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Abstract
RNA sequencing (RNA-seq) is a widely
used technology used for measuring the
gene expression and consequently, for the
differential gene expression analysis. The
sequencing is usually performed on bulk
mixture samples and is thus not able to
reveal the cell type composition of the
sample. It is, however, possible to infer
this composition in silico from the mea-
surements of bulk samples — the class
of methods, performing this task, is com-
monly referred to as gene expression pro-
file deconvolution methods.

We give a brief introduction to the
RNA-seq technology and describe the ba-
sic statistical properties of the RNA-seq
count data, mainly in the context of vari-
ous normalization methods. We formalize
the problem of deconvolution, perform re-
search of deconvolution methods available
in the literature, and compare them based
on proposed metrics. We select 10 of these
methods and apply them in 18 various se-
tups to RNA-seq count data. The decon-
volution results are then compared based
on Pearson and Spearman correlations,
revealing clusters of methods performing
similarly.

We then introduce ways of incorporat-
ing these results into differential gene ex-
pression (DGE) analysis. We show that
incorporating deconvolution into the DGE
pipeline produces results different from
DGE with no such information. Although
the benefit of such differences could not
be directly evaluated, this opens the door
to future research of these differences on
datasets with well-defined ground truth.

Keywords: RNA sequencing,
deconvolution, gene expression profiles,
differential gene expression, biomarkers

Supervisor: doc. Ing. Jiří Kléma,
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Abstrakt
Sekvenování RNA je běžně používaná
technologie. Často slouží zejména pro mě-
ření genové exprese, a následně pro ana-
lýzu diferenciální genové exprese. RNA
sekvenování se většinou provádí na vzor-
cích z komplexních tkání, u kterých není
známo buněčné složení. RNA sekvenování
tak nedokáže rozpoznat rozdíly v genové
expresi na úrovni buněčných typů. Exis-
tují však metody, zaměřené na rozložení
naměřených dat z komplexních tkání do
jednotlivých buněčných typů — nazývají
se metody dekonvoluce (rozkladu) expres-
ních profilů.

V této práci stručně představujeme
technologii RNA sekvenování a popisu-
jeme základní statistické vlastnosti jí pro-
dukovaných dat, zejména z pohlednu nor-
malizace těchto dat. Dále popisujeme for-
malizaci problému dekonvoluce expresních
profilů, představujeme rešerši dekonvoluč-
ních metod v literatuře a porovnáváme je
z pohledu navrhnutých metrik. Následně
jsme vybrali 10 těchto metod, a v 18
různých konfiguracích jsme je aplikovali
na poskytnutá data genové exprese. Vý-
sledky dekonvoluce porovnáváme na zá-
kladě Pearsonovy a Spearmanovy kore-
lace, což odhalilo skupiny metod, které
produkovaly podobné výsledky.

Prezentujeme různé způsoby použití
těchto výsledků v analýze DGE vedoucí
k odlišným signifikantním biomarkerům.
To dává podnět k budoucímu výzkumu a
ověření přínosu těchto odlišností na cíleně
připravených datasetech.

Klíčová slova: RNA sekvenování,
dekonvoluce, expresní profily,
diferenciální genová exprese, biomarkery

Překlad názvu: Učení rozkladu
komplexních tkání z expresních profilů a
jeho využití při vyhledávání biomarkerů
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Chapter 1
Introduction

RNA sequencing is a rapidly developing technology, which allows for the
simultaneous sequencing of RNA present in cells or tissues. It provides
a valuable insight into the transcriptome, and thanks to its continuously
lowering prices, it is becoming more and more available. Data coming from
the RNA sequencing are commonly used for differential gene expression
analysis, for example, to identify biomarkers that could serve as a predictor
of a condition, as an indicator of a successful treatment, or as in our case for
treatment selection.

As most RNA sequencing experiments are run on bulk data of complex
tissues, the underlying cell type composition is often unknown. Different
cell types in the tissue can exhibit different gene expression profiles, which
the bulk RNA sequencing cannot capture, as it measures only the average
gene expression in the sample. This can lead to misleading results when
interpreting changes in gene expression between conditions as caused by some
biological mechanism — the true underlying reason for the change can be
caused by change in cell type composition of the sample.

This is a problem, which is being solved by various techniques and methods
of gene expression profile deconvolution. They are used for determining the
proportions (or even expression profiles) of different cell types present in the
bulk sample.

In this thesis, we explore the wide range of deconvolution methods, and we
compare them according to their properties. They are compared with the
respect to their applicability to RNA-seq data, which were provided by the
thesis supervisor.

During the differential gene expression analysis of RNA-seq count data,
complex models (e.g., using the generalized linear models) are used for the
modeling of counts. These models allow for complex designs, which enables
the incorporation of additional independent variables into the model. This
is commonly used for control of various batch effects, which could cause
undesirable false detection of differentially expressed genes.

We explore the possibility of applying the results of deconvolution of gene
expression profiles to the differential expression analysis, with the desired
outcome of eliminating the presence of significantly differentially expressed
genes/biomarkers, whose change in expression was caused by the underlying

3



1. Introduction .....................................
change in cell type composition of the sample.

During this, the whole pipeline of processing the RNA-seq reads data was
performed, and finally, several ways of incorporating the deconvolution results
to differential gene expression analysis were evaluated.
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Chapter 2
Background

In the following sections, we present definitions and explanations for terms
and concepts needed for the understanding of gene expression profiles decon-
volution. We start by introducing the molecular biology background, followed
by the exploration of gene expression data and, finally, a formal definition
of deconvolution in the context of gene expression profiles. It serves as a
rather compact summary of concepts that one can frequently come across in
bioinformatics articles and tools dealing with the differential gene expression
and deconvolution. The following chapters are based mainly on three books,
Molecular Cell Biology by Berk et al. [14], Molecular Biology of the Cell
by Alberts et al. [3] and The Cell: A Molecular Approach by Cooper and
Hausman [29]. Exceptions from this are explicitly marked in the text. Also
please note, that as this thesis deals with data coming from the sequencing of
human blood, the following sections thus address eukaryotes only; therefore,
some of the statements do not generally apply to bacteria and archaea.

2.1 ’Central dogma’ of molecular biology

To better understand the origin of our data, let us first revisit the so-called
’Central dogma’ of molecular biology. The dogma describes the flow of
information from genetic material (DNA) to the resulting functional product.
The process of transcription from DNA to RNA and subsequent translation
of RNA to functional product is called gene expression. The functional
product can be a protein, and RNA, which encodes such a protein is called
the mRNA (messenger RNA). But the functional product can be the RNA
itself. To name a few: tRNA (transfer RNA, serves as an adapter between
amino acids and mRNA during protein synthesis), rRNA (ribosomal RNA,
which form ribosome and participate in protein synthesis), snRNA (small
nuclear RNA, playing a role in gene expression regulation) or lncRNA (long
noncoding RNA, regulating various cell processes). The gene expression can
be described (from a very high-level point of view) as a process consisting of
two main steps in series, the transcription, and translation.

5



2. Background .....................................
2.1.1 Transcription

Transcription is the first step in expressing the information encoded in DNA.
The sequence of DNA—a gene—is transcribed into RNA sequence. A small
part of DNA double helix is separated into strands, and one of them serves
as a template strand. This template strand is used for the synthesis of the
RNA chain, see Figure 2.1. This transcription is done by enzymes called
RNA polymerases. Specifically, there are RNA polymerases I, II, and III,
each transcribing different genes. As an example, protein-coding genes and
most snRNA genes are transcribed by RNA polymerase II, tRNA genes by
RNA polymerase III.

Figure 2.1: Transcription example, taken from Alberts et al. [3]

The process, however, does not end here. Before reaching the mature
mRNA, several necessary steps have to happen. The unmodified RNA, imme-
diately resulting from the transcription, is commonly called the precursory
mRNA or pre-mRNA. Both ends of the pre-mRNA are modified — a cap
consisting of modified guanine nucleotide is added to the 5′ end. To the 3′ end,
an enzyme called poly-A polymerase adds approximately 200 A nucleotides.
This sequence is then called poly-A tail (this is commonly encountered in
bioinformatics tools dealing with quality control of sequencing reads, where
poly-A tails are detected and usually trimmed).

Another pre-mRNA processing step is called the splicing. Genes of eu-
karyotic DNA was found to consists of coding regions (called exons) and
non-coding regions (called introns). The introns have to be cut out — this
is done by a complex assembly of RNA and proteins, called the spliceosome.
Another important concept, prevalent in RNA sequencing analysis, is alter-
native splicing. During the splicing of introns and exons, some exons can be
skipped or cut in half. This results in the fact that many different mRNA
transcripts can come from a single gene. This concept is illustrated in Figure
2.2.

As a final note, the three above mentioned modifications to pre-mRNA
do not happen after the whole pre-mRNA transcript is created. The 5′
end capping happens shortly after the start of the transcription, splicing
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Figure 2.2: Splicing example—one gene can be transcribed into several different
mRNA transcripts. Taken from Alberts et al. [3].

occurs during, and addition of poly-A tail happens with the termination of
transcription. The 5′ end cap and poly-A tail thus mark a fully transcribed
mRNA transcript.

2.1.2 Translation

After successful transcription of the gene into the mRNA molecule is the
mRNA molecule transported into the cytoplasm. There, with the help of
ribosomes (mostly made up of rRNAs), is the mRNA decoded, and protein is
synthesized. It consists of amino acids connected into a chain. The amino
acids are interestingly encoded in the mRNA. They are encoded by triplets
of RNA nucleotides, called codons. This means that there are 64 possible
triplets of nucleotides; there are, however, only 20 amino acids commonly
used in proteins. Several codons, therefore, code some amino acids, but no
codon codes for multiple amino acids — this mapping is called the genetic
code. The mapping is shown in Figure 2.3.

.
Figure 2.3: The mapping of codons onto amino acids. Note how are amino acids
encoded by several different codons. Taken from Alberts et al. [3]

The translation does not play a significant role in RNA sequencing, DGE,
and GEP deconvolution, and therefore it was not covered in substantial detail
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2. Background .....................................
here. The most important observation is discussed in Section 2.2 on RNA-seq
— which uses RNA sequencing to infer gene expression rates and, in the case
of proteins, omitting the step of translation.

2.1.3 Gene expression

The whole process of information flow from gene to functional product is also
called gene expression. By functional products, we mean not only proteins
but also many other constructs having a function, like rRNAs, sn-RNAs,
tRNAs, lnRNAs, etc. The gene expression is different in each cell type; it
is different in each cell cycle and can be influenced by, e.g., treatment or
medical condition.

It is, therefore, of great interest to, in some way, quantify and measure the
gene expression, as it can provide valuable insights into the understanding of
cellular function. One can, for example, observe and measure the reaction of
different cells for treatment or derive and predict the response of patients to
different drugs. The area of application of gene expression data is exhaustively
large [45]. One possible approach to gene expression measurement and
quantification is the RNA sequencing, RNA-seq in short. We describe
RNA-seq in more detail in Section 2.2. With the basic description of gene
expression, we can now describe differential gene expression analysis and
biomarkers.

Differential gene expression analysis

The analysis focused on identifying genes having different expression levels
between several condition or groups is called the Differential Gene Expression
(DGE) analysis. Numerous tools have been developed for this problem. The
tools are specialized on deciding (by performing suitable statistical tests),
whether a gene’s expression varies between conditions or groups. Due to
the nature of available data, which is most often characterized by very low
number of replicated in each group, the tool need to account for that and
employ proper statistical models, approaches and tests.

Examples of commonly used DGE tools are DESeq2 [65], edgeR [95][72] and
limma [94] (top 3 DGE tools based on number of downloads on Bioconductor
stats website [36], all implemented in R language.

Biomarkers

One of the goals of this thesis is to use gene expression profiles data for
biomarker detection. It is, therefore, necessary to explain what we mean
by biomarker, specifically in the context of differential gene expression
analysis. One common definition describes biomarker as ‘an indicator of
normal biological processes, pathogenic processes or pharmacological response
to a therapeutic intervention’ [9], also cited, e.g., by Sidefrow et al. [102]. As
is the nature of DGE analysis, several samples (or groups of samples, samples
being given some treatment, etc.) are compared to each other. A natural
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candidate for biomarker would, therefore, be a gene, uniquely (or, in general,
differentially) expressed in some group of samples.

As an example of another closely related biomarker usage, consider the
area of gene expression profiles deconvolution (further explored in detail in
Section 2.3). For the needs of distinguishing different cell types between each
other, Venet et al. [115] defines biomarker (or marker in short) as a gene,
which is expressed only in one cell type. However, this definition proved to be
too restrictive, and it was relaxed to ‘gene, which is being expressed mostly
in one cell type’ [115].

2.2 RNA-seq

RNA sequencing (RNA-seq) is a technology of high throughput sequencing (in
other words, a technology able to sequence many sequences in parallel). RNA-
seq is mainly used for the analysis of transcriptome and subsequently for the
differential gene expression analysis [119]. The goal of RNA-seq is to sequence
and quantify RNA present in a sample — and although sequencing of RNA
molecules itself is possible [84], it is usually not done [48]. RNA molecules
are very unstable, and the sequencing is thus more technically demanding.
Most RNA-seq experiments are done by converting the RNA molecules into
complementary DNA (cDNA) first. During this, the original RNA pool can
undergo a selection process, for example, a selection of transcripts with poly-A
tail (described in Section 2.1.1) or rRNA depletion (as it forms a huge part of
transcriptome and there is usually no interest in it). After this, the RNA is
fragmented into sequences of a certain size (or rather a distribution of sizes,
as the fragmentation is not an exact process). There is also a possibility of
reverse transcribing the whole RNA transcript, and fragment the resulting
cDNA [48][119].

The resulting pool of fragmented cDNA is then ligated with special DNA
adapters. Adapters serve many purposes; they can, for example, mark the
5′ and 3′ ends of the fragment or include a barcode or index for sample
identification. They also serve as primer binding sites used for amplification,
which is the next step in RNA-seq experiment [25]. The pool of prepared
fragmented and amplified cDNA molecules with adaptors is called the library.
After the amplification, finally, the sequencing reads are produced. One read
or two reads (one from each end of the fragment) can be produced — they
are called single-end and paired-end reads, respectively [119]. These reads
are then aligned to the reference genome or transcriptome with the help of
various bioinformatics tools.

It is clear that the library preparation plays an important role in the whole
RNA-seq experiment and basically determines its results. As an example,
consider the RNA-seq experiment as described above, with the poly-A end
selection. This is a common setup for inferring the gene expression in a tissue
or heterogeneous cell populations. This, however, omits the translation step
of gene expression, i.e., the synthesis of proteins from mRNAs. And in general,
the abundance of mRNA does not need to match the protein abundance, as
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many regulatory steps can happen during and before the translation.

This is the reason, why ribosomal sequencing [52][44] (Ribo-seq) was
developed. The library preparation for Ribo-seq is focused on the selection of
RNAs, which are bound to ribosomes, as those can better indicate the RNAs,
which are in the translation process. Ribo-seq is not subject of this theses,
but it serves as a reminder, that RNA-seq measures the transcriptome rather
than the gene expression in general, and that the library preparation is of
huge importance in interpreting the resulting data.

2.2.1 Fragments, reads, inserts, adapters

Most of the bioinformatics tools working with RNA-seq data use common
terminology, which is, however, often a source of confusion. Below we give
a common understanding of those terms as encountered during writing of
this theses, although some of them (notably fragment) can have different
meaning in different sequencing platforms (fragments can be considered with
or without adapters). Adapters are constant sequences, which are added to
the 5’ and 3’ ends of the sequence resulting from cDNA fragmentation. By
fragment, we mean the sequence of fragmented cDNA with added adapters
(this is rather counter-intuitive, as the result of cDNA fragmentation is not
called fragment). The sequence of fragmented cDNA, which is between both
adapters, is called the insert, with the length referred to as insert length.
The insert is also sometimes referred to as template DNA [24]. In the
case of paired-end sequencing, two reads from both sides of the insert are
sequenced. In the case of the sum of the length of both reads being shorter
than insert length, the length of unsequenced insert is called inner distance.

The mentioned terms are visualized in Figure 2.4.

Figure 2.4: Visualization of fragments, reads, adapters, inserts and inner size in
paired-end sequencing.

Count matrix as an RNA-seq output

It is now an appropriate time to visualize the final output of RNA-seq
experiment, commonly referred to as count matrix or raw count matrix (raw,
because the data did not undergo any normalization so far). It is a product
of aligning RNA-seq reads to genome/transcriptome and counting how many
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times does the read aligns with some feature (usually transcript or gene).
There are many problems connected with this counting (for example, how
to deal with reads mapping to several genes?), which are being dealt with
by appropriate tools. The typical count matrix is shown in Figure 2.5, with
samples in columns and features (in this case, genes) in rows. This is an
almost canonical arrangement, as it was used in all methods discussed in the
following Section 2.4.

Figure 2.5: Typical representation of result of RNA-seq experiment, the count
matrix of n genes and p samples. Darker and lighter colour represents higher
and lower counts, respectively.

We should also mention how are the features (in Figure 2.5 genes) described,
i.e., what naming standards are used. For human genes, typically symbols by
HUGO Gene Nomenclature Committee (HGNC) [124], which sets standards
for human gene nomenclature, are used. Other common options are Entrez
Gene Id [70] and Ensembl Id [97]. All of these are used in literature and in
RNA-seq tools, which sometimes results in need of conversion between those
systems — this can be, for example, done by R Bioconductor package [112].

2.2.2 Paired-end vs single-end sequencing

Along with the previous section, where we described commonly used terms, we
should elaborate more on the differences between single-end and paired-end
sequencing. As mentioned before, paired-end reads produce reads from both
ends of the sequenced inserts, single-end from one end only [119]. Although
the paired-end sequencing is more costly and more time requiring [32], it
allows for much more accurate alignment to the genome or transcriptome, or
a discovery of novel transcripts [86].

The main reason for this is the fact, that when fragmenting the sequencing
library, we expect some distribution of the length fragmentation, which can
be subsequently used in the process of alignment (i.e., we know that the two
reads should be in aligned to specific range from each other). Single-end
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reads do miss this information, and they cannot deal, for example, with the
alignment to repeated sequences in the genome in an unambiguous way. The
situation is depicted in Figure 2.6.

Figure 2.6: Alignment of single-end and paired-end reads. The paired-end reads
can use the additional information if insert size distribution and thus better solve
the ambiguities in alignment.

2.2.3 RNA-seq raw count normalization

There are specifics of RNA-seq methodology which require normalization of
the raw count data, as usually outputted from the alignment tools. Samples
having varying sequencing depth (number of reads produced per sample) and
longer genes having a higher chance of producing fragment being read are
two most notable aspects it needs to be accounted for. The normalization
method is selected based on the intended use of the count data - mostly the
within or cross-sample comparisons.

Several normalization methods (and resulting measurement units) are
currently being used, each having its pros and cons. There is, unfortunately,
some confusion of differences between those methods and their intended
use [121][16]. Below we present a brief overview and explanations for most
commonly used normalization methods. Understanding these methods is
important for correct usage of some deconvolution methods discussed in the
following sections - some of them require input to be normalized by a specific
method.

At first, lets introduce the notation and conventions used in the following
definitions, based on [121] and [62]. The RNA-seq sample consists of a pool of
transcripts. Let M denote the distinct number of those transcripts and ci the
actual number of transcript i in the sample. Total number of transcripts in a
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sample is then computed as
∑M

i=1 ci. From this pool of transcripts, the RNA-
seq fragments are sampled — and this has serious consequences. Consider
transcripts of lengths 100bp and 1000bp, and RNA-seq producing fragments
of mean length 50bp. The 1000bp long transcript has a much higher chance
of generating fragments than the 100bp one, even though there might be the
same number of transcripts in our pool. Therefore, the relative fractions
of transcripts in the sample are (generally) not proportional to the
number of their fragments being sequenced.

To capture the difference, let us properly define those quantities. By fraction
of transcript, we mean the fraction of transcript i present in the sample, i.e.,
τi = ci∑M

j=1 cj

. As mentioned before, this is not generally proportional to the

fraction of fragments of this transcript being sequenced. The fraction of
fragment is the fraction of fragments coming from transcript i in the pool of
all fragments, denoted by ηi = ci l̂i∑M

j=1 cj l̂j
. The l̂i denotes the effective length

of transcript i. It is usually defined [110] as l̂i = li−µli + 1, where li is length
of transcript, µli is the mean of empirical length of fragments shorter or equal
to li in the sample.

Figure 2.7: Visualization of effective length for a transcript, given empirical
mean of fragment length

The effective length can be understood as the number of possible starting
points, from which the fragment can align to the transcript and still fully
fit inside it. Assuming uniform distribution, the probability of sampling
specific fragment is 1/(l̂i = li − µli + 1) The +1 in the expression accounts
for the situation when µli = li, so the effective length is 1, rather than 0.
The meaning of effective length is depicted in Figure 2.7. This term models
the transcript-length bias — longer transcripts having a higher chance of
producing a fragment.

Let Xi denote the expected number of fragments coming out of the tran-
script i (which is, in fact, the count value outputted from the quantification
or alignment tools). And finally, let N be the total number of mapped reads
in a sample.
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With these quantities defined, we can now explain the commonly used

metrics and units used for transcript abundance quantification.

2.2.4 CPM

CPM (Counts Per Million) is one of the simplest units of expression mea-
surements. It simply divides the counts for a feature by the total number of
counts and scales it by ‘million’ constant.

CPMi = Xi

N
× 106 (2.1)

The CPM normalizes the counts for the library size (total number of
mapped reads or, i.e., the sequencing depth). It does not take into account
the length-bias. It is therefore related to the fragment fraction ηi (expected
ratio of sampled fragments coming from transcript i) rather than the τi,
the true ratio of transcripts present in the sample. CPM is sometimes still
mentioned and used [60][95].

2.2.5 RPKM and FPKM

RPKM (Reads Per Kilobase Million or Reads per Kilobase of exon Per Million
reads mapped in full ) and FPKM (Fragments Per Kilobase Million) are two
closely related units of transcript abundance measurement. The FPKM is
more general, as it takes into account the differences between single-end and
paired-end RNA-seq. Specifically, it deals with the fact that in paired-end
sequencing, two reads are produced from one fragment, so it does not make
sense to count them twice (also, two reads do not necessarily map to the
same transcript, for example, due to read quality). In general, for single-end
sequencing, the FPKM = RPKM, for paired-end, they differ, with FPKM
≤ RPKM. Below we show the formula for FPKM (RPKM is essentially the
same, with reads instead of fragments) because we defined Xi above as an
expected number of fragments:

FPKMi = Xi

( N
106 )( l̂i

103 )
= Xi

N · l̂i
· 109 (2.2)

The RPKM was probably first introduced by Mortazavi in 2008 [78]. Since
then, it became popular and is used in tools in the RNA-seq pipelines, for
example, in assembly and gene differential expression tool Cufflinks [111].
The RPKM/FPKM aims to be a τi estimator, i.e., estimate the true relative
abundance of transcripts in a sample. However, it was found that RPKM is
inconsistent between samples and is overall not very suitable as a normalization
method [116][128].

The reason for this is in detail, explained in [116]. The main argument is
that when using RPKM for normalization of samples with the same transcript
set and different sequencing depth, the RPKM produces different average
transcript abundance in each sample and thus causing interpretability issues
when performing between-sample comparisons.
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Example 2.1. Consider the following simplified situation. We have two sam-
ples, for each of which the counts were counted, mapping to three transcripts
of given effective lengths.

Sample Total counts Tx A
(100 kbp)

Tx B
(40 kbp)

Tx C
(20 kbp)

S1 200 20 110 70
S2 400 40 50 310

Table 2.1: Situation for Example 2.1

Now, let us compute RPKM values using the Equation 2.2. The results
are presented in the Table 2.2

Sample Tx A
(100 kbp)

Tx B
(40 kbp)

Tx C
(20 kbp)

Sum of
RPKMs

S1 1000 137500 31819 170319
S2 1000 31250 310000 342250

Table 2.2: RPKMs computed for values in Table 2.1

In table 2.2, we can see that the sum of all RPKM values in each sample
differs. This complicates the interpretation of the RPKM values between
samples. Consider transcript A in samples S1 and S2. The values are the same,
implying equivalent relative (as RNA-seq is by itself relative measurement
method) values of transcript A in both samples. However, when taking the
proportion of RPKM to the sum of all RPKMs in the sample ( 1000

170319 versus
1000

342250), we see that the actual relative abundances of transcript A in samples
are different.

The reason for this inconsistency was explained by Wagner [116], who
advocated for another unit of transcript abundance measurement, the TPM.

2.2.6 TPM

TPM (Transcripts Per Million) is a transcript abundance measurement unit,
introduced by Li et al. [62][61]. It was meant to deal with the between-
sample inconsistency of RPKM/FPKM and is an estimate of τi. It is now
the recommended measurement unit to be used [116]. The TPM is computed
as follows:

TPMi =

 Xi

l̂i∑M
j=1

Xi

l̂i

 · 106 ∝ τi (2.3)

To further emphasize the advantage of TPM to RPKM/FPKM, let us
continue with computing TPM for count values from Table 2.1 in Example
2.2.
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Example 2.2. The TPM values, along with their sum in a sample, are
computed for counts from Table 2.1.

Sample Tx A
(TPM)

Tx B
TPM

Tx C
(TPM)

TPMs
sum

S1 31008 426357 542635 106

S2 23323 72886 903791 106

Table 2.3: TPMs for count values from Table 2.1

The vital thing to notice is the fact that the sum of TPMs in each sample is
the same; it is always 106 — this follows from the Equation 2.3. Thus, when
interpreting the TPM value between samples, the value always represents the
fraction of transcript abundance from the same size — 106. This is, however,
not what we usually want — we are more interested in the absolute abundance
value. Even with TPM, the same gene with the exact same expression value
can have different TPM value in two different samples, even from the same
experiment and sequencing depth. For example, this happens when the
distribution of other transcript abundances in the samples are different. The
nominator in Equation 2.3 stays the same, the denominator can, however, be
different.

As a result, none of the above-mentioned units can be properly
used for comparison across experiments (comparison between samples
coming from the same condition/experiment might be somehow reasonable if
assuming similar RNA-distribution in the samples) [121].

Relation of TPM and RPKM/FPKM

It is interesting to see the relationship between TPM and RPKM/FPKM, to
emphasize the difference. This relationship was derived first by Pachter et
al. [85], even before the introduction of TPM. The Pimentel [121] recognized
this and recited the derivation in the following form:

TPMi =

 Xi

l̂i∑M
j=1

Xi

l̂i

 · 106

∝

 Xi

l̂i·N∑M
j=1

Xi

l̂i·N


∝ Xi

N · l̂i
· 109 = FPKMi

(2.4)

Note that when using the proportional to symbol, it is in the sense of
proportional to in a given sample. There is also another equation showing
the TPM/FPKM relationship. Having the FPKMs for all genes in a sample,
we are able to infer the TPM value for each gene [121]:
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TPMi =
(

FPKMi∑M
j=1 FPKMj

)
· 106 (2.5)

2.2.7 Between-sample normalisation methods

Due to the above-mentioned problems of common normalization techniques
and units, another class of normalization methods can be recognized. They are
sometimes referred to as between-sample normalization (or BSN) techniques
[38][51]. These are not that prominent in deconvolution methods (which
usually perform deconvolution for samples independently) but are crucial
for the performance of differential gene expression analysis. Therefore, we
provide a short summary and explanations of several such methods.

2.2.8 Quantile normalization

Quantile normalization [17] is a method, which was commonly used in the
area of microarray analysis [38]. It tries to enforce a similar distribution
of gene counts in all samples. The algorithm can be summarized by three
following steps [38]:..1. Sort counts for genes in all samples (assuming the same set of genes in

all samples), thus having the same quantiles of all samples in the same
position...2. For each quantile, compute its mean over all samples. In all samples,
replace each quantile with the computed mean of that quantile. (Other
measures, e.g., median, can be used instead of the mean)...3. Revert the sorting of all samples to the previous state.

After applying this procedure, each sample has the same distribution of
counts. Despite its simplicity, the method is reported to produce reasonable
results in DE analysis [38].

TMM (edgeR)

Trimmed Mean of the M-values (TMM) [96] is a method of between-sample
normalization introduced by authors of edgeR [95][72], in which it is commonly
used. TMM tries to compute the normalization factor for each sample. It
does so by setting one sample as a reference, and for each remaining sample,
it estimates log-fold change and absolute expression levels. These quantities
are formally defined as follows (we extend the notation from the previous
section, Xij and Nj now means expected number of counts for transcript i in
sample j and the total number of counts in sample j, respectively):
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M r
ij = log2

Xij/Nj

Xir/Nr
,

Ar
ij = 1

2 log2

(
Xij

Nj
· Xir

Nr

)
,

(2.6)

where r is the reference sample, i is the transcript, and j is the sample,
which is being compared. M r

ij is the log-fold change and Ar
ij is the absolute

expression level of transcript i between reference sample r and sample j. The
M and A values are independently trimmed (in the original paper, 30% is
trimmed for M and 5% for A [96]). Then a set of transcripts, for which
neither the A orM value were trimmed, are used for computation of weighted
mean. As weights, the inverses of the approximate asymptotic variances are
used [96]. The mean is then used as a normalization factor, with which each
sample is divided.

Median of ratios (DESeq2)

Normalization method introduced in DESeq [4], and further used in next
iterations DEXSeq [5] and DESeq2 [65]. This method computes geometric
mean of counts of a transcript across all samples and then computes ratios of
these counts to this geometric mean. This is done for all transcripts. For each
sample, the median of ratios of all transcripts is selected as a normalization
factor. Note that this method assumes that at least half of transcripts in the
sample s NOT deferentially expressed. The Equation 2.7 formally describes
the computation of normalization factor sj for sample j [65]:

sj = median
i:XR

i 6=0

Xij

XR
i

, where XR
i =

 p∏
j=1

Xij

1/p

and p = number of samples.

(2.7)
The normalized values for the sample are then obtained by dividing all

counts in the sample by the computed normalization factor. Note, that this
formalization uses one normalization factor per sample; however, the actual
DESeq2 implementation allows for different normalization factors for each
transcript, based on, e.g., the effective transcript length.

2.2.9 Normalization methods summary

The final summary of the discussed units of measurement is in Table 2.4.
The table was inspired by materials of Harvard Chan Bioinformatics Core
(HBC) [73] and Evant et al. [38]. The quantile normalization was left out,
because it is a method usually applied to microarray analysis and therefore
it is difficult to compare it with the methods originally meant for RNA-seq
(it is for example hard to say, whether it takes into account the transcript
length bias or library size — it certainly has an effect on these problems, but
it does not work with them explicitly).
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Unit/
method

Factors
accounted for: Usable for: NOT usable

for:

CPM library size

comparison of counts
between samples
(from the same
condition group)

within sample
count comparison,
DGE analysis

RPKM/
FPKM

library size,
transcript lengths

within sample
comparison, between
sample comparison
(from the same
condition)

between sample
count comparison,
DGE analysis

TPM library size,
transcript lengths

within sample
comparison, between
sample comparison
(from the same
condition group)

DGE analysis

TMM
(edgeR)

library size, RNA
composition

between sample
comparison, DGE
analysis

within sample
comparison

DESeq2
(median of
ratios)

library size, RNA
composition,
transcript lengths
(optionally)

between sample
comparison, DGE
analysis

within sample
comparison

Table 2.4: Comparison of mentioned methods. The quantile normalization
methods is left out, as it is usually applied to microarray data and the comparison
is difficult.

2.2.10 Single-cell RNA sequencing

Although the high-throughput sequencing methods gave rise to a new range
of possibilities of transcriptome analysis and allowed for a detailed study
of gene expression in general, they still have several caveats. The main
disadvantage is probably the fact that RNA-seq measures gene expression of
a bulk sample, averaging the expression levels across a population of different
cells (which is one of the reasons why the techniques of GE deconvolution,
the topic of this thesis, were developed). Quite recently, in 2009 [108], a
new technology was introduced. Single-cell RNA sequencing (scRNA-seq)
[83][49] is a method (or rather class of methods), which allows for sequencing
of RNA present in single cell. As thus, it allows for a detailed study of
cell-specific changes of the transcriptome, identification of different cell types
and subtypes, or stochasticity of gene expression in cells (which is considered
as noise in traditional bulk RNA-seq [103]).

We will not go into details of the technology, as it is not the main topic of
this thesis. The steps of the analysis are similar to the bulk RNA-seq, with
the main difference in the cell dissociation, isolation before the sequencing,

19



2. Background .....................................
or different types of normalizations. Also, the tools for downstream analysis
had to be developed specifically for scRNA-seq [46], e.g., tools for differential
expression, clustering, cell sub-populations detection, etc. In Figure 2.8, the
basic steps of scRNA-seq experiments are outlined.

Figure 2.8: Usual workflow in the scRNA-seq experiment, taken from Hicks [105]

One of the common goals of scRNA-seq analysis is the detection of new
cell types or differentiating known cell types into subtypes. This can be done,
for example, by hierarchical clustering, or dimensionality reduction of cell
expression profiles (using, e.g., PCA or t-SNE) and subsequent clustering.
Typical example (taken from PanglaoDB [39], database of scRNA-seq experi-
ments) is shown in Figure 2.9. These results are interesting in the context of
bulk samples deconvolution, as they can be used as reference profiles of cell
types underlying the bulk sample. This is further explored in the chapter on
deconvolution.

2.3 Deconvolution

Informally speaking, the goal of deconvolution of bulk tissue gene expression
profile is to estimate the amount/abundance/proportions of cell types (or
cell lines, i.e., sets of cell types) in given bulk tissue gene expression profile.
The individual GE profiles of those cell types can also be estimated (or given
as input). This can be done in several ways, mainly depending on the data
and its type available before performing the deconvolution. This means that
the GEP deconvolution problems consist of several different problems, mostly
determined by the input data available at hand. For this reason, it is very
important to properly formalize the GEP deconvolution problem and specify
different ‘types’ of deconvolution problems.
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.
Figure 2.9: Typical t-SNE clustering of scRNA-seq results from PBMC. Different
identified cell types are colored. Taken from PanglaoDB [39]

2.3.1 Deconvolution formalization

There are several approaches to comprehensive problem formalization, notably
by Venet et al. [115], which was adopted e.g., by Avilla et al. [10]. Below
we use the notation used by Mohammedi et al. [75], as it is slightly more
thorough (detailed and rigorous matrix notation) and general (it allows for
replication in reference profiles).

The notation works with following constructs [75]:

Definition 2.3. M ∈ Rn×p: A mixture matrix, where M(i, j) represents
the expression of gene i in sample j, 1 ≤ i ≤ n and 1 ≤ j ≤ p. In other
words, it is a mixture matrix with n genes in rows and p samples on columns.
This usually corresponds to the gene expression profile coming from bulk
heterogeneous tissue.
H ∈ Rn×r: Expanded signature matrix. The number of rows is the

same as in M and also corresponds to the same list of genes. The columns
represent reference expression profiles of cell types in question. One cell type
can have several reference profiles. That is why the matrix is called expanded.
There exists a grouping of these reference profiles/columns separating columns
belonging to the same type. This matrix is not used in the notation by Venet
et al. [115] and allows for the description of deconvolution using, for example,
multiple scRNA-seq reference profiles.
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G ∈ Rn×q: Signature matrix with reference profiles for each of q cell

types in question. The gene list in rows is again the same as in matrices M
and H. One column represents the reference profile of cell type, aggregated
in some way from all reference profiles belonging to this cell type in matrix
H. (Mohammedi et al. [75] explicitly define the aggregation as averaging,
but let’s not restrict us to this — more complicated solutions are explored
further.) From the above it follows, that q ≤ r — r is the number of total
reference profiles for cell types with replicates (biological or technical), q is
the number of cell types.
C ∈ Rq×p: Matrix of relative proportions of cell types from signature

matrix G in mixture matrix M . Rows correspond to the cell types and
columns to the samples.

With the definitions of the above constructs, we can describe the deconvolu-
tion problem as follows: Deconvolution of p samples with measured expression
on n genes into q cell types. We can now describe a model of deconvolution,
while assuming linearity. I.e., the measures expression, expression matrix,
is a linear combination of reference cell type profiles with the proportion
coefficients. A visual example of this is shown in Figure 2.10. This is model
and assumption is one of three main groups of deconvolution methods [78][78].
The second group consists of methods based on probabilistic models of gene
expression, e.g., Bayesian model or Latent Dirichlet Allocation (LDA) [75],
and the methods from the third group can be described as enrichment based
methods, examples of which are given later.

Figure 2.10: The linearity assumption visualized for one sample, consisting of
two different cell types, combined in f1 and f2 proportions.

As mentioned above, the first group of methods employs the linear model.
This can be written with the help of above-defined notation as a matrix
equation:

M = G ·C (2.8)

For a better insight into the equation, see Figure 2.11. The figure shows an
example of the Equation 2.8 with number of reference cell types q = 2,number
of samples p = 5 and number of genes n = 6.
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Figure 2.11: Visualisation of the Equation 2.8, where number of reference cell
types q = 2,number of samples p = 5 and number of genes n = 6.

Using the Equation 2.8, the goal of deconvolution is to find estimates of G
and C, Ĝ and Ĉ, respectively, and solve the following optimization problem
[75]:

min
0≤Ĝ,Ĉ

δ(ĜĈ−M), (2.9)

where δ is a loss function. The analysis of the usage of different loss
functions used in various deconvolution techniques is explored in detail by
Mohammadi et al. [75].

Based on the availability of G and C prior to deconvolution (usually their
approximation based on previous knowledge or some measurement), we can
state two more different optimization problems:

min
0≤Ĝ

δ(ĜC−M) (2.10)

min
0≤Ĉ

δ(GĈ−M) (2.11)

To recapitulate, this gives us three possibilities of objective minimization
based on the available input data (and this applies not only to the linear
models but to probabilistic models too — only the optimized objective will
be different):..1. There is no prior information, and only the mixture matrix M is available.

Both C and G have to be estimated by minimizing the objective 2.9
(in linear model approach). Further, in text, we call this the complete
deconvolution...2. Along with the mixture matrix M, we have G, the reference expression
profiles of cell types possibly present in the mixture. These reference
profiles may be obtained beforehand, e.g., by flow cytometry, scRNA
sequencing, or sequencing of isolated those cell types in general. With
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the two available matrices, we estimate the C matrix, the proportions of
cell types in individual samples. We call this type of deconvolution the
signature matrix based deconvolution...3. Along with the mixture matrix M, we have C, estimated proportions
of cell types presented in the samples, possibly coming from some mea-
surement or expert knowledge. From these, we estimate GEPs of the
cell types. We refer to this type of deconvolution as proportion based
deconvolution.

Figure 2.12: There are 3 possible situation based on the availability of input
data. 1. When having only the mixture M and estimating both G and C,
depicted by grey arrows. 2. Having the signature/reference matrix G and
estimating proportions, depicted by blue arrows. 3. Sometimes, the proportion
matrix C is known before and the gene expression profiles of individiual cell
types are estimated, depicted by orange arrows.

In literature, the two latter methods are also commonly referred to as
partial deconvolution methods.

Some methods performing the above types of deconvolution can additionally
employ a set of markers. These are usually set of genes (or features, in
general), which are candidates for differentiating between cell types — this
usually means that they are mainly expressed in one or more cell types.
This is slightly more general than the previous description of biomarkers.
Informally, it can be understood as a set of genes, which the tool should
pay special attention in differentiating the cell types — although the exact
definitions of markers may differ tool by tool. Sometimes only one set of
markers is required; other time, a set of markers for each cell is.
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To further recapitulate the mentioned types of deconvolution along with
the models used, see Figure 2.13. Deconvolution, in general, can be separated
into groups based on what are the required inputs and outputs. In Figure
2.13, we show this division. Methods based both on linear and probabilistic
model generally perform complete, signature based and proportion based
deconvolution. Methods, employing the enrichment approach, can be loosely
described as performing the signature based deconvolution, in the sense of
estimating proportions (or enrichment scores) — although not based on the
signature matrix, but some previous knowledge, commonly sets of genes
connected with the presence of some cell type.

Figure 2.13: Hierarchy of discussed deconvolution types and approaches. On
the bottom of the picture, the estimated outputs are shown. Methods from each
group occasionally employ information about markers or estimate them.

2.4 Review of available deconvolution methods

The research area of GEP deconvolution is rather a new one. It gained interest
with the arrival and wide availability of microarray technology, which produces
data with the expression of thousands or even more genes simultaneously.
The existence of such data has given impulse to the research of deconvolution
methods, as the proper data were available.

In further sections, we show an overview of deconvolution methods published
in the literature, with a brief description. At this point, it is also useful to
compare these methods from the ’user’ point of view, i.e., check the code
availability, programming language choice, supported tissues and cell types,
etc.

In the review of these methods, we focus mainly on the following met-
rics/questions:. Is the implementation of the method publicly available? How? (Web

application, code, library. . . )
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. Unavailability of the implementation brings the need for creating

own implementation, with uncertain results. Web applications may
be unsuitable for repeated computation using code. Implementation
might be written in an uncommon language, thus complicating the
usage.. For what data is it intended? (I.e., microarray or RNA-seq data). The underlying statistical properties of data coming from microarray
and RNA-seq are different and require different normalizations and
assumptions. Some older tools may not be updated to deconvolve
RNA-seq data properly..What type of method is it? (Complete deconvolution, signature matrix

based method, enrichment method. . . ). The differences are explained in Section 2.3.On what datasets was it trained, tested, and validated?. Some methods are tested on real, some on artificial datasets. It is
also important to know, from which tissue are the datasets coming,
as the method can be overfitted to them..What cell types does it distinguish?. The number of recognized cell types differs between methods. For
example, in the signature matrix method, it is usually the q param-
eter from Equation 2.8, or in the complete deconvolution methods,
the number of cell types can be set by parameter by a user or fixed,
usually to some low number.. In the case of signature matrix methods: Does it provide the signature

matrix? What cell types and how many genes are in the matrix? What
is the gene nomenclature?.Data inputted to the method need to match the metadata (gene

names or symbols) of the internally used signature method (if there
is such)..What are the input data requirements? Is specific gene nomenclature

required? Do the data have to be normalized? If so, how?. Tools may require data to be in a specific format; common is, for
example, tab-delimited text file. Tools may also internally use some
gene sets with specific nomenclature (e.g. Hugo or EnsemblID),
which is used internally and provided data must be accustomed to
that.. Does it provide some statistical tests or guarantees?. And finally, is the method applicable to obtained data?
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. For this, we need to specify our data in detail, which is done in
Chapter 3, where we describe our data in detail and select methods,
which will be applied to them.

2.5 Deconvolution methods in literature

In this section, we explore the deconvolution methods described in the litera-
ture. We split the methods in sections based on the type of deconvolution
(see Section 2.3) they aim to solve.

As an introduction, we show one of the earliest experiments with the
deconvolution of GE profiles done by Lu et al. [68]. Using the microarray GE
profiles of yeast culture cells at specific points of their cell cycle, the proportion
of cells in different phases was predicted in heterogeneous populations, see
Figure 2.14. This used the formulation of signature matrix deconvolution
problem.

Figure 2.14: Yeast culture cells deconvolution formulation, taken from Lu et
al. [68]. The proportions of cells in G1, S, G2, M and M/G1 cell cycle are
computed.

2.5.1 Signature/reference matrix based methods

This class of deconvolution methods benefits from the availability of the
reference expression profiles of cell types possibly present in the mixture.
These profiles then help to deliver more informed proportions of cell types in
individual samples.

LLSR

Linear Least Squares Regression (LLSR) [1], is a commonly used name for
a method, which solved Equation 2.11 by least squares regression. As the
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least square regression can produce negative values in matrix C, which is not
desirable, the LLSR [1] deals with that by removing cell type, whose fraction
was negative, and running the least squares regression again. Method was
originally validated for microarray data, but the assumptions of linearity
probably allow for application on RNA-seq data [129].

Implementation of LLSR method is available in CellMix R library [41] and
by itself, it does not provide any signature matrix.

QP

QP is a method developed by Gong et al. [43]. It performs deconvolution
by optimizing Equation 2.11, with L2 loss. It does so by using the quadratic
programming, with imposed constraint on non-negativity of the C matrix and
sum-to-one constraint on the columns of matrix C. This is very similar to the
previously described LLSR, but with the constraints specified explicitly. An
implementation of QP method is also available in CellMix R library [41], and
there is no signature matrix explicitly provided by the authors of the method.

CIBERSORT

Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts
(CIBERSORT) [80] is a signature matrix based method, based on optimizing
the criterion from Equation 2.11 using the linear nu-support vector regres-
sion (ν-SVR) [98]. CIBERSORT provides a method for the construction of
signature matrices, based on gene filtering and minimization of the condition
number of the matrix [120]. The condition number is used as a measure of
the stability of the system of linear equations to input variation and noise. It
is, therefore, possible to create own signature matrices, although the GEPs
of individual cell types have to be available, which is often not the case.

That is why the authors of CIBERSORT provide a signature matrix called
LM22. The matrix describes 22 leukocyte cell subtypes, using 547 genes.
The matrix was built using the CIBERSORT’s approach to signature matrix
creation and is available to reproduction on the CIBERSORT website [26].
Four years after the CIBERSORT publication, its authors presented a new
signature matrix, LM6, designated for use with RNA-seq data [23]. It is,
again, a signature matrix consisting of leukocyte cell types, this time, it is
made up of 6 of them. It is available to download on the CIBERSORT website
[26].

CIBERSORT also produces empirical p-values, for the null hypothesis of ‘no
cell types from the signature matrix are present in the mixture sample.’ This
means that no p-values are reported for the individual cell type’s proportions
or even their presence in the sample.

The authors tested the method mostly on tumor and PBMCs (both simu-
lated and real datasets, which were tested against ground truth obtained by
flow cytometry), but they state that it is applicable to ‘nearly any tissue’[80].
They also report partial results of the deconvolution of whole blood, with
promising results. It is also tested only on microarray datasets, although the
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authors state, that the assumptions made by their method should hold for
RNA-seq data too, and for practical usage, they recommend to skip the quan-
tile normalization step (as it is generally used as a microarray normalization
method, see Section 2.2.8).

The tool is written in R and Java, and is available as a web tool [26] or R
package. The web tool and R package are available only after registration,
which has to be confirmed by the authors/providers.

EPIC

EPIC [92] is another signature matrix based tool, optimizing the Equation 2.11.
It uses its internally built signature matrix, which used publicly available
datasets of immune cells from peripheral blood, along with the reference
profiles of tumor-infiltrating cells — the user can choose which one of them
to use.

The main purpose of this tool is to deconvolve bulk RNA-seq data of tumor
tissues; however, the authors report that the method was validated both on
PBMCs and whole blood. The tool’s focus on tumor tissues results in an
implicit assumption of the presence of unknown cell types in samples. EPIC,
therefore, reports a fraction of unknown cell types — this is a unique feature,
not present, e.g., in the CIBERSORT method. EPIC does not report any
p-values.

EPIC is available web tool [91], python wrapper [81] and R package [90].

DeMixT

DeMixT [118] is a method focused on heterogeneous tumor tissues deconvolu-
tion. It differs from the previous methods, as it only performs deconvolution
of the bulk sample into 2 or 3 components. For it to do so, it needs expression
data of the 1 or 2 components (for 2- and 3-component deconvolution, respec-
tively) present in the sample. It estimates proportions and expression profiles
of the one not provided component. From this point of view, it could also be
considered a complete deconvolution method, but due to the dependence on
provided expression profiles of sorted samples, we include it in the signature
based methods.

The method is applicable both to the microarray and RNA-seq data, and its
implementation is available on GitHub [31]. It was tested on both microarray
and RNA-seq data on publicly available datasets with known ground truth.
The method is solely aimed at tumor deconvolution; it does not provide any
statistical guarantees or p-values.

ABIS

ABIS [77] is a recently published method. It uses robust linear regression for
optimization of the objective from Equation 2.11. It is available as a web tool
[30], with source code of a R library available on GitHub [76].
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Although applicable both to RNA-seq and microarray data, it is meant for

PBMC samples only. It also does not report any results of statistical testing
on the obtained results. It requires the data to be TPM normalized.

CIBERSORTx

We put CIBERSORTx [79] in the signature matrix based methods, but it is
rather a collection of different methods, allowing for a variety of computation.
It is developed on the basis of CIBERSORT [80] by the same authors, and
it greatly extends the tool functionality. Similarly to the CIBERSORT, it
provides a web-based interface [27], which is accessible after registration and
confirmation of the authors of the tool.

The main advantage of CIBERSORTx is the integration of scRNA-seq
data in the workflow of deconvolution while controlling for the unwanted
effects of the origin of technology of the data, i.e., cross-platform variation.
The tool allows for the usage of microarray, RNA-seq, and scRNA-seq data.
CIBERSORTx consists of different modules based on the desired goal. It
can be used for signature based deconvolution, individual cell types GEPs
profiling, and custom signature matrix creation. The custom signature matrix
can be created from sorted bulk RNA-seq data, sorted microarray data, or
scRNA-seq data. With the increasing availability of scRNA-seq datasets
from various tissues in online databases [39], this promises the possibility of
creating precise custom signature matrices for specific needs. This process is
shown in Figure 2.15 and is further explored in Chapter on deconvolution.

The underlying deconvolution computation is the same as in CIBERSORT
[80], with the difference being in the incorporation of batch correction mecha-
nisms. Two batch correction methods were developed, B-mode and S-mode
[79]. The former dealing with the technical differences between the sequencing
of sorted and bulk RNA-seq data (i.e., the signature matrix and mixture
matrix) and the latter with excessive cross-platform variation (for example,
signature matrix coming from the scRNA-seq dataset).

Statistical properties of the deconvolution in CIBERSORTx are the same
as described in CIBERSORT. The methods were thoroughly tested both
on (sc)RNA-seq and microarray data, as well as on both external and own
patient samples. Those methods and datasets are described in detail in the
original CIBERSORTx article [79].

At the time of writing, the tool was available mainly as an online tool [27],
with the possibility of downloading the tool in a docker image upon request
and subsequent permission from authors of the tool. This slightly complicates
the usage compared to CIBERSORT, which was available to download as an
R library. The documentation to the tool is very good and contains many
examples, with the availability of reproducing results described in the original
article.
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.......................... 2.5. Deconvolution methods in literature

Figure 2.15: The process of creating custom signature matrix based on scRNA-
seq datasets, and subsequent application to bulk RNA-seq data prior and after
batch correction. Taken from Newman et al. [79].

DeconRNASeq

DeconRNASeq [42] is a method specifically focused on bulk RNA-seq mRNA
deconvolution. It solves the Equation 2.11 by non-negative least-squares
constraint problem with quadratic programming. The method is mainly
focused on tissues; i.e., it is not meant for blood samples. It accepts user-
supplied signature matrices; one signature matrix is part of the R package,
which consists of reference profiles of, e.g., brain, muscle, lung, liver, and
heart tissues. In other words, by default, it is not able to deconvolve in a
heterogeneous sample in cell types fractions, only in tissue fractions.

In the manual, it leaves the input data normalization to the user, with
the only restriction being that the same normalization of both mixture and
signature matrix is selected. The data should also be in a non-log space. In
provided examples, DeconRNASeq uses RPKM units, which are no longer
recommended, see the section on normalization.

Other signature matrix based deconvolution methods

There are also many other deconvolution methods, some of them being
published even during writing of this thesis, namely SCDC [35][21], Bisque
[53], MuSiC [117], Bseq-SC [11][20], Deblender [33][58] and DWLS [113][37].
All of the above mentioned methods (except for Deblender) are focused on
integrating scRNA-data into the pipeline of bulk RNA-seq data deconvolution.
They deal with various problems arising when working with scRNA-seq
datasets, such as cross-platform variations, combining multiple scRNA-seq
datasets etc. As the general assumption of these methods is that the RNA-seq
dataset comes from the same tissue, which was not the case in our situation,
we do not explore them further in detail, keeping the CIBERSORTx as the
main representative of this class of methods.
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Overview of discussed signature matrix based deconvolution methods is

shown in Table 2.5.
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2.5.2 Proportion based methods

Proportion based methods, as described in the previous section on deconvo-
lution method types, are not very commonly used, as the proportions are
often not known and it is expensive to measure them — therefore, the other
mentioned types of deconvolution were introduced. But it can happen, that
the proportions of all cell types are known (for example, by flow cytometry),
and the gene expression profiles of individual cell types is not. Then, these
methods would allow for computation of those GEPs for individual cell types
in each sample, and, for example, the differential gene expression analysis
could be performed between those GEPs instead of bulk GEPs, probably
leading to better results.

One method, employing such approach, is cs-SAM [100]. It was originally
used on microarray measurements of patients with kidney transplants. Whole
blood samples from patients witch acute rejection and those with stabilized
post-transplant states were collected. Then, using Coulter counter, fractions
of white blood cells subtypes were obtained, and individual GEPs of those
subtypes were deconvolved. This allowed for more precise evaluation dif-
ferentially expressed genes, which were not discovered in the heterogeneous
samples.

The method was tested only on microarray data, no p-values are presented.

2.5.3 Complete deconvolution methods

The idea of complete deconvolution arose along with the signature matrix
methods. One of the first attempts to properly formalize the problem was
done by Venet et al. [115]. This article describes a solution to the complete
deconvolution by using non-negative least squares and non-negative matrix
factorization.

LinSeed

LinSeed [125] is a method developed for complete deconvolution. It introduces
a concept of identifying genes specific to one cell type by their mutual linearity,
i.e., the ability of two gene expression to follows a y = k · x relationship.
Linseed does this by first identifying one set of all pairs of genes, which are
mutually linear and clustering this set into subsets, based on collinearity
networks. The basic idea is illustrated in Figure 2.16.

Authors further explore the space of mixed gene expression profiles, i.e.,
the columns of mixture matrix, and the space of proportion vector, i.e., the
proportion matrix. Informally, they identify a common linear subspace, to
which they project both the point in gene expression space and proportion
space (after various normalization and transformation steps). They argue
that the projected points form a simplex, whose corners can be identified as
pure cell types, and points closest to the simplex corner are genes, mainly
expressed in those cell types. After identification of those genes, authors
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Figure 2.16: The idea behind Linseed — identify set of genes, which are mutually
linear and use those as markers for gene deconvolution. Taken from Zaitsev et
al. [126].

deduce the actual cell type by gene enrichment analysis (this is, however, not
a part of the publicly available implementation).

Additionally, the method explores the consequences of different amounts of
RNA molecules in different cell types and develops a procedure for dealing
with it. It also provides a recommendation for a way of selecting the optimal
number of underlying cell types (which is usually not known in complete
deconvolution) based on SVD, although the number is not automatically
inferred and the user has to choose it based on the provided plot of variance
explained vs. the number of cell types.

The method was validated and tested on both microarray data and RNA-
seq data, with publicly available, artificial, and author-prepared datasets
from human and mouse. The method can also be used for any tissue, as it is
a complete deconvolution method. The method by itself does not produce
any values on the statistical significance on the computed values; there are,
however, steps in the algorithm, where statistical testing for the mutual
linearity of genes is performed, and the user can select the desired significance
level.

The implementation of the LinSeed method in R is publicly available on
GitHub [64], along with the manual on usage.

CDSeq

CDSeq (Complete Deconvolution for Sequencing data) [55] is another recently
developed complete deconvolution method (2019). Contrary to the previous
method, which used the projection of points on simplex in linear subspace,
this method is based on the probabilistic model, specifically Latent Dirichlet
allocation (LDA) [15]. This is a probabilistic model, originating from the field
of natural language processing, where it is used for inferring topics present in
the corpus of texts. This can be understood as an analogy for searching for
individual cell types present in mixture bulk RNA-seq data. Several other
deconvolution methods are based on LDA, for example, PERT [89], but they
are not complete deconvolution methods.

CDSeq extends the LDA model in order to include the dependence of
cell-type-specific GEPs on the gene length and to account for the varying
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amount of RNA produced by cells of a particular type, which is usually
influenced by current cell cycle and cell size [71].

One feature of CDSeq, uncommon in other complete deconvolution methods,
is its ability to estimate the number of underlying cell types constituting the
bulk sample (but if known beforehand, the user can set the correct number
by itself). It does so by maximizing the posterior distribution of the model
[55].

The method was also intensively tested against the CIBERSORT’s LM22
signature matrix. The CDSeq was used to deconvolve the LM22 matrix itself
— the expected result would be to identify 22 cell types correctly, and for
each sample (or, in this case, the cell type) predict 1.0 proportion of that cell
type. The authors report this value to be over 0.9 for all cell types. This
is connected to an interesting concept presented in the article, the quasi-
unsupervised strategy. In order to improve deconvolution results, one can
append known GEPs of pure cell types to the mixture matrix, i.e., adding
one pure sample. This is reported to ’guide’ CDSeq to the correct estimation
of the underlying cell type’s GEPs. To our knowledge, this was not tested in
other complete deconvolution methods, although it could potentially have a
similar effect.

The method was tested on both RNA-seq and microarray data, although
the authors describe the tool as focused on RNA-seq deconvolution. It is also
not meant to be used for a specific tissue. The method implementation in
Matlab and Octave is available on GitHub [54] with a demo of usage.

2.5.4 Enrichment based approach

Some of the first approaches to GEP deconvolution were made using the Gene
Set Enrichment Analysis (GSEA) [107]. GSEA is a knowledge-based method,
using pre-compiled sets of genes sharing some property, such as location on
a chromosome, biological function, or cell types of origin, in which they are
deferentially expressed [2]. The GSEA then tests whether the distribution of
genes from those gene sets differs from the uniform distribution when sorted
with respect to a ranked list of genes from GEP (many ranking metrics are
possible and used [130]). The basic idea is illustrated in Figure 2.17 [107]. It
is important to notice that this is, in fact, not a ‘true’ deconvolution method,
as it computes only an enrichment score (ES) for given cell types. This score
then does not correspond to the proportion of cell type in the sample, i.e.,
percentages. It is not possible to compare ES of different cell types in one
sample; this method server more for the detection and presence of certain
cell types. Comparison of cell type ES might be possible; however, the scores
are in general, not on a linear scale, so the interpretation might be difficult.

Although this approach seems to be not directly useful for the deconvolution,
there are steps in deconvolution (as mentioned before in complete deconvolu-
tion), where they prove to be very helpful in enriching and correlating latent
cell types with true types.
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Figure 2.17: An example of GSEA method, with ranking based on phenotype
correlation [107]

xCell

There is xCell [7], a method developed using this approach that provides results
resembling the deconvolution (mainly by transforming the enrichment scores
to linear scale and thus allowing for interpretable inter-sample comparison).
It is therefore comparable with other fraction-producing methods and allows
for easier interpretability. The method is applicable to both microarray and
RNA-seq datasets, and recognizes 64 cell types. It was tested on simulated
and real datasets, validated by cytometry. In the method’s manuscript, the
usage of the method both on whole blood and PBMC is reported. It is
available as a web tool or R library.

MCP-counter

Microenvironment Cell Populations (MCP)-counter [12] could be understood
as a method using both the signature matrix and enrichment based approach.
From publicly available datasets, it identified the so-called Transcriptomic
Markers (TMs). These are defined as gene expression features expressed in
one and only one cell population [12]. The expression of these markers is then
used for the computation of scores for given cell populations. The method is
mainly intended for tumor tissue deconvolution; it was, however, validated
on PBMCs, which suggests that it can be used for blood deconvolution. It is
applicable both to RNA-seq and microarray data, and it does not provide
any p-values for the computed values.

2.5.5 Available deconvolution methods reviews

The problem of mapping the situation in this young, yet somehow complicated
and chaotic area of bulk tissue deconvolution methods has been tackled
by several works already, which aim to provide summarized and compact
overview of this area [10][75][122][99]. Recently (2020), a book providing [114]
exhausting overview of available deconvolution methods was published. To
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2. Background .....................................
get an idea of the vast number of deconvolution methods, see Figure 2.18,
which shows the number of deconvolution methods covered in the mentioned
review articles.

Figure 2.18: Number of deconvolution methods covered in shown arti-
cles/publications, taken from [10]
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Chapter 3
Data and methods

In this chapter, we describe the provided data and perform preprocessing
steps necessary for their deconvolution and differential gene expression anal-
ysis. Based on the properties of data, we discuss and select appropriate
deconvolution methods, which are applicable to them.

3.1 Data

In the next two section, we briefly describe the origin of the data, followed
by the description of the data itself.

3.1.1 Data origin

The data provided for this thesis come from a real medical research experiment.
The transplantation often results in rejection by the immune system of
the recipient, which results in the need for immunosuppressive drugs to
prevent rejection. The usage of these drugs is, however, associated with
various negative side effects [22]. Some patients, who discontinued the use
of immunosuppressive drugs (for example, by non-adherence to the usage),
were surprisingly not experiencing the rejection. This state of the patient is
termed the operational tolerance [22].

The data come from a research experiment, whose goal was to identify
biomarkers able to predict the operational tolerance of kidney transplant
recipients. Whole blood samples were collected from kidney transplant
patients in various states, along with the samples of healthy patients, used as
the control.

3.1.2 Data description

The provided data can be divided into 3 parts:..1. Count matrix (see Section 2.2.1) of 80 samples, externally prepared
by SEQme [34] company. The count matrix recognizes features at the
transcript level, which are described by the Ensembl Id [112]. There are
187626 transcripts, with 161734 transcripts having non-zero expression
in at least one sample.
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3. Data and methods ....................................2. Raw paired-end reads(see Figure 2.6) as resulting from the RNA-seq,
presented in FASTQ [28] data format. Two reads per sample, 160 FASTQ
files in total. The sequencing was done by SEQme [34]...3. Sample’s metadata, containing information about the group, to which
the sample belongs, and what immunosuppressives does the correspond-
ing patient take. There are 5 groups of samples; OT, CR, CyA, STA
and HC.

3.2 Deconvolution methods selection

For the method selection, we need to specify the data properties so that the
appropriate methods can be selected. The main defining feature of the data
is the origin of the samples — peripheral blood. The samples are also said to
be globin depleted. This is not a very common source of data for most of the
deconvolution methods, which are usually (as explored in previous chapter)
performed on peripheral mononuclear blood cells (PBMCs) separated from
the whole blood. It is therefore necesarry to decide, whether whole blood
samples with globin depletion can be deconvolved using the PBMC validated
methods.

The cells present in whole blood consists mainly of red blood cells (RBCs,
or erythrocytes), while blood cells (WBCs or leukocytes) and platelets. The
question is how much of the RNA present in the samples comes from the
PBMCs — if it is a high fraction, the method could probably be used and
the remaining RNA could be considered as a noise. This is, however, not
the case – residual RNA from reticulocytes (immature erytrhocytes, that
still posses a nucleus) contributes to up to 70% of the RNA in blood, most
of it being the globin mRNA [18]. Fortunately, it seems that the globin
depletion procedure seems to deal with that, and allows for the study of the
transcriptome, including the PBMCs [101] [59]. We therefore suppose that
the PBMCs, which are recognized by most of the deconvolution tools, are
present at reasonable level in the samples.

It is also unclear, if the methods, originally intended for microarray data,
are applicable to our RNA-seq data. It is somehow possible to augment the
RNA-Seq data for usage with methods aimed for microarray data, that is
for example explored in voom paper [60], and there is a study by Zhong et
al. [129], which reasons, that the linearity assumption used for microarray
data also hold for RNA-seq data. Therefore, we do not rule out the usage of
methods originally used only for microarray data, even though we recommend
caution when interpreting them.

In conclusion, we select any method, which was tested or is intended for
use with blood or PBMCs, is intended for microarray or RNA-seq data, and
has an available implementation, either as a library or a web tool. In case of
signature matrix based method, the signature matrix should be provided —
but this is not strictly necessary, as signature matrices from other methods
can be used.
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Based on the previous points, the following methods were selected for the
gene expression deconvolution:.CIBERSORT, although generally meant for microarray data, the au-

thors did not rule out its application to RNA-seq data, even with the
LM22 signature matrix. It also provides the LM6 signature matrix,
developed specifically for usage with LM6. The authors also mention
testing CIBERSORT on whole blood samples..CIBERSORTx, with the custom signature matrix based on scRNA-
seq data. This matrix can be used with the standard CIBERSORT
deconvolution framework.. EPIC, can be used for RNA-seq data, provides the signature matrix for
cell types present in the blood.. xCell, as a representative of enrichment based methods, which provides
scores resembling percentages. This makes the comparison with other
methods easier. The method’s manuscript has also reported and validated
usage on whole blood.. Linseed, as a representative of a complete deconvolution method. We
will try to map the identified latent cell types to the known types using
an enrichment approach..QP and LLSR are both methods originally intended for microarray
deconvolution. Their implementation is also readily available in R
package CellMix [41]. Both methods do not provide their own signature
matrices; therefore, others (LM22 and LM6, specifically) will be used..ABIS, which is applicable to RNA-seq data, and its signature matrix con-
tains immune cell types present in the blood. Implementation available
as a web tool or R library..QuantiSeq, with reported usage on blood, implementation available as
R library and recognized immune cell types present in blood..MCP-Counter, although mainly intended for tumor tissue deconvo-
lution, it was validated on PBMCs separated from blood, promising
applicability to our data.

For more information about selected methods, refer to Section 2.5 with
description of various deconvolution methods available in literature, including
the above-selected methods.

3.3 Data preparation

As all of the selected methods work on the gene level (except for the complete
deconvolution methods, which could probably be used on the transcript level,
but authors report validation only on gene level), we need to prepare our data
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3. Data and methods ..................................
in this format. The count matrix provided for this thesis consists of count
data on the transcript level. It is therefore necessary to somehow aggregate
the counts from transcripts to genes.

Problem of transcript to gene aggregation

Number of rather naive approaches of the aggregation comes to mind; for
example summation of all transcripts belonging to one gene, computing the
average or taking the maximal value of all those transcripts and setting
it as the gene count value. We decided to explore the idea, that the the
choice of this aggregation approach will not have a significant impact on
the deconvolution results. We therefore applied the these three mentioned
aggregation approaches (summation of transcripts, average of transcripts and
max of transcripts) and applied CIBERSORT with LM6, as described in the
next chapter on deconvolution.

In Figure 3.1 and Figure 3.2 we show a results of this deconvolution on
samples OT05 and CR01. It is clear, that results are significantly different,
where, e.g., cell type T1 is not even recognized in the averaging aggregation
for sample OT05.

Figure 3.1: Results of CIBERSORT LM6 deconvolution on sample OT05 from
gene count matrix obtained by aggregation from transcripts. The results vary
significantly between different aggregation approaches.

Figure 3.2: Results of CIBERSORT LM6 deconvolution on sample CR01.

We therefore concluded, that the aggregation approach is of great impor-
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tance, and has to be performed properly. It came out, that to correctly
aggregate transcript counts to gene level, one has to use information gained
from the process of alignment of RNA-seq reads to genome/transcriptome
[104], specifically the effective length of transcripts, see Section 2.2.3. This
approach has been implemented in the R library tximport [67], which is also
available of directly importing the data to the DGE tools, like DESeq2, and
is the author-recommended tool-of-choice for this task. Sadly, the tximport is
not directly available to the this transcript count matrix, as no data gained
from the alignment step are present. Also, tximport only accepts files as
outputted from alignment tools as an input. For this reason, we decided
to perform the alignment of RNA-seq reads by ourselves, and subsequently
aggregate them to gene level using the tximport library.

3.3.1 RNA-seq reads alignment

For the alignment of reads, we decided to use the kallisto tool [19]. It is
a tool performing the so-called pseudo-alignment [47]. This means, that
instead of aligning to the whole genome, the tool accepts a set of transcripts,
transcriptome, and classified all reads as belonging to one or more transcripts
(or to no transcript at all). This is much faster and less memory-intensive,
compared to traditional alignment tools [19]. This is particularly important
in our case, as the FASTQ read files occupy almost 2TBs of space.

Kallisto requires an index of reference transcriptome to be build. For this
the Homo_sapiens.GRCh38.cdna reference from Ensembl [123] website was
used. All 80 samples were aligned to this reference. However, the tool reported
surprisingly low mapping rate was reported for all 80 samples (between 25%
and 40% for all samples). Example of such report is shown in Figure 3.3.

Figure 3.3: Output from the kallisto alignment for the CR06 sample. Only
32.9% of all reads were aligned to the reference.

The low-mapping rate gave rise to doubts about correct usage of the tool
and the correctness of aligned data. Therefore, we decided to verify the
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results by using another pseudo-alignment tool, the Salmon [87]. Salmon
works on the same principle as kallisto, so it should reveal whether the low
mapping is caused by data or incorrect usage of the kallisto. Again, the index
was build, with the same reference file. Because of the memory requirements
and alignment being time consuming, only one sample was selected, the
CR06, because its relatively small size compared to other samples. After the
alignment, the mapping rate of 26.66% was reported. That is even lower than
the 32.9% mapping rate of kallisto.

3.3.2 Problem of low mapping rate

The low mapping rate of both kallisto and salmon (about 30% of successfully
mapped reads) is not a good sign. To resolve, whether is it caused by incorrect
usage of kallisto and Salmon, or by the reads itself, we performed alignment by
hisat2 [57] to the whole human genome. This alternative alignment approach
can reveal, whether the low mapping is caused by reads coming from regions,
which were not covered in the transcriptome, used in the kallisto and salmon.

We performed the alignment by hisat2 only on the CR_06 sample, same
sample as in the case of salmon test, and for the same reasons — relatively
smaller size, which is even more important, as the hisat2 is very memory
demanding tool. We aligned the CR_06 to the GRCh38.p13 genome assembly,
downloaded from Ensembl [123].

The hisat2 produces a SAM file, which was then sorted to BAM file by
samtools [63]. The resulting BAM file was them examined using the QualiMap
tool [82][40], which can produce various information about the alignment, with
the respect to provided genome annotation file (Homo_sapiens.GRCh38.99.gtf
from Ensembl was used). The QualiMap reports the overall mapping rate
of reads, and is able to infer the genomic origins of most of the reads. Note,
that in comparison to Salmon and kallisto, Hisat2 aligned reads to the
whole genome, and QualiMap has therefore information about intronic and
intergenic regions, which were not considered in the previously mentioned
tools.
QualiMap reported overall mapping rate of 90.7% for the CR06 sample,

with the mapped reads being divided based on the genomic origin, as shown
in Figure 3.4 and Table 3.1.

Genomic origin Number of reads % of total reads

Exonic: 8,553,590 29.78%
Intronic: 17,926,307 62.4%
Intergenic: 2,246,591 7.82%

Table 3.1: Results of QualiMap [82][40] RNA-seq mapping quality analysis on
the genomic origin of mapped reads.

The percentage of reads mapping to exonic region is 29.78%. This is
approximately the same value as reported by kallisto and Salmon. This seems
as an evidence, that the mapping rate of those two tools was reasonable, and
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Figure 3.4: Genomic origin of RNA-seq reads, as reported by QualiMap [82][40]

most of the reads are coming from intronic and intergenic regions. Based on
this evidence, we continue with the usage of measures count data as coming
from the alignment performed with kallisto.

3.3.3 Comparison of DESeq2 results with transcripts and
genes

As all of the above mentioned deconvolution tools work with expression data
on the gene level, and the provided RNA-seq data have resolution on the
transcript level, it is necessary to somehow aggregate the data to the gene
level. In the previous section, we showed some rather naive approaches to this,
which showed great variation in the data when performing the deconvolution.

There is a study by Soneson et al. [104], which argues that the differential
analysis performed at the gene level gives results “appealing in terms of
robustness, statistical performance and interpretation” and that “taking
advantage of transcript-level abundance estimates when defining or analyzing
gene-level abundances leads to improved DGE results compared to simple
counting for genes exhibiting DTU (Differential Transcript Usage)” [104].

Now, with the help of tximport R package [104] by the authors of previously
mentioned study, we can perform the aggregation of transcript-level estimates
as outputted by kallisto. To assess the difference in differential expression
analysis, we perform DGE analysis between CR and OT groups both on
transcript and gene level (as obtained by tximport).

To compare the results, we will explore following properties of the DESeq2
(for more detailed description of DESeq2, refer to Section 5.1) results:..1. The number of found differentially expressed features (i.e., transcripts

or genes) with multiple testing corrected p-value (or adjusted p-value)
lower then set significance level of 0.1...2. The distribution of p-values of differentially expressed features. This is
shown in Figure 3.6.
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3. Data and methods ....................................3. The intersection of found features — for this, the transcripts are mapped
to their corresponding genes. We compare top 100 vs 100, 500 vs 500,
and 100 genes vs 500 top transcript with lowest p-values, as 36575 genes
and transcripts 176126 were present in the differential expression analysis.
This means, that there are approximately 5 transcripts per 1 gene. Venn
diagram of the intersection is shown in Figure 3.7 and 3.8.

Discussion of results

The simplest metric of comparison is the number of significantly differentially
expressed features. We set the significance level of 0.1 and count the number
of features with adjusted p-values lower then that level. 71 transcripts and 48
genes were found significant. Note that this can’t be interpreted as transcript
level being more sensitive or accurate without any additional information.
This can be merely used as an indicator of not equal results — 48 significantly
DE genes should probably consist of more than 71 significantly DE transcripts
(with average of 5 transcripts per gene). It is necessary to explore the difference
further.

Figure 3.5: The number of significant DE features (with adjusted p-value <0.1).

We can take a look at the distribution of p-values. There are two distinct
shapes of distributions of p-values in Figure 3.6. There is recognizable peak
in the p-values close to zero n the gene’s p-values distribution, with the
transcript’s p-values distribution seems to follow the same trend, except that
in reverse — recognizable peak is at the highest p-values. This could lead to
conclusion that gene level DE analysis produced more significant genes, but
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that would be misleading (as shown in Figure 3.5). The information about
different number of transcripts and genes present in the analysis is omitted,
so even there is visually more significant peak in the gene’s distribution, it
represents part of a much smaller set of genes.

Figure 3.6: The distribution of p-values in DESeq2 output on transcript and
gene level analysis. Dashed line marks the mean, and solid line the median of
corresponding distributions.

In Figure 3.7, we explore the number of identically recognized significantly
differentially expressed genes. The transcripts were mapped to genes and
sorted by the p-value. When choosing top 100 genes from both approaches,
only 16 were found identically. When 500 top genes were taken, 131 were
found identically. Note, that when mapping transcripts to their corresponding
genes, several transcripts could map to the same gene. In that case, out of
the top 100 or 500 genes, only unique ones were chosen (that is why the sum
of numbers for transcript levels does not sum to 100 and 500, respectively).

Surprisingly, the number of identically identified genes is quite low. This
might be caused by the fact, that transcripts of one gene can be significantly
differentially expressed, but when aggregated to the gene level, the total
expression levels out and the gene by itself is not differentially expressed. On
the other hand, several not DE transcripts may aggregate to gene, which
itself is differentially expressed.

In Figure 3.8, we show comparison of top 100 genes and 500 transcripts
mapped to genes, as in previous examples. The reason for the sizes of 100
and 500 is that there are approximately five times more transcripts than
genes, i.e., five transcripts per gene in general — and in ideal situation, when
a gene is DE and all its transcripts are too, would result in 5-to-1 ratio of

47



3. Data and methods ..................................

(a) : Top 100 DE genes and transcripts (b) : Top 500 DE genes and transcripts

Figure 3.7: The comparison of uniquely and identically identified differentially
expressed genes and transcripts. The transcripts were mapped to their corre-
sponding genes. Both transcripts and genes were sorted by their p-value, lowest
first.

Figure 3.8: The comparison of uniquely and identically identified differentially
expressed genes and transcripts. The transcripts were mapped to their cor-
responding genes. Both transcripts and genes were sorted by their p-value,
lowest first. Please note the mirrored ordering of the transcript and gene groups
compared to previous Figure 3.7.

significantly DE features. There are, however, still only 56 identical genes.
In conclusion, based on this simple comparison, we see that the results of

DGE analysis differs greatly when performed on transcript and gene level.
This example only illustrated and confirmed findings described by Soneson
et al. [104]. As we are not able to asses the true underlying expressions
and true sets of differentially expressed genes (they are not known for this
dataset), we will perform the DGE analysis on the gene level, as recommended
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in tximport[104] and DESeq2 vignette [65]. The ideal result of this little
experiment would be for the result on both levels to be the same — we would
have an affirmation, that we do not lose information any information in the
aggregation step. But it was not the case, and we resort to the procedures
recommended and researched in literature.
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Chapter 4
Deconvolution of gene expression profiles

In this chapter, we perform the deconvolution of 80 provided samples, using
the methods selected in the previous Section 3.2. Below, we specify the setups
and settings of methods used and give them unique identifying names for
later reference in text and plots.

4.1 Application of deconvolution methods

For the MCP-Counter, QuantiSeq and EPIC, the R library immunede-
conv [50] was used. For the CIBERSORT, the author’s R implementation,
which is available upon request, was used. CIBERSORT was run in two
setups, one with the LM22 signature matrix and the second with the LM6
signature matrix. Both are available on the website of CIBERSORT [26]. We
will refer to CIBERSORT with LM22 and LM6, as CIBERSORT LM22
and CIBERSORT LM6, respectively. We also perform CIBERSORT de-
convolution using the absolute mode, which measures the overall abundance
of each cell type (as opposed to standard, which measures the fraction of cell
type from cell types present in the signature matrix only [80]). This mode is
marked as an experimental and was tested with LM22 [80], so we used it with
LM22 and referred to it by CIBERSORT LM22 (abs). All CIBERSORT
related methods were run with the quantile normalization option turned off,
as authors recommended for the RNA-seq data.

The EPIC was used with three different settings; the first, as implemented
by immunedeconv, further called EPIC. Second, with default settings as
present in EPIC R package [91], named EPIC default, and third, again
using the R package, this time with manually setting the method to recognize
blood immune cells as reference — further called EPIC bref. The ABIS
deconvolution was performed using the web interface [76], downloaded and
processed in R language.

The xCell deconvolution was performed by available R library [6] in two
different modes — the first with the default settings, called xCell, and the
second, which makes use of the xCell’s ability to indicate cell types present
in the mixture in advance. For this, we indicated the presence of cell types
present in LM22, if possible (as LM22 consists of immune cell types present
in the blood, and all of them can be expected to be present in our samples).
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4. Deconvolution of gene expression profiles.........................
This setup of xCell will be referred to as xCell guided.

The QP and LLSR deconvolution was done using the implementation
provided by CellMix R library [41]. Both of them were used with LM6 and
LM22 signature matrices; we refer to these setups as QP LM6, QP LM22,
LLSR LM6, and LLSR LM22. Additionally, we used LLSR with the gene
expression profiles of immune cells as prepared by Abbas et al. [2], which
were also present in the CellMix. This is further called LLSR Abbas.

All of the above-mentioned deconvolution methods were done on the gene
level, and input gene expression data were normalized using the TPM method,
as outputted by tximport.

Two deconvolution methods deserve to be described in more detail, as
their application was not as straightforward as simply using the library, the
CIBERSORTx, and LinSeed.

Deconvolution by CIBERSORTx

CIBERSORTx offers several modules based on the intended goal of the
user. Similarly to the older CIBERSORT, it provides a module for custom
signature matrix creation, but CIBERSORTx can create a signature matrix
from scRNA-seq datasets (CIBERSORT could previously only use sorted
RNA-seq datasets). Currently, scRNA-seq datasets are becoming widely
available in online databases, for example in PanglaoDB [39] or Human Cell
Atlas [93].

We used CIBERSORTx for the creation of a custom signature matrix.
For this, we selected scRNA-seq dataset found in PanglaoDB [39]. The
dataset is accessible under the NCBI SRA submission code of SRA749327
and NCBI SRS sample identifier of SRS3693911. The PanglaoDB offers the
preprocessed dataset for downloading, along with the clustering results and
cluster identification. All these were downloaded. The dimensional reduced
(using t-SNE) and clustered dataset with identified cell types is shown in
Figure 4.1.

The CIBERSORTx requires five gene expression reference profiles at a
minimum for each cell type. For each of the nine cell types present in the
datasets, we randomly selected ten replicates (note that this corresponds to
the H matrix, as presented in the chapter on deconvolution formalization —
each cell type is represented by several gene expression profiles). The data
was further prepared for the format required by CIBERSORTx and uploaded
to the website. The create signature matrix module was used at first, and the
resulting signature matrix was used for deconvolution of the mixture data
(the same as in the previous methods). The signature matrix visualisation is
shown in Figure 2.15. The red color shows highly expressed genes, and the
figure illustrates how the CIBERSORTx restricted the number of genes to
include mostly these, which are significantly expressed in some cell type only
— the red clusters could be interpreted as marked genes for given cell type. In
the formalized deconvolution framework from Chapter 2.3, we can describe
this CIBERSORTx feature as a transformation of the expanded signature
matrix H to signature matrix G.

52



..........................4.1. Application of deconvolution methods

Figure 4.1: scRNA-seq dataset visualized after dimensional reduction and
clustering, with eight identified cell types. This dataset was used for custom
signature matrix creation by CIBERSORTx.

For the deconvolution, the Impute Cell Fractions module available on the
website was used. The S-mode of batch correction was used (it corrects for the
technical variances of RNA-seq input data and scRNA-seq based signature
matrix). Deconvolution results were downloaded and processed using the R
language.

Deconvolution using LinSeed

For the LinSeed usage, we used the R implementation available on GitHub
[64]. The number of cell types present in the mixture was set to eight (based
on the plot of explained variance provided by the tool, where eight cell types
explained 90% of the variance). As the tool performs complete deconvolution,
see Equation 2.9, both the cell-type-specific gene expression profiles and their
corresponding proportions in the mixture are estimated. The problem lies in
identifying the true cell types belonging to the reference GEPs. We employed
two approaches for this:. Correlating unknown GEPS to known profiles from signature matrices,

namely LM22 and LM6.
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Figure 4.2: Visualization of custom signature matrix, as produced by the web
interface of CIBERSORTx [27]. The recognized cell types were determined
by the used scRNA-seq dataset from PanglaoDB [39]. Notice the red clusters,
corresponding to probable markers for given cell types.

. Extracting marker genes for each unknown GEP and use these marker
genes for identification.

For the correlation of GEPs, we choose two metrics; the Pearson correlation
and Spearman rank correlation coefficient. Both Pearson and Spearman
correlation coefficients of LinSeed cell types and LM22 and LM6 are reported
in Figure A.2 and Figure A.1, enclosed in the Appendix A.

In Figure A.1, we see several candidates for mapping of LinSeed cell
types to LM6 cell types. There is moderate positive Pearson correlation
between Cell type 2 and NK.cells (r = 0.55, p-value ≤ .001) and between
Cell type 3 and B.cells (r = 0.50, p-value ≤ .001). Cell type 8 seems to
correlate with both CD4+ (r = 0.54, p-value ≤ .001) and CD8+ cell types
(r = 0.46, p-value ≤ .001). It might therefore represent T cells in general,
with not enough resolution to distinguish between more T cell subtypes.
Similar trend is present in the plot of Spearman correlation coefficients, with
neutrophils having high positive correlation (ρ = 0.81, p-value ≤ .001).

The evidence of this probable mapping is further strengthened when looking
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at Figure A.2, where Pearson’s coefficient reveals moderately high correlation
of Cell type 3 with all subsets of B cells, Cell type 2 with NK cells, Cell
type 8 moderate to high correlation with T cell subsets and Cell type 7 with
neutrophils and monocytes (exact values not shown, available in Figure A.2).
This would indicate that Cell type 7 might represent their nearest common
ancestor, myeloid cells, see Figure E.1.

For the second approach to mapping, we employed a simple strategy: for
each cell type, the gene expression profile was sorted from mostly expressed
to the lowest expressed genes. We selected the top five genes, having at least
five times higher expression than any other cell type. Those five selected
genes were then compared with cell marker genes from CellMarker [127]. For
the three above suggested mappings (to B cells, T cells, and NK cells), all
five of the top genes were reported as markers for these cell types.

Therefore, we mapped three cell types GEPs found by LinSeed, which we
now assume to represent B cells, T cells, and NK cells.

We also used the above-mentioned method of cell markers identification to
check whether one of these GEPs could represent erythrocytes or platelets,
which could possibly constitute to a large part of the mRNA present in
the blood samples and confound the deconvolution results (this concern
were discussed before in Chapter 3). We used markers, having at least two
evidences, from PanglaoDB: CD235a, CD24, CD45, GlyA, and Ter119 for
erythrocytes and CD41, CD61 and CD62P for platelets. None of these were
even present in the found GEPs, which seems to support the claim, that cell
types other than PBMC do not play a significant role in gene expression in
these samples.

4.2 Results of deconvolution

In total, eighteen methods were applied to the data. As we do not know
the ground truth of fractions of cell types present in the sample, we can
only compare the obtained results between each other. There are, however,
problems with comparison and interpretability of the results. To be specific,
two main problems complicate the comparison:..1. Each method has a different set of recognized cell types (see Table E.1).

For example, we cannot compare results on erythrocytes proportion in
samples, as only xCell provides these estimates. Connected with this
issue is the fact that some method provides results on the different detail
levels, for example, LM22 recognizing seven types of T cells, while LM6
only two...2. The results are not reported in the same units. Some methods report
results as percentages, some as scores. They are thus not directly
comparable.

To deal with the problems mentioned above, we employed the following
approaches. The first problem of different recognized cell types is dealt with
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4. Deconvolution of gene expression profiles.........................
by the help of R package immunedeconv [50]. Other than providing a unified
interface to some deconvolution methods, it presents a complex hierarchical
characterization of different cell types present in these methods, for more
details see Appendix E.1 and Table E.1. It further implements an algorithm
for summarizing deconvolution results to a given level of cell-type resolution.
In other words, it can produce a score or fraction of T cells present in a
sample for a method, even though the method provides scores or fractions
for different subtypes of T cells.

Based on this tool, we compare results of deconvolution on the level of
cell-type resolution, which is ideally present in all methods. This is restricted
by the signature matrix LM6, which has the lowest number of recognized cell
types. Thus, we compare the deconvolution results of fractions and scores
of B cells, NK cells, CD4+ T cells, CD8+ T cells, monocytes, and
neutrophils. In methods where higher cell type resolution is available, the
summarized value is obtained by immunedeconv or, if not applicable, by
summing all values of cell subtypes belonging to the parent cell type, based
on the hierarchical tree defined by immunedeconv, see Figure E.1. If some of
the above-mentioned cell types are not available in a method or signature
matrix used by the method, the corresponding method is left out of the
comparison for given cell type.

The second problem of different used units is solved on two levels and
is based on the fact that all of the methods produce results, which are
comparable across samples. On the visualization level, we scale all the values
for one cell type to range [0; 1]. This helps with the visual comparison of
found fractions and scores in different samples, as it preservers the ranking
order of one cell type across samples. These scaled values are shown in Figure
B.1, B.5, B.8, B.16, B.13 and B.10. We also show the same plots for methods,
which produce values resembling percentages and are thus not adjusted in
any way. These plots are shown in Figures B.2, B.4, B.7, B.17, B.14 and
B.11. All of the above mentioned figures are enclosed in Appendix B.

For the comparison of results for given cell types, we compare used methods
by the Pearson correlation, but as some methods do not guarantee that
the values are on a linear scale, we use the Spearman rank correlation as
well. We show an example of such comparison in Figures 4.3a and 4.3b. It
is presented as a heatmap, along with a hierarchical clustering using the
euclidean distance. This representations helps to reveal similarly performing
methods, both visually (by clusters of similar colors) and by hierarchical
clusters. For example, based on Figure 4.3a, we see that all CIBERSORT
versions, version of xCell and EPIC form a cluster.

Complete results are enclosed in attached supplementary materials, avail-
able as high-resolution images and interactive HTML plots, which allow for
more clear inspection of computed results.
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Chapter 5
Incorporating the deconvolution results to
DGE analysis

Having the deconvolution results of our 80 samples, the question of incorpo-
rating them into the differential gene expression analysis process arises. Usual
input to the DEG analysis consists of a matrix of count data and metadata
table — with sample features, such as grouping, condition, age. . . .

5.1 DESeq2

DESeq [65] is a tool used for differential gene expression analysis. It models
RNA-seq counts with the negative binomial (NB) distribution. It allows for
complex design specifications and is accompanied by rich documentation,
which is why we selected it for the following experiments. It is available as
an R library.

DESeq2 model

To get a brief insight into the working of DESeq2, we give a short description
of the DESeq2’s model. The tool models the RNA-seq count by a negative
binomial generalized linear model (GLM). To be precise (and using the
notation from DESeq2 paper [65]), the RNA-seq read counts Kij for gene i in
sample j is modeled by GLM from the negative binomial family (parametrized
by mean and dispersion parameter), with a logarithmic link [88]:

Kij ∼ NB(µij , αi), µij = sijqij , log qij =
∑

r

xjrβir, (5.1)

where µij is the fitted mean for gene i and sample j, αi is the gene-specific
dispersion. The sij is normalization factor, as described in Section 2.7 on
DESeq normalization, qij is a value proportional to the true concentration of
fragments from gene i in sample j (which is closely related to the ν quantity,
described in Section 2.2.3), xjr and βir are explanatory variables and their
coefficients, respectively. Finally, r is the number of covariates in the design
matrix of the model [65].
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5. Incorporating the deconvolution results to DGE analysis ..................
DESeq2 output description

To properly interpret obtained results from DESeq2, we need to describe the
results as outputted from the tool. In Figure 5.1 we show an example of the
tool’s output for DGE analysis between two conditions, lets call them A and B,
where A is the reference condition. The output consists of a row for each gene,
which is present in DGE analysis. The baseMean is the mean of normalized
counts in reference condition. The log2FoldChange is the estimated log-2 fold
change between conditions, computed as log2

(
m(A)
m(B)

)
, where m(A) and m(B)

are the means of normalized counts in condition A and B, respectively. The
lfcSE gives the standard error for log-2 fold change. The stat is by default
the value of Wald statistic (which is, in this case, log2FoldChange divided by
lfcSE. The stat value is then compared to standard Normal distribution to
produce pvalue. The padj is pvalue corrected for multiple testing by default
by Benjamini & Hochberg (BH) method [13].

Figure 5.1: Example output of DESeq2, sorted by padj.

Later, when comparing results coming from different models, we will be
interested mainly in the number of genes under some selected threshold for
adjusted p-values padj and the overall distribution of all p-values.

5.1.1 Incorporating deconvolution results to DESeq2

DESeq2 is ready to incorporate any factors (or variables) into the experimental
design. In the vignette of DESeq2 R library [66], several examples and general
recommendations are given. In general, the same approach as when including
batch control variables can be used. For the further description, we will use
the R Formula, a compact symbolic form of a model specification. The R
formula uses the general form of “y ∼ model”, with the meaning of response
variable y being modeled by model, where model is a series of terms (in
our case, independent or explanatory variables) joined by plus (+) signs.
Terms (or variables) can also be joined by a colon (:), a symbol with a special
meaning of interaction of all interaction between joined variables.

In the context of DESeq2, which requires for its design to be specified by
formula, the typical design would be “sample ∼ cond”. This design specifies
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...................................5.2. Experiment setup

that the samples are modeled using cond categorical variable, which represents
various conditions, in which the samples were taken. DESeq2 allows for more
complex designs, for example “sample ∼ tech + cond + tech:cond”. This
design would model the samples by categorical variable tech (having two
values, e.g., depending on the technology of sample collection) and cond
categorical variable. The tech:cond models the possibility that the condition
effect is different across sampling technology. We further adapt the DESeq2
notation of specifications of models — the left-hand side of the formula is
not written out, e.g., only “∼ tech + cond + tech:cond” is written instead.

Using the above-described terminology, we can explore the possibilities
of including deconvolution results in the DESeq2 design. In the R library
vignette, authors explicitly mention the possibility of adding an arbitrary
number of variables to the design, both categorical and continuous (although
authors recommend converting the continuous variable to categorical by
‘cutting’ it into a small number of bins, ideally 3-5).

As a reminder, by performing the deconvolution, we got several additional
values (based on the number of recognized cell types), representing the
fraction (or score) of specific cell types present in the sample. These can be
understood as a realization of a continuous random variable. For each sample,
we, therefore, have the group information and, e.g., six continuous values of
cell type fractions from LM6.

5.2 Experiment setup

We have several options when preparing the DGE experiment. At first, we
have to decide between which groups of samples will the analysis be performed.
There are five groups to which the samples are distributed — OT, CR, CyA,
STA, and HC. Based on the discussion with supervisor of this thesis, the
DGE analysis between CR and OT groups were deemed interesting from the
biological point of view; therefore all the following experiments (if not stated
otherwise) are performed as DGE analysis between those two groups, with
the intention to discover biomarkers specific to those groups. Note, that all
80 samples are inputted in the DESeq2 tool, as recommended by authors in
the R library vignette [66] — the model can benefit from these data, even
though they are not directly used for the resulting comparison.

It is important to note that there is no ground truth available to our
data, so we cannot compare the results absolutely (i.e., answer the questions
like ‘Does the method reveal true biomarkers?’ or ‘Does this method find
more true biomarkers?’). We can compare different methods and the design
relatively, between each other, with the intention of examining the effect
which different designs have on the result. We will also compare the results
to the ‘baseline’ result, DESeq2 with model ∼ group. In other words, the
model without any additional information coming from deconvolution.
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5. Incorporating the deconvolution results to DGE analysis ..................
5.2.1 Experiment results comparison

With the previous remarks in mind, we compare the results in the following
ways:. By the number of found significantly DE genes, based on adjusted p-value

threshold, see Figure 5.2.. By the number of uniquely and identically found genes in the top N
genes (sorted by p-values). This is visualized by Venn diagrams, see
Figure 5.3.. By similarity of the total ordering of genes, sorted by p-values. This was
measured by the Spearman rank correlation coefficient, see Figure 5.4.. To assess the differences of results from the point of known gene annota-
tion, we perform pathway analysis and gene set enrichment analysis. We
focus on differences between significantly enriches terms, eventually on
differences of their significance level.. By comparing the overall distribution of p-values computed for genes by
DESeq2, similarly to the experiments performed in Section 3.3.3. The
comparison of absolute p-values would not make sense, as different models
have different null hypotheses, for which is the p-value computed. Note
that the comparison using these plots can also misleading, for example,
as shown in the section on gene vs. transcript level DGE analysis. It does
not take into account the overall number of filtered genes, computation
of adjusted p-values, and independent filtering procedure of DESeq2.

5.2.2 First experiment

When designing a model for DESeq2, we have to make several decisions:..1. Which deconvolution method’s results to use...2. Which and how many cell types proportions should we use in the design...3. How to deal with the variable representing the proportions — leave it
as it is (continuous), or ‘cut’ it into a categorical variable with some
particular number of levels...4. How to combine variables in the design, i.e., how many of them, with or
without interaction, etc.

To illustrate the previous point, consider the following description of designs,
which incorporates the B cell proportion coming from xCell. The xCell is
selected as a representative method, because it is commonly in the biggest
cluster of similarly performing methods (see Chapter 4.2) and at the same
time, it is a method fulfilling assumption for deconvolution of our data. We
describe four different models, using different forms of the xCell proportion
variable, along with the basic design of ∼ group. The ideas described in these
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models (specifically the reasoning behind ‘cutting’ the continuous variables
into categorical) will be applied to further experiment designs. The five
models are:. The baseline design, without any additional information from deconvolu-

tion. DESeq2 is supplied with “∼ group” model.. Using the “∼ bcell_2 + group” model, where bcell_2 is a variable taking
two values. The original output from xCell was ‘cut’ into two parts
based on a threshold, so both groups are of equal size. The two values
of the variable can be understood as an indication of either low or high
proportion of B cells in the sample. Two groups were selected because
DESeq2 internally uses different methods for category variables taking
only two values [65].. Using the “∼ bcell_3 + group” model, where bcell_3 is a variable taking
three values. The bcell_3 was obtained in an analogous way to the
previous design. The number of groups is selected on the basis of the
recommendation of DESeq2 authors, where three is the lower bound on
recommended values the transformed categorical value should take.. Using the “∼ bcell_5 + group” model, where bcell_5 is a variable taking
five values. Analogous to the previous two transformations, five is the
upper bound on recommended values the transformed categorical value
should take.. Using the “∼ bcell_cont+group” model, where bcell_cont is a continuous
variable, taking values from the [0; 1] range. This corresponds to the
complete information, as obtained from xCell.

The notation of celltype_K will further be used for a continuous variable,
transformed to categorical by dividing its values into K equally sized groups,
e.g., cd4tcell_3 will be variable, representing the CD4+ T cell proportion
in the sample, with three-level resolution. By celltype_cont, we mean the
original continuous variable, as outputted by deconvolution method. The
particular method will follow from the context.

Let us discuss the results obtained from this first example. In Figure 5.2,
the numbers of significantly differentially expressed genes are shown. As
to the matter of significance, we consider genes with adjusted p-value <0.1
significant. We can see that compared to the baseline method, the additional
B cell fraction information factored to two levels lowered the number of
significant DE genes. However, while adding more resolution, the number of
significantly DE genes seems to be getting higher, with the higher number
being 66 for unfactored continuous variable. It might be interesting to find
out if this trend will be observed in general, with proportions of other cell
types added.

For the comparison of the actual set of genes found and their intersection
between methods, we use the Venn diagram, as seen in Figure 5.3. Here we
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5. Incorporating the deconvolution results to DGE analysis ..................

Figure 5.2: The number of significant DEGs (with adjusted p-value <0.1) for
five different DESeq2 designs.

compare the top 100 most significant genes (when sorted by p-value). Exactly
50 out of the 100 genes were identified by all methods, with each method
having found some genes, which were not identified by any other method.

5.2.3 Experiments

So far, we have performed an addition of xCell’s B cell proportions to the
model. Let us now properly define a series of experiments. We will examine
the following questions:.Will the results differ for B cell proportions coming from dif-

ferent methods?.Will the trend in the number of found signature genes be the
same when using other cell type’s proportions?.What is the effect of including more additional variables with
different cell type’s proportions?. Is it possible to include all variables coming from one deconvo-
lution method at the same time?

For each of these questions, we carry out a single experiment focused on
answering the question.

Experiment 1 — B cells proportions coming from different methods

We examined the effect of including B cell proportions coming from xCell
in various ways to the DESeq2 design. We perform the same experiments
with B cell fraction coming from different methods for the crude evaluation
of the robustness of obtained results. We selected results coming from
CIBERSORT LM6 and EPIC methods, based on Figures B.3a and B.3b.
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Figure 5.3: Venn diagram of 100 top found genes, sorted by p-value, uniquely
and identically found by different methods

The xCell, CIBERSORT LM6, and EPIC seems to be in the same cluster
of similarly performing deconvolution methods (with respect to the B cells
proportions). Also, the focus on B cells in this example stems from the
reported significance of B cells in the kidney transplantation research [56][74].

The setup of the experiment and way of incorporating the deconvolution
is the same as in the introductory example, see Section 5.2.2. Proportions
of both methods are used in four different ways, three of them based on the
number of levels in the transformed categorical variable, one with the original
continuous values.

We start the comparison by comparing number of significant DE genes
for all three origins of B cell proportion results (Figures 5.2, C.2a and C.1a).
The results of xCell and CIBERSORT LM6 seems to follow similar trend,
with the b_cells_2 variable even having the same number of genes. However,
with the EPIC origin, results look different — there seems to be a very small
difference in terms of significant DE genes amount when including the B cell
fraction in the categorical variable. Only when including it in unchanged
continuous form, the number goes up. Some similarities can be observed in
the number of DE genes when including the variable in the continuous form
— all three data origins, it is the highest number of all designs, and the values
are relatively close to each other (66, 74, 75).

When comparing the results in terms of uniquely and identically identified
genes, the results are mostly different too. This time, the EPIC and xCell
have the same number of identically identified genes (Figures 5.3 and C.1b),
with the numbers varying for the rest of designs. In conclusion, even with

65



5. Incorporating the deconvolution results to DGE analysis ..................

Figure 5.4: Spearman’s rank correlation of gene ordering for five different
DESeq2 designs, with B cell proportions coming from xCell.

taking fractions of B cells in samples from those methods that generally
perform similarly (based on Pearson’s and Spearman’s correlation), the
results are not very consistent. There is a similarity in the fact that the
highest number of significantly DE genes is highest when using the fraction
variable in its continuous form. Also, the number of uniquely identifies DE
genes is highest for the models with a continuous fraction variable. This
might indicate that the deconvolution information is most informative to the
DESeq2 model when incorporated as a continuous variable. This is, however,
in contrast with the recommendations of DESeq2’s authors.

Experiment 2 — Proportion of other cell types

We will now focus on incorporating cell types other than B cells to the DESeq2
design. For simplification of the experiment, we will consider results coming
only from one deconvolution method. Based on the results and figures from
Chapter 4, we select CIBERSORT LM6 as this method. For all cell types,
this method is part of the biggest cluster (confirmed only visually) of similarly
performing deconvolution methods, which makes it a good candidate for a
representative method.

We will perform the experiment on three additional cell types: CD4+
T cells, CD8+ T cells, and NK cells. These three cell types were
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selected randomly out of five remaining not yet examined cell types from
CIBERSORT LM6, as the examination of all cell types computed by all
methods is not easily feasible. For each of them, we will explore all four
options of the variable handling, as shown in previous experiments, and
compare it to the baseline design, with no additional variables.

We report the results using the same types of plots, as in previous examples.
All the plots are reported in Appendix C.

The results for CD4+ T cells are shown in Figures C.3a, C.3b and C.3c.
Surprising result are seen in Figure C.3a, where the same number (172)
of significant genes was identified for both for models with cd4cell_3 and
cd4cell_cont, even though the lists of sorted genes and p-values are different.

The results for CD8+ T cell are shown in Figures C.4a, C.4b and C.4c,
results for NK cells are shown in Figures C.5a, C.5b and C.5c. The highest
number is observed in celltype_3 or in celltype_cont designs, although there
seems to be no clear trend in the number of significant DEGs — for example,
for the NK cell variable, the lowest number of significant genes was found for
the nkcell_3 design. We again emphasize that the the number of significantly
DEGs without any ground truth does not assess the design as better or worse
compared to baseline design, i.e., we are not able to assess the true sensitivity
and specificity of the method.

We also point out a similar number of identically identified genes (42,38
and 44) for all models of given variables, which is also relatively consistent
with the values obtained in Experiment 2. Overall, apart from the identically
identified genes, there seems to be no clear trend or consistency when using
the B cell fractions from similarly performing methods.

Experiment 3 — Proportion of multiple cell times at the same time

For the third experiment, we will explore the effect of combining several cell
type’s proportions at the same time. This is not a very rigorous experiment,
as the previous experiments showed very varying results, and therefore this
should be understood mainly as an exploratory experiment. For the designs,
we selected data from CIBERSORT LM6, as in the previous examples.
Because the designs with continuous variables seemed to provide a high
number of significant DE genes (but that does not automatically mean it was
a better result, as the null hypothesis of the model might be different from
other designs), we decided to use this form of fraction variable.

As it is not feasible to try out all possible combinations of variables from
CIBERSORT LM6, we restricted ourselves to the following combinations
(all combinations of size two from the cell types presented in Experiment 2 in
continuous form):. “ ∼ nk_cont + cd4+_cont + group”. “ ∼ nk_cont + cd8+_cont + group”. “ ∼ cd4+_cont + cd8+_cont + group”
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5. Incorporating the deconvolution results to DGE analysis ..................
We compare DGE analysis results of these designs between each other and

with the baseline “ ∼ group” design. The results are presented in Figure 5.6.
There are visible differences, for example, in the number of significant DEGs,
where the combination of NK and CD4+ T cells created 625, and NK and
CD8+ T cells 77 genes. Also, when looking at the Venn diagram in Figure
5.6b, we can see that there was no overlap in the top 100 most significant
DEGs for all compared designs.

Experiment 4 — Full model, all continuous variables from LM6
added

For this experiment, we will include the full deconvolution information, as
available from the CIBERSORT LM6. This means, that we will model the
expression with the rather complicated DESeq2 design of “ ∼ bcell_cont +
cd4+_cont + cd8+_cont + nk_cont + mono_cont + neutro_cont + group”.

When attempting to run the DESeq2 with the design, the error message
“Model matrix not full rank”, which in the documentation of DESeq2 is
described as “One or more variables or interaction terms in the design
formula are linear combinations of the others and must be removed”. This
is somehow surprising, as all variables are continuous, and the presence of
linear combinations is highly unlikely. There is probably some inner reason
in the DESeq2 for this not to be applicable. Further experimenting with
the design reveals that omitting any of the added continuous terms from the
design above allows for the DESeq2 to run. However, the tool reports that the
fitting of the NB model did not converge. It is also possible that the number
of parameters to be estimated is larger than the number of samples, and the
system is under-determined or that there is some possible near-collinearity of
added variables, which complicates the model fitting.

When inspecting the model’s design matrix, it was found why the matrix
was not full rank. There was a linear dependence — the implicit intercept
term (represented by columns of ones) was a linear combination of all the
continuous variables. As they are all coming from CIBERSORT LM6 and
represent fractions, they sum up to one for each sample. Therefore, the sum
of columns of the design matrix belonging to these variables equals to column
composed of ones, which is the implicit intercept term.

To complete the experiment, we build one more model, including all the
variables from LM6. However, this time, in the form of a binary variable,
where the values are divided into two equally sized groups based on a threshold
(as described in the first experiment). In other words, we use the “ ∼ bcell_2
+ cd4+_2 + cd8+_2 + nk_2 + mono_2 + neutro_2 + group” design. This
time, the DESeq2 was able to run without any problems, and all coefficients
of the model converged.

The results are compared to the baseline model of “∼ group”. We compare
them in the same manner as in the previous experiments; the number of
significantly DE genes was 48 and 91 for the basic and full model, respectively.
The Spearman’s correlation rank between ordered genes was 0.51. Out of
the 100 top genes from both designs, 35 were identically identified. We also
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show the distribution of p-values for all genes, as reported by DESeq2. It
seems like there is a lower number of genes with low p-value in the full model,
which seems to not go well with the reported number of significant DE genes.
This can probably be explained by the fact that the significance of genes is
based on adjusted p-value, which is also influenced by DESeq2’s independence
filtering [65]. This is another reason why this kind of comparison is hard to
interpret.

Figure 5.5: Comparison of distributions of p-values of results from both the
basic model (with only group variable) and the full model (called Expanded
Model in Figure 5.5) with all LM6 variable added in binary form. Means are
marked by dashed, and medians by solid line.

5.2.4 GSEA of DESeq2 results

Apart from the described measures of comparison, we employed one more
way of looking at the results — from the point of gene set enrichment analysis
(GSEA). We are mainly interested in whether the designs used in the previous
experiments—which often produced very different results when comparing
them based on our proposed metrics —will produce similarly varying results
when interpreting the results using the GSEA.

There are many ways of employing the GSEA, but we decided to use it
for the enrichment of GO terms, using the gage R library [69] (details in
the usage are reported in the Appendix D). We performed the GO terms
enrichment on the results obtained by DESeq2 on designs used in Experiment
1 and Experiment 2. For the GSEA, the genes were sorted by p-value, and
the log2-fold change was used as input metric.

The results of the GSEA are reported in Appendix D. Results are reported in
tables in the following way: for each design used, the top six over-represented
GO terms are reported along with their p-value and adjusted p-value, corrected
for multiple testing. We do not report the under-represented GO terms, in
order to make the resulting tables more comprehensible — the results and
following discussion might thus not be that comprehensive, although the
methodology for obtaining under-represented GO terms is the same and the
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5. Incorporating the deconvolution results to DGE analysis ..................
result should follow similar trends.

The results for different designs are presented in Table D.2 for B cells from
CIBERSORT LM6, in Table D.3 for B cells from EPIC, in Table D.1 for B
cells from xCell, in Table D.4 for CD4+ T cells from CIBERSORT LM6, in
Table D.5 for CD8+ T cells from CIBERSORT LM6, and in Table D.6 for
NK cells from CIBERSORT LM6.

When examining the tables, the first thing to notice is that the found
significant GO terms almost do not differ between different models. There
is some occasional position switch or an introduction of new GO term to
the top 6. A more substantial trend, present in results for all methods, is
in the changes of p-value and adjusted p-value. Given a cell type, with the
increasing complexity of the model (with the increasing number of recognized
levels of the categorical variable, up to the continuous variable), the p-values
and adjusted p-values increase up to a point, that except CD8+cell_2 from
CIBERSORT LM2, all the GO terms would not be found significant on the
significance level of 0.1.

In conclusion, it seems that the top found GO terms are not that much
influenced by the incorporation of additional variables, although the p-values
and adjusted p-values seem to increase dramatically, deeming the found terms
insignificant.

5.2.5 Summary of experiments

In conclusion, we showed several ways of incorporating the deconvolution
results into the DESeq2 design. When describing the setup of the experiments,
we have stated several questions, we can approximately answer now. We took
B cell proportions from three different deconvolution methods, which were
found to provide highly correlated results. We applied the B cell fractions to
the design of DESeq2 in a way analogous to including the batch correction
variables. Even when incorporating results from different deconvolution
methods in exactly the same way, we obtained very different results in the
DGE analysis. This supports the thesis that the DGEA is very sensitive to
the additional variables incorporated in the design; therefore, the correctness
of used deconvolution results is of high importance. This place demands on
the well-founded and supported deconvolution approaches.

We further explored if adding fractions of three other cell types other than
B cells will reveal some general principles or trends in the observed comparison
metrics. It seems that in general the celltype_3 or celltype_cont provides
the highest number of significant DEGs. Also, in this and the previous
Experiment 1, the ratio of identically recognized significant DEGs stayed
between 38-61%. This creates an opportunity for selecting those overlapping
genes and using them for further analysis as a robustly selected set, identified
by multiple different designs at the same time.

Including more variables at the same time in the design showed to produce
very diverse results. We explored three designs incorporating combinations
of two continuous fraction variables. The number of significant DEGs varied
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greatly, and there was no overlap in the lists of the top 100 most significantly
DE genes for these designs.

Including full information from CIBERSORT LM6 has shown unexpected
problems with the design matrices, specifically the problem of linear depen-
dence between variables, which has to be controlled for, especially when
including continuous variables resembling percentages. This also shows that
there has to be some mechanism for controlling for linear dependence of the
incorporated variables, e.g., in the case of implementing an algorithm for
automatic incorporation of the deconvolution results to the DGEA.

We also evaluated the stability of the DESeq2’s results with different designs
with respect to the GSEA of GO terms, indicating that the results are very
robust, showing minimal differences in the lists of most significant GO terms.
This would support the hypothesis that although the different designs produce
highly varying results on the gene level, in the “bigger” picture of GO terms,
the results remain quite similar. However, there is a substantial increase in
the p-values and adjusted p-values, causing the identified enriched GO terms
to be insignificant.

In conclusion, it was not easy to compare and evaluate the actual benefit
of added deconvolution variables without ground truth. We cannot assess
the actual added benefit of added deconvolution, but the reported differences
and results create an opportunity for future research focused on evaluating
the nature of the differences with respect to the known underlying truth.
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Chapter 6
Conclusion

In this master thesis, we presented an introduction to the RNA sequencing,
firstly by introducing the necessary biological background, followed by a high-
level description of the sequencing technology. After describing the RNA-seq
pipeline, we explored in detail the statistical properties and handling of
the RNA-seq count data, specifically the normalization methods, with the
description of their recommended usage.

We further described a problem of deconvolution of gene expression profiles,
described several types of tasks, which are commonly understood under this
term, and showed a proper mathematical formalization of the problem. In the
context of this formalization, we performed comprehensive literature research,
describing both commonly used and state-of-the-art methods. These methods
were described in detail, put in the framework of previously introduced
formalization, and evaluated based on proposed metrics. These metrics were
carefully selected based on the needs and specifics of our data and detailed
research in the literature.

Out of the described methods, eighteen variants and setups coming from
ten of these deconvolution methods were selected to be applied to the data
provided by the thesis supervisor. The provided data consisted of RNA-seq
data, coming from eighty whole blood samples. Although the so-called count
matrix resulting from RNA-seq reads was provided too, it was not suitable
for proper deconvolution and differential gene expression analysis, mainly
because of missing information from the alignment to genome/transcriptome.
Therefore, the complete pipeline of RNA-seq FASTAQ read files alignment
to the transcriptome and feature counting had to be performed. This was
done using several tools, in order to deal with the uncertainty coming from a
low mapping rate, which was further explored with RNA-seq quality control
tools and plausibly explained. During the data preprocessing, we also briefly
examined the differences in performing the differential gene expression analysis
on gene and transcript levels, showing significant differences.

The results of deconvolution methods applied to the data were examined,
compared on the basis of Pearson and Spearman correlation coefficients, and
visualized within a common framework, where possible. This revealed clusters
of methods, reaching similar results, even though employing different ap-
proaches to deconvolution. We also showed a method for identifying unknown
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6. Conclusion......................................
cell types detected by complete deconvolution method, and successfully used it
for mapping of unknown gene expression profiles to known cell types, defined
in other signature matrices.

Finally, we applied the results obtained by deconvolution to DGE analysis
(in order to detect biomarkers) and explored the DGE results. We proposed
several ways of including the deconvolution in the design of DESeq2 and
compared the results based on the number of significantly DE genes, the
number of uniquely and identically found genes, distribution of p-values and
overall ranking of the found genes. We also compared the results using the
gene set enrichment analysis of GO terms.

We showed that those results differ, sometimes even greatly, and no consis-
tent effect of incorporating the additional information was observed. Results
obtained by GSEA were found to be robust in terms of the order of identified
GO terms but generally losing significance with the incorporation of deconvo-
lution information. Although the actual evaluation of the added benefit is
not easily possible (as no ground truth of the actual biomarkers present is
available), the mere presence of such differences gives an opportunity for addi-
tional research, which would focus in detail on the nature of these differences
and their relationship to the underlying truth.

Future work should be aimed at establishing a pipeline for performing
deconvolution, well tested and validated both on simulated and real datasets,
with known ground truth. The experiments on the identification of biomarkers
would also greatly benefit from a carefully prepared dataset, consisting of
both bulk RNA-seq and scRNA-seq datasets, coming from the same tissue of
interest, ideally with measured proportions of present cell types.
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Appendix A
LinSeed deconvolution — figures

In this appendix, the accompanying figures for the Section 4.1 on deconvolu-
tion using the LinSeed are enclosed.
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Appendix B
Deconvolution results — figures

In this appendix, we present figures of deconvolution results using different
methods. The results are reported by cell type, B cells, NK cells, CD4+
T cells, CD8+ T cells, monocytes and neutrophils. For each cell type,
four Figures are given. The first, showing proportions of given cell types scaled
to [0; 1] range in all samples, the second, showing the original proportions
as reported (with methods, not producing values resembling percentages,
omitted). Then, the proportions for given cell types from different methods
are compared based on Pearson’s and Spearman’s correlation, which are
reported in the third and fourth figures, respectively.
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Appendix C
DESeq2 experiments — figures

This appendix contains of figures described and discussed in the Section 5.2.3
in the main text of the thesis.
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Appendix D
Gene set enrichment analysis

The gene set enrichment analysis (GSEA) was performed using the gage R
library [69]. The gage was used for enrichment of Gene Ontology (GO) terms
[109] [8], specifically with the go.sets.hs dataset, provided by gage, consisting
of 17202 GO terms. Out of those, the GO terms belonging to the biological
process subtree were selected.

In the following tables, top 6 up-regulated GO terms are shown for each
specified design. The reported p-values and multiple testing corrected p-values
(marked as p adj) are also shown.

The motivation for GSEA and discussion of the obtained results is present
in the main text, in Section 5.2.4.
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Appendix E
Recognized cell types in presented
signature matrices and methods

In Table E.1, we present recognized cell types as presented in different
signature matrices and methods used in this thesis. The terminology or
naming of the different cell types differs greatly between methods, sometimes
resulting in ambiguous meaning. This complicates the comparison of results
coming from different methods, as it is not clear, which categories are equal.
This lead to the need of formalizing the relationship between naming of cell
types between methods and signature matrices. One such is shown in Figure
E.1, presented by Sturm et al. [106]. The hierarchy of cell types is represented
by tree, where value of a node is computed as sum of its children. This is
implemented in R package immunedeconv [50], which provides a mapping of
results between CIBERSORTs LM22, Quantiseq, EPIC, TIMER, xCell and
MCPcounter results.

Figure E.1: Immune cell types hierarchy, as defined by Sturm et al. [106]
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