
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Cybernetics

Bachelor’s Thesis

2020 Filip Rýzner

Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Cybernetics

Degree of Study: Open Informatics

Multi-agent Path-finding for trains with

breakdowns

Document purpose: Bachelor’s Thesis

Author: Filip Rýzner

Supervisor: Ing. Martin Schaefer

Date of Submission: May 2020

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

467634Personal ID number:Rýzner FilipStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Computer and Information ScienceBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Multi-Agent Pathfinding for Trains with Breakdowns

Bachelor’s thesis title in Czech:

Multi-agentní plánování tras vlaků s poruchami

Guidelines:
We consider a simplified model of the train infrastructure. The task is to find collision-free paths for trains with given origin
and destination. The optimization criteria might be to minimize makespan of the plan or maximize the number of trains to
reach the destination in a given time limit. The trains move at various speeds and suffer from malfunction. The problem
is inspired by the Flatland Challenge.
1. Study the related literature on the most related multi-agent pathfinding problems.
2. Formulate the problem and propose a heuristic algorithm to solve the problem.
3. Evaluate the solution quality and the computational performance in simulation on various Flatland scenarios.

Bibliography / sources:
[1] Stern, Roni, et al. "Multi-Agent Pathfinding: Definitions, Variants, and Benchmarks.", 2019
[2] Barták, Roman, Jiří Švancara, and Marek Vlk, Scheduling Models for Multi-Agent Path Finding ,2017
[3] Čáp, Michal, et al. "Prioritized planning algorithms for trajectory coordination of multiple mobile robots." IEEE transactions
on automation science and engineering, 2015
[4] Felner, Ariel, et al. "Search-based optimal solvers for the multi-agent pathfinding problem: Summary and challenges."
Tenth Annual Symposium on Combinatorial Search, 2017

Name and workplace of bachelor’s thesis supervisor:

Ing. Martin Schaefer, Artificial Intelligence Center, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 22.05.2020Date of bachelor’s thesis assignment: 12.01.2020

Assignment valid until: 30.09.2021

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Martin Schaefer
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Prohlášení autora práce:

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl vešk-

eré použité informační zdroje v souladu s Metodickým pokynem o dodržování

etických principů při přípravě vysokoškolských závěrečných prací.

V Praze dne Podpis autora práce

Author statement for undergraduate thesis:

I declare that the presented work was developed independently and that I have

listed all sources of information used within it in accordance with the methodical

instructions for observing the ethical principles in the preparation of university

theses.

Prague, date Signature

Acknowledgement

I would like to thank Ing.Martin Schaefer for his patient guidance of my work, for

always being an inspirational supervisor, and for introducing me to such an inter-

esting topic. Furthermore, I am grateful to my whole family for their continuous

support during my studies.

Abstrakt

V této práci představíme a formalizujeme problém multi-agentního hledání cest

pro vlaky (MAPF-T), což je zobecnění MAPF, kde agenti trpí poruchami imo-

bilizujícími je po náhodný počet časových kroků, mají různé rychlosti pohybu a

zároveň definujeme maximální počet časových kroků pro vyřešení instance prob-

lému. V naší práci představíme p-TPG, dvoustupňový přístup k řešení MAPF-T,

který v první fázi využívá prioritní plánování pro hledání nekonfliktních cest. V

druhé fázi p-TPG sestavuje graf časového plánu (temporal plan graph - TPG),

který při exekuci plánů slouží k prevenci konfliktů, když dojde k poruchám agentů.

Spolu s p-TPG představíme čtyři nové heuristiky pro určení priorit agentů, které

zlepšují výkonnost prioritního plánování. Dále představíme úpravu konstrukčního

algoritmu TPG, která snižuje dobu běhu algoritmu až 25-krát. Nakonec ukážeme,

že pořadí priorit agentů, která upřednostňují agenty s delší dobou vykonání cesty,

dominují ostatní prezentovaná řazení agentů ve všech prezentovaných instancích

MAPF-T.

Klíčová slova Multi-Agentní plánování, Nedokonalé

vykonávání plánů, Agenti s poruchami,

Plánování agentů s různými rychlostmi,

Umělá inteligence

E-mail autora f.ryzner@gmail.com

E-mail vedoucího práce martin.schaefer@fel.cvut.cz

mailto:
mailto:

Abstract

In this work, we introduce and formalise the problem of multi-agent path-finding

for trains (MAPF-T), which is a generalisation of the multi-agent path-finding

(MAPF), where agents suffer from breakdowns immobilising them for a random

number of time-steps, have different speeds of movement and we define a time-

step deadline for solving each instance of the problem. We present the p-TPG,

a two-stage approach for solving the MAPF-T, which in the first stage uses the

prioritised planning to plan non-conflicting agent paths. In the second phase,

the p-TPG constructs the temporal plan graph (TPG), which then serves to pre-

vent conflicts when agent breakdowns occur during plan execution. Alongside

the p-TPG, we introduce four new agent ordering heuristics that improve the

performance of the prioritised planning. Furthermore, we introduce a complex-

ity reducing improvement for the TPG construction algorithm, which decreases

the run-time of the algorithm up to 25-times. Lastly, we demonstrate that the

agent priority orderings that prioritise agents with longer path execution times

dominate all other presented orderings on all presented MAPF-T instances.

Keywords Multi-Agent Path-Finding, Imperfect plan execu-

tion, Agents with breakdowns, Agent planning with

speeds, Artificial Intelligence

Author’s e-mail f.ryzner@gmail.com

Supervisor’s e-mail martin.schaefer@fel.cvut.cz

mailto:
mailto:

Contents

List of Figures xi

List of Tables xiii

Acronyms xiv

1 Introduction 1

2 Problem Definition 3

2.1 Flatland introduction . 3

2.1.1 Flatland grid . 3

2.1.2 Flatland agent . 4

2.1.3 Simulation objectives . 7

2.2 Mathematical formulation . 8

2.2.1 Graph representation of Flatland grid 9

2.2.2 Agent formulation . 10

2.2.3 Solution criteria . 15

3 Literature Review 16

Contents

3.1 From Single-Agent to Multi-Agent Path Finding 16

3.2 Categorisation of MAPF approaches 17

3.2.1 Sub-optimal MAPF approaches 18

3.2.2 Optimal MAPF approaches 21

3.3 Contemporary research on imperfect plan execution 26

4 Methodology 29

4.1 A∗ path-finding algorithm . 29

4.1.1 Heuristic functions . 32

4.2 Prioritized planning . 33

4.2.1 Introduction of the general concept 33

4.2.2 Time-expanded graph representation 35

4.2.3 Agent priority heuristics . 36

4.3 Dynamic traversal precedence maintenance 39

4.3.1 Introduction of the general concept 39

4.3.2 Temporal plan graph definition 40

4.3.3 Temporal plan graph construction 40

4.3.4 Temporal plan graph usage 42

4.4 p-TPG . 43

5 Experiments and Results 45

5.1 Flatland test instances . 45

5.1.1 Agent speeds . 48

5.1.2 Agent breakdown generators 48

ix

Contents

5.2 Prioritised planning performance analysis 49

5.2.1 State space search heuristics comparison 49

5.3 Testing with breakdowns . 56

5.3.1 Temporal plan graph construction improvement 56

5.3.2 Breakdown scenarios results 57

6 Conclusion 62

Bibliography 65

Appendix A: Supplementary results 70

Appendix B: Flatland examples 71

Appendix C: Attachments 74

x

List of Figures

2.1 Flatland base rail types . 4

2.2 Flatland map before plan execution with grid illustration 5

2.3 Graphic representation of train stations and trains in Flatland . . 5

2.4 Flatland during plans execution . 7

2.5 Graph representation example - case 1 railway 10

2.6 Graph representation example - case 2 railway 10

2.7 Illustration of conflict situations . 13

4.1 Conflict avoidance table with path reservations for two agents . . . 33

4.2 Discussed prioritized planning issue 34

4.3 Convoy of agents on a railway straight segment 39

4.4 Temporal plan graph construction logic 42

5.1 Easy test instances . 46

5.2 Medium test instances . 46

5.3 Hard test instances . 47

5.4 Extreme test instances . 47

5.5 The effect of state space search heuristics on paths length 50

xi

Contents

5.6 The effect of state space search heuristics on performance 50

5.7 Hierarchical dependency of path planning 51

5.8 Manhattan distance node expansion inefficiency 52

5.9 The effect of state space search heuristics on completion rate . . . 52

5.10 Test instances completion rate without breakdown 53

5.11 Testing results without agent breakdowns 54

5.12 TPG construction algorithms run-times comparison 57

5.13 Total planning run-times comparison 57

5.14 Testing results obtained with Frequent breakdowns 58

5.15 Testing results obtained with Moderate breakdowns 59

5.16 Testing results obtained with Rare breakdowns 60

xii

List of Tables

5.1 Breakdown scenarios properties 49

xiii

Acronyms

A∗ A∗ search algorithm

AI Artificial Intelligence

ASP Answer Set Programming

BFS Breadth-first search

CAT Conflict Avoidance Table

CBS Conflict Based Search

CT Conflict Tree

DBS Death Based Search

EPEA∗ Enhanced Partial Expansion A∗

Flatland Flatland Challenge simulation

HCA∗ Hierarchical Cooperative A∗

LRA∗ Local Repair A∗

ID Independence detection

I-kR-CBS Improved k-robust Conflict Based Search

ICBS Improved Conflict Based Search

ICT Increasing cost tree Search

ILP Integer Linear Programming

kR-CBS k-robust Conflict Based Search

MA-CBS Meta-Agent Conflict Based Search

MA-DBS Meta-Agent Death Based Search

MAPF Multi-agent path-finding

MAPF-B Multi-agent path-finding with breakdowns

MS Make-span

OD Operator decomposition

PEA∗ Partial Expansion A∗

SAPF Single agent path finding

SAT Boolean satisfiability problem

SBB Schweizerische Bundesbahnen

SIC Sum of Individual Costs

TPG Temporal plan graph

WHCA∗ Windowed Hierarchical Cooperative A∗

Chapter 1

Introduction

Train routing and scheduling are one of the most crucial components ensuring

an efficient railway operation. Given the structural and engineering requirements

for railway extension, the railway capacity cannot so simply be increased by ex-

panding the existing infrastructure without a substantial investment. Therefore,

railway operators regularly aim to boost the existing railway capacity by sophis-

ticated planning and optimisation of train routes and schedules. This problem is

especially relevant in countries that have a hilly or otherwise diverse landscape,

which makes railway construction even more complicated.

Switzerland is a textbook example of a country where elaborate engineering ef-

forts are required to construct railways as mountain crests cover a large part

of the country. Therefore, to gather learning for real-world planning models, the

Schweizerische Bundesbahnen (SBB) developed a grid world model that simulates

the dynamics of train traffic on simplified railway infrastructure. This model was

made available to the public through an international competition named ”The

Flatland Challenge” (SBB, AI Crowd [2020]), which aimed to address SBB’s train

scheduling problem on the model. The competition encouraged participants to

employ reinforcement learning in order to find their solutions; however, we believe

that we can obtain competitive results by utilising well-researched approaches for

multi-agent path-finding problems (MAPF).

MAPF is the problem of finding non-conflicting paths for all agents respecting

their starting and target locations in a given environment Ma et al. [2017]. With

1

Chapter 1: Introduction

multiple agents present in the problem, it is crucial to guarantee that in addition to

planning agents’ paths in accordance with a defined objective function, all agents

will be able to follow their paths concurrently and without any collisions. MAPF is

a well-researched field in artificial intelligence (AI), robotics, theoretical computer

science as well as operations research (Ma et al. [2017]). Interestingly, MAPF

algorithms can be used to solve many real-world problems including planning

movement for robots in warehouses (Hönig et al. [2019]), solving aircraft towing

challenges (Morris et al. [2016]), navigating characters in video games (Silver

[2005], Stout [1998]) or planning routes for office robots (Veloso et al. [2015]).

In our work, we will utilise the model provided by SBB for the Flatland Challenge;

thus, we will focus on railway usage optimisation. Although the grid-based model

with discrete time introduces a substantial simplification compared to the real

world, it still has trains with different speeds and simulates random occurrence

of train breakdowns. Different speeds of trains increase the complexity of the

planning problem, but the randomly occurring train breakages create a serious

issue as they cannot be accounted for during the path planning process itself.

Therefore, we will not only have to develop a reliable planning algorithm, but

also a reliable path and computationally efficient plan execution algorithm that

will ensure that trains finish their routes without colliding with each other even

when breakdowns occur.

Our goal is to maximise the number of agents who complete their paths in the

simulation given the time-step deadline defined for each instance. This was the

main criterion for participants in the ”Flatland Challenge”, and we note that no

submission reached the completion rate of 100%. Furthermore, our secondary goal

will be to minimise the sum-of-individual costs across trains in our simulation.

Our work starts with a problem definition in Chapter 2, where we provide an

overview of the Flatland model and we introduce a mathematical formulation of

it. We then present a literature review in Chapter 3, which provides a categorised

overview of significant advancements in multi-agent path-finding approaches over

the last 40 years. Moreover, in Chapter 4, we present a detailed description of the

p-TPG approach that we will use for solving instances of the Flatland Challenge.

In Chapter 5, we describe the test instances used for the testing of p-TPG and

present obtained results. Finally, in Chapter 6, we summarise our findings.

2

Chapter 2

Problem Definition

In this chapter, we will first describe the properties and objectives of the Flatland

Challenge simulation (Flatland) provided by the SBB on the AI Crowd web (SBB,

AI Crowd [2020]). Then we will introduce a mathematical formulation of our

planning problem in accordance with the terminology introduced in Stern et al.

[2019].

2.1 Flatland introduction

The Flatland is a discrete-time grid-based simulation, where we have to plan

paths for trains in a way that as many as possible reach their destinations in a

specific time-step limit determined by the simulation. Therefore, it is a case of

MAPF, where the grid allows movement in 4 directions and agents in the problem

correspond to trains in the simulation.

2.1.1 Flatland grid

The Flatland 4-way grid is composed of N rows and M columns and agents that

move from their given starting grid position to their target position. Each tile in

the grid is of 1×1 size and contains one of 7 base types of rails, which are depicted

in Figure 2.1. Furthermore, each of these base rail types can be rotated by either

0, 90, 180 or 270 degrees or reflected along the vertical or horizontal axis. This

3

Chapter 2: Problem Definition

results in 27 types of rail tiles, accounting for the fact that some rotations and

reflections are identical with the original tile.

Figure 2.1: Flatland base rail types

source: SBB, AI Crowd [2020]

Contrary to standard grid environments, the railway representation imposes fur-

ther constraints on agents’ movement. Specifically, depending on the tile type,

the agent can continue movement in only up to 2 directions upon entering a tile

from a valid grid position. For example, after entering the tile with a straight

railway depicted in case 1 (Figure 2.1) agent can only continue moving forward,

while upon entering tile depicted in the case 5 (Figure 2.1) agent can continue

moving forward or make left or right turn depending on the side in which it en-

tered the tile. The direct consequence the railway representation is that agents

cannot easily change their direction of movement. Specifically, an agent can only

change its movement direction by 90 degrees after execution a left or right turn

or by 180 degrees after it reaches a dead-end (case 7, Figure 2.1), where it can

turn around and continue moving.

Furthermore, the Flatland grid contains only relatively sparse railways, as de-

picted in Figure 2.2. This, together with the limitation on movement directions

imposed by tile types, increases the complexity of the MAPF problem as agents

cannot easily change their direction of movement or avoid each other when trav-

elling in opposite directions; thus we may have to plan long detours or waiting to

avoid agents conflicts. Specifically, conflicts occur when at least two agents would

occupy the same tile in one time-step or would directly exchange positions in one

time-step.

2.1.2 Flatland agent

Each agent in the Flatland has a determined starting and target position. The

starting position of an agent corresponds to a tile on the grid, and the agent

4

Chapter 2: Problem Definition

Figure 2.2: Flatland map before plan execution with grid illustration

source: SBB, AI Crowd [2020]

always starts with a valid orientation (a train will never be placed sideways on

a railway segment); however, all agents start outside of the grid and have to be

placed on it. We also note that several agents can have the same starting position;

therefore, the planning must also determine the order and the moment of agent’s

placement on the grid. Finally, agent’s target position always correspond to one

of the stations on the grid (depicted in Figure 2.3) and, similarly as with starting

positions, multiple agents may have the same target position. Furthermore, agents

immediately disappear from the grid upon reaching their target.

Figure 2.3: Graphic representation of train stations and trains in Flatland

(a) Train station (b) Train

source: SBB, AI Crowd [2020]

The logic of putting agents on grid further increases the complexity of the planning

as there are k! possible placement orderings for a tile where k agents start their

movement, moreover, even if the ordering was determined, placements can happen

at various time-steps, thus again creating many planning options.

5

Chapter 2: Problem Definition

Flatland agent movement speed

Agents in the Flatland can either move forward, execute a turn if possible or wait

in their current position. In a standard setting, agents would be able to execute

exactly one move during each time-step; however, the Flatland assumes agents

with different speeds of movement. These speeds are randomly chosen from a

pre-selected set of allowed speeds, where all of them have to belong to an interval

of (0, 1].

Given that all grid tiles are of 1 × 1 size, an agent with a speed value below 1

may require several time-steps to traverse one tile. During each turn, an agent

accumulates a traversal fraction equal to its speed, and when it is equal or bigger

than 1, it resets and the agent moves to a next tile. More precisely, the mechanism

of agent’s movement is illustrated in the Algorithm 1. Figure 2.4 shows the

Flatland grid during the plan execution when agents are travelling to their targets.

Algorithm 1 Flatland agent movement with different speeds

1: agent speed ∈ (0, 1] //Agent has some speed

2: traversal fraction← 0

3: while agent not done == True do

4: if agent moving then //Agent is traversing tile, not waiting

5: traversal fraction+ = agent speed

6: if traversal fraction >= 1 then

7: traversal fraction← 0

8: execute move() //The agent moves

Flatland agent malfunction

To better simulate the real-world train behaviour, the Flatland agents Are subjects

to breakdowns. All agents have the same non-zero probability that they suffer

a breakdown of a duration randomly chosen from a pre-specified interval. Agent

breakdown can occur at any time; therefore it can happen when the agent is

moving across the tile, when waiting at a tile or when the agent is not even on

the grid (agent can still be placed on the grid, but will be broken). When the

malfunction occurs, the agent is immobilised for a given number of time-steps and

cannot perform any movement. Furthermore, if the breakdown occurred when the

6

Chapter 2: Problem Definition

Figure 2.4: Flatland during plans execution

source: SBB, AI Crowd [2020]

agent was traversing a tile, its movement direction cannot be changed in any way

after the break down ends; hence the agent will finish the precise traversal it

started before the breakdown.

The existence of train breakdowns has significant consequences for the planning

and execution of each Flatland instance. With random breakdowns occurring, it

is no longer possible to plan all agents’ movements before the Flatland instance

is run, but we will also have to manage our plans during its execution to prevent

conflicts from occurring as unexpected breakdowns can cause de-synchronisation

of agents’ plans.

2.1.3 Simulation objectives

Time-step limit

Each Flatland instance has a specific time-step limit assigned and all agents are

required to reach their target positions in under the limit. An agent that cannot

reach its target position under the time-step limit is put among uncompleted

agents. The time-step limit for each instance is obtained as follows:

Tmax = 8 ∗ (grid width+ grid height+ d |A|
|C|
e)

where the A is a set of agents in the Flatland instance, C represents the number

of cities in the Flatland grid and |.| is a function determining the cardinally of a

set.

7

Chapter 2: Problem Definition

Objectives

Finally, the main objective of the Flatland Challenge was to maximise the number

of agents who successfully reach their target position in under a given time-step

limit set for each Flatland instance. Therefore, we will adopt the same primary

objective. Furthermore, our secondary criterion will be the minimisation of the

sum of individual cost, which represents the sum of all costs across all agents.

All agents incur per time-step cost equal to their speed from the start of the

Flatland instance until they reach their target location. Finally, we will also

analyse the make-span, which represents the total time until the last agent reaches

its destination (Barták et al. [2018]).

2.2 Mathematical formulation

In this section, we will introduce a mathematical formulation of the Flatland

MAPF problem introduced in the previous section. We will base the formulation

on the outline introduced in Stern et al. [2019]; however, we will modify and extend

it in order to include the agent agents with different speeds, agent breakdowns,

and other specific issues related to our problem. From this point onward, we

will refer to our problem as the Multi-agent path-finding for trains (MAPF-T) to

differentiate it from the standard MAPF.

An instance of the MAPF-T problem with K agents can be described as a 10-tuple

in the following way:

Γ = 〈G,A, λS , λF , H, v, γ, δ, P, Tmax〉,

where:

• G = (V, E, ε) is a weighted directed graph

• A = {a0, . . . , ak−1} is an ordered finite set of agents

• λS : A→ V is an injective function setting agent’s start position

• λF : A→ V is an injective function setting agent’s target position

• H = {Wait, Forward, Left, Right} is the ordered set representing possible

agent’s actions/moves

8

Chapter 2: Problem Definition

• υ : (V,H)→ V is an injective agent movement function

• γ : A→ (0, 1] is a surjective function determining agent’s speed

• δ : A→ [0,R] is a surjective function setting agent’s cumulative speed

• P : A→ N is random process function determining train malfunctions

• Tmax represents the maximum allowed make-span of the solution

2.2.1 Graph representation of Flatland grid

As defined above G = (V,E, ε) is a weighted directed graph, where

ε(e) = (u, v) ∀u, v ∈ V, e ∈ E

is an edge starting in vertex u and ending in vertex v.

To be able to create an accurate graph representation of the N ×M tile sized

Flatland grid, we first introduce the following ordered agent orientations set and

an agent orientation determining function:

• O = {N, E, S, W} is an ordered set representing orientations agent

• ξ : A→ O is the surjective function setting agent orientation

Next, we define a vertex in our graph representation as a 3-tuple:

v = ((i, j), o) i ∈ N, j ∈M,o ∈ O

where the (i, j) corresponds to coordinates of a tile in the Flatland grid and

o represents one of the valid orientation the agent can have upon entering the

corresponding tile. The inclusion of agent’s orientation is necessary to accurately

represent the railway logic introduced in the previous section.

To better illustrate the logic of the graph representation, we present two examples

in Figures 2.5 and 2.6. The Figure 2.5 demonstrates how a straight rail tile (case

1, Figure 2.1) at position (i, j) is converted to our graph representation. For

example, if an agent arrives to a tile (i, j) and is facing East (orientation E),

its location will correspond to the vertex ((i, j), E) in the graph representation.

The agent can either wait in its position, which would correspond to the edge

9

Chapter 2: Problem Definition

Figure 2.5: Graph representation example - case 1 railway

(a) Case 1 railway (b) Graph representation

[((i, j), E), ((i, j), E)] or it can move forward to the next tile, which corresponds to

the edge [((i, j), E), ((i, j+1), E)]. The Figure 2.6 presents an additional example

of the logic, but for a slightly more complex rail tile (case 2, Figure 2.1).

Figure 2.6: Graph representation example - case 2 railway

(a) Case 2 railway (b) Graph representation

2.2.2 Agent formulation

Each agent has a starting and target position determined by functions λS and

λF respectively and a fixed speed determined by the function γ. We define, the

injective function determining agent’s position at the time-step t as follows:

λt : A→ V

Furthermore, the execution priority of agents in the Flatland is determined using

the priority function p defined as follows:

p : A→ N0

where: p(ai) > p(aj) for: i < j

10

Chapter 2: Problem Definition

Contrary to standard multi-agent engines, where state validity is evaluated after

all agents are moved, Flatland executes agent’s actions one by one during every

time-step. This can lead to additional conflicting situations. For example, given

two agents where one aims to enter a position, which the other agent is supposed

to leave in the time-step t, a conflict would arise if the entering agent had a

higher priority. This is because the Flatland simulator would try to first execute

the action of the higher priority agent, but that would not be valid as the lower

priority agent would not have left the position in question yet.

Agent action plans

An agent has to perform an action during every time-step until it reaches its target

position. Each agent has to either wait or move forward, turn left or turn right.

Agent’s movement is represented by the function v, which we defined above.

To be able to correctly define agent’s move, we need to define its duration, which

is determined by the agent’s speed as follows:

ρ =

⌈
1.0

γ(ai)

⌉
γ(ai) ∈ (0, 1] (2.1)

where ai represents the i − th agent in the Flatland. Subsequently, we define a

move by the i-th agent as:

v(λt(ai), h) = λt+ρ(ai) where [λt(ai), λt+ρ(ai)] ∈ E, h ∈ H

which says that if an agent ai executes the action h at the vertex λt(ai), it will

move to the vertex λt+1(ai) over the next ρ time-steps.

Next, we define a sequence of n actions planned for the i-th agent as:

πai = (h1, . . . hn) ∀i, hi ∈ H

Moreover, we say that πai [t] denotes the location of the agent ai after t time-steps.

Formally, we define the πai [t] as follows:

πai [t] = v(v(. . . v(λS(ai), h0), ht−1), ht)

Finally, we say that a sequence of actions for an agent ai is a single-agent plan if

starting executing actions from the sequence at λS(ai) leads to λF (ai) in |π| steps

(Stern et al. [2019]). A solution of the MAPF-T is a set of single-agent plans for

all agents, which do not contain collisions and its length is shorter than a specified

limit.

11

Chapter 2: Problem Definition

Agent speed

Every agent has a different speed in a range from (0, 1], which is determined by

the function γ defined at the beginning of this section. Moreover, if the agent is

moving its cumulative speed determined by the function δ increases by his speed

determined by γ in every time-step and agent can only move from one tile to

another when its cumulative speed is δ(ai) ≥ 1. We described this logic in the

Algorithm 1 located in the previous section and defined the number of steps the

agent requires to traverse a tile in the Equation 2.1.

To sum the movement with speed, we include a final simple example: if agent’s

speed is equal to 1 it can move from a vertex v1 to its adjacent vertex v2 in every

turn, however if the agent’s speed is equal to 0.3 it only can change its position

after 4 time-steps, when his cumulative speed δ(ai) = 1.32 thus δ(ai) ≥ 1. Finally,

we again highlight that in the previous example, the surplus accumulation of 0.32

would not carry over to the next time-step.

Agent breakdowns

Flatland agent’s can breakdown during every turn, thus can even be placed on

the grid already broken. All agents have the same probability pbreak of breaking

down in every turn, which can be set differently for every instance. Furthermore,

each instance has a set break-down duration interval [minbreak,maxbreak]. The

mechanism of breakdowns is relatively simple, and we briefly summarise it in the

Algorithm 2.

Broken agents remain inactive for the next several time-steps based on the duration

of the breakdown.This can be formulated as:

λt(ai) = λt+1(ai) = . . . = λt+duration(ai)

Agent conflict types

In this section, we define conflicts that can arise between agents during the exe-

cution of their plans. It is crucial to understand that a set of single-agent plans

represents a valid solution to the MAPF-T problem if and only if it does not

contain any conflicts.

12

Chapter 2: Problem Definition

Algorithm 2 Flatland breakdowns mechanism

1: pbreak ← [0, 1]

2: minbreak ← x ≥ 0

3: maxbreak ← y ≥ minbreak
4: while simulation running do

5: for agent ∈ active agents do //agents not yet in target position

6: if agent not broken then

7: x = random float(0,1) //random float in [0,1]

8: if x ≤ pbreak then

9: duration = random int(minbreak,maxbreak)

10: assign breakdown(agent, duration) //break agent

Figure 2.7: Illustration of conflict situations

(a) Tile conflict (b) Following conflict (c) Cycle conflict

(d) Swapping conflict

source: SBB, AI Crowd [2020]

The definition of our conflict may be slightly confusing as we cannot determine

conflicts based on single graph representation vertex or edge. We have to account

for the fact that a Flatland grid tile, where conflicts occur, can be represented by

up to 8 vertices in the graph representation.

Therefore, before we define the possible conflict situations, we note that from

now on, we will use the ∗ symbol in the vertex notation v = ((i, j), ∗) to represent

arbitrary valid agent’s orientation. In order to correctly detect conflict on the level

of Flatland grid tiles, the agent orientation will not be taken into consideration

when comparing agents position vertices. Hence the conflict detection will be

based solely on the corresponding tile coordinates represented by (i, j).

13

Chapter 2: Problem Definition

We will now list and describe all conflict situations that can arise in our MAPF-T

problem alongside with their visual depiction in Figure 2.7. Let ai and aj be a

two agents with single-agent paths πai and πaj respectively.

A) Tile Conflict

A tile conflict between two agents occurs when both agents plan to enter a

vertex related to the same tile at the same time step, hence the graph vertex

might be different, but the conflict is caused by the underlying relationship to

the same tile (Figure 2.7a).

Formally, we define the tile conflict as follows:

πai [t] = λt(ai) = ((i, j), ∗) = λt(aj) = πaj [t]

B) Following Conflict

A following conflict between two agents occurs when an agent with a higher

priority at time-step t is planning to move to a tile that was occupied by an

agent with lower priority at time t-1 (Figure 2.7b). As explained previously

in this chapter, the following conflict is implied by the way Flatland processes

agent actions during each time-step.

Formally, we define the following conflict as:

πai [t] = λt(ai) = ((i, j), ∗) = ((i, j), ∗) = λt−1(aj) = πaj [t− 1]

where: p(λj) > p(λj)

C) Cycle Conflict

A cycle conflict occurs between a set of agents occurs when a rotation circle

is formed (Figure 2.7c).

Formally, we describe the cycle conflict as follows:

πa1 [t] = λt(a0) = ((i0, j0), ∗) = ((i0, j0), ∗) = λt−1(a1) = πa1 [t− 1]

πa1 [t] = λt(a1) = ((i1, j1), ∗) = ((i1, j1), ∗) = λt−1(a2) = πa2 [t− 1]

.

.

.

πak [t] = λt(ak) = ((in, jn), ∗) = ((in, jn), ∗) = λt−1(a0) = πa0 [t− 1]

The cycle conflict is independent of agents’ priorities. Therefore, we needed

to formalise it as it the logic differs from the following conflict, although they

are logically related.

14

Chapter 2: Problem Definition

D) Swapping Conflict

The swapping conflict occurs if and only if the two agents plan to swap posi-

tions, more precisely tiles, in one times step (Figure 2.7d).

Formally, we define the swapping conflict as follows:

πai [t− 1] = λt−1(ai) = ((i, j), ∗) = ((i, j), ∗) = λt(aj) = πaj [t]

and

πai [t] = λt(ai) = ((i, j), ∗) = ((i, j), ∗) = λt−1(aj) = πaj [t− 1]

We note that the swapping conflict is technically a case of the Cycle conflict

for two agents, but we list it to increase the clarity of the description.

The set of non-conflicting plans that are shorter than Tmax represent a potential

solution to our problem.

2.2.3 Solution criteria

Keeping the aforementioned definition of the solution in mind, we will formalise

the conditions that we will use for the selection of the best solution.

The ideal solution of a Flatland instance maximises the number of agents who

reach their target position in under Tmax time-steps. Moreover, our secondary

criterion is to minimise the sum of individual costs (SIC). Therefore, we define

the ideal solution to a k-agent MAPF-T problem as follows:

min SIC(argmax
πi

(|AC |))

where AC denotes the set of agents who have successfully completed their paths,

SIC denotes the sum of individual costs of the solution πi and the function |.|
determines the size of the set. Alternatively, the completion rate defined as |AC |

|A| ,

where A represents the set of all agents, can be maximised instead of the absolute

number of agents reaching their target.

15

Chapter 3

Literature Review

In this chapter, we will present a literature review highlighting significant ad-

vancements relevant to the path-finding problems. We will first provide a brief

overview of pertinent algorithms for the Single-Agent path-finding (SAPF) and

explain why these algorithms may not be, without further adjustments, used to

solve the Multi-Agent path (MAPF) finding problems. Next, we will discuss the

beginnings of the MAPF algorithms and outline general settings for MAPF. Fur-

thermore, we will review and classify state-of-the-art algorithms into optimal and

sub-optimal while focusing predominantly on reviewing the search-based MAPF

approaches. Lastly, we will review the current advances in the MAPF field con-

cerned with handling unexpected delays during the execution of agents’ paths, a

problem very similar to ours.

3.1 From Single-Agent to Multi-Agent Path Finding

The simplest algorithms used for path-finding are the Bread First Search (BFS)

algorithm, which guarantees the optimality of the solution on an unweighted graph

and the Dijkstra algorithm derived by Edsger W. Dijkstra (Dijkstra [1959]). How-

ever, the A∗ algorithm proposed by Peter Hart in Hart et al. [1968] is probably one

of the most popular and effective algorithms used for SAPF. The algorithm con-

siderably increased the search efficiency by utilising a heuristics function, which, if

admissible, guarantees that the algorithm finds the optimal solution to the SAPF

problem. Another interesting property of the algorithm is that when a node is

16

Chapter 3: Literature Review

expanded, and the heuristic is consistent, the optimal distance from a start node

to that node is determined Nilson [1980]. However, should the heuristic function

be improperly selected, then the A∗ algorithm can substantially under-perform

Dijkstra’s algorithm in terms of the search efficiency. In general, in their original

form, SAPF algorithms are only suitable for solving the SAPF problem as they

do not take into account the possibility of collisions, which arise when we plan

routes for multiple agents in one environment.

The beginnings of MAPF algorithms can be traced back to the Erdmann &

Lozano-Pérez [1987] who investigated how to prevent collisions when navigating

multiple agents in a shared space. Erdmann & Lozano-Pérez [1987] focused on

planning translations of planar objects and rotating planar articulated arms while

assuming planning order determined by fixed priorities assigned to agents. The

publication introduced decoupled and distributed approaches leading to indepen-

dence or weak dependency of agents’ planning problems. This lay the foundations

for some future approaches relying heavily on agent priorities and reducing de-

pendency between agents’ planning problems.

In the next section, we will focus solely on approaches solving the MAPF. We

will first introduce shared characteristics of the MAPF problem and then de-

scribe the core MAPF approaches and introduce a suitable categorisation of these

approaches, ensuring a clearer arrangement of the overview.

3.2 Categorisation of MAPF approaches

In general, agents in a MAPF problem can operate in either distributed or cen-

tralised settings. In the centralised setting, we assume that a single decision-

making authority fully controls the actions of all agents, whereas, in the centralised

setting, we assume that all agents choose their actions themselves. Therefore, we

can further categorise the distributed setting by agents’ decisions protocols into

cooperative and self-interested (Bnaya et al. [2013]). Cooperating agents will take

actions in accordance with the global objective function, thus behave as if a single-

decision making authority directed them, whereas self-interested agents require a

coercive mechanism to adhere to the global objective function; otherwise, they

will only try to maximise their own (Bnaya et al. [2013]).

17

Chapter 3: Literature Review

A common objective of MAPF problems is to minimise the global cumulative cost.

Therefore, the sum-of-individual-cost (SIC), defined as the sum of cost across all

agents required to reach their destination and never leave it, is a popular choice

in the MAPF research (Sharon et al. [2015a]). The total time until the last agent

reaches its destination or so-called make-span (Barták et al. [2018]) is another

common choice for the objective function. Finally, the selection of the objective

function also depends on the goals of the research, thus can vary for specifically

focused publications. One such example is the Ma et al. [2018], where the number

of agents reaching their destination before a set time-step deadline is maximised.

One of the most distinctive characteristics of MAPF approaches is their optimality.

The MAPF problem was shown to be NP-hard (Surynek [2010], Yu & LaValle

[2013]) because the state-space grows exponentially with the number of agents in

the problem. Therefore, some approaches sacrifice optimality for a more feasible

run-time. We will now provide an overview of both optimal and sub-optimal

approaches for solving the MAPF. However, we note that the overview is not

meant to be completely exhaustive and that we will dedicate more space to search-

based and tree-based solvers as they are the most relevant for our work.

3.2.1 Sub-optimal MAPF approaches

Sub-optimal approaches aim to quickly find paths for agents, especially when

the number of agents in the problem is high and the optimal solution cannot

be determined. However, it can occur that sub-optimal approaches do not even

guarantee completeness (Sharon et al. [2015a]). We can generally classify sub-

optimal approaches into three categories, as follows:

Search-based approaches

Some of the earliest sub-optimal search based algorithms were introduced by Zelin-

sky [1992] and later summarised with robustness improvement proposals such as

search space transformation or node exploration limitations by Stout [1998]. Algo-

rithms from this family1 first plan routes for all agents independently and resolve

conflicts only when they become imminent during the next step of the plan exe-

1later labelled as the ”Local Repair A∗” (LRA∗) by Silver [2005]

18

Chapter 3: Literature Review

cution. Conflicts are resolved by searching for alternative routes from the agent’s

current location to the target destination while prohibiting the edge or vertex that

is causing the conflict in the next step.

Well-known sub-optimal search-based approaches were introduced by Silver [2005]

as a direct improvement on the Local Repair A∗ algorithms. According to Silver

[2005] the Local Repair A∗ algorithms were often used in games at that time but

suffered from deadlocks and strange behaviour in situations with bottlenecks. The

most prominent algorithms introduced in Silver [2005] were the Hierarchical Co-

operative A∗ (HCA∗) and the Windowed Hierarchical Cooperative A∗ (WHCA∗).

Both algorithms made use of a conflict avoidance table tracking agents’ routes in

space-time to prevent agents collisions.

In the HCA∗ agents plan their routes sequentially in an order determined by their

priorities. After an agent plans its route, it gets noted in the reservation table and

agents with lower priority then treat it as an obstacle that needs to be avoided

when they are planning their routes.

WHCA∗ was introduced as a modification of the HCA∗ to enable its usage in

real-time applications such as video games. WHCA∗ only performs the non-

conflicting planning in subsequent windows of a fixed size, where the conflict

avoidance table is used to check for potential conflicts. Agent’s paths outside of

these windows are planned using SAPF approaches ignoring other agents. This

approach guarantees that paths in windows remain without conflicts, while agents

try to follow their best routes as determined by the SAPF planning. Furthermore,

the segmentation of planning allows for changes in agents’ priorities resulting in

availability solutions, which under fixed-priority ordering could not be found.

Both algorithms significantly outperformed the LRA∗ algorithm and currently

remain a subject of research. Recent improvements include the introduction of

the Conflict-Oriented Windowed Hierarchical Cooperative A∗ by Bnaya & Felner

[2014], which improved the solution quality but is more time demanding compared

to the baseline algorithm.

Lastly, Ma et al. [2019] reviewed the category of MAPF approaches based around

priority planning, where agents are assigned fixed priority ordering and must

ensure that their planned paths never interfere with the paths of agents with

higher priority. In the publication Ma et al. [2019] also introduced a two-level

19

Chapter 3: Literature Review

search algorithm called Priority Based Search and modified the optimal Conflict

Based Search introduced by Sharon et al. [2015a]. The resulting priority planning

based approaches are not optimal nor complete but are highly efficient.

Rule-based approaches

Rule-based approaches are not at the core of the focus of this thesis, but we

provide a brief overview of these approaches for completeness. These approaches

impose specific movement rules, which affect how agents plan their paths and

usually do not include massive search (Sharon et al. [2015a]). Although rule-

based approaches are usually complete and have low computational cost, thus are

fast at solving the problems, the quality of the solution tends to be low as it is

sacrificed for the computational speed (Felner et al. [2017]).

The TASS algorithm by Khorshid et al. [2011] and Push and Swap algorithm by

Luna & Bekris [2011] are the two commonly mentioned algorithms of this type.

Push and Swap algorithm was enhanced several times resulting in the Parallel

Push and Swap by Sajid et al. [2012] and Push and Rotate by De Wilde et al.

[2014]. The TASS algorithm is known to be complete for tree graphs, while Push

and Rotate is complete only for graphs where at minimum two vertices are not

occupied by any agent at any time Sharon et al. [2015a]. Lastly, the BIBOX algo-

rithm introduced by Surynek [2009] is complete for bi-connected graphs, while the

enhanced version called diBOX developed by Botea & Surynek [2015] is complete

even for strongly bi-connected directed graphs.

Hybrid approaches

We consider some approaches as hybrid because they execute a massive search

as well as impose movement rules. Generally, these algorithms aim to prevent

collisions and do not necessarily aim for the shortest paths. Furthermore, in

the majority of cases, hybrid approaches are not complete and are better suited

for planning in large open areas as they can suffer from deadlocks in maps that

contain bottlenecks (Sharon et al. [2015a]).

One example of a hybrid approach was introduced by Ryan [2008]. The publi-

cation focuses on a centralised planning for MAPF and presents a new abstract

20

Chapter 3: Literature Review

representation fro MAPF, allowing for faster planning without sacrificing com-

pleteness. The main graph representing the environment is decomposed into sub-

graphs while imposing entry and exit restrictions for each of them. The algorithm

then solves for sub-graphs and computes transitions between them quickly and

deterministically; thus performing a search in the space of sub-graph configura-

tions.

Another example of a hybrid approach is the solver introduced by Wang & Botea

[2011], which pre-computes the optimal paths for individual agents and also an

alternative path between every two successive vertices an agent will be travers-

ing according to its planned path. When a conflict is encountered the path of

the conflicting agent is replanned using the pre-computed alternative paths. It

is important to note that according to Wang & Botea [2011], the approach is

complete only for grids with the slidable property, which are formally defined in

their publication.

3.2.2 Optimal MAPF approaches

We will now review algorithms that solve the MAPF optimally while categorising

them into three categories. As outlined before, solving the MAPF optimally is

NP-hard and is the problem is very challenging, especially for complex instances

that contain many agents with potentially highly conflicting paths.

Reduction based approaches

Reduction based approaches aim to reduce the MAPF problem to other prob-

lems that are already well studied in the field of computer science, such as SAT,

Linear Programming or Constrained satisfaction problem Sharon et al. [2015b].

Although, these problems are often also NP-hard, high-quality approaches for

solving them already exists. We note that many of these approaches were de-

signed for the make-span objective function and cannot be easily modified to be

used with the more common sum-of-cost objective function (Felner et al. [2017]).

Furthermore, it should be noted that although optimal, these approaches are usu-

ally highly efficient only on small instances of the MAPF problems (Sharon et al.

[2015a]).

21

Chapter 3: Literature Review

One of the most popular reduction based approaches, according to Barták et al.

[2018], was developed by Surynek [2012] and reduces the MAPF problem into the

Boolean satisfiability problem (SAT). Other approaches include MinMakeSpan

and MinTotalDist introduced by Yu & LaValle [2013], which model the MAPF

problem as a network flow and then reduce it into the Integer Linear Programming

problem (ILP) or the reduction to the Answer Set Programming (ASP) introduced

in Erdem et al. [2013].

Search-based approaches

Search based approaches are popular in recent publications, and while they are

often designed for the sum-of-cost objective function, they can as well be modified

for the make-span objective function. The majority of search-based approaches is

built around modified versions of the A∗ algorithm (Hart et al. [1968]). Moreover,

several suitable MAPF heuristics were proposed across publications, including the

standard Manhattan distance suitable for 4-way connected grid (Ryan [2008]), the

sum of individual costs (Silver [2005], Standley [2010a]) as well as using forms of

pattern-databases (Goldenberg et al. [2012], Goldenberg et al. [2014]).

In its elemental form, the A∗ operator represents actions that all k agents in the

problem execute in a given time-step. However, the elemental form of the A∗

has several drawbacks when used for solving the MAPF. The first drawback is

that the branching factor of the A∗ is exponential in the number of agents in the

problem. For example, the case of a 4-way connected grid with the possibility of

waiting corresponds to a branching factor of 5k, where k is the number of agents.

Another drawback is the potential size of the A∗ open-list. The open-list grows

by up to b states every time a state from the list is expanded and its successors

are added to it, where b denotes the number of successors of the expanded node.

Standley [2010a] criticised the greediness and sub-optimality of approaches intro-

duced in by Silver [2005] and highlighted that higher-quality solution or alterna-

tive solutions cannot be obtained with these approaches even if we dedicated more

computational time for calculations. As a follow-up on the previous research in

the area of search-based approaches, Standley [2010a] introduced a first practical,

admissible and complete search-based approach for solving the MAPF. The ap-

proach is based on two significant improvements of the elemental form of the A∗,

22

Chapter 3: Literature Review

namely the operator decomposition and independence detection.

The operator decomposition (OD) decomposes the elemental A∗ MAPF operator

into a series of operators, which leads to a significant reduction of the branching

factor as the OD operator only considers one action corresponding to one agent

at a time. Moreover, Standley [2010a] defines standard and intermediate search

states, where the intermediate state occurs when at least one agent has already

been assigned a move, but not all agents have been. After all agents have been

assigned a move, a new standard state is created and all other intermediate states

on the open-list that lead to its creation are ignored. This implies a significant

reduction of nodes added to the open list. The branching factor of A∗ is reduced

from bk to k, but the dept of the goal node increases by the factor of k, where

k is the number of agents in the problem. We note that the implemented search

algorithm must allow agents to plan a move into spaces occupied by other agents

with lower priority who are yet to be assigned move; otherwise optimality is not

guaranteed (Standley [2010a]).

The independence detection (ID) framework reduces the branching factor of the

A∗. It sorts agents into independent groups and finds optimal solutions for each

group of agents. We say that two groups of agents are independent if and only

if the optimal solution for both groups can be found and they are not conflicting

(Felner et al. [2017]). At first, each agent starts in its own group and a path

is planned for him and noted into the conflict avoidance table. When a conflict

between two groups, g1 and g2, is detected, the framework first tries to find an

alternative non-conflicting path for g1 and vice versa. If that fails, the two groups

are merged and paths for agents in the new group are planned together. This

procedure is repeated until all independent groups of agents have been identified

and optimal non-conflicting paths for all groups have been planned. It is worth

noting that the run-time of the MAPF approach using the ID is dominated by the

largest group of agents that corresponds to the largest independent sub-problem

(Standley [2010a]). According to Felner et al. [2017] implementing the ID can

result in up to an exponential speed-up obtained by the reduction of the number

of agents in the planning problem.

The current state-of-the-art MAPF A∗ algorithm version provides a significant

speed-up over the elemental algorithm, and it was first introduced as the Partial

Expansion A∗ (PEA∗) algorithm by Yoshizumi et al. [2000] to deal with the prob-

23

Chapter 3: Literature Review

lem of generation of surplus nodes. When the PEA∗ expands a node n, up to b

children are generated, but only those for whom it holds that f(n) = f(b) are

inserted into the open list. The other children are discarded and the node n is

reinserted into the open list with the f(bbest) value corresponding to that of the

best child. The f value function is defined as f(n) = g(n) + h(n) and the g(n)

denotes the optimal cost of travelling from start to the node n and h(n) is the

heuristics estimation of the cost from the node n to the target position Goldenberg

et al. [2012]. The algorithm was later improved to Enhanced Partial Expansion A∗

(EPEA∗) by Felner et al. [2012] who introduced a way to only generate children

of the node n for which it holds f(n) = f(b). Later Goldenberg et al. [2012] and

Goldenberg et al. [2014] applied the EPEA∗ to the MAPF and achieved significant

improvements in run-times over all other optimal search-based approaches.

Tree based approaches

In the last category, we will review optimal approaches based on a tree data struc-

ture. These approaches are conceptually different from search-based approaches

as they are not built around the A∗ algorithm.

The first prominent optimal tree-based approach was the increasing cost tree

search algorithm (ICT), a two-level search algorithm with pruning rules, intro-

duced in Sharon et al. [2013]. The ICT approach was up to 3 orders of magnitude

faster than the A∗ based approaches on selected maps (Sharon et al. [2013]).

Another tree-based approach, which forms the core of the contemporary MAPF

literature, is the Conflict Based Search approach (CBS). The CBS is a two-level

algorithm introduced by Sharon et al. [2015a] as a complete and optimal solver

able to solve large instances of MAPF problems with which the search algorithms

would struggle given their branching factor.

The higher level of the CBS is the conflict tree (CT) which is a binary tree

that guides the overall search for the solution. Each node of the tree contains

constraints limiting paths for selected agents, agents’ paths and cost of the solution

based on the objective function. The root is an empty node with no constrains,

and the solution is found at the node where all agents satisfy their constraints

and there are no conflicts between their paths. On the lower level of the CBS

is a fast single-agent path planning algorithm finding paths for individual agents

24

Chapter 3: Literature Review

subjecting to the restrictions imposed by the corresponding node in the conflict

tree.

In case that a CT node contains conflicts, one of them is arbitrarily selected and

resolved by splitting. During the splitting the CT node is split and two child

nodes are created, where each of them prohibits one of the conflicting agents from

entering the conflicting vertex. The CBS always constraints only two agents in

each step even if there are more agents conflicting in the vertex in question.

In general, it was found that the CBS outperforms the state-of-the-art search

algorithms in maps with bottlenecks, but struggles in open maps or MAPF prob-

lems where conflicts often occur as the conflict tree grows very fast. Therefore,

the CBS in its elemental form is not suitable for a problem such as the Flatland

because the sparse railway with a very high number of agents and the necessity

to place agents on the grid lead to unacceptable planning times.

As the CBS arbitrarily chooses conflicts to resolve, it is very sensitive to these

choices and if they are poor, they may significantly increase the size of the conflict

tree (Felner et al. [2017]). Due to the space for improvement in the algorithm, CBS

was recently a subject of several publications that aimed to improve its overall

performance.

The Meta-agent CBS (MA-CBS) was the first improvement and was actually

introduced alongside the CBS in the Sharon et al. [2015a]. The MA-CBS applies

a conflict bound parameter, which determines after how many repeated conflicts

are agents merged into a group and planned together at the low level. The conflict

bound parameter can take values from 0 to infinity, where the value of 0 makes

MA-CBS equivalent to the ID and as the value approaches infinity the MA-CBS

resembles the standard CBS.

Next, the Improved CBS (ICBS) defined by Boyarski et al. [2015] provided a signif-

icant speed-up compared to the elemental CBS by introducing conflict bypassing,

fixed approach to conflict resolution based on categorisation by importance as

well as the possibility to restart the construction of the conflict tree upon merging

agents. A version of the CBS extended for a suitable heuristic was developed by

Felner et al. [2018] and outperformed even the improved CBS by up to a factor

of five (Felner et al. [2018]). Li et al. [2019a] recently introduced two additional

admissible heuristics outperforming those introduced by Felner et al. [2018].

25

Chapter 3: Literature Review

Finally, Li et al. [2019b] and Li et al. [2020] significantly boosted the performance

of the CBS by significantly improving the resolution of corridor conflicts, rect-

angular conflicts and situations where an agent arriving at its target may block

traversal for other agents. These situations previously lead to unacceptable run-

times of the CBS and exponential growth in the number of nodes in the CT.

3.3 Contemporary research on imperfect plan execution

In the final section of this chapter, we will review the recent publications that

concentrate on MAPF problems where agents can suffer from imperfect plan exe-

cution. However, we must note that the problem definitions in these publications

are often less complex than the Flatland. First of all, the majority of reviewed

publications assume that agents have identical speeds. Secondly, they only as-

sume agent malfunctions that last for one time-step, and lastly, they usually work

on smaller grids that are open; thus, they allow for easier re-routing of agents in

conflict.

We begin by reviewing Atzmon et al. [2018], who introduced an algorithm, which

guarantees that even if each agent gets delayed by k time-steps during path execu-

tion, they will all reach its destination without colliding with other agents. These

plans are called k-robust. A k-robust plan contains no k-delay conflicts, which

are defined as having two agents at the same location within the time interval of

< 0, k > time-steps. For example, for agents with speed equal to 1 and k = 2, this

means that they will reserve a location vertex v for 3 time-steps instead for only

1. Should any other agent plan to enter the vertex v over that time-step period,

a k-delay conflict would occur; thus, the agent plans a different path.

Moreover, Atzmon et al. [2018] described a way to convert A∗ based approaches

and declarative approaches to their related k-robust versions. The conversion to

k-robust plan is simple, as agents reserve vertices for longer periods depending on

the chosen k. However, the core focus of the publication was the introduction of

a k-robust version of the CBS (kR-CBS).

The kR-CBS prevents an arbitrarily selected agent, who takes part in the dis-

covered conflict from entering the vertex in question over k steps. The improved

kR-CBS (I-kR-CBS) version also introduced in Atzmon et al. [2018] imposes a k

26

Chapter 3: Literature Review

time-step long vertex entrance restriction on all the agents in the conflict individu-

ally, thus creating several children nodes in the conflict tree. These constraints can

be imposed as symmetric or asymmetric as discussed in Atzmon et al. [2018], but

the symmetric constraints were shown to provide superior performance. Atzmon

et al. [2018] has demonstrated that the increase in the total cost of the k-optimal

k-robust plans is small compared to optimal paths that assume no conflict. Fi-

nally, the symmetrically constrained I-kR-CBS outperforms kR-CBS but is still

up to 20 to 50 times slower compared to the standard CBS for instances where

k = 2, thus demonstrating the substantial increase in cost required for obtaining

the robustness.

Another publication which is relevant to our problem is the Ma et al. [2018], which

introduced algorithms that aim to maximise the number of agents completing their

journey within a set time-step deadline while preventing the occurrence of agents

collisions. Ma et al. [2018] introduced two categories of approaches for solving the

problem. One category using the reduction of the problem to a flow problem and

the subsequent solution using linear programming formulation of the resulting

reduced abstracted multi-commodity flow network, and the other building upon

search tree-based approaches. The search-based approaches included a modified

version of the Conflict Based Search (CBS) and a Death-Based Search (DBS) as

well as their meta-agent versions (MA-CBS, MA-DBS). Ma et al. [2018] found that

while the reduction-based approach generally performed better on small instances

with up to 50 agents, it struggled to efficiently solve large instances with a higher

number of agents. For these instances, the MA-DBS and CBS were superior, with

the MA-DBS offering the seemingly best performance compromise in overall.

Moreover, Hönig et al. [2017] studied the MAPF problem in situations where

robots had kinematic constraints (i.e. velocity) and suffered from imperfect plan

execution due to imprecisions in the real-world movement of robots. The publica-

tion introduced MAPF-POST approach that guarantees a safety distance between

agents taking into account imperfect plan execution due to imperfections. For this

cause, Hönig et al. [2017] introduced a temporal plan graph (TPG), which allows

to avoid time-intensive re-planning when imperfect execution occurs. Temporal

plan graph is created based on agents’ non-conflicting path plans and its vertices

represent locations that each agent is entering in its plan. Dependencies in the

order of traversal of locations are identified in the TPG and safety markers are

inserted into agents’ plans. Agents evaluate these safety markers before entering

27

Chapter 3: Literature Review

a location to ensure that other agents, who were supposed to traverse the loca-

tion before them, had done so. Hönig et al. [2017] then showed how to transfer

the TPG into a simple temporal network, thus allowing for the usage of linear

programming to solve the problem.

In another relevant publication, Ma et al. [2017] defined the MAPF with delay

probabilities (MAPF-DP) where agents could suffer from action execution failure

during every time-step. To solve the problem efficiently while preventing collisions

during the execution of plans, Ma et al. [2017] followed up on the research done

in Hönig et al. [2017] and utilised the TPG to control agents’ plans execution.

Agents’ paths are planned using a modified version of the CBS Sharon et al.

[2015a] that minimises the expected make-span of the solution while factoring

in an estimation of failures in plan executions. The TPG is then constructed

based on agents paths and the execution of plans is started. Every time an agent

arrives at a new location, it sends messages to relevant agents that are supposed

to enter the previously vacated location in the future time-steps. Recipients of

this message are determined by dependencies captured in the TPG. Agents only

enter the desired location if they received enough synchronisation messages from

other agents; otherwise, they wait. Furthermore, to minimise the number of sent

messages, Ma et al. [2017] performs the transitive reduction of the TPG to keep

only the necessary dependencies between agents’ paths.

Lastly, Atzmon et al. [2020] followed up on his previous research (Atzmon et al.

[2018]) on MAPF, where agents suffer from imperfect plan execution. However,

this time their research focused on finding a so-called p-robust solution. Com-

pared with the k-robust solution Atzmon et al. [2018], which guarantees that

agents reach their destinations even if each of them incurs up to k malfunctions,

the p-robust approach guarantees that the MAPF instance is completely solved

with a probability of p. Atzmon et al. [2020] introduced an optimal p-robust

approach based on the CBS (pR-CBS) as well as a fast suboptimal algorithm

based on a greedy version of the pR-CBS (pR-GCBS). Furthermore, Atzmon

et al. [2020] showed that the kR-CBS (Atzmon et al. [2018]) runs faster than the

pR-CBS; however, the kR-CBS neither guarantees a non-conflicting solution even

with existing information about the probability of train breakage. Therefore, in

general, the pR-CBS is more usable than the kR-CBS for which there does not

exist any way to determine the appropriate k.

28

Chapter 4

Methodology

In this chapter, we will present a detailed description of approaches that we will

combine into one to solve instances of the Flatland Challenge. We will first present

a description of the A∗ algorithm as it serves as a foundation of our approach.

The remainder of the chapter will then be split into two parts, where the first

part will describe the approach used to plan paths for agents before an individual

instance is run and the second part will detail plan execution.

This distinction is intentional as the planning approach focuses on calculating

a non-conflicting and valid path for each agent while accounting for its speed

and the movement of other agents. However, during the initial planning phase,

there are only limited possibilities to control for unexpected train breakdown

that occurs during the plan execution. Therefore, the plan execution approach

described in the second section introduces a method that can be deployed on top of

any planning approach in order to control for train breakdowns. A combination

of the planning approach with the suitable robust plan execution method can

ensure non-conflicting execution of agents’ plans even if unexpected breakages

occur during the plan execution.

4.1 A∗ path-finding algorithm

We begin this chapter by first describing the A∗ search algorithm (A∗). The

A∗ is an informed, best-first search algorithm similar to the uninformed Dijsktra

29

Chapter 4: Methodology

algorithm (Dijkstra [1959]), but extended by a heuristic function, which makes the

search of the state space much more efficient. We provide the pseudo-code for the

algorithm in the Algorithm 3, however we note that lines 15 and 16 (highlighted

in blue) are only relevant for the prioritized planning approach introduced later

in this chapter.

The A∗ builds a tree of possible paths originating from the start node and always

extends these paths one edge at a time until a termination criterion is met. The

path extension order is determined by expanding nodes that minimize the eval-

uation function f(n) = g(n) + h(n), where g(n) represents the cost of travelling

to the node n from agent’s start node. Moreover, h(n) represents the estimated

cost of the cheapest path to the target node based on the heuristic function. The

A∗ algorithm terminates when the target node is expanded or when there are no

more nodes to expand.

The A∗ is complete when used on finite graphs with non-negative edge weights

(Russell & Norvig [2009]) and optimal if the heuristic function is admissible. An

admissible heuristic function is a distance function h that never overestimates the

cost of getting to the target node from the current node. However, if the heuristic

function is only admissible, it does not guarantee that g(n) obtained upon first

expansion of the node is optimal.

In order to guarantee that the g(n) of a node is optimal upon its first expansion, we

must require that the heuristic function is also consistent. A consistent heuristic

function is such for which the following inequality holds:

h(n) ≤ d(n, n′) + h(n′)

where the n′ is a successor node of the current node n and d(n, n′) denotes the

distance function determining the true cost of travelling from n to n′. Therefore, a

consistent heuristic function does not overestimate the real cost of travelling from

the current node n to its successor n′. Moreover, a consistent heuristic function

is always admissible, but it may not hold the other way around Russell & Norvig

[2009].

30

Chapter 4: Methodology

Algorithm 3 The A∗ algorithm

1: function a star search(agent id, start, target, h, CAT)

//h - search heuristic function, CAT - conflict avoidance table

2: open← {start}
3: closed← Ø

4: g[∗]←∞, g[start]← 0

5: f [∗]←∞, f [start]← h(start)

6: previous node← {}
7: while open not empty do

8: current node← pop(open) //Pop node with the smallest f-value

9: if current node == target then

10: return rebuild path(previous node, current node)

11: closed← closed ∪ current node
12: for neighbour ∈ current node.neighbours do

13: if neighbour ∈ closed then

14: continue

//Function defined in the Prioritized planning section

15: if check occupation(CAT, neighbour, time, duration) then

16: continue

17: d← g[current node]+ distance(current node, neighbour)

18: if d ≤ g[neighbour] then

19: previous node[neighbour]← current node

20: g[neighbour]← d

21: f [neighbour]← d+ h(neighbour)

22: if neighbour /∈ open then

23: open.append(neighbour)

24: return Error - Path not found

25: end function

26: function rebuild path(previous node, current)

27: path← {current}
28: while current in parents map.keys do

29: current← previous node[current]

30: path.append(current)

31: return path

32: end function

31

Chapter 4: Methodology

4.1.1 Heuristic functions

We now introduce Manhattan distance and Distance map heuristic functions both

of which we will be using together with the A∗ to solve instances of Flatland Chal-

lenge. These heuristic functions are admissible and complete, hence the results

provided by the individual agent A∗ searches will be optimal.

Manhattan distance

The Manhattan distance is an admissible heuristic suitable for 4-way grid-world

environments. For two nodes i and j it is defined as follows:

hi,j =
2∑

k=1

| xi,k − xj,k |

We note that the Manhattan distance is only consistent for grids that allow hori-

zontal and vertical movement. However, this condition is satisfied for the Flatland

grid; hence the heuristic is consistent in our case.

Distance map heuristic

The Distance map heuristic is based on a distance map of each agent. We define a

distance map as a structure containing the shortest distances to the agent’s target

vertex from every other graph vertices reachable by the agent. For two nodes, i

and j, it is defined as follows:

hi,j = min(argminπk
i,j

(c(π0i,j), c(π
1
i,j), . . .),∞)

where the πki,j denotes a k − th possible path from i to j and c is a function that

determines the cost of the path π.

The Distance map heuristic function is admissible as it clearly never overesti-

mates the distance to the target node and it is trivially consistent for it never

overestimates the true cost of a move to a successor node.

32

Chapter 4: Methodology

4.2 Prioritized planning

In this section, we will describe a prioritized path planning algorithm that we

will deploy to plan initial paths for agents in the Flatland. However, as agents’

breakdowns cannot be accurately predicted, this approach will focus on finding

feasible solutions to the MAPF planning problem for agents with different speeds

and ignore the possibility of agents’ breakdowns.

4.2.1 Introduction of the general concept

Prioritized planning is a decoupled MAPF approach corresponding to the Coop-

erative A∗ first formalized by Silver [2005]. We plan paths for agents separately in

the order determined by their priority and use the conflict avoidance table (Stan-

dley [2010a]) to prevent conflicts in planned paths. The individual agent path

planning is carried out using the algorithm described in Algorithm 4.

The conflict avoidance table is a three-dimensional space-time structure (Figure

fig. 4.1), which forms the core of the prioritized planning approach. Throughout

the planning phase, each agent checks whether a movement to a successor tile

would cause conflict with other agents and if yes, then the move is not added to

the open list in the A∗ search. After a path for an agent had been successfully

planned, all tile positions are marked as occupied in the conflict avoidance table

to prevent conflict with agents planned afterwards.

Figure 4.1: Conflict avoidance table with path reservations for two agents

The prioritized planning algorithm is simple and fast but is not complete nor

optimal. In the standard MAPF settings, where agents never leave the grid, the

33

Chapter 4: Methodology

algorithm is incomplete as a higher priority agent can prevent other agents from

entering their target positions by ending its movement in a bottleneck tile. The

Figure 4.2 demonstrates a situation, where under a standard MAPF setting, the

prioritized planning algorithm is incomplete regardless of agent priority assign-

ments as the first planned agent will prevent the other from reaching its target.

However, the Flatland grid starts empty, which allows placement of agents in any

order as well as time-step. Furthermore, agents immediately disappear from the

grid after reaching their destination; therefore, the prioritized planning algorithm

is complete in this setting without further limitations imposed.

However, given the time-step constraint for each instance, the algorithm may not

be able to find routes, for all priority assignments, in a way that would guarantee

that all agents reach their targets on time; hence it is not complete. This highlights

the fact that priority planning is sensitive to the agent priority order. Moreover,

it becomes even more sensitive to it when the railways are sparse, and agents have

different speeds of travel as sparse railway decreases the possibility of bypassing

other agents and slow agents may hold up faster agents in bottleneck segments.

For example, if we plan all slow agents first, the faster agents may not be able to

finish their routes under the time-step limit as they may be held by slower agents

on straight segments (e.g. Figure 4.3).

Finally, prioritised planning algorithm is a type of a decoupled MAPF approach

(plans agents individually); therefore it is sub-optimal as it cannot enforce coop-

eration between agents that can be obtained via coupled approaches, which plan

all agents together. This cooperation between agents can lead to superior plans,

which are impossible to obtain via a decoupled approach such as the prioritised

planning

Figure 4.2: Discussed prioritized planning issue

34

Chapter 4: Methodology

Algorithm 4 Prioritized planning

function prioritized planning(agents, h)

// h represents a heuristic function

agent paths← {}
CAT ← [grid height][grid width][maximum time step]

CAT [∗, ∗, ∗]← 0

for agent ∈ agents do

agent path← a star search(agent.id, agent.start, agent.target, h)

//Log occupation into the conflict avoidance table

CAT = log occupation(CAT, agent.id, agent path)

agent paths[agent.id]← agent path

return agent paths

end function

function check occupation(CAT, tile, time− step, check duration)

for step ∈ range(time-step, time-step + check duration) do

if CAT[tile][step] != 0 then

return True

return False

end function

function log occupation(CAT, agent.id, agent path)

for step ∈ agent path do

for time step ∈ range(step.tstart, step.tend) do

CAT [step.tile.x][step.tile.y][time step] = agent.id

return CAT

end function

4.2.2 Time-expanded graph representation

The prioritised planning uses the conflict avoidance table to restrict agents’ en-

trance to vertices vi at the time-step t, when they are occupied by other agents.

However, it is not possible to capture the element of vertex reservation at a given

time t in the standard graph representation of the Flatland grid; therefore, we

will now introduce the time-expanded graph.

35

Chapter 4: Methodology

The time expanded graph is an idea, which first appeared for SAT and domain

independent approaches for MAPF, where the state representation was expanded

over all possible time-steps Svancara & Surynek [2017].For our Flatland graph

representation G = (V,E, ε) we define the time-expanded Flatland graph repre-

sentation as Gt = (Vt, Et, εt), where t ∈ [0, Tmax]. Vertices Vt correspond to the

t− th layer of the graph, thus represent the grid in t− th time-step. Furthermore,

Et contains the traversal edge ε(e) = (vt, ut+ρ), where ρ represents the number

of time-steps an agent needs to traverse a tile, if and only if E contains the edge

ε(e) = (v, u). Similarly, the Et contains the waiting edge ε(e) = (vt, vt+1) if and

only if E contains the edge ε(e) = (v, v).

For simplicity we assume that given the dependency on ρ, we need to construct

as many time-expanded graphs for the prioritised planning as we have different

ρ values for our agents. Therefore, different agents will be using different time-

expanded graphs for the path planning; however, all resulting paths will be noted

into the shared conflict avoidance table afterwards. Hence, we will run the indi-

vidual agents A∗ search on the time-expanded graph and when an agents expands

a node, it will look-up occupancy in the conflict avoidance table based on the t of

the expanded vertex.

4.2.3 Agent priority heuristics

As explained above the prioritized planning approach is sensitive to the priority

assignments to agents and unsuitable priority assignments can deteriorate the

performance of the approach and cause partial completion of paths under time-

step constraint. We will now introduce several agent priority ordering heuristics

in order to try to boost the performance of the prioritised planning algorithm.

Before we outline our heuristics, we remind the reader that we defined the number

of time-steps an agent requires to traverse a tile, based on its speed, in the Chapter

2 in the Equation 2.1.

While developing our agent priority heuristics we have taken into account sev-

eral key learnings resulting from principles of the Flatland Challenge. The key

learnings used for the definition of the ordering heuristic are the following:

Learning 1: The railway in Flatland Challenge is sparse and there exists

36

Chapter 4: Methodology

only a limited number of target destinations that accommodate multiple

agents. This results in agents often following one another on long straight

railway segments. Thus, a train queue lead by one slower agent could hold-

up several fast paced agents on these segments, thus severely affecting the

overall performance. Therefore, higher speed agents should be planned with

a higher priority. On the other hand, if we schedule slower agents too late,

they may not have enough time to reach their target before the time-step

limit for the Flatland instance runs out.

Learning 2: In the Flatland Challenge, all agents have a unified proba-

bility of breaking down during each time-step. Due to the speed difference

affecting the number of time-steps required to traverse a tile, slower agents

are more prone to breakages on paths of the same length. This observa-

tion further supports the conclusion from the previous learning that higher

speed agents should be planned with a higher priority. On the other hand,

if slow agents are scheduled too late, they may not be able to reach their

target. This is only worsened by the fact that they may breakdown hold up

themselves and potentially other slower agents.

Learning 3: Agents with the same speed, but longer paths are more prone

to breaking down as they require more time-steps to complete their journey.

Therefore, agents who start closer to their destinations should be scheduled

first. On the other hand, we again risk scheduling agents with long paths

too late, which may result in deterioration of completion.

From our learnings we observe that there does not seem to be a one apparent

solution to the agent ordering problem in the Flatland. This claim is further

supported by the fact that both agents’ start/target positions and speeds are

randomly distributed at the start of each distance, hence there does not exist any

fixed logic of agents’ speed and distance to goal assignments. Therefore, we will

now introduce 4 agent ordering heuristics and we will analyse their performance

in the Chapter 5 when we conduct repeated experiments on several Flatland

instance.

We split our new ordering heuristics into two categories. The first category prior-

itizes agents who have a generally faster path completion and we call it Upwards

ordered heuristics as the completion times of scheduled agents gradually increase.

The other heuristic category prioritises agents with a longer path completion time

37

Chapter 4: Methodology

and we call it Downwards ordered heuristics. Our ordering heuristics are defined

as follows:

Upwards ordered heuristics

• Fast-First ordering

1. Order agents by the number of time-steps needed to travel a tile in an

increasing order

2. Break ties by prioritising agents with shorter distance to their target

position

3. Agents with the same speed and distance to their target are ordered

by their initial Flatland priority in an increasing order

• Close-First ordering:

1. Break ties by prioritising agents with shorter time-step distance to their

target

2. Agents with the same speed and distance to their target are ordered

by their initial Flatland priority in an increasing order

Downwards ordered heuristics

• Slow-First ordering:

1. Order agents by the number of time-steps needed to travel a tile in a

decreasing order

2. Break ties by prioritising agents with longer distance to their target

position

3. Agents with the same speed and distance to their target are ordered

by their initial Flatland priority in an increasing

• Remote-First ordering:

1. Break ties by prioritising agents with longer time-step distance to their

target

2. Agents with the same speed and distance to their target are ordered

by their initial Flatland priority in an increasing

38

Chapter 4: Methodology

Where the time-step distance represents the lowest number of time-steps the agent

needs to reach its target. This value is obtained by multiplying agent’s tile distance

from the target by the number of time-steps the agent requires to traverse a tile.

We have done this to directly factor in the agent’s speed into the ordering. We

note that in the case of the Fast-First and Slow-First orderings, the distance can

be represented as the number of tiles that an agent has to traverse to reach its

target as we are always breaking tiles between agents with the same speed.

Figure 4.3: Convoy of agents on a railway straight segment

4.3 Dynamic traversal precedence maintenance

In this section, we will introduce an approach that can be used to prevent conflicts

caused by the occurrence of train breakdowns during the execution of plans. We

will restrain from implementing approaches that rely on repeated re-planning

of agents’ path after breakdown occurs. Although these approaches can, when

possible, improve routes after malfunction happens, they are computationally

very costly, especially for large instances where breakdowns are frequent.

Therefore, our aim is to dynamically prevent conflicts when an agent breakdown

occurs, while keeping the computational time independent of the frequency of

breakdown occurrence.

4.3.1 Introduction of the general concept

We will now introduce a dynamic path execution approach that is deployed during

the path execution phase and can be used with any path planning algorithm.

39

Chapter 4: Methodology

The approach is built around a temporal plan graph (Hönig et al. [2017]) that

captures the inter-dependencies between agents’ paths. Specifically, we will use

it to establish and enforce the order of the agent’s traversal through tiles. Our

approach was inspired by Hönig et al. [2017], Hönig et al. [2019] and Ma et al.

[2017], but we implemented improvements allowing trains to skip redundant wait

moves.

The main benefit of this approach is that the agent paths can be planned without

assuming agent any breakdowns. Afterwards, during the path executions, we

enforce the tile traversal order that prevents agents conflicts without a need for

further re-planning.

4.3.2 Temporal plan graph definition

The temporal plan graph (TPG, Hönig et al. [2017]) is a directed acyclic graph

GTPG = (VTPG, ETPG), where vertices vi ∈ VTPG correspond to agent’s entry

into a Flatland grid tile and edges ei ∈ ETPG represent the temporal precedence

between events represented by vertices v and v′.

The TPG imposes two types of precedence constraints:

1. Agent ai must enter grid positions in the order imposed by its path plan

2. Agents must obey the imposed order of traversal for grid positions that are

traversed by multiple agents

The time-step factor is not directly captured in the TPG; however, given the

precedence constraints, the TPG specifies a partial order among events Ma et al.

[2017]. This allows us to execute agents’ paths without conflicts even when break-

downs occur as Hönig et al. [2017] proved that agents do not collide if they execute

a movement schedule that is consistent with the TPG’s precedence constraints.

4.3.3 Temporal plan graph construction

After paths for agents have been found, we will encode them into the TPG. We

first create a directed graph out of agents’ individual paths and then we find the

precedence constraints and represent them as edges between vertices in individual

40

Chapter 4: Methodology

agents paths. The construction of the TPG is in detail described in the Algorithm

6. During the construction of the TPG, we will leave out all the wait moves

planned for all agents as they become a redundant complication because agents

will always have to wait until all precedences for their next movement are satisfied.

The absence of wait moves in the TPG allows us to, in some cases, compensate

for time lost due to the agent’s breakdown. For example, an agent may have 5

consecutive wait movements lasting 5 time-steps scheduled at some point, but if

it endures a breakage lasting for 3 time-steps before it is supposed to execute the

5 wait moves, it is sufficient for it to execute only 2 wait moves to preserve all

precedences, ceteris paribus1. Moreover, the precedence edges between vertices

corresponding to one agent carry the information about the action that the agent

needs to execute to get its next position, thus encoding the plans for all agents.

The Algorithm 6, with un-commented line above the line 20 and removed current

line 20, describes the baseline TPG construction algorithm described in Hönig

et al. [2017] and ?. However, this baseline version is unnecessarily complex, which

is especially problematic as our implementation is in Python. Therefore, we will

introduce a significant improvement to the construction of the TPG, which lever-

ages the conflict avoidance table (CAT) that we created during the path planning

phase.

Specifically, the baseline Algorithm 6 assumes iteration over all other agents (com-

ment above the line 20). However, this is inefficient as many of these agents do not

have any precedence with the tile as they do not even traverse it in their plans. To

solved this, we use the conflict avoidance table that helps us to determine exactly

which agents traverse the tile in question after the agent in question (Algorithm

5. Therefore, we then iterate over only a subset of the agent space as seen on the

Line 20 in the Algorithm 6.

Moreover, we note that the TPG construction improvement is applicable to output

of any non-conflicting path finding algorithm as the conflict avoidance table can

be quickly filled in after the path finding with a different algorithm (such as

CBS) done. Therefore, we obtain similar benefit as if we used the prioritised

planning. This improvement leads to a substantial reduction in the run-time of

the construction of the TPG, which we will demonstrate in the Chapter 5.

1Other things equal

41

Chapter 4: Methodology

4.3.4 Temporal plan graph usage

We will use the TPG during the execution to monitor whether all required agents

have already traversed the vertex, thus allowing for the next in line agent to start

traversing it. The precedence can be easily enforced via a central planner or a

message communication system between agents; we will use the latter approach.

Throughout the execution, after an agent enters a new tile, it sends a message to

all agents that are supposed to later traverse the node the agent just left. The

precedence conditions for a tile entry of an agent are satisfied when the traversal

precedence counter for its next TPG vertex equals to k−1, where k is the number

of in-edges, and we deduct the 1 as agents are not marking traversals of vertices

along their own path.

To be able to prevent all collisions, we need to make sure that agents maintain

safety distance. The safety distance is enforced by the fact that agent incre-

ments the traversal precedence counter for a TPG vertex if and only if it had

already successfully traversed the corresponding tile. Hence, we only permit the

agent to start traversing a node if all the previous agent in the precedence order

had successfully traversed it. The downside of the safety distance is that it en-

forces spacing between agents equal to one additional time-step. This additional

time-step may otherwise not be necessary given the Flatland agent movement ex-

ecution, which performs agents’ actions one by one according to their Flatland ID,

which is defined arbitrarily. Therefore, in some situations, the following conflict

(as defined in Chapter 2 does not occur. However, the TPG plan execution ignores

this opportunity to save one time-step to maintain the safety distance preventing

collisions.

Figure 4.4: Temporal plan graph construction logic

(a) Simple environment

(b) Agents paths captured in TPG

42

Chapter 4: Methodology

Lastly, in the Figure 4.4 we provide an example of TPG representation of agents’

paths. Figure 4.4a shows a simple MAPF situation, where Si and Gi represent the

starting and target positions for the agent ai. The agent a1 has a higher priority,

thus will be planned as the first one. The TPG representation of agents paths

is shown in Figure 4.4b. Rows in Figure 4.4b correspond to individual agents

paths, where the wait moves of the agent a2 at t2 and t3 are already removed.

The edge connecting the node (0, 1) of the agent a1 to the node (1, 1) of the agent

a2 represents a precedence relationship as agent a2 can only enter the node (1, 1)

after the agent a1 leaves it. Therefore upon leaving the node (1, 1) and arriving

into the node (0, 1) the agent a1 notifies the agent a2 via the precedence edge that

it can start traversing to the node (1, 1).

Algorithm 5 Temporal plan graph improvement

1: function select agents(agent id, tpg vertex, CAT)

2: agents← Ø

3: for t ∈ range(tpg vertex.t+ 1, T max) do

4: if CAT [tpg vertex.x, tpg vertex.y, t] /∈ agents then

5: agents← agents ∪ CAT [tpg vertex.x, tpg vertex.y, t]

6: return agents \ agent id
7: end function

4.4 p-TPG

We will now introduce our approach for solving the Flatland instances, which is

composed from the above defined methodology. From now on, we will call the

approach ”p-TPG”.

The p-TPG is a two-stage algorithm that first plans non-conflicting paths for all

agents using the prioritised planning, which runs a low-level A∗ search with a

conflict avoidance table. In the second stage, it creates the temporal plan graph

based on paths planned in the first stage. The temporal plan graph then controls

the plan execution through the dynamic traversal precedence maintenance and

allows us to effectively handle agent breakdowns.

43

Chapter 4: Methodology

Algorithm 6 Temporal plan graph construction

1: function Temporal plan graph(agents, map graph)

2: GTPG ← (ETPG, VTPG)

3: for agent ∈ agents do

4: i← agent.id

//agent’s starting ver

5: vi0 ← agent.path[0].ver

6: VTPG ∪ vi0
7: vlast ← vi0

8: for j in range(1, length(agent.plan)) do

//ignore wait actions

9: if agent.path[j].ver != agent.path[j-1].ver then

10: t← agent.path[j].time

11: vit ← agent.path[j].ver

12: VTPG ∪ vit
13: action← extract action(map graph, vlast, v

i
t)

//add edge with an action note

14: ETPG ∪ (vlast, v
i
t, action)

15: for agent ∈ agents do

16: i← agent.id

//The last node in plans is a sink node

17: for k ∈ range(1, length(agent.plan)− 1) do

18: ti ← agent.plan[k].time step

19: if vit ∈ GTPG then

// for agent j ∈ agents \ agent do

20: for agent j ∈ select agents(i, vit, CAT) do

21: j ← agent j.id

22: for tj ∈ range(ti + 1, length(agent.plan)) do

23: if vjtj ∈ GTPG then

24: if agent.plan[ti].ver == agent j.plan[tj].ver then

//precedence edge from agent’s next node

25: ETPG ∪ (vit+1, v
j
tj

)

26: break

27: return GTPG

28: end function

44

Chapter 5

Experiments and Results

In this chapter, we will analyse the outcomes of testing of our Flatland solving

MAPF approach. We will begin the chapter by describing the testing methodol-

ogy, including the introduction of our Flatland test instances alongside the agent

speed and breakdowns generators. We will then begin to review the results of

the test we have conducted. First of all, we will examine the effects of different

state-space search heuristics on the prioritised planning approach introduced in

the Chapter 4. Then we will describe the effects that different agent priority

heuristics have on the performance of the prioritised planning. Lastly, we will

analyse the performance of our p-TPG approach on instances with breakdowns.

We note that we ran all calculation using a workstation equipped with the In-

tel Xeon e3-1240 v3 clocked at 3.40 GHz and 8GB of DDR3 RAM clocked at

1600MHz. None of our calculations were in any part done using a GPU.

5.1 Flatland test instances

Through iterative development, we have developed instances that are representa-

tive of environments that we had seen in the actual Flatland Challenge1 and also

gradually increase in complexity to allow for better analysis of the performance

of our approach.

1Leaderboards contain videos from the competition simulation run-time showing Flatland en-

vironments, accessible at https://www.aicrowd.com/challenges/flatland-challenge/leaderboards

45

Chapter 5: Experiments and Results

In total, we have prepared 12 test instances, which are split into 4 categories:

Easy shown in the Figure 5.1, Medium shown in the Figure 5.2, Hard shown

in the Figure 5.3 and Extreme shown in the Figure 5.4. The categorisation is

determined by the difficulty of solving an instance, which is driven not only by

the size of the environment and the number of agents but also by the number of

cities and routes between them. Instances in each category should be progressively

increasing in difficulty. However, there are many variables interacting and driving

the complexity; thus, deviations from the general trend of increasing complexity

are possible.

Figure 5.1: Easy test instances

(a) 15×15, 20 agents (b) 20×20, 50 agents (c) 35×20, 50 agents

We note that the AI Crowd provided 20 test cases SBB, AI Crowd [2020], which

we took into account while creating our test instances. However, these test cases

were mostly of medium or extreme difficulty and had a very infrequent occurrence

of breakdowns; hence they were not very suitable for a detailed analysis of the

performance of our approach across various situations.

Figure 5.2: Medium test instances

(a) 35×55, 80 agents (b) 60×60, 95 agents (c) 70×60, 115 agents

When examining the Figures depicting railway maps of our test instance, we

would like to bring to attention that all our test instances have very sparsely

distributed railways with long straight segments (without bypasses) and a very

46

Chapter 5: Experiments and Results

large number of agents, which is possible only because the placement of agents on

the grid is part of the planning process and agents disappear after reaching their

target position. In the end, these two properties lead us to prefer the sub-optimal

prioritised planning approach over other optimal approaches, mostly due to the

much faster speed of finding a feasible solution.

Figure 5.3: Hard test instances

(a) 75×75, 135 agents (b) 80×100, 135 agents (c) 100×100, 150 agents

The fact that agents disappear after reaching their targets makes it easier to use

prioritised planning as one agent can never block others by occupying its target

position for the rest of the instance. However, the need to place agents on the

grid makes it especially difficult to solve the Flatland instances with coupled ap-

proaches (OD+ID by Standley [2010b]) or tree-based approaches (CBS by Sharon

et al. [2015b]) in their elemental form. This is because the number of potential

conflicts among agents is very high because of their shared placement positions.

Moreover, the CBS especially struggles when dealing with conflicts of agents who

are travelling in opposite directions across long straight rail segments.

Figure 5.4: Extreme test instances

(a) 150×150, 200 agents (b) 150×150, 200 agents (c) 150×150, 200 agents

47

Chapter 5: Experiments and Results

5.1.1 Agent speeds

Having created railway maps, we next need to determine the range of speeds

that different agents can have in these environments. In line with the Flatland

Challenge, we are using 4 different speeds for trains representing the following

real-world categorisation: fast passenger train with speed equal to 1.0, fast cargo

train with speed equal to 0.5, slow passenger train with speed equal to 1
3 and

slow cargo train with speed equal to 0.25. Each agent is assigned one of the

above-introduced speed categories with a uniform probability of 0.25 each.

5.1.2 Agent breakdown generators

Lastly, we need to determine test configurations of agent breakdown generators.

We remind the reader that we provided a detailed explanation of the breakdown

mechanics in Chapter 2. The Flatland Challenge environment allows for great

flexibility in breakdowns configurations as we can not only determine the prob-

ability of an agent breaking down during each time-step, but we can also set a

minimal and maximal time-step duration for breakdowns. However, we highlight

that all trains share the same probability of breaking down during each time-step.

Unlike for the agent speed distribution, The Flatland Challenge provided no spe-

cific information about the setup of breakdown generators except for the break-

down generator in the public test instances. Therefore, we have defined 3 break-

down scenarios for our testing, which we are as follows:

• Frequent: Frequent breakdown occurrence / short breakdown duration

• Moderate: Moderate breakdown occurrence / medium breakdown duration

• Rare: Infrequent breakdown occurrence / long breakdown duration

Moreover, we provide further details about these scenarios in the Table 5.1, where

we specify the probability of train breakdown during each time-step, the range

of possible breakdown durations, and the expectation indicator. We define the

expectation indicator as follows:

Expectation = Probability * Average duration

48

Chapter 5: Experiments and Results

and it represents the average expected breakdown duration in each time-step. We

use this indicator to ensure that our breakdown scenarios will lead to a similar

cumulative breakdown durations when deployed on the same test instance. There-

fore, we can isolate the effect that different average breakdown durations have on

our approach performance.

Table 5.1: Breakdown scenarios properties

Scenario Probability Possible duration Expectation

Frequent breakdowns 0.0043383 [2,5] 0.015

Moderate breakdowns 0.0009995 [10,20] 0.015

Rare breakdowns 0.0003999 [25,50] 0.015

Flatland example 0.0000833 [20,50] 0.00291

Lastly, the last row in the Table 5.1 illustrates how the breakdown generator was

configured for the public test instances provided by the AI Crowd SBB, AI Crowd

[2020]. However, as these instances were meant for fine-tuning of contestants

algorithms, we did not consider the configuration to be challenging enough and

increased the difficulty in our scenarios, which can be seen based on the difference

in the expectation indicator.

5.2 Prioritised planning performance analysis

In this section, we will first examine the effects that the choice of a heuristic

function can have on the efficiency of the state space search in the prioritised

planning approach. Next, we will analyse the impact of agent priority heuristics

introduced in Chapter 4 on the overall outcomes and efficiency of the prioritised

planning. To isolate the effects of these heuristics on the planning results, we will

solve our test instances without any breakdowns occurring.

5.2.1 State space search heuristics comparison

The prioritised planning approach is built around the A∗ algorithm, which we

use to plan non-conflicting paths for individual agents. Therefore it is essential

to make the approach as fast as possible by using the most efficient state search

49

Chapter 5: Experiments and Results

heuristics. Thus, we will now compare the efficiency of the Manhattan distance

and Distance map search heuristics, which we introduced in Chapter 4.

As outlined above, we ran the prioritised planning on our test Flatland instances,

but ignored any breakdowns. The results we obtained are summarised in Figures

5.5, ?? and 5.9.

Figure 5.5: The effect of state space search heuristics on paths length

(a) Sum of Individual Cost (b) Make-span

In the Figure 5.5 we see that while both heuristics lead to almost identical results

in terms of the sum-of-individual cost (SIC, Figure 5.5a), they differ slightly in the

Make-span (MS) on more complex instances (Figure 5.5b). This phenomenon may

surprise some readers as they may have expected the results of the two heuristics

to be completely identical. However, several optimal paths may exist for some

agents in the Flatland grid, and the choice of the path for one agent may affect the

path planning for succeeding agents. Thus, resulting in differences in the overall

plan, which causes differences in the SIC and MS.

Figure 5.6: The effect of state space search heuristics on performance

(a) Number of A∗ state expansions (b) Planning run-times

50

Chapter 5: Experiments and Results

To demonstrate this hierarchical effect, we provide an example supporting our

reasoning in Figure 5.7. Agent 1 has a higher priority and two optimal routes

leading to its target position. However, should it choose the second optimal path,

leading through the bottom of the environment, it would result in a longer path

for the second agent, which would have to prevent a tile conflict (Chapter 2) with

the first agent on its optimal path. Therefore, the decision about the path of the

first agent can increase the SIC as well as the MS of the instance solution.

Figure 5.7: Hierarchical dependency of path planning

Moreover, Figure 5.6 depicts the cumulative number of nodes expanded during

all individual searches and run-times of the overall search in seconds across our

test instances for both heuristics. We see that the Manhattan distance leads to

a much higher number of expansions on hard and extreme instances, which, as

expected, directly affects the overall run-time of the state space search through

the increase in the search complexity. Using the Manhattan distance resulted in

up to 6 times more state expansions and longer search on extreme instances when

compared to the results obtained using the Distance map heuristic.

The difference in expansion count is caused by the fact that the Manhattan dis-

tance generally has less accurate information about the real structure of the Flat-

land grid compared to the Distance map, which maps true distances based in

the grid. Figure 5.8 depicts an example, where using the Manhattan distance

will lead to more expansions and longer search than using the Distance map. In

the Figure 5.8, we observe that the Distance map heuristic will start expanding

the blue path leading to the target position right from the start. However, the

Manhattan distance will first cause additional expansions depicted by the red line

before expanding the feasible way to the target position. These additional expan-

sions are entirely misleading, but the heuristic has no information that would help

to determine that sooner as according to the values of the Manhattan distance,

51

Chapter 5: Experiments and Results

the agent should be approaching the target position when travelling along the red

path.

Figure 5.8: Manhattan distance node expansion inefficiency

Lastly, in the Figure 5.9, we summarise the effect that the two state-space search

heuristic functions have on the completion rate of our test instances without

breakdowns happening. As explained above, although both heuristics guarantee

the optimality of individual agents’ paths, the overall prioritised planning solution

can differ. As there are no breakdowns, any partial completion is caused by the

fact that some agents are unable to reach their positions under the time-step limit

specified for the test instance. From the Figure 5.9 we see that both heuristics lead

to a partial completion on the test instance 5, which seems to be more challenging

to complete than the other test instances. Furthermore, using the Distance map

heuristic leads to a 2% drop in completion for the test instance 8. However, the

planning with Manhattan distance is only partially complete on test instances 2,

3 and 7. In general, we observe that the Manhattan distance resulted in worse

results in terms of the completion rate than using the Distance map heuristic.

Figure 5.9: The effect of state space search heuristics on completion rate

In overall, while both heuristics offer comparable results in terms of SIC and MS;

52

Chapter 5: Experiments and Results

using the Manhattan distance leads to lower average instance completion rate

and significantly worse run-time of the prioritised planning algorithm. Therefore,

from now on, we will only use the Distance map heuristics.

Agent ordering

In the Chapter 4, we have explained that the prioritised planning algorithm is

sensitive to the order in which we plan paths for individual agents. Therefore, we

will now analyse the impact that the different agent priority heuristics, which we

introduced in the Chapter 4, can have on the prioritised planning approach.

Figure 5.10 summarises the impact of different ordering approaches on the com-

pletion rate in simulations where breakdowns do not occur. Interestingly, we see

that approaches that prioritise agents with shorter path execution in terms of

time-steps (Fast-First, Close-First) provide a sub-par performance comparable to

the initial Flatland priority assignment. On the other hand, approaches priori-

tising agents with prolonged path execution in terms of time-steps (Slow-First,

Remote-First) maintain full completion rate.

Figure 5.10: Test instances completion rate without breakdown

Moreover, figures 5.11a and 5.11b depict the effect of various ordering heuristics

on the total execution cost measured by SIC and MS as well as on the performance

of the state space search. From Figure 5.11, we see that there exists an inverse

relationship between the SIC and MS of individual ordering approaches. While

the Fast-First and Close-First orderings dominate other orderings in terms of SIC,

they provide a sub-par performance in terms of the MS compared to the other

53

Chapter 5: Experiments and Results

ordering heuristics. On the other hand, Slow-First and Remote-First ordering

heuristics perform very well in terms of the MS, but have a much higher SIC.

Figure 5.11: Testing results without agent breakdowns

(a) Sum of individual costs (b) Make-span

(c) Number of A∗ state expansions (d) Planning run-times

The reasoning behind this inverse relationship is relatively trivial. Fast-First and

Close-First orderings prefer to first schedule agents, who will complete their routes

quickly. These approaches, therefore, have a lower SIC as fast agents quickly

complete their routes and then do not accumulate any additional cost. However,

as agents who need more time-steps to complete their routes are scheduled with

lower priority, they increase the overall time-step duration of the instance; thus,

increase the make-span. Furthermore, this phenomenon causes the decrease in the

completion rate for these orderings as the slowest agents may not have enough

time to complete their routes when scheduled close to the end of the instance

determined by the time-step constraint. Moreover, it can be trivially seen that

the same logic in reverse applies to Slow-First and Remote-First orderings. First

of all, agents with longer paths in term of time-steps have enough time to complete

their routes and can be closely followed by fast agents; therefore result in lower

MS. However, the generally higher number of waiting agents in the environment

54

Chapter 5: Experiments and Results

leads to the accumulation of additional costs; thus increase the SIC.

Lastly, Figures 5.11c and 5.11d show that Remote-First and Slow-First heuristics

have a significantly higher count of search space expansions and longer planning

run-times on hard and extreme test instances when compared to all ordering ap-

proaches. On the other hand, Fast-First and Close-First ordering heuristics have

a low count of expansions and consistently short run-times, which again becomes

apparent on hard and extreme instances, where they over-perform all other agent

orderings in terms of these metrics. Specifically, the count of expansions and run-

times for the most computationally demanding agent ordering, Slow-First, are up

to 7 times higher when compared to the Fast-First agent ordering that was the

least computationally demanding ordering.

The difference in expansions and the search run-time occurs because agents that

require more time-steps to reach their target positions are scheduled first, which

then imposes more restrictions on the path planning for lower priority agents.

These planning restrictions are caused by the fact that agents moving slowly

or/and over longer distances block out more positions in the conflict avoidance

table, thus limiting options for the planning of succeeding agents. Lower priority

agents, regardless of their speed then require a deeper and longer search to find

an optimal and valid path. We note that the increase in expansions is primarily

caused by expanding wait moves, which agents schedule either before placement

or while waiting for other previously scheduled agents to complete their traversal

of agent’s best succeeding position.

In overall, the completion rate is the key indicator of success in terms of Flat-

land and we found that the Slow-First and Remote-First agent ordering not only

dominate the Flatland initial priority assignment but also offer superior results

when compared to the Fast-First and Close-First orderings. Moreover, in terms of

the completion rate, the Fast-First and Close-First orderings in general offered a

sub-par performance even when compared to the Flatland initial agent ordering.

However, the apparent downside of Slow-First and Remote-First agent orderings

is the higher complexity of the planning process reflected in the higher number of

expansions and longer run-times on more complex test instances.

55

Chapter 5: Experiments and Results

5.3 Testing with breakdowns

In the last section of this chapter, we will evaluate the effect of the three breakdown

scenarios we introduced at the beginning of this chapter on the results of our

approach. We remind the reader that the three breakdown scenarios are as follow:

• Frequent: Frequent breakdown occurrence / short breakdown duration

• Moderate: Moderate breakdown occurrence / medium breakdown duration

• Rare: Infrequent breakdown occurrence / long breakdown duration

where all have almost the same expected duration of breakdown per time-step in

order to make them more comparable. To make our results more robust, we ran

each instance 30 times, each time with a different random seed for breakdowns

and then averaged out the results.

We note that we will not further analyse the count of expansions and planning run-

times as they are identical as for the cases with no breakdowns, which we described

in Figures Figures 5.11c and 5.11d. This is because we use the prioritised planning

to plan agents’ paths, ignoring the existence of breakdowns, and then we construct

the TPG to control for breakdowns occurrence during paths execution.

5.3.1 Temporal plan graph construction improvement

In Chapter 4, we introduced an improvement to the baseline TPG construction

algorithm (Hönig et al. [2017]), which benefits from using the conflict avoidance

table from the prioritised planning, introduced in the Chapter 4. The Figure 5.13

illustrates the impact of the improvement on the TPG construction algorithm run-

time. When comparing Figures 5.12a and 5.12b, we observe that the improvement

we introduced provides decreases in the TPG construction run-time, which can

account for more than 2.5 orders of magnitude for some extreme instances.

The improvement in the run-time of the TPG leads to a major reduction in the

total planning run-time of our approach. The total planning run-time represents

the sum of prioritised planning and the TPG construction run-times. Figure

5.13a depicts the total planning run-time when the baseline TPG construction

56

Chapter 5: Experiments and Results

Figure 5.12: TPG construction algorithms run-times comparison

(a) Baseline TPG construction run-times (b) Improved TPG construction run-times

algorithm was used, while Figure 5.13b shows the total planning run-times with

the improved TPG construction algorithm. We observe that the fastest planning

approaches, using the Fast-First and Close-First agent ordering, now only take

up to 100 seconds compared to up to 800 seconds with the baseline TPG con-

struction algorithm; thus, reducing the total planning run-time 8times. The total

planning run-time with the Slow-First and Remote-first orderings is about 4 times

lower too as well. However, in this case the reduction of run-time is lower as the

path planning accounts for a larger part of the planning run-time for these two

orderings.

Figure 5.13: Total planning run-times comparison

(a) Baseline total planning run-time (b) Improved total planning run-time

5.3.2 Breakdown scenarios results

We will now review the complete results from running our approach on instances

with the breakdown scenarios. The results for the scenario with Frequent break-

57

Chapter 5: Experiments and Results

downs can be seen in the Figure 5.14, for the scenario with Moderate breakdowns

in the Figure 5.15 and for the scenario with Rare breakdowns in the Figure 5.16.

From our results, we can see that in general, the impact of breakdowns was the

least significant for the scenario with Frequent breakdowns and the most severe

for the scenario with Rare breakdowns.

Figure 5.14: Testing results obtained with Frequent breakdowns

(a) Completion rates (b) Sum of individual costs

(c) Breakdown occurrences count (d) Total breakdowns durations

The completion rate in the scenario with Frequent breakdowns was affected mostly

for the Flatland initial ordering and Close-First ordering, which registered addi-

tional 2% completion rate decreases for already incompletely solved instances as

well as new decreases in completion for the Easy test instance number 3 and 7.

Moreover, the scenario with Moderate breakdowns continued in this trend but

mostly affected the plan created using the Flatland initial agent ordering, which

was already suffering from a relatively flawed completion rate.

However, the scenario with Rare breakdowns affected the completion rate for plans

across all of our ordering approaches. We highlight the fact that the completion

rates of the Flatland initial ordering as well as of the Fast-First and Close-First are

58

Chapter 5: Experiments and Results

Figure 5.15: Testing results obtained with Moderate breakdowns

(a) completion rates (b) Sum of individual costs

(c) Breakdown occurrences count (d) Total breakdowns durations

now severely sub-par compared to other approaches. Moreover, the Remote-First

and Slow-First orderings that until now had a perfect completion rate suffered

slight losses of up to 1% in the second and fifth test instance. However, their per-

formance remained robust compared to the other orderings, even in this extreme

breakdown scenario.

Figures 5.14c, 5.15c and 5.16c depicting the total count of breakdown confirm that

breakdown occurrences are up to 10 times more common for the scenario with

Frequent breakdowns then for the scenario with Rare breakdowns. Moreover,

when reviewing Figures 5.14d, 5.15d and 5.16d showing the total duration of

breakdowns for our scenarios, we see that all our scenarios were exposed to similar

total breakdown durations across test instances. This suggests that we succeeded

in building comparable breakdown scenarios through the usage of the expectation

indicator.

From Figures, 5.14c, 5.15c and 5.16c we also observe that, as expected, all plans

created using the Fast-First and Close-First agent orderings suffer fewer break-

59

Chapter 5: Experiments and Results

Figure 5.16: Testing results obtained with Rare breakdowns

(a) completion rates (b) Sum of individual costs

(c) Breakdown occurrences count (d) Total breakdowns durations

downs across all breakdown scenarios compared to the other ordering approaches.

This trend is understandable as these ordering approaches aim to quickly com-

plete agents with paths that are short from the time-step perspective. Thus they

aim to minimise the chance that they will break down and block the environment.

Although, the differences may seem marginal when looking at Figures depicting

the breakdown occurrence counts (Figures 5.14c, 5.15c and 5.16c) and breakdown

durations (Figures 5.14d, 5.15d and 5.16d), they can range up to several hundred

time-steps in some test instances. For example, looking at the test instance num-

ber 8 in Figures 5.14d, 5.15d and 5.16d, we observe a difference of approximately

500 time-steps between the total breakdown durations for the Remote-First and

Fast-First orderings.

Lastly, when analysing the sum of individual costs across different scenarios, we

can see that the general trend remains the same, but there is an increase of up to

10,000 for the extreme cases between the scenario without any breakdowns and

the scenario with Rare breakdowns. We witnessed a similar trend of increases in

60

Chapter 5: Experiments and Results

the make-span measurement, which we did not include, but can be found in the

Figure ?? in the Appendix 6.

In overall, using the Fast-First and Close-First agent orderings resulted in sig-

nificantly worse results on instances with breakdowns then using the Slow-First

and Remote-First agent orderings. The sensitivity of Fast-First and Close-First

orderings to breakdowns is higher because, as we explained before, some of the

schedules planned using Fast-First and Close-First agent orderings were already

close to their time-step limits before the occurrences of breakdowns. Therefore,

when breakdowns started to occur and begin holding up lower priority agents

either directly by breaking them down or indirectly through breakage of other

agents that blocked their path, the completion rate started to decrease further.

Understandably the decrease was the most severe for the scenario with Rare break-

downs, where a long-lasting breakdown of one agent can prevent completion for

many lower priority agents.

61

Chapter 6

Conclusion

In the final chapter of our work, we will provide a comprehensive synthesis of

our findings. Our main goals were to conduct a review of the academic literature

concerned with the MAPF, to introduce the Flatland Challenge problem alongside

its mathematical formulation and most importantly to propose and analyse a new

heuristic approach for solving instances of the Flatland Challenge.

In the Chapter 3, we have provided a structured and comprehensive review of the

most significant research on the MAPF over the last 40 years. We have covered

the introduction of the MAPF as well as beginnings of the research into MAPF

problems; moreover, we have reviewed the most important MAPF solving ap-

proaches and categorised them into optimal and sub-optimal, with further within

category structuring based on conceptual foundations of individual approaches.

Lastly, we have provided a section focused solely on introducing the literature

concerned with MAPF problems where agents suffer from imperfect action ex-

ecutions. Our research into the literature related to the MAPF can serve as a

well-rounded introduction to the problem to any newcomer to the discipline as

well as a comprehensive overview for experienced researchers.

In the Chapter 2, we have thoroughly described the Flatland Challenge grid en-

vironment as well as the key mechanism regarding agent movement and agent

breakdowns. Moreover, in the second part of the description, we have introduced

a detailed mathematical formulation of the Flatland Challenge problem, which

generalised the MAPF to the MAPF-T. Our description of the Flatland Chal-

62

Chapter 6: Conclusion

lenge and its key mechanisms alongside their mathematical formulation allows

anyone without pre-existing knowledge about Flatland to quickly understand all

of its concepts as well as the crucial differences between Flatland and the standard

MAPF problems covered in the contemporary literature.

In the Chapter 4 we have introduced a new MAPF-T solving approach tailored

to solve instances of the Flatland Challenge. The introduced p-TPG approach is

a two-stage algorithm that first plans non-conflicting paths for agents using the

prioritised planning, which runs a low-level A∗ search with a conflict avoidance

table. In the second stage, p-TPG creates the temporal plan graph based on paths

planned in the first stage. The temporal plan graph controls the plan execution

through dynamic precedence maintenance, which allows us to effectively handle

agent breakdowns without causing conflicts. Furthermore, we have developed

four new agent ordering heuristics that can be used with the prioritised planning

and defined a new complexity reduction improvement for the TPG construction

algorithm that significantly reduced the run-time of the algorithm.

Through the iterative testing of the p-TPG on our own test instances, we have

uncovered several key learnings about the usage of it on Flatland. First of all, we

have shown that the Distance map is a more suitable A∗ heuristics for the Flatland

instances than the Manhattan distance heuristic as the planning of agents’ paths

using the Distance map heuristic is up to five times faster and these plans also

have a higher completion rate under the Flatland time-step limit. Additionally,

we have demonstrated that, on the most demanding instances, our improvement

of the TPG construction algorithm results in up to twenty-five times faster TPG

construction; thus significantly reducing the run-time of the p-TPG in overall.

Lastly, we have compared the performance of the p-TPG using different agent

orderings heuristics. We have found that, in terms of the completion rate, agent

ordering heuristics that prioritise agents with longer plan execution dominate the

initial Flatland ordering as well as approaches that prioritise agents with shorter

plan execution both on instances without and with breakdowns. However, we note

that the differences in the completion rate across our agent ordering heuristics

are a direct consequence of the time-step limit imposed by Flatland. Without the

time-step limit, all agent ordering heuristics would provide an identical completion

rate as conflicts never occur in our plans or during our plan execution; thus, the

partial completion of any instance is caused solely by the fact that some agents

63

Chapter 6: Conclusion

cannot reach their target positions under the given time-step limit. Without the

time-step limit, the orderings prioritising agents with shorter plan execution would

be more suitable for Flatland as they have a lower sum-of-individual cost, shorter

planning run-time due to a lower number of state expansions in the A∗ search,

and generally lead to a less frequent occurrence of breakdowns.

Finally, we have demonstrated that the p-TPG approach paired with the Distance

map state-space search heuristic and either Slow-First or Remote-First agent

ordering heuristic can flawlessly, and within a reasonable time, solve even the

most extreme instances of the Flatland Challenge with no breakdowns, frequent

breakdowns, and moderate breakdowns. Moreover, both of these approaches fully

solved all, but one instance, in the testing with the rare occurring but long break-

downs. However, we note that the breakdown configurations that we used were

more demanding than configurations used in the Flatland Challenge as our con-

figurations had five-time higher expected breakdown duration per time-step when

compared to the Flatland Challenge official test cases.

The p-TPG can serve as a foundation for a further study of MAPF-T problems

with very sparse grids and imperfect executions. However, the approach is not

limited to it and can be used for solving standard MAPF problems. Future re-

search into the problem of MAPF-T on sparse grids with imperfect plan execution

could focus on the implementation of the CBS with the necessary improvements

introduced by Boyarski et al. [2015], Felner et al. [2018], Li et al. [2019a], Li et al.

[2019b] and Li et al. [2020]. This would allow us to replace the prioritised plan-

ning in the first stage of the p-TPG; thus, we would be planning optimal paths for

agents. Furthermore, an algorithm allowing for efficient partial re-planning during

the execution of plans would further improve the performance and usability of the

p-TPG approach.

64

Bibliography

Atzmon, D., R. Stern, A. Felner, N. R. Sturtevant, & S. Koenig (2020):

“Probabilistic robust multi-agent path finding.” .

Atzmon, D., R. Stern, A. Felner, G. Wagner, R. Barták, & N.-F. Zhou

(2018): “Robust multi-agent path finding.” In “Eleventh Annual Symposium

on Combinatorial Search,” .

Barták, R., J. Švancara, & M. Vlk (2018): “A scheduling-based approach to

multi-agent path finding with weighted and capacitated arcs.” pp. 748–756.

Bnaya, Z. & A. Felner (2014): “Conflict-oriented windowed hierarchical cooper-

ative a.” In “2014 IEEE International Conference on Robotics and Automation

(ICRA),” pp. 3743–3748. IEEE.

Bnaya, Z., R. Stern, A. Felner, R. Zivan, & S. Okamoto (2013): “Multi-

agent path finding for self interested agents.” In “Sixth Annual Symposium on

Combinatorial Search,” .

Botea, A. & P. Surynek (2015): “Multi-agent path finding on strongly bi-

connected digraphs.” In “Twenty-Ninth AAAI Conference on Artificial Intelli-

gence,” .

Boyarski, E., A. Felner, R. Stern, G. Sharon, E. Shimony, O. Bezalel,

& D. Tolpin (2015): “Improved conflict-based search for optimal multi-agent

path finding.” IJCAI-2015 .

De Wilde, B., A. W. Ter Mors, & C.Witteveen (2014): “Push and rotate: a

complete multi-agent pathfinding algorithm.” Journal of Artificial Intelligence

Research 51: pp. 443–492.

65

Bibliography

Dijkstra, E. W. (1959): “A note on two problems in connexion with graphs.”

NUMERISCHE MATHEMATIK 1(1): pp. 269–271.

Erdem, E., D. G. Kisa, U. Oztok, & P. Schüller (2013): “A general formal

framework for pathfinding problems with multiple agents.” In “Twenty-Seventh

AAAI Conference on Artificial Intelligence,” .

Erdmann, M. & T. Lozano-Pérez (1987): “On multiple moving objects.” Al-

gorithmica 2(1-4): pp. 477–521.

Felner, A., M. Goldenberg, G. Sharon, R. Stern, T. Beja, N. Sturte-

vant, J. Schaeffer, & R. Holte (2012): “Partial-expansion a* with selec-

tive node generation.” In “Twenty-Sixth AAAI Conference on Artificial Intel-

ligence,” .

Felner, A., J. Li, E. Boyarski, H.Ma, L. Cohen, T. S. Kumar, & S. Koenig

(2018): “Adding heuristics to conflict-based search for multi-agent path find-

ing.” In “Twenty-Eighth International Conference on Automated Planning and

Scheduling,” .

Felner, A., R. Stern, S. E. Shimony, E. Boyarski, M. Goldenberg,

G. Sharon, N. Sturtevant, G. Wagner, & P. Surynek (2017): “Search-

based optimal solvers for the multi-agent pathfinding problem: Summary and

challenges.” In “Tenth Annual Symposium on Combinatorial Search,” .

Goldenberg, M., A. Felner, R. Stern, G. Sharon, & J. Schaeffer (2012):

“A* variants for optimal multi-agent pathfinding.” In “Workshops at the

Twenty-Sixth AAAI Conference on Artificial Intelligence,” .

Goldenberg, M., A. Felner, R. Stern, G. Sharon, N. Sturtevant, R. C.

Holte, & J. Schaeffer (2014): “Enhanced partial expansion a.” Journal of

Artificial Intelligence Research 50: pp. 141–187.

Hart, P. E., N. J. Nilsson, & B. Raphael (1968): “A formal basis for the

heuristic determination of minimum cost paths.” IEEE Transactions on Sys-

tems Science and Cybernetics SSC-4(2): pp. 100–107.

Hönig, W., S. Kiesel, A. Tinka, J. W. Durham, & N. Ayanian (2019): “Per-

sistent and robust execution of mapf schedules in warehouses.” IEEE Robotics

and Automation Letters 4(2): pp. 1125–1131.

66

Bibliography

Hönig, W., T. K. S. Kumar, L. Cohen, H. Ma, H. Xu, N. Ayanian, &

S. Koenig (2017): “Summary: Multi-agent path finding with kinematic con-

straints.” pp. 4869–4873.

Khorshid, M. M., R. C. Holte, & N. R. Sturtevant (2011): “A polynomial-

time algorithm for non-optimal multi-agent pathfinding.” In “Fourth Annual

Symposium on Combinatorial Search,” .

Li, J., A. Felner, E. Boyarski, H. Ma, & S. Koenig (2019a): “Improved

heuristics for multi-agent path finding with conflict-based search.” In “Pro-

ceedings of the 28th International Joint Conference on Artificial Intelligence,”

pp. 442–449. AAAI Press.

Li, J., G. Gange, D. Harabor, P. J. Stuckey, H. Ma, S. Koenig, J. Li,

K. Sun, H. Ma, A. Felner et al. (2020): “New techniques for pairwise sym-

metry breaking in multi-agent path finding.” In “International Conference on

Automated Planning and Scheduling,” pp. 6087–6095.

Li, J., D. Harabor, P. J. Stuckey, H.Ma, & S. Koenig (2019b): “Symmetry-

breaking constraints for grid-based multi-agent path finding.” In “Proceedings

of the AAAI Conference on Artificial Intelligence,” volume 33, pp. 6087–6095.

Luna, R. & K. E. Bekris (2011): “Efficient and complete centralized multi-robot

path planning.” In “2011 IEEE/RSJ International Conference on Intelligent

Robots and Systems,” pp. 3268–3275. IEEE.

Ma, H., D. Harabor, P. J. Stuckey, J. Li, & S. Koenig (2019): “Searching

with consistent prioritization for multi-agent path finding.” In “Proceedings of

the AAAI Conference on Artificial Intelligence,” volume 33, pp. 7643–7650.

Ma, H., S. Koenig, N. Ayanian, L. Cohen, W. Hoenig, T. K. Satish Kumar,

T. Uras, H. Xu, C. Tovey, & G. Sharon (2017): “Overview: Generaliza-

tions of Multi-Agent Path Finding to Real-World Scenarios.” arXiv e-prints

arXiv:1702.05515.

Ma, H., T. S. Kumar, & S. Koenig (2017): “Multi-agent path finding with delay

probabilities.” In “Thirty-First AAAI Conference on Artificial Intelligence,” .

Ma, H., G.Wagner, A. Felner, J. Li, T.Kumar, & S.Koenig (2018): “Multi-

agent path finding with deadlines.” arXiv preprint arXiv:1806.04216 .

67

Bibliography

Morris, R., C. S. Pasareanu, K. Luckow, W. Malik, H. Ma, T. S. Kumar,

& S. Koenig (2016): “Planning, scheduling and monitoring for airport surface

operations.” In “Workshops at the Thirtieth AAAI Conference on Artificial

Intelligence,” .

Nilson, N. (1980): “Principles of artificial intelligence, palo alto, calif.”

Russell, S. & P. Norvig (2009): Artificial Intelligence: A Modern Approach.

USA: Prentice Hall Press, 3rd edition.

Ryan, M. (2008): “Exploiting subgraph structure in multi-robot path planning.”

Journal of Artificial Intelligence Research 31: pp. 497–542.

Sajid, Q., R. Luna, & K. E. Bekris (2012): “Multi-agent pathfinding with

simultaneous execution of single-agent primitives.” In “SoCS,” .

SBB, AI Crowd (2020): “Flatland challenge.” https://www.aicrowd.com/

challenges/flatland-challenge, [Accessed: 5 January 2020].

Sharon, G., R. Stern, A. Felner, & N. R. Sturtevant (2015a): “Conflict-

based search for optimal multi-agent pathfinding.” Artificial Intelligence 219:

pp. 40–66.

Sharon, G., R. Stern, A. Felner, & N. R. Sturtevant (2015b): “Conflict-

based search for optimal multi-agent pathfinding.” Artif. Intell. 219(C): pp.

40–66.

Sharon, G., R. Stern, M. Goldenberg, & A. Felner (2013): “The increasing

cost tree search for optimal multi-agent pathfinding.” Artificial Intelligence

195: pp. 470–495.

Silver, D. (2005): “Cooperative pathfinding.” pp. 117–122.

Standley, T. (2010a): “Finding optimal solutions to cooperative pathfinding

problems.” volume 1.

Standley, T. (2010b): “Finding optimal solutions to cooperative pathfinding

problems.” Proceedings of the National Conference on Artificial Intelligence 1.

Stern, R., N. Sturtevant, A. Felner, S. Koenig, H. Ma, T.Walker, J. Li,

D. Atzmon, L. Cohen, T. K. Satish Kumar, E. Boyarski, & R. Bartak

(2019): “Multi-Agent Pathfinding: Definitions, Variants, and Benchmarks.”

arXiv e-prints arXiv:1906.08291.

68

https://www.aicrowd.com/challenges/flatland-challenge
https://www.aicrowd.com/challenges/flatland-challenge

Bibliography

Stout, B. (1998): “Smart moves: Intelligent pathfinding.”

Surynek, P. (2009): “A novel approach to path planning for multiple robots in

bi-connected graphs.” In “2009 IEEE International Conference on Robotics and

Automation,” pp. 3613–3619. IEEE.

Surynek, P. (2010): “An optimization variant of multi-robot path planning is

intractable.” In “Twenty-Fourth AAAI Conference on Artificial Intelligence,” .

Surynek, P. (2012): “A sat-based approach to cooperative path-finding using

all-different constraints.” In “SOCS,” .

Svancara, J. & P. Surynek (2017): “New flow-based heuristic for search algo-

rithms solving multi-agent path finding.” In “ICAART (2),” pp. 451–458.

Veloso, M. M., J. Biswas, B. Coltin, & S. Rosenthal (2015): “Cobots:

Robust symbiotic autonomous mobile service robots.” In “IJCAI,” p. 4423.

Wang, K.-H. C. & A. Botea (2011): “Mapp: a scalable multi-agent path plan-

ning algorithm with tractability and completeness guarantees.” Journal of Ar-

tificial Intelligence Research 42: pp. 55–90.

Yoshizumi, T., T. Miura, & T. Ishida (2000): “A* with partial expansion for

large branching factor problems.” In “AAAI/IAAI,” pp. 923–929.

Yu, J. & S. M. LaValle (2013): “Planning optimal paths for multiple robots on

graphs.” In “2013 IEEE International Conference on Robotics and Automa-

tion,” pp. 3612–3617. IEEE.

Zelinsky, A. (1992): “A mobile robot exploration algorithm.” IEEE Transac-

tions on Robotics and Automation 8(6): pp. 707–717.

69

Appendix A

In this appendix, we attach the additional test results that were not included in

the Chapter 5.

Make-span values across testing with breakdowns

(a) Frequent breakdowns (b) Moderate breakdowns

(c) Rare breakdowns

70

Appendix B

In this Appendix we explain how readers can install the Flatland Challenge envi-

ronment and also run our pre-prepared examples on their machines.

Installing required packages

Installing all requirements for the Flatland Challenge is relatively easy and can

be done in few steps, which are as follows:

1. Install Anaconda by following instructions at Anaconda website

2. Create and activate a new conda environment named flatland-rl:

• conda create python=3.6 –name flatland-rl

• conda activate flatland-rl

3. Use pip to install the flatland back-end via:

• pip install flatland-rl

4. Install additional dependencies required for our implementation:

• conda install -c anaconda networkx

• conda install -c anaconda seaborn

71

https://www.anaconda.com/products/individual

Appendix A: Supplementary results

Running a Flatland example

We provide readers with a simple script allowing them to run several test cases

of the Flatland themselves. Moreover, we note that the example script is located

at: ”ryzner thesis/code/Examples/example run”.

The Figure below shows the part of the example script, where the user can config-

ure the example instance. Lines 106 to 109 correspond to the test case selection,

lines 112 to 114 correspond to the breakdown scenario selection, lines 117 and 118

determine the choice of state space search heuristic function, and finally lines 121

to 125 determine the selection of the agent ordering heuristic. Provided test cases

as well as configuration options directly correspond to instances and configurations

that we used to obtain our test results.

Configuration of the example

We do not provide any generator of random instances to keep the example short

and simple; however, readers can simply modify one of definitions of provided test

instances as depicted in the Figure below.

Finally, when running the code, we provide printouts about the state of the plan-

ning, the phase of the execution and at the end we provide a brief summary of

the instance results as shown in the Figure below.

72

Appendix B: Flatland examples

Manual instance creation

Run-time information printout

Attached videos

Finally, we also provide videos of 3 example instances, which can be found in

the following folder: ”ryzner thesis/video”. Moreover, the reader can use the

following link to download videos from the online drive: repository

73

https://drive.google.com/drive/folders/1GffTRnlo3I9UbEBSQvBiCywdOUh5CBbE?usp=sharing

Appendix C

Alongside our work, we provide a DVD with the following structure:

Ryzner thesis

Codes

Examples

Thesis code

Media

Thesis text

where the folder Codes contains a run-able example in the sub-folder Examples

and the full solution code in the sub-folder Thesis code. The folder Media contains

3 video examples from the run-time of the Flatland simulation, and finally the

folder Thesis text contains the file with our work in the pdf format.

74

	List of Figures
	List of Tables
	Acronyms
	Introduction
	Problem Definition
	Flatland introduction
	Flatland grid
	Flatland agent
	Simulation objectives

	Mathematical formulation
	Graph representation of Flatland grid
	Agent formulation
	Solution criteria

	Literature Review
	From Single-Agent to Multi-Agent Path Finding
	Categorisation of MAPF approaches
	Sub-optimal MAPF approaches
	Optimal MAPF approaches

	Contemporary research on imperfect plan execution

	Methodology
	A* path-finding algorithm
	Heuristic functions

	Prioritized planning
	Introduction of the general concept
	Time-expanded graph representation
	Agent priority heuristics

	Dynamic traversal precedence maintenance
	Introduction of the general concept
	Temporal plan graph definition
	Temporal plan graph construction
	Temporal plan graph usage

	p-TPG

	Experiments and Results
	Flatland test instances
	Agent speeds
	Agent breakdown generators

	Prioritised planning performance analysis
	State space search heuristics comparison

	Testing with breakdowns
	Temporal plan graph construction improvement
	Breakdown scenarios results

	Conclusion
	Bibliography
	Appendix A: Supplementary results
	Appendix B: Flatland examples
	Appendix C: Attachments

