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Abstract
Daytime and nighttime visual appear-
ance changes are addressed with artifi-
cially learned data augmentation. Con-
volutional neural networks (CNNs) are
one of the state-of-the-art techniques for
image retrieval. However, powerful deep
neural networks are data-driven result-
ing in poor performance, when an irreg-
ular query, different from training data,
is inputted. Augmentation is addressed
with pix2pix a CycleGAN, used to provide
image-to-image translation from regular
daytime images into irregular nighttime
images and are trained over four image
datasets. To measure image translation
quality, Generative Adversarial Network
(GAN) evaluation scores are explored and
compared with data augmentation. The
final data augmentation effect is tested
on the image retrieval benchmarks, where
results show improvement on the 24/7
Tokyo dataset with minor performance
loss on daytime Revisited Oxford and
Paris datasets.

Keywords: Image Retrieval, Data
Augmentation, Generative Adversarial
Network, Image-to-image Translation

Supervisor: Ing. Tomáš Jeníček

Abstrakt
Denní a noční změny vzhledu obrázků
jsou řešeny uměle naučenou augmentací
dat. Konvoluční neuronové sítě (CNN)
jsou jednou z nejmodernějších technik pro
vizuální vyhledávání. Nicméně, výkon hlu-
bokých neuronových sítí je závislý na po-
čtu dat. pokud dojde k zadání nepravidel-
ného vyhledávání, které se liší od učících
dat, projeví se to na nízké úspěšnosti vy-
hledávání. Augmentace je provedena po-
mocí pix2pix a CycleGAN, jež poskytují
překlad z obrázku do obrázku, kde z běž-
ných denních obrázků jsou generovány ne-
pravidelné noční obrázky, a tento překlad
je trénován na čtyřech datasetech. Pro
změření kvality překladu obrázků jsou vy-
užita evaluační skóre pro generující ad-
versariální sítě (GAN), která jsou v této
práci zkoumána a porovnána s datovou
augmentací. Výsledný efekt augmentace
je testován prostřednictvím meřítek pro
visuální vyhledávání, kde výsledky uka-
zují zlepšení na datasetu 24/7 Tokyo za
menší ztráty výkonu na znovuvytvořených
datasetech Oxford a Paris.

Klíčová slova: Vizuální vyhledávání,
Augmentace dat, Generující adversariální
sítě, Překládání obrázku do obrázku

Překlad názvu: Generování trénovacích
dat pro vizuální vyhledávání pomocí
neuronových sítí
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Chapter 1
Introduction

Image retrieval is the task of finding image entries in a large image database
given a query image. For instance, imagine you took a photo containing
Prague Astronomical Clock (Orloj), and now, you are interested in other
images similar to Prague Orloj. Images related to the inputted image can
be found with image search engines, where you input the photo, the engine
performs an image retrieval search over an image database, and finds images
most related to the input; see top images in Figure 1.1.

Input Query

Day

Night

Image Retrieval
System

Image Retrieval
System

Output Images

Figure 1.1: An example of an easy and challenging search-by-example query.
The input query is a image of Prague Orloj in day or night visual domains. Input
images have a similar viewpoint, but different lighting conditions. Pridat denni
jenThe output is expected to return images related to input images. However,
in the night visual domain (bottom), the output contains images of unrelated
buildings having similar visual appeareance to the input.

Recently, the increasing performance of artificial neural networks enabled
image retrieval to improve. Neural networks learn to perform tasks from
examples without task-specific programming of manual rules. Such neural
networks perform embedding with "simpler" data as embedding networks,
which transform images into vectors while maintaining image retrieval infor-
mation. The dimensionality is reduced by this operation, e.g. the dimension
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1. Introduction .....................................
of 1024× 1024× 3 pixel image (tensor) is reduced into 512-sized vector. A
main advantage of embedding is that search becomes extremely efficient in
the lower dimension. Specifically, to find images similar to Prague Orloj in a
retrieval database, a vector of Orloj from the input Orloj image is obtained
by embedding network, and then database images having the same or most
similar vectors to the Orloj vector are outputted as the search result.

Even today image retrieval has its limits. The inputted photo could be
taken under conditions infrequent in the training dataset, such as nighttime,
and when the night photo of Prague Orloj is inputted, the most related image
found with the image retrieval system can be unexcepted and faulty, because
the photo of Orloj taken at daytime is visually very different to the photo of
Orloj taken at nighttime, although the image content is similar. See bottom
images in Figure 1.1. The cause of this problem lies in a large imbalance of
day/night training data. Therefore, to learn equivalent retrieval in day and
night, the success lies mainly in lots of diverse training data examples provided
to the embedding network. However, such a training dataset containing all
images taken under all adversarial weather conditions can be expensive or
even impossible to obtain.

In this work, training data insufficiency is solved by artificially generating
fake images and adding them to training data, which is known as data
augmentation. This thesis aims to increase image retrieval performance
through data augmentation by generating fake night images dealing with the
most usual daily base varying lighting conditions - daytime and nighttime. The
rise of generative adversarial networks (GANs) [1] allowed GAN-based image-
to-image translation methods to develop [2]. In this work, two image-to-image
translation methods – pix2pix [3] and CycleGAN [4] – are used to transform
daytime into nighttime images, and they are trained and validated on four
different image datasets. Also, for the consequent image retrieval performance
training, GAN evaluation methods are explored and used to measure image
translation model scores under different hyperparameter settings. According
to GAN evaluation, the best performing settings are chosen to train and test
image retrieval embedding networks with training data augmentation.

In Chapter 2, terms used in this work are described as well as necessary
background. Also, work, related to domain adaptation is analyzed. In Chapter
3, training datasets, GAN together with image retrieval embedding network
architecture and implementation are described. In Chapter 4, evaluation
scores are defined and applied to measure image-to-image translation quality.
In Chapter 5, data augmentation results are shown. Finally, in Chapter 6,
the thesis is concluded.
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......................................1. Introduction

Input

Augmentation Network Embedding Network
Image

Augmented

Image

[real, fake]

(I) GAN Training

Training Data

Source

Target

FakeGenerator

Discriminator

pix2pix
CycleGAN

(II) GAN Evaluation

(III) Image Retrieval Training & Data Augmetation Test

Train

Train

Train

Train

Eval

Eval

Eval

Eval

FID1 ... FIDn

FID1 ... FIDn

FID1 ... FIDn

FID1 ... FIDn

. . .

. . .

. . .

. . .Transient
Attributes
Dataset
(Transattr)

Aachen
Day-Night
Dataset
(Aachen)

RobotCar
Seasons
Dataset
(Robotcar)

Retrieval
SfM
Dataset
(SfM)

Output

Descriptor

Generator

Best score       Hyperparameters

Night

NightDay

Figure 1.2: The overview of this work approach. (I) Training for pix2pix and
CycleGAN was implemented. Networks are trained to perform day to night
image-to-image translation. (II) Evaluation measures were explored and chosen
metrics (e.g. FID) are used to measure image translation quality per network
with given hyperparameters. For each dataset, best-performing hyperparameters
are searched. (III) Chosen parameters are used to train data augmentation
network per dataset, and then, to train and test embedding networks for image
retrieval.
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Chapter 2
Background

In Section 2.1, the image retrieval is introduced together with its challenge
of searching images given an input image with unexcepted photometric
conditions caused by adversarial weather. In this work, only the most common
varying condition (the change of day and night visual conditions) is solved.
The solution to the generalization inability is visual domain adaptation, where
common day images are transformed into night images, intending to augment
data to the image retrieval embedding network training with image-to-image
translation, described in Section 2.2. Such technology, able to provide proper
image-to-image translation, is a generative adversarial network (GAN), with
optimized network architectures, described in Section 2.3. In the end, in
Section 2.4 related work associated with image retrieval, image-to-image
translation, and GANs is analyzed.

2.1 Image Retrieval

Image retrieval is the computer vision problem where the task is to search
for images with similar content in a large collection of digital images. The
input of the search query can be given in different formats such as keyword,
e.g. "car", image, for example find images similar to input image. When
the search analyses text-based metadata of images, e.g. keywords, headings,
etc. this problem is called as context-based image retrieval. Vice versa,
when the content of images is analyzed, e.g. pixels, colors, textures, etc.
this task is referred to content-based image retrieval. In this work, only
content-based image retrieval is solved.

Image retrieval is effectively done through an trained CNN embedding
network, which provides the mapping from images into image descriptors
[5] Then, image retrieval is performed in two main steps:..1. An image descriptor is extracted from the input image...2. Image retrieval is executed by Eucledian search [5], or nearest neighbor

methods [6] to find the most similar image descriptors corresponding to
its similar images in an image database.

According to Jenicek & Chum [7], there are two types of challenges in
image retrieval. The first main challenge is in increasing retrieval efficiency for
increasing the size of image collections. The second challenge lies in varying

5



2. Background .....................................
geometric and photometric conditions in image collections, examples are as
follows:. Scale and/or viewpoint change. The input query image can be zoomed-in

or zoomed-out with respect to most of the images in the image database.. Occlusion. There is an object in the input query image that blocks the
view on the retrieved object..Visual appearance change. The input query image has different light-
ing, weather, or time conditions, for example, spring/summer/autumn/winter,
day/night, etc.. Different objects that are visually similar. For instance, you input an
image query with the Arch of Titus in Rome. However, you receive an
image of the Arc de Triomphe in Paris.

2.1.1 Adversarial Weather

Different weather and time conditions can change a visual appearance greatly.
In general, images taken at different times, weather or seasons have overall
diverse characteristics, causing different viewing conditions, such as lighting
and colors, which, for example, affect vehicular navigation systems to match
its position incorrectly from place images [8].

A more challenging situation arises when a content-based image retrieval
system is tasked with uncommon input, different from most of the training
data. Usually, images are taken under normal conditions, but there could
be a lack of images taken under more extreme conditions causing retrieval
systems to output unexcepted images showing poor generalization [7]. For
CNN based image retrieval, different illumination changes cause retrieval
systems to fail, notwithstanding, the structure of images is preserved [9]. As
a leading example, in the query-by-example i.e. a task of searching images
similar to the input image, when the input of the search query is Prague Orloj
at night, the output could be night images of anything other than Prague
Orloj. More specifically, see Figure 1.1.

2.1.2 Visual Domain Adaptation

The input data could be difficult to represent for many deep learning systems
[10]. State-of-the-art CNN based methods often fail when illumination condi-
tions change [11]. The output in the leading example (Figure 1.1) indicates
that the deep network of a retrieval system is unable to generalize new inputs
in the night visual domain, which did not learn previously. Therefore, there
is a desirable task of processing images, that are in arbitrary (day or night)
visual domain.

In the computer vision area, Goodfellow et al. describe (this whole para-
graph cite [10]), the most usual way dealing with difficult inputs for deep
networks is data preprocessing. The best way to improve machine learning
model is to provide more training data. However, in practice, the amount of
available data is limited. A straightforward solution is a data augmenta-
tion i.e. to generate fake data and add it to the training set, for example

6



.............................. 2.2. Image-to-Image Translation

adding rotated, zoomed, sliced images, adding images with Gaussian noise,
etc. Data augmentation can be seen as data preprocessing limited only on a
training dataset. In the problem with the lack of night images, the domain
adaptation solution is to augment training images the fake images of night
domain generated from available day images.

2.2 Image-to-Image Translation

The data augmentation task requires a function, which can generate fake
night images from any real day image, i.e. a mapping, that transforms an
image in the day domain into an image in the night domain.
Image-to-image translation is the task of taking images from source

visual domain and translating them into target visual domain, so they have
the same characteristics (style, or representation) as the target domain [3].

2.2.1 Image Translation Notation

Let h ∈ N be height of images, w ∈ N be width of images. Let X ⊆ Rh×w×3

be the day image visual domain. Image x is from the day image domain X if
x ∈ X. Let xi,j,1, xi,j,2, xi,j,3 denote red, green, blue, intensity at row i and
column j, respectively. Let pX denote data distribution of the domain X.
When image x follows distribution pX , it is denoted as x ∼ pX . Night domain
Y , night image y and night data distribution pY are defined similarly.

2.2.2 Supervised and Unsupervised Learning

The terminology of supervised and unsupervised machine learning is different
from the terminology of image-to-image translation, although the image-to-
image translation is a machine learning problem.
Supervised machine learning is the task, where each training data

sample is associated with target or label. For example, training samples can
be in form {(xi, ki)}Ni=1, where xi is the data sample and ki is its corresponding
class (domain, or label). In the learning process, the task is to learn to predict
k from x, where feedback can be provided to the trained system in form of
target k, with an analogy to a teacher, who shows to trained system what to
do providing labels k [10].
Unsupervised machine learning is the task, when there is no label with

the training observations, nor information about the output. An example of a
possible training data form is {xi}Ni=0, where xi is the data sample. The tasks
can be to learn the probability distribution p(x), clustering, dimensionality
reduction, or interesting properties observation [10].
Paired image-to-image translation (also known as supervised image-

to-image translation) is trained on images provided in pairs, such that the
first image is in the source domain and the second image is the same as the
first image but in the target domain [3]. Image pairs have the same structure,
but different visual attributes usually.

7



2. Background .....................................
Unpaired image-to-image translation (also known as unsupervised

image-to-image translation) receives training images in both source and target
domain, but without the ground truth target image paired with its respective
source image [4]. Although unpaired image-to-image translation is also called
unsupervised, it is weakly supervised machine learning, since there are available
expected attributes of the output in the target domain.

For the difference between paired and unpaired image-to-image translation,
see Figure 2.1.

Paired Unpaired

{ ... ... ...

( ,

,

,

(
( { {(

(
(

{ { {xi yi X Y

,

Figure 2.1: The difference between paired (left) and unpaired (right) image-to-
image translation training examples. For paired translation, training samples
are available in form of corresponding image pairs. In unpaired translation, only
source and target domains are available with no information about matching
samples. X denotes image set in the day visual domain, Y denotes image set in
the night visual domain; xi ∈ X and yi ∈ Y are corresponding image pairs from
day and night visual domains, respectively.

2.3 Generative Adversarial Networks (GANs)

Image retrieval systems generalize poorly when lighting conditions of the input
query suddenly change. Such kind of input can be viewed as an adversarial
sample, available to be used for other adversarial samples recreation. Training
data used for image retrieval systems can be augmented with adversarial
samples, resulting in more robust image retrieval. However, providing just
random adversarial weather samples is useless, since those examples can be in
a different class, for example, embedding network is trained primarily on day
images of cities, but from the night, only night images of countryside domain
are provided. Therefore, I describe a generator network able to provide the

8



........................ 2.3. Generative Adversarial Networks (GANs)

mapping from the training sample into its corresponding adversarial training
sample.

At first, original GAN and its intermediate stage conditional GAN (cGAN)
are described, however not used in this work. Then, the pix2pix and the
CycleGAN are described as they are derived models used for day to night
image-to-image translation. Also, convergence problems related to image-to-
image transformation are described as an introduction to evaluation.

Pix2pix and CycleGAN are both derived GAN models from the original
GAN. Derived GAN models can be split into two main groups: Architec-
ture optimization-based GANs (e.g. DCGAN) andObjective function
optimization-based GANs (e.g. WGAN-GP) [2]. In this work, I only focus
on architecture optimization-based GANs.

2.3.1 Original Game-theoretic GANs

In 2014, Goodfellow et al. proposed a deep generative model estimating a full
probabilistic model trained with the adversarial learning process [1]. Before
2014, deep generative models (maximum likelihood estimation and similar
methods) had smaller success than deep discriminative models especially due
to CNN classifiers [1]. In the GAN training, two networks simultaneously
compete against each other. A generator network G generates fake data fit-
ting training data distribution as much as possible, whereas a discriminator
network D distinguishes if generated data are real or fake.

GAN

GAN learning can be expressed in a game-theoretic manner. Let px be
training data distribution and pz be a random noise variable distribution.
Training data sample x and random noise z can be represented as a single
value, vector, or tensor.1 The objective of the generator is to generate data
G(z), so it mimics x, the objective of the discriminator is to correctly classify
real data x and fake data G(z), so that the probability D(x) approaches 1
and the probability D(G(z)) approaches 0, see Fig 2.2 [1]. G and D play the
following minimax two-player zero-sum game,

min
G

max
D

V (D,G) = Ex∼px [logD(x)] + Ez∼pz [log(1−D(G(z)))], (2.1)

where V is the value function [1]. From 2.1 we can see that objectives of
D and G are conflicting each other. When D(G(z)) = 1

2 , the discriminator
cannot determine, if G(z) comes from training data distribution or from fake
data distribution; this state is the global optimum for optimization task 2.1
[1].

1There, the notation of x is overloaded. From the image notation Section 2.2.1 x is
image in the day domain. In GAN and cGAN formulation, x is more abstract training data
sample taken from the distribution px, which can be also an image.

9



2. Background .....................................

z G(z)

x

G

D

[0,1]c

cGAN

GAN

z G(z)

x

G

D

[0,1]

Input

Output

Ouptut

Input

Input

Figure 2.2: Architectures of GAN and cGAN. The generator G tries to transform
a random noise vector z into fake sample G(z). The discriminator D tries to
classify if data sample x or G(z) is real or fake, respectively. In the cGAN
architecture, the generator and the discriminator also takes c as the conditional
input.

cGAN

In contrast with basic GANs, the generator and the discriminator of condi-
tional generative adversarial networks (cGANs) receive extra information c,
see Fig 2.2. Then, G and D play a minimax game:

min
G

max
D

V (D,G) = Ex∼px [logD(x, c)]

+ Ez∼pz [log(1−D(G(z, c)))],
(2.2)

which is similar to 2.1, [12].

2.3.2 Pix2pix

Pix2pix, proposed by Isola et al. [3], is cGAN derived model with optimized
architecture suited for image-to-image translation from one visual domain
into another. However, learning image-to-image translation with pix2pix is

10



........................ 2.3. Generative Adversarial Networks (GANs)

supervised, and thus, pix2pix requires strictly pixel-aligned training example
pairs (Figure 2.1, paired case).

G

D

[0,1]

x

y

G(x)

Input

Output
U-Net

patchGAN

Figure 2.3: The architecture of pix2pix. The U-Net generator G (blue) trans-
forms a day image x into fake image G(x). The patchGAN discriminator D tries
to classify if image y or G(x) is real or fake, respectively. Since the model is
conditional, the discriminator also takes x as the input.

Formulation

The goal of pix2pix is to learn the mapping from domain X to domain
Y given training sample pairs {(xi, yi)}Ni=0, where xi ∈ X and yi ∈ Y are
corresponding image samples2. Pix2pix consists of a generator G : X → Y
and a discriminator D : X × Y → [0, 1] [3].

As pix2pix is derived cGAN, it needs additional information common for
the generator and the discriminator, which is the input domain image x, and
therefore, discriminator also receives image x, see Figure 2.3 [3].

Loss

Considering the generator defined by Goodfellow et al. [1], it is important to
notice, that G does not take a noise vector. Still, G can learn the mapping
fromX to Y , resulting inG to produce deterministic outputs [3]. To avoid this,
a Gaussian noise z could be added as additional input with x. Unfortunately,
this strategy is ineffective since G learns to ignore noise z, so there is no
difference between learning G : X → Y and G : X × Z → Y , where Z is the
set of all latent noise vectors [3, 13]. In order to have noise in G, I experiment
with dropout in generator architectures the same way as it is implemented
by Isola, Zhu, et al. [3, 4].

When the equation 2.2 is adapted for the image-to-image translation from

2For simplicity, i is omitted.
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domain X into Y , G and D play the following game:

min
G

max
D

V (D,G) = Ex∼pX ,y∼pY [logD(y, x)]

+ Ex∼pX [log(1−D(G(x), x))].
(2.3)

Then, the loss of pix2pix is expressed as

LcGAN (D,G) = Ex∼pX ,y∼pY [logD(y, x)]
+Ex∼pX [log(1−D(G(x), x))].

(2.4)

When G tries to trick D, G can produce fake images G(x) that confuse D,
without visual similarity between G(x) and y [13]. Previous works solve this
using a loss with regularization. The most common regularization approach is
to mix the LcGAN (D,G) with L2 distance. Note that regularized loss makes a
difference only for the G, the optimization step for the D remains unchanged.
However, regularized loss with the task of minimizing L2 distance between
fake and ground truth images results in blurred images, because L2 distance
is minimized by averaging all feasible outputs [3]. This problem is solved
with L1 distance regularization instead of L2 distance regularization. The
regularizing loss for G is

LL1(G) = Ex∼pX ,y∼pY [||y −G(x)||1]. (2.5)

Note that there is no need to use the discriminator with regularization.
The resulting optimization task can be expressed as:

min
G

max
D
LcGAN (D,G) + λLL1(G), (2.6)

where λ ∈ R is regularization multiplier hyperparameter.

Architecture

The generator is required to render images with the same resolution as the
input image and to preserve the structure of the input image. A generator
network meeting these requirements is an encoder-decoder U-Net shaped
network [14], where the input information is downsampled through series of
layers until it reaches the bottleneck layer from which it is upsampled in a
reverse way from downsampling [3]. Also, to preserve input image structure,
which could be lost in the bottleneck layer, skipping connections between
downsampling and its respective upsampling layer is added [3].

PatchGAN discriminator is designed to only penalize structures at the
scale of patches. In practice, for each N × N image patch, where N ∈
{1, . . . ,min(h,w)}, the patchGAN tries to determine whether that patch is
real or fake [3]. This discriminator can classify images of arbitrary sizes [3].

2.3.3 CycleGAN

Sometimes, training data sample pairs of both visual domains are not available,
are expensive to obtain, or could be impossible to obtain e.g. obtaining a
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sufficient amount of image pairs for Photo & Vincent-Van-Gogh painting
visual domains is impossible (Figure 2.1, unpaired case). For the desired
image-to-image translation generator, when enough data from both source
and target domains are available, supervision can be applied on set base,
however, in contrast with pix2pix, no conditional information is provided,
input image structure cannot be bounded to the target image, and therefore,
such a network is likely to produce any output of the target domain or fall
into mode collapse [4]. CycleGAN bridges this gap with cycle consistency,
requiring recreated "double-fake" image, reconstructed back with the second
generator from the target domain into the source domain, to be identical
with the real input image.

GX

DY

[0,1]

GY

DX

[0,1]

x

GX(GY(y))

GX(x) GY(GX(x))

yGY(y)

Input
Output

patchGAN

patchGAN

ResNet ResNet

Figure 2.4: The architecture of CycleGAN. The first ResNet generator GX tries
to transform a real day image x into fake night image GX(x) (blue) and the
second ResNet generator GY tries to transform a real night image y into fake day
image GY (y) (yellow). The first patchGAN discriminator DX tries to classify
if night data samples x or GY (y) is real or fake, respectively, and the second
patchGAN discriminator DY tries to classify if day data samples y or GX(x) is
real or fake, respectively.

Formulation

I form the CycleGAN learning very similarly to Zhu et al. [4]. Having two
domains X and Y , the task of CycleGAN is to find a double-sided mapping
between X and Y , given training data images {xi}Ni=1 and {yj}Mj=1 where
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GX GY

x

GX(x)

GY(GX(x))

|| ||
L1

-

X

Y

Figure 2.5: Cycle consistency loss. Day image x from day visual domain X
pass through the generator GX translating into fake night image GX(x) in night
domain Y , and this image pass again through the generator GY translating
into fake reconstructed day image GY (GX(x)). Cycle consistecy loss measures,
how much are original image x and reconstructed image GY (GX(x)) different.
CycleGAN training optimization minimizes this loss as a regularization to the
adversarial loss.

xi ∈ X, yj ∈ Y are not corresponding data pairs3, so training data do not
provide pixel-aligned pairs as in the pix2pix formulation 2.3.2.

The CycleGAN model has 4 networks in total. Two generators, where
GX : X → Y and GY : Y → X, provide the double-sided mapping between X
and Y , and two discriminators, where DX : X → [0, 1] discriminates between
x and GY (y) and DY : Y → [0, 1] discriminates between y and GX(x), trying
to distinguish between real and fake images, see Figure 2.4 [4].

Loss

The loss function of CycleGAN consists of adversarial loss and cycle consis-
tency loss.

The adversarial loss is the same adversarial loss defined by Goodfellow et
al. for GANs [1]. The adversarial loss for generator GX and its discriminator
DY is expressed as

LGAN (DY , GX , X, Y ) = Ey∼pY [logDY (y)]
+ Ex∼pX [log(1−DY (GX(x)))].

(2.7)

From 2.7, we can see GX : X → Y generate images GX(x) similar to images
from domain Y , while DY : Y → [0, 1] tries to classify real image y and fake

3For simplicity, i and j are ommited
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image GX(x). GX aims to minimize this loss, DY aims to maximize this
loss. For the generator GY and the discriminator DX , the adversarial loss
LGAN (DX , GY , Y,X) is formed similarly.

The cycle consistency is motivated by the possibility that generators can
learn a mapping in which one single inputted image translates into any image
of the target domain, resulting in learning to generate random permutations
of the target domain [4]. This issue is fixed with cycle consistency loss,
which is defined as the L1 distance between the image of the input domain
and the reconstructed image from the target domain [4]. For example, for the
pass X → Y , the cycle consitency constraint ensures that for i-th image in
X, xi

GX−−→ y′i
GY−−→ x′i ∼ xi, informally, see Figure 2.5. The cycle consistency

loss is defined as

Lcyc(GX , GY ) = Ex∼pX [||x−GY (GX(x))||1]
+ Ey∼pY [||y −GX(GY (y))||1].

(2.8)

The resulting optimization task is

min
GX ,GY

max
DX ,DY

LGAN (DY , GX , X, Y ) + LGAN (DX , GY , Y,X)

+ λLcyc(GX , GY ).
(2.9)

2.3.4 Convergence

Finding equilibrium between G and D is a very difficult problem. Gradient
descent numerical methods for GANs are likely to fail. Specifically, from
the optimization task 2.1, assuming D is not linear or affine function, we
can see that the value function is non-convex, because D(x) and −D(G(z))
are opposite functions that cannot be both convex. Therefore, finding the
minimum of the general non-convex function with continuous high-dimensional
parameters is a difficult problem.

Mode collapse

The generator can fall into mode collapse (network falls into parameter
setting when it returns the same output for arbitrary input), where the
gradient of the generator loss function approaches zero w.r.t. input noise z
resulting in empty backpropagation [15].

In pix2pix training, since the network is trained with paired source and
target domain images, it is less likely the pix2pix generator falls into mode
collapse.

In CycleGAN training, when cycle consistency loss is removed or it is
removed in one direction, CycleGAN training can fall into mode collapse [4].

Model oscillation

Both the generator and the discriminator loss functions can oscillate simul-
taneously, so one network finds parameters that highly drop its loss and
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increase the loss of the second network [16]. To prevent this, Salimans
et al. [15] proposed a heuristics called historical averaging, where L2 cost
||θ− 1

t

∑t
i=1 θi||22 between the current network parameters θ and average t ∈ N

network parameters θi is added to each network loss function.
In CycleGAN training, an alternative technique of Shrivastava et al. [17]

is utilized. In this technique, the discriminator is not updated from the last
output of the generator, but it is updated with one of the last 50 generated
images by probability 0.5 and with the last generator output by 0.5 probability
[4].

2.4 Related Work

Similarly to this work, Arruda et al. [18] explores domain adaptation from
day to night visual domains using unsupervised (unpaired) image-to-image
translation. They solve cross-domain (day-night) car detection problem having
annotated day training image samples and unannotated night images with
data augmentation, first by learning image-to-image translator to transform
day images into night images. Then they transform day annotated samples
into fake night keeping annotation, resulting in car detector learned from
both day and night annotated samples.

An alternative solution to the day visual domain adaptation was introduced
by Annosleh et al. [8]. The proposed ToDayGAN is a modified unpaired image-
to-image translation model of ComboGAN [19] having the same generator
architecture as CycleGAN [4], but modified discriminator architectures, to
improve localization. First, the image-to-image translator is learned to
translate night images into day images. Then both reference and translated
images are used for featurization to obtain feature vector per image, where
the query is estimated by the nearest neighbor of the day image. Notice, the
solution to the night data insufficiency is proposed in the reverse way to this
work, ToDayGAN is not trained to augment training data with night samples,
but to adapt queries from night into day visual domain.

Related to CNN image retrieval performance under illumination-invariant
conditions, Jenicek & Chum [7] proposed a photometric normalization U-Net
network, which translates any image into domain less sensitive to illumination
changes. This work builds on its multi-domain image retrieval codebase and
uses the same image retrieval evaluation protocol to test data augmentation
performance.

Another models, close this work, are the group of derived GAN models
designed for unsupervised image-to-image translation. ComboGAN [19]
provide unpaired translation between multiple visual domains having N
generators and N discriminators for N visual domains, where the generators
are encoder-decoder networks able to encode an image in one domain into a
feature vector, which is decoded with any other decoder into its respective
domain. Also, StarGAN [20] performs unpaired multi-domain image-to-image
translation using only one generator and one discriminator networks, where
the discriminator, although it learns to distinguish between real and fake
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images, also classifies domain of the real image, and the generator is learned
to output fake images given input image and target domain label, however,
StarGAN was only applied to CelebA [21] and RaFD [22] datasets for face
attributes modification having only slight shifts between visual domains (eg.
happy, blonde hair, aged, etc.).
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Chapter 3
Implementation

In Section 3.1, all used datasets with their preprocessing are described. In
Section 3.2, hyperparameter settings and used architectures in pix2pix and
CycleGAN are briefly described. In Section 3.3, image retrieval network
setting, used for visual domain adaptation test, is described.

3.1 Datasets

There are 4 image datasets I found suitable for image-to-image translation in
day-night training.
Transient Attributes Database (abbreviated as Transattr) is an image

dataset containing 8571 images from 101 webcams with 40 attribute annota-
tions [23]. This is the only dataset that can be processed into paired training
data for paired image-to-image translation with pix2pix. In order to obtain
sets of day and night images from 40 attributes, I first selected image groups
of those webcams, which have at least one image with the night attribute
greater than 0.9 (69 webcams satisfies this condition), and made day-night
pairs as the cartesian product of images with night attribute greater than
0.9 and the remaining images from the webcam group, resulting in pairs
composed of 4774 day and 310 night unique images.
Aachen Day-Night Dataset (abbreviated as Aachen) contains images

of the old inner city of Aachen in Germany [24, 25]. Dataset has 5313 day
images and only 113 night images taken with mobile phones with HDR setting
at nighttime.
RobotCar Seasons Dataset (abbreviated as Robotcar) have images cap-

tured from 3 cameras, mounted on a vehicle, taken under different conditions
at the 49 city locations [24, 26]. For the CycleGAN training, I only use rear
camera images. Images taken under conditions of sun, snow, rain, dawn and
dusk are used for day, and images under night and night-rain conditions are
used for night domain. I chose all these domains, because one single domain
has 400 images in average, which is little for GAN training in practice. In
total, this results in 2247 day and 878 night domain images.
Retrieval-SfM [5] contains 146714 day and 16957 night images recognized

from day-night annotations [27]. Some images have height or width less than
256 px, therefore, I removed images having any dimension less than 512 px

19



3. Implementation....................................

Transient Attributes Database (Transattr)

Aachen Day-Night Dataset (Aachen)

RobotCar Seasons Dataset (Robotcar)

Retrieval-SfM (R-SfM, SfM)

Figure 3.1: Training data sample images for image-to-image translation. Images
are ordered by corresponding dataset and visual domain. Row order from top
to bottom corresponds to Transattr, Aachen, Robotcar, Retrieval-SfM datasets.
In each row first three left images correspond to the day visual domain and
last three right images correspond to the night visual domain. Details are best
viewed on a computer screen.

resulting in 118910 day, 13710 night images. Moreover, I manually observed
ambiguities, where some of the images are difficult to visually sort out into
day or night domain, and few images have label mistakes.

3.2 GAN Training

Training details and network hyperparameter settings, used in this work, are
briefly described.

All three network architectures, U-net generator [3], Resnet generator [4],
and PatchGAN discriminator [3, 4], are used in the same architecture as
described in [3, 4].

3.2.1 Training Details

As Goodfellow suggests [1], early in the learning expressed in 2.1, the genera-
tor makes poor fake samples easy to be distinguished from training samples.
I train the generator to maximize while the discriminator minimizes ad-
versarial loss. The resulting adversarial task for fake image recognition
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becomes as minimization of Ex∼pX [log(D(G(x)))] instead of maximization
of Ex∼pX [log(1−D(G(x)))] from the discriminator, which provides stronger
gradients early in the learning [1]. The total loss for the generator is the sum
of all its losses, while the total loss for the discriminator is the average of
real and fake image losses. In the loss functions, I use weights (multipliers)
λ = 100 for L1 regularization loss in the pix2pix Equation 2.6 and λ = 10 for
cycle consistency loss in the CycleGAN Equation 2.9.

For both network optimization, I use Adam solver [28] with learning rate
0.0002, β1 = 0.9, β2 = 0.999 and zero learning decay.

In data preprocessing, each batch of size 5 is augmented such that it is
randomly scaled from 0.6 to 1 from the original size1 and cropped to have
the size of 256x256 px, and finally, it is normalized to mean and deviation of
0.5 in all 3 channels.

I implemented pix2pix and CycleGAN training in Multi-Domain Image
Retrieval2 codebase. Specifically, I added the learning procedures in epoch
iteration, and wrote training and output scenarios.

3.2.2 Pix2pix Architecture

I borrow discriminator and generator architectures from Isola et al. [3].
Their network architectures are mostly adapted from architectures of Deep
Convolutional GAN (DCGAN) [29].

The generator is the U-Net based generator implemented by [3]. I trained
generators both with and without dropout with 0.5 probability.

As a discriminator, patchGAN discriminator, implemented by [3], is used.

3.2.3 CycleGAN Architecture

Again, I borrow discriminator and generator architectures from Zhu et al. [4].
The generator is ResNet-based network adopted from the neural style

transfer framework of Johnson et al. [30]. For image-to-image translation
between day and night domains, I use 9 resnet blocks. I trained generators
both with and without dropout with 0.5 probability.

The discriminator network is the same patchGAN discriminator, used in
pix2pix architecture (Section 3.2.2).

3.2.4 Loss Weights Normalization

Regularization weights in total loss settings for pix2pix in Equation 2.6 and
CycleGAN in Equation 2.9 are high, e.g. λ = 100 for L1 regularization in
pix2pix, which causes generator and discriminator learning rate imbalance,
since weighted regularized loss derivative is λ-times higher, than without its

1Except for the robotcar dataset, which is always scaled to size 256x256 px with no
cropping.

2Image retrieval codebase and implementation progress is available online at CTU Gitlab
at https://gitlab.fel.cvut.cz/jenicto2/mdir
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3. Implementation....................................
weight. The solution is the weight normalization, which divides each weight
loss by the sum of all weights, so the resulting pix2pix loss function would be

L(D,G) = λ1LcGAN (D,G) + λ2LL1(G), whereλ1 = 1
1 + λ

, λ2 = λ

1 + λ
,

(3.1)
the normalized loss for the CycleGAN is similar to 3.1. I train pix2pix and
CycleGAN with both options – with and without weight normalization.

During GAN evaluation, weight loss normalization does not change GAN
performance significantly. I consider this more as an implementation option
than optimization hyperparameter.

3.3 Image Retrieval Training

The task is to train an embedding network in an unsupervised manner, that
provides the mapping from inputted images into image descriptors.

3.3.1 CNN Image Retrieval Architecture

The embedding network is the CNN image retrieval network, following the
procedure of Radenovic et al. [31, 5], see embedding network in Figure 3.2.

Convolutional layers are taken from the pretrained VGG16 network [32],
where the last fully connected layers are removed. Training the embedding net-
work is specifically the task of fine-tunning i.e. taking a network pretrained
for one task and then training it for a different task.

Instead of removed layers of the truncated VGG16, GeM pooling is ap-
pended. GeM layer takes K feature maps of the tensor X with W ×H ×K
dimensions, outputted by VGG16, and produces a single vector f:

f = [f1 . . . fk . . . fK ]T ,where fk =

 1
|Xk|

∑
x∈Xk

xpk

 1
pk

, (3.2)

where pk is the pooling parameter, which is learned with backpropagation [5].
GeM output is normalized by the L2 normalization layer [5].

For training the embedding network, contrastive loss [33] is used to provide
feedback. Training aims to minimize the contrastive loss of inputted image
pair, resulting in an embedding network outputting similar image descriptors
for matching3 pairs and different image descriptors for non-matching pairs
[5].

For each trained network, whitening of image descriptors is learned as a
post-processing step [5].

3Image pair is matching (positive), if both images capture the same object or scene.
Image pair is non-matching (negative), of both images are taken far from each other [5].

22



..................................3.4. Data Augmentation

Generator

Input
Output

Augmentation Network

Embedding Network

f
Descriptor

pix2pix
CycleGAN

Image

Augmented

Image

Convolutional Layers

VGG16

Pooling

GeM

Normalization

L2

15%

85%

Figure 3.2: The setting of augmented and embedding networks. An input
image is translated with the augmentations network into night image by 0.15
probability or directly skips the augmentation network otherwise. Then, the
image descriptor f, representing the input image, is extracted from the input
image by the embedding network. In fine-tunning the embedding network, the
truncated part is denoted with green color, added parts are denoted with red
color, compared to original VGG16.

3.4 Data Augmentation

Once the image translation network is prepared, it is used to augment the
inputted data during the training of the embedding network. Data augmen-
tation is implemented as network sequence of two networks – augmenting
and embedding – where first, the augmenting network translates input image
into night image by 0.15 probability or sends the original image forward
otherwise, and second, the embedding network takes the image from aug-
menting network and performs regular embedding training step. Specifically,
each iteration of the embedding network takes 7 specific images4, and each
image is transformed by the probability of 0.15, which is close to 1

7 . During
backpropagation, the augmentation network is frozen. See Figure 3.2.

During image retrieval fine-tunning, input images have the size of 362x362
px, in order to use the same size as Radenovic et al. [5]. However, the pix2pix
generator architecture is U-Net based, and therefore it can only process
images, having dimensions divisible by 256. I deal with this issue the same
way as Jenicek & Chum [7]; before each fine-tunning iteration, images are
padded up to the first possible dimension divisible by 256 maintaining the
contextual information with reflection padding. After the image translation,
images are sliced down resulting in the augmented images having the same
dimensions as the images before reflection pad preprocessing.

4One image is the query, one image is positive, and the remaining 5 images are negative.
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Chapter 4
Evaluation

GAN evaluation is hard because the generator objective is changing each
iteration and image quality is subjective to define. Generators do not use
an objective function, but a discriminator, instead of being trained directly,
making them difficult to compare them with each other [15]. Human visual
examination of generated samples is the simplest, but slow and expensive way
to evaluate GANs [34] since generated image quality definition is subjective
and not defined mathematically. Yet, none of the proposed metrics is agreed to
be the one common GAN benchmark, used for generator models comparison,
capturing all their strengths and weaknesses [34].

In Section 4.1, appropriateness of the most common GAN evaluation
metrics is discussed.

4.1 GAN Evaluation Scores

Given generated image samples from pix2pix or CycleGAN, from [34] a
high-quality evaluation score for image retrieval should:. correlate with image retrieval performance,.measure sample diversity, be sensitive to mode collapse and overfitting,. be transformation invariant (score should not change if the semantic

meaning of the image do not change),. have well-defined lower and upper bounds,. have low computational complexity.
Note, there is no need to correlate with human judgment or to be discrimina-

tive since the generated data are used for image retrieval data augmentation.

4.1.1 Structural Similarity (SSIM)

Traditional metrics do not match well with visual image quality. For example,
L2 distance measure average differences between pixel intensities. However,
humans perceive images more structurally e.g. when there is a soft pixel
Gaussian noise between the two same images, L2 distance can be still low,
but a human can see those images as different.

SSIM was defined to measure the similarity between two images more
precisely than traditional simple metrics [35]. Let x and y be images of
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our similarity interest. The SSIM index measure is a combination of three
components:

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ , (4.1)

where between images x and y: l denotes luminance, c denotes contrast and
s denotes structure1 and α > 0, β > 0, γ > 0 are parameter weights used to
adjust relative importance of these components. By default, the weights are
α = β = γ = 1. When this applies, SSIM can be expressed as

SSIM(x, y) = (2µxµy + C1)(2σxy + C2)
(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2) , (4.2)

where µx = 1
N

∑N
i=1 xi and µy are means of x and y, σ2

x = 1
N−1

∑N
i=1(xi−µx)

and σ2
y are variances of x and y, σxy = 1

N−1
∑N
i=1(xi − µx)(yi − µy) is the

covariance of x and y, C1 = (k1R)2, C2 = (k2R)2, where R is the difference
between minimum and maximum possible pixel value and k1 � 1, k2 � 1
are parameters which are k1 = 0.01, k2 = 0.03 by default.2

SSIM ranges between 0 and 1, a high value of SSIM corresponds to per-
ceptually more similar images. SSIM is a symmetric function: SSIM(x, y) =
SSIM(y, x). SSIM does not hold the identity of indiscernibles, but holds the
unique maximum property: SSIM(x, y) = 1 ⇐⇒ x = y. SSIM does not hold
the triangular inequality. However, under certain conditions, SSIM can be
converted into a normalized metric [36]. In addition, SSIM is boundedness,
satisfying: SSIM(x, y) ≤ 1.

Multi-scale Structural Similarity (MS-SSIM)

SSIM index evaluates two images on a single scale which could be inaccurate
because the correct scale depends on viewing conditions such as view distance
or image resolution [37].

Having the general SSIM definition 4.1, MS-SSIM, proposed in 2003 by
Wang et al. [37], calculates with M ∈ N multiple scales. Images x and y are
iteratively processed with two steps. At the first step, contrast and structure
are calculated for 1, . . . ,M − 1 iterations, and complete SSIM is calculated
in the M -th iteration. At the second step, x and y are downsampled by 2D
average-pooling with kernel size 2, preparing the downsampled x and y are
used the next iteration. The overall MS-SSIM evaluation can be expressed as

MS-SSIM(x, y) = [lM (x, y)]αM ·
M∏
i=1

[ci(x, y)]βi [si(x, y)]γi , (4.3)

where, similarly to 4.1, αM , βi and γi are parameter weights used for lumi-
nance, constrast and structure relative importance adjustment. In practice,

1For simplicity, I do not define these functions. Proper definitions and more detailed
explanation of SSIM can be found in [35].

2In this variant, SSIM is implemented in scikit-image python library:
https://scikit-image.org/docs/dev/api/skimage.metrics.html#skimage.metrics.
structural_similarity
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weights are simplified as in SSIM 4.1.1 for all i = 1, . . . ,M : αi = βi = γi = 1.
Also, the default setting for scales are [0.0448, 0.2856, 0.3001, 0.2363, 0.1333]
meaning, at i-th iteration luminance, contrast and structure are powered by
the i-th scale.

MS-SSIM was also abused by Odena et al. [38] to evaluate the diversity
of generated images within one class, where the mean MS-SSIM close to
1 indicates that randomly chosen image pairs have low diversity, possibly
pointing to the mode collapse, and mean MS-SSIM close to 0 indicates
generated images have high diversity [34].

For the pix2pix evaluation, MS-SSIM has very promising properties. Calcu-
lating MS-SSIM between fake images and target images estimates information
about how precisely did pix2pix learn to generate fake images. However,
MS-SSIM measures human judgment correlation rather than image retrieval
performance correlation.

In CycleGAN evaluation, a single generator alone cannot be evaluated
without the second one. Therefore, when one generator fails, FID increases,
but it is not known which generator failed. Target images are not available,
and therefore MS-SSIM can be only used to evaluate cycle-consistency, which
evaluates both generators at once without possibility to evaluate the single
one only, which makes it inappropriate measure to the CycleGAN ability to
generate night images.

4.1.2 Inception Score (IS)

IS, proposed by Salimans et al. [15], is the first, often used GAN metric highly
correlating with human annotators (Amazon Mechanical Turk), judging the
visual quality of images, aiming to measure image quality and diversity of
images.

Obtaining IS for evaluation of a generator G which produces images x
following distribution pG is defined as:

IS(G) = exp(Ex∼pGKL(p(k|x)||p(k))), (4.4)

where p(k|x) is the conditional class distribution indicating the probability
an inception network assigns to each class label k ∈ [0, 1]1000 given image
x, p(k) =

∫
x p(k|x)pG(x) is the marginal class distribution and KL is the

Kullback–Leibler divergence, which comes out as

KL(p(k|x)||p(k)) =
1000∑
i=1

p(ki|x)(log(p(ki|x))− log(p(ki))), (4.5)

after substitution with conditional and marginal distributions [15]. When
inputted images have high IS, a generator outputs high quality and diverse
images.

The inception network, which calculates the p(k|x), is the Inception v3
Network [39], designed to classify images from the ImageNet, from an image
dataset having 1000 classes containing 1.2 million images [40].
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4. Evaluation ......................................
Properties of IS are that its possible values are bound to 1 ≤ IS(G) ≤ 1000;

IS is high if the conditional label distribution has low entropy, as images
classified strongly as one class over other 1000 indicate high image quality, also
IS is high if the marginal label distribution is high, indicating high diversity
among generated images [41].

However, when the generator falls into mode collapse, IS could be still high,
resulting in an inappropriate evaluation metric for CycleGAN [41]. Moreover,
datasets for image retrieval contains similar images very often, and since IS
is dependent on marginal probability estimation containing classification over
1000 classes for p(k) estimation, p(k) can result as imbalanced distribution
having only a few high probability classes among 1000, which raises doubts
about correct p(k) estimation.

Although mode collapse detection inability can be solved with modified
mode score [42], concerning the problem with estimated distribution imbalance
for image retrieval data, IS is not appropriate to be used for pix2pix or
CycleGAN evaluation.

4.1.3 Fréchet Inception Distance (FID)

In 2017, Heusel et al. [43] proposed another score metrics dealing with mode
collapse with comparing statistics between real and generated samples as
an improvement to the IS. Similarly to IS, the Inception v3 module is used
to measure image features [39], specifically the last pooling layer before the
output classification layer outputs 2048 activations [43].

Assuming, feature vectors follow a multi-dimensional Gaussian distribution
with parameters mean µ ∈ R2048 and covariance Σ ∈ R2048×2048, FID is
calculated as the Fréchet distance [44] between real sample features Gaussian
x and fake sample features y Gaussian

FID(x, y) = ||µx − µy||22 + tr(Σx + Σy − 2(ΣxΣy)
1
2 ), (4.6)

where µx and µy are the means of real features and fake features, respectiv-
elly, Σx and Σy are covariance matrixes of real features and fake features,
respectivelly, tr is the matrix trace [43]. FID is also known as Wasserstein-2
distance [45]. FID indicates well-generated images with low distance.

For pix2pix and CycleGAN evaluation, FID offers a wide variety of desired
properties among other evaluation metrics proposed until 2018, such as
high discriminability, invariacy to image transformations, low computational
complexity [34]. Apart from IS, FID does not use distributions made from
1000 classifications, but feature vectors making it similar to image retrieval
embedding networks.

However, FID is not the best sensitive metric to overfitting and mode
collapse [34]. To address sample diversity, a manual examination of the best
performing GANs having the highest FID score using their PRD curves results
in decent pix2pix and CycleGAN evaluation.
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................................ 4.1. GAN Evaluation Scores

4.1.4 Precision and Recall for Distributions (PRD)

For state-of-the-art networks, a one-dimensional score is not providing in-
formation about how much is a generator failing in different cases. In 2018,
during an internship at Google, Sajjadi et al. [46] proposed a novel definition
for precision and recall function which returns a two-dimensional score for
two distributions.

PRD indicates how much are two distributions intersected and disjointed.
More formally, let α ∈ (0, 1] be denoted as the precision, β ∈ (0, 1] be denoted
as the recall and let P and Q be probability distributions. If there exists
intersection µ of P and Q, relative complement νP indicating what part of
P is missed by Q and relative complement νQ indicating what part of Q is
missed by P , then

PRD(Q,P ) = {(α, β);P = βµ+ (1− β)νP , Q = αµ+ (1− α)νQ} ∪ {(0, 0)},
(4.7)

is PRD of the distribution Q w.r.t. distribution P [46].
In practice, the image range is unknown, computing PRD from definition

4.7 is cumbersome, since the existence of suitable µ, νP and νQ must be
searched for each α and β. Sajjadi et al. introduced another task to compute
PRD, equivalent to task 4.7:

PRD(Q,P ) = {(α(λ), β(λ));λ ∈ Λ}, where
α(λ) =

∑
ω∈Ω

min(λP (ω), Q(ω))

β(λ) =
∑
ω∈Ω

min
(
P (ω), Q(ω)

λ

)

Λ =
{

tan
(

i

m+ 1
π

2

)
; i = 1, 2, . . . ,m

}
,

(4.8)

where m is the number of angles, m = 101 by default, Ω is the finite state
space which is implemented as cluster distribution calculated using minibatch
k-means [47] of P ∪ Q [46]. PRD is calculated from real images and fake
images by measuring feature vectors of images with Inception v3 Network
[39] using the last pooling layer the same way as in FID measurement [43], to
obtain distributions P and Q [46]. Then the union of P and Q is clustered,
with k = 20 by default, using mini-batch k-means to obtain two histograms
indicating, how many features from distributions P and Q fall into the
corresponding cluster, and because k-means have randomized initialization,
histograms are calculated 10 times and PRD curves are averaged [46].

In the CycleGAN evaluation, PRD can provide more specific insights on
generated images scoring on FID, since FID is expressed in a single number,
especially capturing if the generator is overfitting or fall into mode collapse,
making PRD and FID together a strong evaluation score.

However, PRD scores are difficult and clumsy to automatically compare,
because comparing them results in a single values comparison, e.g. with
their integral computation, it turns back PRD score from 2-dimensions into
1-dimension score with cumbersome, imprecise way.
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Chapter 5
Results

To test image retrieval performance, three datasets – Revisitied Oxford [48],
Revisited Paris [48] and 24/7 Tokyo [49] – are used to evaluate embedding
networks. 24/7 Tokyo contains images of day, night, and sunset lighting
conditions, while Revisited Oxford and Paris contain common daytime images.
The evaluation protocol with accordance to Jenicek & Chum [7] is used.

The Mean Average Precision (mAP) is used to measure and compare image
retrieval quality. For better clarity, the score is multiplied with 100, so the
possible mAP ranges are in [0, 100], where high values indicate high retrieval
quality.

The baseline VGG16 GeM [9] is compared against the augmented VGG16
GeM networks, trained with different data augmentation GANs each across
four GAN training datasets. Each GAN training dataset is one of the testing
categories, with Transattr dataset providing paired images, so augmentation
can be tested both with CycleGAN and pix2pix resulting in a total of
5 testing categories. Before the image retrieval test, based on the GAN
evaluation, settings with well-performing FID and PRD were chosen, to train
augmentation networks, each category three times with different seeds under
the same settings. For each dataset category, loss weight normalization, and
their most combinations with dropout were examined. Also, for few image
datasets, different learning rates and regularization hyperparameters were
tried, but default values used by Isola, Zhu, et al. [3, 4] perform the best,
and are used as described in 3.2.1. Depending on the best validation FID
and PRD scores, the following data augmentation GANs were chosen:. CycleGAN, Aachen, unnormalized weights, without dropout,. CycleGAN, Robotcar, normalized weights, without dropout,. CycleGAN, R-SfM, normalized weights, without dropout,. CycleGAN, Transattr, normalized weights, without dropout. Pix2pix, Transattr, normalized weights, with dropout.

To train GANs on datasets equally, the number of epochs is approximately
set to correspond the number of iterations during the training. For training
on Aachen, Robotcar, R-SfM and Transattr datasets, 150, 200, 150 and 100
epochs, respectively, are trained with. In the Transattr dataset, one training
epoch has approximately 4500 iterations.

The resulting mAP is reported as the average of 3 embedding networks
each trained with one augmentation network with the different seed.
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5. Results .......................................
Embedding Network / FID Tokyo ROxf RParis Avg
Augmentation Network SfM [mAP] [mAP] [mAP] [mAP]
Baseline VGG16 GeM – 79.31 60.73 69.10 52.29
CycleGAN, Aachen, 89.67 88.49 58.26 68.46 53.80
CycleGAN, Robotcar 189.70 81.50 57.00 67.60 51.53
CycleGAN, R-SfM 81.63 86.61 59.77 69.17 53.89
CycleGAN, Transattr 56.64 82.21 59.86 69.24 52.83
Pix2pix, Transattr 144.53 82.31 56.34 68.07 51.93

Table 5.1: Performance comparison with and without data augmentation. Re-
sults are composed of two parts: image-to-image translation evaluation with FID
on Retrieval-SfM and image retrieval evaluation on 24/7 Tokyo [49], Revisited
Oxford [48] and Revisited Paris [48]. Image retrieval performance is expressed
in mean average precision (mAP) and multiplied by 100 for better readability.
Training of CycleGAN SfM is reported with weight loss normalization, which
have higher Tokyo and average mAP than unnormalized case. The best results
are highlighted bold red, the second best results are bold and the worst results
are blue.

5.1 Discussion

Embedding network results show data augmentation trained with CycleGAN
on R-SfM has the best retrieval results. Surprisingly, CycleGAN trained
on Aachen has high performance on the 24/7 Tokyo dataset, although it
often generates fake images classified as obviously fake with humans. Also,
Transattr dataset used to train CycleGAN providing decent retrieval improve-
ment in night visual domain with minimal performance loss (Oxford) and
improvement (Paris) in the day domain, however, pix2pix performs suddenly
worse. Robotcar is insufficient for general day to night image translation.

Image dataset diversity and quantity affect GAN performance in image-
to-image translation mostly. Transattr dataset provides promising training
images, where networks trained on it have very favorable results (see Fig
5.3, right column) compared to R-SfM used to train both GAN generator
and embedding network. R-SfM is the only one dataset among other the
four which has enough night images, however, it contains ambiguous images
for day-night classification resulting in fake night images with yellow shade.
Aachen dataset has very few night images, and therefore, the generator can
sometimes learn to make fake night images with buildings unnaturally lighted.
Robotcar dataset contains a lot of very similar images among each other
resulting worse image translation performance.

Lastly, image retrieval tests show different results than GAN score results.
FID and PRD scores do not correlate with resulting image retrieval mAP
measures. Also, not always the volume under PRD curve visually correlates
with its corresponding FID (see Figure 5.1, CycleGAN Aachen, R-SfM versus
CycleGAN, Transattr, data).
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Figure 5.1: The comparison of GAN evaluation results. For each network, the
first plot shows PRD of original and fake images (generated with corresponding
GAN) from R-SfM dataset, followed by corresponding FID, the second PRD
plot and its corresponding FID show results from dataset, on which is the
corresponding network trained. Each PRD plot shows precision (vertical axis)
and recall (horizontal axis) of all three tested networks trained under different
seeds.
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Figure 5.2: Translation comparison I. Day image from R-SfM dataset (top) is
translated into night image with corresponding network trained on corresponding
dataset (left). ¬norm denotes unnormalized weights.
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Figure 5.3: Translation comparison II. Day image from R-SfM dataset (top) is
translated into night image with corresponding network trained on corresponding
dataset (left). ¬norm denotes unnormalized weights.
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Chapter 6
Conclusions and Future Work

Difficult search queries from the night visual domain were addressed with
training data augmentation using pix2pix and CycleGAN to adapt day into
night visual domain. I implemented pix2pix and CycleGAN methods in Multi-
Domain Image Retrieval codebase and trained these methods on 4 datasets to
augment training data for image retrieval. I explored various GAN evaluation
metrics, chose FID and PRD, and explained why other metrics were not
used. I compared data augmentation performance of embedding networks
augmented with GAN networks. Image dataset diversity and quantity affect
GAN performance in image-to-image translation mostly.

For the following future work, training image database composition can
greatly increase augmentation power. To improve GAN evaluation metrics
for retrieval augmentation, the inception embedding network can be replaced
with a network commonly used for image retrieval e.g. fine-tunned VGG16.
To further improve the training of the embedding network with GAN data
augmentation, targetted augmentation of query image or positive image can
be tested.
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