Bachelor’s thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Control Engineering

Reinforcement learning
for manipulation of collections of objects
using physical force fields

Dominik Hodan

Supervisor: doc. Ing. Zdenék Hurak, Ph.D.
Field of study: Cybernetics and Robotics
May 2020

ii

e BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details

4)
Student's name: Hodan Dominik Personal ID number: 474587
Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Control Engineering

L Study program: Cybernetics and Robotics

J

Il. Bachelor’s thesis details

~
Bachelor’s thesis title in English:
Reinforcement learning for manipulation of collections of objects using physical force fields
Bachelor’s thesis title in Czech:
Posilované u¢eni pro manipulaci se skupinami objekti pomoci fyzikalnich silovych poli
Guidelines:
The goal of the project is to explore the opportunities that the framework of reinforcement learning offers for the task of
automatic manipulation of collections of objects using physical force fields. In particular, force fields derived from electric
and magnetic fields shaped through planar regular arrays of 'actuators' (microelectrodes, coils) will be considered. At least
one of the motion control tasks should be solved:
1. Feedback-controlled distribution shaping. For example, it may be desired that a collection of objects initially concentrated
in one part of the work arena is finally distributed uniformly all over the surface.
2. Feedback-controlled mixing, in which collections objects of two or several types (colors) - initially separated - are blended.
3. Feedback-controlled Brownian motion, in which every object in the collection travels (pseudo)randomly all over the
surface.
Bibliography / sources:
[1] D. Bertsekas, Reinforcement Learning and Optimal Control. Athena Scientific, 2019.
[2] V. Francois-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau, “An Introduction to Deep Reinforcement
Learning,” FNT in Machine Learning, vol. 11, no. 3—4, pp. 219-354, 2018, doi: 10.1561/2200000071.
[3] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive dynamic programming for feedback control,” IEEE
Circuits and Systems Magazine, vol. 9, no. 3, pp. 32-50, Third 2009, doi: 10.1109/MCAS.2009.933854.
[4] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed. Cambridge, Massachusetts: A Bradford
Book, 2018.
Name and workplace of bachelor’s thesis supervisor:
doc. Ing. Zdenék Hurdk, Ph.D., Department of Control Engineering, FEE
Name and workplace of second bachelor’s thesis supervisor or consultant:
Date of bachelor’s thesis assignment: 07.02.2020 Deadline for bachelor thesis submission: 22.05.2020
Assignment valid until: 30.09.2021
doc. Ing. Zdenék Hurak, Ph.D. prof. Ing. Michael Sebek, DrSc. prof. Mgr. Petr Pata, Ph.D.
k Supervisor’s signature Head of department’s signature Dean’s signature)

lll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

iv

Acknowledgements

First and foremost, I would like to ex-
press my great appreciation to my caring
parents and my whole family, whose sup-
port has allowed me to fully focus on my
passions and my studies.

I would also like to thank my friends,
who have kept me going during the past
years. Special thanks go to Vit Fanta for
proofreading this thesis.

Thanks are also due to my supervisor,
Zdenék Hurak, for his support, expertise,
and the entire AA4CC team. In particu-
lar, I would like to thank Martin Gurtner
and Filip Richter, who have, without ex-
ception, patiently responded to my often-
times silly questions and who have always
been incredibly friendly with the “new
kid” in the lab.

Last but not least, I wish to acknowl-
edge the help provided by the Research
Center for Informatics at CTU Prague
that let me use the RCI cluster to train
most of the neural networks presented in
this thesis.

Declaration

I declare that I wrote the presented thesis
on my own and that I cited all the used in-
formation sources in compliance with the
Methodical instructions about the ethical
principles for writing an academic thesis.

In Prague, 22. May 2020

Abstract

This bachelor’s thesis deals with the sim-
ulation of a magnetic manipulation plat-
form called Magman and methods of re-
inforcement learning that utilize the im-
plemented simulator for training. Both of
the implemented algorithms, namely Deep
Deterministic Policy Gradient (DDPG)
and Soft Actor-Critic (SAC), belong to
the group of offline reinforcement learn-
ing methods based on Q-learning. The
first part of this thesis is dedicated to rel-
evant reinforcement learning theory and a
description of the above-mentioned algo-
rithms. The following chapter consists of
a description of the developed simulator,
including its function from the point of
view of an end-user. In the last part, sev-
eral problems solved by these methods are
presented. In particular, the tasks were
ball position control, coil control, shaping
of a distribution of a collection of balls
and finally feedback-controlled mixing of
two groups of balls.

Keywords:
Q-learning, MagMan, machine learning,
Soft Actor-Critic

reinforcement learning,

Supervisor: doc. Ing. Zdenék Hurdk,

Ph.D.

vi

Abstrakt

Tato bakalaiska price se zabyva simu-
laci platformy pro magnetickou manipu-
laci zvané MagMan a metodami posilova-
ného uceni, které implementovany simu-
lator vyuzivaji pro trénink. Oba imple-
mentované algorithmy, a sice Deep De-
terministic Policy Gradient (DDPG) a
Soft Actor-Critic (SAC), patii do kate-
gorie offline metod posilovaného uceni na
bazi Q-learningu. Prvni ¢ast prace je véno-
vana relevantni teorii posilovaného uceni
a popisu vysSe zminénych algoritmu. V té
nasledujici je uveden popis vyvinutého
simuldtoru, véetné popisu funkce pro kon-
cového uzivatele. V posledni ¢asti je uve-
deno nékolik problémt, které byly témito
metodami feseny. Jmenovité jde o Fizeni
polohy kulicek, ovladani civek, tvarovani
rozlozeni kolekce kulicek a koneéné fizené
smésovani dvou skupin kulicek.

Kli¢ova slova: posilované uceni,
Q-learning, MagMan, strojové uceni, Soft
Actor-Critic

P¥eklad nazvu: Posilované uceni pro
manipulaci se skupinami objektd pomoci
fyzikalnich silovych poli

Contents

1 Introduction 1

1.1 The MagMan Experimental
Platform........................ 2

2 Reinforcement learning 7|

2.1 Reinforcement learning setting . .
2.1.1 Markov Decision Process. [7]

2.1.2 Q-learning 9
2.1.3 Categories of RL algorithms .
2.2 Implemented algorithms
2.2.1 Deep Deterministic Policy
Gradient 12
2.2.2 Soft Actor-Critic........... [14]
2.2.3 Implementation structure . . .
3 Simulation 17
3.1 Physics L
3.1.1 Physical constants
3.1.2 Force simulation 19
3.2 The MagMan environment

3.2.1 Used frameworks and libraries

3.2.2 Simulation objects
3.2.3 Actuators 23|
3.2.4 Box2D physics.............
3.2.5 Simple physics.............
3.2.6 MagManView..............
327 Usagecovviiiiii..
4 Tasks 31
4.1 Challenges
4.1.1 Variable number of objects . .
4.1.2 Partial observability
4.1.3 Scalability
4.2 Position control [34]
4.2.1 Reward function [34]
422 Results 135
4.3 Coil control 136
431 Reward 137
432 Results 37
4.4 Distribution shaping
4.4.1 Reward function 139l
442 Results 43l

vii

4.5 Feedback-controlled mixing
4.5.1 Reward
4.5.2 Results

5 Conclusion

A Used acronyms

B Training curves

C Contents of the attachment

D Bibliography

2 8EE & HEE

Figures

1.1 A single MagMan module..
1.2 A complete MagMan platform

(reprint from [1], p. 83)
1.3 A 3D render of the triangle used

for manipulation.................
1.4 Scheme of information flow in

MagMan........................
2.1 Illustration of the RL setting
2.2 Main training loop architecture .
3.1 Approximation F, compared with

true values of F, for one coil with

1 = 420mA and a ball with radius

r=15mm 20
3.2 MagManEnv architecture

3.3 Visualization of classes Ball10mm
(yellow), Ball15mm (orange) and
Ball20mm (red)

3.4 Examples of regular polygons with
different radii and number of sides, as
well as right isosceles triangle and a
convex polygon with different ball

SIZES + vt 25|
3.5 Speed comparison of the two

classes available to simulate coils. .
3.6 Visualization of actuator actions [29

3.7 Visualization of target positions
(partially transparent)

3.8 Visualization of target force (in
black) and actual force (in blue) ..

4.1 Scheme of an LSTM network
(reprint from [2])................

4.2 Example of a non-zero final error

4.3 Example of two runs with a
random initial velocity, position and
goal, with a delay of 2 frames and
random measurement error
(0 = 0.7mm)

4.4 Visualization of the the loss

functions for coil control (requested
force as a white arrow), (a) Ly (4.6)),

(b) L (4.7)

viii

4.5 Example of how gradually
increasing o seems to aid the learning
process of coil control, (a) Ly (4.6),
(b) Ly (£.7)

4.6 Illustration of why the 1D K-S test
fails at capturing the uniformity
distribution shaping task, (a) Grid
“distribution” - what would one
expect to learn, (b) Diagonal
“distribution”, (¢) Comparison of the

CDFs in the z-axis.............. 40
4.7 Final state caused by a policy

learned with the nearest neighbor

reward function................. 40

4.8 Illustration of states with the same
uniformity reward for different values
of o. Only in the last row is there a
difference between the integral values.
Left: random positions from
[0,1] X [0,1], right: random positions
from [0.4,0.6] x [0.4,0.6]. (a), (b):

o =5x1073 (too low), (c), (d):
o =5 x10% (too high), (e), (f):
o = 0.24 computed using cee

4.9 Examples of final states of the
systems (no dynamics), (a) uniform
distribution, (b) normal distirbution

4.10 Example of a final state for
mixing (no dynamics)

B.1 Position control of one steel ball,
(a) no delay, with velocities, (b) with
a 40 ms delay, with velocities, (¢) no
delay, no velocities, past three
observations and actions

B.2 Position control of multiple steel
balls, no delay, with velocities, (a) 2
balls, (b) 5 balls

B.3 Uniformity distribution shaping
with no delay, (a) 10 objects, no
dynamics, (b) 10 objects, dynamics,
velocities, (c) 20 objects, no
dynamics

&

B.4 Uniformity distribution shaping
with no dynamics or delay and
variable number of objects

B.5 Normal distribution shaping with
no delay, (a) 10 objects, (b) 20
objects, no dynamics

B.6 Controlled mixing with no delay,
(a) 10 objects, (b) 20 objects, no
dynamics

ix

Chapter 1

Introduction

In this thesis, I am exploring the opportunities that the reinforcement learning
(RL) framework, which is a subset of machine learning (ML), offers to the field
of control engineering. In particular, I focused on multi-object manipulation
using arrays of actuators that generate physical force fields (e.g., coils or
electrodes). A concrete example of such system is MagMan (described in [1.1)),
which is a real-life counterpart of the simulator presented in chapter

B Motivation and Goals

The term machine learning dates as far back as the late 1950s, when Frank
Rosenblatt designed the first neural network called Perceptronﬂ However,
this approach has only gained most of its current momentum and public
attention in the past decade.

The last five years have brought us neural networks that have achieved
super-human level performance in some image recognition datasets, such as
ImageNet [3], and (video) games like Dota 2 and StarCraft IT?| alike. Given
these astonishing results, it is only natural to wonder whether these techniques
might help us develop control algorithms of the future.

The end-goal of this thesis is thus to accomplish the necessary baby steps
and lay a basis for further development of neural-network-based control for
MagMan (and possibly other similar systems). To this end, I also suggest
possible further research directions where applicable.

Bl Structure

In chapter 2, I go over some relevant RL theory, as well as two specific
reinforcement learning algorithms — Deep Deterministic Policy Gradient
(DDPG) and Soft Actor-Critic (SAC) — that I used. Afterward, in chapter
I present the simulation environment dubbed MagManFEnv that 1 developed
as a part of this thesis. The environment then served to train neural networks

"https://www.doc.ic.ac.uk/~jce317/history-machine-learning.html|

https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-|
|game-starcraft-ii|

https://www.doc.ic.ac.uk/~jce317/history-machine-learning.html
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii
https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii

1. Introduction

using algorithms introduced in the previous chapter in a variety of tasks.
These include position tracking , distribution shaping , controlled
mixing and controlling current in coils in order to exert a desired force
on an object . Results, as well as the precise problem formulations, can
be found in chapter

B 11 The MagMan Experimental Platform

MagMan is a modular platform for magnetic manipulation developed by
the reseach group Advanced Algorithms for Control and Communications
(AA4CC) at the Faculty of Electrical Engineering, Czech Technical University
in Prague. Its goal is to allow for experimental evaluation of multi-actuator
control algorithms.

Each MagMan module consists of a 2x2 array of coils, as shown in figure [1.1],
along with the necessary controller and communication electronics. As for its
dimensions, the distance between the centers of two adjacent coils is 25 mm.
It is possible to set a current between 0 mA to 440 mA to be passed through
each of the coils independently via USB.

These modules can then be interconnected to form “arbitrary” shapes

(while respecting bus speed and power limitations, of course). Our current
physical realization counts with 16 of such modules that together form a grid
of 8x8 coils. A flat glass surface is placed on top of these modules, where
objects can be manipulated (see photo .

For further information about the hardware, please consult [4].

Q “

Figure 1.1: A single MagMan module

Examples of items currently used for manipulation are steel balls (colored
for easier position detection) and 3D printed triangles with steel balls at
each vertex (see render in figure . After solving the control problem (as
described in [I]), we are able to carefully shape the magnetic field around the
bodies to move them to the desired position.

In the current version of the platform, a PiCamera is used to capture video
at 50 frames per second (FPS). The camera is connected to a RaspberryPi,
where the control loop is running.

1.1. The MagMan Experimental Platform

Figure 1.2: A complete MagMan platform (reprint from [I], p. 83)

D/

Figure 1.3: A 3D render of the triangle used for manipulation

Before all else, each image is passed to a CPython library, and the position
of each of the objects is detected. Next, the data is sent to Simulink, where
desired forces are first computed using a P(I)D controller. The list of forces
is then passed to a quadratic program solver, which finds an approximate
solution to the problem of what current to pass through each of the coils in
order to exert the desired forces on the bodies. This action is then transmitted
directly to MagMan over USB, as seen in figure

System identification, as well as “traditional” control algorithm develop-
ment, was compiled in [I]. Below, a summary of the parts relevant to the
simulation of the platform is presented.

1. Introduction

Web | |[Computer
interface vision Positions

S90404(pa3sanbay

Raspberry Pi

abew]

Currents

L_| Camera

Python

N MATLAB

Figure 1.4: Scheme of information flow in MagMan

B Magnetic flux density

The coils can be approximated by magnetic monopoles. For a single monopole,
we can compute the magnetic flux density as

Im o 1 dm T r
M (r) 47t |r| 47 |r]3 a]r|3’ (1.1)

where ¢, denotes the strength of the monopole located at the origin. In
the case of the coils that are used in MagMan, the author estimated that
a=3.565x 107°.

From there, we get the magnitude of magnetic flux density caused by a
coil as

_ o) (1.2)
22 4+ y? + 22
where 7 is the current flowing through the coil and

IB(i,z,y, 2)|

f(i) = 0.889 arctan (2.51 |i| + 5.38:%) sgn(i), [i| < 440mA, (1.3)

is a fitted function describing the magnitude of the magnetic field as a function
of current.

B Coil force

The force exerted on a steel ball by a coil is modeled by the formula
1

F(i,z,y,2) = kVB? = ka2 f(i)?°V—
(i, 2.y, 2) Y

(1.4)

1.1. The MagMan Experimental Platform

where k is a constant dependent on ball radius and the permeability of both
the ball, as well as of the surroundings; x,y, z are relative positions to the
monopole (coil).

Constants were then fitted for the final form of the equation

Fo(i,a,y) = £2(i) -

(22 +y2 +d?)*
Other components of the force can be found by swapping = for the desired
component. Notice that since we are assuming planar motion, the distance

in the z axis was replaced by a constant d and ¢ = —4ka?. Numerical values
can be found in table [L.1L

(1.5)

ball radius [mm] || m [g] ¢ [x1071°] d [mm]
10 409 -2.041 13.3
15 13.76 -5.407 14.3
20 32.64 -16.60 16.6
30 110 -18.5 21.6

Table 1.1: Fitted constants for equation |1.5(for different steel balls

The force exerted by all the coils is then considered to be a superposition
of these forces. This was shown to paint an accurate enough picture of the
dynamics, even though the fields overlap.

B Ball dynamics

Ball dynamics in two dimensions are modeled by a set of differential equations

F
and ¢ = myﬁ,
€

. x
xr =

(1.6)

Meff

where .
Meff — gm

is the effective mass that takes into account ball inertia and m is the ball’s
mass.

(1.7)

Three forces are taken into consideration. First, the force exerted by the
coils as described by equation [1.5. Two damping forces are assumed. Rolling
resistance is described by

Frr - _CrrFNla

o (1.8)

where Fy is a normal force, i.e., the sum of gravitational force and the
z-component of the force caused by coils, v is the ball’s velocity and Cy, is the
coefficient of rolling resistance. For a ball with » = 15 mm, it was measured
to be Gy, = 4.25 x 1074,

The damping force caused by eddy currents was found to be

Vv
Feday = —Coeady (V- V|B|) 7= (1.9)

\

1. Introduction

The value of Ceqqy Was again tested for a ball with 7 = 15 mm and was found
to be Ceddy = 0.115.

Il Control

Currently, position control for steel balls is implemented. There are a few
issues to keep in mind when developing control algorithms for MagMan.

First, the standard deviation of position measurement is around 0.7 mm
Second, an approximately 2 FPS ~ 40 ms delay was observed in the control
loop. Currently implemented algorithms are considerably improved if position
prediction is used. It would, therefore, be desirable if a neural network
designed for MagMan were able to eliminate this issue and take the raw
observations into account.

Chapter 2

Reinforcement learning

The goal of reinforcement learning is to create a program, usually called
policy or agent, that accepts sensory data from an environment and based
on the data it receives, returns an action to be performed to maximize some
reward (or minimize loss).

The problem statement is akin to what traditional optimal control tries
to solve. A chief difference between the two is that in RL, we typically do
not try to solve the optimization problem at each step but rather to find a
policy that “knows” what action to take. Reinforcement learning also does
not necessarily require a mathematical model of the environment. There are
exceptions to this, as mentioned in [2.1.3|

action

Agent Environment

reward, observation

Figure 2.1: Illustration of the RL setting

B 2.1 Reinforcement learning setting

In the section, I briefly go over the notation and definitions used in the
following text.

B 2.1.1 Markov Decision Process

Let us begin by stating the Markov decision process (MDP). At first, fully
observable environment is considered, though this is further generalized
in 2.1.11
Let A C R4 denote a continuous action space and § C RS a continuous
state space. At every timestep t,, our agent, represented either by a stochastic
policy
m: S — P(A), (2.1)

7

2. Reinforcement learning

where P(A) is a probability density function defined on A, or a deterministic
policy

w: S — A, (2.2)
takes action a,, € A. The environment then undergoes a transition to a new
state according to its transition function

T:8x A— P(S) (2.3)

and returns a new state s,4+1 and a reward 7y, (Sp, an, Spt1). Sometimes,
this notation will be abbreviated to r(s,a,s’) or even r, unless it leads to
ambiguity. The tuple (s,a,s’,r) is called a transition.

A key observation here is the fact that the transition does not depend on
previous states and actions. An environment abiding by this rule is called
Markovian or is said to have the Markovian property. The tuple (S, A,T,R,~)
is called an MDP.

The cumulative reward from step n to infinity is defined as

oo
Ry = 2'ri(si, ai, 8i41), (2.4)
i=n
where 0 < v < 1 (usually v > 0) is commonly referred to as the discount
factor.

The goal is then to find a policy 7 that maximizes the expected reward

Jm)= E_[R. (2.5)
s'~T

B Partially observable Markov Decision Process

In some cases, it is impossible to observe the complete state of the system.
To capture this, a partially observable Partially observable Markov decision
process (POMDP) is introduced. Even if all states are observed, POMDP
can serve to model measurement imprecision.

For example, in the case of MagMan (described in 1.1), each observation
is an image from a camera. However, the state of the system also consists
of velocities of all the objects, which cannot be extracted from that single
photo. (In theory, we could set long exposition from which velocity could be
approximated since the position would be blurred in its direction, but let’s
ignore that.) Note that this would be considered a fully observable system
from the point of view of classical control theory, as the observability matrix
is full-rank. The difference between the two stems from the fact that we
essentially allow the use of past states to calculate the current only in the
latter.

In addition to what was defined for a regular MDP, consider an observation
space © C RO and a function of observation probabilites O,

0:8 = P(Q), (2.6)

describing the probability of observation w € Q2 given s € S.

8

2.1. Reinforcement learning setting

Bl 2.1.2 Q-learning

One approach to finding an optimal policy is to find a measure of how
“desirable” each of the states (and possibly actions) is. In other words, what
is the expected discounted reward for a particular state given a policy .
This leads to a method (or rather a class of methods) called Q-learning. The
following summarizes [5] and [6].

The value of state s in policy 7 is defined as

V*(s) = E_[Rolso=sl (2.7)
s'~T

and the Q-value (Q stands for quality) of state s and action a is defined as

Q" (s,a) = /ST(S, a,s)(r+~ E [Ro|so=s"])ds". (2.8)

a ~T

s"'~T

By definition, it is also true that
Q" (s,a) = / T(s,a,s)(r + 1V (s'))ds’ . (2.9)
S
Because

V™(s) = Equr [Q™ (s, 0)], (2.10)

we can write equation |2.9| recursively as
Q" (s,a) = / T(s,a,8)(r+7Eqmr [Q7(s,a")])ds . (2.11)
S

This is known as the Bellman equation.

However, we are not as interested in these, as they are tied to a certain
fixed policy, and it doesn’t necessarily reflect the real values. What we really
need to find to get the optimal policy are the “true” values of Q and V,
denoted as Q*, V*.

The optimal values are given by
V*(s) = max V7™ (s), (2.12)
Q*(s,a) = max Q" (s,a). (2.13)

Because the following holds true:

V*(s) = max Q*(s,a), (2.14)

acA

we get the Bellman equation for optimal value functions as
Q*(s,a) = / T(s,a,s)(r +ymaxQ*(s',a’))ds’. (2.15)
S a’

9

2. Reinforcement learning

In case the action and state spaces are discrete, the Bellman equation
simplifies to

Q" (s,a) = Z T(s,a,s")(r+ 7 max Q™ (s, a)). (2.16)

8/

It has been shown, that by iterating |2.16, it is possible to obtain Q*.

If the agent stores a table of all the Q-values, it can then choose an action
according to policy u

wu(s) = arg max Q*(s, a). (2.17)
acA

However, in the case of large action and observation spaces, this method
suffers from the curse of dimensionality, even if they are discrete. This means
that keeping such a table usually is intractable for real problems. In the
case of MagMan, where both the observation space and the action space are
continuous, even the arg max operator is problematic as it would be necessary
to solve the optimization problem at every iteration. This is where neural
networks’ role as function approximators comes in handy.

Many reinforcement learning algorithms (though certainly not all) are
essentially a way to find an approximation of the Q-function. In the next
section, I will go over the most common ways to classify RL algorithms.

B 2.1.3 Categories of RL algorithms

In this part, I go over different categories of RL algorithms. Unless stated
otherwise, information comes from [6].

B Deterministic & Stochastic

As mentioned in section [2.1.1, perhaps the most obvious way to differentiate
the algorithms is to look at the resulting policy. If the output of the agent
is an action that depends solely on the observation, the algorithm itself
is called deterministic. If, on the other hand, the output is a probability
distribution, the action is sampled from this distribution, and the agent is
therefore stochastic.

B Online & Offline

Another way to think about RL algorithms is from the point of view of
which transitions are relevant to learning. If the agent can only learn from
transitions obtained using current policy, it is referred to as an online learning
algorithm. Being able to collect transitions relevant to the current policy has
the benefit of letting the agent influence what type of experiences it collects.
The agent can thus, for example, try actions where the outcome is not yet
certain, which could indicate low exploration in that part of the state space

10

2.1. Reinforcement learning setting

or due to high stochasticity of the environment. A crucial benefit of online
methods is better stability [7].

The opposite of this are offline learning algorithms. These can benefit
from samples collected by any policy. This has been shown to lead to better
sample-efficiency (i.e. how many samples are necessary to reach the same
level of ability) [7]. Some version of Q-learning is usually used to make it
possible.

B Model-based & Model-free

We can also divide neural networks by whether they are using a mathematical
model of the environment. The advantage of this is that model-based methods
are usually more sample efficient [7].

In the case of discrete action spaces or low-dimensional continuous action
spaces, it is possible to solve the problem using classical dynamic programming
methods. This is done by simulating the decision tree (possibly discarding
unpromising paths) and selecting the action with the highest expected reward.

For higher dimensions, where classical methods become intractable, neural
networks can be used. An architecture that is often used for this is known as
auto-encoder, which is essentially a network than learns a representation of
the state space in a lower dimension (its so called latent space), similarly to
principal component analysis. Either regular optimal control or control that
utilizes neural networks can be then performed in its latent space.

In case no mathematical model is available (or is not sufficiently precise) a
priori, it is possible to use a model-approximation algorithm to find the T
function that describes the environment. However, according to [5], better
results are usually achieved if the policy is trained directly on the data that
would have had been used to teach the model.

B Continous & Discrete

Another point of view from which we can categorize algorithms is by the
nature of their action and observation spaces. There are inherent limitations
to what kind of problems can be solved by an RL algorithm. First, there
are algorithms that need both the observation as well as the action space to
be discrete. However, this class is generally not interesting from a control
engineering point of view.

More relevant are algorithms that have continuous observation spaces
while still only handling discrete action spaces. A break-through algorithm
in this regard was the Deep Q-learning (DQN) algorithm [§]. The DQN
managed to learn to play several Atari games directly from pixels, while
beating contemporary state-of-the-art (SOTA) algorithms (that were using
augmented data as input) in all but one game. In some of the games, the
agent beat an expert human player, which had not been done before.

This project aims to develop policies for MagMan, which has continuous
both the action and observation spaces. Therefore, methods that can deal

11

2. Reinforcement learning

with this are necessary. One of the first “working” neural network (NN)
algorithms was the Deep Deterministic Policy Gradient published in [9],
described in detail in 2.2.1. Currently, one of the SOTA algorithms for this
kind of problems is Soft Actor-Critic (see 2.2.2).

B Different approximated functions

There are more approaches leading to the same goal. Some algorithms directly
try to learn the policy m and some try to learn the value functions. The
algorithms used in this thesis (SAC and DDPG) both belong to the group
called Actor-Critic methods. This class of methods utilizes two networks
simultaneously to train a policy (actor) and a value/Q-function (critic).

Others, as mentioned above, might try to learn the dynamics of the envi-
ronment to enable easier control using different algorithms.

|) Implemented algorithms

Out of the plethora of published algorithms, I decided to implement two offline
methods and compare them. The reason to choose two offline approaches is
that should we later move to the real-world counterpart of the simulation,
sample-efficiency is going to be a key advantage because there is only one
“specimen” available to train on. In addition to that, it is also not possible to
run it without breaks due to overheating.

The first of the selected algorithms is called Deep Deterministic Policy
Gradient. It was one of the first methods for RL for continuous action and
observation spaces. While comparably simple, it is still relevant and used to
this day for comparison in newly published papers as a sort of a baseline in
its category. [9]

The second algorithm is Soft Actor-Critic. As the name suggests, it belongs
to the class of actor-critic algorithms like DDPG. However, unlike DDPG,
the behavior is defined by a stochastic policy. In this case, the function being
optimized is not only the sum of rewards but also depends on the policy en-
tropy. Its second version, one of the SOTA methods nowadays, claims to have
solved the brittleness problem of offline methods (i.e., their sensitivity to hy-
perparameters), while still keeping the advantage of high sample-efficiency [7].
The authors have shown a successfully trained quadruped robot that is able
to walk even if obstacles are in the way'.

Bl 2.2.1 Deep Deterministic Policy Gradient

The algorithm known as Deep Deterministic Policy Gradient was published
in [9]. It is a model-free offline actor-critic learning algorithm that combined
the advantages of the previously published DPG algorithm and a few insights

Thttps://youtu.be/K00bel jzXTY

12

https://youtu.be/KOObeIjzXTY

2.2. Implemented algorithms

from the ground-breaking DQN algorithm (which only considered discrete
action spaces).

A new idea introduced in DQN was the use of a replay buffer D [§], in
which all past transitions are stored. Because DDPG is also an offline method,
it can benefit from transitions sampled by a different policy, such as those
saved in D. The critic is represented using a set of parameters 6, denoted as
(g, the actor is deterministic and parametrized using 1, written as fi,.

Critic loss is computed as the mean squared error (MSE) over a mini-batch
B = (s,a,s',r) ~D

L= 1y X5 (@) = 0+ Vo) (2.18)

where

Vor(s') = Qor (8, oy (8)).- (2.19)

Notice that a different version of parameters, 6’ and v/, is used in the
equation as well. The reason for this is that unlike vanilla actor-critic, DDPG
uses four networks. This was also proposed (for the Q-network) in the DQN
paper.

The reason for this is that it was found that vanilla Q-learning tends to be
unstable due to the fact that the parameters’ update directly depends on the
parameters themselves. DDPG, therefore, uses a pair of both Q-networks and
policy networks. One of the Q-networks is used to train the policy, the other
(commonly referred to as the target network) to train the first one. Likewise,
one policy is used to select actions, the other to train the first one.

Target networks’ parameters lag behing their counterparts. They are
updated at every step using Polyak averaging

0+ (1—-71)0 + 70, (2.20)
W (1= 1) + 79, (2.21)

where 7 € R: 0 < 7 < 1 is a constant usually close to zero.
Actor loss is computed as

L. = _EZQ(&/MP(S))' (222)

B

The policy is deterministic, so noise is added to actions to stimulate
exploration. The authors suggest using an Ornstein—Uhlenbeck process, so
that the generated noise is temporarily correlated.

To get bounded action, the output of the neural network is passed through
a tanh function (applied element-wise), limiting policy action to a € [—1, 1]A.

13

2. Reinforcement learning

Algorithm 1: DDPG

initialize 6, to random values
initialize replay buffer D
copy parameters 6’ < 0, |/ < 1
repeat
initialize random process N
reset environment and sample new state s
forn=1,...,ndo
select action a = clip(fy(s) + No, Gmin, Gmax)
perform action a, receive s, 7, done
store new transition D < DU (s,a, s, r)
sample a random batch B of tuples from buffer, B ~ D
0+ 06—)\gngQ
PP — /\wvd;LW
update target networks using [2.20
if done then
‘ break
end

end
until satisfied

B 2.2.2 Soft Actor-Critic

There are two critical differences between DDPG and SAC, which was pub-
lished in [I0] and later improved upon in [7]. The latter learns a stochastic
policy and, in addition to that, does not try to maximize only the total
reward. Instead, the optimal policy is defined as

" = arg mng]Eg;:}} [r(s,a) +aH(m(-|s))], (2.23)

where H is entropy and « is a parameter called temperature, which in
practice controls the stochasticity of the policy. The authors argue that this
incentivizes broader exploration and allows the policy to learn more modes of
optimal behavior. According to their paper, it also achieves SOTA learning
speed.

Another difference between SAC and DDPG is that in its second version,
SAC makes use of two Q-functions (Qg, and @Qp,) to train the policy. This
change was inspired by [II], which was published concurrently with the
first version. In that paper, the authors show that this approach limits the
overestimation problem of value-based methods and significantly improves
the performance of algorithms.

The Q-function loss is computed similarly as in the case of DDPG using
MSE loss as

o = 5 25 Qa0 ~ 0+ V(). (224)

14

2.2. Implemented algorithms

The first version of SAC used a separate V-network but the newer version
that I implemented computes the V-value as

Vir(s') = min (Qp; (5, 0'), Qgy (s, @')) — alogm(a’ | &), (2.25)

where a’ ~ 7(s').

Policy loss is computed according to
Ly = LZ (alo (mp(a’|s)) — min (Q /(s,a"), Qg (s a’))) (2.26)
B\ o(s,0), Qu(s.a)) . (2

where a/ ~ 7 is sampled from the current policy, rather than the buffer.

There is one last difference between the two versions of SAC. While the
authors have demonstrated that even the first version is less sensitive to
hyperparameters than DDPG, it is still brittle with respect to the temperature
parameter. The proposed solution to this is to optimize « at each step by
minimizing

La ’B|Z a(=togm(als) —H), (2.27)

where H is target entropy, in accordance with the paper set to H = — dim(A).

B Caveats

The output of the policy is a mean vector u and standard deviation vector
o, from which the action is sampled. A problem arises when the algorithm
needs to backpropagate through sampling from a distribution z ~ N (u, o).

To solve this, what is known as the reparametrization trick, is used. A noise
vector is sampled from a gaussian distribution (¢ ~ N(0,1)) to preserve
stochasticity. The action is then computed as z = 4+ o © € (where ® denotes
an element-wise product). This way, differentiation with respect to network
parameters is the same as for deterministic networks.

Another problem is that like in DDPG, we would like the action to be
bounded. This is done the same way by passing the action through a tanh
layer, in other words

a = tanh(z). (2.28)
However, in the case of SAC, we need to compute log 7 to find the loss.

Given that this is a random variable transformation, the relationship
between the respective probability densities of 7 and £ is

da
= det 2.29
(als) = e(x1) faet (32)] (229)

Taking the logarithm and simplifying, we get
log w(a|s) = log&(z | 5) Zlog(l — tanh?(z;)), (2.30)

where z; denotes the i-th element of the vector and £ the unbounded probability
distribution.

15

2. Reinforcement learning

Algorithm 2: SAC
initialize «, 61,69, to random values
initialize replay buffer D
copy parameters 6, < 0;,

repeat
reset environment and sample new state s
forn=1,...,ndo

select action a ~ 7(s)
perform action a, receive s, 7, done
store new transition D < D U (s,a,s’,r)
sample a random batch B of tuples from buffer, B ~ D
91' — 60—)gigiLQi
Y —)\wvd,Lﬂ-
a4+ a— A Vol
update target networks using [2.20
if done then
‘ break
end

end
until satisfied

B 2.2.3 Implementation structure

I implemented both the DDPG and the SAC algorithm, along with several
helper classes. Additional algorithms can easily be added to folder algos/
as long as they provide the same interface. Each algorithm is implemented
as two files: a “model”, where the model architecture is implemented, and a
“trainer”, which implements the algorithm, along with the interface for the
main training loop.

Apart from these, a logger is implemented, that can be thought of as the
experiment manager. This object saves reward history, as well as both trainer
and environment settings. This way, it is straightforward to continue with
training after a halt seamlessly.

A scheme of the main training loop can be seen in figure

Replay
buffer

Model Trainer

observations

actions

rewards actions : :
Logger run_experiment Dilllmmmd MagManEnv
e observations
Settings rewards

Figure 2.2: Main training loop architecture

16

Chapter 3

Simulation

To train a neural network, one ideally needs to have an environment where
the agent can learn. While it is true that certain reinforcement learning
algorithms, such as the offline methods presented in this thesis (2.2)), can
learn from transitions acquired beforehand by a different policy, it is often
beneficial to sample transitions directly related to current policy. This fact is
leveraged, for example, by the SAC algorithm (2.2.2)), where the entropy term
encourages exploration of states with high entropy (high uncertainty) [10].
Therefore, although it is theoretically possible to use a real-world environment
to collect all the experience required (even policy-related), it is beneficial to
train the agent using a computer simulation.

In this chapter, I present the physics simulator I created that can be used
to simulate a real-world environment. For a concrete example, we decided to
simulate the MagMan platform developed by the AA4CC team, described
in [1.1. It should be noted, however, that the aim of the code is to be written
in such a way as to allow for simulation of different actuator-array-centered
systems with as few changes as possible.

There are two simulation modes available. The input to the environment
can either be a list of currents to be passed to the coils (I will refer to this
as “coil simulation”) or a set of forces to be exerted on each of the balls in
simulation (“force simulation”). Both of these modes can be simulated with
dynamics or without dynamics (3.2.5).

B 31 Physics

I implemented the simulation according to [I]. However, there were a few
problems concerning a lack of data. Given that measuring data is not ideal
due to the COVID-19 pandemic, not to mention out of the scope of this
thesis, I had to approximate in a few cases.

In addition to that, for the second simulation mode (force simulation),
I had to devise a way to approximate the forces due to rolling resistance
and eddy currents. While one solution would undoubtedly be solving the
quadratic program at each step to find precisely how the coils would have

17

3. Simulation

to behave to exert the desired force, I decided not to take that path. The
reason for this is that the simulation is not entirely accurate by definition
(the exerted force will not be equal to the desired force in most cases), so it
would make little sense to have hyper-realistic resistance.

B 3.1.1 Physical constants

B Coefficients of rolling resistance and eddy currents

According to [12], equation 1.8 can be rewritten (in one dimension) as

b
Frr - CrrFN = ;FN, (31)

where b is a constant and r is ball’s radius. This relationship was used to
approximate Cy, for balls of different diameters, as it had only been measured
for a ball of diameter » = 30 mm. Experimental verification should be carried
out at a later time to confirm this.

As for the constant from[1.9] T was unable to find any sources on the matter.
Therefore, it is kept the same for all ball sizes. As with C\;, Ceqqy should be
measured in the future to improve simulation precision.

B Polygon simulation

For polygon simulation, there is another friction force that dominates the
other two. This force is due to the balls moving in the plastic casing. In the
prediction currently used in MagMan, the friction is approximated as

% = —kx (3.2)

where x is the position of polygon’s center of mass, ¢ its rotation and k is
a constant (k = 0.58 for the triangle in [1.3)). This value is stored in the
corresponding shape instance and should be measured on a per body basis.

B Collision ellasticity and friction

Another part of the simulation is the coefficient of restitution Cr, which
determines the elasticity of the collisions. For a collision of two objects, Box2D
uses the higher value of restitution of the two objects. Unlike the previous
constants, it is not as necessary to have its exact value. This is due to the fact
that collisions are generally not advantageous (at least for the tasks presented
in 4)) and should not happen for a reasonably trained policy. In theory, this
value should thus not matter. I used a value of Cr = 0.7 for the steel balls,
indicating a relatively elastic collision, and Cr = 0.1 for the polygons. These
values were chosen so that the simulation behaves realistically, at least to the
naked eye.

18

3.1. Physics

As for friction, I used a coefficient of friction of Cy = 0.3 for the polygons
and and Cy = 0.2 for balls as suggested byE|. The same reasoning as for the
coefficient of restitution is valid, so this value is currently only set to “look
reasonable”.

B 3.1.2 Force simulation

B Rolling resistance

Let F, = F,, = 0. There is no way of knowing if there truly is no coil active
nearby or two coils on opposite sides of the ball exerting the same force, yet
the normal force will be drastically different in these two cases. However,
it is reasonable to argue that if the second controller (in figure works
correctly and tries to minimize the action (currents) too, the coils “behind”
the ball will mostly be turned off (at least when the ball is moving forward).

Because of this, I believe that it is reasonable to assume that the force is
caused by a single actuator at a distance [, where 2! is the distance between
actuators. Combining this assumption and equation as

cf?(i)
k= 3.4
(@2 +y* + d?)? (34
F2+ Fy =k (2% + %) = K1, (3.5)
it is possible to approximate F, as
1 2 2
F, ~dk = d? (F7+ F7). (3.6)

This gives a reasonable approximation for true distances not too close to zero
as shown in 3.1l

B Resistance due to eddy currents

An even greater challenge was to simulate resistance due to eddy currents.
Equation requires V|B|, while force is proportional to V|B]2. Therefore,
it is necessary to find V|B| as a function of F.

Using the equations [1.5) and [1.4] and

JB| . 2z
oz~ T e

(3.7)

1|https : //www.engineeringtoolbox.com/friction-coefficients—d_778.htm1|

19

https://www.engineeringtoolbox.com/friction-coefficients-d_778.html

3. Simulation

~0.4
~0.6
-0.8 1
z
w —1.0
-1.21
-1.41 — Fs
Fo +F,
-1.6 — Fo+F:

T T T T T T T T T
0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
distance [m]

Figure 3.1: Approximation F. compared with true values of F. for one coil with
i = 420mA and a ball with radius » = 15 mm

(which comes from taking a partial derivative of 1.2), we can write

Foliswy) = PO s s (3.8)
= f*(i) 2 :rzlzaix B (3.9)
_ My) (;ﬁzifj(;l . (3.10)
_ _k(a;2+z;2+d2) (865\)2 (3.11)

Rearranging the equation gives us

—xzF,
= . 12
\/k:(x? +y? + d?) (3:12)

Note that xF, < 0 (force is always in the direction of the coil) and all other
variables are greater than zero, so the square root is defined.

J|B|
ox

Using the same “guess” as in the case of normal force, we can find the Z
and ¢ values for the equation as

a = atan2(Fy, Fy), (3.13)
Z =lcosq, (3.14)
9 = lsina. (3.15)

To get rid of the absolute value, we can use the insight that because
squaring is a monotone function for positive inputs, the following must hold
true:

d|B| d|BJ?
5 S8 o sgn (3.16)

sgn

20

3.2. The MagMan environment

B 32 The MagMan environment

As mentioned above, a major (though implicit) part of my work was to create
a flexible simulation environment that would serve as a practice range for the
neural networks. In this section, I will describe the simulator I developed.

The goal of this text is only to provide a high-level understanding of what
is possible and approximately how it is done, all the while delving into the
implementation details as little as possible. The exceptions are section
where I explain the variables that are used to set the environment up, and
sections and where I explain how to define the objects to be used
for simulation. I made these exceptions because this information is vital for
a potential end-user.

The code is understood to be a part of this thesis, and as such, is provided
with ample comments, and it should (hopefully) be rather straight-forward
to understand the particularities after reading this section.

Since Python is already used in MagMan (see and also currently
doubles as the go-to language for machine learninﬂ, I decided to implement
all the code for my thesis in Python.

The architecture of the environment is illustrated in figure |3.2

Rewards

rewards states

actions actions

MagManEnv - Physics - Actuators

MagManView

Figure 3.2: MagManEnv architecture

B 3.2.1 Used frameworks and libraries
B PyTorch

PyTorchE| is an open-source ML framework for Python. It provides all the
necessary tools for general ML, such as gradient computation, optimizers,

*https://towardsdatascience.com/which-deep-learning-framework-is-growing- |
astest- aa
“https: //pytorch.org/|

21

https://towardsdatascience.com/which-deep-learning-framework-is-growing-fastest-3f77f14aa318
https://towardsdatascience.com/which-deep-learning-framework-is-growing-fastest-3f77f14aa318
https://pytorch.org/

3. Simulation

basic neural network building blocks (layers), common loss functions, graphics
processing unit (GPU) acceleration, etc.

I decided to opt for this framework as opposed to its popular open-source
alternative TensorFlow, as I was already familiar with it from previous
university courses.

B OpenAl Gym

The most common benchmark for new RL algorithms (used for example in
many of the cited papers) is OpenAl's Gym?, proposed in [13]. According to
the authors, its primary goal is to provide a collection of benchmarks for RL
with a common interface to make the comparison of different algorithms as
easy as possible.

Since we want the MagMan platform to be as accessible as possible, I
designed the environment to work in accordance with Gym’s requirements.
This should enable other potential researchers to incorporate this environment
into their reinforcement learning workflow.

B Physics library

In order not to reinvent the wheel, it makes sense only to deal with forces
caused by the environment and agent and leave the heavy lifting to a special-
ized library. Therefore, it was necessary to choose the underlying physical
simulation framework that takes care of collisions and acceleration caused by
the forces applied. In order for the simulation to be reasonably fast, I was
looking for a library written in a low-level language (such as C/C++) with
bindings to Python.

One such popular framework, used in many of the AIGym benchmarks,
is MuJoCo. Its main disadvantage is that it is necessary to obtain a license
unlike the alternatives below. currently priced at 500 USD /year for personal
non-commercial use and 3000 USD /year for an academic lab®.

Other possible options include PyBullet® and Project Chrond’l These are
both advanced free 3D simulators meeting the requirements. However, I
found them to be a bit too complex for this project’s needs.

Since the manipulation is strictly planar, I looked for a simpler, 2D sim-
ulator. I tested pybox2d® (based on chipmunk) and pymunk” (based on
Box2D).

Most of the time, I was using pymunk because it was easier to install and
easier to use, not to mention better maintained (last release of pybox2d had
been in 2016). However, I found its simulation to be somewhat unreliable

“https://gym.openai.com/
https://www.roboti.us/license.html| (accessed April 20, 2020)
Shttps://github.com/bulletphysics/bullet3
"https://projectchrono.org/
Shttps://github.com/pybox2d/pybox2d
%http://www.pymunk.org/en/latest/

22

https://gym.openai.com/
https://www.roboti.us/license.html
https://github.com/bulletphysics/bullet3
https://projectchrono.org/
https://github.com/pybox2d/pybox2d
http://www.pymunk.org/en/latest/

3.2. The MagMan environment

(in particular polygon simulation) and was unable to debug the problem. In
April 2020, pybox2d got a new release, which finally gave me the impulse
necessary to switch.

Currently both engines are included (pymunkPhysics and Box2DPhysics
in physics.py). These classes share the same interface, so they can be used
interchangeably. Nonetheless, the engine built on top of pymunk might not
work as expected, so using Box2D is strongly encouraged. Therefore, I will
only cover the latter in this text from now on.

Should it be necessary in the future, adding a different library should be
rather straight-forward, given that there are already three engines (in addition
to the two, there is also SimplePhysics as described in 3.2.5).

B Other dependencies

Other external dependencies include the standard libraries NumPy and SciPy
for fast computation and Matplotlib for visualization. In case video export is
required, an installation of ffmpeg'’ is necessary as well.

In addition to this, Shapely'! is used for its convenience functions for planar
geometric objects.

B 3.2.2 Simulation objects

It was crucial to devise a user-friendly way to define objects to be used in
simulation. To keep up with its real-life counterpart, at the very least ball and
triangle (figure |1.3) simulation had to be implemented. As a generalization,
the simulator is capable of simulating not only balls and triangles but any
convex polygon containing steel balls.

All the necessary information for simulation and visualization is carried by
special objects defined in simulation_shapes.py. A list of these objects is
passed to the environment during its initialization (see 3.2.7).

An abstract class SimulationShape is implemented, from which all these
objects are meant to inherit. Basic general classes are Ball and Polygon.
Convenience classes that inherit from these are various ball sizes (see figure
3.3), as well as right isosceles triangle (3.4) and regular n-sided polygon (3.4).
Otherwise, it is possible to inherit the Polygon class and define another
polygon class or simply create an instance of the Polygon class with the
appropriate parameters. The polygons have to be convex (this is a Box2D
limitation), but they may contain different balls, as illustrated in 3.4}

B 3.2.3 Actuators

To make MagManEnv more versatile, the actuators are also passed as an
array during environment initialization. The environment is flexible enough

Ohttps://wuw.ffmpeg.org/
"https://shapely.readthedocs.io/en/latest/

23

https://www.ffmpeg.org/
https://shapely.readthedocs.io/en/latest/

3. Simulation

0.00 0.05 0.10 0.15 0.20
0.000 s L s s

0.025 4

0.050 1

0.075 4

0.100 +

0.125 4

0.150 4

0.175 4

0.200 4

0.225

Figure 3.3: Visualization of classes Bal110mm (yellow), Ball15mm (orange) and
Ball20mm (red)

to allow for any actuator configuration; every actuator can even be defined
by a different force function.

The definitions can be found in file actuators.py. There is a class called
Actuator that represents a single actuator. Since it accepts force function as
a parameter, changing how the actuator behaves is a matter of changing one
line of code (provided a different force function).

However, when the simulator was finished, I noticed during profiling that
computing the forces was a serious bottleneck of the simulation. Therefore, 1
added an option to sacrifice some of flexibility for increased speed. The class
is called ActuatorArray and as one might guess from its name, instead of
having a separate object for every actuator, multiple actuators defined by the
same force function are simulated using this one object.

Thanks to this approach, the simulation is able to leverage numpy’s perfor-
mance to cut simulation time by a factor of 11 for the full MagMan simulation
with 64 coils. The only case where using the simple Actuator class is faster
is when simulating a single coil. Speed comparison is shown in figure |3.5.

The only downside to the new class is that it is necessary to provide a
fully numpy-vectorized force function, as the force is calculated during one
function call per ball. Another slight downside is the already mentioned loss
of flexibility, as all the actuators in the array have to be the same, though
this should be acceptable in most cases. Furthermore, it is entirely possible
to have multiple arrays in place.

There is another reason to use the vector version of actuators when sim-
ulating, that I only realized when deriving the force function for the array.
According to [1], the force of all coils is approximately equal to the sum of

24

3.2. The MagMan environment

x [m] x [m]

0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 0.25
0.000 0.00 . . .
0.025 1

DO o .
0.05
0.050 e o) o) e e
0.075 9 oo o) e)e o) o
e (
— 0.100 4 — OO .
E E
>0.125 4 > e e e e ©) .
0.15
01504 OO
0.175 OO
: 0.20
OO
0.200 1
0.225 0.25
(a) (b)

Figure 3.4: Examples of regular polygons with different radii and number of
sides, as well as right isosceles triangle and a convex polygon with different ball
sizes

forces of the individual coils, i.e.,

2
~ > VB[(3.17)

(recall force equation |1.5)).

Let B;, denote the magnetic flux density in the x-axis due to i-th coil. If
we expand the left-hand side (only in one dimension for simplicity), we get

J>i

3\25;31" S Z(

de{zy,z} 1

+2)° 83“’3”) (3.18)

Doing the same for the right-hand side, the resulting expression is

|2 2 9B? 2
9B OB OB) (3.19)

_ 1T 1y 12
zi: Oz _;<8x+8x+8x

Comparing these two results, the following must hold true if they are to be
approximately equal:

aBldBJd (3.20)

> 2

de{z,y,z} 1 j>i

However, unfortunately, this does not mean that it is possible to compute
the force due to eddy currents in a similar manner. This is because (using

25

3. Simulation

Actuator X
— = ActuatorArray

w IS v o ~
s s s
X
X

time per simulation step [ms]
N
X

H
11
l
)
I
%
I
l
!
X
@
|
@
X
[
i
i
|
X

0 10 20 30 40 50 60
number of coils

Figure 3.5: Speed comparison of the two classes available to simulate coils

the approximation above)

3%1- Bil _ : 1 Z Z ZaBZdBJd (3.21)
€ |Ez ‘de{xyz} i >0
1
~N — 3.22
25 By de{%}m; (3.22)
OB, 8B?y dB?,
2|z B, Z(or | ox (3:23)
8!Bz!
: 3.24
-5 B2 0 (3.24)
while
9B, 1 (0B} 9Bi 9B%
; or ;2|Bi| (* oz * oz (3:25)
_ 1 9By
_;2‘&' I (3.26)

Therefore, it is not possible to compute the friction force due to eddy currents
by computing it one coil by one.

I kept the possibility of computing the forces one by one, because for some
systems (i.e., by supplying a different force function), it might be possible.

B 3.2.4 Box2D physics

Simulation is performed in 2D using pybox2d. Ball masses are set according
to [1.7, where m is supplied via the shape object. Polygons are simulated

26

3.2. The MagMan environment

as a single body with uneven mass distribution. In Box2D language, this
translates to a single body and multiple fixtures. One fixture represents the
plastic triangle, and then there is a fixture for each of the balls (defined in
the shape object). Moment of inertia is computed by the library based on
these fixtures and their positions.

As per the documentation, Box2D is best used for objects between 0.1 and
10 meters. In practice, this meant that objects would collide “too early”. 1
found an approximately 0.01 m gap that is likely used internally as a safety
margin. This isn’t noticeable for objects in the recommended range but was
very noticeable in MagMan simulation. I therefore resorted to internally
simulate everything 100x bigger than the real-life and then appropriately
rescale. This is only an implementation detail that is not visible outside of
the class.

Object masses are defined using density in Box2D, so that was not an
issue. Likewise, moments of inertia are calculated automatically. What had
to be changed, however, were the forces. For a k-fold increase in length, areas
increase by a factor of k? and so do masses. All the forces thus had to be
scaled by k? as well.

Setting the timestep was also important. For force simulation, it was set
to 1/50s because Box2D is able to deal with collisions without artifacts even
at this frequency and the forces acting on the bodies are considered the same
during the whole timestep.

For coil simulation, the timestep had to be chosen more carefully. This
stems from the fact that in coils simulation, which strives to stay as close
to real-world behavior as possible, the force can be rather sensitive to small
changes in position. A reasonable compromise between simulation speed is
1/200s, at which I found the simulation to behave the same as for smaller
timesteps.

According to [I], top velocity for oscillation above a coil only reaches about
Umax = 0.1ms™!. Even at this velocity, a ball will only travel a distance of

A2 = Vpaxt = 0.5 mm, (3.27)

which gives a reasonable approximation.

B 3.2.5 Simple physics

A lot of the times, it might be useful to have a simpler yet similar enough
environment to test out new ideas. This is not necessary for new (or newly
implemented) algorithms, as those can be tested on simple environments
provided by the Gym library. However, an essential part of creating a
performant neural network is designing an appropriate reward function. To
this end, I also included a simpler “physics engine” that does not take
dynamics into account.

As with regular physics simulation, two simulation modes are possible.
When the input is an array of forces, instead of actually applying the forces

27

3. Simulation

and thereby causing acceleration, a simple change in position proportional
to the requested force is applied. The new position is clipped to stay in the
work arena.

On the other hand, instead of the inputs being understood as currents
flowing through coils, a change of position is computed according to

M
X —X
Ax(E,x) = 3 iy (3.28)
W; I — x|

where x,, are the actuator positions, x is ball’s positions and i,, are the
requested currents. These solutions are conceptually similar yet significantly
faster to learn on (sometimes the algorithms only learn on an environment
without dynamics, such as in 4.4)), not to mention that simulation time is
negligible.

There are two key limitations of this simpler “engine”. First of all, it only
makes sure that the balls do not “escape” the area specified. It does not,
however, resolve collisions. Another limitation to keep in mind is the fact that
it only supports ball simulation. This is only natural, given the approach this
mode is taking - it is simply not possible to simulate rigid body dynamics
and their interaction without dynamics.

These inherent disadvantages are not too critical, though, as the goal is
not to simulate the environment in lower fidelity but rather to make quick
sanity checks and proofs of concept realizable.

Another potential advantage is that should the model not perform well
on physics with dynamics, while performing very well on simple physics, the
control system could be split into three parts. The first part would be trained
on simple physics and would request positions, while other controllers decide
what forces to use and how actually to exert them.

This, while certainly not as impressive as having just one neural net, is
still useful, if the goal is more abstract. For example, when dealing with
distribution shaping as in 4.4, it is easier to decide if the distribution looks
uniform, as opposed to directly deciding which ball to move where, which
might be necessary with traditional approaches.

B 3.2.6 MagManView

To visualize what the algorithms are doing, I created a visualization using
Matplotlib. Defined shapes, simulation time, and exerted forces are rendered,
as well as actuator positions. When simulating coils, the action is also
displayed by changing the color of the coil. The MagManView module is
designed to work even with actuators with negative action values, in which
case, the color is blue instead of red (as illustrated by |3.6)).

Visualization of task-specific features was also implemented. For position
control (described in 4.2)), visualization of goals is implemented as illustrated
by 3.7l For coil simulation, target force is shown as in figure [3.8.

28

3.2. The MagMan environment

y [m]

0.14

Figure 3.6: Visualization of actuator actions

t=3.78s
x [m]
0.00 0.05 0.10 0.15 0.20 0.25
0.00 L L L L

0.05 A

0.10 A

y [m]

0.15 1

0.20 1

0.25

Figure 3.7: Visualization of target positions (partially transparent)

It is also possible to easily export simulation as an mp4 video (ffmpeg
installation needed).

B 3.2.7 Usage

The goal of this section is to provide a simple user manual. 1 go over the
parameters used to initialize the environment, as well as a way to change the
number of objects (randomly) when resetting the environment.

To set environment dimensions, set the width and height parameters. A
border is created around the area [0,width| X [0,height| past which objects
cannot get.

Using simulation_mode, one may pick either >forces’ or ’coils’. If
picking coils, the actuators (as described in [3.2.3) to be used in simula-

29

3. Simulation

t=2.22s

X [m]
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
0.00 \ \ \ \ | | \

0.02

0.04 1

0.06 1

y [m]

0.08

0.101

0.12 1

0.14 1

Figure 3.8: Visualization of target force (in black) and actual force (in blue)

tion, are specified using parameter actuators (passed as a list). To choose
SimplePhysics (in which case only actuator positions will be taken into
consideration), set the simulate_dynamics switch to False. Otherwise, sim-
ulation will use “realistic” physics, possibly using the actuators defined (if
simulating coils).

Choosing the objects for simulation is similar to defining the actuators. A
list of shapes (3.2.2)) is passed as a variable called objects.

MagManEnv also allows for measurement inaccuracy simulation. Setting
position_error_mean and position_error_std will configure the normal
distribution from which artificial measurement error will be drawn. Please note
that errors are not added to velocity, which although part of the observation
if share_velocity is true, is not be measured by real MagMan. Delay can
be specified using delay.

Last but not least regarding initialization, setting the render_mode to
’live’ will allow for calling render () at later time to show current simulation
state, while setting it to >video’ will take care of rendering a snapshot at
50 FPS and saving it as an mp4 file with name specified in video_name.

In order to change the number of objects, set parameters min_objects
and max_objects when calling the reset () function. A random subset of
objects within the specified bounds will be used for simulations. Observation
space stays the same; its parts related to unused objects will be filled with
dummy values (-1).

In case repeatable experiments are necessary, such as when different algo-
rithms are being compared, there are additional parameters to the reset ()
function. Setting goals, starting_positions and starting_velocities
allows the user to configure the experiment as needed.

30

Chapter 4
Tasks

In this chapter, several tasks’ formulations and results are presented. As in
the current solution of the control problem (see , I split the problem into
two (three) parts.

A significant advantage of this approach is, that should the neural networks
outperform the current algorithm in one part of the problem and fall behind
in the other, we can combine the two methods to get the best of both worlds.
Even if the neural networks outperformed the traditional approach in both of
these problems, it is possible to only train one coil-controlling NN for a great
variety of tasks, saving time that would have to be spent on training.

For all training, I used the PyTorch implementation of Adam Optimizer[14]
and three training runs. The results are then presented as the running average
(of the last 10 rewards) with a range of between the lowest and highest rewards
(also smoothed) shown as a partially transparent band of the same color.

For many of the problems, I tested different hidden layer combinations and
algorithms. For example, a curve labelled as SAC (3r256) means that the
particular run was a NN trained with the SAC algorithm with three hidden
layers of size 256, while DDPG (32-64-32) would mean training with DDPG
and three hidden layers, first and third of size 32, the middle of 64.

All the training curves are attached in Appendix B.

B a1 Challenges

B 4.1.1 Variable number of objects
A problem with neural networks is their fixed input size. Therefore, changing

the number of objects mid-run poses a great problem. Several solutions are
possible, as described below.

B Switching networks ad-hoc

Probably the simplest way to tackle this problem is to simply train a handful
of neural networks. After object detection, the network with the appropriate

31

4. Tasks

input dimension, based on the number of objects detected, could be picked.

This is the way to go if other approaches fail. The obvious downside is the
need for having many networks at hand.

B Multiple forward passes through the neural network

For some problems, such as position control, it is possible to simply have
one NN that takes observation of only one object as an input. In case more
objects are to be controlled, the neural network would run multiple times.
Better yet, if GPU is available, the computation can be run in parallel as a
batch (such as in training).

The obvious problem of this approach is the fact that the neural network
does not have any information about other objects. Therefore, it cannot
be trained, for example, to avoid collisions between objects when dealing
with position control, which may be desirable. In addition to that, some
problems, such as distribution shaping (4.4) or controlled mixing (4.5) cannot
be performed without knowledge about the other objects.

B Padding

Another rather straightforward approach would be to decide the maximum
number of objects to control. In case an object is missing, simply fill the
observation with dummy values that do not occur naturally. Because positions
are non-negative values (both in the simulator and in real MagMan), such
value can be -1.

This is the approach I went with, due to limited time. However, I also
suggest possible further approaches below.

B Recurrent neural network

A more advanced method for dealing with variable input size, are RNNs. This
is an architecture in which some sort of hidden state is kept; the output then
depends not only on the input but also on the inner state. A popular example
of recurrent NN architecture is the Long Short-Term Memory (LSTM) network
(in figure |4.1). Their main advantage, compared to more simple RNNs, is
their capacity to learn dependencies over long sequences. [2]

Nowadays, a lot of the research is in the area of natural language processing,
where sequences of words of different lengths are abundant. Notably, Google
with their transformer network with multiheaded attention in [I5] has reached
significant improvements in sentence translations.

I believe that it would be worth it to try tasks 4.4 and 4.5 with a variable
number of balls using this method. The reason for this is that much like in
sentence translation, great importance lies in the relationship between the
objects, while not much can be said about any individual one of them.

32

4.1. Challenges

& ® ®
t | t

A | Lelef] A

|
© ® &)

Figure 4.1: Scheme of an LSTM network (reprint from [2])

B Convolutional neural network

Another possible approach is using a convolutional neural network (CNN).
This is, however, only applicable if the observation is formulated differently.
The idea here is that the observation would not be on a per-object basis
but rather dependent on the size of the work arena, which stays fixed. For
example, the area could be split into 512x512 rectangles, and the observation
would effectively be an image (in black and white). Its values would be 0 in
“pixels” there is no ball and 1 where there is. Another option would be to use
the representation derived in |4.4| for the reward function and normalize the
function values to [0, 1].

The input to the network would then consist of two parts. One, representing
the high-level view of the whole arena, is fed into the CNN, and the output
would then be concatenated with ball position. This vector would then serve
as input for the second part of the NN.

B 4.1.2 Partial observability

Another significant problem for real-time control is the fact that the system
is a POMDP (2.1.1). Three factors come into play:

® time delay (40 ms)
® velocities are not part of the observation

® noisy measurement (o = 0.7 mm)

Again, there are different methods to deal with this. For example, if the
delay is not significant, it is possible to just augment the observation space
by all the relevant observations and actions.

A more advanced and promising approach is the Stochastic Latent Actor-
Critic [16] (SLAC) that uses the SAC algorithm (described in detail in 2.2.2)
together with a variational auto-encoder to predict the true states based
on observations. This is done by teaching it to correctly predict future

33

4. Tasks

observations. In the original paper, the authors successfully learn SOTA
policies directly from images. Further relevant work similar to SLAC was
described in [I7], where the authors solved POMDP control tasks, again
reaching SOTA performance.

B 4.1.3 Scalability

As the number of objects increases, the networks seem to perform worse and
worse (or at least take longer and longer to reach the same level), even if from
the point of view of a human, the complexity does not increase so drastically.
This is nicely illustrated in 4.2.2.

The problem lies in the fact that the networks seem to have trouble learning
the abstract pattern. An approach to solve this is called curriculum learning.
In [I8], the researchers have proposed a curriculum learning framework
that they used to teach a robotic arm to stack cubes on top of each other.
Conventional architectures have not succeeded in teaching the policy to stack
more than one block, while their solution managed to stack 5.

. 4.2 Position control

The goal of this thesis was to explore what opportunities the RL framework
offers. Therefore, even though it was not technically required, I decided to
first focus on position control, which has a more clearly defined goal than the
following tasks.

Another advantage of starting with position control is that it is solvable
using a simple PID controller. As a result, there is some sort of a reference
to compare the neural network’s performance to, whereas in tasks 4.4 and
4.5 there is a lack of such baseline.

In this case, the input to the simulation are directly the forces and it is
assumed that a different controller solves the problem of finding the currents,
as illustrated in figure [1.4l

B 4.2.1 Reward function

The loss function for N balls was calculated as
1N
L= 537 (I = i gargecl| + 121 (4.1)
i=1
and the condition for determining if the task has finished was
[x; —x|| <5mm A |vi]| <1x10?ms™! Vie{l,...,N}. (4.2)

An extra reward of 1 (so L = —1) was given for each ball passing this
criterion, and an additional reward of 10 (L = —10) was given for finishing
the task completely. The episode was stopped after 500 steps ~ 10s if the
task had not been finished before that.

34

4.2. Position control

B 4.2.2 Results

B Single object

A few different experiment settings were tested. For runs with shared velocity,
the observation was

Wn = (Tn, Yn, Tn, Ty, goal,, goal,), (4.3)

while runs without it had observations consist of
Wn, = (Tn, Yn, goal,, goal,). (4.4)

In case there was delay of k frames, the observation was created as a
concatenation

wqu, = (wn—lm Ap—k, Wn—k+17 Ap—k+15--- awn)' (45)

The same applied to the experiment, in which no velocities were shared and
the networks were given the past observations and actions (k = 2) to be
able to approximate the velocities themselves. The actions were bounded to
a; € [—0.2,0.2]%

The results are shown in [B.1 As we can see in the figure, even simple
networks reach comparable results as the complex ones in this simplest case,
regardless of the method. An interesting observation we can make is that
a delay of 40 ms does not hinder the performance. On the other hand, if
velocities are not available, the networks fail to learn a reasonable policy even
after 400 episodes with no signs of improvement.

An interesting observation I made that cannot be seen from the rewards
directly is that the polices (in general) seem to get stuck in what I suppose
are local minima. In these, the final position (when the the NN does not exert
any force anymore) of the ball, is very close to the goal but does not quite
reach it (see figure |4.2)). I was unable to find an issue in the code, nor am I
able to find a logical explanation for this problem. A clue could, perhaps, be
that this issue got even more pronounced when controlling multiple balls.

0.05

Figure 4.2: Example of a non-zero final error

35

4. Tasks

I tried comparing the resulting policy with a PID controller; results are
shown in figure 4.3 We can see that the resulting policy has comparable
performance. A few things should be noted, however.

First of all, the PID controller is likely sub-optimal. Nonetheless, it works
reasonably well (as shown by the run without delay and measurement noise)
and the goal of the test was not to establish that NN-based control is superior
but rather to show that these methods are roughly in the same ball-park.
Second, the neural network had an unfair advantage by having access to
velocities, which the PID did not have. On the other hand, the neural network
was trained without noise, so it is possible that it could potentially improve
after a few episodes with noise.

—— SAC (3x256)
PID (4,0,7)
—— PID (4, 0, 7), no delay or error

—— SAC (3x256)
PID (4,0,7)
—— PID (4, 0, 7), no delay or error

0.08

o
o
=Y

o
o
B

distance [m]
distance [m]

time [s] time [s]
(a) (b)

Figure 4.3: Example of two runs with a random initial velocity, position and
goal, with a delay of 2 frames and random measurement error (o = 0.7 mm)

B Multiple objects

To test the dependence on the number of objects being manipulated, I also
ran the experiment without delay and with 2 and 5 balls with velocities. In
the case of multiple balls, the observation sent to the NN was a concatenation
of the observations of each of the balls. The results are shown in [B.2.

We can observe that controlling two balls does not seem to be that much
harder of a task for most of the networks, while five balls pose a significantly
greater challenge.

. 4.3 Coil control

In coil control, the goal was to find currents to pass through the coils such
that the force exerted on the ball(s) matches the desired force. This is an
essential part of the whole control loop, as seen in figure [1.4l

36

4.3. Coil control

B 4.3.1 Reward
I proposed two rewards. First one is a simple euclidian distance, i.e.,

Ll = Z ||Fl - Fi,target“, (46)
[

where F; is the force exerted and F; target is the desired force.

In the second reward, I tried to penalize the angle more strictly:

Ly = Z cos(¢;) + (cos(pi) — 1.5)[|[Fi — Fj target ||, (4.7)

where
Fi . Fi,target

is the angle between the desired and the exerted force.

©i (4.8)

For this task, I decided to limit the number of steps per episode to 100,
because if the target force was met, the ball would likely be out of the work
arena even before that.

r 2.0
0.4 0.7
1.5
0.6
0.2
0.5 1.0
& v
2 0.0 043 g 0.5 _2
0.3
-0.2 0.0
0.2
-0.5
0.1 —0.4
0.0 -1.0
-04 -0.2 0.0 0.2 0.4 -04 -0.2 0.0 0.2 0.4
FX FX

(a) (b)

Figure 4.4: Visualization of the the loss functions for coil control (requested

force as a white arrow), (a) Ly (4.6)), (b) Ly (4.7)

B 4.3.2 Results

The neural networks were unable to learn anything using either of the loss
functions, even on a 4x4 coils arrangement with a single ball, no delay, and
known velocities. They were, however, able to learn to exert a correct force if
the starting position was always the same (in the middle).

I then tried sampling the initial position from a normal distribution with
mean in the middle and non zero variance. By gradually increasing the
variance, I managed to reach a level where, while far from perfect, the exerted
force is mostly in the direction of the desired force for positions near the center.

37

4. Tasks

Therefore, 1 believe it might eventually be possible to teach the network to
control the coils by gradually increasing the variance, as illustrated in

Nonetheless, due to a lack of time, I decided not to pursue this task any
further after consulting it with my supervisor. The issue is that doing it this
way is time-consuming, but most importantly, we already have a solution to
this problem, and we are currently satisfied with its performance.

-10

=15

reward
reward

=20

=25

=30

o =0.02

1000 2000 3000 4000 0 500 1000 1500 2000 2500
episode episode

(a) (b)

Figure 4.5: Example of how gradually increasing ¢ seems to aid the learning

process of coil control, (a) L1 (4.6), (b) Lo (4.7)

B 2.4 Distribution shaping

Another desirable ability is to be able to shape a collection of objects in a
certain way. The difference between this task and position control, is that
instead of focusing on each of the objects’ position separately, the positions
are viewed in the context of all the others. Unlike in classical position control,
switching two balls does not change the perceived state.

For smaller ensembles, such as those presented here, it may be useful to
spread objects initially concentrated at one part of the work arena uniformly
all over the surface. Once separated, certain tasks, such as picking up a single
object, might result to be easier.

On MagMan’s scale, this may allow for, say, a robotic hand with a magnet
pick to one object at a time for further processing. On a smaller scale, also
studied by AA4CC, where manipulation might be done, for example, using
electrophoresis ([I]), picking a single object is even harder, and the benefits
could potentially be even more significant.

The exact problem formulation presented here does not extend to collections
of thousands or even more objects. This is because setting forces to each
object independently becomes practically impossible, as the number of objects
increases. However, the reward function presented below should, in fact, still
be able to capture the problem. As a far-fetched goal, such technology could

38

4.4. Distribution shaping

possibly aid in producing metamaterials, where it might be necessary to
distribute some compound in a liquid evenly.

As in [4.2] the inputs to the simulation are directly the forces and the
problem of finding the currents to pass through the coils is left to a different
controller, as shown in [1.4.

B 4.4.1 Reward function

A chief challenge in this task was to define a criterion (reward function) that
would be general enough to be applicable to different distributions. If this
condition were relaxed, the task would be much simpler. Say only uniform
distribution were to be solved. In that case, it is possible to just penalize how
close the ball is to others, but alas, that does not generalize well to other
distributions.

Below, I briefly go over some of the blind alleys I took, as well as my
proposed solution, which I then use in the next section.

B Kolmogorov-Smirnov test

First, I turned to statistics, in particular to the Kolmogorov-Smirnov test,
which is a test to compare a sample with a reference distribution, defined as

Dy, = sup [Fy(2) — F(x)], (4.9)

where F'(z) is the reference distribution’s cumulative distribution function
(CDF) and F,,(z) is the portion of samples that satisfy x,, < x defined as

Fo(z) = %Hxﬂxn <2}, (4.10)

However,this definition is only valid for one-dimensional distributions. There-
fore, I decided to take one for each dimension (as they are independent for
uniform distribution) and sum the results.

The reason why this approach does not work even for uniform distribution
is illustrated in 4.6.

B Nearest neighbor

Having failed at the previous attempt, I tried to come up with a criterion
based on the density function.

One approach I tried was splitting the area into regions based on the ball
that was nearest (making a Voronoi diagram). Integrating the target density
function over each of these areas should be equal to 1/N in the case of ideal
ball distribution.

The problem is that this does not happen only if the above holds true. The
policy that the neural network learned, though minimizing the criterion, was
not exactly what was desired, as illustrated by [4.7.

39

4. Tasks

x [m] x [m]
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
0.0 L - — L 0.0 " L L L
0.2 0.2 @
@
] [] [] q @
0.4 0.4 o
E E .
> > .
0.6 0.6 1 [}
> [[q @
[
0.8+ 0.8 1 @
@
@
a a 4
(a) (b)
1.0{ — diagonal
— grid
—— target (uniform)
0.8 1
0.6
X
freg
0.4 4
0.21
0.0 1
0?0 0?2 0?4 0r6 OTS 1?0
X
(c)

Figure 4.6: Illustration of why the 1D K-S test fails at capturing the uniformity
distribution shaping task, (a) Grid “distribution” - what would one expect to
learn, (b) Diagonal “distribution”, (¢) Comparison of the CDFs in the z-axis

0.05 4

0.10 4

y [m]

0.154

0.20 4

0.25

Figure 4.7: Final state caused by a policy learned with the nearest neighbor

reward function

40

4.4. Distribution shaping

B Density function norm

The final version that seems to be most versatile, while being conceptually
simpler than criteria presented above, is based on the idea of function norm.
The p-norm of a function u (u is g-measurable on X) is defined as

ol = ([)" 411)

In particular, we desire the density g induced by the current ball position
to be as close to target distributions’ density function f as possible. Therefore
the goal is to minimize

17 al,= ([1r—aran)”" (112)

The question now is how to get the density function. The first idea would
be to define it as a sum of Dirac functions at each of the ball’s locations.
However, since the integrand would be equal to f almost everywhere, the
resulting integral would just equal to || f]|.

Instead, I represented the position of the ball itself by a function similar to
the probablity density function (PDF) of normal distribution as

(2 — x0)* + (i — y0)2>
o2 '

9i(z,y) = kexp <— (4.13)

where k,0 € R are constants, xg, yg is the position reported by the environ-
ment.
There are a few caveats, however. First of all, unless the condition that

the area (volume) under the curve (surface) should equal to one is relaxed,
the value of the integral would be

//Rin:gi = N, (4.14)

where IV is the number of objects. Since it is not desirable for the loss of the
optimal solution to go to infinity as N — oo, I decided to have|4.14/equal to 1,
which is ensured by picking correct values of both ¢ and k. Next, I will make
a few observations for uniformity distribution to find reasonable values for
these variables.

As o decreases, the actual ball positions matter less and less because the
“area of effect” of each ball goes to zero. As a result, for a small enough o,
the reward would essentially be the same regardless of the actual positions,
as in the first row of figure [4.8] not to mention the difficulty of numerically
computing the integral because of the resulting high derivative of the function.

Conversely, if the ¢ is too high, the position does not matter either as the
function value would be almost uniform over the whole area of integration.
We need to find such o that steers clear of both of these extremes.

41

4. Tasks

Two variables come into play - the number of objects N and the area S.
Because g;, like normal distribution density, decreases fast as the distance
from the actual position increases, it is possible only to consider a finite
area A; in the shape of a circle, where the ball is still “relevant”. As a rule of
thumb, let it be equal to the area, integration over which gives us 90 % of
the total value of the integral.

To strike a balance between the two extremes, let’s put a condition in place
that

S=Y A;=NnR? (4.15)
7

where R is the radius that defines A;. This condition should allow for coverage
of the whole area by the balls, if necessary, while keeping ¢ high enough.

To find o, we can compute the volume under the surface using transforma-
tion to polar coordinates as

p 2w 9 _o 9 -
o ; —r4o _ : _ —p0o
//RQ gi = k:phrgo/o /0 re dpdr = kro plglgo (1 e) , (4.16)

which describes how the percentage of the value depends on the radius of the
integration area (fixed by |4.15)) and 0. To find sigma, for which 90 % of the
total “volume” lies above the integration area, we can do

2 . —2

09=1—e 7" (4.17)

[R2 T
— /= = Ry —— 41
7 mo1~ Vinto (4.18)

(where R can be computed using 4.15)).

To find the corresponding value of &k, we notice that if the integral is to be
equal to 1/N, then

1 1
2 _ N -
e

The final loss function was computed as

2
[<f<x,y>—zgi<x,y>> drdy+ al’, (420

min

(4.19)

where the work arena is the area [Zmin, Zmax] X [Ymins Ymax]-

This approach has several benefits. It can very naturally be extended
to mixing (4.5) and it generalizes well for different continuous probability
distributions and even to 3D probability distributions.

For each of the balls, the observation was

Wnp = (xnyynainvyn) (421)

or just the first two terms, if velocities were not shared. The resulting obser-
vation was again a concatenation of these partial observations. This means
that in case we wanted to train one network for parametrized distributions
(for example variable variance of the normal distribution), changes would
have to be made.

42

4.5. Feedback-controlled mixing

B 4.4.2 Results

When dynamics are not considered, the NNs learn a very reasonable policy
even for 20 balls. An example of final positions for uniformity and normal
distribution is shown in |4.9 Unfortunately, for a system with dynamics, even
without delay and with shared velocities, no reasonable policy was found
even with a more complex network and 800 episodes (only 400 shown in the
training curve). Results can be seen in B.3| for uniformity distribution and
B.5l for a normal distribution.

This problem should theoretically be solvable by employing three separate
controllers — one without dynamics to request a position for each of the
balls, another one to request a force and a third one to find the currents to
pass through the coils.

I also tested how do the NNs cope with a variable number of objects. The
results shown in figure B.4 might not look too different from B.3a). However, if
you look closely, you will notice that the partially transparent bands are much
wider. This is because while not too much worse at shaping the distribution
of 10 objects than networks only trained for 10 objects (though still noticeably
inferior), the NNs failed to learn much for a different number of objects.

B 45 Feedback-controlled mixing

In this task, the goal was to mix two groups of bodies, initially separated, in
a controlled manner. While, perhaps, not evident at first sight, this is rather
similar to the previous task of distribution shaping.

For large amounts of manipulated objects, feedback-controlled mixing
could theoretically aid self-assembly. In this process, there are objects that
“know” how to assemble themselves once they are close to each other. On a
microscopic scale, the forces guiding the final assembly could be of chemical
nature, while on a macroscopic scale, this could be done by the objects fitting
into each other due to their shapes. However, in order for this to come into
play, the objects have to be close to each other, which could be done using
this approach. Like in the case of distribution shaping, the reward is what
should still be relevant, not the exact problem formulation.

B 4.5.1 Reward

The reward function for feedback-controlled mixing is a very natural extension
of the reward for 4.4. For two groups of bodies labeled r,b (for red and blue
respectively), we can define

gr = Gi (4.22)
9 = —Gi- (4.23)

43

4. Tasks

The goal of the NN is then to minimize the loss

S =S+ D wm+S|+ D+ g
T b T

b
where S is the area of work space.

L= + + : (4.24)

The last term ensures that the objects are mixed, while the first two ensure
that the balls are spread across the whole surface evenly. The reason I decided
to include the first two terms was to avoid a local minimum, in which the
policy would simply learn to send all the balls into one corner (which is very
easy), without actually putting effort into mixing the balls.

B 4.5.2 Results

The results were similar to the previous task, which was to be expected, given
how similar the tasks are. The algorithms were able to find a reasonable
policy even for 20 objects without dynamics (example of a final state is shown
in figure |4.10) and failed at the system with dynamics. The training curves
are shown in figure [B.6|

44

y [m]

y [m]

y [m]

1.0

0.8

0.6

0.4

0.2

1600000
1400000
1200000
1000000

%]
800000 &
-

y [m]

600000
400000
200000
0

1.0

4.5. Feedback-controlled mixing

x [m]

1.075
0.8
1.050

1.025 0.61

0
1.000 &
]

y [m]

0.975 0.41

0.950
0.2

0.925

0.900 0.0

0.2

0.4 0.6
x [m]

0.8

1.0

1600000
1400000
1200000
1000000
wn
800000 &
-
600000
400000
200000

0

1.075
1.050
1.025
w
1.000 8
-
0.975
0.950
0.925

0.900

Figure 4.8: Illustration of states with the same uniformity reward for different

values of 0. Only in the last row is there a difference between the integral
values. Left: random positions from [0, 1] X [0, 1], right: random positions from

high), (e), (f): ¢ = 0.24 computed using 4.18|

45

[0.4,0.6] X [0.4,0.6]. (a), (b): o =5 x 1073 (too low), (c), (d): o =5 x 103 (too

4. Tasks

b

(a) (b)

Figure 4.9: Examples of final states of the systems (no dynamics), (a) uniform
distribution, (b) normal distirbution

0.05 A .

0.15 <>
0000000

WR00000000
00800000

Figure 4.10: Example of a final state for mixing (no dynamics)

46

Chapter 5

Conclusion

The goal of this thesis was to explore the opportunities the RL framework
offers to the area of feedback control of dynamic systems. For a concrete
physical system, we decided to use the experimental magnetic manipulation
platform called MagMan, developed by AA4CC at the Faculty of Electrical
Engineering, Czech Technical University in Prague.

In this thesis, I developed a simulator of said system in Python, capable of
simulating the movement not only of steel balls but also of a special type of
plastic polygons that contain steel balls. Two simulation modes are available.
It is either possible to simulate the whole system, where the inputs to the
simulation are currents flowing through coils, or to skip coil simulation and
have forces to be the inputs directly. While the first mode was implemented
directly using previous research done in [I], for the latter, it was necessary to
derive some approximations for the resistive forces.

Two actor-critic RL methods were presented in this text: Deep Deter-
ministic Policy Gradient and Soft Actor-Critic. The latter algorithm was
published last year and currently achieves SOTA performance, while the
former was one of the first “functional” algorithms ever to be published. In
the experiments, I found out that for low-dimensional state and action spaces
(dim S < 10,dim A < 4), the two methods achieve very similar results across
different hidden layer configurations. However, SAC learns a significantly
better-performing policy for high-dimensional S and A, despite only having
been published three years later. Based on these results, I believe that there
is no reason to keep using DDPG for further experiments.

I then used these methods to solve several tasks with varying levels of
success. The neural networks managed to learn position control of steel balls
successfully, regardless if a delay of 40 ms was present or not. However, this
was only achieved if true velocities were known. The networks were unable
to learn any reasonable policy if only past actions and positions were known,
from which current velocity could be approximated using standard methods.
I believe that it would be beneficial to employ the architecture presented in
[17], where the authors used a variational auto-encoder to learn a latent space
representation of the actual states and control was then performed using the
latent vector as input.

47

5. Conclusion

Afterward, I tried to solve the other part of the problem, where the networks
were to learn a policy that would control the coils in such a way that the
exerted force on the ball would match the desired one. The results were not
too impressive, as the only policy that did what was desired was only able to
deal with positions close to the center of the work arena.

The last task I tackled was controlling ball positions so that they would look
as if they were sampled from a specified distribution. I devised a reward based
on the idea of function norm to train the networks. A similar reward was used
to condition the policies for feedback-controlled mixing. This approach led to
reasonable policies for a system with no dynamics with 20 balls, represented
by points. However, results obtained on systems for dynamics did not turn
out to be performant in either of the problems.

48

Appendix A

Used acronyms

A A4CC Advanced Algorithms for Control and Communications
CNN convolutional neural network

DDPG Deep Deterministic Policy Gradient

DQN Deep Q-learning

FPS frames per second

GPU graphics processing unit

LSTM Long Short-Term Memory

MDP Markov decision process

ML machine learning

MSE mean squared error

NN neural network

POMDP Partially observable Markov decision process
RL reinforcement learning

RNN recurrent neural network

SAC Soft Actor-Critic

SOTA state-of-the-art

49

50

Appendix B

Training curves

Training curves of the several tasks solved by this thesis are presented below.
The tasks were the following:

® position control (4.2): figures and
® distribution shaping (4.4): figures and
® mixing (4.5)): figure B.6|

o1

B. Training curves

0
-20
5 —40
&
2
o
-60
DDPG (32-64-32)
—— DDPG (3x128)
—80 —— DDPG (3x256)
—— SAC (32-64-32)
—— SAC (3x128)
-100 —— SAC (3x256)
0 25 50 75 100 125 150 175 200
episode
(a)
0
-20
o —-40
©
2
o
—60
—— DDPG (32-64-32)
—— DDPG (3x128)
-80 —— DDPG (3x256)
—— SAC (32-64-32)
—— SAC (3x128)
-100 —— SAC (3x256)
0 50 100 150 200 250 300 350 400
episode
(b)
-20
—-40
e
©
H
[
= -60
DDPG (32-64-32)
—— DDPG (3x128)
_80 —— DDPG (3x256)
—— SAC (32-64-32)
—— SAC (3x128)
—— SAC (3x256)
—— SAC (2x256)
—-100
0 50 100 150 200 250 300 350 400
episode

(c)
Figure B.1: Position control of one steel ball, (a) no delay, with velocities,

(b) with a 40ms delay, with velocities, (c¢) no delay, no velocities, past three
observations and actions

52

B. Training curves

0] — DDPG (32-64-32)
—— DDPG (3x128)
—— DDPG (3x256)
0] — sAC (32-64-32)
—— SAC (3x128)
SAC (3x256)
_20.
e
g —401
[
_60.
_80.
~100
0 25 50 75 100 125 150 175 200
episode
(a)
_10.
—— DDPG (32-64-32)
—— DDPG (3x128)
~207 ___ DppG (3x256)
—— SAC (32-64-32) oy
—301 — SsAC (3x128) p dﬂt"ﬂ
—— SAC (3x256) W‘ W"'
—401 —— SAC (256-512-256) W,
MY
o JN
s —50 ” ' V
g "
: WA
-60{ & s \
Y A (”,@"""} “’ NJ“ :
—70{ [’M wrwv
() 0 .' p ’I
v d ARV
_80.
_90.
0 100 200 300 400 500 600
episode
(b)

Figure B.2: Position control of multiple steel balls, no delay, with velocities, (a)

2 balls, (b) 5 balls

53

B. Training curves

—1000
—2000
—3000
B
©
2
e
—4000
DDPG (32-64-32)
-5000 W— DDPG (3x128)
—— DDPG (3x256)
—— SAC (32-64-32)
—— SAC (3x128)
—6000 —— SAC (3x256)
0 25 50 75 100 125 150 175 200
episode
(a)
—— SAC (3x256)
—— SAC (256-512-256)
—2000
—-2500
B
©
2
S
—3000
—3500
—4000
0 50 100 150 200 250 300 350 400
episode
(b)
—15001 —— SAC (3x256)
—— SAC (256-512-256)
—2000
—-2500
—-3000
B
©
£ -3500
—-4000
—4500
-5000
-5500
0 50 100 150 200 250 300 350 400

episode

(c)

Figure B.3: Uniformity distribution shaping with no delay, (a) 10 objects, no
dynamics, (b) 10 objects, dynamics, velocities, (c) 20 objects, no dynamics

o4

B. Training curves

—1500 1 —— 8-10 objects
—— 9-10 objects
—2000+1
—2500+1

—3000+

—3500+1

reward

—40001

—45001

—5000+1

—5500+1

0 25 50 75 100 125 150 175 200
episode

Figure B.4: Uniformity distribution shaping with no dynamics or delay and
variable number of objects

55

B. Training curves

0.
—1000
—2000 1
©
5 —3000 4
2
g
—4000 A
—~50004 DDPG (3x256), no dynamics
—— SAC (3x256), no dynamics
—— SAC (256-512-256), no dynamics
—6000 - —— SAC (3x256), dynamics
—— SAC (256-512-256), dynamics
0 50 100 150 200 250 300 350 400
episode
(a)
—10007 —— SAC (3x256)
—— SAC (256-512-256)
—20001
—3000 1
°
g
i —4000 1
—5000 1
—6000 1

0 50 100 150 200 250 300 350 400
episode

(b)

Figure B.5: Normal distribution shaping with no delay, (a) 10 objects, (b) 20
objects, no dynamics

56

—3000 1

—4000 1

—5000 1

—6000 1

reward

—7000 1

—8000 {

—9000 1

—10000 -

B. Training curves

DDPG (3x256), no dynamics
SAC (3x256), no dynamics
SAC (3x256), dynamics

SAC (256-512-256), dynamics

200 250 350

episode

100 150

o

300 400

(a)

—5000 1

—60001

—7000+

—8000

reward

—9000

—10000

—11000 1

—— SAC (3x256)
—— SAC (256-512-256)

Figure B.

dynamics

100 200 250 300 350 400

episode

150

(b)

6: Controlled mixing with no delay, (a) 10 objects, (b) 20 objects, no

o8

Appendix C

Contents of the attachment

text/ this thesis in PDF format

code/ all the Python code presented in the thesis
code/algos reinforcement learning algorithms

code/environments MagMan simulator

weights/ weights of some of the well-performing neural networks

99

60

Appendix D

Bibliography

J. Zemanek, Distributed manipulation by controlling force fields through
arrays of actuators. PhD thesis, Czech Technical University in Prague,
2018.

C. Olah, “Understanding lstm networks.” https://colah.github.io/
posts/2015-08-Understanding-LSTMs/|, accesed May 10, 2020.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Recti-
fiers: Surpassing Human-Level Performance on ImageNet Classification,”
arXiv:1502.01852 [cs], Feb. 2015. arXiv: 1502.01852.

?

F. Richter, “Extension of the platform for magnetic manipulation,’
diploma thesis, Czech Technical University in Prague, 2017.

H. van Hasselt, “Reinforcement Learning in Continuous State and Action
Spaces,” in Reinforcement Learning (M. Wiering and M. van Otterlo,
eds.), vol. 12, pp. 207-251, Berlin, Heidelberg: Springer Berlin Heidelberg,
2012. Series Title: Adaptation, Learning, and Optimization.

V. Francois-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and
J. Pineau, “An Introduction to Deep Reinforcement Learning,” Founda-
tions and Trends® in Machine Learning, vol. 11, no. 3-4, pp. 219-354,
2018. arXiv: 1811.12560.

T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Ku-
mar, H. Zhu, A. Gupta, P. Abbeel, and S. Levine, “Soft Actor-Critic
Algorithms and Applications,” arXiv:1812.05905 [cs, stat], Jan. 2019.
arXiv: 1812.05905.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing Atari with Deep Reinforcement Learn-
ing,” arXiv:1312.5602 [cs], Dec. 2013. arXiv: 1312.5602.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv:1509.02971 [cs, stat], July 2019. arXiv: 1509.02971,
original paper was published in 2016.

61

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

D. Bibliography

[10]

[11]

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft Actor-Critic: Off-
Policy Maximum Entropy Deep Reinforcement Learning with a Stochas-
tic Actor,” arXiv:1801.01290 [cs, stat], Aug. 2018. arXiv: 1801.01290.

S. Fujimoto, H. van Hoof, and D. Meger, “Addressing Function Approxi-
mation Error in Actor-Critic Methods,” arXiv:1802.09477 [cs, stat], Oct.
2018. arXiv: 1802.09477.

R. C. Hibbeler, Engineering mechanics. Hoboken, New Jersey: Pearson,
2016.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “OpenAl Gym,” arXiv:1606.01540 [cs], June
2016. arXiv: 1606.01540.

D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
arXiv:1412.6980 [cs], Jan. 2017. arXiv: 1412.6980.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention Is All You Need,”
arXiv:1706.03762 [cs], Dec. 2017. arXiv: 1706.03762.

A. X. Lee, A. Nagabandi, P. Abbeel, and S. Levine, “Stochastic Latent
Actor-Critic: Deep Reinforcement Learning with a Latent Variable
Model,” arXiv:1907.00953 [cs, stat], Feb. 2020. arXiv: 1907.00953.

D. Han, K. Doya, and J. Tani, “Variational Recurrent Models for Solving
Partially Observable Control Tasks,” arXiv:1912.10703 [cs, eess, stat],
Dec. 2019. arXiv: 1912.10703.

R. Li, A. Jabri, T. Darrell, and Pulkit Agrawal, “Towards Practical
Multi-Object Manipulation using Relational Reinforcement Learning,”
arXiv:1912.11032 [es], Dec. 2019. arXiv: 1912.11032.

62

	Introduction
	The MagMan Experimental Platform

	Reinforcement learning
	Reinforcement learning setting
	Markov Decision Process
	Q-learning
	Categories of RL algorithms

	Implemented algorithms
	Deep Deterministic Policy Gradient
	Soft Actor-Critic
	Implementation structure

	Simulation
	Physics
	Physical constants
	Force simulation

	The MagMan environment
	Used frameworks and libraries
	Simulation objects
	Actuators
	Box2D physics
	Simple physics
	MagManView
	Usage

	Tasks
	Challenges
	Variable number of objects
	Partial observability
	Scalability

	Position control
	Reward function
	Results

	Coil control
	Reward
	Results

	Distribution shaping
	Reward function
	Results

	Feedback-controlled mixing
	Reward
	Results

	Conclusion
	Used acronyms
	Training curves
	Contents of the attachment
	Bibliography

