
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of electrical Engineering

Department of Radioelectronics

Machine Learning Techniques for Efficient Image Quality Assessment

Metody strojového učeńı pro efektivńı hodnoceńı kvality obrazu

Master’s thesis

Bc. Jiř́ı Šebek

Master programme: Electronics and Communications

Branch of study: Media and Signal Processing

Supervisor: Ing. Karel Fliegel, Ph.D.

Prague, March 2020

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

434637Osobní číslo:JiříJméno:ŠebekPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra radioelektroniky

Elektronika a komunikaceStudijní program:

Audiovizuální technika a zpracování signálůStudijní obor:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Metody strojového učení pro efektivní hodnocení kvality obrazu

Název diplomové práce anglicky:

Machine Learning Techniques for Efficient Image Quality Assessment

Pokyny pro vypracování:
Podejte přehled současných metod pro hodnocení kvality obrazu případně videa s využitím metod strojového učení ML
(machine learning). Soustřeďte se zejména na nejnovější poznatky v oblasti aplikace hlubokého učení DL (deep learning).
Na vybraném problému a testovacích datech analyzujte účinnost zkoumaných metod v porovnání s klasickými přístupy.

Seznam doporučené literatury:
[1] Bovik, A.: Handbook of Image and Video Processing, Elsevier Academic Press, 2005.
[2] Gastaldo, P., Zunino, R., Redi, J.: Supporting visual quality assessment with machine learning, Eurasip Journal on
Image and Video Processing, 2013.
[3] Gu, J., Meng, G., Redi, J.A., Xiang, S., Pan, C.: Blind Image Quality Assessment via Vector Regression and Object
Oriented Pooling, IEEE Transactions on Multimedia, 20(5), 2018.
[4] Bianco, S., Celona, L., Napoletano, P., Schettini, R.: On the use of deep learning for blind image quality assessment,
Signal, Image and Video Processing, 12(2), 2018.

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Karel Fliegel, Ph.D., katedra radioelektroniky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: _____________Datum zadání diplomové práce: 15.02.2019

Platnost zadání diplomové práce: 20.09.2020

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
doc. Ing. Josef Dobeš, CSc.
podpis vedoucí(ho) ústavu/katedry

Ing. Karel Fliegel, Ph.D.
podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Declaration

I hereby declare that I have written this master thesis independently and quoted all the

sources of information used in accordance with methodological instructions on ethical

principles for writing an academic thesis. Moreover, I state that this thesis has neither

been submitted nor accepted for any other degree.

In Prague, May 2020

......................................

Bc. Jǐŕı Šebek

i

Abstract

Multimedia technology has experienced rapid growth mainly due to transformation of the

mobile market towards smartphones with highly capable cameras and increasing popu-

larity of streaming services. With the mass production and sharing of images and video,

to maintain good user experience, a robust and universal quality assessment metric is

required. Traditional full reference metrics has limited use and no reference metrics are

very challenging. This has began to change due to extensive research of deep learning and

neural networks, enabled by higher computation power and it’s availability. This thesis

discusses the basic principles of neural networks, especially convolutional, approaches to

image quality assessment based on them, how they perform against state-of-the-art full

reference metrics, what are the main challenges and how to tackle them. The practical part

of this thesis contains author’s approach to neural network and how it performs on vari-

ous image databases. Thesis includes a comparison with traditional full reference metrics.

Keywords: deep learning, neural networks, no-reference image quality assessment

ii

Abstrakt

Multimediálńı technologie zažily rapidńı rozvoj předevš́ım d́ıky transformaci trhu s mo-

bilńımi telefony směrem k telefon̊um chytrým s velmi schopnými kamerami a r̊ustu pop-

ularity streamovaćıch služeb. Spolu s masovou produkćı a sd́ıleńım fotografíı a vidéı,

pro zachováńı dobré uživatelské zkušenosti, roste potřeba robustńı a univerzálńı metriky

pro hodnoceńı kvality obrazu. Tradičńı metriky s plnou referenćı maj́ı omezené možnosti

použit́ı a metriky bez reference představuj́ı nemalou výzvu. Tato situace se zač́ıná měnit

d́ıky rozsáhlému výzkumu v oblasti hlubokého učeńı a neuronových śıt́ı, umožněnému

rozvojem a stále lepš́ı dostupnost́ı výpočetńı techniky. Tato práce pojednává o základńıch

principech fungováńı neuronových śıt́ı se zaměřeńım na konvolučńı śıtě, metody hodnoceńı

kvality obrazu na nich založených, jak schopné jsou ve srovnáńı s nejmoderněǰśımi plno-

referenčńımi metrikami, jejich hlavńı nedostatky a problémy a jak je možné je řešit. Prak-

tická část práce obsahuje autorem vytvořenou neuronovou śı̌t a jej́ı fungováńı s r̊uznými

databázemi fotek. Práce také obsahuje srovnáńı této metody s tradičńımi.

Kĺıčová slova: hluboké učeńı, neuronové śıtě, hodnoceńı kvality obrazu bez reference

iii

Acknowledgements

The writing of this thesis was many times very challenging and could not be done without

certain people I would like to express my thanks to. To Ing. Karel Fliegel, Ph.D. for

finding time in his busy schedule, always being helpful and patient. To my parents Eva

and Pavel for providing me everything I needed and more, especially during the crisis. To

my friends who never turned their back on me. And to the internet community, whose

guidance and tutorials which helped me understand the topics more thoroughly.

iv

List of Tables

4.1 Performance of selected IQA algorithms on popular image databases. . . . 33

6.1 Experimental settings of learning hyperparameters. 43

6.2 Evaluation of the generated dataset using FR methods. 43

6.3 Accuracy of trained CNCF on CSIQ and Kadid 10k databases. 45

v

List of Figures

2.1 Different results of MSE and SSIM. (a) Reference image. (b) Mean contrast

stretch. (c) Luminance shift. (d) Gaussian noise. (e) Impulsive noise. (f)

JPEG compression. (g) Blurring. (h) Spatial scaling (taken from [35]). . . 5

2.2 VIF algorithm block scheme (taken from [32]). 6

2.3 Block scheme of DIIVINE 2-framework algorithm (taken from [21]). 8

2.4 Overview of the BLIINDS-II framework (taken from [30]). 9

2.5 Histogram of MSCN coefficients for a natural undistorted image and its

various distorted versions (taken from [20]). 10

3.1 Perceptron with 3 inputs . 12

3.2 Neural network with two hidden layers (taken from [23]). 13

3.3 Sigmoid function (taken from [23]). 13

3.4 Effect of learning rate on cost function (source: http://cs231n.stanford.edu/). 15

3.5 3x3 kernel moving with stride 1 pixel through the image 18

3.6 Average and Max pooling 2x2 . 19

3.7 Speed of learning of 2 hidden layers (taken from [23]). 19

3.8 Speed of learning of 3 hidden layers (taken from [23]). 19

3.9 ReLu function . 20

3.10 Leaky ReLu function . 20

3.11 Selected pristine images from database Kadid 700k 24

3.12 Selected images with the most severe distortion settings from database

Kadid 700k . 25

vi

LIST OF FIGURES

4.1 Input images of a neural network and their corresponding gradient (taken

from [25]). 27

4.2 Color spaces and their components (taken from [40]). 28

4.3 Architecture of AlexNet, taken from [1]. R means that the layer is followed

by ReLu function, S stands for Softmax function. 30

4.4 Architecture of [34]. 33

4.5 Overall structure of the proposed model in [14]. 33

5.1 Architecture of the CNCF network. The activations in circles are: R =

ReLu, L = leaky ReLu, D = dropout, S = Softmax 37

5.2 Kernels used to create gradient of the image. 37

5.3 Images from Kadid 700k database fed into stream with no pre-processing . 38

5.4 Gradient of images from Kadid 700k database for the gradient stream of

network . 38

5.5 Image and image gradient affected by blur. 38

5.6 Image and image gradient affected by JPEG compression. 39

6.1 Graph of the training progress on 25 000 images distorted by Gaussian blur. 42

6.2 The legend of the graphs of training progress 42

6.3 Training performance of the CNCF on 40 000 images with 4 different dis-

tortions (Gaussian blur, JPEG and JP2K compression and color noise) in

5 levels. 44

6.4 Graph of training and validating of the CNCF network on 1250 images of

Kadid 700k dataset. 45

vii

Contents

Declaration i

Abstract ii

Abstrakt iii

Acknowledgements iv

List of Tables v

List of Figures vi

Contents viii

1 Introduction 1

2 Contemporary BIQA Methods 3

2.1 Modern Full-Reference Methods . 3

2.1.1 Structural Similarity Index (SSIM) 3

2.1.2 Multi-Scale SSIM . 4

2.1.3 Visual Information Fidelity (VIF) 5

2.2 No-Reference IQA Methods . 6

2.2.1 DIIVINE . 6

2.2.2 BLIINDS-II . 8

2.2.3 BRISQUE . 9

viii

CONTENTS

3 Deep Neural Networks Theory 11

3.1 Basic Theory . 11

3.1.1 Learning process . 13

3.1.2 Backpropagation . 15

3.2 Convolutional Neural Network . 16

3.2.1 Convolution Layer . 17

3.2.2 Pooling layer . 18

3.2.3 Activation Function . 18

3.2.4 Dropout . 21

3.3 Building Deep CNN . 21

3.3.1 Programming Languages and Frameworks 21

3.3.2 Cloud-based solutions . 22

3.3.3 Popular Datasets . 22

4 Neural Networks based BIQA Methods 26

4.1 Preprocessing of the Input Data . 26

4.1.1 Image Normalization . 26

4.1.2 Gradient of the image . 27

4.1.3 Color Adjustments . 28

4.2 Learning the Models . 28

4.2.1 Augmenting the datasets . 29

4.2.2 Transfer Learning . 29

4.3 Stream Complexity . 30

4.3.1 Depth of the Network . 30

4.3.2 Multiple-Stream Network . 31

4.4 Processing Data from Layers . 31

4.4.1 Feature Extraction . 31

ix

CONTENTS

4.5 Output type . 32

4.5.1 Quality Score . 33

4.5.2 Distortion classification . 34

5 Convolutional Network with Cascaded Features 35

5.1 Architecture . 35

5.1.1 The Main Branch . 35

5.1.2 Altered activation and split . 36

5.1.3 Concatenation and classifier . 36

5.1.4 Image Pre-Processing . 36

6 Experiments 40

6.1 Used datasets . 40

6.2 Training hyperparameters . 40

6.2.1 Initial network testing . 41

6.2.2 Main network training . 42

6.3 Results . 43

6.3.1 Full reference validation . 43

6.3.2 CNCF training and validation . 43

6.3.3 CNCF testing . 44

7 Conclusion and future work 46

A External links 51

B Structure of appendix archive 52

x

Chapter 1

Introduction

In recent years, the photo and video industry has experienced huge transformation. Our

smart phones has higher computation power than computers that helped man get to the

moon, the most used camera in the world is nowadays Apple iPhone, television broadcast

runs in 4K high dynamic range resolution and cars can navigate themselves in between

highway lanes. More pictures and videos are produced and streamed than ever before and

along with them the need for automatic tools of quality assessment grows. Especially for

streaming services, for the best end-user-experience, choosing and setting the codecs to

be small enough for average internet user to flawlessly play and quality enough to prevent

distortion from breaking the immersion is tough.

In field of image quality assessment there has been a shift towards algorithms that can

learn what makes the image look good. In the 2000s the first algorithms using learned

features were developed and are used as a standard metric to this day. Few years later the

complexity of proposed algorithms grew, following the increase in computation power and

taking advantage of statistical modelling of natural scenes. These algorithms attempted

to tackle quality assessment without knowing how the image should look when pristine,

with results drawing close to the full-reference metrics, but rarely matching them. We

analyze the most significant ones in Chapter 2.

With increasing computation power and affordability, the family of machine learning

algorithms became massively popular. It was mainly due to three aspects: the graphics

processing units’ power grew and consumer-grade cards became powerful enough to drive

some scientific processes, large-scale publicly available datasets came to be, with millions

of labeled images and major breakthrough models were introduced, like AlexNet [1] and

VGG-16 [37]. Big tech companies like Google and lately Amazon saw the potential of

these algorithms and actively participated in the development, pushing it even further.

More about how neural networks work and how they can be developed can be found in

Chapter 3.

1

CHAPTER 1. INTRODUCTION

The most used task for deep learning is object recognition. Using the vast amounts

of data, the deep networks learns the distinguishing features based on the labeled images

to later find similar patterns when put to test. The task of image quality assessment is

fundamentally similar, since every distortion has its unique specifics. The problem arises

in the amount of data required to properly train robust network. While there are millions

of images labeled in terms of content, the datasets with images labeled with quality are

many times smaller. Another challenges are presented in the making the network robust

to perform across all kinds of images, multiple distortions present at once and more. Some

of the most recent and promising approaches are presented in Chapter 4.

The practical part of this thesis include authors attempt to create functional convolu-

tional neural network, inspired by approaches from Chapter 4 and theoretical information

from Chapter 3. Testing and validation of the network are done on one of the newer

databases and evaluations are done on some of the well-known and used databases. In

chapter 7, the author draws conclusions and outlines possible future works to expand on

topic.

2

Chapter 2

Contemporary BIQA Methods

Image quality assessment (IQA) can be divided into three subgroups according to the

type of input data. First we have full reference IQA, where we work, as name suggests,

with both original pristine image and its corrupted version. Here the task is fairly simple,

using various metrics we can define differences between the two and quantify how much is

the copy true to the original, either from technical point of view like signal-to-noise ratio

or by incorporating algorithms modelling human visual system (HVS) to simulate which

changes are more apparent to our vision and therefore corrupting the image more severe.

While full reference IQA methods usually yield the best results, the problem arises

from the lack of reference, either complete or partial. Reduced-reference IQA aims to get

the most possible information from parts of the original image or only some information

about it.

The main challenge lies in assessing image quality with zero information about how the

image should look. Quality and reliable no-reference IQA would find its place primarily

in streaming services and websites to improve their quality of experience. In this chapter

we are going to cover some standardized full reference methods, many of them being

used commercially, and state-of-the-art approaches to no-reference methods, which are

profusely used as benchmarks for most of the newly presented IQA approaches.

2.1 Modern Full-Reference Methods

2.1.1 Structural Similarity Index (SSIM)

One of the standardized and highly used methods is Structural Similarity Index. Using

the HVS model, it examines the image as a whole, comparing it with the original, non-

3

CHAPTER 2. CONTEMPORARY BIQA METHODS

distorted image and provides quality score. This method was developed in Laboratory for

Image and Video Engineering (LIVE) at The University of Texas at Austin and is being

further developed with many variations today.[4] The HVS is highly adapted to extract

structural information from the visual scene, and therefore the measurement of structural

similarity or distortion should give us a good approximation of perceived quality. The

Structural Similarity Index is used to measure similarity between two images, requiring

an original, distortion-free reference image.[4]

The formula for SSIM is as follows:

SSIM(x,y) = [l(x,y)α · c(x,y)β · s(x,y)γ], (2.1)

where c stands for contrast, l for luminance and s for structure, SSIM being a

weighted combination of those. Setting the weights , , to 1, the formula can be reduced

to

SSIM(x,y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (2.2)

where µx,y is the average of x, y, σx,y variance of x, y and σxy covariance of x and y,

c1− (k1, L)2 , c2− (k2, L)2 two variables to stabilize the division with weak denominator,

L is the dynamic range of pixel values (2numofbitsperpixel − 1) and k1 = 0.01, k2 = 0.03 by

default. The index’s value can be [0, 1], the higher the better while 1 can be reached only

when comparing two identical images and 0 indicates no similarity whatsoever. For an

image, it is typically calculated using a sliding Gaussian window of size 11x11 or a block

window of size 8x8. [4]

You can see how SSIM correlates with your perception of good or poor quality image

in Figure 2.1, in contrast with MSE.

2.1.2 Multi-Scale SSIM

Improvement to nowadays’ standard quality metric SSIM was brought up by incorporating

multiple scales of the image and combining the output evaluations of each one. After

evaluation of the reference image and its distorted version, both images are low-pass

filtered and downsampled by factor of 2, then evaluated again. This process is repeated

M − 1 times until reaching M -th scale. Resultant index is obtained by combining all

indexes throughout all iterations.

Wang et. al. [43] proposed this approach in 2003 with the only concert being cali-

brating the parameters, which turned out to be far from predictable. Still, the MS-SSIM

4

CHAPTER 2. CONTEMPORARY BIQA METHODS

Figure 2.1: Different results of MSE and SSIM. (a) Reference image. (b) Mean con-

trast stretch. (c) Luminance shift. (d) Gaussian noise. (e) Impulsive noise. (f) JPEG

compression. (g) Blurring. (h) Spatial scaling (taken from [35]).

proved itself to be very competitive and many papers nowadays incorporates it in com-

parisons with newer approaches.

2.1.3 Visual Information Fidelity (VIF)

In contrast with SSIM, this full reference IQA index uses natural scene statistics (NSS)

besides HVS to determine the visual quality. Images and videos of all possible signals for

small subspace that can be classified as ’natural’. Researchers have developed sophisti-

cated methods of determining the characteristics of these, which come very handy since

all kinds of distortion more or less deform the image in a way that the image produces

less ’natural’ statistics, even if we can clearly tell the contents of the image, as our brain

’fixes’ the distortion using experience and interpolation.

The algorithm employs 3 models: NSS modelling, distortion modelling and HVS.

Overview of those working in conjunction can be seen in Figure 2.2. The source model,

employing NSS, uses Gaussian scale mixture (GSM) to statistically model wavelet coeffi-

cients of a steerable pyramid decomposition of an image. The model is described below for

a given sub-band of the multi-scale multi-orientation decomposition, with C representing a

given sub-band. After the channel splits into two, distortion modelling is employed in one

of them, combining signal attenuation and additive noise in wavelet domain, represented

by D. E and F represent signals after final application of the HVS modelling. Since

several aspects have already been accounted for in the initial processing, the additional

5

CHAPTER 2. CONTEMPORARY BIQA METHODS

modeling is based on hypothesis that the uncertainty in the perception of visual signals

limits the amount of information that can be extracted from the source and distorted

image. [32]

Figure 2.2: VIF algorithm block scheme (taken from [32]).

The Spearman’s rank order correlation coefficient (SROCC) between the VIF index

scores of distorted images on the LIVE IQA Database and the corresponding human

opinion scores is evaluated to be. This suggests that the index correlates very well with

human perception of image quality.Moreover, VIF is one of the most significant metrics

used today, among others it is deployed in the core of Netflix’s video quality monitoring

system, analyzing all of the Netflix encoded streamed video. [16] [33]

2.2 No-Reference IQA Methods

All of the standardized methods share one limitation - they require a reference pristine

image to provide quality drop index. This makes them useless when e. g. measuring

the quality of a live stream so we can immediately improve the quality. In addition to

that, Mittal et. al [20] states that full-reference and reduced-reference IQA can only

accurately measure fidelity, which does not necessary mean quality, since the original

image can be objectively bad or distorted. Researchers are therefore focusing on field

of study called Blind- or No-Reference Image Quality Assessment (BIQA/NR-IQA) to

tackle these problems. While there is currently no standardized method providing truly

reliable results, many of them have been proposed in past decade. Following sections will

introduce some of the most commonly used in comparisons and benchmarks.

2.2.1 DIIVINE

One of the first algorithms aiming to better the NR-IQA field was developed in 2011,

largely base on natural scene statistic modeling [21]. The basic premise is that natural

scenes possesses certain statistic qualities and parameters that are altered with distortion,

resulting in an unnatural image and by characterizing these unnatural parameters the

6

CHAPTER 2. CONTEMPORARY BIQA METHODS

distortion can be classified and it magnitude can be determined. In addition, unlike

many previous algorithms, this would work for any distortion and/or their combination.

The result is 2-stage algorithm utilizing the principles of how human brain processes and

filters images and statistical features characteristic to natural images.

First stage is image scale-space-oriented decomposition, similar to wavelet transform,

to form oriented band-pass responses. These coefficients are then used in natural scene

statistics model to form feature vectors, which statistically represent distortion in the

image. Utilizing these vectors Moorthy et. al. identify the probability that the image is

affected by one or more of the distortion categories and build regression model for each

distortion category to turn the features into quality score in each one of them. The set of

wavelet coefficients is modeled using GSM and the features are extracted using steerable

pyramid decomposition [36] and divisive normalisation. These result in following sub-band

statistics:

• Scale and Orientation Selective Statistics, parametrized by generalised Gaus-

sian distribution (GGD). Divisive normalisation tends to produce coefficients in

Gaussian manner for natural images, so in case of distortion the fit using GGD

shows clear diferences

• Orientation Selective Statistics analyzing the correlations between same-oriented

images across scales. Since images are naturally multiscale, some features are shared

between various-scale sub-bands. These are compromised when distortion is present,

which can be analyzed by GGD

• Correlations Across Scales computed using high-pass and band-pass sub-bands

of the image, which are filtered using Gaussian window to detect relationship be-

tween them

• Spatial Correlation using natural images’ correlation structure that in most cases

varies as function of distance

• Across Orientation Statistics including correlations that images exhibit across

orientation and their changes with distortion present

Second stage requires training on evaluated data, with no need for reference image.

The classifier ’learns’ the mapping from feature space into class label and after the cali-

bration is finished, it produces n-dimensional vector that represents probabilities of the

input having certain types of distortion. The whole process can be seen in

DIIVINE was evaluated on LIVE IQA database, resulting in statistical superiority to

other IQA methods and draw with SSIM, surpassing him in JPEG2000 evaluation but

losing in noise and blur distortions. [21]

7

CHAPTER 2. CONTEMPORARY BIQA METHODS

Figure 2.3: Block scheme of DIIVINE 2-framework algorithm (taken from [21]).

2.2.2 BLIINDS-II

This approach also relies on natural scene statistics models and transformation, but un-

like DIIVINE’s wavelet transformation authors choose discrete cosine transform (DCT)

coefficients to simplify and speed up the whole process, simultaneously reducing time re-

quired for training the algorithm. BLIINDS-II is a single-stage framework that focuses

entirely on natural scene statistics, since DCT computation can be done much faster than

modelling functions of the HVS, at those are still far from understood.

The algorithm is based on the changing of NSS parameters with increasing distortion.

It is trained using features derived directly from a generalized parametric statistical model

of natural image DCT coefficients against various perceptual levels of image distortion.

Learned model is then used to predict quality score.

Framework overview can be seen in Figure 2.4. The image destined for evaluation

is partitioned into nxn blocks or patches, for which the 2D DCT is computed. The

coefficient extraction is performed locally in the spatial domain. For each block is then

applied generalised Gaussian density model, as well as for each coefficient. For each

block and coefficient is then also obtained generalized Gaussian fit. Third stage of the

framework computes functions of the derived generalized Gaussian model parameters.

Finally, a Bayesian prediction model is used to maximize the probability that the image

has a certain quality score given the model-based features extracted from the image, and

to produce quality score.

In conclusion, BLIINDS-II have similar results as DIIVINE, both algorithms out-

8

CHAPTER 2. CONTEMPORARY BIQA METHODS

Figure 2.4: Overview of the BLIINDS-II framework (taken from [30]).

perform or match current full-reference metrics with some limitations. DIIVINE needs

distortion categories to be specified to achieve state-of-the-art results and therefore is

pseudo-distortion-unspecific, but due to that it can predict what type(s) of distortion

affect the image as a by-product. BLIINDS-II having only on one QA engine is less

computation demanding, cutting the processing time by little more than half [20] due

primarily to operating in DCT domain.

2.2.3 BRISQUE

This no-reference IQA, although based on NSS as well, operates in spatial domain. Unlike

previously mentioned DIIVINE and BLIINDS-II, BRISQUE is also more straightforward,

focusing solely on the ’naturalness’ of the image, thus less computation-demanding, mean-

ing it could be more usable for real-time applications.

The key principle of the spatial domain approach is computing locally normalized

luminances via local mean subtraction and divisive normalization. These strongly tend

to be unit normal Gaussian characteristic for natural images. With this we get mean

subtracted contrast normalized coefficients (MSCN). These are, by authors’ hypothesis,

strongly affected by distortion. If plotted, coefficients produced by pristine image yet

again have Gaussian-like distribution, while for example blur creates more Laplacian-like

behaviour. MSCN coefficients plotted can be seen in Figure 2.5.

Later, GGD is applied to capture broad spectrum of distorted image statistics, along

with statistical relationships between neighboring pixels. While MSCN coefficients are

definitely more homogeneous for pristine images, the signs of adjacent coefficients also

exhibit a regular structure, which gets disturbed in the presence of distortion. Finally,

9

CHAPTER 2. CONTEMPORARY BIQA METHODS

Figure 2.5: Histogram of MSCN coefficients for a natural undistorted image and its

various distorted versions (taken from [20]).

similarily to previously mentioned algorithms, natural multi-scale-likeness of images is

taken advantage of by extracting features from original image as well as from LP filtered

down-sampled one by factor of 2.

Evaluation was onca again performed using LIVE IQA database with 5 kinds of dis-

tortion. BRISQUE as well as DIIVINE and BLIINDS-II requires learning to perform, so

the database was split 4:1 into training and testing subset with no overlapping images,

iterating 1000 times and evaluating the median performance. BRISQUE outperforms

all no-reference methods published until that day and except for MS-SSIM [43] even the

full-reference methods like SSIM with similarity to Mean opinion score of the image. Con-

cerning computation speed, simple metrics like PSNR still outperforms BRISQUE with

more than ten times the speed, but BRISQUE runs over 50 times faster than BLIINDS-II

and over 100 times faster than DIIVINE. BRISQUE regularly appears in comparisons of

new approaches to IQA as one of the most competitive methods. [20]

10

Chapter 3

Deep Neural Networks Theory

Neural networks are series of algorithms, modelled to operate similarly to human brain.

They take input data, either raw or processed, and performs various numerical, in most

cases matrix operations with on them. Special field of neural networks is called deep

learning or deep neural networks. They have two distinguishing features: high number of

hidden layers and algorithms learning directly from the input data.

The recently gained huge popularity especially in fields of pattern recognition studies

is due to their ability to learn basically any type of pattern. Though there are numerous

types of networks and each type can be modified virtually infinitely, many principles,

algorithms and terminology is mostly shared across all of them. In this chapter we will

discuss the theory behind basic neural networks and later focus on a special category used

for image recognition – Convolutional neural networks.

3.1 Basic Theory

The foundation of a human brain are neurons. Connected one to another, they transmit

electrical impulses from our ‘sensors’, such as eyes, ears, nose etc. and pass them onto

other neurons. According to the importance – in mathematical language bias, if a neuron

receives electrical impulse, it either fires another impulse to next neutron, or does nothing.

At the end of this neural network, the human brain receives an information based on many

sub-decisions and takes adequate action.

Similarly, artificial neural networks created by mathematical algorithms are created

by many artificial neurons, connected in layers. The first type of artificial neuron was

a perceptron, developed as early as in 1950s. It takes several inputs x1, x2, . . . , and

produces single binary output, as we can see in Figure 3.1. Every input has associated

11

CHAPTER 3. DEEP NEURAL NETWORKS THEORY

Figure 3.1: Perceptron with 3 inputs

weight to be multiplied with and giving the input ‘importance’ as with real brain. The

mathematical formula of the perceptron is

f(x) =

f0,
∑

j wjxj ≤ threshold

1,
∑

j wjxj > threshold

where wj represents all the weights and threshold is a chosen value. In modern liter-

ature a different equation is commonly used to describe perceptrons:

f(x)=

0, w · x + b ≤ 0

1, w · x + b > 0

The weights and inputs are represented as vectors and instead of threshold a bias is

introduced, while b = −threshold.
Perceptrons form layers of an artificial neural network. In Figure 3.2 we have an example

of a neural network with one hidden layer. These are called ‘deep’ networks and the

number of hidden layers depends on the use and choice of a programmer. There are five

inputs entering the algorithm, each connected with all neurons of the first layer. Decisions

of the first layer is then carried into the hidden layer; each neuron being connected to

all four in the hidden layer. This is called fully connected layer. Finally, decisions of the

hidden layer is evaluated in a single output neuron.

The key feature of every neural network is its ability to learn. For a certain input

there are desirable outputs. For more complex cases the weights and biases are set by

learning from input values with known output. But for the learning to be effective, it

must be done by small amounts and the perceptron’s ability to only output 0 or 1 makes

it unusable. Instead we use neuron type called sigmoid neuron.

Sigmoid neuron has one or more inputs and single output like perceptron, as seen in

Figure 3.1. However, the output is modified by a sigmoid function:

σ(z) =
1

1 + e−z
. (3.1)

12

CHAPTER 3. DEEP NEURAL NETWORKS THEORY

Figure 3.2: Neural network with two hidden layers (taken from [23]).

Multiplying the sum of weights with the sum of values with added bias. The output of

sigmoid neuron can be in closed interval < 0, 1 >, as illustrated in Figure 3.3. Resulting

equation of the sigmoid neuron output is

1

1 + exp(−
∑

j wjxj − b)
(3.2)

with wj being the sum of weights and b bias. This is also called activation function

as it defines the conditions of when the neuron should ‘fire’. Sigmoid is one of the most

common used, more will be introduced later in this thesis.

Figure 3.3: Sigmoid function (taken from [23]).

3.1.1 Learning process

When constructed, the neural network does perform well. Individual weights and biases

are set in a way that the output value does not correspond with the desired value. We

quantify this error and use it to correct the parameters to achieve better accuracy. Since

there are hundreds to billions of parameters, depending on the architecture, we calculate

the changes in opposite direction to data flow using the dependencies between neurons.

In the initiation process, the weights and biases are usually set to random within a

13

CHAPTER 3. DEEP NEURAL NETWORKS THEORY

specified interval. Since it is nearly impossible to determine how they should be set even

with simple architectures, the network must work its way to adjust them. Using input

data with known output, we can find how badly the network performs. To quantify this

amount of error, we define a cost function:

C(w, b) ≡ 1

2n

∑
x

‖ y(x)− a ‖2 (3.3)

Here, w stands for all the weights in the network, b for all the biases, n is the total

number of training inputs, a is the vector of outputs from the network for x meaning

input, and the sum is over all training inputs. C is basically a variant of a mean squared

error function, or shortly MSE. [23] This function is non-negative, since every term in the

sum is non-negative. The cost function becomes smaller, i.e., C(w, b) ≈ 0 when y(x) ≈ a,

which is ultimately the goal of learning. Therefore, our next step is to find algorithm to

minimize the cost function C(w, b). In other words, we want to find a set of weights and

biases which make the cost as close to zero as possible.

For simplification, let’s substitute two multi-dimensional variables w, b with two-

dimensional one, v. We are now searching for the global minimum of a cost function

C(v). Because neural networks have millions or billions of weights and biases, using an-

alytical approach to solve this problem would be extremely complicated. Instead, we

use analogy of a valley (our 2D function) and a imaginary ball rolling down in it. We

need to find the direction that is the steepest for the ball to reach the minimum. For

two-dimensional cost function, the C changes as follows:

∆C ≈ δC

δv1
∆v1 +

δC

δv2
∆v2. (3.4)

The goal is to find ∆v1 and ∆v2 so that the ∆C is negative. We define ∆v to be the

vector of changes, ∆v ≡ (∆v1,∆v2)
T and the gradient of C to be the vector of partial

derivatives,
(
δC
δv1
, δC
δv2

)T
. Now, we get the gradient equation for two-dimensional C:

∇C ≡
(
δC

δv1
,
δC

δv2

)T
. (3.5)

The previous equation now can be rewritten as

∆C ≡ ∇C ·∆v. (3.6)

The gradient of C relates changes in v to changes in C. This lets us see how to choose

to make negative. The neural networks implement one other parameter – the learning

14

CHAPTER 3. DEEP NEURAL NETWORKS THEORY

rate . It is small non-negative number to multiply with to reduce the changes in order

not to “overshoot” the minimum. Finally, we get the equation

∆v = −η∇C (3.7)

to calculate how we need to change the weights and biases to reduce the cost function.

This is done repeatedly, over chosen number of epochs. One epoch embodies running a

series of learning and validation data through the neural network. We can see the effects

of choosing different learning rates in Figure 3.4. If we set it too high, though in first

few epochs the cost function will decrease significantly, it will not get very close to the

minimum because of large steps. Oppositely, one can say that very low learning rate

would eradicate the ‘overshooting’ problem and most certainly lead to the minimum, but

such rates would require many epochs, would be very time-consuming and may get stuck

on quite low accuracy.

Figure 3.4: Effect of learning rate on cost function (source: http://cs231n.stanford.edu/).

3.1.2 Backpropagation

The algorithm used for calculation of the gradient descend is called backpropagation.

Using the output of a neuron cell, known activation function and structure of the ar-

chitecture, we define the equation combining the cost function and activation function

equations.

Before we can define the backpropagation equation, we must index individual layers

and neuron cells. First, we define L as a layer index, starting with 1 for the input layer,

written as superscript. Neuron cells are indexed with subscript starting at j for the last

layer before the outputs, k for the cells before etc. Weight of the connection between cell

k in layer l–1 and cell j in layer l is w
(l)
jk . Now, we can define input of a single cell:

15

CHAPTER 3. DEEP NEURAL NETWORKS THEORY

z
(l)
j =

n−l∑
k=0

w
(l)
jka

(l−1)
k , (3.8)

summing all weights and activation functions connected to cell j in the layer l. The

output of this node is the result of a chosen activation function g(l) in the node, therefore:

a
(l)
j = g(l)

(
z
(l)
j

)
. (3.9)

We can now use this output with the equation for cost function, expressing it as

= C0j

((
a
(l)
j

))
. Substituting for a

(l)
j , we get C0j

(
a
(l)
j

(
g(l)
(
z
(l)
j

)))
. According to the

dependencies throughout the equation, we make derivatives:

δC0

δw
(l)
jk

=

(
δC0

δa
(l)
j

)(
δa

(l)
j

δz
(l)
j

)(
δz

(l)
j

δw
(l)
jk

)
, (3.10)

which results in

δC0

δw
(l)
jk

= 2
(
a
(l)
j − yj

)(
g′(l)

(
z
(l)
j

))(
a
(l−1)
j

)
. (3.11)

This equation calculates the cost function for a single weight for one single training

example. To calculate over n training examples, we calculate the average derivative of

the cost function over the examples. Then, we expand the calculations over all remaining

weights and calculate it over many epochs, until a pleasant accuracy is reached.

3.2 Convolutional Neural Network

Classical architecture of a neural network is not optimal for images. Since an image is a

set of hundreds to tens of thousands of pixels, with each being an individual input, we

could either handcraft some important features from them or process the value of every

pixel. Both would be extremely computationally demanding and/or inaccurate. There-

fore, specialized layers are introduced to process efficiently, with the use of convolution,

subsampling and different activation functions. In contrast to older neural networks where

features are handcrafted, deep convolutional neural networks learn features by training

on large sets of data.

16

CHAPTER 3. DEEP NEURAL NETWORKS THEORY

3.2.1 Convolution Layer

In order to recognize various patterns throughout the image, we use a set of filters via

convolution operation. These differ from simple shapes such as straight and curved lines,

dots, circles etc. to complex ones in the deeper, hidden layers. Each used filter re-

veals presence or absence of a certain pattern in the image and this information is then

transferred to following layer. [23] The main reason we are using convolution instead of

flattening the image to a one-dimensional array of pixel values is that the image carries

spatial information as well. Flattened array of values would result in the network treating

the distant pixel the same way as those next to each other. Using multiplication through

a moving window we test response of the whole image to the filter. The resulting convo-

luted image has a single bias and single weight, meaning that in final decision-making we

are adjusting the importance of the filter and not the pixels themselves. [23]

Setting the parameters of the convolution layers must be done manually and is crucial

to the performance of the whole network. We pick number of filters, filter size and window

stride. Window stride is usually 1 to preserve the most amount of information, filter size

depends on resolution of images we are working with, in [23] we for example have 5x5 pixel

filters for 28x28 images. Filter size gets lower for each following layer, in contrast with

number of filters, which increases. Both is correlated with subsampling in the pooling

layers, which follows the convolutional ones. Two-dimensional convolution with stride 1

can be seen in Figure 3.6.

The two-dimensional convolution formula is as follows:

g[m,n] =
∑
j

∑
i

ω[i, j] · f [m− j,m− i], (3.12)

where g is the filtered image, f the original image and ω the convolution kernel. Con-

volution is commonly used in other image processing applications, such as sharpening,

blurring, edge detection etc. In these the convolution kernel can be set to overlap the

original image which preserves the image dimensions. Since this cause some image distor-

tion, it is undesirable for our purposes. Some examples of convolution kernels for these

applications can be seen in Figure 3.5.

For purposes of constructing the neural network, the formula to calculate the output

size of the convolution is

output width =
W − Fw + 2P

Sw
+ 1 (3.13)

output height =
H − Fh + 2P

Sh
+ 1 (3.14)

17

CHAPTER 3. DEEP NEURAL NETWORKS THEORY

where W,H stands width and height of the original image, for Fw,h for filter width

and height, P for padding and Sw,h for stride.

Figure 3.5: 3x3 kernel moving with stride 1 pixel through the image

Results of a convolutional layer is series of filtered images, each having assigned single

bias and weight. Each of these provides information about different pattern being present

or absent in the image and through the process of learning the network changes the bias

and weight of each filter’s neuron depending on how it affects the recognition.

3.2.2 Pooling layer

Following the convolutional layer, to reduce the amount of processed data, the pooling

layer is introduced. There are two common types of pooling – max pooling and mean

pooling. The processing done within this layer is fairly simple; it uses square moving

window with a stride equal to its dimension and computes the mean of all values inside

the window (mean pool) or takes the highest value as the result (max pool). Although

mean pooling preserves more data because the final value comes from averaging all in

window, since the convoluted image has higher values where feature detection happened,

it is desirable to keep this high value information and discard the rest, reducing noise

generated by unwanted detection. Most common pooling is with 2x2 window and stride 2,

therefore reducing the dimensions of convoluted image matrices by 2. Pooling was proven

to be an effective method of decreasing the computational demands while preserving

enough information to make the network accurate. Visualization of pooling process can

be seen in Figure 3.6.

3.2.3 Activation Function

We already introduced one of the basic activation functions, the sigmoid. However, in

convolutional network architectures, the most common functions used are ReLu, tanh and

softmax. Each one has different purpose and is suitable for different architecture or layer

18

CHAPTER 3. DEEP NEURAL NETWORKS THEORY

Figure 3.6: Average and Max pooling 2x2

Figure 3.7: Speed of learning of 2 hidden

layers (taken from [23]).

Figure 3.8: Speed of learning of 3 hidden

layers (taken from [23]).

Starting with tanh, it is very similar to the sigmoid function. In fact, the relation

between them is approximately tanh(x) = 2σ(2x) − 1. The has a sharper transition

around zero values and the output is < −1, 1 >. This means that both sigmoid and

tanh function suffers from vanishing gradient problem. As we calculate gradient descent

of a cost function ‘further away’ from the output, with more neuron cells incorporated

in the equation, the sigmoid or tanh functions saturate, slowing the process of learning

after given number of epochs. We can see development of this trend in Figure 3.7 and

3.8., taken from [23], which is contrary to expectations that deeper networks would reach

higher accuracy with every added hidden layer. The figures show how the learning speed

decreases differently depending on the number of the hidden layers and their order.

To tackle this problem, some papers proposed [1],[22] using the rectified linear unit

(ReLu) activation function. The output of a rectified linear unit with input x, weight

19

CHAPTER 3. DEEP NEURAL NETWORKS THEORY

Figure 3.9: ReLu function Figure 3.10: Leaky ReLu function

vector w, and bias b is given by

f(x) = max(0, w · x+ b). (3.15)

The function turns all negative inputs into zero and non-negative without change. We

can see it graphically in Figure 3.9:

ReLu provides faster learning for deep neural networks and practically cancels out the

vanishing gradient problem [1]at ReLu can set parameters for some neuron cells so that

they never fire again, effectively ‘killing’ them. Solution for this problem was introduced

in a form of a leaky ReLu. The difference is that the negative values are not zeroed-out

but instead they are given proportionally very small negative value. The output values

of leaky ReLu are defined by

f(x)=

x if x > 0

a·x otherwise.

Leaky ReLu is represented graphically in Figure 3.10. Leaky ReLu with different values

for a were evaluated against standard ReLu in [2]. The results show slight improvement

in learning speed for leaky ReLu with and significant improvement during training and

testing. The value of a plays significant role as with low value of a = 0.01 the improvement

was about 1-2% but for a = 0.18 the improvement was about 10%. The paper [2] also

mentions Randomized Leaky ReLu, which randomly assigns value to a within defined

span in the training phase. This type of non-linearity yielded very similar results as

Leaky ReLu.

While ReLu is commonly used nowadays as it replaced sigmoid function, it is not the

most suitable for the output layer, where we prefer to see probability-like distribution

20

CHAPTER 3. DEEP NEURAL NETWORKS THEORY

to get the clear picture. For this purpose, a softmax function was designed to be a new

output layer on neural network. Unlike sigmoid or other functions used in output layers,

the sum of all output neuron cells in softmax layer is always 1. It also tends to create

bigger value difference between the highest value and the rest of them.

Therefore, we can refer to it as a probability distribution, which is mostly convenient

for neural networks when output is supposed to be single value. The formula used for

softmax function can be written as

aLj =
ex

L
j∑

k e
zLk

(3.16)

where xLj stands for input of j-th neuron cell and
∑

k e
zLk being sum over outputs over

all neuron cells in output layer.

3.2.4 Dropout

Another way to eliminate or lower overfitting problem is to use dropout. According

to user-set rate, a layer with added dropout randomly drops neural cells, making the

architecture different with every epoch. The dropout rate d represents the probability

of a cell being ignored, with d = 1 being dropout-free and d = 0.5 dropping half of the

cells in a layer. As stated in [31] ignificantly improves the generalization of a network no

matter the specialization at a cost of slowing the learning time. To reduce the rising time,

Srivastava et al. [31] recommend increasing the learning rate 10-100 times. Also, it has

been found out that the typical value of dropout depends on the depth of the network,

with lower dropout rate requiring deeper nets. Too large d may not prevent overfitting.

For real-world inputs the typical dropout rate was set to be 0.8.

3.3 Building Deep CNN

With theoretical basics covered, we can now implement our own neural network. The

development in this field went hand in hand with creation of many tools for building

neural networks, with most of them being user-friendly and available for free.

3.3.1 Programming Languages and Frameworks

Most popular programming language for neural network implementation is Python , since

it is one of the-, if not the most beginner-friendly language and it’s globally available for

21

CHAPTER 3. DEEP NEURAL NETWORKS THEORY

free. For data science especially, a framework called NumPy was created, simplifying most

of the code needed to build neural network. For further simplification, framework named

Keras [7] was created, allowing everyone to build a neural network within tens of lines

of code. Most of the papers cited in this thesis uses these tools. Additionally, MATLAB

released Deep Network Designer, graphical application for creating neural networks by

composing blocks corresponding with particular layers, activation functions and more.

The application also has revision tool called analyzeNetwork, which can determine flaws

in code. As a result of the network created by this application, MATLAB automatically

creates all scripts and functions required for evaluating the network using data of choice.

The whole process of designing network in MATLAB is very intuitive and therefore will

be used for the practical part of this, thanks to licensing provided by the Czech Technical

University.

3.3.2 Cloud-based solutions

Although the computation power increased to the point where more-less anyone can build,

train and use neural network, some projects are still far too large to be handled on

consumer-grade computer or even servers in decent time frame. In recent years, the

giants of computing industry Google, Amazon and Microsoft have created cloud-based

computing solutions, allowing subscribers take advantage of their enormous servers for

storage and computation power. They also introduced their own frameworks for Deep

learning, namely Google TensorFlow [19] and Microsoft ML.NET [8].

3.3.3 Popular Datasets

One of the reasons of machine learning’s growing popularity is the availability of vast

amounts of data. This is also the reason while some of the most capable frameworks

come from Google and Microsoft. For training of convolutional neural network, we need

set of images with corresponding labels, dividing them into categories. One of the largest

databases, created for image classification, is ImageNet.org, community-driven download-

able database, currently composed of over 14 million labeled images across 21k synsets.

For purposes of recognizing handwritten numbers, a MNIST database has been created,

containing over 50k labeled images.

For purposes of image quality assessment however, the amount of data we have today

is less than optimal. While recognition is fairly straightforward task for humans, assessing

the image quality is very subjective. The most common used method is obtaining opinion

score from human subjects, who give the image a score from 1 (excellent) to 5 (bad) either

by determining the quality of the image by itself or comparing it to other images. This

22

CHAPTER 3. DEEP NEURAL NETWORKS THEORY

process requires controlled environment with expensive equipment and lots of time to be

valuable. Therefore, some of the researchers decided to for other methods of assessing the

quality of images. The most used and popular datasets with their parameters are listed

below.

• LIVE image database - developed by Laboratory for Image and Video Engineer-

ing at University of Texas, this database is one of the evergreens in modern IQA

papers. Usually every initial testing of an algorithm is first done on images from

this database, as well as training in case of non-transfer learning approach. There

are currently two releases with the newer one having 29 reference color images with

typical resolution of 0.4 megapixel, 169 distorted by JPEG compression, 175 by

JP2K compression and 145 by white noise, bit error in JP2K and Gaussian blur

each. All distortions are done in post processing.

• LIVE In the Wild Challenge - this database contains 1162 images taken using

typically mobile camera devices and contain authentic distortion caused by technical

limits of the camera or poor skills of the cameraman, therefore usually containing

multiple distortions. Database was evaluated by over 8000 human observers.

• TID 2008 - this database originated from Kodak lossless true color image suite

by applying 17 types of distortion at 4 level each. Combined the image includes

1700 images evaluated by 838 observers, obtaining over 250 thousand of opinion

scores. The distortions include 7 types of noise, JPEG and JP2K compression and

transmission errors, mean shift, contrast changes and more.

• TID 2013 - updated version of TID 2008, adding 7 more types of distortion and one

more level to each one, making up a total of 3000 distorted images. Added distortion

types include color distortions, dithering, chromatic aberrations and more.

• CSIQ - database developed at Shizuoka University containing 30 pristine image

turned into 900 distorted ones. The applied distortion are JPEG and JP2K com-

pression, adaptive and pink Gaussian noise, Gaussian blur and global contrast decre-

ments, all within 5 levels of severity. The database was rated by 35 observers and

obtained over 5000 opinion scores.

• Waterloo Exploration - this database, unlike others, was not evaluated by hu-

man subjects using opinion score. Instead, the 4 744 pristine images and 94 880

distorted ones were tested on 20 different full- and no reference algorithms, using

pristine/distorted image discriminability test, list-wise ranking consistency test and

the pairwise preference consistency test. The distortions used were JPEG and JP2K

compression, white Gaussian noise and Gaussian blur, each in 5 different levels [18].

23

CHAPTER 3. DEEP NEURAL NETWORKS THEORY

Figure 3.11: Selected pristine images from database Kadid 700k

• KADID 10k - full name Konstanz artificially distorted image quality database -

this database was published in 2019 and unlike the previously mentioned was used

only a few times. This database contains 81 pristine images to which 25 types of

distortion, including noises, blurs, color distortions and more, were applied in 5 dif-

ferent levels, resulting in 10 000 distorted images. The parameters of the distortion

algorithm were chosen manually so that the resulting image quality perceptually cor-

responded to rating from 1 to 5 by standards of opinion score. Using crowdsourcing,

the authors obtained 30 opinion scores for each image.

• KADID 700k - a set of 140 000 images was picked from Pixabay database (the

81 images selected for KADID 10k were the best looking of those). From those,

another 700 000 distorted images are generated with same types of distortion, but

unevenly, creating 5 distorted variations of every image, each containing one random

distortion type with level of degradation corresponding to MOS 1 to 5. This makes

the KADID 700k the most extensive database ever created [15]. Researchers can

download the pristine 140 000 images, having size of estimately 45 gigabytes and

then run MATLAB script to generate the 700 000 images, which take over 300

gigabytes of space.

All mentioned databases are publicly available for download and testing, with detailed

instructions included in the package and additional information or research papers on the

website. You can find links to all of them in the Appendix - External links.

24

CHAPTER 3. DEEP NEURAL NETWORKS THEORY

Figure 3.12: Selected images with the most severe distortion settings from database Kadid

700k

25

Chapter 4

Neural Networks based BIQA

Methods

For the last few years, the research in deep learning field has grown vastly and image

quality assessment has become widely explored field of study. Expanding the basic ar-

chitectures of convolutional neural networks by adding processing to input, output or

modifying data flow within the net, many studies are outperforming classic non-machine

learning approaches. Universal metrics for evaluating the methods are those which de-

termine similarity between mean opinion score of tested images given by human subjects

and that which was given by program, with aim to be identical. In this section we will

describe various types CNN-based image quality assessment methods, divided to subsec-

tions based on how the network is implemented, what is the output, how the training is

done, or the data flow is modified.

4.1 Preprocessing of the Input Data

4.1.1 Image Normalization

Preprocessing the image by normalizing them reduces or completely ditches the data not

required for quality assessment, or those which have very little impact. Inspired from [20]

and [41], local contrast normalization is implemented in [13] with a window of 3x3 pixels,

since it was found out that larger windows worsen the performance as well as non-local

contrast normalization. Local contrast normalization is frequently used in CNN object

recognition problems as it makes the algorithms more robust to luminance and contrast

variations.

In [11] the normalization is done by turning input images into grayscale and a low-

26

CHAPTER 4. NEURAL NETWORKS BASED BIQA METHODS

pass filtered version of the image is subtracted from the original. This is done due to fact

that the low frequency information are not affected by distortion; for example Gaussian

noise add high frequency components, blur removes high frequency details and JPEG and

JP2K block artifacts introduce high-frequency edges. Also, HVS is little to not sensitive

to low frequency changes. Kim et. al. [11] state that the normalization does cut some

information out of the network, which is compensated by adding two handcrafted features

in the second training stage.

The choice of turning image from color into grayscale pops up in almost every paper.

While some claim that the color information is important and it makes the network

perform better, others oppose that our perception of color quality is very subjective and

color fidelity to real world plays little to no role in the network feature extraction.

4.1.2 Gradient of the image

Some distortions are strongly associated with colors and intensities of the pixel. Changes

in the high frequency information due to these distortions are significantly reflected in

image gradient. This fact is explored in [25] by creating two identical streams of neural

network, one processing patches of the original image and the second one the patches of

a gradient of mentioned image. Authors claim that this approach increases sensitivity of

the network to blur and compression types of distortion, since the loss of high frequency

details is in these cases the most significant. The network processes features of the image

stream and gradient stream independently up to two final fully-connected layers where

those are aligned next to each other, creating the final opinion score. You can see the

input images and their corresponding gradients in Figure 4.1. The gradients of the images

distorted by blur shows significantly less detail than the sharp ones.

Figure 4.1: Input images of a neural network and their corresponding gradient (taken

from [25]).

27

CHAPTER 4. NEURAL NETWORKS BASED BIQA METHODS

4.1.3 Color Adjustments

Another approach of preprocessing images lies in changing the color space of an image.

Digitally stored images are standardly stored in RGB additive color space [10], where

three digits from 0 to 255 represent the intensity, saturation and hue. For the task of IQA

this approach may not be ideal since determining these values can not be done directly

from the numbers and because these are dependent on all three numbers, i. e. changing

one of the component numbers affect luminance, saturation and hue all at once.

Solution to this problem is presented in [40]. Authors create multi stream neural

network processing the original image as well as image transformed into three more color

spaces. The first color space is CIE LAB, consisting of one luminance and two color

components. LAB can describe wider gamut of colors and non-linear relationship of

luminance-color components is similar to the way HVS perceives this information. CIE

LMS, also resulting from studying HVS, represents color in a similar way to LAB, having

one luminance achromatic component and two chromatic. The last used color space is

CIE HSV, representing colors as hue, saturation and value components.

The multi stream neural network has each channel of each color space as a single input,

fusing the features from each processed image at the end of the network. Visualisation of

the different color spaces and it’s components can be seen in Figure 4.2.

Figure 4.2: Color spaces and their components (taken from [40]).

4.2 Learning the Models

One of the biggest problems of deep learning is need for vast amounts of data. For image

classification, datasets must be evaluated by many human observers to provide reliable

28

CHAPTER 4. NEURAL NETWORKS BASED BIQA METHODS

ground truth. Unlike image recognition databases, most databases for image quality

assessment, until very recently, consisted of mere thousands, in some cases even hundreds

of images. To tackle this problem, there are generally two ways: augmenting the datasets

the databases or using pretrained models trained on different databases, such as image

recognition, where millions of images are labeled.

4.2.1 Augmenting the datasets

The more common way of augmenting existing image databases is slicing the image into

patches. It is also useful to have image of square aspect ratio and amount of pixel forming

the side to be , with usually being from 5 to 8. The patches are created as overlapping or

non-overlapping. While this can increase the database size dramatically, the main problem

is with the MOS, since the distortion is rarely homogeneous. Although we can label all the

patches with the same MOS as the full image, the training result may be affected. In [34],

this problem is tackled by creating large patches, randomly selecting areas about 80% of

the size of original image, to preserve variety and context information. A different way

of tackling this problem is proposed in [39], using context-aware algorithms to determine

the relevance of the score of each patch, resulting in higher accuracy. Another used

augmenting method is flipping the images horizontally and vertically and rotating by 90,

180 or 270, with the MOS remaining the same for all listed variants. This method provides

images with the MOS of same reliability as the original image, but can only expand the

database 6 times, which may not be sufficient.

4.2.2 Transfer Learning

This method takes advantage of the fact that image quality assessment and image recog-

nition are fundamentally similar processes. Since convolutional neural networks are being

used for image recognition for some time now, there are databases of millions of images

that have already been fed into these networks, mainly AlexNet [1] and VGG16 [37]. With

this fine-tuning, the whole models can be used as a backbone to more complex structures,

they can be modified, and their learned features can be extracted from any layer. It

was shown that in many cases the features learnt for purposes of classifying images can

be used for image quality assessment [26], [29], [40]. More on the use of this method is

described in following sections. The downsides of this method can be that the images

must be either downsized to math the resolution of the CNN, which in case of [1] and [37]

is fairly small and some distortion types may be altered, or turn into patches, which can

oppose problems mentioned in previous subsection.

29

CHAPTER 4. NEURAL NETWORKS BASED BIQA METHODS

Figure 4.3: Architecture of AlexNet, taken from [1]. R means that the layer is followed

by ReLu function, S stands for Softmax function.

4.3 Stream Complexity

Another commonly explored attribute of a neural network is the complexity. The network

can be theoretically infinite in terms of simultaneous streams of feature extraction and

their processing, as well as with number of layers. However, with increasing the com-

plexity we also increase the computational demands and the link between complexity and

performance is not linear.

4.3.1 Depth of the Network

The number of hidden layers has a critical effect of the performance of a neural network.

One of the first well-performing nets AlexNet [1] had 5 convolutional layers, 3 pooling

layers and 3 fully connected layers, which meant more than double from the previously

published network and the first one to be called ’deep’. The second significant deep net-

work VGG16 [37] had 16 hidden layers (hence the name), which was one of the reasons

it performed better. After that, the number of proposed network architectures grew and

the number of hidden layers was pushed forward. One of the deepest used is the Incep-

tionResNetV2 with over 500 hidden layers [38]. Interestingly, this network has merely

a third of the trainable parameters compared to older VGG16, meaning that the layers

contain less filters and dimensions.

In IQA research papers the most used architectures are the simpler ones, as they are

modified or serve as a part of new network. The depth is certainly affecting the perfor-

mance. The networks proposed in all papers have a minimal depth of 10 hidden layers and

the shallower ones were always combined with image pre-processing or additional feature

processing. But to determine exactly how deep the network should be in combination

with other parameters is far too complicated.

30

CHAPTER 4. NEURAL NETWORKS BASED BIQA METHODS

4.3.2 Multiple-Stream Network

Natural images have many aspects of quality, such as contrast, exposure etc., which can

be seen with a naked eye and represented by various software using algorithms, but are

not directly represented in the image file. In order to explore those ’hidden’ features and

simultaneously not losing other information due to conversion, many papers have decided

to create multiple stream networks. The common approach is that the architecture is built

and used multiple times simultaneously, with differently pre-processed input image. The

conjunction of these streams usually occur before fully-connected layers where features

are combined, resulting in a single opinion score number.

To explore the differences in pre-processing images and how they would perform when

combined, Yuan et. al. [40] proposed multi-stream network with maximum of 15 streams

in the most complex architecture variation. Image preprocessing is done by conversion into

different color spaces, as mentioned before in more detail. The network in every stream

is based either on AlexNet [1] or VGG16 [37], with 5 convolutional layers and 5 fully

connected layers instead of the original 2. The learned features in the last layer of every

stream are concatenated into single fully connected layer, the dimension is reduced using

Principal Component Analysis to remove redundancy and the resulting quality score is

obtained using SVR algorithm. Having tried many combinations of backbone pre-trained

networks and image pre-processing, the paper states that the best result are produced

by VGG16-based network pre-trained on the combination of ImageNet and Places365

databases and using all three color spaces, each with all components.

In [25] this method is used in proposal of two-stream convolutional network. The

architecture is the same, one of the nets gets fed patches of the original image and the

other one patches of the gradient of the image, in both cases these were made by splitting

the image into 3 by 3. In addition to that, this architecture includes region-based fully

convolutional network at the end of each of the streams, that concatenates the feature

maps of the patches the way the were made from the original image. Finally, the data

are concatenated into fully connected layers and form the image score as an output.

4.4 Processing Data from Layers

4.4.1 Feature Extraction

One of the key advantages of convolutional neural networks, as mentioned previously, is

its ability to create feature maps with automatically generated filters, which are learned

by specific certain types of training data. Typically, we pass these into fully connected

31

CHAPTER 4. NEURAL NETWORKS BASED BIQA METHODS

layers and reducing their dimensionality to single array of numbers, which result in desired

output(s). However, we can also step into the data flow and extract the learned features

from any desired layer and use those for additional processing and/or decision-making.

This process is commonly used with networks pre-trained on large databases, such as

ImageNet, Places365 or their combination. Although these are made for image recogni-

tion, not quality assessment, studies [insert many sources] shown that their features are

applicable for IQA as well. The performance differences will be discussed in following

sections.

One of the more complex approaches incorporating extracting of features to aid the

assessment is proposed in [34]. The features are extracted from deep fully convolutional

neural network (FCNN) made of 10 layers at four places to provide hierarchical set of

features, from shallow to deep. According to the layer where they were extracted, features

are down sampled to match the last layer of the FCNN using convolution. Then they

are fed to the final regression net, transformed into one-dimensional vectors using fully

connected layers and concatenated into one. From this vector, the final quality score is

obtained. Architecture of this proposal is shown in Figure 4.4.

Another approach using features derived from different convolutional layers is pro-

posed in [14]. The goal is to tackle the lack of training data, especially of non-synthetic

distortion created by lens, bad processing of the camera or lack of photographer experi-

ence, and thus prevent overfitting. As a baseline, pre-trained ResNet-50 [12] is adopted

and within the groups of the net the features are extracted through encoder block, con-

sisting of convolutional and global average pooling (GAP) layers, as seen in Figure 4.5,

to unify the dimensions of the features, specifically into 256-dimensional feature vectors,

later concatenated and through fully connected layer delivering final image score. Origi-

nal GAP and fully connected layers of the ResNet-50 are removed. For testing, multiple

combinations of used features were chosen, with the most effective one being the combi-

nation of all four, across all distortion types. This proposal achieved similar results as

DeepIQA [29], while outperforming (at its best) all non-deep learning methods.

4.5 Output type

The quality of an image both by the type of distortion and the amount of it. People tend

to forgive certain types of imperfections more than others, in some cases they can be even

found artistic or desirable, for example grain or noise in stylized photographs. Therefore,

it is desirable to determine the type of distortion, as it may aid the evaluation algorithm.

32

CHAPTER 4. NEURAL NETWORKS BASED BIQA METHODS

Figure 4.4: Architecture of [34].

Figure 4.5: Overall structure of the

proposed model in [14].

Performance of selected IQA algorithms on image databases

LIVE CSIQ TID2013

Name SROCC PLCC SROCC PLCC SROCC PLCC

DIIVINE [21] 0,925 0,923 0,784 0,836 0,654 0,549

BRISQUE [20] 0,939 0,942 0,750 0,829 0,573 0,651

BLIINDS-II [30] 0,919 0,920 0,970 0,534 0,536 0,628

MEON [17] 0,951 0,953 0,839 0,850 0,811 0,828

DIQA [11] 0,975 0,977 0,884 0,915 0,825 0,850

CaHFI [34] 0,965 0,964 0,903 0,914 0,862 0,878

NSSADNN [3] 0,986 0,984 0,893 0,927 0,844 0,910

DeepBIQ [29] 0,970 0,979 0,957 0,968 - -

Table 4.1: Performance of selected IQA algorithms on popular image databases.

4.5.1 Quality Score

Most of the networks proposed in papers on IQA produce as output quality score, which

has corresponding scale to mean opinion score. The accuracy of the network is measured

solely on this score, generally measured by Spearman’s rank order correlation coefficient

(SROCC) and Pearson’s linear correlation coefficient (PLCC). You can find the SROCC

and PLCC values of the proposed networks mentioned in this paper in Table 4.1.

33

CHAPTER 4. NEURAL NETWORKS BASED BIQA METHODS

4.5.2 Distortion classification

As a first step in distortion-specific classification and possible later reconstruction, two

deep convolutional neural network architectures are proposed in [5]. They differ in number

of trainable parameters, with the later one having twice the number of filters in each one

of three convolutional layers and 32-times more cells in penultimate fully connected layer.

The they both four output cells indicating presence of the most common distortions

amongst the image databases: Gaussian blur, additive white noise JPEG and JP2K

distortion. The paper states that accuracy of the distortion type determination was

92.12% for the first mentioned architecture and 94.14% for the second one, with both

outperforming the benchmark method, Support Vector Machines by 10% or more.

34

Chapter 5

Convolutional Network with

Cascaded Features

For the practical part of this thesis I chose to create a new deep convolutional neural

network based on researched information and train it on the new and most extensive

database Kadid 10k and partially on Kadid 700k [15]. The Convolutional Network with

Cascaded Features for Blind Image Quality Assessment (CNCF) offers several aspects

that add up to novelty of this approach. The first one is the branched architecture at the

second half of the network to provide additional set of features. Another innovation is the

combined use of ReLu and leaky ReLu for improved learning and minimized overfitting.

Last but not least is the training and evaluating of the new databases Kadid 10k and

700k, which is the largest one proposed to this day.

5.1 Architecture

The input layer of the network takes 256x256 color images. Larger ones are not cut

into patches but rather downscaled using MATLAB’s DeepNetworkDesigner utility. The

network stream network consists of 12 hidden layers with two additional in the secondary

branch. The branches are later concatenated, which results in two fully connected layers

and output classifier.

5.1.1 The Main Branch

Inspired by AlexNet [1], the first convolutional network uses rather big window of 6 by 6

pixels with a stride of 2 in both dimensions and 96 filters, followed by ReLu activation

function and layer normalization to maintains the contribution of every feature. After

35

CHAPTER 5. CONVOLUTIONAL NETWORK WITH CASCADED FEATURES

the convolution a max pooling takes place with 2 by 2 window and stride of 2, reducing

dimensions by half. Then the second convolution with window of 4 by 4 and stride 1 takes

place, with identical activation and normalization, followed by identical pooling.

5.1.2 Altered activation and split

Now we have 30 by 30 output with 128 filters which come through three identical convo-

lution layers without pooling, each one having 3 by 3 window and producing 192 filters.

These layers are however activated by leaky ReLu. Inspired by [2], the first layers is

followed by leaky ReLu with a = 0.02, the second one with a = 0.01 and the third convo-

lution layer by leaky ReLu with a = 0.015. These values were chosen to fall between the

two most successful setting in the paper.

From the fifth convolution layer on, the stream is split. Main branch continues with

max pooling of 3 by 3 window with stride of 2 and two convolution layers with 3 by 3

windows, each followed by standard ReLu. The side branch replaces the pooling and first

convolution layer by single convolution layer with large window, to provide different set

of features. From the last layers of both branches are concatenated together.

5.1.3 Concatenation and classifier

The two concatenated streams are followed by two fully connected layers. The first consists

of 1024 cells and after ReLu activation the dropout layer takes the spot. As mentioned

in [1],[31], the dropout layer help prevent overfitting of the neural network by randomly

disabling some cell activations. Here the dropout is set to 0.5 which effectively leaves out

random 50% of neural links for each iteration. The second fully connected layer contains 5

cells and is followed by Softmax function, leading into classifier. The network sorts images

into five categories, corresponding with opinion score metrics. The full block scheme can

be seen in Figure 5.1.

5.1.4 Image Pre-Processing

To introduce additional information about the distortion of the images, an alternative

input will be tested: a gradient of the image, inspired by [25].

The original image is in the first instance converted to grayscale using function rgb2gray.

To the product three different filters are applied: 2 custom kernels h1, h2 using imfilter

function (see Figure 5.2) and edge function, using option ’Canny’. The first two filtered

images are divided by 2 and since the edge function produces logical matrix, it is con-

36

CHAPTER 5. CONVOLUTIONAL NETWORK WITH CASCADED FEATURES

Figure 5.1: Architecture of the CNCF network. The activations in circles are: R = ReLu,

L = leaky ReLu, D = dropout, S = Softmax

Figure 5.2: Kernels used to create gradient of the image.

verted to uint8 format and the former values of zero are multiplied by 64 to achieve a

quarter of maximum pixel intensity. These three altered images are combined to form a

full color image using cat function; the image filtered with h1 kernel make up red channel,

h2 produces image for green channel and edge function takes place of the blue channel.

Resulting images can be seen in Figure 5.4.

The gradient is especially sensitive to higher frequency information [25]. In Figure 5.5

we can clearly see the decrease when blur distortion is present. Oppositely, when image

is distorted by contrast decrements or additional noise, the amount of detected edges and

sharp transitions increases. This alternative input may increase the networks ability to

classify images. More examples of the gradient changes due to distortion in Figure 5.6.

Images go as follows: Top left: pristine image, top right: heavily distorted with blur,

bottom left: gradient of pristine image, bottom right: gradient of distorted image.

37

CHAPTER 5. CONVOLUTIONAL NETWORK WITH CASCADED FEATURES

Figure 5.3: Images from Kadid 700k database fed into stream with no pre-processing

Figure 5.4: Gradient of images from Kadid 700k database for the gradient stream of

network

Figure 5.5: Image and image gradient affected by blur.

38

CHAPTER 5. CONVOLUTIONAL NETWORK WITH CASCADED FEATURES

Figure 5.6: Image and image gradient affected by JPEG compression.

39

Chapter 6

Experiments

6.1 Used datasets

The unpacked Kadid 700k database after download contains pristine 140 thousand images

and MATLAB code to generate the full database, picking one of 25 types of distortion ran-

domly for each image and applying it in 5 levels, which authors fine-tuned to correspond

with five levels of the opinion score [15].

For the initial training and parameter settings, I limited the algorithm used in Kadid

to just four most common distortions: Gaussian blur, JPEG and JP2K compression and

color noise. I processed 10 000 pristine images with 4 distortion types per 5 levels, creating

200 000 images for training and validation.

6.2 Training hyperparameters

When training neural network, the settings adjusting the process are similar for all network

architectures. They are called training hyper parameters and their adjusting is crucial to

proper functioning of the network.

• Learning rate defines how quickly the network updates it’s weights and biases.

The recommended value in most literature is between 10−2 and 10−6. As mentioned

before, rate set too high may result in non-functioning network, too low may result in

very slow learning or not reaching accuracy that high. This parameter is challenging

to determine, it depends heavily on size of your dataset, depth of the network and

others circumstances. It is usually required to determine experimentally, which can

be time consuming. One of the best practices is also to lower learning rate every

40

CHAPTER 6. EXPERIMENTS

few epochs.

• Batch size is the number of images that are processed by the network at the same

time. Increasing this number leads to quicker training as the CPU or GPU can

process multiple items at the same time. But too large batch size can decrease the

network’s ability to generalize, i. e. recognize and classify images that were not

used during training and validation. Commonly recommended batch sizes are 32,

64, 128, rarely higher; the number should be 2n.

• Number of epochs determine how many times we process the entire training dataset

of images. Good practice is to shuffle the images each epoch. Training usually

requires number of epochs, although running too many can decrease the ability to

generalize, especially with smaller datasets.

• Weight decay limits the weight updates, when the incremental values would be

too big. Unlike learning rate, this affects the bigger increments more and vice versa.

When deciding how big should be set, two parameters play role: the dataset size

and number of trainable weights in the network. The larger your dataset is, the

smaller the decay and oppositely the more weights you have, the higher decay.

• Choosing optimizer, the final parameter is nowadays question of two options: the

Stochastic gradient descent and Adam optimizer. Adam has steeper learning curve,

therefore requires lower learning curve.

6.2.1 Initial network testing

To find ideal parameters of the network, I chose images distorted by Gaussian blur, 5000

of each level to train. From the experiments, the optimal training hyperparameters for

further testing are:

• learning rate: 4 · 10−5

• batch size: 32

• number of epochs: 30

• weight decay: 0.9

• optimizer: Adam with default values

The obtained accuracy after 27 epochs was 85,04%. The experimental training was

also done using the image gradients, but the resulting accuracy was less than 0,5% better,

for which reason I chose to not use them for the main training. For initial training I

41

CHAPTER 6. EXPERIMENTS

changed the values of learning rate and batch size, results can be seen in Table 6.1.

Notice the achieved 20% with too high learning rate. The graph of the best performing

initial training can be seen in Figure 6.1.

Figure 6.1: Graph of the training progress on 25 000 images distorted by Gaussian blur.

6.2.2 Main network training

After fine-tuning of the hyperparameters, I divided the Kadid distorted images into 5

groups according to set level of distortion, including all four types, each group containing

8 000 images and began training the network. As an experiment I also ran the training

with the same settings but only 250 images per category.

All training and validation of the CNCF network were conducted on following hard-

ware: AMD Ryzen 5 2600 six-core 3.6GHz, 16GB RAM, Nvidia RTX 2060 6GB. When

compared, GPU provided significantly higher speed than CPU.

Figure 6.2: The legend of the graphs of training progress

42

CHAPTER 6. EXPERIMENTS

Parameter settings for CNCF

Batch size Learning rate Accuracy

32 0,0001 79.8%

64 0,0001 77,39%

32 0,001 20%

32 0,0005 76,75%

32 0,00005 85,04%

Table 6.1: Experimental settings of learning hyperparameters.

6.3 Results

6.3.1 Full reference validation

To evaluate the results of the neural network, we need to verify the opinion score of the

generated set. As with the full Kadid 700k generated with unaltered code, the dataset

generated for my purposes does not have assigned opinion score and must be evaluated

by metrics. Since we have the pristine images, we can use full reference metrics as they

are outperforming the blind ones. The SSIM index and VIF index [32] are the right tool

for the job, the first one is available as a standard function in MATLAB and the second

one is publicly available. The VIF index requires grayscale image so rgb2gray function

was used. The script for group evaluation of images can be found in the Appendix B

repository.

The full reference evaluation results can be seen in Table 6.2. The evaluation processed

five distortion classes independently, SSIM values are averaged over 250 samples and 2000

samples, VIF values over 2000 samples.

Full Reference Kadid Dataset Evaluation

Method Excellent Good Fair Poor Bad

SSIM (small sample) 0,966072 0,943522 0,904775 0,827636 0,703504

SSIM (large sample) 0,970115 0,940862 0,897821 0,813220 0,722375

VIF 0,847774 0,725568 0,533829 0,308312 0,152306

Table 6.2: Evaluation of the generated dataset using FR methods.

6.3.2 CNCF training and validation

The main training of the CNCF network was done in MATLAB’s DeepNetworkDesigner

with 30 epochs containing 28 110 iterations. Frequency of validation was every 500 itera-

43

CHAPTER 6. EXPERIMENTS

tions and the whole training process took 7 hours and 31 minutes. The training set of 40

000 images was split 3:1 for training:validation. The reached accuracy was 70,37%. The

process of learning is detailed in the Figure 6.3.

Figure 6.3: Training performance of the CNCF on 40 000 images with 4 different distor-

tions (Gaussian blur, JPEG and JP2K compression and color noise) in 5 levels.

You can see that the validation curve traces the training curve quite well over the first

15 epochs. Then the network starts to get little overfitted, with validation curve being

little less steep compared to the training curve. The dispersion of the training curve is

rather high, which can be caused by distortions of lower level being harder to identify.

Experimental testing of the network with smaller amount of 250 images per category

(randomly chosen from the full 40 000 dataset) unfortunately resulted in overfitting, as

the training accuracy after 27 epochs reached around 90% but the validation accuracy

stagnated around 20%, which for 5 outputs mean almost pure guessing. See the graph of

training progress in Figure 6.4.

6.3.3 CNCF testing

After training the CNCF network, I tested it on other databases, namely LIVE, Kadid

10k (different images than Kadid 700k but the procedure of obtaining the distorted one is

the same) and CSIQ. The classify function gives output corresponding to the settings

44

CHAPTER 6. EXPERIMENTS

Figure 6.4: Graph of training and validating of the CNCF network on 1250 images of

Kadid 700k dataset.

of the neural network output, in this case number from 1 to 5, with 1 being excellent

quality and 5 bad quality. The accuracy of these classifications can be seen in Table 6.3.

Accuracy of CNCF on Image datasets

Name and dist. type Accuracy

CSIQ awgn 0,667%

CSIQ jpeg 0,5%

CSIQ jp2k 0,567%

CSIQ fnoise 0,7%

CSIQ blur 0,487%

Kadid 10k 0,707%

Table 6.3: Accuracy of trained CNCF on CSIQ and Kadid 10k databases.

The results correspond with the validation accuracy in best cases, having more difficult

time mainly with blur determination and compression. This is understandable to the

nature of the distortions, with noise being visible even in small amounts and disturbs the

image subjectively more than compression or slight blur.

45

Chapter 7

Conclusion and future work

The research in image quality assessment has come a long way in the last decade. No

reference solutions accomplished by the neural networks perform generally better than

approaches based on other learning approaches, such as natural scene statistics. While the

foundations of the most architectures are based on older models of neural network, mostly

AlexNet [1] and VGG16 [37], the proposed networks usually shows superior performance

due to branching streams of the network, preprocessing images, adding another image

classification tools of using architectures trained on extensive image recognition datasets.

The main challenge still seems to be lack of evaluated images to train on, which is solved

by augmenting the datasets by turning the images into patches or rotating them. The

newest proposed image database, Kadid 700k [15] is much larger than any other database,

however it’s images are not evaluated by human observers but rather by assigning the

opinion score based on empirical testing of the distortion generator algorithm.

The proposed network CNCF is trained on part of the generated Kadid 700k set,

using only 4 distortion types. It’s architecture is inspired by AlexNet and the proposed

approaches, branching the stream to learn additional features and classifying image into

5 classes. It’s performance, however is not optimal, showing accuracy of 70,37%, due to

many factors. Fine tuning of the hyperparameters consumes huge amounts of time and is

usually more experimental rather than deterministic. Training of the network is extremely

computationally- and time-demanding, requiring processing of many thousands of images

in many epochs to reach satisfactory results. The network can now recognize quality of

image when distorted by one of four types of distortion, but fails when other distortion is

present. In the future work, the network can be trained on more types of image distortion

to become more robust. Using different datasets or their combination for training may

lead to increased accuracy of classification.

46

Bibliography

[1] I. Sutskever A. Krizhevsky and G. E. Hinton. “ImageNet Classification with Deep

convolutional Neural Networks”. In: Communications of the ACM (2010).

[2] T. Chen B. Xi N. Wang and M. Li. “Empirical Evaluation of Rectified Activations

in Convolutional Network”. In: Cornell University (2015).

[3] B. Bare B. Yan and W. Tan. “Naturalness-Aware Deep No-Reference Image Quality

Assessment”. In: IEEE Transactions on Multimedia (2019), pp. 2603–2615.

[4] A. Bovik. Handbook of Image Video Processing. Elsevier Academic Press, 2005.

[5] M. Buczkowski and Ryszard Stasiński. “Convolutional Neural Network-Based Image

Distortion Classification”. In: IEEE on Image Processing (2019).

[6] Matteo Carandini, David Heeger, and J Movshon. “Linearity and Normalization in

Simple Cells of the Macaque Primary Visual Cortex”. In: J Neurosci 17 (Oct. 2004).

doi: 10.1523/JNEUROSCI.17-21-08621.1997.

[7] François Chollet et al. Keras. https://keras.io. 2015.

[8] Microsoft Corporation. ML.NET - An open source and cross-platform machine

learning framework. url: https://dotnet.microsoft.com/apps/machinelearning-

ai/ml-dotnet.

[9] T. Darrell. “Caffe: Convolutional Architecture for Fast Feature Embedding”. In: MM

’14: Proceedings of the 22nd ACM international conference on Multimedia (2014),

pp. 675–678.

[10] Robert Hirsch. Exploring colour photography. Laurence King, 2005.

[11] A.-D. Nguyen J. Kim and S. Lee. “Deep CNN-Based Blind Image Quality Pre-

dictor”. In: IEEE Transactions on neural Networks and Image Processing (2019),

pp. 11–24.

[12] S. Ren K. He X. Zhang and J. Sun. “Deep Residual Learning for Image Recognition”.

In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016).

[13] L. Kang et al. “Convolutional Neural Networks for No-Reference Image Quality

Assessment”. In: (2014), pp. 1733–1740.

47

BIBLIOGRAPHY

[14] J. Kim et al. “Multiple Level Feature-Based Universal Blind Image Quality Assess-

ment Model”. In: (2018), pp. 291–295.

[15] Hanhe Lin, Vlad Hosu, and Dietmar Saupe. “KADID-10k: A Large-scale Artificially

Distorted IQA Database”. In: 2019 Tenth International Conference on Quality of

Multimedia Experience (QoMEX). IEEE. 2019, pp. 1–3.

[16] Tsung-Jung Liu et al. “Visual quality assessment: recent developments, coding ap-

plications and future trends”. In: APSIPA Transactions on Signal and Information

Processing 2 (2013), e4. doi: 10.1017/ATSIP.2013.5.

[17] K. Ma et al. “End-to-End Blind Image Quality Assessment Using Deep Neural

Networks”. In: IEEE Transactions on Image Processing 27.3 (2018), pp. 1202–1213.

[18] Kede Ma et al. “Waterloo Exploration Database: New Challenges for Image Quality

Assessment Models”. In: IEEE Transactions on Image Processing 26.2 (Feb. 2017),

pp. 1004–1016.

[19] Martın Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous

Systems. Software available from tensorflow.org. 2015. url: https://www.tensorflow.

org/.

[20] A. Mittal, A. K. Moorthy, and A. C. Bovik. “No-Reference Image Quality Assess-

ment in the Spatial Domain”. In: IEEE Transactions on Image Processing 21.12

(2012), pp. 4695–4708.

[21] A. K. Moorthy and A. C. Bovik. “Blind Image Quality Assessment: From Natural

Scene Statistics to Perceptual Quality”. In: IEEE Transactions on Image Processing

20.12 (2011), pp. 3350–3364.

[22] V. Nair and G. E. Hinton. “Rectified linear units improve restricted boltzmann

machines”. In: ICML’10 Proceedings of the 27th International Conference on Inter-

national Conference on Machine Learning (2010).

[23] M. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.

[24] C. Pan. “Blind Image Quality Assessment via Vector Regression and Object Ori-

ented Pooling”. In: IEEE transactions on Multimedia (2018), pp. 1140–1153.

[25] D. Gong Q. Yan and Y. Zhang. “Two-Stream Convolutional Networks for Blind

Image Quality Assessment,” in: IEEE Transactions on Image Processing (2019),

pp. 2200–2212.

[26] G. Qiu. “Direct Application of Convolutional Neural Network Features to Image

Quality Assessment”. In: IEEE on Image Processing (2018).

[27] S. Winkler R. C. Streijl and D. S. Hands. “Mean Opinion Score (MOS) revisited:

Methods and applications, limitations and alternatives”. In: Multimedia Systems 22

(2016), pp. 213–227.

48

BIBLIOGRAPHY

[28] M. T. Abed S. Albawi and S. Al-zawi. “Understanding of a convolutional neural

network”. In: 2017 International Conference on Engineering and Technology (ICET)

(2017).

[29] R. Schettini S. Bianco L. Celona and P. Napoletano. “On the use of deep learning

for blind image quality assessment”. In: Signal, Image and Video Processing (2017).

[30] M. A. Saad, A. C. Bovik, and C. Charrier. “Blind Image Quality Assessment: A

Natural Scene Statistics Approach in the DCT Domain”. In: IEEE Transactions on

Image Processing 21.8 (2012), pp. 3339–3352.

[31] R. Salakhutdinov. “Dropout: A Simple Way to Prevent Neural Networks from Over-

fitting”. In: Journal of Machine Learning Research 15 (2014), pp. 1929–1958.

[32] H. R. Sheikh and A. C. Bovik. “Image information and visual quality”. In: IEEE

Transactions on Image Processing 15.2 (2006), pp. 430–444.

[33] H. R. Sheikh, M. F. Sabir, and A. C. Bovik. “A Statistical Evaluation of Recent

Full Reference Image Quality Assessment Algorithms”. In: IEEE Transactions on

Image Processing 15.11 (2006), pp. 3440–3451.

[34] G. Shi. “End-to-End Image Quality Assessment with Cascaded Deep Features”. In:

IEEE International Conference on Multimedia and Expo (IMCE) (2019).

[35] E. P. Simoncelli. ““Mean squared error: love it or leave it? - a new look at signal

fidelity measures”. In: IEEE Signal Processing Magazine 26 (Jan. 2009), pp. 98–117.

[36] E. P. Simoncelli and W. T. Freeman. “The steerable pyramid: a flexible architecture

for multi-scale derivative computation”. In: 3 (1995), 444–447 vol.3.

[37] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for Large-scale

Image Recognition”. In: Computer Vision and Pattern Recognition (2015).

[38] Christian Szegedy et al. Inception-v4, Inception-ResNet and the Impact of Residual

Connections on Learning. 2016. arXiv: 1602.07261 [cs.CV].

[39] D. Weimer, Ariandy Benggolo, and Michael Freitag. “Context-aware Deep Convo-

lutional Neural Networks for Industrial Inspection”. In: Dec. 2015.

[40] Z. Guoqiang Y. Yuan C. Zhenwei and G. Yudong. “Color Image Quality Assessment

with Multi Deep Convolutional Networks”. In: IEEE 4th International Conference

on Signal and Image Processing (2019).

[41] P. Ye et al. “Unsupervised feature learning framework for no-reference image quality

assessment”. In: 2012 IEEE Conference on Computer Vision and Pattern Recogni-

tion. 2012, pp. 1098–1105.

[42] L. Lu Z. Wang and A. Bovik. “Video Quality assessment based on structural dis-

tortion measurement”. In: Signal Processing: Image Communication 19 (2004),

pp. 121–132.

49

BIBLIOGRAPHY

[43] Eero P. Simoncelli Zhou Wang and A. C. Bovik. “Multi-Scale Structural Similarity

For Image Quality Assessment”. In: Proceedings of the 37th IEEE Asomilar Con-

ference on Signals, Systems and Computers, Pacific Groove, CA (Nov. 2003).

50

Appendix A

External links

ImageNet: http://www.image-net.org/

CIFAR databases: https://www.cs.toronto.edu/k̃riz/cifar.html

MNIST database: http://yann.lecun.com/exdb/mnist/

TID2013 database: http://www.ponomarenko.info/tid2013.htm

LIVE database: https://live.ece.utexas.edu/research/quality/subjective.htm

CSIQ database: http://vision.eng.shizuoka.ac.jp/mod/page/view.php?id=23

KADID databases: http://database.mmsp-kn.de/kadid-10k-database.html#

Waterloo Exploration

database: https://ece.uwaterloo.ca/∼k29ma/exploration/

LIVE Image Quality

Assessment algorithms: https://live.ece.utexas.edu/research/Quality/index algorithms.htm

51

Appendix B

Structure of appendix archive

The Appendix B consists of two folders:

• \matlabScripts\ containing models of CNCF network in untrained version, pre-

trained on Gaussian blur images and pre-trained on full set of 40 000 images from

Kadid 700k. Script named Evaluation contains simple piece of code used to to

classify images using the CNCF network.

• \sampleImages\ contains 12 sample images from the Kadid 700k database, with

4 different types of distortion in the highest degradation level.

Due to the size limitations the archive is split into 3 pieces, namely Appendix B.zip,

Appendix B.z01 and Appendix B.z02. The files are to be extracted from the .zip file.

52

