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Abstract
Using value function in depth-limited solv-
ing of perfect information games produced
super-human play in several domains, like
chess or Go. In the domain of large imper-
fect information games, research mainly
focused on the game of poker, which pos-
sesses nice properties, and new methods
were not used and tested on other do-
mains.

In this thesis, we present the use of
value functions in imperfect information
chess. We design an abstraction model
for imperfect information chess variants,
Kriegspiel and Darkchess, and empirically
show its usability by computing approx-
imate Nash equilibrium by a modified
CFR-D algorithm. We test the use of
a convolutional neural network to reduce
the necessity of a domain-specific model.
Finally, we take a step towards a real-time
playing by using multiple neural networks
at different depths as value functions.
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Abstrakt
Využití evalučních funkcí v řešení her s
úplnou informací vedlo k dosažení nad-
lidských výkonů v několika hrách, jako
šachy nebo Go. V oblasti velkých her s
neúplnou informací, výzkum mířil přede-
vším na poker, který má dobré vlastnosti,
a nové metody nebyly využity a testovány
na jiných hrách.

V této práci předvedeme použití evalu-
ačních funkcí v šachách s neúplnou infor-
mací. Navrhli jsme abstrakční model pro
dvě varianty těchto šachů, Kriegspiel a
Darkchess, a empericky předvedli jeho vy-
užití dosažením přibližné Nashovy rovno-
váhy minimalizováním upraveným CFR-D
algoritmem. Otestovali jsme použití ko-
volučních neuronových sítí, které snižují
potřebu herně specifického modelu. Nako-
nec jsme učinili krok k hraní v reálném
čase použitím několika neuronových sítí
v různých herních úrovních.

Klíčová slova: teorie her, hry s
neúplnou informací, šachy, kriegspiel,
darkchess, evaluační funkce, CFR, řešení
s omezenou hloubkou

Překlad názvu: Heuristické evaluační
funkce pro šachy s neúplnou informací
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Chapter 1
Introduction

The use of games to measure advances in the research of artificial intelligence
has been around for a long time. With the rise of computing power, computer
agents for many perfect information games already surpassed the human
grandmaster level. The first notable accomplishment came in the classical
board game Chess when IBM’s DeepBlue [9] defeated world champion Garri
Kasparov, only with pure search power. The next milestone was the game Go:
the algorithm AlphaGo [25] convincingly beat the strongest grandmaster at
the time, Lee Se-Dol. It was built around a system using a neural network as
an evaluation function, which proved to be crucial in this large game. These
games and others share the property that all players know all information
about the game, aside from the opponent’s strategy.

In recent years there have also been significant breakthroughs in solving
large imperfect information games. Most research focus went into different
variants of poker and recently achieved superhuman play. In the domain
of two-player Heads-up No-Limit Texas Hold-em, DeepStack [19] algorithm
defeated 30 professional poker players, and recently agent called Pluribus [4]
became first to consistently win against human players in a six-player version
of poker. Outside of poker, there has been advancement in cooperation games
with unknown and uncertain teammates, in which an algorithm DeepRole
[22] excelled.

These algorithms were able to achieve such a good result by combining
the established method of counterfactual regret minimization [28] and neural
network used as evaluation functions for depth-limited search. In this thesis,
we analyzed this approach for two variants of imperfect information chess,
Kriegspiel and Darkchess. Both games have unique properties to previously
explored domains; for example, in both is very sparse common knowledge,
which quickly loses value, and in Kriegspiel, some action players can choose
from are illegal.

We designed a novel abstraction for both games, which allowed depth-
limited search and the use of value functions. We tested our method in
several endgames and were able to approximate Nash equilibrium by a
modified CFR-D algorithm [8]. We tested the use of convolutional neural
networks to reduce the need for a domain-specific model, a concept previously
only used for perfect information games. Finally, we provide a step towards
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1. Introduction .....................................
real-time play by stacking multiple neural networks at different depths as
value functions.

This thesis is divided into six chapters. In Chapter 2, we provide an overview
of relevant concepts in game theory and neural networks. In Chapter 3, we
discuss previous work done in solving imperfect information games, both chess,
and others. In Chapter 4, we provide a detailed analysis of the properties of
Kriegspiel and Darkchess and provide our designed abstraction for them. In
Chapter 5, we provide an empirical study of the use of value functions for
depth-limited search in imperfect information chess. Finally, in Chapter 6,
we provide an overview of the thesis and suggest ideas for future work.

2



Chapter 2
Background

This chapter gives a brief introduction to the background of this thesis. First,
we introduce notations for imperfect information extensive form games. Then,
we discuss the method of counterfactual regret minimization and game solving
using decomposition. Finally, we provide a brief overview of neural networks.

2.1 Extensive form game

An extensive form game (in the rest of the text is used abbreviation EFG)
represents a game with a sequence of action taken by players in turns in
oppose to actions taken by players simultaneously. Game is then model as a
game tree. A node in the tree represents a chance event (a die roll, card deal,
etc.) or state of the game (player’s turn, information available to players,
board position). An edge represents an outcome of a chance event or an effect
of playing action by a player resolving in a new game state. The root node of
the tree represents the start of the game, and each leaf node represents the
termination of a game.

An imperfect information extensive form game G is represented as a tuple
(N,H,Z,A, ρ, ui, I) where:.N = {1, . . . , n} is the set of all players;.H is a set of histories, h is particular sequence of action, starting from

root of the tree, we denote the fact, that for g, h ∈ H, g is equal to or
prefix of h as g @ h;. Z is a set of terminal histories, Z ⊆ H (those z ∈ H that are not a prefix
of any other history);.A is a set of actions, A(h) = {a|(h, a) ∈ H} are the actions available after
non-terminal history h ∈ H, A(I) are actions available in information
set I ∈ Ii;. ρ : H \ Z 7→ N is a player function, it assigns an acting player i ∈ N to
each non-terminal history;. ui : Z 7→ R, i ∈ N is a real-valued utility function for player i in terminal
nodes Z;
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2. Background .....................................
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Figure 2.1: Simple game of rock, paper, scissors as imperfect information
extensive form game.

. I = (Ii) for i ∈ N is the information-partition, Ii ⊆ Hi, if g, h ∈ Hi and
g, h ∈ Ii, than player i cannot distinguish between those two states.

A perfect information extensive form game is the same tuple as imperfect
information, but without the I as in every information set, there is only one
state. A zero-sum game is a game which for every terminal node of EFG
satisfies ∑i∈N ui = 0.

Example of is Rock, Paper, Scissors in Figure 2.1, which can be modeled as
a zero-sum imperfect information game even though the play between humans
is simultaneous. Number in a node represents the player taking action in
that state; each edge represents an action taken, here R for rock, P for paper,
and S for scissors. Leaf numbers are payoffs from the perspective of player 1.
The dashed rectangle around multiple nodes represents an information set of
given nodes.

EFG has perfect recall if ∀i ∈ N, ∀I ∈ Ii : h, h′ ∈ I ⇒ Xi = Xi(h′), where
Xi(h) is a sequence of player i’s pairs of information set and action that were
taken to reach history h ∈ H in the same order as in h. In other words, it
means that player i remembers all discovered information during its play
up to h. In the rest of the thesis, all games will be two players zero-sum
imperfect information in extensive form, and players will have perfect recall.
Pure strategy si in a EFG for player i is assignment of some action a for

each information set where player i acts. Si is the set of all pure strategies
of the player i, formally Si = ∏

I∈Ii
A(I). The probability distribution over

pure strategies is mixed strategy. Space of all possible strategy profiles is
denoted Σ = Σ1 × Σ2 × · · · × Σn.

A is a function σi : Ii → δ(Ai) which for each information set assigns a
probability distribution over available actions. A tuple of all players’ behavior
strategies is called strategy profile, formally σ = (σi)i∈N . The probability
of history h occurring if players behave according to strategy profile σ is
ησ(h). Probability of reaching a particular information set I given σ is defined
similarly, ησ(I) = ∑

h∈I η
σ(h).

Best response is a strategy profile σ∗i which satisfies ∀σi ∈
∑
i, ui(σ∗i , σ−i) ≥

ui(σi, σ−i). It means that strategy profile σ∗i of player i results in maximum
possible payoff against opponent strategy profile σ−i compare to all other
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........................... 2.2. Counterfactual regret minimization

available profiles. Set of all best responses for player i to strategy profile
σ−i is BRi(σ−i). The strategy profile such that all players’ strategies are
best responses to other players’ strategies is Nash equilibrium, ∀i ∈ N, σi ∈
RBi(σ−i). The common sense behind equilibrium is that no player can gain
any advantage by playing a different strategy than equilibrium. In general,
games may have more than one Nash equilibrium. In zero-sum games, every
Nash equilibrium expected outcome is the same.

To evaluate Nash equilibrium profile σ employed by players in zero-sum
game, we define game value as expected payoff to the first player, v = u1(σ). If
player 1 makes some adjustment to their strategy and gets a new strategy σ′1,
then ∃σ′2 ∈

∑
2, u1(σ′1, σ′2) = minσ′′2 u1(σ′1, σ′′2) = v − ε1. Intuitively, player 1

becomes exploitable by amount ε1 ≥ 0, because player 2 can change its strategy
to exploit the error player 1 makes and achieve u2(σ′1, σ′2) = −v+ε1. Similarly,
player 2 can become exploitable by ε2. Exploitability value εσ = ε1 + ε2 is
used to get the distance of a σ to an equilibrium. If and only if a strategy
profile has 0 exploitability is an exact Nash equilibrium.

2.2 Counterfactual regret minimization

In most iterative algorithms used for game solving, there is no guarantee to
reach a Nash equilibrium in a finite number of steps.

An ε-Nash equilibrium is an approximate solution to finding Nash equilib-
rium, where the expected value for each player i is within ε of the value of
best response, ui(σ) ≥ ui(σ′i, σ−i)− ε. An ε-Nash has at most ε exploitability,
strategy profile with exactly ε exploitability is a 2ε-Nash equilibrium.
Regret is a model used to quantify how an action taken during T trials is

preferred versus a set of other actions that could have been taken instead.
The average overall regret at time T is:

RTi = 1
T

max
σ∗i ∈
∑

i

T∑
t=1

(ui(σ∗i , σt−i)− ui(σt))

The average strategy for player i until step T is σti, defined for every informa-
tion set I ∈ Ii, ∀a ∈ A(I) as:

σti(I)(a) =
∑T
t=1 η

σt

i (I)σt(I)(a)∑T
t=1 η

σt

i (I)

An algorithm is regret minimizing, if player i’s average overall regret goes
to zero as t → ∞. That means that such an algorithm can be used to
approximate Nash equilibrium.

As first shown in [28], it is possible to decompose overall regret into a set
of additive regrets, that can be minimized independently. The counterfactual
regret of not playing a ∈ A(I) at I is the difference in the expected utility
of playing a at I instead of σ(I), weighted by the opponent’s probability of
reaching I. Counterfactual utility ui(σ, I) is defined as expected utility given
that information set I is reached, and all players are playing according to

5



2. Background .....................................
strategy profile σ except that player i plays to reach I. Then counterfactual
utility is:

ui(σ, I) =
∑
h∈I,h′∈Z η

σ
−i(h)ησ(h, h′)ui(h′)
ησ−i(I)

Additionally, let σ|I→a be a strategy profile that differs from σ only in player
i choosing action a in information set I. Then the immediate counterfactual
regret at step T is:

RTi,imm(I) = 1
T

max
a∈A(I)

T∑
t=1

ησ
t

−i(I)(ui(σ|I→a, I)− ui(σt, I))

It is possible to use counterfactual regret minimization to minimize regret,
because regret is upper-bounded by the sum of immediate counterfactual
regret:

RTi ≤
∑
I∈Ii

RT,+i,imm(I)

where we use RT,+i,imm(I) = max(RTi,imm(I), 0) as we are only interested in
positive portion of the immediate counterfactual regret. Proof can be found
in [28].

In this thesis, we use an improved algorithm to compute counterfactual re-
gret minimization, CFR+ [26]. It uses an improved regret-matching technique
to speed-up convergence of the algorithm. Let cumulative counterfactual
regret+ at information set I for taking action a at iteration T define as:

R+,T
i (I, a) =

{
max{vi(σ|TI→a, I)− vi(σT , I), 0} T = 1
max{R+,T−1

i (I, a) + vi(σ|TI→a, I)− vi(σT , I), 0} T ≥ 1

Strategy profile is produced by regret-matching+:

σT+1 =


R+,T−1

i (I,a)∑
a′∈A(I) R

+,T−1
i (I,a′)

if the denominator is positive
1
|I| otherwise

To see the implementation of CFR+, go to [26].

2.3 Decomposition

A common part of most algorithms used for solving perfect information games
is decomposition. As all information sets in perfect information game contain
only one state, it is easy to split the whole game into parts and solve those
independently. In recent years, such algorithms reached a super-human level
play in games of Go [25] or chess [24].

Using similar techniques for imperfect information games was until recently
impossible. The problem is to decompose such a game into subgames as a
strategy is defined on information sets, not separate states. Progress was made

6



....................................2.3. Decomposition

Figure 2.2: Game tree with subgames.

in [8], showing that imperfect information games can be safely decomposed
into a trunk and subgames, which can then be re-solved when necessary.

To better understand the logic behind both trunk and subgame definition,
we first define them for perfect information games and later extend the
definitions to imperfect information games. A subgame in perfect information
game is defined as a state and all of its descendants. In other words, the
root of the subgame is some state of the original game, and the subgame is a
set of states closed under the relationship "is descendent of". The trunk can
then be defined for a complete game and a set of subgames as all states that
are not in subgame. From this definition, it is evident that the trunk and
subgames divide the whole set of states.

In Figure 2.2 is a visualization of the trunk and subgames in a perfect
information game. The white node is the root of the game; the light grey
triangle represents the trunk, the dark nodes are the states in the trunk
border, and the dark shaded triangles are subgames (not all of the subgames
are shown). To solve the trunk, we only need to summarize each subgame’s
strategy with our value against opponents’ best response and keep this value
in the corresponding state in the trunk border. Later, when choosing an
action in that state, we need to compare the subgame values and pick the one
that maximizes expected utility. Subgame can be resolved anytime necessary
by the same algorithm as it was solved in the first place.

For imperfect information games, the definitions slightly differ. First, we
define an imperfect information subgame: the root is a set of states, and
the subgame contains a set of states which is closed under both the "is a
descendent of" and the "is in the same information set" relationships. Meaning,
if state s is in subgame S and belongs to information set I, s ∈ S∨s ∈ I, then
all descendants of s and all states in I are in the subgame. This condition
is crucial as we have to guarantee that the subgame does not split up any
information sets. The definition of trunk stays the same - all states that are
not in a subgame. To denote trunk of a game G, we use GT , where T is
subset of H \ Z. Information partition of the trunk is IT .

7



2. Background .....................................
To compute the value of a subgame in a perfect information game, we

only need to know the root state of the subgame. In comparison, imperfect
information subgame has a probability distribution across its root states
dependent on the trunk’s strategy, meaning that the value of subgame changes
as trunk strategy does too. To get a trunk strategy, we use an algorithm
CFR-D, an extension of CFR. At each iteration, we have a complete trunk
strategy and, therefore, well-defined subgames as well. We compute the
counterfactual values of the information sets at the root of the subgames
using the trunk strategy. With that, we can then update the regrets in the
trunk and generate a new strategy profile to be used in the next iteration.

A trunk strategy is a special case of partially defined strategies. Those are
part of a Nash equilibrium if we can extend them to a full Nash equilibrium
of the game. Formally, σJ , a profile of partial strategies on I ′ ⊆ I, is
in Nash equilibrium only if exists a full Nash equilibrium strategy profile
σ ∈ Σ : σJ(I) = σ(I), for ∀I ∈ I ′.

The information available to player i in histories where he does not act
is captured by augmented information set Iaug. Two histories g, h ∈ H \ Z
belongs to the same augmented information set of player i, if his observation
history of g and h are the same, −→O i(g) = −→O i(h). Observation history of
player i in history h ∈ H \ Z is sequence of the information sets visited
and action taken by i on the path to h. We use ∼ to denote two histories
indistinguishable by at least one player: g ∼ h⇔ ∃i ∈ N : −→O i(g) = −→O i(h).

We use Iaug as a way of generalizing information sets, so we only use the
common knowledge available to all players. This approach will provide us
with the correct definition for subgames in an imperfect information setting.
The common knowledge public tree is partition S of H that forms a tree with
respect to @ and is closed under ∼. Its nodes S ∈ S are common knowledge
public states, with Si = {I ∈ Iaugi |I ⊂ S} are augmented infosets of player i
in public state S. Now a subgame with the root being public state S is the
set of histories extending S. This is compatible with our previous definition
of subgames but provides a better understanding of what histories need to
be included in a subgame. We define a public observation Op as the common
knowledge information available to all players after a move was made.

Let us look at an example that summarizes this section. In Figure 2.3, is
extensive form of rock, paper, scissors (RPS). The dashed bubble encircling
the three nodes of player 2 marks his only information set I2 = 2R, 2P , 2S ,
with its index indicating action by player 1. There are also three augmented
infosets of player 1, the same nodes as in infoset of 2, but he distinguishes
between them: IR1 = 2R, IP1 = 2P , IS1 = 2S . The game has one apparent
decomposition into a trunk and a subgame: let trunk be the decision of player
1; then there is one subgame - the endgame when player 2 selects his choice.

When using some fix trunk strategy, for example, playing rock with prob-
ability 0.4, paper also with 0.4, and scissors with 0.2, we cannot naively
re-solve the subgame as in perfect information setting, as even when player 2
is playing best response against the trunk strategy, player 1 can exploit it,
once he is allowed to adjust his strategy in the trunk [8, 14].

8
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Figure 2.3: A trunk and a subgame of rock, paper, scissors.

However, using the CFR-D allows us to iteratively re-solve subgames and
guarantees not to increase the exploitability of the resulting full-game strategy
profile.

2.4 Neural networks

If not stated otherwise, this section is based upon [16].
A neural network is a function approximator consisting of layered linear

functions whose outputs are transformed with a non-linear activation. In this
thesis, we use feed-forward neural networks (FNNs) with fully connected layers
and convolution neural networks (CNNs). A feed-forward neural network
takes an input x and transforms it in predefined sequence with its layers so
that the output of layer l is an input of the layer l + 1.

A fully connected layer is defined as:

y = f(W · x+ b)

where x ∈ RN is the input and y = RM is the output. The matrixW ∈ RM×N
and the vector b ∈ RM are the parameters, sometimes called weights, of the
layer, and the function f is an activation. A feed-forward neural network is
solely made of several fully connected layers.

A convolution is an operation on two functions of a real-valued argument.
In this thesis, we use two dimension convolution. We define it as:

S(i, j) = (K ∗ I)(i, j) =
M∑
m

N∑
n

I(i+m, j + n)K(m,n)

where I ∈ RK×L is an input matrix, K ∈ RM×N is called kernel and S is
the output, sometimes referred to as the feature map. The dimension of the
output is determined by several other parameters (stride, padding), which
are in detail described in [16].

There are many activation functions used in neural networks. Commonly,
a rectified linear unit (ReLU) [15] is used:

f(x) = max{0, x}

9



2. Background .....................................
In this thesis, for the output layer we use linear activation, which is an identity
function, f(x) = x, as we use the neural network to predict a real-number
value.

Neural networks are trained by minimizing a loss function. As shown in
[19], for similar problem as ours, the L1 loss is often used. It is defined as:

L1(y, f(x) =
n∑
i=1
|yi − f(x)i|

In [21], Huber loss was presented as showing better result when minimizing
it during train. It is less sensitive to outliers. It is defined piecewise:

Lδ(y, f(x)) =
{1

2(y − f(x))2 for|y − f(x)| ≤ δ
δ|y − f(x)| − 1

2δ
2 otherwise

Weights of the neural network are optimized with a gradient descent. We used
an Adam optimizer [17], first-order gradient-based optimization algorithm.

10



Chapter 3
Related Work

Most of the previous research into large imperfect information games was
focus on the domain of poker. First, with Heads-up Limit Texas Hold’em [27],
later Heads-up No-limit Texas Hold’em [19, 7] and last year even multiplayer
Texas Hold’em [5].

In this chapter, we will discuss related work in both solving imperfect
information chess and generally of solving large imperfect information games.
First, we present previous work done in the Kriegspiel domain. Next, we talk
about the Deepstack algorithm, and finally, we discuss the newest approaches
for depth-limited solving and value functions.

3.1 Solving Kriegspiel

From its invention in 1899, Kriegspiel quickly became popular amongst chess
players for its complexity and surprises during play. Nevertheless, due to
the game’s enormous size, most of the research focused on solving particular
endgames, for example, king - rook - king (KRK). In [3], Boyce analyzed
properties of the KRK endgame and compared it to traditional KRK endgame
in perfect information chess. Boyce showed a deterministic algorithm to force
a win in this endgame in a bounded number of moves. It seeks to trap the
black king in a single quadrant of the board by maneuvering white’s king.

The first endgame implemented on a computer was king and pawn vs. king
(KPK) [10]. Another finding of this paper was an example of Kriegspiel’s
position in which stronger side cannot win with probability 1, but can get as
close to 1 as it desires. It showed that a position exists, which is equivalent to
a recursive game called Blotto’s problem. To win, the stronger player needs
to take a small risk and is unable to achieve a full reward of 1.

Another improvement presented concept of metaposition, first discussed
in solving chess-like game of Shogi [20] and later used for Kriegspiel [2, 11].
Metaposition allows the merging of a large set of possible game states into a
single state and then applying perfect information solving algorithms. This
method led to outperforming any other known computer agent.

In [13], an approach using a Monte Carlo Tree Search (MCTS) outperformed
all opponents with a perfect score in the Kriegspiel tournament at the 14th
Computer Olympiads.
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3. Related Work.....................................
Last published improvement in agent design is [12]. It combines MCTS

with priority planning. They define two types of goals based on chess theory:
priority goals (short term advantages) and long term goals (placing pieces
in favorable positions, regrouping pieces). When an agent needs to pick an
action, it tries to pick such action that leads toward reaching predefined goals;
if no such action is available, it runs MCTS to pick the best possible one.
With this method, they were able to beat the previous strongest player. This
paper currently represents the last research done on the domain of Kriegspiel.

Previous research focused on producing the strongest possible agent and
achieving a super-human level of play. In comparison, our approach goal is
to approximate a theoretical perfect play - compute an ε-Nash equilibrium.

3.2 DeepStack

In 2017, DeepStack [19], an online playing general-purpose algorithm for
sequential imperfect information games, was published.

It uses a concept of continual re-solving - reconstructing own strategy
every time it needs to act and thus never needing a complete strategy for the
whole game. This method is a theoretically sound approach but impractical
as resolving is time-expensive except near endgame. DeepStack solves the
challenge by decomposing the game and only solving the trunk strategy
and approximate the counterfactual values of subgames with learned value
function. It reduces the size of the game needed to be re-solved at the
beginning of the game from 10170 decisions down to less than 1017. With
reducing the number of actions considered to six or seven (fold, call, 2-3 bets,
and an all-in), the look-ahead tree needed to be re-solved was reduced to
approximately 107 decision points and allowed solving the game with single
GPU in less than 5s.

This reduction could be potentially exploited by opponents, as they could
try to employ unfamiliar betting sizes. However, as shown in figure 3.1,
with an increasing number of games played, DeepStack was able to defeat
professional poker players consistently. The performance is measured in terms
of mbb/g, which stands for milli-big blinds per game and represents how
many big blinds (initial money player must put into the pot) a player wins
on average over 1000 games. It is a standard win rate measure used in the
literature. The red line represents a break-even level of 0mbb/g; the blue
dashed line represents the level which professional players consider sizable
margin, 50mbb/g.

DeepStack uses two separate neural networks: one for estimating coun-
terfactual values after the flop is dealt (first three public cards) and second
after the fourth card is dealt (turn). The input of the networks is the ranges
of both players (distribution of possible private card holding), pot size, and
public cards. This amount of information is sufficient to specify a public state
of the game.

The networks need to be trained before play. Training data are generated
by simulating random poker situations and then solving them. The turn

12



..................................3.3. Multi-Valued states

Figure 3.1: Performance of DeepStack against professional poker players[19].

network was trained first, and then it was used to compute training data for
the flop network. This stacking of the neural networks speeds up the process
of data generating.

Although DeepStack is presented as a general algorithm, its development
was heavily influenced by poker, some of its design was tailor-made to poker
properties and never was presented to play other imperfect information games.

3.3 Multi-Valued states

In [6], Brown et al. described a new method for depth-limited solving in
imperfect information games referred to as multi-valued states. The main
idea is associating terminal histories h of the trunk with values v〈σ1,σ2〉(h)
opponent achieved playing different strategies against a fixed approximation
of the equilibrium for the whole game.

Their main proposition is, that in order to calculate player 1 Nash equi-
librium strategy in a trunk S, reached when player 1 played according to
Nash equilibrium strategy σ∗1 prior to reaching it, it is sufficient to know
player 2 value playing best response against σ∗1, v

〈σ∗1 ,BR(σ∗1)〉
2 (I) for its every

root information set I ∈ S, and player 1 value for every pure undominated
strategy σ2 and every leaf node h ∈ S, v〈σ

∗
1 ,σ2〉

1 (h).
In practice, there are numerous pure strategies σ2 against σ∗1 to know

expected values in every state. Moreover, σ∗1 is unknown. They propose a
workaround to estimate these values and still achieve excellent performance.

The first step is to precompute an approximate equilibrium fro the whole
game, which they call blueprint strategy σ̂∗. It is computed first by abstracting
the game by bucketing together similar situations and the running Monte
Carlo Counterfactual Regret Minimization algorithm. This strategy is only
used to estimate value at the trunk leaf v〈σ̂∗1 ,σ2〉(h) and agent never uses it
for playing decision.

Next is the selection of player 2 strategies σ2. Brown et al. claim that it is
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3. Related Work.....................................
possible to use a small number of diverse, intelligent strategies, e.g., 10, as
a choice of strategy is made at each leaf node independently. This leads to
choosing between a much higher number of strategies (for a trunk with 100
leaves, it would be 10100 different strategies). The strategies can be generated
in two different ways: bias approach or self-generative approach.

Bias approach utilizes the blueprint strategy and bias to it in different ways.
For example, a new strategy σ2 in poker could be obtained by multiplying
the probability of choosing fold action by a given bias and then normalized
all the probabilities.

The self-generative approach constructs the set of σ2 via self-play iteratively.
At the start, the only strategy is the blueprint σ̂2. Then the trunk of the
whole game is solved to whatever depth is feasible; player 2 can only choose
a strategy from the strategy set. Let the solution to this game be σ1. The
best response strategy to σ1 is computed and added to the set of strategies of
player 2. This process is repeated until there is a desired number of different
σ2 strategies in the set.

With this approach, they were able to defeat previous top heads-up No-
Limit Texas Hold’em poker agents Baby Tartanian8 and Slumbot using only
a 4-core CPU and 16 GB of RAM for real-time play.

Brown et al. thoroughly discuss the advantages and disadvantages of their
method against DeepStack. They highlight that their approach is less com-
putationally expensive and easier to scale up. On the other hand, DeepStack
does not need an approximate Nash equilibrium in blueprint strategy, and it
computes best-response against all possible opponent’s strategies, not just
selected few.

There has not been a direct comparison of head-to-head performance made
between these two solving methods in any domain published so far.

3.4 Value functions beyond poker

The two previously mentioned methods, DeepStack and Multi-valued states,
were built around the game of poker, which until recently was the main
considered domain in the area of imperfect information games. However, poker
has some properties other games do not have. For example, all information
sets have the same size, and public observation always obtains the same size
of information (number of cards dealt does not change, pot size is always
visible).

To help extend research outside of the poker domain, Seitz et al. in
[21] proposed a domain and algorithm independent definition of a value
function for general extensive-form games and its representations. They
proved that any optimal value function enables depth-limited solving. They
experimentally showed on three fundamentally different domains (Generic
Poker, Imperfect Information Goofspiel, Oshi-Zumo) that neural networks
could be easily trained to approximate counterfactual value functions.

The important finding of this paper was Theorem 7 - Public state minimality.
It shows that public state factorization is the smallest possible for solving,
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............................. 3.4. Value functions beyond poker

and anything smaller provides insufficient information to evaluate states.
Next, they generalize the concept of range beyond poker. The range at

public state S is defined as:

rngσ
T (S) =

((
ησ
T
i (I)

)
I∈S(i)

)
i∈N

where σT is some trunk strategy profile, S is a public state in the trunk
boarder, S ⊂ T ∪ ZT . It means, player’s range at a public state S is set of
player i’s reach probabilities of information sets in S. They prove that this is
a sufficient representation of the context for depth-limited solving. In this
thesis, when we talk about range, we mean this definition.
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Chapter 4
Problem Analysis

In this chapter, we introduce the games of Kriegspiel and Darkchess and
discuss their differences and their implementation details.

4.1 Imperfect information chess

4.1.1 Kriegspiel

Kriegspiel is an imperfect information variant of chess designed by Henry
Michael Temple in 1899. During the play, each player only sees his own
pieces and only gets sparse observation of the moves the opponent made. For
this reason, an umpire with complete information on the game progress is
necessary.

Rules

The basic rule is that each player knows the exact positions of their own pieces
only. Apart from that, there are several rules variants for Kriegspiel, mostly
differing in what observation players are getting. In our implementation, each
player received this observation after each move:.White / black to move.. Pawn gone, after a pawn was captured.. Piece gone, after a piece was captured.. Illegal move, after a player tried to perform a move, that is impossible to

do in this game state, e.g., pinned figure tries to move away from pinned
square or pawn advancing to an occupied square.. Check, followed by all variation in effect: vertical, horizontal, long
diagonal, short diagonal, by a knight.. Checkmate, stalemate, draw.
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4. Problem Analysis ...................................
8 zzZzzZz1•TkzzZ
7 zZzzZ5XqzZzzZz
6 zzZzzZzzZzzZ
5 zZz2–UNzzZzzZz
4 z5™XQzzZzzZzzZ
3 zZzzZzzZzzZz
2 zzZzzZzzZzzZ
1 zZzzZz1•TKzzZz

a b c d e f g h

8 zzZzzZz1•TkzzZ
7 zZzzZ2UNzZzzZz
6 zzZzzZzzZzzZ
5 zZzzZzzZzzZz
4 z5™XQzzZzzZzzZ
3 zZzzZzzZzzZz
2 zzZzzZzzZzzZ
1 zZzzZz1•TKzzZz

a b c d e f g h

Figure 4.1: Multiple observations in Kriegspiel.

There can be multiple observations given to a player after a move, as is
shown in Figure 4.1. After white captures queen with Nxd7+, both players
receive a public observation from the umpire: "Piece gone, check long diagonal,
check by a knight, black to move." Private observation for black adds the
information that his queen was taken; white private observation is the same
as the public.

Observation implementation

As the rules of the game strictly provide the observations, we implemented it
as a one-hot encoding of thirteen bits. The first five bits represent checks,
the next two encode if there was capture and if yes, it encodes if that was a
piece or a pawn and the last six encode position on the board of the capture.
The position is independent of the size of the board.

0 0 1 0 1 0 1 1 1 0 1 0 0

Table 4.1: Observation encoding

Example of encoded observation for move from Figure 4.1 is shown in Table
4.1.

As the rules of Kriegspiel allows us to make an illegal move, we implemented
it only as private information for the player on the move as it gives nothing
concrete to the non-acting player.

Difficulties with illegal moves

Making an illegal move gives extra information to the player on the move.
For example, a pawn can only take diagonally, and it could be helpful to try
all possible pawn captures first, as it may reveal empty squares on the board.
This led to the invention of the "Are there any?" rule, when umpire provides
all possible pawn, captures to a player at the beginning of its move.

Still, illegal moves make the game extremely complicated as the game
tree is imbalanced in the depth of each player’s nodes, the same player can
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8 zZ
7 z
6 zZ 6šYp6Yp
5 zzZz z
4 zzZ6YP zzZz6šYp
3 zZ5XQzZ4WB5™Xq3VR6šYPz
2 zzZ6YP zzZ1TK6šYP
1 z zzZz

a b c d e f g h

8 z zzZ
7 zZz3—VrzzZzzZ1Tk
6 zzZ 6šYp6YpzZ
5 zZ 4˜WbzzZz
4 6YP6šYpzzZ 6šYp
3 zZ4WB5™Xq3VR6šYPz
2 zZzzZ
1 zZ zZ zZ

a b c d e f g h

8 zzZzzZzzZzzZ
7 zZz3—VrzzZzzZ1Tk
6 zzZzzZz6šYp6YpzZ
5 zZzzZz4˜WbzzZz
4 zzZ6YP6šYpzzZz6šYp
3 zZ5XQzZ4WB5™Xq3VR6šYPz
2 zzZ6YPzZzzZ1TK6šYP
1 zZzzZzzZzzZz

a b c d e f g h

Figure 4.2: Position in Darkchess from white’s and black’s perspective.

play multiple times in a row, and the same board position can be reached in
multiple different ways.

4.1.2 Darkchess

Darkchess, sometimes referred to as fog-of-war chess, was invented in 1989
as a version of correspondence chess by Torben Osted and Jens Nielsen. It
was inspired by a version of Kriegspiel, where at the beginning of a move
player can ask the umpire, "Are there any?" meaning if it is possible to make
any capture with a pawn. During the play, players see all of their pieces but
also sees all the squares they can legally move and opponents pieces on those
squares.

Rules

The goal of the game is to capture the opponent’s king. This change leads to
removing the concept of a check from the game, and it is legal to move into
check or fail to move out of check, a player also does not receive information
that his king is under attack. During the play, players see all of their pieces
but also sees all the squares they can legally move and opponents pieces
on those squares. It is explicitly indicated to each player which squares are
hidden, which, compared to Kriegspiel, leads to no illegal moves.
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8 zzZzzZzzZzzZ
7 zZzzZzzZzzZz
6 zzZzzZzzZzzZ
5 zZzzZzzZzzZz
4 zzZzzZzzZz6šYp
3 zZzzZz5™Xq3VR6šYPz
2 zzZzzZzzZzzZ
1 zZzzZzzZzzZz

a b c d e f g h

Figure 4.3: Example of public observation in Darkchess.

The difference in information available to each player is demonstrated in
Figure 4.2. The whole game is shown on the bottom chessboard. The top left
shows the board from the white perspective, and the top right chessboard is
from the perspective of black. The plain white squares indicate squares that
are out of player’s reach.

Observations

In Kriegspiel, private observation was almost the same as a public observa-
tion. On the other hand, players in Darkchess rely on private information
to determine available moves. However, what is a public observation in
Darkchess?

We decide to implement it as a chessboard with only the pieces that can
capture each other next move. So for the position in Figure 4.2, the public
observation would look like Figure 4.3. There could be multiple levels of
"I know this, so you have to know that" situations, which would mean that
there is more information in the public observation, but we show that this
together with private observation is enough.

4.1.3 Game complexity

There are two critical measures of game complexity: state-space size (number
of distinct legal states allowed by the game’s rules) and game-tree size (number
of distinct games that can be played). For chess, several estimates were given,
all around 1046 for state-space size and 10120 for game-tree size [1, 23].

For Darkchess, the game complexity will not be much different: only legal
moves are allowed, so nothing can blow-up the game tree or introduce new
game states.

It is a different story for Kriegspiel. The number of possible games (tree-
size) is enormous when illegal moves are taken into account: between any two
moves, there can be any sequence of illegal moves. If the average branching
factor is 40 and from that 10 are for illegal moves, there is an average of 1000
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3 1•TkzzZz
2 zzZz3—VR
1 zZz1•TKz

a b c d

5 1•Tkz1•TKzzZ
4 zzZzzZ3Vr
3 6šYpzzZzzZ
2 z6šYPzzZz
1 3—VRzzZzzZ

a b c d e

Figure 4.4: Used chessboard configurations.

combinations of illegal moves in between any two moves of any chess games
[13].

What sets Kriegspiel apart from other imperfect information games is the
possible size of information sets. As stated previously, perfect information
games, like chess or Go, have only one state per information set. The game
of Heads-up No-Limit Texas Holdem has information sets up to the size of
103. Krigspiel’s are much bigger: up to 1014 states per information set in the
later part of the game.

This thesis’s goal is to show that this method of depth-limited solving
works for the imperfect information chess domains and not complete game
solving. We use two smaller board configuration and endgame setting to run
our experiments.

4.1.4 Board configurations

Two chessboard configurations used are shown in Figure 4.4: Minimal4x3 on
the left and minimized endgame for 5x5 board on the right (this configuration
is referred to as Mate2). Minimal4x3 is good for testing the correctness of
used algorithms, as in Kriegspiel, there is a pure strategy for white (1. Kb1
Kb3 2. Rd3#), and slightly different for Darkchess (1. Rb2 Ka2).

Still, both configurations provide a big game tree for both domains (Mini-
mal4x3 has ∼ 40k nodes, Mate2 has ∼ 3.7m nodes).

4.2 Note on AlphaZero

DeepMind recently showcased the strongest chess agent in AlphaZero [24].
It outperformed the best chess engine at the time, Stockfish, winning 155
games and losing 6 out of 1000. It uses a general-purpose Monte Carlo tree
search, selecting moves with high move probability and value according to a
neural network. It is trained during a self-play period.

Their approach differs from ours in core principles: we are using a game
theory approach which, in its core, can guarantee certain properties (Nash
equilibrium, exact exploitability). On the other hand, AlphaZero uses rein-
forcement learning with the goal of achieving a superhuman level of play. As
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4. Problem Analysis ...................................
this approach leads to great results against humans or other computer agents,
it does not guarantee that it leads to theoretical perfect play.

4.3 Implementation

Code of this thesis was implemented as part of the GTLib2, Game Theoretic
library written in C++, developed by AI Center in the Department of
Computer Science at the Faculty of Electrical engineering of CTU in Prague
As part of this thesis, implementations of Kriegspiel and Darkchess domains
were added to the library.

A game within the library is modeled as a graph whose nodes represent
the true state of the game. The edges or transitions from state to state
happen only when the actual game state has changed. Each edge has an
outcome assigned to it: the new state, vector of private observations, public
observation, and rewards for each player. Extensive form game in as a
proposed Factored-Observation Game (FOG) [18] is built on top of this
graph.

Apart from implementing both domains, we also modified the implementa-
tion of CFR-D to work with multiple neural networks at different depths of
the game tree.
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Chapter 5
Experiments

In this chapter, we present the results of our experiments. First, we explore
the usability of value functions for offline depth-limited solving of imperfect
information chess. Next, instead of using FNNs that were previously used, we
experiment with using a convolutional neural network as they proved effective
in board game solving. Lastly, we take a step towards online play with the
stacking of neural networks to allow solving large games.

For every experiment, the maximum depth of a game tree is set to 6,
meaning that the game ends after each player makes 3 moves. For Kriegspiel,
illegal moves are not counted.

5.1 Depth-limited solving

In the first part, the aim is to test the usability of our game representa-
tion, design, and training of counterfactual value networks for Kriegspiel and
Darkchess. The public information available in both games is very sparse,
sometimes players receive empty public observation for several moves; for
example, in Kriegspiel, it is more likely to make a move without capturing
opponents piece or checking his king, the only two actions in public observa-
tions. In previous work [21, 19], the domains always produced a non-empty
public observation and so it was easier to train networks.

The goal is to achieve strategy with low exploitability produced using
depth-limited solving. We divide the game into a trunk and subgames;
trunk depth is the depth of the game tree containing trunk leaves h ∈ ZT .
The counterfactual values of a public state at the root of each subgame is
approximated with a neural network.

For Kriegspiel, we test the Minimal4x3 board configuration with the trunk
border at depth 2, so after each player made one move. This depth al-
ready provides big game: there are 96 information sets and 17 augmented
information sets, with 3 public states at the trunk border.

For Darkchess, we used both Minimal4x3 and Mate2.
The networks were fully-connected feed-forward neural networks (FNNs)

with 2 hidden layers for the Minimal4x3 board and 5 for Mate2. Inputs of
the networks are floats representing the public observation made prior to
reaching the public state and corresponding ranges of both players, and the

23



5. Experiments .....................................
Domain Trunk depth Input Output

Public Features Range
Kriegspiel Minimal 4x3 2 26 226 226
Darkchess Minimal 4x3 2 24 12 12
Darkchess Minimal 4x3 4 48 97 97
Darkchess Mate2 2 50 27 27

Table 5.1: Networks’ input and output sizes for different domains.

networks output counterfactual values. Sizes of input and output for each
used game configuration is shown in Table 5.1.

5.1.1 Training data

We generate training data for the network by splitting the games into trunk
(each player makes 2 or 4 moves, depending on the trunk depth) and bottom
(successive moves). We assign a randomly created strategy to all information
sets in the trunk and fix it, so it will not change while solving the game. We
use 500 iterations of CFR+ to solve the subgames in the bottom. We store
the ranges (fixed probabilities of private observation) of each player and their
corresponding near-optimal values. This way, we get as many data samples
as there are public states at the trunk depth. Repeating the process with
different random trunk strategy produces new training data.

5.1.2 Training

For training for Minimal 4x3 chessboard, we used 1000 game situations, and
for Mate2 15 thousand, 90% of the data for training and 10% for validation.
We minimized a Huber loss with the Adam [17] gradient descent optimization
procedure. Even though Huber loss preforms good for training counterfactual
networks [19, 21], it is not perfect for such networks. As we use its output
in CFR+ iteration, it is crucial that it has a correct sign (CFR+ ignores
negative counterfactual values).

5.1.3 Evaluation

To evaluate the quality of the networks, we used an algorithm similar to CFR-
D. When a state in the trunk border is reached (leaf of the trunk), we take
the current ranges and public observation and approximate the counterfactual
values of that state with trained neural net and substitute them. We run 500
iterations of this algorithm and then computed the exploitability of the trunk
strategy.

For each game, we trained and evaluated 20 networks. Exploitability of the
best performing networks is shown in Table 5.2. It proved to be challenging
to predict the quality of a given network by its valuation losses, as some
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Figure 5.1: Validation losses on Kriegspiel Minimal4x3 and Darkchess Mate2.

network with almost identical losses as network producing strategy with
ε ≤ 0.1, produced strategy with exploitability over 0.4.

Domain Trunk Depth Public States Exploitability
Kriegspiel Minimal 4x3 2 3 0.0651
Darkchess Minimal 4x3 2 13 0.0009
Darkchess Minimal 4x3 4 407 0.0084
Darkchess Mate2 2 77 0.0960

Table 5.2: Best results for FNNs in different games.

This result shows that our game representation is suitable for use with
value functions. Final exploitability indicates a close approximation of Nash
equilibrium; with more iterations, it would be possible to be arbitrarily
closer. It is important to note again that both Kriegspiel and Darkchess have
significantly different properties than poker, for which this technique was
developed. To mention few: information sets have arbitrary size, one player
can play several moves in a row, and the game can terminate in different
depths. Still, we showed that even for this complicated domain, value function
could be successfully used.

5.1.4 Reach-weighted loss function

During training, we noticed that apart from networks with small training
and validation loss and produced strategy with low exploitability. There were
also networks with similarly small losses but which produced strategy with
three to fourth times higher exploitability. One explanation for this behavior
is that the network performs well in information sets that are rarely visited
and poorly in highly visited information sets, leading to low loss and high
exploitability.

We came up with an idea to use reach probability of information set to
weight significance of errors during training, as the ones with low reach
probability are not as interested for us as the ones with high probability. We
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5. Experiments .....................................
defined a reach-weighted Huber loss as:

LRWδ (y, f(h)) = ησ
T (h) · Lδ(y, f(h))

for h ∈ ZT . This loss is still differentiable, and thus we can use it to train a
neural network.

In practice, reach-weighted Huber loss did not bring any notable improve-
ment into the training. Results showed that it only linearly transformed
the overall error closer to zero but did not improve the exploitability of the
strategy obtained.

5.2 Convolution networks for Darkchess

As presented in [24], a convolutional network can be successfully used as a
value function for perfect information game solving, when there is a game
board with pieces. It allows for a better abstraction of the public features
than domain-specific one-hot encoding. Darkchess public observation satisfies
this property, so we decide to test, whether it will provide better results than
FNNs.

Input to CNNs is a spacial plain of values, usually a matrix of pixels. We
used a stack of plains, each representing one chessboard, which encoded pieces
on their actual location. As we beside public observation use also ranges of
both players, we had to split the input into two parts: the public observation
and ranges.

The network architecture is two convolutional layers, each with 5 filters of
kernel size 3x3 and stride 1. After each was ReLU activation, followed by one
fully-connected layer as the output layer. The convolutional layers take only
the public observations as an input, and to their output have concatenated
the ranges, which is the input into the last fully connected layer.
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Figure 5.2: Exploitability versus validation error for convolutional network in
Darkchess Mate2.

Even with this small network architecture, we were able to achieve a better
result than with bigger FNNs. In Figure 5.2, we show the results of networks
on Darkchess Mate2. We again minimized a Huber loss, but it is apparent
we would achieve a similar result if we decided on L1 or Linf loss function.
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This is a new contribution to solving imperfect information chess; previously,
only FNNs were used.

5.3 Step towards online playing

Previous two experiments showed that it is possible to use a neural network
to compute a low exploitable strategy with depth limited solving for small
game or endgame. But to be able to play a whole game of Kriegspiel or
Darkchess, which could be up to 50 moves, we need to provide a framework
for online playing, as keeping strategy for the whole game is impractical (it
would require over roughly 500TB of space).

One approach to online play is continual re-solving, as was used in [19].
The idea is to re-solve players’ strategies during the game with limited depth.
This requires to have multiple counterfactual value networks, that predicts
values at different depths, for example, for poker, DeepStack used one network
after the flop and one after the turn.

5.3.1 Darkchess

We examine this approach for Darkchess Minimal4x3. Two value functions
are trained - first at the trunk depth 4 and second at the trunk depth 2.

For the network at depth 4, the training data are generated in the way
described in section 5.1.1. For training, we used over 80 thousand random
game situations as there are more public states at the trunk border, which
corresponds to 200 random trunk strategies. Next, we evaluated the networks
and picked one with the best exploitability (ε = 0.0469). This network is
used for generating training data for the second network.

We generated 1000 random game situations for the second network, at
depth 2; the process is similar as before, but we used network at depth 4 to
substitute counterfactual values, so the subgames to solve are smaller. We
evaluated this network after 20 epochs of training, and the exploitability was
similar to networks trained without stacking at depth 2, at ε = 0.0086.

We briefly tested the effect of the bottom network’s quality on the top
network’s performance. We used a network producing strategy with ε =
0.128048, which is still a good result. Using it, we generated training data for
the second network, trained it, and evaluated it. With this network at depth
2, the strategy performed poorly, ε = 0.24765. This finding suggests that the
quality of the bottom network affects the quality of training data for later
networks and so even its performance. Even when the game has a terminal
state in the trunk that the player wants to reach, if the value function is
giving wrong enough approximation, the CFR algorithm can converge a highly
exploitable strategy. This property needs to be more thoroughly explored in
future work.
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Chapter 6
Conclusion

This thesis examined the use of value functions for depth-limited search in
imperfect information chess. These games have specific properties that make
them difficult to reason about; most notable, the amount of public information
given to the players is sparse and quickly loses value.

First, we reviewed related work for depth-limited solving in imperfect
information games and different approaches to represent a value function used
during the solving. We analyzed the properties of Kriegspiel and Darkchess
and discussed their similarities and differences, and implemented both games
within the GTLib2. Next, we have introduced a new representation of public
states in both games alongside their rules that do not operate with common
knowledge. We tested our representation in several game situations and
showed its usability by training a neural network and using it as a heuristic
for depth-limited CFR. Based on theoretical properties the value function
should have, we designed a new loss function, Reach-weighted Huber loss.
However, in an experimental test, it did not prove to be performing better.

We experimented with the use of convolutional neural networks as a value
function for Darkchess. With fewer parameters than fully connected networks,
convolutional network performance was similar to FNNs. The use of CNNs
was a new contribution and could be a step for solving bigger games. Lastly,
we showcased the use of network stacking, a crucial part of depth-limited
solving on whole games.

In future work, the use of our representation for bigger games can be
delivered. With the use of network stacking, an agent can be built for the
entire game of tens of moves and be tested against human players. Also, the
relation between network performance in stacking needs to be studied more.

In conclusion, this thesis provided a theoretical background and represen-
tation for depth-limited solving for imperfect information chess. We think of
it as a proof-of-concept for building an agent for a whole game.
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Glossary

ε-Nash equilibrium An approximate solution to finding Nash equilibrium,
where the expected value for each player i is within ε of the value of best
response.

behavioral strategy A set of distributions over actions A(I), one for each
information set I ∈ Ii for player i.

best response A strategy that yields the maximum payoff against a partic-
ular set of strategies used by the opponents.

counterfactual regret The regret for not taking some action a at informa-
tion set I and instead playing with some strategy σ(I), weighted by the
opponent’s probability of reaching I, η−i(I).

exploitability A value εσ = ε1 + ε2 assigned to a profile σ where σ1 is
exploitable by some amount ε2 and σ2 is exploitable by some amount ε1.

flop First three public cards in poker.

history A particular sequence of actions taken by player; in a perfect recall
game every history corresponds to a unique node in the game tree.

information set A set of histories I ∈ Ii that a player i cannot distinguish
between due to information not known by that player.

mixed strategy A probability distribution over pure strategies.

Nash equilibrium A strategy profile such that all players’ strategies are
best responses to other players’ strategies.

pure strategy A collection of tuples {(I, a) : I ∈ Ii, a ∈ A(I)} for player i
such that every I appears exactly once in an extensive-form game.

range Set of player i’s reach probabilities of histories at public state S.
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regret A quantification, based on difference in utility, of the amount a regret

associated with decisions that were made during the course of a number
of trials 1, 2, . . . , T versus a set of other decisions that could have been
made instead.

regret minimization An iterative process that leads to zero average exter-
nal regret as the number of iterations T approaches infinity.

subgame Subset of a whole game, where the root is a set of states, and the
subgame contains a set of states which is closed under both the "is a
descendent of" and the "is in the same information set" relationships.

trunk All states that are not in a subgame.

turn Fourth public card in poker.
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Appendix A
User guide

This is a brief user guide for GTLib2, main library used for this thesis. It
can be cloned from https://gitlab.fel.cvut.cz/game-theory-aic/GTLib2; it is
also attached to the thesis. Neural networks were developed with TensorFlow
framework, the code is also attached to the thesis.

A.1 Requirements

GTLib2 uses C++17, python code is developed using python3.7. Other used
libraries are listed in Table A.1.

Library Version
TensorFlowCC 1.13.1
Keras 2.3.1
tensorflow 1.13.1
pandas 1.0.3
numpy 1.18.2
natsort 7.0.1

Table A.1: Libraries used in this thesis.

TensorFlowCC is available at https://github.com/FloopCZ/tensorflow_cc.

A.2 Evaluating networks

In the root folder of the attached code, there is a script for demonstration of
the thesis work. It is necessary to run the script from the folder. The script
performs several steps:..1. Builds the GTLib2 library...2. Trains five FNNs for Darkchess Minimal4x3 with a trunk depth 4...3. Transforms the network from python to C++ compatible format...4. Evaluates each network by running 500 iterations of CFR-D with the

network and then computing strategy’s exploitability.
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