
Czech
Technical
University
in Prague

Attention Mechanism in Natural Language
Processing

Anton Kretov

Supervisor: RNDr. Marko Genyk-Berezovskyj
May 2020

Acknowledgements

I would like to thank ČVUT for giving
me an opportunity to work on this project
and to try out new technologies that de-
fine Natural Language Processing research
space in 2020 by applying them to the
Czech language. I want to also express
my gratitude to Trask solutions a.s. for
supporting my NLP activities.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, date 22. May 2020

ii

Abstract

Natural language processing (NLP) tech-
nologies have always been actively devel-
oped to solve tasks in the most widespread
languages like English or German. How-
ever, there are a few papers and solutions
dedicated to smaller Slavic languages like
Czech. This paper describes various NLP
algorithms of sequence processing. It is
primarily focused on modern techniques
like Attention mechanism and such ar-
chitectures like Transformer or Reformer,
which are built on it. This thesis exam-
ines what advantages this mechanism has
compared to conventional recurrent neu-
ral networks. It is afterwards tested on
two Czech NLP tasks of various degrees
of complexity - diacritics correction and
abstractive text summarization.

Keywords: neural networks, machine
learning, NLP, diacritics, neural machine
translation, attention mechanism,
Transformer, Reformer, Trax, abstractive
summarization

Supervisor: RNDr. Marko
Genyk-Berezovskyj

Abstrakt

Technologie pro zpracování přirozeného
jazyka (anglicky Natural Language Pro-
cessing - NLP) se již delší dobu aktivně
vyvijí pro nejrozšířenější světové jazyky,
např. angličtinu a němčinu. Nicméně, exis-
tuje málo prací a řešení pro menší slo-
vanské jazyky, kam patří i čeština. Tato
práce je věnována obecně tématu NLP a
algoritmům zpracování sekvenčních dat,
je zaměřená především na nejnovější tech-
niky, jež je Attention mechanismus a mo-
dely Transformer a Reformer, které jsou
na tomto mechanismu založené. V práci
je podrobně popsáno, jaké má attention
mechanismus výhody oproti konvenčním
rekurentním neuronovým sítím. Attention
mechanismus je pak důsledně otestován
na dvou různě složitých NLP úlohách v
českém jazyce - doplnění chybějící diakri-
tiky a abstraktní anotaci dlouhých textů.

Klíčová slova: neuronové sítě, strojové
učení, NLP, diakritika, neuronové
strojové překladače, attention
mechanismus, Tranformer, Reformer,
Trax, abstraktní anotace

iii

Contents

Project Specification 1

1 Introduction 3

1.1 Preface . 3

1.2 NLP . 4

2 NLP and machine translation
techniques 5

2.1 A short history of NLP 5

2.2 Neural networks in machine
translation . 6

2.2.1 Feed-forward neural networds . 6

2.2.2 Recurrent Neural Network
(RNN) . 7

2.2.3 Vanishing gradient 7

2.2.4 Long Short-term memory -
LSTM . 8

2.2.5 Encoder-Decoder architecture 9

2.2.6 Drawbacks of the
Encoder-Decoder architecture . . . 11

2.3 Attention, please! 11

2.3.1 Luong attention 12

2.3.2 Attention is all you need 14

2.3.3 Transformer’s architecture . . 14

2.3.4 Encoder block 15

2.3.5 The idea behind multi-head
attention . 16

2.3.6 Self-Attention 16

2.3.7 Scaled Dot-Product Attention 17

2.3.8 Putting it all together 17

2.3.9 Decoder block 18

2.3.10 Transformer versus RNN . . . 19

2.3.11 Transformer’s disadvantages 20

2.3.12 Reformer: The Efficient
Transformer 20

2.3.13 Availability of Transformer
and Reformer 21

3 Tasks accomplished in this work 23

3.1 Diacritics correction 23

3.1.1 Previous works 25

iv

3.1.2 Neural models for diacritics
correction . 25

3.1.3 Transformer 26

3.1.4 Reformer 27

3.1.5 Dataset preparation 27

3.1.6 Training pipeline 28

3.1.7 Tensorflow Dataset API 29

3.1.8 Accelerators 30

3.1.9 GPU . 31

3.1.10 Google’s cloud TPU 31

3.1.11 GPUs and TPUs availability 32

3.1.12 Tensorboard 33

3.1.13 Dataset handling 33

3.1.14 Experiments 36

3.1.15 Results discussion 37

3.1.16 Best model analysis 39

3.1.17 Attention weights
visualisation 39

3.1.18 Training Transformer in Trax
with TF Dataset loaded from
generators . 44

3.1.19 Reformer model 44

3.1.20 Final thoughts on diacritics
correction task 45

3.2 Text summarization 47

3.2.1 Abstractive summarization -
task definition 47

3.2.2 Definition based on data
representation 48

3.2.3 Word pieces 49

3.2.4 Byte Pair Encoding algorithm 49

3.2.5 Summarization dataset 51

3.2.6 Previous works 53

3.2.7 Metrics 53

3.2.8 Experiments 55

3.2.9 Results 56

3.2.10 Evaluation 60

3.2.11 Comparison with SumeCzech’s
model . 64

v

3.2.12 Final thoughts on
summarization 65

4 Conclusion 68

A Bibliography 69

vi

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

474672Personal ID number:Kretov AntonStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Computer and Information ScienceBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Attention Mechanism in Natural Language Processing

Bachelor’s thesis title in Czech:

Attention mechanizmus ve zpracování přirozeného jazyka

Guidelines:
Learn Encoder-Decoder model and attention mechanism in recurrent neural networks (RNN) utilised in natural language
processing (NLP). Become acquainted, as much as possible, with the current advances in the field. Feasibility of this class
of RNN in Czech language processing has not been studied in detail yet. Concentrate specifically on the problem of
diacritics correction and the problem of text summarization in texts in Czech language.
Try to identify the topics which should or might be addressed in further developmnt of RNN applications in Czech language
processing in the near future, and suggest tools, both existent and non-existent yet, appropriate for the task.
Choose or prepare sufficiently large training data set (corpus). Evaluate the feasibility of the given class of NN using the
chosen training data set. Implement an interface for network training and management. If necessary, equip the interface
with visualization tools of your choice. Summarize the conclusions based on your experiments.
Supplement your implementation with programmer and user documentation.

Bibliography / sources:
[1] J. Náplava, Natural Language Correction, Master Thesis, Charles University, Prague, 2017
[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L.Jones, A. N. Gomez, L. Kaiser, I. Polosukhin, Attention Is All You
Need, arXiv:1706.03762, 2017
[3] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding, arXiv:1810.04805, 2019
[4] Dzmitry Bahdanau, KyungHyun Cho, Yoshua Bengio: Neural Machine Translation by Jointly Learning to Align and
Translate , arXiv:1409.0473, 2016
[5] Minh-Thang Luong, Hieu Pham, Christopher D. Manning: Effective Approaches to Attention-based Neural Machine
Translation, arXiv:1508.04025, 2015
[6] Milan Straka, Nikita Mediankin, Tom Kocmi, Zdeněk Žabokrtský, Vojtěch Hudeček, Jan Hajič: SumeCzech: Large
Czech News-Based Summarization Dataset, internal report of Association for Computational Linguistics, 2017, retrieved
27.1.2020 from https://www.aclweb.org/anthology/L18-1551.pdf

Name and workplace of bachelor’s thesis supervisor:

RNDr. Marko Genyk-Berezovskyj, Department of Cybernetics, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 25.05.2020Date of bachelor’s thesis assignment: 10.01.2020

Assignment valid until: 30.09.2021

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
RNDr. Marko Genyk-Berezovskyj

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Chapter 1

Introduction

1.1 Preface

The project I have been working on is my contribution to the NLP (Natural
language processing) research conducted by a fringe group of data scientists
and researchers in the Czech republic. Considering the ratio of available
NLP materials, frameworks, models, solutions, applications and datasets in
such languages like English and German compared to the amount of work in
smaller Slavic languages like Czech, my aim is to enlighten Czech NLP stack
with some new technologies and ideas that have not been presented yet. My
second objective is to inspire further exploration of this amazing language in
computer science community and achieve motivating results by incorporating
existing approaches in Czech NLP and assess their performance.

This project is also a part of vast NLP research conducted by a team
of analysts in the Czech technological company Trask solutions a.s. I am
a part of. By supporting this particular work, Trask poses a challenge of
understanding Czech language with the help of modern machine learning
approaches in pursuit of helping businesses to process textual data, understand
it and provide a customer with better solutions based on it.

My research consists of two tasks - automatic diacritics completion and
abstractive text summarisation. This work aims to show the way how to solve
these tasks by applying modern techniques which have arisen in recent years.

3

...1.2. NLP

Taking into account the fact that this is a bachelor thesis work, I provide
exhaustive background of the current Czech NLP research, existing methods
and instruments, describe the way NLP evolved, which is essential for estab-
lishing background understanding of how NLP looked like for more than a
decade. Moreover, I describe all the technologies and frameworks I used to
achieve the results presented here.

1.2 NLP

The field of AI research called NLP (Natural language processing) is one of
the most challenging and fast-changing among all spheres that are currently
in the focus of topic of artificial intelligence. The techniques developed while
solving numerous tasks have already been successfully applied in medicine,
planning, image recognition, fraud detection and many others fields. One
of the most outstanding achievement of NLP research are neural machine
translation techniques that are vastly used in other tasks.

Both tasks of diacritics completion and writing summaries can be considered
a translation task. We will talk about the more precise definition of these
tasks in chapter 3.

4

Chapter 2

NLP and machine translation techniques

2.1 A short history of NLP

When we talk about machine translation, it is crucial to realise, how the
whole industry evolved in last decades. Numerous innovations by some means
associated with machine translation have been applied in many spheres outside
NLP, accomplishing notorious many tasks.

Since the history of machine translation is one of the richest with its origins
traced back to the 9th century, when the Arabic cryptographer Al-Kindi
proposed several techniques of basic translation from one language to another,
our interest has to be assigned to the 20th century, when humans started
to think about digitalization of many agendas. The very first approach to
solve the task of automatic machine translation is based on a set of rules
how to translate words and phrases in such a way that they preserve their
meanings in the target language. Obviously, there are literally countless
ways of expressing people’s feelings and emotions, that’s why this method,
despite being the most accurate, is time and resource intensive and requests
enormous human effort and consolidation, since translation is considered to
be art. Moreover, a language is a living form with many phrases becoming
extinct and others occur.

The aforementioned thoughts, computational power increase and data
accumulation lead people to think about such problems in statistical terms.
The statistical machine translation field arose with various billingual parallel

5

..............................2.2. Neural networks in machine translation

text corpora. Although there were many successful implementations of
statistical translators such as CANDIDE [BBDP+94] from IBM or SYSTRAN
from Google, they still lacked rare language pairs data. Statistical machine
translation incorporates pattern recognition and several sequence modelling
techniques like Markov chains or conditional random fields (CRF) [LMP01].

Nevertheless, the methods proposed by statistical and rule-based approaches
(including the hybrid ones) still do not equip machines with language under-
standing, which is part and parcel of how the same thought is interpreted in
another language. Moreover, statistical methods such as CRF or SVM [CV95]
possess a huge disadvantage of being short-sighted as they are designed to
take into account a short window of text at the same time and process text in
a "bag-of-words" fashion, which is unacceptable since the word order matters.

With recent development of artificial neural networks and particularly the
field of deep learning, there has been an increase of newly proposed algorithms
and techniques, which are covered in the next chapter.

2.2 Neural networks in machine translation

2.2.1 Feed-forward neural networds

Artificial neural networks are designed in such a way that they accept a fixed-
size vector representing data we want to process and yield another vector.
More particularly, neural networks consist of many cells called neurons that
run perceptron algorithm [Ros58], which is a dot product of a vector and
the neuron’s weights followed by a non-linear function, usually softmax or
ReLU. With the help of the backpropagation algorithm [RHW88] the network
"learns" to map vectors from one linear space to another. Since a feed-forward
artificial neural network consists of several perceptrons, it is considered a
linear classifier.

With machine translation in mind, it means that the network is able, for
example, tolearn how to translate a word or a phrase (represented by a vector
in a linear space) from one language to another. Although the idea of encoding
each and every word to a finite linear space has made a revolution in NLP
after the rise of so-called word embedding with such renowned algorithms
as Word2Vec [MSC+13], or GloVe [PSM14], it is still the whole text which
bears the meaning of the human’s thought, not single words. Do not forget

6

https://translate.systran.net/translationTools/text

..............................2.2. Neural networks in machine translation

that a language is a more sophisticated structure with synonyms, antonyms,
polysemes, etc.

Apparently, for the combinatorial reasons it is impossible to encode all the
possible phrases and sentences into any finite space. This is what lead to the
rise of recurrent neural networks.

2.2.2 Recurrent Neural Network (RNN)

The term of Recurrent Neural Networks is not brand new and has its history
starting from the work of John Hopfield in 1982 [Hop82]. RNN is a class of
artificial neural network having a memory unit and forming a directed graph
along a temporal sequence with a linear classifier upon it. The main idea is
to propose an algorithm of sequence processing and taking the order of the
sequence tokens (usually called time stamps) into consideration. The main
difference from the aforementioned feed-forward linear network is its ability to
process variable-length inputs and generate a so-called feature vector, which
is intended to carry information about the whole sequence and represent its
context before entering the linear classifier stage. The recurrent network
learns by adjusting the inner weights of each RNN cell.

Recurrent neural networks introduced the way to process data spread over
time. Nevertheless, they have several critical drawbacks.

2.2.3 Vanishing gradient

Recurrent neural networks are theoretically able to process a sequence of any
length. We can process a word, a sentence, or the whole paragraph or an
article by the same architecture. Apparently, the amount and the quality
of information encoded into a fixed-size vector after all time stamps pass
will differ. Since RNNs are trained with the help of the back-propagation
algorithm, which is based on partial derivatives and gradients, applying partial
derivatives with respect to the weights of farther memory cells (i.e. the first
ones in the graph) will make little change and hence be less effective with the
growth of the sequence length. This problem is called vanishing gradient -
caused by a derivative of a non-linear activation function that adjusts vectors’
values typically to the interval [0, 1] or [−1, 1].

7

..............................2.2. Neural networks in machine translation

2.2.4 Long Short-term memory - LSTM

LSTM is a recurent neural network architecture, which has a more complex
structure than a simple RNN and which is designed to solve vanishing gradient
problem for longer sequences. They have been considered state-of-the-art and
proved to give promising results even on extremely large passages, however,
they are hardware unfriendly and sluggish. The way they are defined is
particularly sophisticated (showed in figure 2.1), making them impossible to
train on a CPU. This is the reason these networks were not present, although
introduced in the 20th century by Sepp Hochreiter and Jürgen Schmidhuber
[HS97], by the time people learned how to perform large training on Graphical
Processing Units (GPUs) effectively, resulting in convolutions and recurrences
acceleration. Nonetheless, the problem of their poor architecture persists.

Figure 2.1: LSTM cell architecture, source: [Chr20]

LSTM networks have been widely used in 2010s and have been incorporated
into various architectures. Since a machine translation task is defined as
a sequence-to-sequence problem, the LSTMs have been used as a mapping
algorithm between two sequences.

The major flaw of using LSTMs in such a fashion is in its requirements - the
network is incapable of processing variable sized sequences. The maximum
length of the input has to be known in advance. Then, all the sequences have
to be padded with special "pad" tokens to meet this requirement. All the
longer sequences have to be truncated and thus lack information.

8

..............................2.2. Neural networks in machine translation

2.2.5 Encoder-Decoder architecture

The way a sequence is processed in a LSTM cell was a motivation to create
an architecture of a model which is at the moment of writing this work
considered state of the art in sequence translation problems. The model is
called Encoder-Decoder.

An Encoder-Decoder recurrent neural network consists of two obvious
logical parts - an encoder and a decoder. The simplified scheme is depicted
in figure 2.2

Figure 2.2: Encoder-Decoder basic architecture, source: [JKS18]

As we can see, the input sequence is firstly processed by the encoder block.
Then, a vector representing this sequence is passed into the decoder block.
The decoder attempts to map the input vector to the target sequence.

It is necessary to realise how both blocks operate with data. Speaking of
an encoder block, it consists of a stack of recurrent layers, typically LSTM or
GRU (Gated Recurrent Unit), which take the input tokens from left to right
or vice versa. The last RNN cell in this chain returns two vectors - h, which
is called a hidden state and a vector c, which is called a cell state. These
are lately used in a decoder block. However, this is the case of an encoder
consisting of one recurrent layer. In case of a more complex architecture all
the layers except for the last one on the top of the stack return a list of hidden
vectors from each recurrent cell and pass them as input to the next layer. The
last layer takes the output of the preceding layers as input and returns vectors
h and c, representing the whole sequence. It is considered that a deeper
encoder architecture is capable of learning more complex relations between
sequence’s tokens and therefore construct more accurate representation.

9

..............................2.2. Neural networks in machine translation

A decoder is represented by a similar neural network, consisting of LSTM
or GRU cells, which process sequence from left to right. The decoder in
this architecture works as an autoencoder, i.e. its objective is to use the
information gathered during encoding process and to re-use its outputs to
generate new sequences in an autoregressive fashion. First of all, the first
recurrent cell is initialised with the outputs of the encoder’s last recurrent cell.
By doing this, the decoder is provided with context of the whole sentence.
Then, it accepts a special token, which is usually referred as BOS (Beginning Of
Sentence) token. BOS token starts the decoding phase. At this point, the first
recurrent cell is prompted to give the first target token. This token is defined
as h0. Consequently, the vector h0 is passed to a linear layer with a softmax
non-linear activation function which maps it to a probability distribution
over all possible output tokens. In terms of translation it could be either a
character from the target alphabet or a (sub)word from the target dictionary.
In the meantime, the same vector h0 is being used as an input vector to the
next decoder’s cell, so that the next cell is "aware" of the previous output.
This is an essential aspect of how the decoding phase is implemented. The
decoder works iteratively (precisely, in an autoregressive fashion), yielding
one time stamp per step and using it as an input token for the next step so
that the following decoder’s cell can make use of other parts of the encoded
sentence and be aware of the current output sequence at the same time.

The complete pipeline is depicted in the figure 2.3.

Figure 2.3: Encoder-Decoder basic architecture, source: [JKS18]

Surprisingly, an Encoder-Decoder architecture is what revolutionised the
field of machine translation, with such prominent models like Google’s NMT
(Neural Machine Translation) [WSC+16a] or many dialog systems [ZLLE17],
question answering systems [YJL+16] and etc.

10

....................................... 2.3. Attention, please!

2.2.6 Drawbacks of the Encoder-Decoder architecture

Nevertheless, this architecture is not flawless. The proposed Encoder-Decoder
model, unfortunately, has several limitations. The most significant one is the
fact that it is hard to transform all necessary information about long sequences
to a fixed-size vector. As is has been proved, the sequences having too many
tokens to remember fail to be adequately translated in the decoding phase.
This unpleasant feature has been revealed while attempting to apply an
Encoder-Decoder model to the text summarisation task, where long passages
of texts failed to be properly encoded.

One possible workaround could be to enlarge the size of the fixed size
context vector. However, due to the architecture of a RNN cell it is too
computationally expensive to add too many of them, making training a
burden.

The second major problem resides in the recurrent cells’ architecture. As the
sequences become longer, the sequential nature of the data flow inside RNN
plays a major role here and makes it a huge bottleneck in the training phase,
meaning that the time needed for training deeper network is implausible.

2.3 Attention, please!

There is a certain motivation in what Attention in NLP is and why it has
been introduced to make one more revolution.

People do not read text in a way machines do. We do not necessarily read
from left to right or from right to left. The natural way of perceiving text is
rather targeting the information needed right now and not attending the rest.
To give an example, when a human notices a preposition in a text, he tries
to find the object the preposition is related to. It means finding all the nouns
mentioned in the preceding text and attempting to find the described object.
The tasks does not really requires to look forward in text, since prepositions
are mostly used to refer to already introduced things.

With that in mind, the neural network could mimic the human’s behaviour
and this is the moment when the attention mechanism has to be introduced.

11

....................................... 2.3. Attention, please!

Attention is an interface between the encoder and decoder that provides the
decoder with information from every encoder hidden state. By providing all
the hidden states to the decoder, the model learns the alignment between the
encoder outputs and the current token to be processed. The term alignment
here is defined as [Bus]: "Alignment is a process of matching source and
target segments of text in order to create a translation memory. The purpose
of alignment is to capture relations of equivalence or correspondence in a
translation".

2.3.1 Luong attention

There are mostly two types of attention. These are Bahdanau [BCB16]
and Luong [LPM15] attention. Luong attention is a simplified variant of
Bahdanau attention and is easier to understand while producing competitive
outputs.

Luong attention is depicted in the figure 2.4.

Figure 2.4: Luong Attention mechanism, source: [LPM15]

12

....................................... 2.3. Attention, please!

The idea is to put additional information to the decoder’s output in order
to help out the linear classification layer in making more accurate decisions.
The principle of Luong attention in quite straightforward:..1. Firstly, the decoder outputs hidden states for all input tokens to translate.

Denote them as ht for each timestamp t..2. Then, we calculate score of this decoder output ht with all encoder
outputs, which we denote as hs. Scoring function has one of the following
forms:

score(ht, hs) =
{

hT
t hs dot

hT
t Wahs general

The idea behind these operations is to measure a kind of correlation
between each vector to find out, which ones matter more. The use of the
general approach is highly recommended due to the fact, that the matrix
Wa represents a linear layer with the weights that are also learned during
back-propagation, making the final scoring function more domain-specific.
However, in more recent models the simpler "dot" alternative is used...3. The next step is to convert scores computed previously to the probability
distribution over all encoder outputs in order to gain intuition what
tokens carry more weight. This is done by a simple function:

align(score) = softmax(score) = exp(score(ht, hs))∑
s′ exp(score(ht, h′

s))..4. The last step is to create a context vector, which is done by a dot product:

context = align(score)T hs

Note, that all the aforementioned dot products can be transformed
to matrices multiplications, which significantly speeds up the whole
attention process...5. The derived context vector is concatenated with the decoder’s output as
an additional feature:

ht′ = [ht; context]..6. The last step of the attention algorithm is to apply one more linear layer
above the concatenation to let the whole model know about the contexts
around. Formally, this step looks like this:

out = Wcht′

13

....................................... 2.3. Attention, please!

The vector out is now the output from the attention mechanism and can
be fed to the feed-forward linear classifier.

This simple add-on provides decoder with essential information and is
believed to significantly improve the performance of the resulting model.
The only drawback of incorporating attention in the neural network is its
requirement to hold all hidden states in memory and an increased compu-
tation needed to calculate the alignments. Moreover, if the linear trainable
transformation is added to the attention block, the total number of weights
the model has to learn is increased and the time and effort needed to train
the network increase as well.

2.3.2 Attention is all you need

Although the crucial limitation of Encoder-Decoder networks being incapable
of handling longer sequences has been circumvented by introducing attention,
it is still unreasonably expensive to train deeper networks that solve more
complex tasks due to the recurrent cells. This challenge has been accomplished
in 2017 with the invention of Transformer [VSP+17].

Transformer is a novel approach of processing sequences. It appeared to
be that no recurrence is needed to encode sequential data. The only thing
that matters is attention. With the publication of one of the most influential
papers in NLP world "Attention is all you need" [VSP+17] by a team of
Google Brain scientists, a great NLP revolution came in place and completely
changed the way sequences are processed today.

2.3.3 Transformer’s architecture

Transformer model is basically derived from an Encoder-Decoder structure.
Transformer follows this overall architecture by incorporating only so-called
self-attention blocks with a point-wise linear layers. The model scheme is
shown in figure 2.5

14

....................................... 2.3. Attention, please!

Figure 2.5: The Transformer, source: [VSP+17]

2.3.4 Encoder block

Before an input sequence enters an encoder block, several routines are done.
Firstly, each token has to be embedded to the finite vector space. Then, the
positional information has to be added to these vectors so that the model
takes into consideration the sequential nature of input data. This is done by
a special positional encoding function, usually in the form of sine and cosine
functions of different frequencies:

PE(pos,2i) = sin(pos

10000
2i

dmodel

)

PE(pos,2i+1) = cos(pos

10000
2i

dmodel

)

where pos denotes token’s position, i denotes the embedding dimension
to be encoded, dmodel is the embedding dimension. Hence, i belongs to the
interval [0, dmodel].

When the positional encoding is calculated, it is piece-wisely added to the

15

....................................... 2.3. Attention, please!

embedded vectors. Then the input vectors are prepared to enter the encoder.

The encoder consists of two consequential steps: multi-head attention and
linear transformation with non-linear activation function applied to each
position separately and identically. The role of the attention blocks here is
similar to the recurrent cells, however, with less computational requirements.

2.3.5 The idea behind multi-head attention

Multi-head attention can be seen as a parallel application of several attention
functions on differently projected input vectors. The motivation of introducing
more alignments instead of one is straightforward - by doing more projections
and attention computations the model is enabled to have various perspectives
of the same input sequence. It jointly attends to information from different
angles, which is mathematically expressed via different linear subspaces. To
reduce the impact of more attention computations, attention heads project
information to more shallow subspaces, whose dimensions sum up to the
model’s depth.

Before we define multi-head attention more formally, it is necessary to
understand what information is fed to the attention mechanism in this case.
The way the attention was introduced in 2.3.1 is slightly modified, since
the whole process is run on just one sequence. This is when the term "Self-
Attention" is defined.

2.3.6 Self-Attention

Self-Attention is a simplification of a generic attention mechanism, which
consists of so-called queries Q, keys K and values V . The origin of such
naming can be found in search engines, where a user’s query is matched
against internal engine’s keys and the result is represented by several values.
In case of encoder’s self-attention module all three vectors come from the
same sequence and represent word vectors with positional encoding built in.
For the sake of simplicity, we pack the whole sentence into matrices Q, K
and V . Moreover, this notation enables parallel attention execution, speeding
up the whole system. The alignment is computed on Q and K, which is then
applied to V , resulting in the new vectors we attend to.

16

....................................... 2.3. Attention, please!

2.3.7 Scaled Dot-Product Attention

Scaled Dot-Product Attention is a slightly modified version of classical at-
tention, where the scaling factor 1√

(dk)
is introduced in order to prevent the

softmax function from giving values close to 1 for highly correlated vectors and
values close to 0 for non-correlated vectors, making gradients more reasonable
for back-propagation.

The mathematical formula of Scaled Dot-Product Attention is

Attention(Q, K, V) = softmax(QKT

√
dk

)V

2.3.8 Putting it all together

Multi-Head attention applies Scaled Dot-Product Attention mechanism in
every attention head and then concatenates the results into one vector followed
by a linear projection to the the subspace of the initial dimension. The
resulting algorithm of multi-head attention can be formalised as follows:

MultiHead(Q, K, V) = Concat(head1, ..., headh)W O

where headi = Attention(QW Q
i , KW K

i , V W V
i)

The building blocks of the multi-head attention are depicted in figure 2.6

The second step is a simple position-wise fully connected feed-forward
network. There is a residual connection around each block, which is followed
by a layer normalisation. This is done for several reasons. Firstly, as the
information passes deeper into the network, we want to ensure it is not lost,
so the residual connections help the network to keep track of data it looks at.
Layer normalisation plays an important role in reducing features variance.
These operations can be grasped as a special rearrangement inside the batch
before entering the next step.

17

....................................... 2.3. Attention, please!

Figure 2.6: Multi-Head attention scheme, source: [VSP+17]

2.3.9 Decoder block

The decoder block looks pretty similar to the encoder block, however it inserts
a third attention sub-layer between multi-head self-attention and a piece-wise
fully connected layer. The need for the third component becomes evident
considering the task a decoder attempts to fulfill. This block is responsible
for attending to the encoder’s output and aligning it with current decoder’s
input.

The first block inside the decoder is a modification of the multi-head
attention described above. Before the softmax operation is applied, the
decoder needs to mask out all the inputs to the right of the current input
vector. This prevents decoder from "looking into the future" and makes
it operate only with data processed so far. The model is pushed to make
decisions which are dependent on the known outputs at each time step.

The second block is equivalent to the multi-head attention block used in
encoder with both queries Q and keys K coming from the encoder instead of
the same source. The values V are taken from the outputs of the previous
block. By doing this, self-attention mechanism learns to link both sources and
pay attention to the appropriate information from the encoder for making
decisions.

After the alignment is done, the outputs are passed to a piece-wise feed-
forward layer and then to the output of the decoder. After the decoder
produces the output vector, it is linearly projected to the output’s dictionary
subspace and the probability scores are assigned to each possible output value.

18

....................................... 2.3. Attention, please!

The one with the highest probability is selected.

Apparently, there are residual connections and layer normalization between
all three components of the decoder, so the information is preserved from
getting lost.

2.3.10 Transformer versus RNN

At first glimpse, the introduced architecture of Transformer seems too much
complicated compared to conventional RNNs. However, it turns out to be
more efficient in terms of computational resources it needs for training and
more transparent when it comes to the topic of model’s interpretability. One
of major advantages of conventional machine learning classifiers like SVMs
and decision trees over neural networks is that their decisions are interpretable.
By excessive feature selection made before training it is possible to argue
model’s decisions. Nothing similar exists in neural networks. Although it is
possible to take a look inside some convolutional layers of computer vision
systems and get little insight about how the data is compressed, nothing
similar exists in recurrent neural networks. This issue is partially addressed
by incorporating attention over all hidden vectors that the recurrent network
generates, it is still hard to imagine how the data is flown from left to right.

That’s why the model built only on attention blocks can be visualised,
since attention generates alignment scores which are probability distributions.

One more problem of recurrent neural networks lies in their sequential
nature. They are capable of processing data in only one direction. By
adding or concatenating both left-to-right and right-to-left vectors it is still
impossible to achieve truly bi-directional encoding. Transformer, which
substitutes recurrence for attention block followed by a linear layer, processes
all data at once, making encoding bi-directional. The advantage of such
a scheme can be seen by comparing two renowned language models ELMo
[PNI+18], which consists of a stack of several LSTM blocks, and BERT
[DCLT19], which is a slightly modified version of the Transformer model. By
leveraging truly bi-directional nature of the underlying Transformer, BERT
achieves much higher results in all benchmarks and easily outperforms all
models based on recurrent neural networks.

Since recurrent neural networks are sequential, it is impossible to parallelize
their training. The information flow in one particular direction is a strong

19

....................................... 2.3. Attention, please!

bottleneck. On the other hand, Transformer takes advantage of having simple
matrix multiplications, which are easily parallelizable, that’s why are faster to
train (see p. 8 of [VSP+17] where the number of TFLops needed to calculate
several recurrent models and a Transformer model are present in table 2 along
with the resulting accuracies.).

2.3.11 Transformer’s disadvantages

Though being more efficient during training and inference, Transformers have
their own limitations. The most vital one is their memory requirements. Since
the recurrence is substituted with linear layers and multi-head attention, the
number of parameters a single model has to hold is enormous compared to
the recurrent network. While a simple recurrent network requires around
1M parameters to be trained, a model based on the Transformer architecture
holds one magnitude more parameters. Moreover, as the sequence length
grows, the model has to keep more parameters for both intermediate feed-
forward layers and attention, which for a sequence of length L is O(L2) in
both computational and memory complexity. It indicates that in order to
train a deep Transformer model to solve complex tasks, one realistically has
to train it in large industrial research laboratories with expensive accelerators,
since the whole model is incapable of being fitted to a single GPU or a small
GPU pod. Additionally, things get even worse after we realise that there are
a few companies and institutions who are capable of training large networks,
which can destroy many ML fields, see the blogpost "How the Transformers
broke NLP leaderboards".

2.3.12 Reformer: The Efficient Transformer

In 2020, the new approach how to overcome Transformer’s limitations has
been introduced. It is called Reformer [KKL20].

Reformer is a modification of yet conventional Transformer model, where
the following techniques have been used:..1. Classical Transformer model consists of a stack of N encoder and decoder

blocks. Apparently, the activations of each of them are stored for a
backpropagation routine. In Reformer, this bottleneck is solved by

20

https://hackingsemantics.xyz/2019/leaderboards/
https://hackingsemantics.xyz/2019/leaderboards/

....................................... 2.3. Attention, please!

incorporating reversible layers, firstly introduced in [GRUG17], which
eliminate the need to store all N activations to just a single copy...2. The problem of huge memory consumption of intermediate feed-forward
linear layers is solved by splitting activations into chunks...3. Attention scores are approximated by locality-sensitive hashing mecha-
nism, which is more propitious with longer sequences.

All the amendments done on the Transformer model do not have negative
effect on its performance, making a Reformer model more applicable for those
lacking powerful distributed accelerators. Both attention approximation
instead of full-fledged computation and reversible layers have negligible effect
on Reformer’s performance, making it faster to train and infer.

2.3.13 Availability of Transformer and Reformer

At the time of writing, the only framework supporting both Transformer and
Reformer models is Trax. Trax is a relatively new package which was initially
a part of larger and well-known Tensor2Tensor framework. There is a deep
learning library Tensorflow developed by Google lying under the hood of both
frameworks. While Tensor2Tensor framework is by 2020 no longer developed
and is in a maintenance mode, it is written in Tensorflow 1, which is less
effective than newly introduced Tensorflow 2.0 Trax is built on.

Although being extensively used for many deep learning tasks as a com-
mand line interface, Tensor2Tensor has become extremely complicated. It
is especially hard to set up and tune each and every hyperparameter it has
for correct model training. Moreover, after version 1.2.9 Tensor2Tensor has
become unstable and exceptionally hard to train, causing many models to
diverge at early stages. There are countless issues raised on Tensor2Tensor
Github issues page pointing out at this instability. Trax benefits from its
simplicity. On the other hand, it is poorly documented and contains a num-
ber of bugs I faced while working with it, which are actively fixed by Trax’s
developers. The major disadvantages of Trax are:..1. The lack of documentation. Lots of modules and inner mechanisms are

not sufficiently documented, resulting in a trial-and-error workflow.

21

https://github.com/google/trax
https://github.com/tensorflow/tensor2tensor
https://www.tensorflow.org/

....................................... 2.3. Attention, please!..2. Attention weights visualisation is not implemented out-of-the-box. I
overcome this problem by implementing the attention weights visualisa-
tion by myself and preparing to place a pull request in order for others
to benefit from this functionality...3. Third-party modules dependencies. Trax relies on several modules that
are implemented and supported by other Google teams. The major
ones are JAX, which is a module for fast computing on different accelera-
tors and precompilation of neural models so that they run faster, and
gin-config, which is a module for easier properties configuration. These
dependencies together with bugs not caught yet drastically complicate
the user experience...4. Memory leaks. By the time of writing this, Reformer model still has a
critical memory leak while running inference with beam search algorithm.
There is also an issue with Transformers trained on TPU described below...5. Beam Search algorithm is incorrectly implemented. The problem I faced
is that while used as greedy search (it means by setting beam size to 1),
the search algorithm outputs something different compared to the model
which is run in a classical encoder-decoder fashion...6. Yet small community. As soon as you are stuck and cannot move on,
there is a huge chance that nobody advises you. It is still extremely
young and narrow.

With that said, I hope that my contribution to this framework will make
it better and more stable, leading it to be more user-friendly.

22

https://github.com/google/jax
https://github.com/google/gin-config

Chapter 3

Tasks accomplished in this work

The theory presented in 2.2.5, 2.3, 2.3.3, 2.3.12 is crucial for understanding
how modern neural networks handle sequences and what advantages and
disadvantages each of them possesses. We have seen many techniques how to
overcome some critical limitation these networks had at earlier stages. This
section covers two different NLP tasks which are in high demand in Czech
NLP community.

3.1 Diacritics correction

The task of diacritics correction can be formalized in this way: each sentence
consists of a sequence of characters, we denote it as

s = (c1, c2, ..., cn), n ∈ N

where s is our sentence, ci, i ∈ 1, 2, ..., n is ith letter and n is the sentence
length.

Each character c is an element of a set of characters called an alphabet. We
define an alphabet as follows:

A = {c,∃si ∈ D : c ∈ si, i = {1, 2, ..., m}; m ∈ N

, where D is a set of sentences si, m is the size of the dataset D.

23

...................................... 3.1. Diacritics correction

Translated to English, A is the set of letters encountered in a list of
sentences called a dataset. The discussion about the structure and contents
of the dataset will be held after we define all neural architectures capable of
solving this task. For the sake of simplicity, by saying dataset here we bear
in mind both correctly and incorrectly written sentences.

Now we are ready to formulate the task a model has to accomplish: given a
sentence s′ containing k = 0, 1, 2, ... letters with missing diacritics, transform
it to the sentence s having k = 0 letters with missing diacritics. In other
words, if a sentence has a letter with missing diacritics, it has to be corrected
in the output.

It is important to emphasize how the problem is defined, since there
are many ways of doing it considering the problem of diacritics correction.
Here we assume that there are some incorrect tokens, that’s why we will
be able to train a model to handle partly-dediacritisized sentence as well
as fully-dediacritisized. This technique lets us run the diacritization model
recursively: even if the model was not able to fill in all the missing diacritics,
we can take the output of the model and use it as the input to the same
model. Moreover, such a formulation makes sense, because input partly-
dediacritisized sentences resemble the way Czechs write. The Czech alphabet
is broader than the English alphabet and definitely cannot be optimally fit
into a classical QWERTY keyboard layout. The Czech alphabet consists of
42 letters, with 15 letters having a diacritisized counterpart. That’s why it
is a challenge to handle 15 additional characters effectively given the same
layout. The solution was found by incorporating 2 different strategies:..1. Once you switch to the Czech layout, all the number keys with several

keys next to the "Enter" key become diacritisized versions of latin letters...2. Another way of adding diacritics in a text is to use a shortcut "Shift" +
"=", or just "=" key before typing a letter. The next letter you write
becomes accented with the selected diacritics sign.

This unhappy situation led Czechs to pay no attention to the diacritics
and partly abandoning it, since it can be inferred from the letters or words
around a particular character. In addition, several letters are usually written
with diacritics, which is given by a habit of each individual.

In view of the aforesaid, the way we defined the diacritics correction task
appears to be the most optimal. However, this formulation has a downside:
in order to perfectly learn to map sentences, we have to enlarge the dataset.

24

...................................... 3.1. Diacritics correction

Fortunately, we can do it by randomly deleting some diacritics from the input
sentences while repeatedly using them for training. This pleasant feature will
find its usage when we will speak about diacritics dataset representation.

Another point worth mentioning is the way the whole problem is treated.
On the one hand, in the light of the topic of machine translation and since
the task is well-posed, it is possible to treat diacritics problem as a machine
translation task. Czech language in this case can be divided into two subsets
"with" and "without" diacritics. Obviously, the transition from the language
"with" diacritics in place to the language "without" diacritics is pretty simple,
the backward operation is not that trivial.

On the other hand, we realise that it may seem cumbersome to treat such
a simple task of mirroring most of the letters as a translation task. This
particular problem can be defined in another way: given a letter c, decide
whether we need to add a diacritics sign to it. This formulation narrows
the task from choosing among all possible letters from the target dictionary
(which typically consists of hundreds of symbols including punctuation marks,
lower- and upper-cased letters etc.) to assigning several labels indicating
whether or not the diacritic symbol is needed there.

3.1.1 Previous works

There are not so many works present in the Czech computer science community
that discuss the problem of diacritics correction. One of the most promising
works is the Master thesis of Jakub Náplava [Ná17], who uses a simple
recurrent neural network with residual connections to solve the diacritics task.
It showed high accuracy dealing with data acquired from Prague Dependency
Treebank [BHH+13] and several other sources. There is one more work that
resulted in a tool named Korektor, which is a much simpler program not
utilising neural networks. Therefore, I do not discuss it in the following text.

3.1.2 Neural models for diacritics correction

The experiment I conduct consists of several Transformer models with different
parameters Trax frameworks provides. Other architectures (e.g. RNN,
Encoder-Decoder and Encoder-Decoder with Luong Attention) due to their
limitations, Transformer’s proven superiority and time and resource reasons

25

http://ufal.mff.cuni.cz/korektor

...................................... 3.1. Diacritics correction

are not tested in this work. These models are more broadly compared in my
preceding semestral project work.

3.1.3 Transformer

The Transformer model is build in Trax framework, which provides a relatively
convenient interface for configuring the Transformer model. The parameters
that can be defined include the number of encoder and decoder blocks, the
embedding layer depth, intermediate fully connected layer dimension, the
number of attention heads, dropout and the maximum sequence length.
That’s why I found it essential to create several architectures with different
parameters, so it can be clear which one affect training more.

The selected Transformer parameters with the number of trainable weights
are presented in table 3.1

Transformer models parameters assuming vocabulary size 212 characters
Encoders Decoders Depth FF size Heads Trainable

weights
1 1 64 1024 1 358 612
1 1 64 2048 1 622 804
2 2 64 1024 1 673 236
1 1 256 1024 1 2 017 492
1 1 256 2048 1 1 547 135
1 1 256 1024 2 2 017 492
1 1 512 2048 1 7 704 788
2 2 512 1024 1 10 860 756
2 2 256 1024 1 3 859 668

Table 3.1: Different Transformer architectures used in all experiments with the
number of trainable parameters for each of them

It is worth mentioning that the original Transformer from consists of 6
encoder-decoder blocks, which means that the number of trainable parameters
in Transformer model is much bigger than in conventional recurrent neural
networks. However, these parameters are represented by matrices weights in
attention blocks and feed-forward layers, compared to the weights parameters
in recurrent cells, which are harder to train and which suffer from vanishing
gradient problem.

26

...................................... 3.1. Diacritics correction

3.1.4 Reformer

I also train the Reformer model on the task of diacritics correction. Since
the Reformer is a kind of Transformer’s approximation, I will not experiment
with all different parameters setup. Instead, I take the best Transformer
model among those being tested and change the model architecture and check
the behaviour of the Reformer compared to its full-fledged counterpart.

3.1.5 Dataset preparation

The dataset I chose to use in these experiments is SYN2015 [(ed16]. SYN2015
is a representative corpus of contemporary written Czech published in De-
cember 2015. It consists of three textual sources: fiction, non-fiction and
newspapers. All three are equally presented and pre-shuffled, so that the
sentences can be taken "as-is". The dataset comes in a XML format, which
is not particularly convenient to work with, so the basic preprocessing and
reformatting has been done in order to turn it to simple text lines. The
proportion and the quality of data makes it almost ideal for using without any
further steps, however in order for the network to learn correct language rep-
resentation, I needed to filter out those sentences having incorrect beginning
and ending...1. Speaking of correct beginning, I found sentences with the first letter

being alphanumerical character and non-capital letter. Also the sentences
starting with improper punctuation characters like ’[’ or ’!’ have been
identified. All incorrect sentences have been erased from the dataset...2. The same operation has to be done with incorrectly ending sentences.
The ones that have incorrect ending are those that end on some alphanu-
merical character or not end on ’!’, ’.’, ’"’, ’)’, "’". All these sentences
have been erased from the dataset.

As it was stated earlier, I am dealing with a supervised machine learning
task, which means that during training a network gets both training data
and ground truth data. In my case ground truth data is pretty easy to
get, since I already have it (here I assume that there is little percentage of
non-diacritisized words in news articles). The way I prepare the training set
is a bit different from the way it was created in [Ná17]. I assume, from real
life experience, that people do not tend to write either a sentence with no

27

...................................... 3.1. Diacritics correction

diacritics or sentence with all diacritics rules obeyed. They rather use it as
they wish. It’s a matter of fact that Czechs finish adjectives with diacritisiced
version of letter ’y’ - ’ý’, but do not put the same letter with diacritics when
it’s in the middle of the word. Therefore, the way we deal with such occasions
is to randomly decide whether to erase diacritics of the particular letter or
not. This peculiarity gives model a chance to learn how correct sentences
might look like and therefore teach it to handle correctly written sentences,
which is not the case of the models taught on completely "bare" sentences
(these models have never seen diacritics on the input, so their behaviour
is undefined or, better to say, is stochastic). The way I deal with training
data has one more advantage - by cleverly choosing the way the data is
loaded before being fed to the network, I have an opportunity to augment the
dataset by randomly clearing diacritics from the sentences. So, by having a
sentence with n letters with diacritics, I can create at least 2n new sentences
representing different instances of the same problem.

3.1.6 Training pipeline

The most important part of any machine learning project is to correctly define
and implement training and validation pipeline. First of all, a dataset has
to be prepared. Since the source for the diacritics correction task is well-
established and representative, there is no need in rigorous dataset research
that I did in my semestral project work. As I wrote in the section 3.1.5,
the only additional routine I applied to all the sentences in the dataset was
sentences’ beginning and ending validation, so that the model knows basic
rules of writing.

SYN2015 consists of slightly more than 8 million sentences, so I have split
it into 7.5 million for training, 0.25 million for validation and 20 thousands
for testing.

It is traditional for many machine learning supervised tasks to have several
pairs of source and target files. The dataset is uploaded from the source
file, processed by the model, then the classifier makes a prediction, which
is compared to the appropriate entry in the target dataset. Unfortunately,
many popular classification tasks including MNIST, CoNLL or regression
problems like House Price Regression task have well-established and publicly
recognised datasets which are pretty lightweight and can fit almost in every
RAM. Deep learning problems like language modelling or summarization are
the opposite case. The datasets these models are trained on are extremely
large and cannot be simply held in RAM, that’s why another approach is
needed here.

28

http://yann.lecun.com/exdb/mnist/
https://www.conll.org/2020
https://www.kaggle.com/c/house-prices-advanced-regression-techniques

...................................... 3.1. Diacritics correction

One more reason why it is not a sensible idea to load the whole dataset
into RAM resides in the way the data flows into the neural network. Neural
networks are typically fed with mini-batches of a size which is evenly divided
by 2. Such a requirement is placed for the hardware reasons. Mini-batches
let the model simultaneously process more data and minimize loss function
more optimally. These mini-batches have to be padded to the same length, so
that all sequences have the same shape and the network can process them in
parallel. Once each sequence is padded to the length of the longest sequence in
the dataset, we have to encode each letter by a number representing its index
in the alphabet. In many cases these numbers have to be one-hot encoded. All
these basic rules of mini-batch preparation result in a significant memory load,
so we can pretty easily end up storing enormous volume of data in the RAM.
For example, if we have 500 thousands sentences each padded to the length
of 250 letters and each letter is represented by an integer value (meaning
each value has, let’s say, 4 bytes), we have 250 ∗ 500000 ∗ 4 = 500000000 bytes
needed to fill it into the RAM (500 000 000 bytes are equivalent to 500MB).
It might seem no problem to find free 500MB of RAM to put data in, but we
also have to create one-hot encoding of each letter, meaning that if we have
an alphabet containing 100 different letters, we have to multiply our 500MB
by 100, which means finding 50GB of RAM just for storing the training set.
Multiply it by 2 since we also have to store the ground truth data, and it
would be hard to find a machine meeting these requirements.

An effective approach how to prepare the dataset for training is to incorpo-
rate generators. Generator is a function that behaves like an iterator, i.e. it
can be used in a for loop. Each iteration has to preload a mini-batch, vectorize
it and pad to the same length. Generator functions solve a problem of dataset
preloading at the expense of slightly longer training, since generators are
considered lazy and are invoked only once needed, resulting is small I/O
overhead at each forward step.

One more great advantage of using generators is the ability to augment
input data. This is what I did. Instead of having source and target sentence
pairs, I have only target sentences, from which I randomly wipe diacritics
and use the "cleaned" sentences as input.

3.1.7 Tensorflow Dataset API

Neural networks are mostly implemented and trained in Python. Python
is one of the most appropriate language for such experiments, since it is
extremely easy to learn and adopt, it has a broad community and supports
precompiled C++ libraries, which are vastly used when fast computing is

29

...................................... 3.1. Diacritics correction

taken into consideration.

For my experiments, I have chosen Python 3.6, created several virtual
environments via mini-conda package. I decided to use Google’s Tensorflow
2.0 framework for implementing and running all neural networks. There are
several reasons for choosing Tensorflow:..1. It is abstractive, meaning that unless you run training, no real data or

no real network is initialised, making it much simpler to experiment...2. Since a 2.0 update, it has become much easier to work with...3. It natively supports Keras...4. It has the biggest community with lots of contributors and modifications...5. Tensor2Tensor and Trax are built on it, so there is no need to install
more third-party packages...6. It comes with lots of simplifications like Estimator API and Dataset
API with many basic functions each neural pipeline consists of (i.e.
preprocessing data, model deployment and profiling, etc.), making all
necessary preparations faster and more consistent...7. It supports TensorBoard, which helps in monitoring model’s training
process...8. The models built in Tensorflow can be universally trained on any device:
CPU, GPU (see 3.1.9) or even Android devices...9. It supports training on Google Cloud TPU, for more information see
3.1.10....10. Distributed training is supported out of the box.

3.1.8 Accelerators

Neural networks are trained on different accelerators. Since computation
power increases rapidly following Moore’s law, shallow networks having several
hundred thousands parameters can be trained on a single CPU on a personal
computer in a couple of days. However, there are two more ways to drastically
accelerate training.

30

https://docs.conda.io/en/latest/miniconda.html
https://keras.io/
https://www.tensorflow.org/tensorboard
https://cloud.google.com/tpu

...................................... 3.1. Diacritics correction

3.1.9 GPU

One of the most widespread accelerator for training deep neural networks
is a GPU - Graphic Processing Unit. It has been proven that these circuits
are extremely effective in performing repetitive matrix multiplications and
have solid bandwidth, so they are capable of processing large batches at
the same time and speed up training by several magnitudes. Since most
neural networks consist of parallelizable operations like dot products and
convolutions, GPUs have become a standard in neural networks training.

3.1.10 Google’s cloud TPU

What makes Tensorflow special is its affiliation to Google, who designed a new
processing unit specifically intended to be used for fast matrix multiplication.
This unit is called a TPU (Tensor Processing Unit). It is a relatively new
technology, which has been internally used in Google since 2015. Thankfully,
it became available for third party use via Google’s cloud computing platform.
This chip has been designed exclusively for Google’s TensorFlow framework
and is proprietary with some models commercially available.

Figure 3.1: Google Cloud TPU chip, source: [goo]

Google’s TPUs are much more efficient and faster in terms of training than
GPUs. The network which is trained on a GPU for two weeks can reach the
same accuracy while being trained on a TPU for several hours.

Training a network on a cloud TPU has its own specifics. Since cloud

31

...................................... 3.1. Diacritics correction

TPUs are designed exceptionally for parallel computing, the data that comes
to the chip has to meet certain requirements. One of the most crucial one is
that all sequences have to be padded to the same length and the length has
to be a multiple of 128. These are the requirements of the underlying matrix
multiplication circuit that accepts 128× 128 matrices. In case when a batch
has another shape, a TPU has to internally convert it to the compatible shape
and size, which prolongs the whole training process. Moreover, the whole
network has to be pre-compiled using JAX, which is partially created for
effective mathematics inside a TPU. With that said, a developer is narrowed
to a short set of operations he can make use of without deteriorating training
speed.

The need to pad all the dataset to the same length is a major drawback of
a TPU. When trained on a GPU, the network can adjust the batch padding
according to the longest sequence in a batch, not the whole dataset. Tensorflow
takes advantage of this feature and is capable of shuffling sequences in a way
that minimum padding is needed.

3.1.11 GPUs and TPUs availability

All the experiments that I run in this work are held in Google Colab environ-
ment. It is an online version of Jupyter Notebooks, which are widely used for
experimenting in data science field. Google Colab is more advantageous than
Jupyter notebooks as it is run on Google’s virtual machines dedicated for
Python experimenting and the notebooks are accessible via Google Drive. It
means that a developer is freed from a painful process of packages installation
and incompatibility issues. Almost everything is preinstalled and since it
is a product from Google, there is no need to additionally install any other
Google’s frameworks. Nevertheless, the most important feature Google Colab
comes with is GPUs and TPUs availability free of charge. Everyone can
simply connect to a cloud accelerator and run experiments on them. This
is the main reason why I chose Google Colab as my primal training and
analysis environment. TPUs and GPUs are however preemptive, meaning
that they are reserved for a short period of time (12 hours) and are primarily
assigned to those who utilize them less. The reason for such a policy is to
make accelerators available to everybody so that nobody can monopolise
them.

Despite being free of charge, cloud TPUs available in Colab have only
8GB of RAM and are effective just in case when fully utilized. Training
on a TPU usually means creating batches of size 2048 or 4096. This is not
always possible. For example, running Trasformer in "big" configuration

32

https://colab.research.google.com/
https://colab.research.google.com/

...................................... 3.1. Diacritics correction

from [VSP+17] is not possible. This is the reason why I run summarization
experiments on Reformer model.

Due to the fact that I run many experiments and sometimes it is impossible
to get a TPU assigned for 12 hours, I needed a storage where the models’
checkpoints are saved. Since all the experiments are run in Google’s environ-
ment, I make use of Google Cloud Platform free account with free 300 dollars
credit. For storing checkpoints I use Google Cloud Storage with gsutil tool
integrated into Colab. While training networks, I run automatic transfer of
all saved data from my Colab instance (which is temporal) to the Google
storage. As soon as I get a TPU assigned, I prefetch the last checkpoint with
the datasets from my persistent cloud storage and continue training.

3.1.12 Tensorboard

One more advantage of running experiments in Tensorflow and via Google
Colab environment is Tensorboard’s integration. Tensorboard is an applica-
tion run as a background process (so that it does not block Colab’s I/O),
which provides the visualization and tooling needed for machine learning
experimentation. The key features are real-time metrics and loss tracking,
model’s graph visualization, profiling and weights projections. It is pretty
simple to use and it drastically improves developer’s insight on how the model
behaves during training, what are the major metric values and whether the
model converges or diverges. It is impossible to imagine training any classifier
without such a tool.

Tensorboard, however, is still incapable of profiling TPU assigned via Colab,
so there is a difficulty deciding how much data fits in it.

3.1.13 Dataset handling

First of all, it is important to preload datasets. This can be done in many
ways with the help of Dataset API:..1. The first one is to prepare both source and target pairs in advance and

store them in efficient containers called TFRecords. Tensorflow Dataset
API provides an interface called tf.Example, which is a way of storing

33

https://cloud.google.com/free
https://cloud.google.com/free

...................................... 3.1. Diacritics correction

and processing numerical and categorical features. It is recommended
to use it together with TFRecords, which are responsible for examples
serialization, storing, effective loading and distributing in case when there
are more accelerators forming computational cluster where the data flow
is usually a bottleneck. Thankfully, by storing data in tf.Example
format, a developer does not need to carry about many peculiarities
distributed training possesses. I make use of TFRecords while training
summarization networks...2. The second way of processing data in Tensorflow is to preload dataset
into Dataset API format by calling a procedure, which transforms the
generator’s output to Tensorflow’s internal format called Tensors. This is
what is done in case of diacritics task. Tensorflow provides an extensive
guide how to use Dataset API effectively, so that the whole training is
not occasionally hampered by inefficient data preprocessing.

I opted for the second variant and after learning how to correctly operate
with data, I came up with such a preparation pipeline:

Listing 3.1: Dataset preprocessing using Dataset API

import tensorflow as tf

dataset_train = tf.data.Dataset.from_generator(generator, (tf.
↪→ int64, tf.int64), (tf.TensorShape([None]), tf.
↪→ TensorShape([None])))

dataset_train.padded_batch(batch_size, padded_shapes=([max_len
↪→], [max_target_len]), drop_remainder=True).repeat()

According to Google’s guidelines, this dataset preparation pipeline is the
most optimal in this particular task. Here is what is done in this code:..1. The dataset is preloaded by a generator function generator...2. The generator function pre-loads a text line, applies a random dediacriti-

zation procedure described in 3.1.5, substitutes each character in both
sequences with a corresponding index in the vocabulary (the vocabulary
is defined as a mapping {key: value}, where a key is a character
and a value is its index in the vocabulary). Two special characters

34

https://www.tensorflow.org/guide/data_performance

...................................... 3.1. Diacritics correction

BEGIN_OF_SENTENCE and END_OF_SENTENCE are added as the first and
the last values respectively. As a result, both Python lists of integer
values are returned with a statement yield...3. The generator function is passed as the first argument to the Tensorflow’s
Dataset API static method from_generator, which invokes the generator
only once, controls the data types it receives against those specified in the
second argument. The data types there must be from tf.dtypes.DType
package. As soon as this requirement is met, the data Tensorflow gets as
input can be safely cast to the underlying Tensorflow’s C++ data types
and the framework guarantees efficient processing. The third argument
specifies generator’s output shape. Tensorflow must know the shape of
each item in the output tuple. When the data is of variable length, the
shape has to be left undefined (e.g. defined as [None])...4. After the dataset is pre-loaded, it is split into batches. This is done
by a function padded_batch. The optional parameter drop_remainder
ensures the last batch, which may not have enough data to have the
predefined size, is dropped. This flag is crucial in case of TPU training,
since TPU has strict shapes requirements that have to be obeyed in
order to get maximum out of this accelerator.
The function padded_batch is typically called without specifying the
padded_shapes parameter the way I did. The usual way is to define each
shape with [None] values and let Tensorflow find the longest sequence
in the batch and pad others to its length. This is apparently done in
case of GPU training. However, when your model is trained on a TPU,
you still have to explicitly set these lengths.
There is one more function that can be used both with TPUs and GPUs
in case the dataset is already padded. It is called batch, which is only
a lightweight version of padded_batch. Both these functions in such a
case can be used interchangeably...5. The last routine is to repeat the whole pipeline, so that as soon as the
last batch is read, the dataset can be iterated over again. The function
comes with an optional parameter count, specifying how many times
you want to iterate over the dataset. The default value is -1 meaning
that the dataset is always repeated.

All these functions are applied in this particular way and it is not rec-
ommended to change the order of their invocation unless you do not mind
diminished accelerator’s utilization efficiency.

35

https://www.tensorflow.org/api_docs/python/tf/dtypes/DType

...................................... 3.1. Diacritics correction

3.1.14 Experiments

The models are primarily run in Trax with these notes:..1. Tranformer model has been implemented in both Tensor2Tensor and
Trax, however, after many days of attempting to make Transformer in
Tensor2Tensor converge, I had no success. Many issues on Github confirm
that there are bugs in hyperparameters setup and since Tensor2Tensor
is not developed and is kept in maintenance mode, there was no hope
anybody could have helped me with all issues I had with this framework.
Many authors reporting promising results with Transformer trained it
in version 1.2.9, which is too old and since there is Trax with at least
stable training, I decided not to struggle with Tensor2Tensor any more.
Additionally, Tensor2Tensor only supports Tensorflow 1, which is, in my
opinion, excessively complicated to get acquainted with, especially when
the newer Tensorflow 2 has been many times optimised and since the end
of 2019 is more stable and reliable. I hope all my attempts and efforts
to fix Trax’s bugs will be useful and this library will become better...2. Reformer model is also implemented in Trax. This is one more reason
why I chose Trax. Despite having many bugs and memory issues, Trax
is what is going to be more popular in upcoming months, so it seemed
to me that it was a right moment to try it out. Additionally, in order to
change the model’s architecture from Transformer to Reformer, you only
need to slightly change import statements, which is what I loved about
Trax.

The final dataset after filtering all incorrect sentences had..1. 6 186 214 sentences for training..2. 210 790 sentences for validation..3. 20 000 sentences for testing

Other training settings like optimizer, initial learning rate, warmup steps
after several experiments were set to their default values as they seem to be
the most optimal for selected architectures.

Here is how all the transformer models look like considering training
accuracy, see figure 3.2.

36

...................................... 3.1. Diacritics correction

Figure 3.2: Transformer models training accuracy in Tensorboard UI

It is better seen from the tabular perspective in 3.2.

Transformer diacritics models - training accuracy
Enc Dec Depth FF

size
Heads 3K 6K 9K

1 1 64 1024 1 0.9869 0.9897 0.9915
1 1 256 1024 1 0.9901 0.9931 0.9949
1 1 64 2048 1 0.9864 0.9880 0.9915
1 1 256 2048 1 0.9915 0.9927 0.9950
1 1 512 2048 1 0.9930 0.9950 0.9965
1 1 256 1024 2 0.9917 0.9941 0.9962
2 2 64 1024 1 0.9856 0.9912 0.9931
2 2 256 1024 1 0.9934 0.9960 0.9976
2 2 512 1024 1 0.9947 0.9969 0.9980

Table 3.2: Different diacritics models accuracy scores on the training set after
3K, 6K and 9K training steps

Evaluation metrics are depicted in the figure 3.3

3.1.15 Results discussion

There is no particular difference in training times, each epoch consists of
300 train steps and 102 evaluation steps, so that the model covers the whole
training dataset in 3 epochs, whereas after each epoch is evaluated on the
whole dev set. 9K steps from the table mean that the model ran 30 epochs,
iterating over our huge training dataset for 10 times. It is sufficient to evaluate
all models’ performance after several full iterations since the overall trend

37

...................................... 3.1. Diacritics correction

Figure 3.3: Transformer models validation accuracy in Tensorboard UI

Transformer diacritics models - evaluation accuracy
Enc Dec Depth FF

size
Heads 3K 6K 9K

1 1 64 1024 1 0.9831 0.9881 0.9889
1 1 256 1024 1 0.9892 0.9934 0.9940
1 1 64 2048 1 0.9828 0.9888 0.9901
1 1 256 2048 1 0.9889 0.9927 0.9941
1 1 512 2048 1 0.9905 0.9942 0.9949
1 1 256 1024 2 0.9890 0.9935 0.9946
2 2 64 1024 1 0.9854 0.9912 0.9928
2 2 256 1024 1 0.9912 0.9954 0.9966
2 2 512 1024 1 0.9928 0.9966 0.9976

Table 3.3: Different diacritics models accuracy scores on the evaluation set
after 3K, 6K and 9K training steps

is apparent. As the the model becomess more complex in its architecture
and have more parameters, there is still some room for further improvement.
However, we are still dealing with quite simple task, that’s why it is not
always the final accuracy value that matters most.

Moreover, the graphs 3.3 above show that even though some setups may be
less accurate at earlier stages, they become better over time. It is a kind of a
trade-off between the training speed and thus the price for buying GPU/TPU
hours needed for the training and the model’s complexity. These have a
tendency to learn faster when having more trainable weights. On the other
side, as the model grows in its parameters number, it runs longer and takes
more space on disk, which is in many cases critical.

With that in mind, it depends on how the model is going to be utilized

38

...................................... 3.1. Diacritics correction

after being trained. Whether it is supposed to run on a low-performance
device and thus the additional restriction is the model’s size on disk and in
RAM, or it is served in a cloud container (e.g. Microsoft Azure, GCP, AWS)
and these requirements are relaxed. So, not only the final result matters, but
also the price we pay for achieving it.

3.1.16 Best model analysis

The next leg of the diacritics experiment is to take a look at more statistics
the model provides. I have taken the best one so far (having 2 - 2 - 512 -
1024 - 1 setup from the table 3.1) and ran a small benchmark on the test set.
Since the task of diacritics correction is mostly about copying those letters
having no diacritised equivalent, in the table 3.4 I show only those letters
that were mistakenly misclassified. Note that there are no letters having no
diacritisized equivalent in the report, which indicates that the model perfectly
copies every input character and do not mix them. In my opinion, since the
model embedded all input letters to the linear subspace of higher dimension
than the length of the alphabet, it learned how to map them unambiguously.

I also calculate confusion matrix 3.5 of those misclassified letters in order
to take a look at what was the mistake.

There can be seen from 3.5 that the model really learned how to "copy" all
input letter to their equivalents to the output. In case of mistake we can be
sure that the model does not yield another erroneous letter. This is not the
case for models with significantly slower embedding size, which sounds logical
- the model struggles with projecting several hundreds letters to a subspace
of dimension less than the size of the vocabulary. Hence, a letter represented
by some vector can be considered to be a linear combination of the vectors
from some basis.

3.1.17 Attention weights visualisation

It is not an easy task to visualise attention in Trax. The problem is that
Trax does not store internal attention alignment while being trained or run
in inference mode. However, it is possible to dig into the code and make
the attention layers store the alignments which could be then read out from
the model’s properties. The model in Trax consists of two basic wrappers:
Serial and Parallel. They tell the JAX compiler how to handle them while

39

...................................... 3.1. Diacritics correction

Figure 3.4: Misclassified letters and their scores

been run on different accelerators. These wrappers contain a computational
graph which is accessible from the outside. That’s why I added several
necessary lines to the framework so that it saves attention weights while
run in inference mode. The reason to save attention alignments only during
inference is straightforward - Transformer model is enormously large and
may not fit into RAM of the accelerator it is trained on. Since attention
weights are formally a N ×N matrix, where N is the length of a sequence, it
is really hard to store additional floats for each batch. Moreover, there are
3 attention modules in one encoder-decoder setup. Moreover, it is useless
to save attention weights while training, unless there is no specific need to

40

...................................... 3.1. Diacritics correction

Figure 3.5: Confusion matrix for misclassified labels

track the training process by looking at how attention alignments change
over time, which could be beneficial for understanding how backpropagation
really works in such architecture.

As stated above, there are several attention modules in Transformer. In
Trax, there are two main classes responsible for calculating attention:..1. trax.layers.PureAttention..2. trax.layers.DotProductCausalAttention

I modified them by introducing new class properties, which are then read
after each model inference step. The reading itself is a tedious process which
looks like shown in listing 3.2:

41

...................................... 3.1. Diacritics correction

Listing 3.2: Attention layer object instance destination is Trax’s Transformer
model

alignments = encoder_blocks[0]._sublayers[0]._sublayers[-1].
↪→ _sublayers[-1]._sublayers[1]._sublayers[-1]._sublayers
↪→ [1].alignment[0, :, :, :]

I chose to show the best Transformer model with 2 encoder-decoder blocks
and 1 attention head. Since there are two decoding blocks, there will be two
different views on the generated sequence. The attention I show is the one
which has both keys and values coming from the encoder, so that we see how
the model really makes use of the encoded information.

An alignment matrix A is a N ×M matrix, where N is the length of an
input sequence and M is the length of the output sequence. For each token
i, i ∈ [0, M] the cell aj,i, j ∈ [0, N] shows how much attention is given to the
jth input token for making the final decision.

Figure 3.6: Attention weights from the first decoder block for sentence "priklad"

The input string is "priklad", which has to be transformed to "příklad"
(Engl. example). First of all, by taking a look at the first (lower) decoder
block 3.6, we see that the model basically attends to the same letter in the
encoder. However, by looking at the same module in the second (upper)
decoder block 3.7, we notice how the model applies context of the letter it

42

...................................... 3.1. Diacritics correction

tries to generate. This behaviour corresponds to what is thought to be typical
for deep neural networks - more shallow layers learn the basic rules, whereas
those on top of them operate with more complex definitions and abstractions.
This is exactly what happens inside our model.

Figure 3.7: Attention weights from the second decoder block for sentence
"priklad"

The topic of looking inside the model’s is very popular at the moment. One
of the most prominent paper about how the attention works in Transformer is
"What Does BERT Look At? An Analysis of BERT’s Attention" [CKLM19].

43

...................................... 3.1. Diacritics correction

3.1.18 Training Transformer in Trax with TF Dataset loaded
from generators

For some unknown reason, while the model was training on a TPU, it
crashed without even outputting any error message or stack trace. It always
happened after 20-25 epochs and it is not connected to Colab’s usage and
idle notebooks restrictions. Even when I trained iteratively for 15 epochs and
then reloaded my notebook, the same problem occurred after 5-8 epochs. The
whole notebook crashed and all temporary data was erased. Colab provides
developer with runtime logs, however they are updated with a huge timeout
and moreover, as the notebook crashed unexpectedly, the runtime log was no
more available.

My opinion is that there is an inner bug in Trax’s logic of data handling
and model’s compilation. To be trained on a TPU and to take advantage
of all its computational power, the model has to meet strict requirements
even in the set of mathematical operations that have to be adapted to be
efficiently run in such a specific environment. Taking into consideration the
relative novelty of this framework and the novel approach to compile models,
I assume there is one more bug I cannot even trace. I have opened an issue
on their GitHub page and duplicated it to the Trax’s Gitter chat.

I managed to work around this bug by saving checkpoints after each training
epoch to my free Google Storage bucket. After the environment crashed, I
simply downloaded my model from this storage and continued training from
the last saved checkpoint.

3.1.19 Reformer model

I also trained the Reformer model with the same hyperparameters as the best
Transformer model from 3.1 in terms of evaluation accuracy (see 3.3). The
graph 3.8 shows the difference in their final accuracy on the evaluation set.
Moreover, I show sequence accuracy metric, which particularly interesting in
the context of this task, in figure 3.9

Apparently, the Reformer model behaves exactly according to the results
from [KKL20] - it is an approximation of Transformer, however, which is
easier to train and fit into RAM.

44

...................................... 3.1. Diacritics correction

Figure 3.8: Reformer model compared to its Transformer counterpart having
the best evaluation accuracy with the same hyperparameters in terms of classical
accuracy.

Figure 3.9: Reformer model compared to its Transformer counterpart having
the best evaluation accuracy with the same hyperparameters in terms of sequence
accuracy.

3.1.20 Final thoughts on diacritics correction task

The task of diacritics correction seems simple even for less sophisticated
architectures like many-to-many LSTM network, which was trained and
tested in my semestral project work. However, the idea of attention behind
Transformer makes it possible to think about this task in another way, which
I consider as the most important point.

However, Transformer model shows that it is more universal and is capable
of solving many sequential tasks. The biggest challenge is to formulate the
problem so that it can be solved by Transformer, which has been successfully
done and the results of the trained models look promising, providing that the
networks were trained for several hours instead of days or weeks.

45

...................................... 3.1. Diacritics correction

To sum up, even though Transformer has this capability to solve many
different tasks, its potential is more evident while applied to more complex
tasks like text summarization, which is the second part of this thesis (see 3.2),
where I train Reformer model and compare its performance against previous
results.

46

...................................... 3.2. Text summarization

3.2 Text summarization

Another task which is considered to be a machine translation problem is text
summarization. Summarization is an approach to fit a large piece of text into
a small concise set of sentences called summary, preserving key information
and overall meaning. It is an extremely challenging task which has not been
solved to a proper level even in English yet. The task, in contrast to diacritics
correction, is more complicated and has many forms which are differently
defined and hence accomplished.

There are two different variants of text summarization...1. Extractive summarization is a task of selecting the most appropriate
pieces of text (typically sentences) carrying most crucial information
from the original text. This problem can be seen as a classification
problem, precisely assigning each sentence a label "yes" or "no", meaning
whether the sentence is enough concise to be included in the summary.
The methods how to accomplish this problem exist from the end of
the 20th century and include such prominent and well-posed algorithms
as Latent Semantic Analysis [SJ04], TextRank algorithm [Mih04], top-
ics representations and frequency analysis (TF-IDF [HL98]), Bayesian
Topics Model [Nom05], graph methods [THP08] and machine learning
approaches. Interestingly, even language modelling approaches have been
tried on the extractive summarization problem [KMTD14]...2. Abstractive summarization is an advanced way to create summaries
based on text generation approach and general language understanding.
It is far more sophisticated and hence unexplored concept, which inter-
ested me and which is primarily demonstrated in this work. To make a
concise summary, a model must show signs of orienting in the language.
It has to be able to do coreference resolution, understand, what is been
narrated about in the sentence, paragraph, or in the whole text. What’s
more, a model must be able to hold long-term dependencies and be
consistent. That’s why this is not the task for shallow networks.

3.2.1 Abstractive summarization - task definition

The task of abstractive text summarization can be formalised in a follow-
ing way. Given a list of sentences S = [s1, s2, ..., sn], n ∈ N represent-

47

https://nlp.stanford.edu/projects/coref.shtml

...................................... 3.2. Text summarization

ing a text piece to write summary of, create another list of sentences
S’ = [s′

1, s′
2, ..., s′

k], k ∈ N representing its summary.

This formulation may sound trivial, it is still important to define a sentence.
There are three ways how to do it:..1. s = [c1, c2, c3, ..., cm], where ci ∈ A, i ∈ 1, 2, ..., m. Here, s is a list of

characters ci from an alphabet A, m is the length of the list...2. s = [w1, w2, ..., wm], where wi ∈ V, i ∈ 1, 2, ..., m. Here, s is a list of
words wi from a vocabulary V, m is the length of the list and the sentence
length at the same time...3. s = [p1, p2, ..., pm], where pi ∈ W, i ∈ 1, 2, ..., m. Here, s is a list of
word-pieces pi from a word-piece vocabulary V, m is the length of the
list and the sentence length at the same time.

3.2.2 Definition based on data representation

The first and the second formulations sound logical from different perspectives.
We can handle a sentence either as a sequence of letters or a sequence of
words. For the task of summarization, though, the second definition could be
more accurate for two reasons - when we operate with single words, the model
can better learn the dependencies on a word level, whereas while trained
with a character-level representation, the challenge is to firstly understand
what a word is and how it is built. Moreover, the primal task is to learn the
semantics in the text, although the lexical structure of the words also matters.
On the other hand, the model is trained on a long list of sentences, which
means that in case of character-level representation the sequences themselves
will be significantly longer and may not fit in GPU/TPU memory or the
whole training will take much longer.

Another argument against word-level representation lies in its poor flex-
ibility. As soon as the model encounters unseen word, it is not handled
properly and the information this particular word carries will be not taken
into consideration, which is in the light of summarization exceptionally vital.
Imagine a long article with many names of people or companies mentioned. A
summarization model trained on a word level will probably not find many of
these names in its vocabulary and will assign an UNKNOWN label to each word
it has not seen yet. This is the case when the most essential information is
getting lost even before entering the model. A character level model, however,

48

...................................... 3.2. Text summarization

will not struggle with it, since the probability of encountering an unknown
letter is significantly lower. Still it has to be intensively trained to understand
what a name is.

3.2.3 Word pieces

In the light of the aforementioned, both methods seem illogical to utilise in
summarization models. There is however a third way how to handle data,
which combines both of the described methods and attempts to take all their
advantages. The third formulation almost mirrors the second one by effectively
solving the problem of Out-Of-Vocabulary (OOV) words. Still, the major
difference lies in the vocabulary used here. The best way to connect both
word level and character level representations is to find a trade-off somewhere
in the middle - in the word pieces. Word piece method is an approximation
of both word-level and character-level representations, which operates with a
vocabulary of a pre-defined size N . A word piece representation splits each
word in a set of smaller chunks that are presented in the vocabulary. For
example, the word "nejvhodnějšího" (Eng. the most appropriate) could be
split into chunks "nej", "vhodn", "ější", "ho". Two signs in front of tokens
starting from the second position indicate that this piece belongs to the piece
from the left, so that the word can be reconstructed after being split.

A program dealing with word pieces is called a tokenizer. A tokenizer is
responsible for building the word-piece vocabulary, splitting an input sentence
into words and then words into word pieces. It has to be able to rebuild the
sentence from the list of its word pieces.

There are many ways a tokenizer can build the vocabulary. This routine is
called training a tokenizer. There are several widely used training algorithms,
with many of them having a Byte Pair Encoding algorithm under the hood
[SHB16]

3.2.4 Byte Pair Encoding algorithm

Byte Pair Encoding algorithm consists of several steps:..1. Prepare the largest dataset of textual data possible.

49

...................................... 3.2. Text summarization..2. Define the size of the word piece vocabulary to build...3. Split each word into a sequence of characters...4. Append suffix </w> to the end of every word with word’s frequency,
which is computed over the dataset from step 1. For example, given the
frequency of "dobrý" (Engl. good) is 5, the algorithm transforms it to
"d o b r ý </w>": 5..5. Generate a subword according to the highest frequency...6. Repeat the previsou step until reaching subword vocabulary size which
is defined in step 2 or the next highest frequency pair is 1.

The algorithm is depicted in figure 3.10.

Figure 3.10: BPE algorithm code listing. Source: [SHB16]

The idea of BPE lies in WordPiece algorithm [WSC+16b], which is widely
used in language modelling tasks like BERT and which I chose for tokenization.

The algorithm consists of these steps:..1. Do steps 1-3 from BPE.

50

...................................... 3.2. Text summarization..2. Build a language model on the character data...3. Choose the new word unit out of all the possible ones that increases the
likelihood on the training data the most when added to the model...4. Go to step 2 until a predefined limit of word units is reached or the
likelihood increase falls below a certain threshold.

For my summarization experiments, I decided to use the same tokenizer
used in training BERT model with WordPiece algorithm with vocabulary size
of 30000 subwords. Its training and usage is made simple by an open-source
library transformers implemented by HuggingFace. The advantage of using
it instead of own implementation is that all tokenizers in transformers library
are implemented in Rust and are extremely fast to train and run. Moreover,
they are easily integrated to the sequence processing pipelines thanks to lots
of useful features which make the whole dataset preparation process much
easier.

3.2.5 Summarization dataset

There are a few small datasets with human-generated summaries available
in Czech language for accomplishing summarization task: Czech part of
the MultiLing dataset [GCK+17] consisting of 40 WIkipedia articles, and
SummEC [RČ13] with 50 news articles. In 2018, Institute of Formal and
Applied Linguistics released SumeCzech - Large Czech News-Based Sum-
marization Dataset [SMK+18] containing over 1 million news articles with
aggregated summaries from 5 different sources. This dataset was obtained
with a semi-automatic processing of news articles, abstracts and headlines.
Unfortunately, it does not contain human-generated summaries and heavily
relies on the abstracts. The assumption made by the authors is that an
abstract in some way holds the article’s summary, however, this is a really
strong assumption which is not always satisfied, since the abstract’s partial
aim is to provoke reader’s interest to read the whole text. That’s why my
opinion is that any metrics calculated on such data have to be taken with a
grain of salt. Nevertheless, it is still the only source of large amount of data
available to run experiments on with pretty feasible basis, so hopefully there
will be more datasets in the nearest future, as the problem of summarization
becomes more urgent.

The SumeCzech dataset is stored in JSON line format with each line
containing a headline, an abstract and the article itself, which makes 6

51

https://huggingface.co/transformers/

...................................... 3.2. Text summarization

different pairs of textual data and hence 6 different summarization tasks. The
authors introduced 3 setups:..1. abstract to headline - generate a one-sentence headline basing on several

sentences in the abstract...2. full text to head line - generate a one-sentence headline basing on the
whole article..3. full text to abstract - generate a multi-sentence summary of the whole
article.

It is also important to notice the size of each of three integrants of this
dataset. The authors provide the following statistics:

Q1 Median Q3 Mean Stddev
Headlines 7 9 11 9.4 2.9
Abstracts 33 42 51 42.2 14.8
Texts 265 378 553 470.1 365.3

Table 3.4: Statistics of lengths of headlines, abstracts and texts in words. Q1
and Q3 are the first and the third quartile, respectively.

It can be seen that all three items follow normal Gaussian distribution.

The authors of SumeCzech report that they trained Transformer from
[VSP+17] on the simplest (in terms of data size) setup on a single Nvidia
GTX 1080 Ti for 15 days with batch size of 1700. Unfortunately, no more
precise information is available, so the throughput, the number of steps and
epochs for this experiment remain unknown and can be only estimated basing
on the recommendations from the ÚFAL’s parer with Transformer training
tips [PB18]. The authors claim, that the throughput of the Transformer ’base’
setup on English-to-German translation problem for a batch of size 1500 is
33.4M subwords/hour and for a batch of size 2000 is 33.7M subwords/hour
on a single GPU. It means that for a batch of size 1700 the throughput has to
be approximately 33.5 subwords/hour. However, the tasks differ significantly.
While the English-to-German translation task consists of 2 sentences for each
example, in the context of summarization there are approximately 3 sentences
for a typical abstract and 1 sentence for a headline. For the sake of simplicity I
dropped the throughput of the Transformer model on summarization on 30M
subwords/hour. Then, the authors state that dataset tokenization roughly
enlarges each example by a factor of 1.5, so the assumed throughput of 30M
subwords/hour is a highly optimistic value.

52

...................................... 3.2. Text summarization

The batch size of 1700 claimed in the paper does not specify whether there
were 1700 abstract-headline pairs or just 1700 subwords as the authors of
[PB18] state. I assumed the latest, because Transformer with SumeCzech has
been trained in Tensor2Tensor framework, so this size might reflect the batch
logic applied in the framework.

By doing simple calculations, I came to the following result: assuming
the average length of an abstract is 42 words, the tokenized version has an
average length of 63 subwords. Then, it means that a single batch contains
1700/63 ≈ 26 abstract-headline pairs. Given the throughput calculated
above, I suppose the model could process 30000000/1700 ≈ 17647 batches per
hour, meaning that it processed 17647 ∗ 26 = 458822 abstract-headline pairs
per hour. This implies approximately 165M abstract-headline pairs for the
experiment. Since the training set consists of 867596 such pairs, the dataset
has been fully iterated for 190 times.

That’s why, I decided to experiment only with "abstract to headline" setup
for the purposes of this work and due to many GPU/TPU restrictions in
Google Colab environment.

3.2.6 Previous works

To my best knowledge, no other attempts have been made to solve summa-
rization tasks in Czech language except for [SMK+18]. There was no feasible
dataset in Czech language to train models on, which is the main reason of
the absence of other works.

3.2.7 Metrics

There are several evaluation metrics widely used in translation tasks. The most
popular one is ROUGE [Lin04]. The name ROUGE stands for Recall-Oriented
Understudy for Gisting Evaluation. This metric compares summaries
or translations generated by an evaluated model against a human-written
reference summary or translation. The basic idea behind ROUGE is to mea-
sure the number of overlapping words in both texts with respect to different
sources. In particular, ROUGE metric makes use of two scores:

53

...................................... 3.2. Text summarization..1. Precision score in the context of ROUGE is defined in the following way:

precision = number_of_overlapping_words

total_number_of_words_in_system_summary

The motivation to calculate precision is to understand how many unnec-
essary words are added to the summary. Simply put, if a model copies
the whole input text to the output proclaiming that this is a summary,
the precision score will approach zero, since the denominator of the
precision formula is large. Another way of thinking about precision is to
ask how many words in the system’s summary are relevant...2. Recall score in terms of ROUGE is defined in the following way:

recall = number_of_overlapping_words

number_of_words_in_the_reference_summary

The aim of the recall score is to show how much of the reference summary
is covered by the system’s summary. This quantity reflects whether the
information presented in the system’s summary is concise and cover the
main idea of the text.

It is obvious that both scores have to go hand-in-hand, since it is pretty
easy to fool each of them separately. That’s why the main indicator of
the summarization (and translation) quality is the harmonic mean of both
precision and recall, which is F1 score and is defined as follows:

F1 = 2 ∗ precision ∗ recall

precision + recall

In case when summaries are forced to be as concise as possible, only recall
is used to evaluate the system’s performance.

ROUGE metric is in fact a set of several similar metrics with a different
degree of strictness to the model’s output:..1. ROUGE-N - this metric calculates an overlap of n-grams of length N. In

case N = 1 the metric is equivalent to calculation of an overlap of words.
Otherwise an overlap of N consecutive words is taken into consideration...2. ROUGE-L - measures an overlap in terms of Longest Common Sub-
sequence (LCS) problem, i.e. the longest matching sequence. The
advantage of this metric is that it measures sentence level structure
similarity that reflect the word order. Moreover, it includes longest
in-sequence common n-grams.

54

...................................... 3.2. Text summarization..3. ROUGE-W - a modification of the preceding metric which weights the
ROUGE-L score in favor of consecutive LCS...4. ROUGE-S - a skip-gram n-gram metric model which allows arbitrary
gaps between words. It is typically called skip-gram concurrence. For
example, skip-bigram measures the overlap of word pairs that can have
a maximum of two gaps in between.

The SumeCzech dataset comes with a script for summaries evaluation which
consists of a full-length language-agnostic F1 ROUGE metric with no stemmer
or stop words implemented. This metric is denoted as ROUGEraw −N and
ROUGEraw − L with equivalent meaning as described above.

3.2.8 Experiments

I trained a WordPiece tokenizer on all articles in this dataset, extracted and
tokenized headlines and abstracts and saved them in TFRecords format with
each shard containing 10000 abstract-headline pairs. Then, I uploaded the
processed dataset to Google Storage buckets so that there is minimal file
transfering delay between the model run on TPU and the instance storing the
data (all dataset operations are run on a CPU). The advantage of uploading
TFRecords dataset to Google storage is that both TPU and Storage physical
device are mapped to the same data center, so that the file transfer delay is
minimised.

The model I selected is the Reformer model with hyperparameters set as
reported in [KKL20] in "Experiments" paragraph. This setup together with
the WordPiece vocabulary consisting of 30000 word pieces has 68 293 936
trainable parameters.

I also I came up with several hyperparameters optimization as a result of
extensive experimenting. These are:..1. The number of warmup steps is set to 600...2. Learning rate Scheduler is a MultifactorSchedule object with two

factors: "constant * linear_warmup". The constant value is 0.1..3. Optimizer’s factor is set to 0.1

55

...................................... 3.2. Text summarization

In case any of the parameters is increased, the model diverges. In the
opposite case the model converges a little bit slower.

There is no need to additionally train a Transformer for this task since the
authors of SumeCzech have already done it. The experiment is run in Trax
1.2.3 on a cloud TPU.

Since the experiment is run on a Cloud TPU v2 instance, Reformer is
the ideal candidate, because it can fit the 8GB TPU’s RAM and handle
large batches. The batch size is set to 4096, which in my case means 4096
abstract-headline pairs. Because of TPU’s padding requirements, the abstracts
are padded to the length of 128 with those having more than 128 subwords
truncated (the statistics showed there were not so many of them), the headlines
are padded to the length of 64. This preparation barely affected headline-
abstract pairs and meets all the TPU’s requirements, so that it can be
maximally used.

Considering the batch size of 4096, in order to train my model with the
same amount of data as the authors of SumeCzech did, my model had to
make 165000000/4096 ≈ 40284 training steps. An epoch in Trax is defined by
a number of steps, so in order to get intermediate insight about how my model
improves, I chose 250 steps for training, which means that the epochs number
is 160. SumeCzech’s dev (or validation) set consists of 44454 entries, so I set
up the model in the way that after each epoch the model is evaluated on the
whole dev set. The training process is constantly monitored via Tensorboard
and the intermediate checkpoints and weights are automatically sent to my
Google Storage account so that in case somebody preempts my Colab virtual
instance, I am capable of continuing training from the last checkpoint.

3.2.9 Results

The training results are accessible via Tensorboard’s interface:

It is obvious that after performing the first 15K steps, the model reached
the plateau and its validation dataset accuracy did not improve while the
training accuracy went steadily higher. One could think of a classical case
of overfitting, however I consider this behaviour to be partially one of the
indicators of a poor dataset. Starting from scratch, the model is unaware of
the problem it has to solve. During the first 15K steps the model presumably
learns not only the language in the training set, but also how to generate

56

...................................... 3.2. Text summarization

Figure 3.11: Summarization model accuracy
The orange curve depicts the model’s performance on the training set, whereas
the blue one depicts the model’s performance on the evaluation dataset.
The x-axis resembles the number of training steps, the y-axis shows the model’s
accuracy on this step.

language. Recall that the target summaries in SumeCzech are not human-
written, meaning that they are noisy. I presume that after making the first
steps towards understanding what is in these abstracts, the model gradually
learned how to compress them in general. After these 15K steps the model
is definitely learning to adjust the summaries to what is considered to be a
summary in the training set and still learns language, which is seen below.

By saying this, I do not state that this is not the case of overfitting. It still
could be, however, more in-depth analysis has to be done to understand what
causes the evaluation set to stop improving after first 15K steps of training.

One more argument is that when the model overfits, its performance on
the evaluation set degrades. In case of this experiment, the overall accuracy
is almost constant.

Nevertheless, if we take a look at the graph 3.12, we will see how the
model’s behaviour differs in terms of the loss function value. Recall that
the loss function here is cross-entropy loss. Cross-entropy loss is defined
as average number of total bits to represent an event from one distribution
instead of another distribution. With that said, it means that the model has
an improving tendency to be "not so far away from" the targets in the training
set, whereas the targets in the evaluation set are becoming more "distant".
My hypothesis is that this behaviour is given by the model’s tendency to
make summaries shorter over time, increasing model’s recall score.

One more metric worth taking into consideration is shown in figure 3.13.
Here we see sequence accuracy metric. The model is assigned a score as

57

...................................... 3.2. Text summarization

Figure 3.12: Summarization model loss
The orange curve depicts the model’s performance on the training set, whereas
the blue one depicts the model’s performance on the evaluation dataset.
The x-axis resembles the number of training steps, the y-axis shows the model’s
loss function value.

soon as the whole output summary is identical to the one in the target set.
Obviously, as the value reaches 1, we can claim the model is overfit. However,
the values (scaled by a natural logarithm) are close to zero. The reason the
graph is shown with y-axis in a logarithmic scale is that it clearly shows
what happens when the model hits the plateau near 15K steps. The sequence
accuracy on training data starts to converge to a constant value, which is
somewhere around 0.1. Since it tends to flatten and become constant, I highly
doubt the model started to overfit after 15K steps and stopped training.

Figure 3.13: Summarization model sequence accuracy
The orange curve depicts the model’s performance on the training set, whereas
the blue one depicts the model’s performance on the evaluation dataset. The
x-axis resembles the number of training steps, the y-axis shows the model’s loss
function value and is in a logarithmic scale.

The last graph 3.14 depicts how the learning rate is scheduled while training.
We see how fast it grows and then decays linearly with a factor of 0.2. Based
on my experiments, this could be the most optimal and the fastest schedule,
since every further manipulation with the scheduling parameters towards
faster learning rate growth and slower decay caused model to diverge after

58

...................................... 3.2. Text summarization

several hundreds of steps, though showing gradual improvements over the
first steps.

Figure 3.14: Summarization model learning rate scheduling
The x-axis represents the number of training steps, the y-axis shows the model’s
learning rate value.

59

...................................... 3.2. Text summarization

3.2.10 Evaluation

To get a better insight on how the model performs after being trained for
a while, I evaluate them by using ROUGE metric scores implemented in
SumeCzech dataset.

Unfortunately, models trained in Trax are still unstable while being run
in inference mode. First of all, there is an illogical misconception about
the states a model can be run in. To train a model, one needs to set its
mode to ’train’, which sounds logical. When the model is been evaluated,
its mode is set to ’eval’, which from the technical perspective means the
dropout scores are set to 0 and no activations are being stored. There is an
additional ’predict’ mode, which I was not able to run due to some errors in
inner logic of the communication between layers. Somebody in Gitter, which
is the main communicational platform to solve issues in Trax, supposed that
this ’predict’ mode is designed to run a model in an autoregressive fashion
without incorporating the encoder, which is exactly what is implemented in
several public Colab notebooks available from the official Trax repository on
Github.

Taking into consideration the aforementioned, all the inference tests are
executed in ’eval’ mode. The model is loaded as follows from the snippet 3.3:

Listing 3.3: The way the model has to be loaded
import trax
model_path = ’path_to_model_pkl_file’

inference_model = trax.models.Reformer(mode=’eval’)
inference_model.init_from_file(model_path, weights_only=False)

Another thing worth mentioning is that the model is initialised with the
parameter weights_only set to False. This setup also makes Trax load the
model’s states. As soon as the model is initialised together with all its states,
the summaries look more consistent and correct.

One more unpleasant experience I had with Trax is that it is not completely
optimised to run fast inference. Since the model is loaded in the evaluation
mode with all its states, it takes considerably much more time to run tests
even on a GPU. That’s why I firstly compare several checkpoints against each

60

...................................... 3.2. Text summarization

other on the same extract from the test set included in SumeCzech, which
had 100 batches, each of them containing 128 abstract-headline pairs. As I
have noticed, all the models tend to converge to some concrete value and no
significant changes happen afterwards. Trax models are capable of handling
batches while being run in inference mode, that’s why I run 100 inference
steps with 128 input pairs per batch. Then, I choose the best one and run
tests on the whole testing set in order to be able to compare my model with
the one reported in [SMK+18].

Each test is run on Tesla P4 GPU provided by some heuristics in Colab
and each batch took approximately 60-80 seconds to process, which means
that 1 abstract-headline pair is handled in 0.5-0.625 seconds. Recall that the
tested Reformer model had 68 293 936 trainable parameters, which is almost
the same as ’base’ Transformer’s setup parameters number.

The table 3.5 gives an insight how the several checkpoints performed on
the testing set extract.

Step ROUGERAW − 1 ROUGERAW − 2 ROUGERAW − L

P R F P R F P R F
10000 18.0 16.5 16.7 4.4 4.0 4.1 16.2 14.9 15.0
12500 18.4 17.1 17.2 4.7 4.3 4.3 16.5 15.4 15.4
15000 18.1 16.9 17.0 4.6 4.3 4.3 16.3 15.2 15.3
47500 18.0 16.8 16.9 4.7 4.4 4.4 16.1 15.1 15.1
70000 17.7 16.6 16.6 4.6 4.4 4.3 15.9 15.0 15.0

Table 3.5: The results of the test set extract evaluation on different Reformer
model’s checkpoints in terms of ROUGE metric described in 3.2.7.

Indeed, it is evident that the best behaviour according to the ROUGE
metric is reached at the 12500th step. However, it is still worth looking at
some examples of the model’s outputs to get better insight.

61

...................................... 3.2. Text summarization

Model Headline

Headline Lidé upozornili spolucestujícího v tramvaji, že nemá
roušku, napadl je pěstí.
People warned a fellow-passenger in the tram that he
didn’t have a mask, he punched them.

5000 Muž napadl v tramvaji pěstí, pak ho napadl a napadl
ho.
A man punched in a tram, them attacked him and
attacked him.

12500 Agresivní muž napadl v tramvaji pěstí, pak kopal do
obličeje pěstí.
An aggressive man punched in a tram, then hit in the
face with a fist.

25000 Agresivní muž napadl pěstí a kopal do obličeje pěstí,
pak kopal do obličeje.
An aggressive man punched and hit in the face with a
fist.

30000 Agresivní muž napadl v tramvaji pěstí, praštil ji pěstí
do obličeje.
An aggressive man punched in a tram, smacked her in
the face with a fist.

35000 Agresivní muž napadl v tramvaji pěstí, praštil ji do
obličeje.
An aggressive man punched in a tram, smacked her in
the face.

40000 Agresivní muž napadl agresivního řidiče tramvaje,
útočník ho zkopal.
An aggressive man attacked an aggressive tram driver,
the attacker kicked him.

Abstract
Dva cestující v jedné z olomouckých tramvají napadl agresivní
osmadvacetiletý muž poté, co ho upozornili, že nemá roušku. Muž
nejprve udeřil několika ranami pěstí do obličeje šestačtyřicetiletého
muže a poté i dvaapadesátiletou ženu, která se napadeného zastala.
Konflikt vyřešila až přivolaná policie, útočníkovi za výtržnictví
hrozí až dva roky vězení.
An aggressive 28 years old man attacked two passengers in one
of Olomouc trams after being notified of not wearing masks. The
man firstly left several wounds on the face of a 46 years old man
and then punched a 52 years old woman who defended him. The
conflict has been resolved by the police. The attacker is facing up
to 2 years in prison for disturbing the peace.

Table 3.6: The first example of summaries generated by the models after
completing different number of training steps.

It can be seen from the table 3.6 that even in case of pretty reasonable

62

...................................... 3.2. Text summarization

overlap with real abstract, models that stopped training at lower steps struggle
with language generation, whereas the last model, despite the fact that it
misunderstood the object of the attack, was better in language understanding
and generation. One more example is presented in table 3.7.

Model Headline

Headline Tesla v Kalifornii obnovila výrobu navzdory zákazu.
Klidně mě zavřete, vzkazuje Musk
Tesla resumed production in California despite the pro-
hibition. Feel free to close me, tells Musk.

5000 Tesla zahájil výrobu v Kalifornii. Kvůli prodeji Tesla.
Tesla launched production in California. Due to Tesla
sale.

12500 Tesla zahájil výrobu v Kalifornii, kvůli poruše nesmí
zatrhnout.
Tesla launched production in California, due to mal-
fuction may not forbid.

15000 Tesla zahájil výrobu v Kalifornii, výrobu pozastavil
výrobu.
Tesla launched production in California, the production
stopped production.

45000 Tesla znovu rozjel výrobu elektromobilů. Navzdory
embargu.
Tesla again started up production of electric automo-
biles. Despite the embargo.

90000 Tesla znovu rozjel výrobu elektromobilů. Navzdory
kritice.
Tesla again started up production of electric automo-
biles. Despite the criticism.

Abstract
Americký výrobce elektromobilů Tesla znovu zahájil výrobu v
kalifornském Fremontu, uvedl server listu Financial Times. A to
navzdory tomu, že podle úředního nařízení výrobu obnovit nesmí.
Elon Musk úřady vyzval, aby ho zatkly.
Despite the fact that according to the official order it may not
restart production, American electric automobiles manufacturer
Tesla resumed production in Fremont, California, says Finantial
Times. Elon Musk called to be arrested.

Table 3.7: The first example of summaries generated by the models after
completing different number of training steps.

This is not the only case of how the models that have been longer trained
understand language. My assumption is that it probably overfitted and hence
performs worse in terms of ROUGE metric on the evaluation and test datasets.
However, I see the ability of the model to learn sophisticated semantics and
be more aware of the language itself. It can be seen from both two tables 3.6

63

...................................... 3.2. Text summarization

and 3.7. In the first case, the tram driver was not explicitly mentioned in
the abstract, however, the model somehow knew that the driver is connected
to the public transport (here - the tram). The same is true when we notice
that there is a word "útočník" (Engl. attacker), which has been used in the
end of the sentence and carried an additional information not reflected in the
summary. However, it helped the model understand that the main figure of
the abstract is the attacker and managed to use the new word to represent it
in its output.

The second example is even more fascinating: after much longer training
we see not only better language understanding (the word embargo is not used
in the abstract, however, the model even on a small training dataset managed
to handle synonyms), but also the bias of the news articles. It learned to
write short second sentences typically used to stress some particular point
from the first one. This is exactly what we see.

I have to mension that all the tests and inference were made in a greedy
manner. Unfortunately, Trax has a confirmed bug in the beam seach algo-
ritm, which yields inconsistent results that in case of beam of size 1 do not
correspond to what is obtained by autoregressive inference as described in
2.2.5.

3.2.11 Comparison with SumeCzech’s model

I ran the best summarization model from the table above on the whole test set
on Tesla P100-PCIE-16GB GPU, which is the best GPU available in Colab.
Its strongest side is that it has 16GB of RAM, so it is capable of handling
very large batches. Hence, one batch consisted of 256 abstract-headline pairs
and it took from 90 to 120 seconds to process it. Since the experiments
were run in Colab, I also had to create regular dumps so that in case I got
disconnected from the GPU, I did not lose all intermediate calculations.

The results are presented in the table 3.8:

As it is seen in the table, my model outperforms the baseline in terms of
GOUGERAW − 1 and GOUGERAW −L metrics, both in recall and F1 score,
which is in full correspondence with what I said about summarization metrics.
SumeCzech’s model is more ’precise’. It is however not always desirable to
have higher precision over recall, that’s why it is possible to say that I have
reached state-of-the-art behaviour on this dataset with such a setup.

64

...................................... 3.2. Text summarization

Method GOUGERAW − 1 GOUGERAW − 2 GOUGERAW − L

P R F P R F P R F
Test set

SumeCzech 19.3 15.4 16.6 6.2 4.8 5.2 17.9 14.3 15.4
My model 18.1 17.2 17.1 4.6 4.4 4.4 16.3 15.5 15.5

Out of domain test set
SumeCzech 18.9 14.8 16.0 6.8 5.0 5.5 17.7 13.9 15.0
My model 16.8 15.9 15.7 4.8 4.6 4.5 15.5 14.7 14.5

Table 3.8: Models’ comparison in terms of ROUGE metric described in 3.2.7

It is also important to say that SumeCzech’s model obtained these numbers
with the help of a beam search algorithm. The authors followed the recom-
mendations from [VSP+17] and chose a beam of size 4, which is considered
to significantly improve the final translation’s quality. Unfortunately, the
Beam Search module in Trax is still buggy and gives incorrect results, so my
numbers could be a little bit better if the beam search was applied. However,
the model’s behaviour corresponds to what was reported in [KKL20], where
the Reformer setup slightly outperformed existing translation modules. It
proves, that even when the model is assumed to be an approximation of
another model, it does not necessarily mean that this model is worse in terms
of final accuracy.

The model I trained and that is present in table 3.8 is a checkpoint after
12500 steps of training, which took less than 4 hours of TPU training. Recall
that SumeCzech’s model was trained for 14 days on a GPU. So, one more
contribution of my work here is a novel approach how to train deep models
in a shorter time span.

3.2.12 Final thoughts on summarization

Abstractive summarization is an extremely fascinating and challenging NLP
task. It is even more complex than classical language to language translation,
since the whole text and the underlying idea must be taken into consideration.
I have conducted several small experiments towards solving this task, which
I hope will be soon solved by more robust models trained in a much smarter
way. Here are some ideas I suggest trying out:..1. Create much larger dataset which will be generated applying more strict

heuristics and trying to avoid those texts without real summary but

65

...................................... 3.2. Text summarization

sentences making a reader want to read the article (e.g. typical headlines
in mass media:..a. Proč podvádějí a kradou? (Engl. Why do they cheat and steal?)..b. Pacientům lhal, že mají rakovinu. K soudu ale kvůli médiím nepřišel.

(Engl. Lied to patients that they had cancer. Didn’t come to court
due to mass media.)..c. Perličky z krajských voleb na východě Čech. (Engl. Funny facts
about regional elections in the East of Czechia.)..d. Ale fuj, tak brzo v práci, ohodnotila studentka zaměstnání bankéře.
(Engl. Yuck, so early at work, rated a student banker’s occupation.)

It is a very tough task which is not trivial to accomplish. One possible
way of dealing with it is to train a bigger Transformer (or Reformer)
model on the existing data, find those summaries in the training set
having the lowest ROUGE values and try to filter them out. By cleaning
up the dataset, it could have higher ratio of high-quality data, which
can be then iteratively used for training new model. This is a way how
to partially accomplish the lack of data...2. Consider incorporating a language model before the data flows to the
summarization model. The major flaw of many approaches is in the
lack of prior knowledge. This is the reason why the approach from
computer vision field called transfer learning is getting more popular in
other spheres, including NLP. Having understanding of the language the
summaries are written in is critical for this task, so I suggest taking a
glance at currently state-of-the-art model BERTSum [Liu19], which is a
modification of the BERT language model tuned for the summarization
task. However, it does not need to be pretrained. This model is based on
an assumption that by incorporating BERT’s idea, the language model
is learned hand-in-hand with the capability of making summaries. My
suggestion is to introduce an encoder that will firstly generate sentences
embedding on several levels: producing one fixed-size vector representing
the sentence as Universal Sentence Encoder [CYK+18] does, combining
it with word-level sentence embedding (e.g. sentence represented as a
matrix)...3. Do not rely on Transformer’s embedding while training on large volumes
of data. Keep in mind that as soon as the data is projected to a smaller
subspace, some information is inevitably lost, that is why it has to be
recovered by other sources (features)...4. A new metric has to be introduced. Czech language cannot be evaluated
in the same fashion as English or German. The new metric has to take
into consideration many language aspects like lexical features (cases,
persons, numbers) or semantic features (named entities, specific lexicon
from particular field), be able to reduce the richness of Slavic languages
so that it can be processed more easily.

66

...................................... 3.2. Text summarization..5. Use beam search with semantic features unless the language model is
incorporated.

67

Chapter 4

Conclusion

Losts of words have been said in this work and even more words remained
concealed. I hope that my contribution to the field of Czech NLP will be not
left unattended. In this work, I attempted to show how attention mechanism
changed the way NLP community accomplishes many yet unsolved tasks and
why is it crucial to be aware of how the ideas changed in course of time. Then,
I conducted several experiments on two totally different tasks of diacritics
correction and abstractive summarization. My endeavour was to convince a
reader that NLP is a fascinating field with so dynamic pace that has to be
kept up with. I showed how newly introduced models like Transformer and
Reformer attempt to solve these problems and what are their advantages and
disadvantages. I also made little contribution to Trax by raising many issues
and detecting its weaknesses. Moreover, I introduced a feature of attention
heads visualisation by making several additions to the existing code. I hope
to continue working in this direction and making Czech NLP systems more
accurate and more robust towards genuine language understanding.

68

Appendix A

Bibliography

[BBDP+94] Adam L. Berger, Peter F. Brown, Stephen A. Della Pietra, Vin-
cent J. Della Pietra, John R. Gillett, John D. Lafferty, Robert L.
Mercer, Harry Printz, and Lubos Ures, The Candide System for
Machine Translation, Human Language Technology: Proceed-
ings of a Workshop held at Plainsboro, New Jersey, March 8-11,
1994, 1994.

[BCB16] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio, Neural
Machine Translation by Jointly Learning to Align and Translate,
arXiv:1409.0473 [cs, stat] (2016), arXiv: 1409.0473.

[BHH+13] Eduard Bejček, Eva Hajičová, Jan Hajič, Pavlína Jínová, Václava
Kettnerová, Veronika Kolářová, Marie Mikulová, Jiří Mírovský,
Anna Nedoluzhko, Jarmila Panevová, Lucie Poláková, Magda
Ševčíková, Jan Štěpánek, and Šárka Zikánová, Prague depen-
dency treebank 3.0, 2013.

[Bus] Steven Bussey, Alignment of Translation.

[Chr20] Olah Christopher, Understanding LSTM Networks – colah’s blog,
05 2020.

[CKLM19] Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christo-
pher D. Manning, What Does BERT Look At? An Analy-
sis of BERT’s Attention, arXiv:1906.04341 [cs] (2019), arXiv:
1906.04341.

[CV95] Corinna Cortes and Vladimir Vapnik, Support-vector networks,
Machine Learning 20 (1995), no. 3, 273–297 (en).

69

.. A. Bibliography

[CYK+18] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limti-
aco, Rhomni St John, Noah Constant, Mario Guajardo-Cespedes,
Steve Yuan, Chris Tar, Yun-Hsuan Sung, Brian Strope, and Ray
Kurzweil, Universal Sentence Encoder, arXiv:1803.11175 [cs]
(2018), arXiv: 1803.11175.

[DCLT19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova, BERT: Pre-training of Deep Bidirectional Transform-
ers for Language Understanding, arXiv:1810.04805 [cs] (2019),
arXiv: 1810.04805.

[(ed16] Cvrček, Václav Richterová, Olga (eds), cnk:syn2015 — příručka
Čnk, 2016, [Online; accessed 20-May-2020].

[GCK+17] George Giannakopoulos, John Conroy, Jeff Kubina, Peter A.
Rankel, Elena Lloret, Josef Steinberger, Marina Litvak, and
Benoit Favre, MultiLing 2017 Overview, Proceedings of the
MultiLing 2017 Workshop on Summarization and Summary
Evaluation Across Source Types and Genres (Valencia, Spain),
Association for Computational Linguistics, April 2017, pp. 1–6.

[goo] Cloud TPU.

[GRUG17] Aidan N. Gomez, Mengye Ren, Raquel Urtasun, and Roger B.
Grosse, The Reversible Residual Network: Backpropagation
Without Storing Activations, arXiv:1707.04585 [cs] (2017), arXiv:
1707.04585.

[HL98] Eduard Hovy and Chin-Yew Lin, Automated Text Summariza-
tion and the Summarist System, TIPSTER TEXT PROGRAM
PHASE III: Proceedings of a Workshop held at Baltimore, Mary-
land, October 13-15, 1998 (Baltimore, Maryland, USA), Associ-
ation for Computational Linguistics, October 1998, pp. 197–214.

[Hop82] John Hopfield, Neural networks and physical systems with emer-
gent collective computational abilities, Proceedings of the Na-
tional Academy of Sciences of the United States of America 79
(1982), 2554–8.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber, Long Short-Term
Memory, November 1997.

[JKS18] Aditya Jain, Gandhar Kulkarni, and Vraj Shah, Natural lan-
guage processing, International Journal of Computer Sciences
and Engineering 6 (2018), 161–167.

[KKL20] Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya, Reformer:
The Efficient Transformer, arXiv:2001.04451 [cs, stat] (2020),
arXiv: 2001.04451.

70

.. A. Bibliography

[KMTD14] Mikael K\aagebäck, Olof Mogren, Nina Tahmasebi, and Devdatt
Dubhashi, Extractive Summarization using Continuous Vector
Space Models, Proceedings of the 2nd Workshop on Continu-
ous Vector Space Models and their Compositionality (CVSC)
(Gothenburg, Sweden), Association for Computational Linguis-
tics, April 2014, pp. 31–39.

[Lin04] Chin-Yew Lin, ROUGE: A Package for Automatic Evaluation
of Summaries, Text Summarization Branches Out (Barcelona,
Spain), Association for Computational Linguistics, July 2004,
pp. 74–81.

[Liu19] Yang Liu, Fine-tune BERT for Extractive Summarization,
arXiv:1903.10318 [cs] (2019), arXiv: 1903.10318.

[LMP01] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira,
Conditional Random Fields: Probabilistic Models for Segment-
ing and Labeling Sequence Data, Proceedings of the Eighteenth
International Conference on Machine Learning (San Francisco,
CA, USA), ICML ’01, Morgan Kaufmann Publishers Inc., June
2001, pp. 282–289.

[LPM15] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning,
Effective Approaches to Attention-based Neural Machine Trans-
lation, arXiv:1508.04025 [cs] (2015), arXiv: 1508.04025.

[Mih04] Rada Mihalcea, Graph-based ranking algorithms for sentence
extraction, applied to text summarization.

[MSC+13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and
Jeffrey Dean, Distributed Representations of Words and Phrases
and their Compositionality, arXiv:1310.4546 [cs, stat] (2013),
arXiv: 1310.4546.

[Nom05] Tadashi Nomoto, Bayesian learning in text summarization, 01
2005.

[Ná17] Bc. Jakub Náplava, Natural Language Correction, 2017.

[PB18] Martin Popel and Ondřej Bojar, Training Tips for the Trans-
former Model, The Prague Bulletin of Mathematical Linguistics
110 (2018), no. 1, 43–70, arXiv: 1804.00247.

[PNI+18] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner,
Christopher Clark, Kenton Lee, and Luke Zettlemoyer, Deep
contextualized word representations, arXiv:1802.05365 [cs] (2018),
arXiv: 1802.05365.

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher Manning,
Glove: Global Vectors for Word Representation, Proceedings of

71

.. A. Bibliography

the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP) (Doha, Qatar), Association for Computa-
tional Linguistics, October 2014, pp. 1532–1543.

[RČ13] Michal Rott and Petr Červa, Summec: A summarization en-
gine for czech, Text, Speech, and Dialogue (Berlin, Heidelberg)
(Ivan Habernal and Václav Matoušek, eds.), Springer Berlin
Heidelberg, 2013, pp. 527–535.

[RHW88] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams,
Learning representations by back-propagating errors, Neurocom-
puting: foundations of research, MIT Press, Cambridge, MA,
USA, January 1988, pp. 696–699.

[Ros58] Frank F. Rosenblatt, The perceptron: a probabilistic model for
information storage and organization in the brain., Psychological
review (1958).

[SHB16] Rico Sennrich, Barry Haddow, and Alexandra Birch, Neu-
ral Machine Translation of Rare Words with Subword Units,
arXiv:1508.07909 [cs] (2016), arXiv: 1508.07909.

[SJ04] Josef Steinberger and Karel Jezek, Using Latent Semantic Anal-
ysis in Text Summarization and Summary Evaluation, 2004.

[SMK+18] Milan Straka, Nikita Mediankin, Tom Kocmi, Zdenek Zabokrt-
ský, Vojtech Hudecek, and Jan Hajic, Sumeczech: Large czech
news-based summarization dataset, LREC, 2018.

[THP08] Yuanyuan Tian, Richard A. Hankins, and Jignesh M. Patel,
Efficient aggregation for graph summarization, Proceedings of the
2008 ACM SIGMOD international conference on Management
of data (Vancouver, Canada), SIGMOD ’08, Association for
Computing Machinery, June 2008, pp. 567–580.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polo-
sukhin, Attention Is All You Need, arXiv:1706.03762 [cs] (2017),
arXiv: 1706.03762.

[WSC+16a] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mo-
hammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan
Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah,
Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws,
Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens,
George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason
Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Cor-
rado, Macduff Hughes, and Jeffrey Dean, Google’s Neural Ma-
chine Translation System: Bridging the Gap between Human

72

.. A. Bibliography

and Machine Translation, arXiv:1609.08144 [cs] (2016), arXiv:
1609.08144.

[WSC+16b] , Google’s Neural Machine Translation System: Bridg-
ing the Gap between Human and Machine Translation,
arXiv:1609.08144 [cs] (2016), arXiv: 1609.08144.

[YJL+16] Jun Yin, Xin Jiang, Zhengdong Lu, Lifeng Shang, Hang
Li, and Xiaoming Li, Neural Generative Question Answering,
arXiv:1512.01337 [cs] (2016), arXiv: 1512.01337.

[ZLLE17] Tiancheng Zhao, Allen Lu, Kyusong Lee, and Maxine Eskenazi,
Generative Encoder-Decoder Models for Task-Oriented Spoken
Dialog Systems with Chatting Capability, arXiv:1706.08476 [cs]
(2017), arXiv: 1706.08476.

73

	Project Specification
	Introduction
	Preface
	NLP

	NLP and machine translation techniques
	A short history of NLP
	Neural networks in machine translation
	Feed-forward neural networds
	Recurrent Neural Network (RNN)
	Vanishing gradient
	Long Short-term memory - LSTM
	Encoder-Decoder architecture
	Drawbacks of the Encoder-Decoder architecture

	Attention, please!
	Luong attention
	Attention is all you need
	Transformer's architecture
	Encoder block
	The idea behind multi-head attention
	Self-Attention
	Scaled Dot-Product Attention
	Putting it all together
	Decoder block
	Transformer versus RNN
	Transformer's disadvantages
	Reformer: The Efficient Transformer
	Availability of Transformer and Reformer

	Tasks accomplished in this work
	Diacritics correction
	Previous works
	Neural models for diacritics correction
	Transformer
	Reformer
	Dataset preparation
	Training pipeline
	Tensorflow Dataset API
	Accelerators
	GPU
	Google's cloud TPU
	GPUs and TPUs availability
	Tensorboard
	Dataset handling
	Experiments
	Results discussion
	Best model analysis
	Attention weights visualisation
	Training Transformer in Trax with TF Dataset loaded from generators
	Reformer model
	Final thoughts on diacritics correction task

	Text summarization
	Abstractive summarization - task definition
	Definition based on data representation
	Word pieces
	Byte Pair Encoding algorithm
	Summarization dataset
	Previous works
	Metrics
	Experiments
	Results
	Evaluation
	Comparison with SumeCzech's model
	Final thoughts on summarization

	Conclusion
	Bibliography

