a point pB1, which lies in the middle of the unit square:

PB1 = PB ∪ {(0.5, 0.5, 0.4)}
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r∗ l∗TH (P ) lTH (pB1)
P = PB 1.4276 0.03227 0.030330
P = PB ∪ {pB1} 0.2123 0.04578 0.007866

Table 4.3. Overview of case B, adding point in the center

Before adding pB1, it would have a loss equal to l = 0.03033. After optimizing for
the new set PB1, we obtain:

r∗B1 = 0.2123, l∗B1 = 0.04578
With the calculated parameter r∗B1, the point pB1 has a loss of 0.007866, which is

25.94 % of the original value.
Now instead of adding a point in the center, we add a point close to the edge of the

unit square in the same way as we did in the previous case. That is, we add a point pB2
which is equal to pA2 because it has the same distance from the t-norm as the points
pA1 and pB1:

PB2 = PB ∪ {(0.9, 0.5, 0.6147)}
For this new set we get:

r∗B2 = 0.4997, l∗B2 = 0.05814

r∗ l∗TH (P ) lTH (pB2)
P = PB 1.4276 0.03227 0.03033
P = PB ∪ {pB2} 0.4997 0.05814 0.01234

Table 4.4. Overview of case B, adding point to the center

With this optimal parameter r∗B2, the point pB2 has a loss of 0.01234. That is 40.69 %
of the original value.

Again, the point pB1 was approximated better than pB2. This time the difference is
even more significant. The reason behind that is that the initial data were clustered
around the center in the case A, while in case B they were closer to the edge of the
unit square.
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Figure 4.7. Initial data close to the edge

What conclusions can be drawn from this experiment? Chiefly, the closer a data
point is to the center of the unit square, the higher influence it has over the optimal
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value of parameter r. But that is not a general rule. For that we need to get a deeper
insight of exactly how t-norms behave when shifting the value of their parameter. That
is of course different for each of the discussed t-norms and for different values of r. This
insight can be found in the derivative of the t-norm with respect to the parameter.

4.4.5 Derivative of a t-norm w.r.t. parameter r

To better understand what happens to a t-norm when changing its parameter, let us
calculate the derivative:

dTr(x, y)
dr

When calculating the derivative of the Hamacher t-norm for r = 1.4276 (which is the
same value on which our previous experiments were based), we get the following:
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Figure 4.8. Derivative of TH
1.4276

What the Figure 4.8 shows us is that the rate of change of the t-norm value, with
respect to the parameter r, is higher in the area around the center of the unit square;
whereas, closer to the edge, the rate of change is low. This corresponds to our experi-
ments in the previous chapter, where we have shown that values around the center have
greater influence over the optimal value of the parameter. Naturally, approximating
values in the area with greater values of derivative w.r.t. r will also lead to greater
values of the integral IS .

4.4.6 Non-unimodality of the loss function for the Yager t-norm

An interesting behavior can be observed with the Yager t-norm due to its nilpotency.
Let us show an example of the derivative of the Yager t-norm with r = 0.5.

As can be seen in Figures 4.9 and 4.10, not only does it have an area on which the
value of the t-norm is equal to zero, in the interior of the area the derivative of the
t-norm w.r.t. r is also equal to zero. The opposite is true for the edge of the area,
where the value of the derivative is the highest.

When we change the parameter r to 1.5, we get the following:
Here we can see that the edge of the area where the t-norm value is zero has moved

towards the origin, so has the edge of the area with zero derivative. This moving edge
plays an important role during the optimization, because as it moves across data that
need to be approximated, the loss function l ceases to be unimodal. Thus, we need to
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1.5

x0 0.2 0.4 0.6 0.8 1y

0.0
0.2

0.4
0.6

0.8
1.0

T(x, y)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.12. Surface of TY
1.5

optimize such t-norms using other techniques – population methods perhaps, such as
genetic algorithms or swarm optimization algorithms, as we have done in Section 4.3.

Let us illustrate this behavior through an example. Suppose we need to approximate
the following set of points:

P = {p1, p2, p3},
where p1 = (0.2, 0.2, 0.1), p2 = (0.5, 0.5, 0.2) and p3 = (0.8, 0.8, 0.5). For simplicity, we
are only considering points lying on the diagonal of the unit square. As was already
stated, TY

r −→ TD for r −→ 0. That means that for large values of the parameter r,
the loss function lr of Yager t-norm for any set of points is given by the sum of squares
of their z-coordinates. Let us refer to this value as l0:

l0 = 0.12 + 0.22 + 0.52 = 0.30

When we set r to have the largest value for which lr = l0, one of the points will
suddenly have an influence over the loss function. This is the moment when the edge
of the area where TY

r 6= 0 and dTY
r (x, y) /dr 6= 0 reaches the point p3 = (0.8, 0.8, 0.5),

see Fig. 4.13. Until now the loss function has been constant. If we now continue to
increase the value of r, the surface of the t-norm will be getting closer to the point p3
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and the value of lr will be decreasing until the moment when the surface coincides with
the point, as can be seen in Fig. 4.14.
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Figure 4.15. Derivative of the TY
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Further increasing the value of r makes the loss function increase because at this
moment only the point p3 has influence on it. That is, the point lies in the area where
dTY

r (x, y) /dr 6= 0, but the other points do not. This means that the value of r where
the t-norm coincides with p3 must be a local minimum. The value of the loss function
continues to increase until another point p2 lies in the area of non-zero derivative, see
Fig. 4.16. Then both p2 and p3 influence the loss function. Now, as can be seen in
Fig. 4.18, the rate at which the t-norm is approaching p2 is greater than the rate at
which it recedes from p3, that is if p2 = (x2, y2, z2) and p3 = (x3, y3, z3), we get:

dTY
r (x2, y2) /dr > dTY

r (x3, y3) /dr

This at first leads to a decrease of the value of the loss function. However, given the fact
that squaring in the loss function definition emphasizes larger differences, the distance
from the point p1 becomes too great and the decrease of the loss function stops. Further
increase of the value of r would lead to an increase of the value of the loss function.
The value of the parameter r for which this is true is r = 1.27. As it turns out, this
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Figure 4.17. Diagonal of TY
1.47

is actually the global minimum we were looking for. The diagonal of the optimized
t-norm can be seen in Fig. 4.19.
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Figure 4.18. Derivative of TY
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If we increased the value of r even more, the loss function would only increase from
now on, as can be seen in Fig. 4.20 where both minima are visible.

Importantly, the point p1 has no influence over the final approximation whatsoever.
The optimized parameter r∗ would be the same if the initial set of points P did not
contain the point. This can be seen from Fig. 4.21. The derivative of the t-norm w.r.t. r
for the optimal value r∗ is equal to zero at (x1, y1), where x1 and y1 are the coordinates
of the point p1 = (x1, y1, z1).
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Figure 4.20. Loss function for the given point set
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The behavior discussed here is the reason why it is problematic to use the Ternary
Search algorithm or other simple iterative algorithms to find the global minimum of
the loss function. These algorithms are supposed to work well with unimodal functions
only, but as we have seen here, the loss function for the Yager t-norm may not be
unimodal.

24



Chapter 5
Optimization of generators

5.1 Generators of t-norms

Additive and multiplicative generators of triangular norms are another way of defining
them. Instead of explicitly giving the t-norm’s value for a given argument pair (x, y),
the value is calculated using a single one-dimensional function, called an additive or a
multiplicative generator, and its inverse. In general, we can use generators to produce
t-norms which are not continuous. However, that is beyond the scope of this thesis.
Here we will deal only with generators of continuos Archimedean t-norms.

5.1.1 Definition

The following definitions are given in [11]:
An additive generator of a continuous Archimedean t-norm T is a decreasing bijection

t : [0, 1]→ [0, B], B ∈ ]0,∞], such that:

T (x, y) =
{
t−1(t(x) + t(y)) if t(x) + t(y) ≤ B,
0 otherwise.

We can also define n-nary extension of a t-norm given by its additive generator [7].
If t : [0, 1] → [0, B], B ∈ ]0,∞] is an additive generator of a t-norm T , we have for all
x1, x2, · · · , xn ∈ [0, 1]

T (x1, x2, · · · , xn) =
{
t−1 (

∑n
i=1 t(xi)) if

∑n
i=1 t(xi) ≤ B,

0 otherwise.

A multiplicative generator of a continuous Archimedean t-norm T is an increasing
bijection θ : [0, 1] 7→ [b, 1], b ∈ [0, 1[, such that:

T (x, y) =
{
θ−1(θ(x) · θ(y)) if θ(x) · θ(y) ≥ b,
0 otherwise.

Again, we can define an n-ary extension. If θ : [0, 1] 7→ [0,∞] is a multiplicative
generator of a t-norm T , we have for all x1, x2, · · · , xn ∈ [0, 1] [7]:

T (x1, x2, · · · , xn) =
{
θ(−1) (

∏n
i=1 θ(xi)) if

∏n
i=1 θ(xi) ≥ b,

0 otherwise.

Generators of t-norms are not uniquely determined by their t-norm. That is, a single
generator function results in a unique triangular norm, but the same t-norm might be
generated using other generator functions as well.

25



5. Optimization of generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.2 Examples

Examples of additive and multiplicative generators and their respective t-norms can be
found in [5]. Here we show just some of them:
. An additive generator of the Łukasiewicz t-norm TL is given by:

t(x) = 1− x,
Note that this leads to:

t−1(t(x) + t(y)) = 1− ((1− x) + (1− y)) = 1− (2− x− y),
which is a function not bounded by [0, 1] for x, y ∈ [0, 1]. In this case, we would need
to additionally limit the resulting function to the proper bounds.

. An additive generator of the product t-norm TP:

t(x) = − log x
. An additive generator of the Frank t-norm TF

r with parameter r:

tFr (x) =


− log x if r = 1,
1− x if r =∞,
log r−1

rx−1 if r ∈ ]0, 1[ ∪ ]1,∞[.

. A multiplicative generator of the Frank t-norm TF
r with parameter r:

θF
r (x) =


x if r = 1,
ex−1 if r =∞,
rx−1
r−1 if r ∈ ]0, 1[ ∪ ]1,∞[.

. An additive generator of the Hamacher t-norm TH
r with parameter r:

tHr (x) =
{ 1−x

x if r = 0,
log
(
r+(1−r)x

x

)
if r ∈ ]0,∞[.

. A multiplicative generator of the Hamacher t-norm TH
r with parameter r:

θH
r (x) =

{
e x−1

x if r = 0,
x

r+(1−r)x if r ∈ ]0,∞[.

Generators of the parametric t-norms for several values of the parameter r can be
seen in the figures below.
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5.2 Fitting generators of general t-norms
As is stated in Proposition 2.12.7 of [7], the convergence property of a sequence of
t-norms limn→∞ Tn = T implies the existence of a sequence of additive generators
(tn : [0, 1] 7→ [0,∞])n∈N of Tn. The restriction of ( limn→∞ tn)|]0,1] coincides with a
restriction of some additive generator of T to ]0, 1]. For strict t-norms, these restrictions
are [0, 1]. This fact allows us to deal with approximating additive generators instead of
their t-norms as we can transform one problem to the other.

For simplicity, let us consider the case of approximation by a strict t-norm; the
conclusions will be relevant to nilpotent t-norms, too.

Let us denote by t an additive generator of the t-norm we are approximating. As was
already stated, for an input dataset consisting of tuples (xi, xj , yi,j), i, j ∈ {1, . . . , n},
we want to find an approximate solution to the system of equations:

t−1(t(xi) + t(xj)) ≈ yi,j , i, j ∈ {1, . . . , n} . (1)

for an additive generator t, or

θ−1(θ(xi) · θ(xj)) ≈ yi,j , i, j ∈ {1, . . . , n} . (2)

for a multiplicative generator θ. We will focus on the additive generator approach for
now. We can choose to optimize this system of equations directly, that is, try to find
an approximate solution to this system by minimizing:

n∑
i=1

n∑
j=1

(
t−1(t(xi) + t(xj))− yi,j

)2
, (3)

or we can modify the system in a way that could somehow help us to find the solution
more easily. We will refer to the unmodified criterion (3) as a proper criterion. Beli-
akov [1] proposes a modification of (1) to avoid calculating the inverse of the function
g by instead finding an approximate solution to the following system of equations:

t(xi) + t(xj) ≈ t(yi,j) , i, j ∈ {1, . . . , n} . (4)
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Not all of the values yi,j , i, j ∈ {1, . . . , n} need to be given. This modification allows

us to also formulate the problem as an LSEI problem (least squares with equality and
inequality constraints). We will not go into detail about how exactly this is achieved.
For now, let us just note that a number of solvers of this problem exist. During
experiments in this work, an evolution-based algorithm was used to minimize the loss
functions. This naturally results in a significant decrease in performance. Nevertheless,
it allows us to easily test different criteria without the need to manually transform the
equations from one formulation to another. This results in being able to use the same
solvers, which is needed to properly compare the results. Given the tight time frame,
this would not be feasible.

In [1], also prescribed values of the t-norm for more than two arguments are allowed;
this generalization is obtained almost for free. We do not consider this case here for
simplicity. Besides, our method of generating data was not designed for this general
case.

The approximate solution to system (4) can be found by the minimization of a
criterion, e.g. the least squares,

n∑
i=1

n∑
j=1

(
t(xi) + t(xj)− t(yi,j)

)2
. (5)

Note, that we will refer to this criterion as the original criterion. As the data are
finite, the criterion depends only on the values of g at finitely many points,

x1, x2, . . . , xn, y1,1, y1,2, . . . , yn,n . (6)

Between them, any continuous monotonic function can be admitted. Beliakov [1]
uses piecewise linear interpolation and the reciprocal function (x 7→ 1/x) in the interval
between 0 and the least value, y1,1.1

Criterion (5) allows us to avoid the use of the inverse of the generator as mentioned
above. However, the criterion has a trivial zero solution of t(x) = 0. Thus we need a
“fixed unit” that prevents us from considering this trivial solution. In [1], this is taken
as t(0) = 1 in the case of a nilpotent t-norm and t(ε) = 1 in the case of a strict t-norm,
where ε is a properly chosen small positive number. The author takes the smallest value
from points (6). On the interval [0, ε], the author proposes modelling the asymptote
near zero using the function 1/x. He also suggests that the choice of the function in
this interval has no influence on the final approximation. We do not agree with this
statement and will provide the explanation later.

The author of [1] considers the choices of ε, spline knots and the the interpolation
functions between the knots to be satisfactory. We dare to formulate some criticism.

The choice of the generator and the optimality criterion can have problematic conse-
quences. Recall that an additive generator t(x) is a monotonically decreasing function.
If we pick ε as the minimum of our input data (e.g. ε = y1,1), all other input values
will lead to lower values of t than t(ε) = 1. Because smaller values of t lead to smaller
values of criterion (5), we may expect that the “optimized” value of t(y1,1) would be
rather “high”, relative to other values of t. That is, it would have higher influence over
the generator than the other input data points. One may expect that the estimate of
1 In [1], the author also suggests that the number and choice of the nodes of linear splines used for
approximation can be modified to control the precision of the resulting approximation and thus they can
be independent of the approximated points. He also suggests splines of a higher order as an alternative,
provided that their monotonicity is ensured, which is trivially satisfied for the linear spline.
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t(y1,1) would be “biased” (not in the statistical sense). The same goes for all of the
input values. The lower the input value is, the higher influence over the generator it
has. This presents a larger problem when the number of knots of the B-spline used to
approximate the generator is lower. This, of course, results in lower precision of the
final approximation.

Therefore, it is highly desirable to use an optimality criterion that refers to the t-
norm, not to its generator, which not only skews the weights of contributions of different
data points to the value of the optimality criterion, it is also not unique.

In order to evaluate the difference of the values of the t-norm, we need to reconstruct
its values; equations (4) do not refer to them. To be able to apply this idea exactly, we
would need to evaluate the differences

t−1(t(xi) + t(xj)
)
− yi,j , i, j ∈ {1, . . . , n} .

These require the values of the generator at points different from those of (6) as here
we also need to have the inverse of the generator t−1. Then the method of interpolation
between these points becomes important. Not only that, the choice of the function
modelling the asymptote near zero is also important because the sum t(xi) + t(xj)
might be larger than 1. This means that the inverse of this sum would fall into the
interval [0, ε].

This sums up the reasons of why the choice of interpolating functions between the
b-spline knots and the function on the interval [0, ε] in fact do play a significant role in
the resulting approximation quality. However, due to computational overhead, it might
be highly problematic to use a criterion with the inverse of the generator during the
optimization phase. For that, a criterion similar to (5) might be sufficient. Nevertheless,
that criterion results in a t-norm that is “biased”, as has been explained earlier.

To solve this, we can suggest an approximate criterion for optimization based on the
relative error of the estimate of the solution to (4) and the desired value yi,j , e.g.

n∑
i=1

n∑
j=1

((
t(xi) + t(xj)

t(yi,j)
− 1
)
· yi,j

)2
. (7)

This criterion compensates for the bias introduced by the non-linearity of the gener-
ator and provides better results than (5). To demonstrate this, we randomly generated
100 datasets of 50 points using the product t-norm TP. Then we optimized a genera-
tor consisting of the function 1/x in the interval [0, ε] and a spline with 5 knots placed
equidistantly between 1 and ε. The value of ε was chosen independently for each dataset
as the smallest value from the input data points. An example of such a generator can
be seen in Figure 5.5. Note that the number of knots is not the same as a number of
parameters of the optimization. The first knot at ε and the last knot at 1 are fixed
with the first being dependant on the input data. Only the rest of the knots are then
being optimized.
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Figure 5.5. Example of a generator with 5 equidistant knots

Upon optimizing for the 100 datasets, we obtained the results that are visualized in
Figure 5.6. There, the predicted values are those values yi,j that we obtain from the
generator t optimized for the given dataset, that is, yi,j = t−1(t(xi)+ t(xj)). The actual
values correspond to the reference values in the dataset, that is, the values of the t-norm
T that we are trying to approximate. 1 The closer a point is to the diagonal (visualized
as a black line), the more precise the resulting approximation was. From the figure we
can notice that both methods struggle with approximating values close to zero. Thus,
they might not be suitable for approximating nilpotent t-norms.
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Figure 5.6. 50 pts. × 100 iterations, 5 equidistant knots

1 Here, of course, the t-norm is known, because we used it to generate the training data.
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To compare the approximation precision, we use the root mean square error (RMSE).
In our case, this is defined as:

RMSE =

√√√√√
 ∑

(xi,xj ,yi,j)∈P

(t−1(t(xi) + t(xj))− yi,j)2

 /|P |,

where P is the input dataset and |P | is the number of points in the dataset.
For datasets consisting of 50 points and the number of knots in the linear b-spline

forming the generator being 5, the average RMSE of each dataset was equal to 0.0438
when using criterion (5) and 0.0233 when using the criterion (7) with the same input
data. We can see a significant improvement of the approximation quality.

The same is true even for datasets of different sizes and different numbers of knots.
For larger datasets of 100 points, the RMSE was 0.0461 for the original criterion and
0.0175 for the proposed criterion. In Figure 5.7, we used smaller datasets of 15 points
and also increased the number of knots in the splines to 9. The resulting RMSE for
the original and the proposed criterion were 0.0134 and 0.0042, respectively. Again, we
can see an improvement in the approximation precision.
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Figure 5.7. 15 pts. × 100 iterations, 9 equidistant knots

More selected predicted vs. observed plots can be found in Appendix C.
In Table 5.1 we provide results of some of the experiments that were made using

datasets of different size and generated by different t-norms. Also, the number of knots
k was altered. In the table, we can see the values of the original criterion (5), the
proposed criterion (7) as well as the proper criterion (3). Unsurprisingly, it is clear that
the proper criterion outperforms the other criteria. However, the proposed criterion
has a better precision of approximation than the original criterion in most cases.

As seen above, the proposed criterion can improve the approximation quality signifi-
cantly. Additionally, it can be optimized using the same techniques as those suggested
in [1]. However, the proposed criterion is performing noticeably worse when approxi-
mating data containing a larger number of zeros, such as the case of the Yager t-norm
with r = 0.3. There, the original criterion outperforms the one we propose.

Examples of generators that were results of some of the experiments can be seen
in Figures 5.8, 5.9 and 5.10. Be aware that those are illustrative plots serving as an
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ref. t-norm k |P | RMSEorig. RMSEproposed RMSEproper

TP 5 5 0.0169 0.0089 0.0083
TP 5 50 0.0395 0.0165 0.0149
TP 5 100 0.0388 0.0167 0.0152
TP 7 8 0.0317 0.0096 0.0049
TP 9 15 0.0192 0.0048 0.0044
TF

10−5 5 5 0.0795 0.0248 0.0099
TF

10−5 5 50 0.1130 0.0182 0.0160
TF

105 5 5 0.0474 0.0072 0.0053
TF

105 5 50 0.0633 0.0096 0.0079
TY

2 5 5 0.0514 0.0162 0.0091
TY

0.3 5 5 0.1375 0.2635 0.0855

Table 5.1. Overview of RMSE for different experiments

example and they do not represent all the generators that were created as a part of
certain experiments. In fact, the resulting generators varied significantly for different
input datasets, even when the data where created using the same t-norm and were the
same in size. More figures of resulting generators can be found in Appendix B.
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Figure 5.8. t(x) for TP,
|P | = 50, k = 5
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Figure 5.9. t(x) for TF
105 ,

|P | = 50, k = 5
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Figure 5.10. t(x) for
TY

0.1, |P | = 50, k = 5

Another fact that we wanted to point out about the approach in [1] is that the same
approach with additive generators could also be applied to multiplicative generators.1
Then the contribution of errors in different points would change; we would reach an-
other optimum and another t-norm. As is stated in [5], we can obtain a multiplicative
1 Then also the linear or other interpolation may have a different meaning, but we do not discuss it
because this cannot be evaluated based only on the given data; additional criteria, e.g., success in a
collection of real-life problems, could distinguish different methods of interpolation.
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generator θ(x) from an additive generator t(x) by putting θ(x) = exp(−t(x)). If the
multiplicative generator is a function x 7→ exp(−t(x)), its optimum would correspond
to a weighted form of (5),

n∑
i=1

n∑
j=1

wi,j
(
t(xi) + t(xj)− t(yi,j)

)2
, (8)

with weights wi,j , i, j ∈ {1, . . . , n} proportional to yi,j reflecting the transition from an
additive generator to a multiplicative generator.

However, there is a more serious obstacle: there are more multiplicative generators
and the criterion of the form (5) leads to different optima, dependent on the choice of
the generator.

Returning back to our question regarding what criterion to choose for the optimiza-
tion, we could in fact choose the most obvious road, that is, optimizing (1) directly by
minimizing the proper criterion (3). Suppose we continue using function t in the same
form, i.e., a monotonic b-spline of order 1 on the interval ]ε, 1]. Also, suppose we use
the exponential function on the interval [0, ε]. Then, taking inverse of this function is
a straightforward task and optimizing the system would yield even better results than
all the criteria discussed here. In fact, it will give us the best approximation precision
possible as the value of RMSE is computed using the same differences or error terms.

5.3 Comparison to approximation by parametric
t-norms

There is no doubt that having a priori information about the input data, like what
kind of triangular norm is expected, could significantly help to improve the quality of
our approximation. That is, how precise our predictions will be with the approximated
t-norm. This information could also be a decisive factor of whether to approximate
by parametric t-norms or by approximating the searched t-norm’s additive or perhaps
multiplicative generator.

When there is no such information available, using generators provides the most flex-
ibility in terms of being able to fit any data with relatively high precision. On the other
hand, it could also make things unnecessarily complicated because we would need to
decide what kind of interpolation function to choose between the knots of the generator,
the number of knots, which function to choose to model the asymptote near zero when
dealing with strict t-norms, and finally, which criterion to choose. The answers to these
questions need a more experiments and they also depend on the demands we impose
on the speed and precision of the approximation.
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Chapter 6
Conclusion

In this thesis we tried to give a basic overview of properties of fuzzy conjunctions (trian-
gular norms) as well as examples of different classes of triangular-norms. Fundamental
definitions and notions were introduced and different techniques of approximating data
using both parametric t-norms and general t-norms determined by additive generators
were explored.

First, we created a simple random data generator producing data that are monotone
and can be tweaked to meet our needs. The random data generator can be easily
modified to yield data of great variability and can be used to model random distributions
of data from different t-norms.

The generated data correspond to a triangular norm which we would like to approx-
imate. As a target of our optimization, we used a loss function equal to the sum of
squared errors. Hence, the optimization method was in fact the least squares method.
First, we tried to fit them by some of the parametric t-norms, that is, triangular norms
that are determined by an additional parameter (besides its arguments). For the op-
timization itself, two methods were used. The first was the Ternary Search algorithm
which was relatively easy to implement and was computationally efficient and therefore
fast. It could be improved in terms of optimizing the initial size of the search interval
and experimenting with different methods of choosing the cut points of the search inter-
val. This would lead us to modifications of this algorithm, such as the Golden Section
Search. In practice this was not necessary because the basic version of the Ternary
Search was fast enough for our needs. For big datasets, however, one should consider
to implement the optimizations considered above. It was found out, however, that the
algorithm was not usable for optimizing the Yager t-norms. The reason was that when
using nilpotent t-norms, we get a loss function that is not unimodal and the Ternary
Search algorithm can converge to any local minimum instead of the global minimum.
Thus we needed to use some other approach to optimize nilpotent t-norms.

A solution we chose was a population-based algorithm, namely the particle swarm
optimization algorithm. This algorithm, albeit computationally far more demanding
than the Ternary Search algorithm and its other versions, allowed us to find a global
optimum of the loss function of any t-norm. Again, the algorithm could be optimized to
reach the optimal values faster and we will definitely consider doing that in the future.

To assess the result of the approximation, we used the volume integral of t-norms for
certain values of their parameter given by a specific approximation precision interval.
This integral allowed us to study how input data distribution influences the precision
or “stability” of the resulting approximation. The results were also explained using
the derivative of the t-norms with respect to the parameter. Using these tools, we
also explained why the loss function of the Yager t-norms and at the same time other
nilpotent t-norms is not always unimodal and therefore why it is needed to use other
means of optimization than those used for strict t-norms.

Besides parametric t-norms, we also experimented with t-norms determined by their
additive generators. We proposed possible improvements to already existing methods
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of approximating data by optimizing additive generators. Namely, a new optimization
criterion was proposed. This criterion mitigates the original criterion’s flaw, which is
creating a bias towards data points with lower value. Indeed, the proposed criterion
proved to yield better results in most cases, with the exception being input data that
have data points with the value of zero or simply very low. But those are data that the
original criterion has problems with, too.

More experiments will have to be conducted in order to properly evaluate what kinds
of approximation are best suited for certain types of data. Furthermore, it would be
highly useful to test means of interpolation between knots in generators of t-norms other
than the linear interpolation. The same applies to the function in the interval [0, ε],
which, as we have shown, also has influence over the quality of the final approximation.

Further testing of performance of various algorithms mentioned here will also be
needed. Some of the calculations for the experiments were running for a relatively
long time and waiting too long for a certain optimization task to finish is not always
acceptable. Similarly, the performance of solvers for the LSEI tasks of the generator-
based approximation techniques could be tested to see the real performance difference
between the various optimization criteria. It is also worth investigating whether or not
it is viable to optimize the differences of the input data and generated t-norm directly.
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Appendix B
Selected generators from experiments
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Figure B.1. t(x) for TP,
|P | = 5, k = 5
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Figure B.2. t(x) for TP,
|P | = 50, k = 5
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Figure B.3. t(x) for TP,
|P | = 15, k = 9
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Figure B.4. t(x) for
TF

10−5 , |P | = 5, k = 5
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Figure B.5. t(x) for
TF

10−5 , |P | = 50, k = 5
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Figure B.6. t(x) for TF
105 ,

|P | = 50, k = 5
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Figure B.7. t(x) for TY
2 ,

|P | = 5, k = 5
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Figure B.8. t(x) for TY
2 ,

|P | = 50, k = 5
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Figure B.9. t(x) for TY
0.3,

|P | = 50, k = 5
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Figure B.10. t(x) for
TY

2 , |P | = 5, k = 5
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Figure B.11. t(x) for
TY

2 , |P | = 50, k = 5
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Appendix C
Selected predicted vs. observed plots
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Figure C.12. Original criterion, TP,
|P | = 5, k = 5
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Figure C.13. Proposed criterion, TP,
|P | = 5, k = 5
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Figure C.14. Original criterion, TP,
|P | = 50, k = 5
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Figure C.15. Proposed criterion, TP,
|P | = 50, k = 5
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Figure C.16. Original criterion, TP,
|P | = 100, k = 5
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Figure C.17. Proposed criterion, TP,
|P | = 100, k = 5
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Figure C.18. Original criterion, TP,
|P | = 8, k = 7
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Figure C.19. Proposed criterion, TP,
|P | = 8, k = 7
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Figure C.20. Original criterion, TP,
|P | = 15, k = 9
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Figure C.21. Proposed criterion, TP,
|P | = 15, k = 9
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Figure C.22. Original criterion, TF
1·10−5 ,

|P | = 50, k = 5
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Figure C.23. Proposed criterion, TF
1·10−5 ,

|P | = 50, k = 5
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Figure C.24. Original criterion, TF
1·105 ,

|P | = 50, k = 5
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Figure C.25. Proposed criterion, TF
1·105 ,

|P | = 50, k = 5
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Appendix D
CD content

The content of the CD attached to this thesis is listed in Table D.1. Instructions on how
to run the code are included in the README.md file inside the source_code directory.

Directory name Content description
text This thesis in the PDF format
source code Code used in the experiments

Table D.1. CD content
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