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Abstract

Employing radar as an onboard speedometer could be advantageous when compared to more wide-
spread methods based on a wheel diameter or gnss. It offers functionality in environments where
satellite signal is not available, and its performance is not influenced by wheel slipping, or develop-
ment of a wheel diameter in time. In the scope of this thesis, a functional fmcw radar speedometer
based on a commercial fmcw evaluation module is designated, realized, and tested. The theory be-
hind fmcw radar is examined and based on that, the most suitable signal processing algorithm is
developed. The resulting device is tested in various environments, and its performance is reviewed.

Abstrakt

Použitie radaru ako palubného merača rýchlosti má oproti bežne využívaným metódam, založeným
na priemere kolesa či satelitných systémoch určovania polohy, množstvo výhod. Umožňuje fungo-
vanie i vtedy, ked’ satelitný signál nie je dostupný, a jeho fungovanie nie je ovplyvnené preklzovaním
kolies či zmenami ich priemeru v čase. V rámci tejto práce je navrhnutý, realizovaný a testovaný
radarový merač rýchlosti, založený na komerčnej fmcw radarovej doske. Je zhrnutá teória fmcw
radaru a na jej základe je navrhnuté spracovanie signálu a použité zapojenie. Výsledné zariadenie je
testované v rôznych podmienkach a nezanedbatel’ná čast’ je venovaná jeho presnosti.
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1

Doppler radar

Although the word radar stands for radio detection and ranging, present systems offer much more.
Not only presence or absence of a target and its distance from the radar could be addressed. Radar
systems in general are either capable to resolve velocity of the target, its azimuth and elevation,
and—considering outgrowths to the fields of its application—also cloud positions and their respec-
tive repletions (meteorology), terrain maps (survaillance), or breath monitoring (healthcare). In this
chapter, we briefly overview history of radar, introduce its most used types, and in more detail
summarize the working principle of fmcw (frequency modulated continuous wave) radars.

1.1 History

The history of radar got birth shortly after the first inventions in the field of electromagnetic theory. In
the early 20th century, 20 years after Hertz’s demonstration of electromagnetic waves reflection, Ger-
man inventor Christian Hülsmeyer and American u.s. Naval Research Laboratory (nrl) researchers
Taylor and Young experimented with ship detection using em waves [1]. A patent for the cw (contin-
uous wave) radar has been accepted in 1934. Pulsed radar has been demonstrated for the first time in
1936. As time went by, a range of frequencies used by radar systems became wider, especially to the
higher part of the spectrum. In contrast with the first radars working in hf (high frequency) band,
there are radar frequency bands up to 110 GHz considered as standard for some radar applications
nowadays.

1.2 Basic principles

The theoretical basics behind radar differ significantly according to the particular type of radar. Nev-
ertheless, the physical principles addressing the propagation of em waves or the well-known Doppler
principle are related to all of them.

1.2.1 Doppler shift

In general, Doppler principle proposes that frequency of the wave reflected from a moving object is shifted
from the original frequency of the incoming wave and the frequency shift is proportional to radiali velocity of
the moving object. The principle is relevant for em, as well as for sonic or other waves. Nevertheless,
in this thesis we assume all the waves mentioned to be electromagnetic. If we have a transmitted wave
of the form

st(t) = At cos(2π f0t) (1.1)

iRelated to the transmitter.
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2 CHAPTER 1. DOPPLER RADAR

and it reflects back from an object with velocity v in a direction parallel with the direction of st
propagation, its frequency will be changed and the reflected wave could be descripted as

sr(t) = Ar cos(2π( f0 + fd(v))t− ϕ0). (1.2)

In (1.1) and (1.2), At and Ar are respective amplitudes of the transmitted (incoming) and reflected
waves, fd is so-called Doppler frequency, f0 is frequency of the transmitted wave, and ϕ0 is an initial
phase of the reflected wave. The situation is depicted in Fig. 1.1.

v

st(t) = At cos(2π f0t)

sr(t) = Ar cos(2π( f0 + fd(v))t + ϕ0) |v| = v

t = 0

Fig. 1.1: Doppler effect. Frequency of the reflected wave differs from frequency of the incoming wave.
Different amplitudes of the waves are caused by losses in the reflector.

In (1.2), the Doppler shift fd is just a frequency difference, not absolute frequency. Generally, for the
situation from Fig. 1.1, it is

fd = (
c0 + v

c0
− 1) f0 (1.3)

with c0 being velocity of light in vacuum (air).
Many other constellations than the one in Fig. 1.1 are possible. For example, the situation when

a radar (assume the monostaticii one) is placed directly on a moving object and the object travels on
the flat ground. Simplistically, that models a situation of a road vehicle which horizontal velocity we
would like to know. It is drawn in Fig. 1.2. Assuming an infinitely narrow radar beam and perfectly
flat ground, for the Doppler shift in this case it holds [2]:

fd =
2vx f0

c0
cos(α), (1.4)

where vx is the horizontal velocity (v is its component parallel with radar waves) and α is the depres-
sion angle.

α

vx

v

Fig. 1.2: Geometry of radar measurement of the vehicle’s velocity.

1.2.2 Radar species

There are multiple types of radar devices. Particular devices may be categorized according to fre-
quency, number of antennas, their positioning, source of the radar response, etc. The very basic
division of radar systems is as follows.

iiMonostatic radars have their transmitting and receiving antennas placed very near to each other (it could be even only
one antenna serving as tx or rx antenna using time division multiplexing, or a circulator).
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Continuous wave vs. pulsed. CW systems’ measurements are based on observing changes in pa-
rameters of continuously-transmitted waveform. On the other hand, the pulsed systems use
distinct pulses, between which no signal is transmitted.

Monostatic vs. bistatic. Monostatic systems have their transmitting (tx) and receiving (rx) antennas
collocated, whilst in bistatic systems the antennas are distinct, with their mutual distance com-
parable to the distance between one of them and the target. There are also multistatic systems
present, which use multiple tx and rx antennas. Such systems automatically fall within the
scope of so-called mimo (multiple input, multiple output) systems.

Active vs. passive. The word radar implicitly names an active system. That means, it transmits its
own waveform. On the other hand, there are also passive systems which only receive the
signals of extraneous services. Such systems are sometimes called passive radarsiii.

Fmcw radar as the core of this thesis could cause a bit of confusion when talking about its catego-
rization. The main problem with it is that even if it transmits a signal continuously, the signal itself
consists of many repeating pulses called chirps. Nevertheless, in general, fmcw radars are accepted
as continuous wave radars. The rest of its categorization is much more clear – it is monostatic, mimo,
and active system.

1.3 FMCW radar

One special category of radar systems is fmcw (Frequency-modulated, continuous-wave). These
systems are of sudden interest, which is mainly credited to the boom of autonomous vehicles in last
decade. Even though the major advantages of fmcw systems cover resistance to interception or good
range resolution [3], the reason why we have chosen it as the suitable system for our application
is simply the availability of 77 GHz radar sensors likely to constitute the base of our device in this
category on the market.

1.3.1 Chirp signal

Fmcw radars are not only able to provide for velocity measurement. Thanks to the frequency modu-
lation used, they could provide for rather precise range estimation of the objects in their field of view.
Moreover, if the system had more than one rx antenna, it could also give us an information about the
angle of the targets, which makes the fmcw radars a category of quite universal systems.

The frequency modulation of the waveforms could be of many types. The linear one is, however,
by far the most widely used [3]. Its signal is called chirp and its time – frequency and time – amplitude
plots could be seen in Fig. 1.3. Properties of the chirp are usually defined by its amplitude A and
frequency slope S = ∆ f /∆t, where ∆ f and ∆t are the frequency sweep and the time sweep, respectively.

iiiThe passive radars are also referred to as passive coherent locators.
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(a) The chirp in t – f plane.
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(b) The chirp in t – amplitude plane.

Fig. 1.3: The course of a linear chirp with A = 1 and S = 10 Hz s−1.

1.3.2 Range estimation

Consider the arrangement from Fig. 1.4. After the transmission of a chirp st(t) by the tx antenna, the
wave is reflected back from the static reflector and the reflected wave propagates towards the radar, in
which it is finally absorbed by the rx antenna. Let the reflected signal be denoted as sr(t). Since the
material of the reflector is assumed to be non-magnetic, and with higher permitivity in comparison
with air (asphalt and concrete both have dielectric constant approximately εr ≈ 10 [4]), the reflected
wave is phase-changed by π rad [5, 6]. Furthermore, the reflected wave has smaller amplitude than
the incoming one; That is caused by a imperfect reflectivity of the reflector which absorbs a part of
energy.

Mixer output

R
eflector

(static
object)

st(t)

sr(t)

d

FMCW radar

Fig. 1.4: An illustrative arrangement of the radar and a reflector.

Let us now focus on frequency of the reflected signal. Since the reflector is assumed to be static, no
Doppler shift is present and frequency of sr(t) is equal to frequency of st(t). With an asumption of
finite chirp (the linear sweeping starts at f1, continues until f2; f2 > f1 is reached and then restarts
immediately at f1), we can draw the following:
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Fig. 1.5: Time – frequency diagram of the three signals providing for estimation of a distance of a static
object.

During the overlap period of ramps of st(t) and sr(t), there is an intermediate frequency (if) signal
present on the output of the mixer – filter cascade. By measuring its frequency f IF, we are able to
appoint the distance from the radar at which the static reflector is as

d =
f IFc0

2S
. (1.5)

For a derivation of (1.5), refer to equations (1.6) to (1.8). Outside the overlap period of the transmitted
and the corresponding received ramps, the mixed signal has an unwanted frequency and we have to
ensure that the if signal is only sampled during the overlap period.

It is also useful to know how is the solution affected by a motion of the reflector, i.e. how big is an
error in distance estimate ∆d for different values of doppler frequency fd. Assume the chirp signal to
be transmitted to have a form

st(t) = At cos(2π( f1 + St)t). (1.6)

This waveform reflects back from the moving object at the distance d (similarly as in Fig. 1.1) and
in receiver, we obtain signal

sr(t) = Ar cos(2π( f1 + S(t + ∆t) + fd)t + ϕ0). (1.7)

The constant phase shift ϕ0 could be neglected since it has no influence on frequency of the
reflected wave. The stable componentiv of the mixer output has frequency

f IF = f1 + S(t + ∆t) + fd − ( f1 + St) = S∆t + fd = S
2d
c0

+ fd, (1.8)

hence the estimated distance of the reflector is

d =
( f IF − fd)c0

2S
=

f IFc0

2S
− fdc0

2S︸︷︷︸
∆d

= correct term− error term. (1.9)

The error in distance estimate (∆d) depends on the frequency slope of the chirp and—naturally—
on the Doppler frequency. Its values for different frequency slope values is depicted in Fig. 1.6. For

ivAt the output of the mixer, we can divide the signal to the difference part that has a constant frequency, and the sum part
having its frequency varying and always higher or equal to the frequency of the difference part. The sum part is to be filtered
by the low pass filter. The difference part is the one of our interest and we name it a stable component.
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sufficiently big S values, common doppler shifts (/ 104 Hz) do not cause errors in range estimate in
less than 5 cm.

0 0.2 0.4 0.6 0.8 1

·104

0

5

10

15

fd [Hz]

∆
d
[c

m
]

S = 10 MHz µs−1

S = 30 MHz µs−1

S = 50 MHz µs−1

S = 70 MHz µs−1

S = 90 MHz µs−1

Fig. 1.6: Error in range estimation ∆d caused by nonzero Doppler frequency fd.

In equation (1.8), we have used the relationship

∆t =
2d
c0

. (1.10)

It is rather intuitive that the time spent by a wave to travel the distance between transmitter and
reflector at velocity c0, reflect, and than return back at the same speedv is exactly 2d/c0. If the
reflector is static, during the time interval of ∆t, frequency of the chirp changes by

f IF = ∆ f =
∆ f
∆t

∆t = S∆t =
2Sd
c0

. (1.11)

From that, with known S, the range value could be calculated as

d =
f IFc0

2S
. (1.12)

If there are two or more static reflectors at the same distance from the radar, we clearly cannot
distinguish between them using the practice mentioned before. The peaks in the frequency spectrum
of the if signal related to them will cover each other. Assume the overlap period of rx and tx chirps
to be T, and sampling of the if signal with a sampling period Tp. The discrete spectrum of the if
signal will be (1/Tp)-periodic and one period of it will have the same number of samples as the input
had: T/Tp [7]. The frequency difference between two adjacent spectral samples hence will be

∆ f =
1/Tp

T/Tp
=

1
T

(1.13)

which is the resolution of if signal’s spectrum. This resolution could be converted to the range
resolution ρd using (1.12) and (1.13) as

ρd =
c0∆ f

2S
=

c0

2ST
=

c0

2B
, (1.14)

vAbsolute value of velocity.
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where B is a bandwidth of the chirp within the overlap period. In Fig. 1.5, its value is B = 80 Hz. The
value of ρd tells us how big should be the range difference between two static objects to be resolved
by the radar.

Since discrete processing is assumed to be used, in order to fulfil the sampling theorem 1/Tp ≥
fM

vi, we have to ensure

d ≤ c0 fM
2S

=
c0

2STp
. (1.15)

The expression on the right side of (1.15) stands for maximum discernible range for a particular chirp
setup.

1.3.3 Velocity estimation

While with cw radar velocity estimate is based directly on observing the spectral content of if signal,
in fmcw radars the principle is slightly different. Let an object with non-zero velocity towards the
radar be present in its field of view. Its average velocity in a time interval ∆t is

v =
∆d
∆t

(1.16)

where ∆d is a spatial shift of the object during ∆t measured on the line connecting the radar and the
object. Assume that ∆d is smaller than the range resolution proper to the chirp used, so if another—
let us say static—target was present at the same distance, we would not be able to distinguish the
two. However, if the train of chirps is transmitted (Assume infinitely-fast transitions like in Fig. 1.5),
we could use phase of two adjacent chirps to resolve them in a velocity domain.

During the time interval ∆t, the motion of object with velocity v = ∆d/∆t causes a phase shift of
the if signal

∆φ = 2π
∫ ∆t

0
f dt = 2π

∫ ∆t

0
( f1 + St) dt = 2π( f1∆t + S

∆t2

2
). (1.17)

According to (1.10), we can write ∆t = 2∆d/c0 and further expand (1.17) as

∆φ = 2π

(
f1

2∆d
c0

+
S
2

4∆d2

c2
0

)
=

4π f1∆d
c0

+
2S∆d2

c2
0

. (1.18)

Since the time interval between two adjacent chirps is exactly Tc, the moving object travels distance
∆d = vTc between them. From that, we obtain a quadratic equation for velocity v:

2ST2
c

c2
0

v2 +
4π f1Tc

c0
v− ∆φ = 0, (1.19)

with roots

v1,2 =
c0 f1π

f1 − f2
±
√

2c0

√
Tc(2Tc f 2

1 π2 + ∆φ( f2 − f1))

2Tc( f2 − f1)
(1.20)

One of the roots is always fairly negative and we can neglect it. After substitution of common valuesvii

for the chirp variables given by Tab. 1.1, we could see that the results for velocity v using (1.20) are
almost the same as results using a simplified approach [8] assuming the frequency of the chirp is
constant and equal to the initial frequency f1:

∆φ = 2π f1∆t = 2π f1
2∆d
c0

=
4π f1vTc

c0
(1.21)

viUnder the assumption of complex sampling. If real sampling was used, the sampling theorem would have the standard
form of 1

Tp
≥ 2 fM .

viiConventional values for chirp of ti awr1642boost as the radar base we use in this thesis.
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and so

v =
∆φc0

4π f1Tc
. (1.22)

Variable Value

f1 77 · 109 Hz
f2 81 · 109 Hz
Tc 57.14 · 10−6 s
c0 3 · 108 m s−1

Tab. 1.1: Substitution values for (1.20)

The maximum unambiguous absolute value of velocity raises from a request on the phase difference
between two adjacent chirps to lie within the 〈−π; π) interval. Substituting |∆φ| < π to (1.22), we
obtain ∣∣∣∣

4π f1vTc

c0

∣∣∣∣ < π

|v| < c0

4 f1Tc
.

(1.23)

To derive a formula for a resolution in velocity, recall that for a sequence of N samples taken
with a sampling frequency fp = 1 Hz, the frequency gap between two adjoining samples of the
corresponding dft image is

∆ f =
1
N

. (1.24)

Using the fact and equation (1.22), we can directly write the formula for the velocity resolution of the
sequence of N samples:

ρv =
2π∆ f c0

4π f1Tc
=

c0

2N f1Tc
, (1.25)

where ∆φ = 2π∆ f .

1.3.4 Range – Doppler processing

The range – Doppler processing is the way how to determine range and velocity of the objects in the
field of view of the fmcw radar. It uses a special structure called detection matrix to store samples of
a chirp train.

Assume that the chirp train consists of Nc chirps and for each of the chirps, Ns samples are taken.
In the detection matrix, each row will contain Ns samples of one particular chirp and in each column
of it, there will be samples of successive chirps aligned. Said differently, there will be sampled chirps
of the complete chirp train stored in the rows of the matrix. The matrix is from the CNc×Ns classviii.
Having such structure, we are able to perform dft (discrete Fourier transforms) on

1. its rows to obtain the range information

2. columns of the matrix containing an output of the first dft to get the velocity information

the way that is described in subsections 1.3.2 and 1.3.3. The illustrative recapitulation of the algorithm
could be found in Fig. 1.7. Further, the matrix containing results of the range – Doppler processing
will be called range – Doppler matrix.

viiiClass of Nc × Ns matrices with complex elements.
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adc

dft

d
ft

f

tf

Part of a chirp

RX antenna

Fig. 1.7: The range – Doppler processing algorithm. In the figure, f stands for frequency-related variable
as a x axis of a dft result. The two frequency-related variables of the dfts in the two dimensions do not
generally get the same values. The range – Doppler matrix is proportional to the sum of the two dft result
matrices.

1.3.5 Multiple inputs, multiple outputs (MIMO)

In case of multiple tx or rx antennas present, we can extract even more information about the targets.
Having Nt tx antennas and Nr rx antennas properly spaced, a linear array of NtNr antennas (so-called
virtual array) could be simulated. Such array could be then used to extract information about the angle
of the targets.

Assume that a reflector is far enough from the radar to ensure the same angle of arrival of the
reflected signal on all the rx antennas. If there was only one tx antenna, the phase shift between two
adjacent antennas can be deduced from Fig. 1.8. For the length ∆d which the signal targeting antenna
rx2 has to travel further compared to the distance to rx1 it holds

∆d = d sin(ϑ) (1.26)

where ϑ is the angle of arrival (usually denoted as aoa). The range difference ∆d causes a phase
difference between signals on rx1 and rx2

∆φ = 2π f ∆t = 2π f
d sin(ϑ)

c0
. (1.27)

In (1.27), ∆t is the time difference of arrival between the two antennas. By expressing ϑ from (1.27)
we have

ϑ = arcsin(
∆φc0

2π f d
). (1.28)
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ϑ
ϑ

·

rx1 rx2

d

∆d

Fig. 1.8: Two RX antennas and the incoming reflected wave.

Not to allow (1.28) be ambiguous, the phase difference ∆φ has to be constrained to an interval “at
maximum 2π wide.” When an interval 〈−π; π) is selected, (1.27) yields

∣∣∣∣
2π f d sin(ϑ)

c0

∣∣∣∣ < π

| sin(ϑ)| < c0

2 f d

|ϑ| < arcsin
(

c0

2 f d

)
.

(1.29)

Since the arcsin function constrained to 〈−π; π) reaches its extreme points ±π/2 at ±1, we can write
an equation for maximum disambiguous range between the two antennas

dM =
c0

2 f
. (1.30)

If there were multiple tx antennas spaced so that the signal from the more distant tx antenna reaches
the first rx antenna exactly ∆t after the signal from the closer tx antenna reaches the last rx antenna,
the virtual linear antenna array of length Nr Nt is simulated. Assume the indexing of tx and rx
antennas as in Fig. 1.9.

rx
1

rx
2

rx
3

rx
4

rx
5

rx
6

rx
7

tx
3

tx
2

tx
1

· · · · · ·

Fig. 1.9: The indexing of TX and RX antennas.

We can then introduce the matrix of phase shifts, Φ, which element Φi
j is the phase difference

between the ith tx antenna and the jth rx antenna:

Φ = [Φi
j] =




ϕ0 ϕ0 + Nr∆φ · · · ϕ0 + (Nt − 1) Nr ∆φ
ϕ0 + ∆φ ϕ0 + Nr∆φ + ∆φ ϕ0 + (Nt − 1)Nr∆φ + ∆φ

...
...

. . .
...

ϕ0 + (Nr − 1)∆φ
ϕ0 + Nr∆φ+
+(Nr − 1)∆φ

· · · ϕ0 + (Nt − 1)Nr∆φ+
+(Nr − 1)∆φ




(1.31)

In (1.31), ϕ0 is the phase difference between tx1 and rx1.
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1.3.6 Angle estimation

Having a linear rx antenna array, we can push the processing further and resolve an angle of arrival
of the reflected signal. The principle is illustrated in Fig. 1.10.

dft

· · ·

Fig. 1.10: The angle estimation algorithm. The four antennas could be even virtual. The grids represent
range – Doppler matrices the respectie antennas.

The equation (1.27) can be exploited: We can look at the phase of those bins of range – Doppler
matrices for the rx antennas those all have the same range index and the same Doppler index (those
which have the same “position”). The principle is based on dft similarly with range estimation,
although now the resolution of the aoa (ϑ) changes with ϑ itself.

Assume that there are 2 objects in the field of view. The aoa of the first one is evaluated as ϑ
and that of the second one as ϑ + ∆ϑ. From (1.27), the difference between the antenna-wise phase
differences between the two objects (∆(∆φ), angular frequency) would be [9]:

∆(∆φ) =
2π f d

c0
(sin(ϑ)− sin(ϑ + ∆ϑ)) =

{
cos(ϑ) ≈ sin(ϑ)− sin(ϑ + ∆ϑ)

∆ϑ

}
=

2π f d
c0

cos(ϑ)∆ϑ

(1.32)

Again (see (1.24)), the frequency difference between two adjacent samples of dft image are deter-
mined by the number of points of the input. In this case, the input is of size NtNr, so

∆ f =
1

NtNr
. (1.33)

By comparing (1.32) and (1.33) we obtain

2π∆ f =
2π f d

c0
cos(ϑ)∆ϑ

∆ϑ =
c0

NtNr f d cos(ϑ)
.

(1.34)

The fact that the angle resolution depends on the aoa is easy to be admitted as true: When the
aoa goes to π/2 rad, the cosine term of the denominator of (1.34) approaches zero and the angle
resolution becomes infinite. The dependence of ∆φ on ϑ will be infinitely weak since the dependence
of sin(ϑ) on ϑ is infinitely small. The tangent of the sine function in π/2 has zero slope. Oppositely,
the angle resolution is maximum when the aoa is zero; That means when the target is close in angle
to the direction of the main beam. The tangents of sine function in 0 rad and π/2 rad is shown in
Fig. 1.11.
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Fig. 1.11: The sine function and its tangents in 0 rad and π/2 rad.

To recapitulate the angle resolution problem, we can generally say that the more virtual antennas
the better resolution, and also the more is the beam focused on the target, the better the resolution is.

Let us address the question of a spacing between the rx antennas. Although this chapter tries to be
as general as possible, in this case it is appropriate to be device-specific. In Chapter 2, we will find out
that the ti awr1642boost radar kit is employed. In the kit’s reference manual [10], the rx antennas
spacing is declared to be λ/2. That could sound a bit insufficient information since frequency of the
radar signal (linear chirp) is not constant and therefore the wavelength λ is not constant. However,
if we took into account the maximum allowed bandwidth of the chirp (from 76 GHz to 81 GHz), we
come across wavelengths from 3.7 mm to 3.95 mm. The maximum difference between the values of
λ/2 connected with two distinct frequencies within this band is approximately 0.128 mm which does
not make a significant difference. The angle resolution as a function of the aoa and chirp frequency
is depicted in Fig. 1.12.

7.6 7.7 7.8 7.9 8 8.1

·1010

−1

0
1

0
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f [Hz]
ϑ [rad]

∆
ϑ
[r

ad
]

Fig. 1.12: The angle resolution as a function of the AOA and chirp frequency.

1.4 Radar sensor geometry

The radar and vehicle setup that will be used over this thesis is the one roughly described in the end
of section 1.2.1. The monostatic radar is placed on the top of a vehicle and targets its main beam to
the ground plane under a depression angle α. Such setup is straightforward since the ground plane
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is the one and only reflector that is always present for almost all of the ground vehicles and which
velocity towards the radar device, fixed on the vehicle, directly reflects the vehicle’s velocity. The final
setup is sketched in Fig. 1.13. The particular components marked in the picture will be explained later
in Chapter 2.

α

polystyren rack reflective plane

radar kit

mounting box & PC
fixation tape

h

Fig. 1.13: The radar geometry used in this thesis.
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Hardware and its limitations

In order to test signal processing algorithms we need a real radar hardware (hw). The radar has to
obey some general rules in order to be usefulapplicable in real world. The rules rise from two essential
factors: the law and price. Based on a particular radar design employed, appropriate processing hw
and auxiliary hw, e.g. power supply have to be chosen. In this chapter, the particular hw elements
of the prototype will be addressed.

2.1 Market options

Because an experimentally tested and successful velocity evaluation algorithm has been designed
within our past research [11], there was an effort to take an advantage from it. That, however,
requested the cw radar system to be used, which turned out to be a problem. On the market, there
was none of the out-of-the-box cw systems and construction of the custom one from scratch appeared
as a serious research problem itself [12]. A 77 GHz cw radar architecture was designed and simulated
in [13], however, our goal was to end up with a working, real, possibly plug-and-play device. Early
we realized that we have to adapt to the market possibilities and move our focus to the group of
fmcw devices available.

The first possibility is the mr3003_rd reference design board from Swiss company RFbeam Mi-
crowave [14]. It offers fmcw module with frequency range from 76 GHz to 81 GHz, control panel,
or an ethernet interface. Nevertheless, the device is rather expensive (total price including software
support approximately 3700e). It is based on s32r274 radar chip from NXP.

Dutch company NXP offers its own reference design kits based on the s32r274 chip [15]. They
offer the kit in a plastic box together with a graphical user interface (gui), schematics, or Gerber files
and technical video support (depends on the version of the kit – standard or precise). The price tag
is in the $3500 range. Both of the previous systems require an external power source.

The third possible solution is presented by Texas Instruments (ti). They offer radar evaluation
boards based on their awr1642 or awr1443 radar sensors. There are multiple boards in their portfolio,
those vary in the particular sensor used and in the connectivity options. They all contain ARM
controllers. As the only manufacturer they offer a 76 GHz to 81 GHz fmcw evaluation module (evm)
at price below 300 usd.

2.2 The radar board

Since we wanted to measure horizontal velocity of vehicles moving over the ground, the ti awr1642boost
module has been purchased. When compared to the similar iwr1642boost, it contains the can bus
interface that could be usable later if the speedometer we have designed was to be deployed directly
in a car. The ti awr1642boost kit is in Fig. 2.1(a) and its dimensions are given in Fig. 2.1(b).

14
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power

usb/uart

antennas

(a) The ti awr1642boost evaluation module.

Antennas
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8.5
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(b) Dimensions of the ti awr1642boost radar
EVM. The mounting holes are compatible with
M3 screws.

Fig. 2.1: Appearance and dimensions of the radar EVM.

The board arrived with an usb-µusb cable and some screws, nuts and rack parts to put the evm in
vertical position (see Fig. 2.1(a)). Neither the power source nor the cable with 2.1 mm barrel jack was
included.

2.2.1 Components of the board

The board itself contains various features, most of which we will not even use. Those which are
important for our application are:

Radar sensor. A functional block diagram of the radio subsystem of the ti awr1642 sensor is in
Fig. 2.2. Besides the radio subsystem, the sensor integrates two processors:

1. ARM Cortex r4f with 200 MHz clock (master subsystem)

2. ti c674x dsp (digital signal processor) with 600 MHz clock frequency (dsp subsystem).

All the useful information about the chip is summarized in [16].

Antennas. The evm disposes with 4 rx and 2 tx patch antenna arrays (further only antennas). In
addition, there are two inactive antennas those probably act like dummy elements, equalizing
the mutual coupling for all the active rx antennas [17]. The spacing between the rx antennas
is 1.91 mm, which corresponds to half a wavelength (the “middle one”, tied with frequency
78.5 GHz), and the spacing between the two tx antennas is 2λ at the same frequency. See
section 1.3.5 for reasoning. The sketch of the antenna shape and positioning is in Fig. 2.3. More
about the antennas and their parameters could be found right in the next subsections.

Micro USB connector with a xds110 emulator, providing jtag debugger and uart [10].

Mode-determining jumpers. There are three jumpers on the board. These determine an operation
mode of the evm. The jumpers are named sop0, sop1, and sop2, where sop means sense-
on-power. The three modes and the respective positions of the jumpers are summarized in
Tab. 2.1 [18].
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Fig. 2.2: The functional block diagram of the RF subsystem of the radar sensor TI AWR1642. The ramp
generator block encapsulates a timing engine and a frequency synthesizer with output frequency / 20 GHz.
The antennas are not included in the sensor itself. All the processing in the RX part is done in quadrature
manner (not explicitly drawn in the diagram). From [16], edited.

rx1 rx2 rx3 rx4 tx1 tx2

λ/2 2λ

Fig. 2.3: The antennas of the AWR1642BOOST radar EVM. The two antennas of the different color are
the dummy elements. From [10], edited.

Moreover, there are interfaces for various buses, a power consumption measurement interface,
reset button, leds, etc.

2.2.2 Antenna pattern

An antennai power pattern for frequency 78.5 GHz is available in [10] in the form of picture (a plot).
The part close to the main lobe is replotted in 2.4 from deduced data. The fundamental characteristics
derived from the power pattern are in Tab. 2.2.

iOnly one antenna array of the 6 active of them present on the board is addressed. One antenna array means one “column”
in Fig. 2.3.
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Mode Jumper positions (SOP2, 1, 0) Usage

Flash programming Flashing an application binary

Functional Loading an application from the
serial flash to internal ram

Tab. 2.1: The two used operational modes of the EVM.
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Fig. 2.4: The power pattern of the elementary antenna array (one column of rx or tx array).

3 dB supression 10 dB supression Full main beam

Vert. Hor. Vert. Hor. Vert. Hor.

0.489 rad 1.152 rad 0.698 rad 2.094 rad 1.047 rad 3.491 rad

Tab. 2.2: Beamwidths of one AWR1642BOOST antenna in vertical (Vert.) and horizontal (Hor.) planes
for different suppressions.

2.2.3 Far field

Far field distance in terms of maximum phase difference is defined as the distance dF, at which the
maximum phase difference between the real wave and its ideal plane wave approximation within the
circle area symmetric about the main antenna beam axis and perpendicular to it, with diameter D is
∆φF. Hereby D is the largest dimension of the antenna’s aperture, and the standard value of ∆φF is
π/8 [19]. The problem of determining dF leads to a simple geometric excersise given by 2.5(b).

Solution leads to the well-known formula

dF =
2D2

λ
=

2D2 f
c0

(2.1)

where c0 is velocity of light in vacuum as the maximum possible velocity of em wave propagation. In
case of ti awr1642boost antenna, the distance of far field results to

dF =
2 · (8 · 10−3)2 · 81 · 109

3 · 108 = 3.456 cm (2.2)
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λ
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(b) The situation for the antenna far field
distance derivation.

Fig. 2.5: On a derivation of the antenna far field distance.

since the highest useful frequency that could be present in the chirp signal of the evm is 81 GHz [16].
The highest frequency value, however, depends on the particular chirp used – the value from (2.2)
serves only as an upper boundary. Dependence of dF on the maximum chirp frequency is plotted in
Fig. 2.6. It is worth pointing out here that even though the four rx antennas look like an antenna array,
they work independently in case of range, and velocity estimation. Therefore, the biggest antenna
dimension D is the biggest dimension of one particular antennaii. For angle estimation, we put a
request of being planar on the wave impinging the whole rx antenna array. In such case, the biggest
dimension of the receiving antenna is approximately 14 mm (the diagonal of the rx array in Fig. 2.3,
including the dummy elements), and the far field distance results in dF,angle = 10.584 cm.
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Fig. 2.6: The far field distance dependence on the highest chirp frequency for the elementary antenna array,
and the complete RX array of the TI AWR1642Boost (values for ∆φF = π/8).

2.2.4 Area of reflection

When a radar transmits a general wave with its main beam directed to the ground (see Fig. 1.13), the
significant part of the wave reflects back to the radar from an area that we call an area of reflection (aor)
within this thesis. The precise knowledge of such area’s shape allows us to design the positioning of
the radar on the vehicle properly. On the following lines, the shape of the aor will be derived.

iiOne antenna is still an array of four elementary patch antennas.
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Firstly, assume that we are only concerned with that part of the wave that lies within the space
angle with less than 3 dB loss against the maximum directivity of the antenna: We expect that, over
the ideal flat ground all the reflections from outside of such area are too weak to make a significant
contribution to the reflected signal. Unfortunately, in the real case there could be a reflector with
better reflection than any of the ground elements of the aor present outside the aor. That case,
however, does not fall into the purely geometrical problem of this subsection.

According to 2.2.2, we know the 3 dB beamwidths of the examined antenna in both the vertical
and the horizontal planes (θv and θh, respectively):

θv = 0.489 rad and θh = 1.152 rad. (2.3)

From that, the 3 dB beam (named only beam further within this subsection) has the shape of an
elliptic cone. Placed into cartesian coordinate system, the cone is sketched in Fig. 2.7.

x y

z

A B

H

Fig. 2.7: The considered placement and positioning of the elliptic cone representing the 3 dB beam of the
radar antenna in cartesian coordinates (x, y, z).

Our goal is to find an area formed by an intersection of the elliptic cone from Fig. 2.7, and a plane
representing the ground. In Fig. 2.7, H is the distance between the vertex of the cone and the intersect
point of the z axis and the ground plane. A and B are the semi-major and the semi-minor axis of the
cone in the plane parallel to the xy plane and elevated by H, respectively. The equation of the cone
from Fig. 2.7 is [20]:

x2

A2 +
y2

B2 =
z2

H2 . (2.4)

The intersection of the cone and the ground planeiii lies in the ground plane, admittedly. In Fig. 2.7,
the ground plane is not drawn, however, it can be described by any pair of vectors in xyz space
which are not colinear. If we rotate the ground plane the way its normal is colinear with the z axis,
we are able to fully describe the intersection using only two—x′ and y′—coordinates of the (x′, y′, z′)
reference frame, where the (x′, y′, z′) frame is the (x, y, z) frame translated along its z axis [21].

Let the ground plane be denoted as Γ. Let us find the matrix of rotation of Γ, that, applied to
any vector of Γ, outputs a vector parallel to the xy plane. The problem is equivalent to a problem of
rotating the normal vector nΓ of Γ to the direction of the z axis. The situation is drawn in Fig. 2.8.

To make nΓ colinear with the z axis we need to (referring to Fig. 2.8):

1. Rotate the (x, y, z) frame by the angle ϕ around the z axis so we obtain a new reference frame
(x̄, ȳ, z).

2. Rotate the new (x̄, ȳ, z) frame around its ȳ axis by the angle −ψ.

iiiWe may refer to it as just the intersection.
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Fig. 2.8: The normal vector nΓ of the general ground plane in the (x, y, z) reference frame of Fig. 2.7.

If we denoted the matrix of rotation around the general z axis by angle γ as Rγ
z and, similarly,

the matrix of rotation around the general y axis by angle β as Rβ
y , we could achieve the desired

transformation as
n′Γ = R−ψ

y (Rϕ
z nΓ) = R−ψ

y Rϕ
z nΓ = RnΓ. (2.5)

To derive the general form of Rγ
z we will use Fig. 2.9.

x

y

z = z̄

x̄

ȳ

γ

γ

ϕ nxy
Γ

nΓ

Fig. 2.9: On rotation of the (x, y, z) frame about the z axis. nxy
Γ is a projection of the vector nΓ to the xy

plane.

It is clear that the z axis will not be influenced by the rotation:

z̄ = z. (2.6)

For x̄ and ȳ we can write

x̄ = nxy
Γ cos(ϕ− γ) = nxy

Γ cos(ϕ)︸ ︷︷ ︸
x

cos(γ) + nxy
Γ sin(ϕ)︸ ︷︷ ︸

y

sin(γ)

ȳ = nxy
Γ sin(ϕ− γ) = nxy

Γ sin(ϕ)︸ ︷︷ ︸
x

cos(γ)− nxy
Γ cos(ϕ)︸ ︷︷ ︸

x

sin(γ),
(2.7)
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so from (2.6) and (2.7) by rewriting to the matrix form



x̄
ȳ
z̄


 =




cos(γ) sin(γ) 0
− sin(γ) cos(γ) 0

0 0 1




︸ ︷︷ ︸
Rγ

z




x
y
z


 (2.8)

we eventually obtain

Rγ
z =




cos(γ) sin(γ) 0
− sin(γ) cos(γ) 0

0 0 1


 . (2.9)

The general form of Rβ
y could be derived similarly, resulting to

Rβ
y =




cos(β) 0 − sin(β)
0 1 0

sin(β) 0 cos(β)


 . (2.10)

Substituting γ = ϕ, β = −ψ in (2.9) and (2.10) and multiplying the two we obtain the overall
rotation matrix

R =




cos(ϕ) cos(ψ) sin(ϕ) cos(ψ) sin(ψ)
− sin(ϕ) cos(ϕ) 0

− cos(ϕ) sin(ψ) − sin(ϕ) sin(ψ) cos(ψ)


 . (2.11)

Nevertheless, the situation we are concerned with is slightly less general. Since the radar antenna
only has a depression angle α and an azimuth and a tilt are both zero, it is possible to draw the
ground plane to the (x, y, z) coordinate system as in Fig. 2.10.

x

y

z

π/2 − α

Fig. 2.10: The positioning of the ground plane in the (x, y, z) coordinate frame in the desired radar setup.

In Fig. 2.10 the background behind the angle π/2− α could be a source of confusion. Probably, it
would be more clear from Fig. 2.11 – a 2d cut of the situation in Fig. 2.10 rotated such that it resembles
the suggested radar-on-the-vehicle setup.

The overall rotation matrix R therefore reduces to the matrix of rotation about the x axis by the
angle (π/2− α). Substituting α′ = π/2− α in the general form (derived in analogy with (2.8))

Rα′
x =




1 0 0
0 cos(α′) sin(α′)
0 − sin(α′) cos(α)


 (2.12)

we get

R =




1 0 0
0 sin(α) cos(α)
0 − cos(α) sin(α)


 . (2.13)
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y

z

α

π/2 − α

Fig. 2.11: 2d picture of the situation in Fig. 2.10. The radar is placed in the vertex of the cone.

θV

α
0 r

Radar

h

α

0

Radar

θH

Fig. 2.12: Theoretical radar deployment setup. The same situation from the field of view of two different
perspectives.

Now, let us express the variables A, B and H of (2.4) in terms of the real placement of the radar
on the vehicle. Consider the situation in Fig. 2.12.

In Fig. 2.12, the yellow triangles are cuts of the radar beam cut by the ground plane. The gray
shapes represent exactly the intersection which boundary we effort to describe. Comparing Fig. 2.7
and Fig. 2.12 we can write

H =
h

sin(α)

A =
h tan(θh/2)

sin(α)

B =
h sin(θv/2)

sin(α) sin(π − α− θv/2)
.

(2.14)

Now, let the ground plane be described by the point-normal equation in the (x, y, z) reference frame
as

nT
Γ r + d = 0, (2.15)

where nΓ = [a, b, c]T is its normal, r = [x, y, z]T is an arbitrary vector lying in Γ and d is the distance
between (possibly translated) origin of nΓ and the origin of the (x, y, z) frame. Note that we take
into account orientation of vectors (row vs. column) to become able to identify matrix product
with euclidean scalar product. If we denote the r vector expressed in (x′, y′, z′) reference frame as
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r′ = [x′, y′, z′]T , considering the properties of R we can write

r′ = Rr (2.16)

and because of orthogonalityiv of rotation matrix R, (2.16) yields

r = R−1r′ = RTr′. (2.17)

Matrix R was designed such that

RnΓ = [0, 0, |nΓ|]. (2.18)

Taking equations (2.15), (2.17) and (2.18) into account, we have

nT
Γ R−1r′ + d = 0

nT
Γ RTr′ + d = 0

(RnΓ)
Tr′ + d = 0

[0, 0, |nΓ|][x′, y′, z′]T + d = 0

z′ = −d/|nΓ|.

(2.19)

Let us return back to the equation of a elliptic cone (2.4). Rewritten in terms of an arbitrary vector
r it is

rT




1/A2 0 0
0 1/B2 0
0 0 −1/H2




︸ ︷︷ ︸
C

r = 0. (2.20)

We can modify (2.20) using the previous relations and obtain subsequently

(R−1r′)TCR−1r′ = 0

(R−1r′)TCRTr′ = 0

r′T RCRT
︸ ︷︷ ︸

M

r′ = 0

[x′, y′,−d/|nΓ|]M[x′, y′,−d/|nΓ|]T = 0.

(2.21)

In the last line of (2.21), there is more or less the equation we aimed to – in the “elevated” xy
plane—x′y′ plane—it describes the intersection of the 3 dB radar beam and the ground plane in
variables x′ and y′. We can further expand (2.21) using

M =




sin2(α)

h2 tan2(
θh
2 )

0

0 sin4(α) sin2(α+ θv
2 −π)

h2 sin2( θv
2 )

− sin2(α) cos2(α)
h2

0 − sin3(α) cos(α)
h2 − sin3(α) sin2(α+ θv

2 −π) cos(α)
h2 sin2( θv

2 )

0

− sin3(α) cos(α)
h2 − sin3(α) sin2(α+ θv

2 −π) cos(α)
h2 sin2( θv

2 )

− sin4(α)
h2 +

sin2(α) sin2(α+ θv
2 −π) cos2(α)

h2 sin2( θv
2 )


 .

(2.22)

The final equation of the intersection is then

ivRT = R−1.
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−

h


−

h

(
− sin4(α)

h2 +
sin2(α) sin2(α+ θv

2 −π) cos2(α)

h2 sin2( θv
2 )

)

√
| sin(α− π

2 )|2+| cos(α− π
2 )|2 sin(α)

+ y′
(
− sin3(α) cos(α)

h2 − sin3(α) sin2(α+ θv
2 −π) cos(α)

h2 sin2( θv
2 )

)



√
| sin(α− π

2 )|2 + | cos(α− π
2 )|2 sin(α)

+

+ y′


−

h
(
− sin3(α) cos(α)

h2 − sin3(α) sin2(a+ θv
2 −π) cos(α)

h2 sin2( θv
2 )

)

√
| sin(α− π

2 )|2 + | cos(α− π
2 )|2 sin(α)

+

+ y′
(

sin4(α) sin2(α + θv
2 − π)

h2 sin2( θv
2 )

− sin2(α) cos2(α)

h2

)
) +

x′2 sin2(α)

h2 tan2( θh
2 )

= 0 (2.23)
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(a) α = 90◦. Expectedly, the shapes share the same center and get bigger
with increasing h.
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(b) α = 45◦. Expectedly, the shapes move their
centers in linear manner with increasing h.

Fig. 2.13: The intersections of the radar cone and the ground plane for two values of α (α = 45◦, α = 90◦),
and h varying from 1 m to 6 m with step 0.3 m.

Equation (2.23) could be used to compute the shape of the intersection. Finally, let us confirm the
correctness of the result by drawing a few intersection plots: Fig. 2.13(a), Fig. 2.13(b) and Fig. 2.14. For
all of them, the radar is placed in [0, 0]T .

2.3 Computer subsystem

2.3.1 Raw ADC samples

The radar evm itself does not output raw adc samples. The reason is that the bitrate of the uart as
the data output interface is too low to serve for all the adc samples. There is, however, a possibility
for getting them provided directly by the manufacturer. The raw samples are stored in so-called adc
buffer before they are moved to the special section of memory (l3 memory) [22]. The manufacturer
offers the dca1000evm – the fpga-based device able to capture the samples from the memory and
send raw adc samples via an Ethernet interface. Even if it could be fairly advantageous to have an
access to the raw adc samples, the price of the capture card ($499v) has been beyond our budget.

Another approach to the raw adc samples is proposed in [23]. According to [16, 22], there is a
768 kB l3 memory shared between the main processor and the dsp. This memory serves as a data

vThe price could change indeed.
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Fig. 2.14: The intersections of the radar cone and the ground plane for h = 1 m and α varying from 90◦ to
29◦ with step 2◦.

store for one frame of chirpsvi. By accessing the l3 memory, it is possible to read the values of raw
samples for one frame.

To do that, the ccs development mode of the ti awr1642boost has to be used. The mode is based
on flashing a special program to the evm and running the program under test virtually, using the ccs
software development tool. The ccs uses the xds110 emulator to provide an access to the memories
of the evm and to handle the data flow and functions of the program under test. In this mode, an
user is able to send and view the content of the evm’s memory.

For an implementation, the mmWave demo program distributed by the ti awr1642boost has been
used. The program provides for the cooperation of the subsystems of the evm, supervises the signal
processing and could be controlled via the integrated cli (command line interface). A new cli
command has been added. The command is called printAddressContent and its establishment
rests in three small pieces of code added to the cli.c source of the mss part of the mmWave demo:

1. Declaration of the callback function at the section Local definitions (line cca. 95)

1 static int32_t MmwDemo_CLIprintAddressContent (int32_t argc, char* argv[]);

Listing 2.1: Declaration of the callback function.

2. Definition of the function itself

1 static int32_t MmwDemo_CLIprintAddressContent (int32_t argc, char * argv[]) {
2 bool doReconfig = false;
3 CLI_write("%08lx\n", *((int32_t *)0x51020000));
4 return(0);
5 }

Listing 2.2: Definition of the callback function for the printAddressContent command.

3. Adding the new cli command to the table of MmwDemo_CLIInit function (line cca. 1300)

viFor definition of a frame see Sec. 3.1.2.
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1 cliCfg.tableEntry[cnt].cmd = "printAddressContent";
2 cliCfg.tableEntry[cnt].helpString = "No arguments";
3 cliCfg.tableEntry[cnt].cmdHandlerFxn = MmwDemo_CLIprintAddressContent;
4 cnt++;

Listing 2.3: Adding the new CLI command to the command table.

In Lst. 2.2 the address 5102000016 is the start address of the l3 memory block. The address has
been retreived empirically, by observation of changes in memory content using the ccs. The stored
samples are of int32_t data type according to [22].

The command has been modified so that it reads not only one, but all the raw adc samples of
the actual chirp train. The callback definition has been changed to run in the loop and print several
consecutive values:

1 static int32_t MmwDemo_CLIprintAddressContent (int32_t argc, char * argv[]) {
2 int32_t i;
3 const int32_t N_SAMPLES_2B_PRINTED = 10;

5 bool doReconfig = false;
6 for (i = 0; i < N_SAMPLES_2B_PRINTED; i++) {
7 CLI_write("%08lx\n", *((int32_t *)(0x51020000 + i * 4)));
8 }
9 return(0);

10 }

Listing 2.4: The modification of Lst. 2.2 for printing several consecutive values from the l3 memory.

Nevertheless, the approach has not bring sufficient results. There are few problems with it, par-
ticularly:

1. Each of the cli commands has a timeout set within the main program. The timing of the
processing is crucial in order to achieve stable operation. On one hand, we would need to
extend the timeout to be able to send as many samples as we need; On the other hand, touching
the timeout value influences other parts of the processing and the program does not behave as
expected.

2. It is not possible to retreive the data from the l3 memory and send it through the uart every
time the new chirp frame is being processed. Subsequently, we would be able to operate only
with data connected with some, not time-adjacent chirp frames and such data will be signifi-
cantly harder to process.

3. The proposed way of getting the data requires a computer with the ccs running to be able to
retreive the data from the l3 memory. Such setup is not suitable for being used in the standalone
radar-based speedometer.

The raw data capture has therefore been deprecated and we moved our focus to another approach
to the data processing.

2.3.2 Decentralized processing

After recognizing the unapproachability of gathering the raw adc data from the ti awr1642boost
without an external hardware tool, we settled on the following data processing approach:

1. Detection of objects in the field of view of the evm directly in the evm.

2. Sending the results to a small pc (Raspberryπ) via the uart.

3. Computing the precise velocity value from the data received via teh uart in the small pc.
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The second and the third item of the list above utilize a small pc. We have let its role to the Rasp-
berryπ – a computer small in size but universal and robust in the functionality. The particular model
is the 3b+ which disposes with an integrated Bluetooth adapter that we want use for delivery of the
final velocity samples to an external laptop. The two “processing devices” – the ti awr1642boost
and the Raspberryπ are put near each other in the mounting box and interconnected by a data ca-
ble. The data cable connects one of four usb ports of the Raspberryπ and the µusb port of the ti
awr1642boost. If the chained power scheme is used (see Sec. 2.4), the two devices are interconnected
also with a power cable between a usb port of the Raspberryπ and the evm’s power jack. The box with
the two devices is depicted in Fig. 2.15.

Raspberryπ
ti awr1642boost

Fig. 2.15: The mounting box with the TI AWR1642Boost and the Raspberryπ (no power source included).

2.4 Power supply

The complete setup of a radar device contains two entities which need to be powered: The Raspberryπ

and the ti awr1642boost. The Raspberryπ is standardly fed by 5 V from the µusbvii power port
(although it is possible to power it up through the pin header or to use the poe (power over ethernet)
feature). The maximum current request is 2.5 A [24]. The ti awr1642boost needs a 5 V power source
connected to the 2.1 mm barrel jack. The current limit is 5 A [10].

For some configurations of the evm, powering the two in a cascade from one common power
source is possible as is depicted in Fig. 2.16, where the ti awr1642boost is powered from an usb port
of the Raspberryπ. Some other configurations (here belongs also the one that we eventually decided to
employ) require more current than a single usb port, depleted of the Raspberryπ current consumption,
could give. In such cases, two distinct power sources have to be used for the Raspberryπ and for
the radar. For a practical use it is possible to connect the power pins with wires (not employing
connectors) and save some space.

Power
source Raspberryπ awr1642

boost

µusb

usb

barrel jack

Fig. 2.16: The power chain of the radar hardware.

viiConnector usb micro-b.
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As a stable voltage source, a battery of two Sony US18650VTC6 accumulators [25] connected in
series has been used together with a step-down buck converter with an usb output lm2596usb [26].
A photo of the source is in Fig. 2.17.

Fig. 2.17: The power source.

Such power source is of course just a solution for testing the whole device when the use of another
(more robust) source is complicated. When the device was used in a car or in a laboratory, there are
several other possibilities how to feed it, namely usb power from a pc, a laboratory source, or a car
µusb charger.



3

Signal and its processing

The prototype of the radar speedometer has been introduced in the previous chapter. The signals
wandering in the circuit carry all the information that could be used to figure out the measured
horizontal velocity. In this chapter, we will describe how the signal looks like and how it is processed
both in the ti awr1642boost and the Raspberryπ. Different signal and signal processing designs will
be reviewed in order to achieve the best performance of the velocity estimator.

3.1 The original firmware

The mmWave demo program (firmware) is a toolkit distributed together with the ti awr1642boost
evm. The program contains drivers for the most of the evm’s functionality: It provides separate
progams for the master (ARM Cortex r4f) and the signal processors, defines and monitors their
cooperation, constitutes a cli (command line interface) to allow user intervention and an online
configuration, etc. Inherently, it defines the shape ot the transmitted signal and the processing of
the received echo. The program is well described in the Doxygen-basedi documentation distributed
with the firmware [22]. The firmware itself could be alternatively accessed as a part of the Industrial
toolbox [27].

3.1.1 Flashing the firmware to the board

The flash of the mmWave demo binaries could be done using the Uniflash tool [28] by ti. The ti
awr1642boost has to be connected to the pc with the Uniflash installed, set to the flash program-
ming mode (see Tab. 2.1), and powered up. After being connected, the board mainfests itself by two
emulated serial ports, named differently on Windows and gnu/Linux systems:

GNU/Linux Windows

Configuration port /dev/ttyACM0 COM3
Data port /dev/ttyACM1 COM4

Tab. 3.1: The standard names of the two serial ports of the AWR1642Boost.

These port names need to be specified in the configuration tab of the application. Subsequently, the
binaries have to be selected and the flashing process could be launched. The precompiled binaries
are distributed with the evm (or as a part of the Industrial toolbox), however if that is not the case, their
source code could be compiled using the ccs ide [29] following the steps in corresponding materials
available from the tirex database [30].

iDoxygen is a software tool for generating a documentation from the markup written directly to the program source code.

29
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3.1.2 Configuration via the CLI

An user could control the form of transmitted radar signal and how it will be processed using the
cli (command line interface) commands sent via a terminal connected to the configurtion serial port.
The predefined commands are roughly defined in [31] and reviewed on the following lines. Possible
arguments of the commands are delimited by space (ascii 0x20); Command cliCommand with three
arguments: 0, 5.162 and 13 has to be sent in the form

1 cliCommand 0 5.162 13\n

Listing 3.1: The example CLI command with three arguments.

sensorStop command has no arguments and leads to termination of the radar sensor operation and
the signal processing chain. It is a mandatory command before any reconfiguration is being
done.

flushCfg is another mandatory command that has to be executed before any reconfiguration is being
done – the right place for its execution is right after the sensorStop command. It causes the
old configuration to be neglected and prepares the firmware to process the new configuration
expressed in the following commands.

dfeDataOutputMode is mandatory but has no fixed position – it could be executed anywhere be-
tween the sensorStop & flushCfg pair and the command sensorStart (described below). It
has one argument that defines the mode of the frame configuration. The argument could get
values 1 or 3. Value 1 stands for frame-based chirps mode, value 3 for the advanced frame confi-
guration mode. In both of the modes, the frame (group of transmitted chirps) consists of many
times repeated subframes. The modes differ from each other in how the subframes look like.

In the frame-based chirps mode the subframe consist of Nt chirps, where Nt is a number of tx
antennas used. The first chirp is transmitted by tx1, the second by tx2 etc.

In the advanced frame configuration mode, user can define up to 4 different subframes and in
each of the subframes, there could be an unique sequence of up to 512 groups (bursts) of
up to 512 chirps [32]. A subframe of the advanced frame configuration mode is sketched
in Fig. 3.1.

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
· · ·

Set of chirps

Set of bursts

Subframe

Fig. 3.1: An advanced chirp configuration subframe. Within the particular bursts, the chirps are transmitted
alternately by TX1 and TX2 antennas (if both TX antennas are enabled).

channelCfg command is mandatory and we can use it to select how many tx or rx antennas are
used. It requires three arguments:

1. rx antennas mask. If the antenna is to be enabled, it gets value 1; In the opposite case, it
gets zero. The value of the argument is the number which digits are the enable values for
rx1, rx2, rx3, and rx4, respectively, coded in decimal. If all the rx antennas are intended
to be enabled, the value (11112)10 = 15 has to be set.

2. tx antennas mask. The same as the rx antennas mask but for the tx antennas. Only two
tx antennas are available on ti awr1642boost – to enable both, one has to enter value 3,
to enable only tx1, one has to enter 2.
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3. The third argument is not applicable (na). For na arguments we will always use value 0.

adcCfg is a mandatory command setting properties of the adc. In fact, there are only two possibili-
ties for filling up its two arguments. The arguments are

1. Number of bits of the adc. Only value 2 standing for 16 bit adc is supported in ti
awr1642boost.

2. Sampling scheme. The sampling schemes could be generally divided to real and quadrature
(complex). The real schemes use one-mixer circuits like the one in Fig. 3.2. The spectrum

A
D

FFT

Fig. 3.2: The real mixing.

of the mixer output contains a convolution of spectra of the mixer inputs, which leads
to doubling of the noise component at the output as is illustrated in Fig. 3.3. On the

0

0

0

f− f

tx spectrum

rx spectrumSpectrum of mixed signal

Fig. 3.3: Spectra of mixer inputs and a mixer output in the real mixing scheme.

other hand, the complex schemes use quadrature mixing. The schematic of such mixer
is depicted in Fig. 3.4. Although such scheme consumes more hardware components, it
provides an advantage of the lower noise present in an output of the mixer, as could be
seen from Fig. 3.5. Another advantage of the complex mixing is that we can monitor the
noise level simply by observing the spectrum of the mixed signal in the image band within
one of the sidebands (In fact in the ti awr1642boost there is always a ssb (single side band)
spectrum used [33]). The same principle could be used to detect possible interference.
In the evm, only the complex mixing is possible. However, there are two modes of it, from
those we can select one. The so-called complex 1x mode is the standard complex mixing as
has been described a few lines above, with usable spectral samples occupying a frequency
range from zero to the sampling frequency. The complex 2x mode uses a digital frequency
shifter of the result before filtering out the unused part of spectrum. That leads to the
spectrum samples occupying a frequency range from − fp/2 to fp/2. This mode requires
only half of the sampling rate of the complex 1x mode to fulfil Nyquist condition, however,
there is no image band filtering present which causes that signal processed this way is
more prone to be jammed.
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Fig. 3.4: The quadrature (complex) mixing.
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Fig. 3.5: Spectra of mixer inputs and a mixer output in the quadrature mixing scheme.

For the complex 1x mode, the second argument has to be set to 1. For the complex 2x mode,
set it to 2.

adcBufCfg is a mandatory command with 5 arguments allowing configuration of the adc samples
buffer. The arguments are:

1. Subframe index. This argument offers possibility to apply differend adc buffer configu-
rations for different subframes if the advanced frame configuration mode is used. To use
the cli command for a particular subframe, the subframe index of the subframe has to
be here. If we wanted to use the same configuration of the adc buffer for all subframes
(advanced frame configuration mode is not used), the value -1 has to be entered.

2. adc output format resolves between complex (value 0) and real (not even possible in ti
awr1642boost) sample format.

3. Sample swap determines positioning of the I and Q samples in one bin of the adc buffer.
Only the option “I first (on the lsb), Q second (on the msb),” expressed by the value 0 is
possible.

4. Channel interleave. For details, see [22, 31]. Only value 1 is supported for the evm.
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5. The argument called chirp threshold stands for a number of chirps accumulated in the adc
buffer before the chirp interrupt signal is emmited, i.e. before the processing of the values
in the buffer is started. The value of the argument could be from 1 (chirp interrupt emmited
after every single chirp) to 8 (at most 8 chirps in the buffer waiting to be flushed). Setting
more chirps could help the processing to be more efficient. There is also a special value of
this argument—zero—that means “Set the maximum possible chirp threshold.”

profileCfg is a mandatory command with 14 arguments setting up chirp signal and timing param-
eters for one subframe. A subframe is one block of a frame. In one frame there could be the same
subframe repeated many times (the standard (legacy) mode) or up to four different subframes
in a row, repeating as an ordered sequence in a frame. For more details, see the description of
the dfeDataOutputMode cli command above, or [31].

Before the arguments are listed, the nomenclature should be explained. In the time – frequency
diagram of a pair of adjacent chirps (Fig. 3.6) all the variables used later in the description of
arguments are expressed.

Ti Tr

Tadc

Tt

Ts
adc

Fig. 3.6: Two adjacent chirps of one subframe. Ti is the idle time, Tr the ramp time, Tadc the ADC
sampling time, Ts

adc the ADC start time, and Tt the transmission start time.

The arguments of the cli command are:

1. Profile identifier. For the standard frame configuration (all subframes equal), there has to
be only one profileCfg command within a configuration file and the argument could get
any value. For the advanced frame configuration mode, there has to be one profileCfg
command for every subframe and the argument could get an arbitrary value, but different
for each subframe. All the following arguments are proper to one subframe.

2. Start frequency of the chirp in GHz. Could get any value from 76 to 81.

3. Idle time in µs. Could get any value from 0 to 524287.

4. adc start time in µs. Any value from 0 to 4095 is allowed.

5. Ramp end time in µs. Values from 0 to 500000 are allowed.

6. (na) tx output power backoff.

7. (na) tx phase shift.

8. Frequency slope of the chirp in MHz µs−1. Could get values from -2072 to 2072.

9. Transmission start time in µs. That is time between start of a transmitter and the start of
the ramp. Values from -4096 to 4095 are permissible.

10. Number of adc samples taken during the adc sampling time Tadc. Could get value of any
multiple of 4 from 64 to Ns,max, where Ns,max =

size of sample memory
(size of one sample)(number of rx antennas) =

16384
4Nr

.
For 4 rx antennas, the maximum allowed value is 1024.
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11. adc sampling frequency ( fp) in kHz. The valid range is from 2000 to 37500.

12. The first hp filter cutoff frequency. Between the mixer and the sampler (adc), there is
a cascade of two high pass filters to suppress the low frequency signals. There are four
options for the cutoff frequency for each of them. For the first filter, setting the argument
to 0 means 175 kHz, 1 means 235 kHz, 2 means 350 kHz, and 3 is 700 kHz.

13. The second hp filter cutoff frequency. The same description as 12., but different mapping
of argument values to cutoff frequencies: 0 means 350 kHz, 1 means 70 kHz, 2 means
1.4 MHz, and 3 is 2.8 MHz.

14. Gain of a vga (variable gain amplifier) placed after rx antennas expressed in dB. Allowed
values range from 24 to 52.

chirpCfg is another mandatory cli command. It takes 8 arguments and serves for setting the basic
parameters of chirps in particular subframe. For each subframe, there could be many chirpCfg
commands. Each one of them sets the parameters for chirps from start index to end index.
Therefore, each subframe may contain many bursts of chirps varying in the chirp parameters.
The arguments are:

1. Chirp start index. Could get any integer value from 0 to 511. Its value has to be lower or
equal as the value of the next argument, chirp end index.

2. Chirp end index. Allowed are integer values from the value of chirp start index (inclu-
sively) to 511.

3. Profile identifier. The value has to be the same as the value of the profile identifier in the
profileCfg command corresponding to the adjusted subframe.

4.–7. na.

8. tx antenna enable mask. The chirp could be transmitted by tx1 only, tx2 only, or we do
not care and the two antennas could be used for transmission alternately. The binary mask
has two digits: the first one is for the tx1 and the second for tx2. Digit 1 means “allowed,”
digit 0 “not allowed”. The value of the argument is a decimal representation of the binary
mask. For example, if only antenna tx1 was allowed, the argument would get the value
(102)10 = 2.

frameCfg is a command that is mandatory only for the standard (legacy) frame configuration mode.
In that mode each frame contains only one type of subframe. The subframe is repeated until
the number of repetitions meet the value proper to the frame. The subframe is made of at
maximum 512 chirps those do not have to be all the same. Number of subframe repetitions
within a frame could be at most 255. The command’s 7 arguments are:

1.-2. Chirp start index and chirp end index, respectively. The allowed values and the logic
behind is exactly the same as with the chirpCfg command.

3. Number of repetitions of the subframe within a frame. The allowed values are powers of
2 between 16 to 255.

4. Number of frames overall. After transmission of that many frames, the evm stop transmit-
ting at all. The value could be set to any integer from 1 to 65535, inclusively, or to zero to
indicate infinite transmission.

5. Frame duration in ms. The allowed values are from 1 to 1000, however, it has to be ensured
that the duty cycle of the frame is less than 50 %, i.e. if the overall duration of chirps in one
subframe set by the chirpCfg command is tc and the number of repetitions of a subframe
within a frame is set to nr, the value of this argument should be greater than 1000(tcnr/2).
For an explanation of the duty cycle of a frame, see Fig. 3.7

6. na. Has to be set to 1.
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7. Frame trigger delay in ms. According to [31], the delay could avoid interference if more
than one sensors of the same kind as ti awr1642boost are employed near each other.
Allowed values range is not listed but the we expect the typical values to be from 0 to few
tens of microseconds. In all of the example configuration files this argument gets zero.

> 50% < 50%

Fig. 3.7: A frame. A duty cycle is a ratio between the overall duration of chirps and the overal duration of
the idle time.

lowPower is a mandatory cli command with two arguments of the fixed form (in case of ti awr1642boost
board). Since the first argument has no meaning and should be set to 0, and only the low power
ADC mode is supported, the two arguments are always 0 and 1, respectively.

guiMonitor is mandatory and sets which data are sent to an user via the uart. All arguments but
the first one are binary with the positive logic (i.e. 1 means to transmit, 0 means not to).

1. Subframe index. If the advanced frame configuration was used, this value has to match
the subframe index value of the adjusted subframe (see the profile identifier argument of
the profileCfg command). If legacy frames are used, this value has to be set to -1. If
the same guiMonitor configuration is intended to be used for all the subframes of the
advanced frame configuration, set this value to -1 as well.

2. Detected objects. For each of the detected objects in the radar’s field of view the detected
objects structure contains its range index, Doppler index, peak value, and spatial (x, y, z)
coordinates. The range and Doppler indices could be transformed to range and velocity
by multiplication by constants Cr and Cd, respectively. The constants could be computed
as [22]

Cr =
c0 fp

2SNfft

Cd =
c0

2 f1(Ti + Tr)Nc

(3.1)

where c0 is velocity of em wave’s propagation, fp is sampling frequency, S is a frequency
slope of the chirp, Nfft is number of range bins (the 10th argument of the profileCfg
command), f1 is the starting frequency of the chirp in the subframe (the second argument
of the profileCfg command), Ti and Tr are idle time and ramp time, respectively (the
third and fifth argument of the profileCfg command), and Nc is number of chirps per
frame. Nc could be computed as number of subframes in frame (the third argument of the
frameCfg command) multiplied by overall number of chirps in the subframe. The number
of chirps in a subframe is given as

∑
i∈chirpCfg

(stop index)i − (start index)i. (3.2)

In (3.2) the iteration is proceeded along the chirpCfg commands proper to the examined
subframe.
The peak value is 2d-fft peak value of the cell at the range index and the doppler index.
The value is unitless and the bigger it is, the stronger the significance of the object at
the given range index and velocity index is. Only objects which passed the peak grouping
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procedure are transmitted within the structure. There are two possible peak grouping
schemes according to [22]: For both of them, the following is proceeded:

1. The cell under test (cut) is put to the center bin of the 3× 3 grid.
2. The rest of the grid is filled by the cells neighbouring to the cut (see Fig. 3.8).

Then the cut does pass the peak grouping test (is said to be peak), if its 2d-fft value is
higher than any of the reference cells. The two implementations differ in the reference cells
selection. For the all-neighbours-based implementation (Fig. 3.8(a)), the reference cells are
all cells in the close vicinity of the cut. For the second—cfar-based—implementation
(Fig. 3.8(b)) the reference cells are only those cells those passed the cfar algorithm. cfar
(constant false alarm rate) will be explained later in the description of the cfarCfg cli
command. The spatial coordinates’ values are in meters.

3. Range profile. These are the fft values of the row of range – Doppler matrix with zero
Doppler index. The range profile vector has high values (peaks) at the positions corre-
sponding to ranges of detected objects. Two objects at the same range cannot be resolved
in the range profile. Since there are multiple virtual antennas present, this value is a base-
two logarithm of the elementwise product of the values for particular virtual antennas.

4. Noise profile. It is assumed that there would not be any objects in the field of view, which
velocity falls into the highest Doppler bin. Consequently, we could expect the row of the
range – Doppler matrix with the highest Doppler index to contain only the fft values of
noise. The handling of the multiple virtual antennas case is the same as with the range
profile.

5. Range – azimuth heatmap. This is the content of the zero-Doppler range – Doppler ma-
trix rows for all the virtual antennas, as is depicted in Fig. 3.9. To extract the azimuth
information from hence it is necessary to compute the dft along the virtual antenna axis.

6. Range – Doppler heatmap. The range – Doppler heatmap is the computationally most
demanding structure of the original firmware’s portfolio. It contains the full 2d-fft image
of the scene. It is divided to range bins in one dimension, and to Doppler bins in the
second dimension. If multiple virtual antennas are allowed, the values of the overall (sent)
range – Doppler heatmap are the base-two logarithms of the elementwise product of the
range – Doppler heatmaps of particular antennas.

7. Statistics of the processing. The structure contains some information about timing of the
processing, or information about the load of the cpu.

(a) The all-neighbours-based
peak grouping

(b) The cfar-based peak group-
ing

Fig. 3.8: The two possible schemes of peak grouping in the original radar firmware. The blue cell is the
CUT, the cells with the black dots passed the CFAR detection. The red lines mark comparation between
the FFT values of cells.

cfarCfg is mandatory and determines parameters of cfar (constant false alarm rate) processor for
given subframe. cfar is a technique arranging for constant rate of false feature detections in
signal [34]. The idea behind it is to monitor the noise power at a vicinity of each signal sample,
and adjust the detection threshold according to it. Assume the signal from Fig. 3.10. It is obvi-
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Fig. 3.9: The range – azimuth heatmap structure. The cells contain complex ADC samples.

ous that the detection of the peaks with no additional signal processingii cannot be satisfactorily
done with one overall threshold. The cfar processing is essentially an adaptive processing tech-
nique with a specific goal. The block diagram of general cfar detection is depicted in Fig. 3.11.
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Fig. 3.10: Peaks superimposed on the sine signal with AWGN.

The input signal is assessed sample by sample and the examined sample is denoted as cutiii. In
the Selection of reference cells block, an algorithm has to be implemented that determines which
of the cells other than the cut are employed in a calculation of the threshold. The block of
Threshold estimation estimates the most appropriate threshold level for the cut out of the cells
selected by the preceding block. The terminating block then just decides whether the feature is
of is not present in the cut according to the estimated threshold level.

Signal samples

cut

Selection of
reference cells

Threshold
estimation Decision

Fig. 3.11: The block diagram of general CFAR detection.

According to [22], there are 3 particular cfar schemes implemented in the original firmware:

CA-CFAR (Cell-averaging cfar) is the simplest of them and will be explained with reference to
Fig. 3.12. In the picture there is a signal vector which peaks we would like to find. For each

iiKnowing that the peaks are superimposed on the sine signal with the known frequency and amplitude, that will be not
a hard task to detect the peaks without employing any cfar technique.

iiiThe name cell is more appropriate than the name sample here since the input signal could be generally n-dimensional.
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cut (sample), the active cells (the cells contributing to the result for the cut) are defined by
the maximum and minimum distance from the cut. The active cells are filled by light blue
in Fig. 3.12. From them an average is calculated and the value of the cut is compared with
the average. If the value of the cut was lower than the average, then the null hypothesis
(There is not a peak in the cut) is confirmed; Otherwise, we declare that there is a peak
present in the cut. The cells nearer to the cut than the minimum allowed distance are
called guard interval. The cells near the boundary of the sample vector could be handled
many ways, however, the firmware enables only these two [22]:

Cyclic mode, with which the sample vector is assumed to be cyclic (so the first and the last
cell are connected). The number of active cells and the number of cells in the guard
interval are constant for each cut.

Non-cyclic mode, that simply do not use the cells those are not available and computes
the average from the available ones.

CUTActive cells

Guard interval

Fig. 3.12: CA-CFAR.

CAGO-CFAR, CASO-CFAR (Cell-averaging greatest/smallest of cfar). These are the tech-
niques suppressing two weak spots of the traditional ca-cfar, both occuring in situations
where the cut lies on the border between two different noise/clutter regions [35]:

Considering a clutter to be a peak of the useful signal. The cago-cfar could help here.
Not detecting a peak because of too strict threshold. The caso-cfar could help.

With them both the guard interval works the same way as in the traditional ca-cfar.
However, the mean is computed separately from the cells on the left side of the cut and
from the cells on the right side of the cut. The threshold is set as the greatest of the two
in the cago-cfar, and as the smallest of them in the caso-cfar.

In the detection matrix (see 1.3.4) the cfar detection could be done in two directions – for each
of the rows (range dimension) or for each column (Doppler dimension). When the cfar is
already performed in columns/rows of the matrix, the cfar in the second dimension could be
performed in only those rows/columns which contain the detected peaks. The cli command
itself has 8 arguments:

1. Subframe index. The same rules hold as for the subframe index arguments in the previous
cli commands.

2. Processing direction. Zero indicates range direction, one the Doppler direction. There have
to be exactly 2 cfarCfg commands for each subframe: One for each of the processing
directions (range/Doppler).

3. cfar mode. Zero stands for the ca-cfar, 1 for the cago-cfar, and 2 for the caso-cfar.

4. Number of the active cells in one side of the cut.

5. Number of the guard cells in one side of the cut.

6. Noise sum divisor. When the average value of the noise cells (active cells) is calculated,
the values are first summed and then divided by the noise sum divisor, i.e. the number
of active cells which were summed. In the ca-cfar mode, the value is double the fourth
argument, in the caso- and cago-cfar it is exactly the value of the fourth argument.
Nevertheless, the cfarCfg command needs the value of the divisor expressed in number of
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positions to shift the binary representation of the sum by. The value could be computed from
the divisor d as log2(d). That also implies the need for selecting the overall number of
active cells as a power of 2.

7. na.

8. Detection margin over the cell average. This is a value M by which the average of the
active cells are multiplied to obtain the threshold. The cut is then declared to be a peak
if it outgrows the threshold. The value of this argument is not very straightforward and
could be computed as [31]

Mcli =
256 · 20 log(M)Nr Nt

6
(3.3)

where Mcli is the number to be entered as the argument, and Nr and Nt are number of rx
and tx antennas, respectively.

peakGrouping is another command mandatory for each subframe. It configures the peak grouping
scheme which is a tool for reducing peak clusters to standalone peaks. Depending on the
range and Doppler resolution and the overall measurement goal, the peak grouping could
be enabled or disabled. There are two algorithms for the peak grouping implemented in the
original firmware – the all neighbours peak grouping and the cfar-only peak grouping. For their
descriptions see the description of the second argument of the guiMonitor command or [22].

The cli command requires these 6 arguments:

1. Subframe index. See the subframe index argument description of the guiMonitor command.

2. Peak grouping scheme selection. Number 1 means the all neighbours scheme, number 2 is
for the cfar-only scheme.

3., 4. Enable flag for peak grouping in the range and the Doppler directions, respectively. 1
means to enable it, 0 means to disable it.

5., 6. Maximum and minimum range index to consider, respectively. The cells with index lower
than the minimum index or higher than the maximum index are not considered at all –
even if there were peaks detected on those positions, they would be neglected.

multiObjBeamForming configures a simple algorithm allowing the processing to distinguish between
two objects at the same range and Doppler bin. The only way how to resolve them is to employ
the aoa processing (see 1.3.6). The algorithm implemented in the demo firmware observes the
result of the dft along the virtual antennas dimension. If the highest peak value of that was
Fmax and the second highest value is higher than CmoFmax, then the object in the corresponding
range/Doppler position is put to the resulting list of objects twice. The Cmo is a constant set
by one of the arguments of this command. This algorithm allows only for detection of less or
equal than 2 objects of the same range/Doppler bin. The arguments are:

1. Subframe index – the same subframe index as with many of the previously described
commands.

2. Enable swith. Given 0, the feature is disabled and only one object is detected for each of
the range/Doppler bins. Given 1, the detection of the second object is allowed.

3. Cmo ∈ 〈0; 1〉.

clutterRemoval is a mandatory command for configuration of the very simple static-clutter-removal
algorithm. If such processing was enabled by the second argument of this command (binary,
positive logic), then for each vector entering the fft (in both range or Doppler dimension), its
mean value is subtracted. The first argument is the subframe index.
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calibDcRangeSig is mandatory and serves for calibration of the interference in the range dimension
caused by coupling between the tx and rx antennas. When the signal from the tx antenna
approaches the rx antenna untimely (before it is reflected from a reflector), the mixer outputs
an unwanted dc signal (see Fig. 3.13). The signal of near-to-dc frequency is also produced by
objects in close vicinity of the radar. With no objects occupying certain range bins present it is
possible to calibrate the dc bias by subtracting the mean of signal in the those range bins from
all the other range bins. That is exactly what the algorithm implemented in the firmware does.

Fig. 3.13: The coupling between TX and RX antennas.

It requests these arguments:

1. Subframe index. See the description of the subframe index argument with the guiMonitor
command.

2. Enable swith. 0 to disable the calibration, 1 to enable it.

3, 4. The index of the highest of the low range bins (I1), and the negative index of the lowest of
the high range bins (I2) to serve as a source of the background, respectively. It is assumed
that in the first (I1 − 1) (zero-based indexing) and in the last (−I2) range bins there are
no objects present. From these boundary bins, the background is calculated as their mean
value.

5. Number of chirps inputting the calibration process. The calibration does not have to be
provided continuously. The background could be estimated from the first chirps at the
beginning of measurement, and then also the boundary bins employed in its calculation
become usable. According to [31] this argument has to get a power of 2.

Other mandatory CLI commands. These contain commands extendedMaxVelocity, compRangeBi-
asAndRxChanPhase, and measureRangeBiasAndRxChanPhase. The first of them is there to sup-
press an ambiguity in Doppler estimation and therefore to allow for higher maximum unam-
biguous velocity. The second and the third are used for calibration of the channel phase. These
commands were not addressed in our design and we used directly their forms from the example
configuration file distributed with the mmwave sdk [31]. For their descriptions, see [22, 31].

sensorStart is the last mandatory command. It closes the configuration and turns on the trans-
mission, reception, and processing based on the cli commands between it and the sensorStop
command.

3.1.3 Received data format

The processed data structures are sent via uart as a binary stream with packetized information. The
content of the stream depends on arguments of the guiMonitor command, however, its structure is
fixed and displayed in Fig. 3.14.

The description of the particular fields could be found in the [22]. Since the original documen-
tation is split into documentation of several data structures and one can spend a lot of time putting
the parts together, we find it advantageous to summarize the structure by few tables in appendix A.
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Tag
Length

Payload

Tag
Length

Payload

Tag
Length

...

...

Header

Header

Tag
Length

Magic word (8 · 1 B)
Version (4 · 1 B)

Packet length (1 · 4 B)
Platform (1 · 4 B)

Frame number (1 · 4 B)
Time (CPU cycles) (1 · 4 B)
N detected objects(1 · 4 B)
N data structures (1 · 4 B)

1 · 4 B
1 · 4 B

(N data structures)
times length dependent

on the particular
structure tag and on

how the device is
configured.

Beginning of the packet

End of the packet

Fig. 3.14: The structure of the UART data stream and the packet.

Together with Fig. 3.14 the tables give a complete set of descriptions needed to read an uart data
stream based on the demo firmware. An implementation of an uart data parser based on these
structure descriptions is commented in Sec. 4.1.1.

3.2 Algorithms for velocity evaluation

Not all the quantities addressed in Chapter 1 are influenced by velocity of targets. In fact, there are
only two of the messages which contain velocity information: the detected objects list, and the range
– Doppler heatmap. In this section, the algorithms for its extraction out of these uart structures are
described.

3.2.1 Mean of Doppler bins argmax

This algorithm uses range – Doppler heatmap data.
When the radar is travelling horizontally over the perfectly flat ground plane, Doppler shift in-

fluences spectrum of each of the range bins. The ground plane behaves as a continuous array of
elementary reflectors. From the perspective of the radar, elementary reflections sum up and the
ground plane is equivalent to an array of joint reflectors corresponding exactly to range bins given by
the chirp train configuration. In the case of intrinsic radar antenna (spherical radar wave), the joint
reflectors are not uniformly spaced; The geometry is explained by Fig. 3.15. In that case, the more
distant a joint reflector, the lower is power of reflected signal, and the smaller is an area related to the
joint reflector. Both of these facts lead to decrease in spectral peak magnitude with increasing range
bin. As a consequence, also papriv decreases because the noise floor does not change over the range
bins.

ivSee Sec. 3.3.6.



42 CHAPTER 3. SIGNAL AND ITS PROCESSING

Ground plane

Radar

Fig. 3.15: Geometry of a radar with an intrinsic antenna moving horizontally above ground. The joint
reflectors with centers marked by black points correspond to range bins. Note that difference between
distance from the radar to the closest point and to the furthest point of each joint reflector area marked by
blue line is constant.

In case of directional antenna (that is the case of ti awr1642boost) the decrease of papr with
range is even more observable. The presence of the same Doppler shift over all range bins is, however,
present and the range – Doppler heatmap is expected to look like the one in Fig. 3.16.
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Fig. 3.16: Expected range – Doppler heatmap for a case of radar moving horizontally over the ground with
positive velocity.

A straightforward approach is to evaluate an argument of Doppler maximum for each range bin
and calculate mean of this Doppler argmax vector. The approach results in a fractional Doppler
bin reflecting the horizontal velocity of the radar. A range – Doppler heatmap measured by ti
awr1642boost with Doppler maxima highlighted is in Fig. 3.17. Since in the higher range bins a peak
is hidden in noise, it is important to restrict the considered range of range bins to the lower range
parts. The highest range bin to be considered could be given by thresholding a moving mean of peak
to average power ratio (see Sec. 3.3.6), or—more practically in case when only one fixed chirp train
configuration is used—by setting it to a fixed value. A Python example of the former is provided in
Lst. C.2.

There are basically two problems to solve before using this algorithm. The first of them is to
choose an appropriate range of range indices from which the mean of Doppler bin argmax (µD) is
computed. Since the appropriate range depends on the chirp configuration employed, we selected the
right range after finding out the right configuration in Sec. 3.3. The second is to find the dependence
of µD on horizontal velocity of the radar which is addressed in Sec. 3.4.

3.2.2 Mean of spectral centroid of Doppler vectors

This algorithm uses range – Doppler heatmap data.
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Fig. 3.17: Real range – Doppler heatmap with Doppler maxima highlighted. In higher range bins a peak is
hidden in noise.

An approach similar to the previous uses spectral centroid to find a peak in the Doppler vectors
(columns of a range – Doppler matrix). Spectral centroid is simply centroid, with spectrum samples
as an input vector. In terms of Doppler vectors d directly in frequency domain (they arrive in that
form from the evm), the spectral centroid Λ (unit: index) is defined as

Λ =
∑i dii
∑i di

, (3.4)

where di is the ith element of the doppler vector d. The iterating index in summation ∑i iterates over
all indices of the input vector (0, 1, · · · , length of d− 1).

The use of centroid instead of direct maximum could help to

• Lower rate of erroneous maxima selections when peaks are not perfectly “sharp” (occupy more
than one Doppler bin each).

• Suppress impact of strong reflectors at unexpected ranges, e.g. bumps on a conventionally flat
ground plane.

Several experiments were performed to see how the centroid-based statistic for velocity evaluation
acquired from a rdh differs from that of the Doppler-bins-argmax-based one. The experiments re-
vealed the centroid-based statistic mined from a rdh without any modification is generally too little
sensitive to horizontal velocity changes. It is needed to transform the Doppler vectors to mark off the
high values of the Doppler vectors and their low values. Such transformation brings extra computa-
tional requirements to the processing chain. On the other hand, the benefits of Λ-based evaluation
are not that remarkable because the Doppler bins argmax evaluation computes mean over all the
range bins that itself makes the results less sensitive to ground plane bumps or erroneous maxima
selections.

3.2.3 Mean Doppler of detected objects

This algorithm uses detected objects data.
More than algorithm, this is only another source of information about Doppler content in the

field of view of the radar. According to Sec. 3.1.2, the detected objects structure in the uart packet
contains not only spatial coordinates of the detected objects, but also their range bin and Doppler
bin. The detected objects are the objects (range – Doppler matrix cells) which pass the cfar and peak
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grouping scheme defined by configuration. The fact yields that there is less information in detected
objects when compared to range – Doppler matrix, however, it disposes with an appreciable advantage
of a significantly lower size needed to be sent over uart. Referring to Sec. 3.2.1, the setup with a radar
targeting a ground with some depression angle α leads to a rdh with a “ridge” occupying a small
number of doppler bins and many range bins. The matrix enters cfar processing that—together with
the peak grouping scheme following right after it—selects some of the cells and states that there are
objects present on their respective positions. Because we cannot generally say which cells of the ridge
are the important ones and which are negligible, the cfar threshold scale in range direction has to be
set low enough. As a consequence, most of the cells of the rdh will pass the range-cfar. The second
dimension cfar then has to let the ridge untouched, and, if possible, discard all the other values.
That will, however, require one of adaptive cfar techniques. Not only that an adaptive cfar scheme
is not present in the original firmware but it will require that much processing and computation,
that the advantage of faster uart transmission caused by smaller size of detected objects packet than
that of range – Doppler heatmap, will be lost. We do not use the detected objects message in the final
implementation of velocity evaluation.

3.3 Chirp train design

Performance of the algorithms from the previous section (3.2) depends on the design of the chirp
train used. Although the general shape of a pulse (an upchirpv) cannot be modified using the original
firmware, the firmware’s cli provides good options for adjusting the timing of the chirps and spaces
between them, and combining various chirps to the final pulse train. Here, the chirp parameters are
reviewed in terms of its impact to the range – Doppler matrix as the structure on that the Doppler
bins argmax velocity evaluation algorithm is based. A theoretical insight to their impact will be given
as well as real examples from measurements. Refer to the Chapter 1 for some of the explanations of
conclusions given in the following subsections.

3.3.1 Start frequency of the chirp

Assuming a perfect hw, range estimation should not be influenced by the starting frequency in any
way. A distance estimate depends only on frequency of the downconverted signal. Moreover, the
lp filters in the receiver should suppress signal of any frequency falling to the starting frequency
allowed range.

The velocity estimate depends directly on the starting frequency in both the rigorous (1.20) and
the simplified (1.22) approach. Nevertheless, the velocity estimate is based on an observation of the
phase difference between adjacent chirps and the change in starting frequency influences only the
maximum unambiguous velocity. Referring to (1.23) the maximum unambiguous velocity |vmax| does
not change significantly in the direction of f1 axis, which could be seen in Fig. 3.18.

Neither the wave propagation is influeneced by the starting frequency in a significant manner:
The wavelength difference between the 76 GHz and the 81 GHz (border frequencies of the allowed
range for ti awr1642boost) waves is 0.243 mm with the respective wavelenghts being 3.947 mm and
3.704 mm.

Experiments confirmed the assumptions: No significant difference in performance of a range –
Doppler heatmap has been observed between cases with various starting frequencies between 77 GHz
and 79 GHz. All the other parameters remained constant throughout the cases. Higher starting fre-
quencies were not considered since very low frequency slope (causing too high maximum discernible
range) would have been needed then in order to fit the whole chirp within the frequency range of
the ti awr1642boost.

vThe upchirp is a common name for a chirp with a positive frequency slope; The opposite is called downchirp.
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Fig. 3.18: Dependence of maximum unambiguous velocity on starting frequency of a chirp and the chirp
duration.

3.3.2 Idle time

In all equations of the Velocity estimation section (1.3.3), The interchirp period Tc has been assumed
such that the particular chirps follow immediately after each other, without any interchirp gap. That
is not the real case though. In case of a single transmitter, it is impossible to achieve a frequency shift
of the chirp bandwidth in zero time, as well as it is not desirable even in the multiple tx casevi.

The idle time parameter therefore has an impact on maximum unambiguous velocity as well as on
velocity resolution. As is sketched in Fig. 3.19, the interchirp period Tc covers the idle time Ti, the
adc sampling time Tadc, and the complement of Tadc to the full ramp time.

TadcTadc Ti

TcTc

Fig. 3.19: On impact of idle time on estimated velocity.

According to the description of the frameCfg cli command (see section 3.1.2) at least half of the
total transmission time has to be idle. Assume that the sampling is carried out during the whole
ramp so (referring to Fig. 3.19) Tc = Tadc + Ti. If we express the adc sampling time as a fraction of
the idle time tadc ∈ (0; 1〉, we obtain

Tc = Ti(1 + tadc). (3.5)

Having tadc fixed, we can observe the shift in |vmax| compared with the case of 50 % duty cycle, i.e.
tadc = 1.

Generally, prolongation of idle time relatively to ramp time with overall chirp time fixed leads to
steeper frequency slope and therefore lower maximum discernible range (1.15). Its absolute prolonga-
tion causes maximum unambiguous velocity be lower and therefore velocity resolution being better.
Obviously, a side effect of that is slowdown of the whole processing. To conclude that, for velocity

viEven if the zero time delay between adjacent chirps was achieved using a time overlap of respective transmissions of tx1,
tx2, etc. it will not be achieved in the rx signal.
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Fig. 3.20: The dependence of difference between maximum unambiguous range between tadc = 1 and
lower tadc on Ti for various lower Ti values.

estimation it could be advantageous to prolong idle time at the expense of shorter ramp. With rela-
tively shorter ramp (assuming Tadc = Tr) we can accomplish the mur fitting exactly in the maximum
useful range resulting from an area of reflection for the particular radar setup (see section 2.2.4). By
the idle time value itself velocity resolution could then be adjusted.

In Fig. 3.21(a) we can see that velocity resolution depends on Ti, Tr and overall chirp duration Tc
which is its sum. In Fig. 3.21(b) there is the dependence of mur on idle time for fixed bandwidth and
overall chirp time. Range – Doppler heatmap (rdh) plots addressing adjustment of Ti are introduced
as Fig. B.1 and Fig. B.2.
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(a) Velocity resolution as a function of ramp time and idle
time. In the plot N = 128 samples of the ramp and starting
frequency of 77 GHz has been used.
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(b) Mur as a function of idle time for fixed bandwidth of a
chirp and fixed overall duration of a chirp.

Fig. 3.21: How idle time changes performance of velocity and range estimation.

In [32, p.9] there is a table with minimum Ti suggestions for various bandwidths of a ramp. It
assumes sampling frequency fp higher then 5 MHz. We have used the given values as a constraints
for our final chirp design.
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Ramp bandwidth (GHz) Minimum idle time (µs)

Less than 1 2
1 to 2 3.5
2 to 3 5

More than 3 7

Tab. 3.2: Times which the frequency synthesizer of the TI AWR1642Boost needs to overcome the gap
between the highest and the lowest frequency of a chirp. From [32, p.9], edited.

3.3.3 ADC start time

The adc start time Ts
adc has to be tuned so that the whole adc sampling time Tadc fits into the ramp

part. In terms of the notation from Fig. 3.6: Ts
adc < Tr − Tadc. If the condition is met, the value of

Tadc has no impact on performance of the range – Doppler matrix.

3.3.4 Ramp time

The ramp time Tr together with frequency slope S determine bandwidth Br of a chirp. The Br should
not be confused with the bandwidth B from equation (1.14); Bandwidth B is only a bandwidth of the
part of a ramp on which sampling is done and it depends on number of samples taken, sampling
frequency, and the slope. Bandwidth Br is always greater than B and is determined by

• bandwidth B which it has to cover

• limits of the radar transceiver.

The two bandwidths are explained in Fig. 3.22.

BBr

adc sampling

f

t

Fig. 3.22: On the two bandwidth parameters of a chirp. For the timing parameters of a chirp, refer to
Fig. 3.6.

The ramp time parameter should be set in a minimal manner: Its value should be slightly bigger
than Tadc + N/ fp with N being the number of samples taken during one chirp and fp being sampling
frequency. The reason for setting the parameter slightly bigger is a time margin for various delays
which could occur in the circuits.

As could be seen from Fig. B.3, the only effect of prolonging ramp time and concurrently leaving
the sampling frequency and number of samples constant is a change in vmax and ρv.

3.3.5 Frequency slope

Referring to section 1.3.3, neither maximum unambiguous velocity nor velocity resolution is influ-
enced by the frequency slope. Nevertheless, an impact of the slope on mur (maximum unambiguous
range) and range resolution is surely present. The steeper slope is, the lower ramp time is required
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for a fixed bandwidth value. If sampling time Tadc equals ramp time Tr, both Tr and S influence
range resolution and mur. Dependence of ρd on ramp time and slope is depicted in Fig. 3.23
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Fig. 3.23: Dependence of range resolution on Tr and S, assuming Tr = Tadc.

3.3.6 Peak to average power ratio in range – Doppler matrix

When a radar, set up as described by Fig. 1.13, is travelling horizontally above conductive ground
and no obstacles are present (the radar “sees” only ground), elements of the ground surface perform
as elementary reflectors to it. Consequentially, the range – Doppler heatmap contains a “ridge”: a
Doppler peak in each range bin corresponds to particular velocity, and the Doppler value of the peak
is proper to all the range bins (see also Sec. 3.2.1). By examining moments of Doppler peak over
range bins, we are able to estimate velocity. Particular algorithms for that are described in section 3.2.

The chirp train has to be desined in order to maximize a (power) gap between the peak and
an average Doppler value in all range bins. The ratio between the maximum and average value,
averaged over all range bins will be called papr (peak to average power ratio). The name should not
be confused with papr in digital communications [36]. For each configuration, the average papr value
is indeed different. Maximizing it could be based on measuring it for all possible configurations, and
finding an argument (configuration) of its maximum. That, however, is not an acceptable approach
since the number of possible configurations is infinite. It is possible to use only some configurations
with the values of variables given by an N-dimensional grid. Nevertheless, from the previous sections
it is evident that some configuration variables could have higher impact on the papr value, while on
some other the papr could be independent at all. Each point in the N-dimensional configuration
space (or grid) requires reconfiguring the device. Measuring the average papr on an appropriately
dense grid would be very time-consuming, and will also include many spare measurements. It could
be therefore useful to have a model of papr based on some of the configuration parameters. Based
on it, we could find a region of the configuration parameter space where the papr is maximal, and
provide the measurements only in that region. In the following two sections, such model would be
found.

3.3.7 Model 1

A two-parameter model of papr has been developed using the following procedure:

1. A Python class for automatic radar configuration and papr calculation has been written. It
could be found on the attached cd in /possible_configurations/ folder. The basic usage
of the class is by calling its member function measure(self, n_measurements, n_packets,
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filename). Initially, the function opens the given filename in write (’w’) mode, and writes a
header to the very first line. The header is fixed:

1 f1[GHz] Ti[us] Tr[us] S[MHz/us] fs[kHz] papr[-]\n

Listing 3.2: A fixed header of the file on an output of the measure function.

After writing the header, the function does the following steps repeatedly n_measurements
times:

i. Selects random chirp train parameters. The random selection does not perturb the whole
configuration; it only changes the parameters Ti, Tr, S, and fp of the profileCfg cli
command of the original firmware. Their values are selected from equally-spaced samples
defined by Tab. 3.3. In each iteration and for each variable, an index is generated from
uniform distribution U{0, Number of samples}. The corresponding value of the variable
is then used for configuring the device.

Parameter Minimum Maximum Number of samples

Ti 5 500 100
Tr 5 500 100
S 10 150 100
fp 50 8000 100

Tab. 3.3: The grid of parameters for random selection. The values are in units of the profileCfg command
– time parameters in µs, frequency slope in MHz µs−1, and sampling frequency in kHz.

ii. Generates a configuration file with the values from the preceding step, opens the uart port,
and configures the radar evm. If the last command of the configuration file—sensorStart
command—is not confirmed (the ’Done’ backlog is not sent via uart), step i. is repeated.
Otherwise, range-averaged papr is computed from the range – Doppler matrix sent in
packets. Together with values of the variable parameters from the configuration file, the
average value of such papr computed from n_packets subsequent packets is stored in a
new line of the file specified by filename.

An example of the final data file filename could be seen in Lst. 3.3.

1 f1[GHz] Ti[us] Tr[us] S[MHz/us] fs[kHz] papr[-]
2 77 390.0 65.0 36.87 5269.7 1.2528413
3 77 375.0 40.0 89.19 4707.58 1.3614658
4 77 405.0 150.0 24.14 3422.73 1.212606

...
98 77 145.0 90.0 15.66 2860.61 1.2506488
99 77 355.0 100.0 36.87 4065.15 1.2489502

100 77 20.0 125.0 12.83 5831.82 1.1326853

Listing 3.3: An example file with measured PAPR for different profileCfg configurations

2. Level of papr has been measured for 200 valid configurations with 15 consecutive packets aver-
aged for each of the configurations. Only parameters of the profileCfg command varied; The
rest of the configuration file remained unchanged for all measurements:

100 sensorStop
100 flushCfg
100 dfeDataOutputMode 1
100 channelCfg 15 3 0
100 adcCfg 2 1
100 adcbufCfg -1 0 0 1 0
100 profileCfg 0 77 370.0 7 50.0 0 0 79.29 1 64 2298.48 0 0 30
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100 chirpCfg 0 0 0 0 0 0 0 1
100 chirpCfg 1 1 0 0 0 0 0 2
100 frameCfg 0 1 32 0 250 1 0
100 lowPower 0 1
100 guiMonitor -1 0 0 0 0 1 0
100 cfarCfg -1 0 0 8 4 4 0 5120
100 cfarCfg -1 1 0 4 2 3 0 5120
100 peakGrouping -1 1 1 1 1 63
100 multiObjBeamForming -1 1 0.5
100 clutterRemoval -1 0
100 calibDcRangeSig -1 0 -5 8 256
100 extendedMaxVelocity -1 0
100 compRangeBiasAndRxChanPhase 0.0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
100 measureRangeBiasAndRxChanPhase 0 1.5 0.2
100 sensorStart

Listing 3.4: A complete configuration file for PAPR measurements. Possible configurations varied only in
the blue line.

Resulting data have 4 degrees of freedom, excluding the value of papr which is to be mea-
sured/modeled. We observed that there is a very strong correlation between papr and fre-
quency slope. The result of Spearman’s correlation testvii is (R = 0.90; p < 0.01). From
Fig. 3.24(a) it is clear that the correlation is caused mainly by hw limitations. Additionally,
if we categorize the data according to its sampling frequency value (Fig. 3.24(b)), it is obvious
that also fp has a strong effect on value of papr.
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(a) Measured data.
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(b) Categorization according to fp value. The
smaller the slope of the linear fit is, the higher is
sampling frequency. Categorization is uniform and
bounded by maximum and minimum fp in data.

Fig. 3.24: Measured dependence of papr on S and fp.

The use of fp feature as the second parameter of the model is not random. It is based on the
correlation matrix of the features (Tab. 3.4). From that, it is clear that papr has the strongest
correlation with frequency slope S. The second strongest correlation of papr is with ramp time
Tr, however, Tr is strongly correlated to S. Since the third most strongly correlated feature,
sampling frequency fp, is almost uncorrelated to S, we have selected fp as the appropriate
second parameter of the model.

A general form of the first attempt to the model has been selected as

ζ(S, fp) = k( fp)S + q, (3.6)

viiNeither the papr values nor the values of S are normally distributed. Results of two-sided Kolmogorov-Smirnov test
(normal distribution, µ = 0, σ = 1) are (D = 0.15; p < 0.01) and (D = 0.17; p < 0.01) for papr and S, respectively.
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Tr S fp papr
Ti −.05 0.06 0.02 0.05
Tr −0.63 −0.05 −0.59
S 0.06 0.90
fp −0.34

Tab. 3.4: Correlation between the measured features.

where ζ is papr, k depends only on fp, and q is constant. Function k( fp) has been approximated
by polynomial of third order

k( fp) = a f 3
p + b f 2

p + c fp + d (3.7)

using the least-squares (lsq) optimality criterion, with coefficients of the polynomial approxi-
mation (a, b, c, d) = (−3.79 · 10−14, 6.33 · 10−10,−3.98 · 10−6, 1.15 · 10−2).
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Fig. 3.25: Lsq fits of dependence of fit slope of Fig. 3.24(b) on fp.

The q parameter of (3.6) has been estimated using lsq again as q = 1.1179. After calculating all
5 parameters, an error χ has been computed as

χ(S, fp) = ζmeasured(S, fp)− ζ(S, fp) (3.8)

for all available (S, fp) pairs. The error values have median very close to zero as could be seen
from Fig. 3.26, however, the error distribution is not normalviii. Since for a trustworthy model
the error distribution should be normal, we further inspected how the χ values are correlated
with the measured quantities. The results are in Tab. 3.5. The results have shown that the error
was still highly correlated to sampling frequency fp

The error has been approximated by a superposition of an exponential function and a linear
function with parameters A, B, C, D, and E

χ( fp) ∝ A exp(( fp − E)B) + C( fp − E) + D. (3.9)

For χ in its 95 % confidence interval, lsq fit has resulted in (A, B, C, D, E) = (5.008 · 10−2,
−3.645 · 10−4,−1.00 · 10−6,−1.431 · 10−2, 1.418 · 103). Error and its fit is depicted in Fig. 3.27.

An error of the corrected model

ζc(S, fp) = k( fp)S + q + χ( fp) =

= (a f 3
p + b f 2

p + c fp + d)S + q + A exp(( fp)− E)B + C( fp − E) + D
(3.10)

viiiShapiro-Wilk test results in (W = 0.92; p < 0.01).
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Fig. 3.26: Histogram of error from (3.8).

Measure Correlation

Ti (R = −0.03; p = 0.72)
Tr (R = −0.11; p = 0.12)
fp (R = −0.67; p < 0.01)
S (R = 0.23; p < 0.01)

Tab. 3.5: Correlation between model error χ and the measured quantities. Spearman’s correlation test has
been used.

2 3 4 5 6
·103

0

5

·10−2

fp [kHz]

χ
[−

]

95 % CI
Outliers
lsq fit

Fig. 3.27: LSQ fit of model error χ by function (3.9).

with parameters (a, · · · , d, A, · · · , E) has distribution much more symmetric around zero than
the error of the original model, which could be seen from histograms in Fig. 3.28. Even though
the error distribution is not normal, we consider the absence of significant bias a property that is
sufficient for the model. The corrected model (3.10) and the measured data are plotted together
in Fig. 3.29.

3.3.8 Model 2

The model from Section 3.3.7 is simple and mirrors the trend in data well. Nevertheless, its
derivation is rather ad hoc and there has been a vast chance that a more systematic approach



3.3. CHIRP TRAIN DESIGN 53

−4 −2 0 2 4 6
·10−2

0

20

40 Original model
Corrected model

χ [−]

C
ou

nt

Fig. 3.28: Histograms of error χ of the original model (3.6) and the corrected model (3.10).
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Fig. 3.29: The measured data together with the model of them. The color of the data points expresses an
absolute value of error χ.

to modeling would accomplish more accurate model. For that purpose, we have used Python’s
scikit-learn module [37].

Two linear regression models ζ2,1 and ζ2,2 with polynomial kernels have been used: The first
one have had a kernel of second order (deg(ζ2,1) = 2), the second one have had that of third
order (deg(ζ2,2) = 3). General form of the two-variable linear model with polynomial kernel is

ζ2,i =
deg(ζ2,i)

∑
m=0

deg(ζ2,i)

∑
n=0

cm,nxm
1 xn

2 , (3.11)

where x1 and x2 are the two parameters. We have used the same pair of parameters—S and
fp—which has the same reason as described in the previous section. The general model (3.11)
with our variables substituted in is

ζ2,i =
deg(ζ2,i)

∑
m=0

deg(ζ2,i)

∑
n=0

cm,nSm f n
p . (3.12)

Both variants of the model were trained and cross-validated using Monte Carlo cross-validation
with
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– 70 % of data for training, 30 % of data for testing.

– R2 (Coefficient of determination) as a regression score function.

Goodness of fit turned out to be better with the third order 2d polynomial used as a kernel,
which could be seen from histograms in Fig. 3.30. The distribution of R2 values also indicates
that the model is not overtrained.
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Fig. 3.30: Histograms of Coefficient of determination R2 for linear models with second order and third order
polynomial kernels.

The coefficients of the third-order polynomial model with R2 ∼ (Median = 0.991, iqr = 0.994−
0.988) are listed in Tab. 3.6. The error χ (3.8) within its 95 % confidence interval has normal
distribution (α = 0.05) with Kolmogorov-Smirnov test result (D = 0.096; p = 0.056).

Coefficient Value

c0,0 1.346
c0,1 −16.758 · 10−5

c0,2 3.489 · 10−8

c0,3 −2.353 · 10−12

c1,0 11.5 · 10−3

c1,1 −1.842 · 10−6

c1,2 8.627 · 10−11

c2,0 −4.488 · 10−5

c2,1 4.131 · 10−9

c3,0 8.407 · 10−8

Tab. 3.6: Coefficients of the linear model of PAPR with third-order polynomial kernel (3.12).

The modeled surface and measured data are depicted in Fig. 3.31.

3.3.9 Selecting the best configuration

For all the algorithms proposed above, a configuration parameter most important for ensuring
consistent and accurate velocity estimation is its average papr value. In sections 3.3.7 and 3.3.8
we have modeled papr using two-parameter models employing frequency slope and sampling
frequency. Since the model from Sec. 3.3.8 has exhibited better coherence with observed data,
we have selected it as the one with which we work further.
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Fig. 3.31: The measured data together with predictions of the linear model with third-order polynomial
kernel. The color of the data points expresses an absolute value of error χ.

Straightforward unconstrained adjustment of the parameters aiming to higher papr values is
not possible because of hw limitations. The constraints we have to address are those from the
following list:

Constraints related to fp only.

1. Maximum possible sampling frequency of the digital front-end (dfe). Its maximum value
is 18.75 MHz s−1 for complex sampling mode [22, 31]. Nevertheless, this constraint is not
relevant for us because—as the model reveals—we need to use as low fp as possible to
maximalize papr.

2. Minimum possible sampling frequency of the dfe. The original firmware does not allow
for sampling rates lower than 2000 kHz [38].

Constraints related to both fp and S.

1. Frequency range of the evm. As has been mentioned above, the ti awr1642boost could
only use chirps occupying frequencies from 77 GHz to 81 GHz. Taking into account that
it takes some time to gather the required number of samples during the chirp ramp, and
that the sampling could not start right after a ramp start, we have to manage for slope
S small enough not to reach the upper frequency limit 81 GHz. From the perspective of
this constraint it is also advantageous to use as low start frequency of a chirp as possible
(77 GHz).

2. Minimum number of samples for each chirp. With sample quantity, granularity of a range
– Doppler matrix in the range axis raises, which we could help the velocity evaluation
algorithms perform better. Referring to Sec. 3.1.2, the number has to be a multiple of 4
bigger or equal to 64.

Besides the constraints, we also need to take into account a gradient of papr. At each point of
the (S, fp)-plane, that makes a difference in papr increase or decrease whether we shift S, or
fp. Differences in both S and fp directions have been computed from papr model and a ratio

∆papr
∆ fp

∣∣∣
∆ fp=1 kHz

∆papr
∆S

∣∣∣
∆S=1 MHz µs−1

(3.13)
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has been expressed from them. The ratio (3.13) is plotted in Fig. 3.32. A conclusion induced by
the values of it could be

– For a region of small slopes and big sampling frequencies, there is almost no difference in
papr shift between shift of slope by 1 MHz µs−1 and shift of sampling frequency by 1 kHz.

– For a region of big slopes and small sampling frequencies, a change of fp by 1 kHz has
much higher impact on papr than a change of S by 1 MHz µs−1.
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Fig. 3.32: Scatter plot of ratio between a change in PAPR when fp is shifted by 1 kHz and a change in
PAPR when S is shifted by 1 MHz µs−1 for each point of the (S, fp)-plane. The second measure is always
considered constant.

A program has been written that finds out whether a configuration is possible for all points
of the given (S, fp)-grid. The program uses the following profileCfg parameter values and
dependencies:

Parameter Value

f1 77 GHz
Nfft 64

Tadc,s 7 µs
Tr 1.1(Nfft/ fp + Tadc,s)
Ti 7 µs

Tab. 3.7: profileCfg parameter values and dependencies employed in the program for detecting possible
configurations.

From given limits and quantity for both S and fp, it generates a grid. Then, it point-by-point
changes the profileCfg line of a configuration file and cathes a response for the last command
of the file (sensorStart). The response is “Done.” for successful configuration, and “Error -1”
for unsuccessful. As an output, it plots a scatter plot of the result (x and y coordinates S and
fp, respectively, z coordinate 1 for possible, 0 for impossible). The program is available on the
attached cd as config_finder.py in the /possible_configurations/ folder.

The program has been run for the first time on a wide grid of configurations: Range for S had
been set to (60, 200, num = 40)ix, and that for fp to (2000, 7000, num = 40). The measured
boundary between possible and impossible configurations is plotted in Fig. 3.33.

ixNotation (a, b, num = n) stands for a uniformly spaced axis of n values from a to b, both inclusively.
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Fig. 3.33: The boundary of possible configurations in (S, fp)-plane. All the points plotted represent possible
configurations. Color of the points display the modeled papr value.

As Fig. 3.33 reveals, there are two optimal configurations with respect to papr level:

1. S = 92.3 MHz µs−1, fp = 2000 MHz µs−1, other profileCfg parameters from Tab. 3.7.

2. S = 200 MHz µs−1, fp = 5717.95 MHz µs−1, other profileCfg parameters from Tab. 3.7.

Since the second option should have higher power consumption due to more dense sampling
and steeper ramp, we decided to use the first option as the right configuration for the final
application. Moreover, we have the luck that the range of ranges (0 m to 3.25 m) and the range
of velocities (−9.76 m s−1 to 9.76 m s−1) is perfect for our application.

3.4 Velocity evaluation

The knowledge gathered in the previous three sections could be summarized in these two
points:

– The quantity best reflecting horizontal velocity changes out of the tested ones is mean of
Doppler bins argmax (µD).

– Configuration with profileCfg parameters set as Tab. 3.7 offers the best possible papr.

Those two determine a method and a radar configuration we should use in order to measure
horizontal velocity as accurately as possible. Nevertheless, the dependence between µD and
horizontal velocity vx is unknown and has to be found.

3.4.1 Measurement methodology and setup

The approach we employed to find the dependence of vx on µD has followed the following
steps:

1. Placing the radar tilted by a known angle α to a constant elevation h above ground.

2. Managing it to travel a known distance d with possibly constant velocity and measuring the
time spent, t.

3. (Together with 2.) Measuring the mean of Doppler bin argmax µD over all range bins of all
rdms received during the travel.
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4. Examining the measured data and modeling the dependence of (d/t) on µD.

An illustration of the method is in Fig. 3.34.

0123456789

Radar in a rack

F
Known distance d

t

Fig. 3.34: A setup for measuring dependence of vx on µD.

To fulfill the preceding steps we have built a measuring trolley equipped with a padding of
known height, on the top of which the radar in a rack has been placed. The rack have held the
radar in the particular inclination relatively to the ground plane. Besides the padding, also a pc
has been placed on the top of the trolley. The radar has been powered up from the pc, to which
also the data and configuration ports have been connected. The last part of the measuring
trolley has been a mouse which left and right buttons controlled a measuring script running
on the pc. The trolley and a reference track which it has been pushed along are depicted in
Fig. 3.35.

Start/stop

Padding Radar ports

pc

Trolley

Reference track

Fig. 3.35: The measuring rack with the radar, pc and the mouse.

The track has beed designated with respect to a shape of the area of reflection (see Sec. 2.2.4).
The padding on the trolley allowed 5 different elevations ranging from 48.5 cm to 63.3 cm.
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Referring to Sec. 2.2.3, independently on the angle α, for all of them ground plane is far enough
to allow evm’s antennas work in their far field. The rack holding the radar has been built for
fixed angle approximately α ≈ 45◦, however, using an additional padding under its back side
we were able to measure with angles α up to 75◦. The most area-demanding setup out of the
available has been the setup with h = 0.633 m and α ≈ 45◦. Such constellation requires 1.6 m of
free ground in the front of radar, and 1.714 m of total (both the left and the right side together)
free ground in the direction perpendicular to the direction of motion. Angles α greater than 75◦

are not realizable for the full range of used elevations; The area of reflection for such angles and
h = 0.633 m intersects with an area covered by the trolley itself.

The measuring script is attached as cd/meas_scripts/meas_trolley.py. When a measure-
ment is started by clicking the left mouse button, the script stores the time, resets a counter
(n_means) to zero, empties a list means, and enters an infinite loop. In the loop, these steps are
repeated:

1. A new packet is read.

2. Its rdm data are rearranged using the scheme from Fig. 4.2.

3. A mean is calculated out of all arguments of Doppler maxima and this mean is appended
to the means list.

4. The counter n_means is incremented.

The program leaves the loop when an interrupt is generated by clicking the right mouse button.
In such case, the stop time is stored immediately. Then, the time difference t is calculated
and the known distance d is divided by it, which results in a velocity estimate vx. The means
list is summed and divided by n_means to obtain the overall mean of Doppler bins argmax.
Eventually, a new line is appended to the given file (results_file); it contains space-delimited
values of h in meters, α in degrees, vx in meters per second, and mean of Doppler bins argmax
(unitless).

3.4.2 Analysis of measured data

Effect of elevation h Two samples with equal α and elevations h1 = 0.633 m, and h2 = 0.485 m
(the highest and the lowest of the elevations used), respectively were selected for observing an
effect of h on vx-on-µD dependence. The samples are plotted in Fig. 3.36.
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Fig. 3.36: Measured data for α = 45◦ and two elevations h.

Both µD and vx data of the two samples have been tested for their competence to the same
statistical distribution. The Mann – Whitney U testx [39, 40] revealed that the data could be

xThe samples are non-parametric in both dimensions.
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considered being competent to the same bivariate distribution with 5 % significance level (Result
for µD (U = 1564.0; p = 0.052), for vx (U = 1621.5; p = 0.10)). According to the result we could
proclaim that quality of the horizontal velocity evaluation does not depend on elevation of the radar
if the elevation above the ground plane allows the radar antennas operate in the far field.

Effect of depression angle α Two samples with equal elevation h = 0.485 m and depression
angles α1 = 45◦, and α2 = 75◦ were tested for an effect of α on vx-on-µD dependence. The
samples are plotted in Fig. 3.37.
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Fig. 3.37: Measured data for h = 48.5 cm and two depression angles of the radar.

It is obvious that the µD values of the two samples do not originate from the same distribution.xi

Here, more relevant information is whether the distribution of vx values between the samples is
equal. Taking vx as independent variable and µD as dependent one and performing the mwut,
we obtain (U = 1007.5; p = 0.52) so the measurements for α1 and α2 have been successful in
terms of covering the same horizontal velocity values.

Without any further analysis, we can conclude that with larger α, sensitivity of µD on vx de-
creases. On the other hand, the larger α requires smaller area of reflection which could be handy
in real usecase. We adjudged α = 45◦ being an angle providing good sensitivity with concur-
rently requiring acceptable area of reflection. Therefore, we will use this depression angle for
the final radar device.

Modeling vx As has been found out in the paragraph Effect of elevation h, it is possible to use
the measured data as one sample independently on h value. This way, we dispose with a sample
of total 126 entries addressing µD and vx for α ≈ 45◦ and various elevations from 0.485 m to
0.633 m above a ground plane.

The data clearly manifest heteroscedascity. The heteroscedascity could be considered pure: For
higher vx, the human factor causes bigger errors. Pressing a mouse button right on the start
line of the track is easier than pressing it at the right moment when the trolley has larger
velocity, just the way it is with stopping the measuring script by clicking the mouse button when
the trolley crosses the finish line of the track. We consider these human-caused errors to be
normally distributed.

The data in Fig. 3.36 at first glance exhibit linear dependence, which comes hand-by-hand with
our expectations. According to (1.22) the relation between vx and the phase shift of the if signal
really is linear. It is therefore appropriate to model µD as a first-order polynomial

µD = kvx + q (3.14)

xiRigorously, the result of Mann – Whitney U test (mwut) is (U = 709.5; p < 0.05).
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with k and q being slope and intercept of the regression line, respectively. Because of het-
eroscedascity we cannot use the standard least-squares regression. Nevertheless, the weighted
lsq regression could be used. Assumed relative variances being inverted values of vx, we obtain

µD = 0.85vx + 15.035. (3.15)

Expressing vx from (3.15), we end up with the final linear model of vx

vx = 1.176µD − 17.688. (3.16)

Measured data with model are shown in Fig. 3.38(a). Standardized residuals of the model are
depicted in Fig. 3.38(b).
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(b) Standardized residuals of data for model (3.16).
Data within the 95 % confidence interval are marked by
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Fig. 3.38: The final model of vx with parameter µD.

3.4.3 Procedure of velocity evaluation

Having the model (3.16), evaluation of velocity from uart data is straightforward. To summa-
rize the steps, we explicitly describe the modus operandi that the uart data undergo on their
path from when they come into the second-order processing pc to the final velocity estimate:

1. Extraction of the range – Doppler matrix message from the packet.

2. Performing the rearrangements on the rdm itself.

3. Computing µD of the rearranged rdm.

4. Converting the µD to horizontal velocity vx using (3.16).

3.4.4 Quantifying accuracy and precision

The approach from the previous section has been tested for its precision using four scenerios.
In all of them, horizontal velocity has been measured by radar and by some other (alternative)
method. An effort had been put on selecting the alternative method as accurate as possible
since to quantify accuracy of a new measurement method, we need to know the true velocity
– or, loosely speaking, true enough. Four test were performed in total: The firts three used
measuring time spent on a track of a known length together with constant velocity on the track
as a velocity reference. The last one used gps velocity estimate.
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Indoor trolley testing used a setup equal to that used during measurements of vx-on-µD
dependence parameters. The trolley from Fig. 3.35 has been used with h = 0.485 m and α ≈
45◦. The track has had the same length d = 2 m. The measurement script used is attached
as cd/meas_scripts/meas_trolley_testing.py. It have employed the same tkinter-based
interface for starting and terminating a measurement as the dependence-finding script but the
main procedure has been different. In this case it have consisted of the following steps:

1. Obtaining the rdm from uart and rearranging it.

2. (Together with 1.) Storing the time of its arrival.

3. Calculating vx based on µD and (3.16).

4. Appending the results to a file, incrementing a measurement number counter.

In rows of the result file, there are three features stored, namely radar velocity estimate in
meters per second, time of packet reception in seconds since epoch, and measurement number.

During a measurement, a person pushed the trolley along the track, trying to keep velocity
constant. Because an operator could be systematically too early or too late in starting or ter-
minating the measurement by a mouseclick, the dataset contains measurements performed by
two operators. Competence of a particular measurement to the operators has been added to the
dataset post hoc.

For each of the measurements, an average velocity has been calculated as

vc =
tl − t f

d
, (3.17)

where tl and t f are time of the last and the first packet within a measurement. For each
measurement, mean radar velocity vr has been calculated. The measured relationship between
vc and vr is plotted in Fig. 3.39.
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Fig. 3.39: Mean radar velocity vr and calculated average velocity during a measurement vc.

Error χ = vc − vr is expected to have normal distribution with zero mean. Its histogram and
Q-Q plot are in Fig. 3.40.

From both the plots in Fig. 3.40(a) and Fig. 3.40(b), it is obvious that normality of the error is
only disturbed by the biggest error values. When an absolute value of the error is ordered
increasingly, plotted value-by-value (sequence number on x axis), and colored according to vc
(the plot is in Fig. 3.41), it could be noted that the biggest error values are mostly connected with
higher velocity. Such behaviour is easy to explain: It is again caused by the inaccurately timed
mouseclicks for starting and terminating the measuring script when the trolley crossed the start
line or finish line. For vc bounded by vc,max = 0.885 m s−1, error χ has normal distribution
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(a) Histogram and normal distribution fit.
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(b) Quantile-Quantile plot.

Fig. 3.40: Distribution of error χ = vc − vr.

(Shapiro-Wilk test: (W = 0.99; p = 0.73)) with least-squares-fit result (µ = 0.012, σ = 0.038).
The results yield the following conclusions for measuring velocities below 0.885 m s−1:

1. Radar measurement vr is slightly biased (by 0.012 m s−1).

2. Standard deviation of the measurement using the model from (3.16) is 0.038 m s−1.
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Fig. 3.41: Absolute values of error colored by vc.

Outdoor trolley testing was provided with a goal to see how the radar performs in chal-
lenging, very bumpy environment. A setup was very similar to that for indoor trolley testing,
however, another trolley and another surface were employed. The full setup is in Fig. 3.42.

The garden trolley used has had wheels without bearings and on its backside, there even have
not been any wheels. The ground plane has been made of concrete tiles covered by small stones,
each of them approximately 4 mm in diameter. The size of the stones has therefore been similar
to wavelength of the radar. An auxiliary pointer was mounted on the trolley to help an operator
recognize the moments of crossing the start line and the finish line of the track. The track was
201 cm long. The measurements were gathered in temperature approximately 5 ◦C.

The measuring script was the same as for the indoor measurement, and so was the methodology.
The measured vc vs. vr plot is in Fig. 3.43.
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Fig. 3.42: Setup for outdoor measurements on bumpy ground.
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Fig. 3.43: Mean radar velocity vr and calculated average velocity during a measurement vc. Color of the
points is determined by an error χr = |vc − vr|/vc.

From the plot we can see the velocity vr is systematically underestimated. For the medium
velocities, the relative error reaches more than 50 % which is not acceptable. Two explanations
of such behaviour are:

1. The shape and dimensions of the stones covering the tiles could have caused an “angle
enlargement” effect. Refer to Fig. 3.44 for an explanation. The profile of the the stones
could make the incident angle α larger from the radar’s point of view. Referring to Fig. 3.37,
the enlargement of α causes a decrease of µD that—assuming the true value of α being
45◦—reversely causes a decrease in estimated velocity value.
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Fig. 3.44: On the angle enlargement effect.

Such viewpoint gives a birth to a question why the opposite sides of the obstacles do not
compensate the error by their analogous “angle reduction” effect. The answer could be
in the particular arrangement of the surface. The stones have dimensions that cause the
surface being rough according to Rayleigh criterion for surface roughness [19, 41]

Surface is rough⇔ h >
λ

8 sin(α)
(3.18)

where h is the “typical” distance between two points on the surface where the wave is
reflected measured on the line parallel with the wave (the criterion is based on a condition
for maximum allowed phase difference for two waves reflected on the surface originating
from the same incoming wave). If the surface is rough, reflection is generally considered
diffuse. That means, the reflected wave is not directional, but rather diffused to all possible
directions. The combination of angle enlargement on one hand, and the diffuse reflection
on the other hand could have caused the observed errors.

2. An impact of temperature on the radar performance. Since the measurements for deriv-
ing (3.16) were taken in an indoor environment with temperature 22 ◦C and the tempera-
ture outdoors during the outdoor trolley measurements had not exceed 5 ◦C, it is relevant
to suspect the temperature difference of causing the observed errors. Nevertheless, the
measurement was repeated in warmer outside conditions with no significant difference.
Therefore, we cannot yield that the temperature have caused the errors.

Indoor car measurement. Another approach to precision testing have used a car driving in a
big garage. The surface of the ground plane has been very smooth – the ground has been made
of glazed concrete. The experimantal setup is schematically drawn in Fig. 3.45. The radar has
been fixed on the trunk rim, with the pc and its operator inside the trunk. A driver have driven
the car with possibly constant velocity in both directions (drive forward, reverse drive). The
operator used a pointer and the mouse to start and terminate the measuring script right when
the car crossed indication lines of the 8 m long track. The measuring script have had the same
structure as with the preceding approaches. 28 records have been taken at total, from that 14
for drive forward (radar have measured negative velocity), and 14 for reverse drive (radar have
measured positive velocity).

From the records, four were identified as outliers and discarded based on their error χ = vc− vr
and criterion

χ ∈ 〈Q1 − 1.5∆Q; Q3 + 1.5∆Q〉 (3.19)

with Q1 and Q3 being the first and the third quartile of the sample, respectively, and ∆Q in-
terquartile range of the sample. The measured points are in Fig. 3.46.

We can see the strong negative bias present in “bumpy” measurements disappeared which
supports our “angle enlargement” understanding of the phenomenon. The distribution of error
χ is plotted as histogram and Q-Q plot in Fig. 3.47. From the plots a slight negative skewness
could be recognized, however, we propose that to be caused by too small sample size. None
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Fig. 3.45: The setup for indoor car measurement.
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Fig. 3.46: Mean radar velocity vr and calculated average velocity during a measurement vc.

of Shapiro – Wilk and D’Agostino – Pearson tests rejected normality of the error with their
respective results (W = 0.97; p = 0.55), and (K2 = 0.91; p = 0.64) so we consider the error
being gaussian. The lsq fit of error results in µ = 0.023 m s−1, σ = 0.064 m s−1 from which we
can conclude again (as with the indoor measurements results) that the actual radar horizontal
velocity results are slightly underestimated.

−0.2 0 0.2
0

2

4

6

χ [m s−1]

C
ou

nt
de

ns
it

y

(a) Histogram and normal distribution fit.

−2 0 2

−2

0

2

Quantiles of Norm{µ = 0, σ = 1}

Q
ua

nt
ile

s
of

χ
[z

-s
co

re
]

(b) Quantile-Quantile plot.

Fig. 3.47: Distribution of error χ = vc − vr.
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Outdoor car measurement. Another approach to measurement of the true velocity has been
used in measurement on a car outdoors. The setup has not been different from that in Fig. 3.45;
the measurement itself, however, has been carried out differently.

Before a measurement started, a gps tracking had been started. The built-in gps receiver of
Xiaomi Mi A2 lite smartphone have been used together with Locus Map Pro application [42] for
tracking. In the application, one-second tracking interval (as the most dense of the possible
ones) had been chosen. The track was being stored in a gpx [43] file. The surface was a
dry asphalt road without significant damages. Some small holes or stones were occasionally
present. From the point of view of gps precision, the environment has been very kind; The
sky was clear, and the space above the car has not been shielded by anything but some sparse
shrubs and trees.

Once the gps recording was running, a driver of the car began a drive and an operator of
the script controlling radar started the measuring script. After a few minutes of driving in
both the forward and the backward direction, the operator terminated the measuring script,
and the track recording was stopped in the tracking application. The synchronization between
starts and stops of the tracking application and the radar measuring script did not have to be
ensured: Since in gpx files also time stamps are stored, and the measuring script stores them
also, the synchronization could be done easily in postprocessing. The file format of the radar
recording for the outdoor car measurement could be described as

– Three columns: v_radar, time, and meas_number.

– Delimiter is a single space.

– The first column is a float representing velocity in m s−1, the second column is a time stamp
formatted as ’%Y-%m-%d,%H:%M:%S’ [44], and the third column is an unsigned integer.

The postprocessing script takes an advantage of the gpxpy [45] python module for handling gpx
files and works as follows:

1. The gpx file from the measurement is parsed using gpxpy.

2. Using gpxpy, the velocity between each pair of the trackpoints is calculated, and the average
time between the respective two trackpoints is assigned to the velocity value.

3. The result of the gpx processing is a pandas.Series object indexed by the time stamps,
storing the calculated true velocity values.

4. The radar data are loaded to a pandas.DataFrame and the index is changed to pandas.
DatetimeIndex acording to the time column values.

5. The records of the radar data are grouped by index and the v_radar values are averaged
within the groups. This causes the radar results are split into one-second intervals with
v_radar being an average estimated velocity in them.

6. A new data frame data is created. Its index is a copy of the gpx-based data and its first
column—v_gps—is a copy of the calculated true velocity values in times given by index
values. The third column is labeled v_radar and is initialized by np.nan.

7. In a loop over the data index i, an index of the radar data is searched for a presence of a
timestamp within time interval i± 5. If such index is found, the v_gps column on index
i is updated with the respective v_radar value.

8. The entries of data which v_radar value is np.nan are dropped, which results in a final
data frame with entries consisting of time-aligned (within the ±0.5 s interval) values of
estimated radar velocity and gps-based velocity, considered as true.

The processing program is available as cd/meas_scripts/meas_gps/process_gps.py. A dis-
advantage of the approach is that the velocity from gps measurements is not signed – therefore,
we have absolutely neglected the sign and worked with an absolute value of the radar velocity
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vr in data evaluation. The measured points are in Fig. 3.48, and the Q-Q plot and histogram of
the error χ = vc − vr are in Fig. 3.49(b) and Fig. 3.49(a).

D’Agostino – Pearson normality test confirmed normality of data with result (K2 = 3.56; p =
0.17). Fit of the error by gaussian distribution resulted in µ = 0.071 m s−1, σ = 0.628 m s−1.

The observed standard deviation in this approach is much bigger than that of the indoor car
measurement. By observing the values of σ of the fit by gaussian distribution for vc-restricted
data we found out that the value of σ does not change with vc significantly. To conclude the
measurement, it has to be pointed out that it has been carried out in conditions very close to
those in which the radar speedometer could be employed. The precision of radar velocity esti-
mation for velocities up to approximately 10 m s−1 could be given by a 2σ value as ±1.256 m s−1.
Nevertheless, the result assumes the gps velocity is perfectly correct, which is in fact not likely
to be true.
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Fig. 3.48: Measured pairs of gps velocity vc and radar velocity estimate vr.
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(a) Histogram and normal distribution fit.
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(b) Quantile-Quantile plot.

Fig. 3.49: Distribution of error χ = vc − vr and its fit by normal distribution.

The outdoor trolley test revealed that the radar with the tested configuration cannot be used on
some surfaces without additional calibration. All the other tests resulted in slight bias of the
model from (3.16) – it is therefore appropriate to shift it. Since in any of the test we did not have
an absolute velocity caliber, we decided to increase the quocient of the model by the lowest of
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error means of the indoor trolley test and car tests, which is 0.012 m s−1. The corrected model is

vx = 1.176µD − 17.676. (3.20)

3.4.5 Stability of measurements, filtering results

On one hand, there is performance of the radar speedometer in terms of accuracy and preci-
sion, on the other hand, there is its stability in terms of not providing occasional “random” or
inappropriate results. These wrong results could be caused by various phenomenons; namely
unexpected objects on a road, or a packet slip in uart communication. In this subsection,
we will analyse recordings of velocity evaluated using the scheme that have led to (3.20), and
design a filter which will be applied at the very output of the processing chain.

3.4.6 Measuring velocity of a car

The first recording contains velocity data for a car driving on an asphalt surface. The surface
has been the same as with Outdoor car measurement paragraph of Sec. 3.4.4. Asphalt cover has
been in good conditions; some bumps were present though, as well as fallen branches and
leaves once in a while. The car has traveled the total distance of approximately 2.9 km, most of
that driving forward. Once, the car switched to reverse drive for a short time, and once the car
turned back on the road, changing driving forward and backward in short intervals.

Data records from the experiment are vectors consisting of timestamp and velocity in m s−1. They
are gathered using the script in cd/meas_scripts/stability_measurements/main.py. The
measured development of velocity in time could be seen in Fig. 3.51. Obviously, there are peaks
present in the original data which are spurious and which have to be suppressed. It has been
shown that all of the spurious peaks are only one sample long. They are probably caused by
mistakenly read range – Doppler matrix mesage from uart. An easy and in the means of time
consumption low-cost way of their removal is to watch a difference between the present sample
and the previous sample, and if it exceeds the fixed threshold, assign the value of the previous
sample to the present one. Such processing causes only one-sample delay. The threshold level
has been set to exactly 1 m s−1.

Another unwanted feature present in the original signal is a jitter – fast changes in vx low in
amplitude.xii Their amplitude does not change with vx. To see whether they are spectrally flat or
not, psd (power spectral density) of the vx signal has been estimated. For that, Welch’s method
[46] with 128 samples per segmet, 1024 samples dft length (zero-fill), and linear detrending
has been employed. To be competent to use the Welch’s method, we had to ensure that the
signal is spaced evenly. Even though that is not absolutely true, the interval between samples
as a random variable is normally-distributed, has mean of µ∆ = 0.25 s and standard deviation
of σ∆ = 1.308 ms. Its spread is that small that we can consider the sampling being even. The
estimated psd is in Fig. 3.50. The psd revealed that the jitter is spectrally flat. Therefore, filtering
in time-domain is appropriate to deal with it.

We have put two requirements on the jitter-removing digital filter:

– Suppress the jitter.

– Do not cause significant delay.

For such application, a moving average filter has been a clear choice. The only parameter to
design has therefore been its length. The compromise between the two requirements mentioned
above led to length of 5 samples. The numerator coefficients of the 5-sample moving average
fir filter’s impulse response are 1

5 (1 1 1 1 1)T . The complete filtering chain (spikes removal,
moving average) causes total delay of 5 · 0.25 s = 1.25 s, which we consider acceptable.

xiiIn the measured sample, their amplitude does not exceed 0.6 m s−1.
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Fig. 3.50: Velocity data psd estimate using Welch’s method.
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Fig. 3.51: Measured horizontal velocity of the car with and without filtering applied.

The last spurious feature which could be seen in the data is a bias of approximately 0.15 m s−1.
In this case, it is a bias in terms of accuracy, unlike with the bias corrected in (3.20) which has
been caused by poor precision. In order to suppress it, we measured velocity in a static case,
when no motion was present.

3.4.7 Measurement of bias

The measurements for correcting the bias from the previous subsection were realized using
the indoor trolley setup (see Sec. 3.4.4). The trolley was standing on the fixed position for
approximately 25 s, and during that epoch horizontal velocity was estimated. The results are
plotted in Fig. 3.52. It is obvious that a bias of approximately 0.15 m s−1 is present.

To manage for its correction, we subtracted the bias term 0.15 m s−1 from the model (3.20):

vx = 1.176µD − 17.838. (3.21)

Moreover, to ensure that the bias could be easily removed even if it—for any reason—got value



3.4. VELOCITY EVALUATION 71

11
:30

:33

11
:30

:38

11
:30

:43

11
:30

:48

11
:30

:53

11
:30

:58

0.1

0.12

0.14

0.16

0.18

Time

v x
[m

s−
1 ]

Original
Filtered

Fig. 3.52: Static velocity measurement from indoor trolley setup. Both unfiltered, and ma(5)-filtered
results.

other than 0.15 m s−1, we have implemented a bias calibration in the Velocity viewer gui de-
scribed in Sec. 4.2.2.
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Software implementation

A software that provides the whole second-orderi signal processing and data visualisation has
been written. The software is written in Python 3 extended by the NumPy library and some
standardly used libraries simplifying the tasks like serial communication or plotting (Pyserial,
PyQtGraph, etc.). It is divided into modules those we can basically subdivide into the backend
modules, serving for gathering the input data and computation of the results, and frontend
modules which visualize the results, or store them for later use.

4.1 Backend modules

The backend modules of the program cover these three tasks:

1. Representation of the binary data from the evm’s uart output with readable structures
(data parsing)

2. Calculation of the velocity values from the parsed data

3. Communication with a remote pc where the results are displayed.

Their implementation will be explained in the following subsections.

4.1.1 Data parser

The function of the data parser is arrange by the Packet_handler module. The Packet_handler
requires standard modules numpy, time, struct, serial, os, ast, and sys. It defines the
Packet_handler class that contains these entities:

The constructor requiring one mandatory and one optional user arguments: The mandatory
argument config_file (string) is a full path (including the suffix) to the configuration file
by which the evm has been configured. The class needs it to derive the parameters of the
chirp train which influence a format of the uart data (number of range bins, number of
chirps per frame, sampling frequency, etc.).
The constructor opens the configuration file and from the relevant lines of that it extract-
s/calculates these numbers:

– Number of rx and tx antennas (Nrx and Ntx, respectively) from the channelCfg line
– Starting frequency of the chirp f1, idle time Ti, ramp time Tr, frequency slope S, num-

ber of range bins Nfft, and the sampling frequency fp from the profileCfg line
– Number of subframes per frame Nsf/f, and number of chirps in one subframe Nc/sf

from the frameCfg line.

iThe processing of the data structures outputting the ti awr1642boost.

72
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From these numbers and the physical constants, some other parameters are calculated,
namely:

– Number of chirps in a frame as Nc/f = Nsf/fNc/sf

– Number of Doppler bins as Nc/f/Ntx [47]
– Number of virtual antennas as NtxNrx

– Range constant Cr and Doppler constant Cd using (3.1).

The get_new_packet function with no user arguments returns a dictionary filled by the val-
ues of one uart data packet as described in subsection 3.1.3. The returned dictionary has
a fixed form matching the definition, with the following labels:

read_data
header

sdk_version
v
sub
subsub
subsubsub

total_packet_length
platform
frame_number
time_in_cpu_cycles
n_detected_objects
n_data_structures
subframe_number

packet
objects_list

message_length
n_detected_objects
qformat
objects

range_profile
message_length
data

noise_profile
message_length
data

azimuth_heatmap
message_length
data

range_doppler_matrix
message_length
data

stats
message_length
data

inter_frame_processing_time
transmit_output_time
inter_frame_processing_margin
inter_chirp_processing_margin
active_frame_cpu_load
inter_frame_cpu_load

Firstly, the function opens the serial port /dev/ttyACM1, having baudrate set to 921 600 Bd.
It defines an 8 bytes long buffer MAGIC_BUFFER, and then in an infinite loop
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1. Reads 1 B from the serial port and interprets it as an unsigned character (unsigned
one-byte integer)

2. Shifts the MAGIC_BUFFER one position to the left
3. Puts the value to the very end of the MAGIC_BUFFER.
4. Checks if the content of the MAGIC_BUFFER equals the constant MAGIC_WORD. If it does,

the function breaks the infinite loop.

Next, the particular cells of the read_data dictionary are filled accordingly with the
Fig. 3.14 and the structure definitions from Appendix A.

4.1.2 Range – Doppler matrix processor

The employed velocity evaluation algorithm (Mean of Doppler bins argmax, Sec. 3.2.1) is
based on a range – Doppler matrix (rdm) data. After obtaining the packet by calling the
Packet_handler.get_new_packet function, the following operations are made on the rdm
data in order to transform them in accordance with Fig. 3.17:

Transposing the original data. The rdm data are transmitted bin-by-bin in the range dimen-
sion: First, all the Doppler bins for the first range bin are transmitted, then the structure
continues with the second range bin, etc. The received matrix therefore has a form dis-
played in Fig. 4.1.

Doppler bin

R
an

ge
bi

n

Fig. 4.1: The form of range – Doppler matrix as received from uart.

Rearranging the rows of the transpose. Since we would like to have the zero Doppler bin in
the middle, the Doppler bins associated with positive velocity in the first half (velocity
raising from the middle to the top), and the Doppler bins with negative velocity in the
lower half (velocity decreasing from the middle to the bottom), we need to rearrange the
rows of the new matrix. Firstly, the matrix is “cut” in the middle and the halves are
swapped. In the next step, the new structure is flipped upside down. The steps are
depicted in Fig. 4.2.

A

B A

B
A

B

Fig. 4.2: Rearrangement of the rows of the transposed matrix.

From now on, we will refer to this transformed matrix simply as range – Doppler matrix.
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4.1.3 Bluetooth communication module

The Bluetooth communication is supervised by the Bluetooth module based on the Python’s
socket module. Besides that, it imports the NumPy module. It defines the Bluetooth class,
containing the following functions:

The constructor is empty.

The connect method takes two user arguments:

1. address (string) – The mac address of the Bluetooth adapter of the remote pcii

2. port (integer) – The port number to connect to.

It uses the socket module to make a new socket instance and to connect it to the socket
defined by the pair (address, port).

The close method Takes the open socket instance as a user argument and closes it.

The send function requires 2 user arguments. One of them is an open socket instance, the
second is called content and it is a bytes array to be sent. Its return value is inherited from
the socket class and is True for success and False for an error.

The receive function is intended to be ran on the remote pc. It takes these user arguments:

1. A physical address of a Bluetooth adapter (string). The valid address format consist of
6 hexadecimal pairs delimited by colon: xx:xx:xx:xx:xx:xx.

2. A port number (integer).
3. Number of lines (words) to be received (integer). In terms of velocity values, the

number of velocity samples to receive.
4. A maximum size of each line in bytes (integer).
5. Backlog (integer). In our case of only one client, it should be set to 1 which is also its

default value.

The return value is a NumPy array of 32 bit integers containing the received lines. Accord-
ing to the data type of the array, it is clear that only values interpretable as 32 bit integers
could be a content of the transmitted lines.

The string_to_bytes auxiliary function encodes the string given as an argument as bytes
using the utf-8 standard. It returns the encoded byte array.

4.1.4 Utility module

There is one extra module that has been created. It contains auxiliary methods and exceptions
used in the modules directly connected with the velocity evaluation. The module is called
Utils and imports community modules NumPy, matplotlib.pyplot, os, sys, and time. The
module defines an Utils class with an empty constructor. Further the class provides:

WrongGuiMonitorConfigException which is an alias for the general Exception class. Its pur-
pose is to be raised whenever the evm configuration file given does not match with the
structure of the demo firmware configuration files as described in section 3.1.2.

FileException which is an another alias for the Exception class. It is raised if the file on the
given path does not exist.

The recursive_keys generator takes a dictionary as its only user argument and yields recur-
sively the given dictionary’s keys. It is useful when testing for a presence or absence of a
key in a nested dictionary – just like the one returned from the get_new_packet function
of the Packet_handler class.

iiGenerally speaking, it could be an address of any Bluetooth device which the pc running the Bluetooth module could
connect to. Nevertheless, here we address the particular case of a remote pc since that is the setup we are aiming to.
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The peak_function is a wrapper for the NumPy argmax function. It is defined for a case
when another definition of a peak is needed than the one provided by the NumPy argmax
function.

Functions range_index_to_meters and doppler_index_to_mps which convert the index (in-
teger or float, the first user argument) to value in si units. Both of the functions have the
same argument syntax:

– The second user argument is a path (string) to the configuration file according to which
parameters the index should be converted.

– The third (optional) argument, reverse (boolean), allows to switch the direction by
its True value and make the functions return indices when the si values are put on the
place of the first argument.

4.2 Front end

During the testing phase, there has been a need for visualizing uart data. Although there is
a visualization tool provided by the manufacturer [48], it does not offer the full functionality
we have needed. The tool could provide a connection to the configured device, receive uart
data and display plots of transmitted data structures. However, there is basically any option for
plotting the quantities we calculate on the top of the basic plots, or even modify the plotted data.
We decided to implement a complete visualization tool providing all the requested functionality.

Another important part of the front end part is a gui that allows an unexperienced user use the
whole speedometer as a blackbox, filling only some of the most necessary fields and clicking
some self-explanatory buttons. He should be able to see the velocity results, and optionally
store the measured data for later use.

4.2.1 The Plotter module

The mother module of the customizable data visualization part is called Plotter. The mod-
ule imports some standard Python modules (time, NumPy, pandas), two plotting modules
(matplotlib.pyplot (plus matplotlib.animation) and pyqtgraph), and many of our own
submodules, each one handling one particular plot type. Some of the less demanding plots
(with respect to the amount of data and the plot’s refresh rate) are implemented in the more
user-friendly Matplotlib’s pyplot, the more complex ones use the significantly faster pyqtgraph
module. These pyqtgraph-based plots are the ones implemented as standalone modules.

The Plotter class consists of the following functions:

The constructor that instantiates member objects Plotter.fig and Plotter.ax for plotting
the matplotlib.pyplot-based plots, a Packet_handler object as a source of data, and a
Utils object for performing some of the auxiliary operations.

scatter_xyz function. The function does not request any user arguments because it oper-
ates on the member fig and ax objects. It does neither return anything. It defines an
animate_scatter_xyz function which is an animation callback to be fed to the matplotlib.
animation.FuncAnimation method. The callback itself

– Calls the Packet_handler.get_new_packet function and stores its return value.

– Extracts the objects list message out of it.

– Plots a scatter plot described by Fig. 4.3 to the (fig, ax)-pair.
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Fig. 4.3: Format of the scatter plot of detected objects.

range_profile function. The function has no mandatory user arguments but could be given
3 optional keyword arguments: noise_profile_on, detected_objects_on, and grid_on.
It operates over detected objects, range profile, and noise profile messages and so the guiMonitor
configuration has to reckon with it.
After performing tests for presence of all the needed data in the uart packet (raising
Utils.WrongGuiMonitorConfigException if it detects a problem there), the function o-
perates on the member fig and ax objects via a matplotlib.animation callback function.
The callback does the following:

– Calls the Packet_handler.get_new_packet function and stores its return value.

– Generates a range axis vector as (0, fpc0
2S , num = L) where L is a value of ’message_length’

field of the ’range_profile’ message divided by 2 (The length is in bytes and the
range profile values are expressed as 2 B integers).

– Plots the range profile points in an appropriate range axis to the (fig, ax)-pair.
– If the detected_objects_on argument is set to True (default is False), also the noise

profile data (the row of a range – Doppler matrix with the highest Doppler index) is
plotted.

– If the detected_objects_on is set to True (default is False), range profile peaks corre-
sponding to the detected objects are marked by an arrow.

– If the grid_on argument is set to True (default is False), the final plot contains a grid.

A sketch of the plot is in Fig. 4.4.
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Fig. 4.4: Format of the range/noise profile plot.
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range_doppler_heatmap function. This function only creates an instance of the Range_dop-
pler_heatmap class and calls its run method. This kind of plot does not use the member
matplotlib-based fig and ax objects. The data to be visualized (order of 1 · 103 values)
and their refresh rate (approximately twice a second) is too heavy for matplotlib.animation
and we need to employ the faster pyqtgraph module. The rest of this description addresses
the Range_doppler_heatmap class itself.
The constructor has 9 optional user arguments:

1. figsize. A tuple (width, height) of the displayed figure in pixels. Default is (1280, 1024).
2. minmax. A tuple (minimum, maximum) with limits of the lookup table for assigning

colors to the cells of the rdm. Default is (1.5 · 104, 3.5 · 104).
3.–4. n_xticks, n_yticks. Number of horizontal and vertical axis ticks (granularity of the

axis division). The ticks are separated uniformly.
5. detected_objects_on. When set to True, the cells of the rdm which passed the cfar

and peak grouping algorithms are marked by diamonds. Default is False.
6. maxima_on. A flag for rendering a red line on a Doppler position (through all range

bins) equal to the mean of Doppler argmax across the range bins. See Sec. 3.2.1 for
details.

7. centroid_on. A flag for displaying a green line connecting centroids in Doppler
dimension across all the range bins. See Sec. 3.2.2 for details.

8.–9. color and grid. Both are boolean flags and control colormap and grid presence,
respectively. If color is True, the rdm uses the jet colormap. Otherwise, the gray
colormap is used. Defaults are color = False, grid = True.

By the constructor, a Qt application layout is set using pyqtgraph objects and functions
focused specially on plotting. A pyqtgraph.PlotItem is created for possible detected
objects, lines regarding horizontal velocity evaluation algorithms, and axis ticks. In its
axis, a pyqtgraph.ImageItem is instantiated for displaying a rdm.
A Packet_handler instance calls its get_new_packet function and the plot is initialized:
The rdm structure is rearranged using the scheme from Fig. 4.2 and displayed as an image.
On the top of it, the diamonds marking detected points and the horizontal lines are plotted
if it is requested by the respective argument values. A Qt timer is created, its timeout
signal is connected to the Range_doppler_heatmap.update_image and it is started with
timeout set to 100 ms.
The update_image member function (no user arguments) retreives a new uart packet us-
ing the Packet_handler.get_new_packet method, rearranges the rdm, fills the ImageItem
by the new rearranged rdm, and plots the other requested features on its top (if requested).
The last method of the class—run—only calls the Qt application’s exec_ method. The
range – Doppler heatmap plot with its optional features is drawn in Fig. 4.5.

range_doppler_heatmap_and_range_profile function. Since we have found it useful to see a
rdm and range profile stacked vertically, we have implemented a pyqtgraph-based plotting
module Range_doppler_heatmap_and_range_profile, which is handled by this function
from within Plotter class. The function creates an instance of the class and calls its run
function. The function—as well as a constructor of the class—has four optional keyword
user arguments: figsize, minmax, n_xticks, and n_yticks. Their meanings and default
values are the same as with the Range_doppler_heatmap constructor described before.
The resultant plot content is drawn in Fig. 4.6.

doppler_profile function. Doppler profile is an equivalent of range profile in Doppler di-
mension. Range profile itself is transmitted as a separate message within uart data.
Doppler profile is not and is only acquired as a cut of a range – Doppler matrix. It is
feasible to handle 2d data of Doppler profile using matplotlib.pyplot/animation fig
and ax pair so no special class for this kind of plot is needed. One mandatory argu-
ment and two optional arguments are accepted by the function: The mandatory one is
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Fig. 4.5: An appearance of a plot generated by Plotter.range_doppler_matrix call.
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Fig. 4.6: The schematic of a range_doppler_heatmap_and_range_profile function.

range_index as an integer index value impacting where the rdm is cut. The optional ar-
guments are flags usemeters (default is False) and grid_on (default is False). While the
former resolves between use of range/Doppler indices or si units, the latter simply turns
on a grid in a plot.

The function uses the Plotter’s member Packet_handler instance to get a new packet.
It tests for presence of range – Doppler matrix data. If the test passes successfully, the
function initializes the canvas (ax) with labels, limits, grid (optionally), and a title. Then,
similarly as with other matplotlib-based plots described before, a plot refresh callback
is called repeatedly. The callback is called animate_doppler_profile and its workflow
follows the following steps:

1. Getting new packet.

2. Rearranging the rdm data (see Fig. 4.2).

(3). (Only in the first call) Setting axis limits with respect to the particular cut of rearranged
rdm.

4. Plotting the cut using the Plotter’s (fig, ax)-pair.

The result has a form depicted in Fig. 4.7.
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Fig. 4.7: A form of the Plotter.doppler_profile function result.

velocity_progressive_plot function. Eventually, this could be called the most important
function of the whole Plotter module because it has the knowledge of the sections ad-
dressing velocity estimation on its background. Less pompously, it implements the al-
gorithm of velocity evaluation using (3.21), and displays the results. It instantiates the
Velocity_progressive_plot class and has the same user arguments:

1. config_file. A path to the file used for the radar configuration.
2. csv_filename. This is a filename of a file to which the results will be stored. The

results are in a form of a space-delimited file with time and velocity columns. The time
column is in ’%Y-%m-%d,%H:%M:%S.%f’ format, taking only the first three digits of the
seconds’ fractional part into account. The velocity column contains values of measured
horizontal velocity in m s−1. The default value is None which means no file is created
and no results are saved.

3. moving_average (Integer). Number of subsequent cells to calculate the moving av-
erage from. The reasoning for filtering the results is given in 3.4.5. Default is 0
which has a meaning of “do not apply any filtering”. For any nonzero value of
the moving_average parameter, the module automatically filters possible one-sample
“spikes,” as those in Fig. 3.51(a) by comparing the values of two subsequent velocity
samples ad thresholding the value by a constant 1 m s−1.

The resulting plot is a red line updating with every newly-arrived packet. When the line
reaches the end of the axis (100 samples), the line is cleared and the plotting continues in
clear axis.
This kind of plot is employed in the Velocity viewer gui (Sec. 4.2.2).

4.2.2 Velocity viewer GUI

The gui we have developed has a goal to allow an user to

– connect to the Raspberryπ via ssh and Bluetooth easily

– view the course of velocity in a simple t – vx plot

– save the measured velocity to a csv file.

All of that on a few clicks. The gui is designed using PyQt5 library and takes advantage of
pyqtgraph plotting module. The gui is called Velocity viewer. After executing the application,
the main application window is open and immediately a “Set default?” dialog pops up, as
could be seen in Fig. 4.8. We used the dialog during various measurements employing the
Velocity viewer not to have to fill the Bluetooth address of the server every time the application
has been executed.
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Fig. 4.8: The initial screen of Velocity viewer application.

By clicking Yes, the default Bluetooth address 44:1C:A8:30:54:CC is filled in the Enter BT MAC
address line edit. Otherwise, an user has to fill another Bluetooth address to that line edit. The
line edit accepts any hexadecimal twelve-tuple (possibly with colons delimiting the hex pairs). It
is case-insensitive. Once a valid Bluetooth address is filled in, the line edit and the Connect button
turn green. The latter also becomes enabled by it and an user can click on it (pressing return
after filling the Bluetooth address in the line edit works as well). Clicking the Connect button
opens another “Set default?” dialog that in this case targets to ssh connection parameters.

Establishing a ssh connection with the Raspberryπ serves for running the velocity evaluation
program and computed velocity transmission once the radar evm is configured. It is required to
establish the connection only for a short time to allow some commands be executed – then, the
connection is not used anymore and neither the Raspberryπ nor the host pc need to be connected
to a common network then. The reason why the velocity evaluating/transmitting program is
not run on a Raspberryπ’s startup is that the Raspberryπ has to know the host’s Bluetooth address
before the transmission starts. Using ssh is a reliable way how to transmit all the needed
information to the Raspberryπ. There are two things to remember when using the system in
a new Wi-Fi network: Firstly, the new network’s name and password has to be saved to the
Raspberryπ’s /etc/wpa-supplicant/wpa-supplicant.conf file. Secondly, the ip address of
the Raspberryπ in the new network has to be found outiii. The Raspberryπ authentification
strings are

Username: pi
Password: proactive impeach

by default. If both the Bluetooth and the ssh connections are successfully established, the textbox
at the lower left corner of the application changes from Waiting for connection or data to Data from
pi@<ip-address> and the velocity samples are plotted in the axis. A screenshot of this situation
is in Fig. 4.9. In addition to this very basic functionality the application provides some utilities
that are turned on and off by clicking the corresponding button:

iiiProbably the simplest way is running arp -a in the host pc shell.
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Pause and Clear plot. The velocity plotting could be paused and resumed, or cleared.

Bias calibration. During the calibration, the mean of velocity samples is computed. When the
calibration stops, the computed mean is subtracted from each of the following samples.

Export to csv. The measured data vectors (timestamp, velocity)T could be saved to a csv file.
The filename is automatically set up based on actual date and time and is revealed to an
user by an information box.

Fig. 4.9: The screen of Velocity viewer application when all connections are successfully established.

4.3 Documentation

The package of software tools for packet handling, visualization, etc. has been documented us-
ing the pdoc3 tool for automatic generation of documentation from docstringsiv. The generated
documentation is in html format. It is cross-referenced and could be easily opened in a web
browser. The documentation is attached as /documentation_html/ on the cd.

ivDocstring is a part of code similar to comment (in terms of it is ignored when a program is compiled/interpreted on its
own) that has a special syntax and serves as source code for documentation generation tools.
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Conclusion

In this thesis, the basic principles of fmcw radars were reviewed, with a particular focus on the
aspects influencing applicability of this kind of radars to measurement of horizontal velocity of
an object travelling on a flat ground. To extend the theoretical part, we have derived an equation
of an area from which the substantial part of a radar beam’s energy reflects. We have used the
equation later to design a proper placement of the radar on a moving object.

After exploring the general principles, we have moved our focus to the ti awr1642boost radar
evaluation module. The module’s hardware and its software capabilities have been overviewed,
and the particular firmware features have been chosen to take a part in the final radar software.
Algorithms for estimating horizontal velocity from the data provided by the module have been
implemented and tested, which eventually resulted in selecting the Mean of Doppler bins argmax
algorithm as the one to be employed. Considerable effort has been put on design of the best-
performing radar signal (chirp train). An impact of various chirp train parameters on quality of
the resulting signal. Ratio between the peak and average power of a range – Doppler matrix cut
at a particular range bin has been modeled as a function of sampling frequency and slope of a
linear chirp. Empirically, it has been found out which of the possible chirp train configuration
is the best for our application.

A compact radar speedometer employing the ti awr1642boost module and a Raspberryπ com-
puter has been designated and constructed with emphasis put on its independence (in terms
of wired connections) on non-mobile devices such as laboratory power source, or a laptop. The
velocity output could be sent to a remote device using the Bluetooth technology.

The relationship between the mean od Doppler bins argmax of a range – Doppler matrix and
its horizontal velocity content has been appointed based on several measurements in various
setups. After deriving the first form of the formula, another measurements were conducted to
fine-tune precision and accuracy of the velocity estimate.

The device is designated for velocity band from −9.76 m s−1 to 9.76 m s−1. Its precision based
on gps reference has the 2σ value of 1.256 m s−1, and that based on measurements of time and
distance has the 2σ value of 0.128 m s−1. Even though the velocity measurements using the
device extended by a five-sample moving average filter exhibit very good stability, since we
have not disposed with any absolute velocity caliber, quantification of precision could not have
been done other way than using the other velocity-evaluation methods as a reference. Because
horizontal velocity has a linear dependence on the statistic that the evaluation is based on (mean
of Doppler bins argmax in a range – Doppler matrix), the velocity estimate after subtraction of
a velocity estimate in static state, there should not be a problem with its accuracy.

To allow for using the device for real-case velocity evaluation, a variety of software tools for the
radar kit’s data handling and visualization have been written in Python3. The most important
software tool for real deployment is a gui allowing an user to setup the measurements on a few
clicks and visualize or store the results.
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The future work on this topic surely has to address quantification of the device’s precision
using some absolute velocity standard. Another improvements could be done for example on
the design of the mounting box, to make the whole device more mechanically robust.
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UART data structure

Number Name Data type Length Note

1 Magic word uint8 8 Fixed value [2,1,4,3,6,5,8,7]

2 Subsubsubversion uint8 1 sdk version equals
v.sub.subsub.subsubsub. In our
case 2.0.0.4

3 Subsubversion uint8 1
4 Subversion uint8 1
5 Version uint8 1

6 Total packet length uint32 1 Includes the header

7 Platform uint32 1 Represented hexadecimally equals
A1642

8 Frame number uint32 1

9 Time in cpu cycles uint32 1 Number of dsp cycles at the time of
the message creation

10 Number of de-
tected objects

uint32 1

11 Number of data
structures

uint32 1

12 Subframe number uint32

Tab. A.1: The structure of the packet header.

Number Name Data type Length Note

1 Tag uint32 1 1 for the list of detected objects, 2
for range profile, 3 for noise profile,
4 for range – azimuth heatmap base,
5 for range – Doppler heatmap, 6 for
performance info

2 Message length uint32 1 In bytes

Tab. A.2: The structure of the message descriptor.
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Number Name Data type Length Note

1 Number of de-
tected objects

uint16 1 Has to equal the value from the
header

2 Q format uint16 1 2(Q format) is the divisor of the inte-
ger representation of x, y, and z co-
ordinates.

3 Objects data Object struc-
ture (see
Tab. A.4)

Number
of de-
tected
ob-
jects

Tab. A.3: The structure of the detected objects message (Tag = 1).

Number Name Data type Length Note

1 Range index uint16 1

2 Doppler index int16 1

3 fft Peak value uint16 1

4 x int16 1 Has to be divided by 2(Q format)

5 y int16 1 Has to be divided by 2(Q format)

6 z int16 1 Has to be divided by 2(Q format)

Tab. A.4: The structure of one detected object.

Number Name Data type Length Note

1 fft sample uint16 Number
of fft
bins

The number of fft bins is given by
the configuration file. Alternatively,
it could be calculated from the mes-
sage length as its half (size of uint16
is 2 bytes)

Tab. A.5: The structure of the range profile message.

Number Name Data type Length Note

1 fft sample uint16 Number
of fft
bins

The number of fft bins is given by
the configuration file. Alternatively,
it could be calculated from the mes-
sage length as its half (size of uint16
is 2 bytes)

Tab. A.6: The structure of the noise profile message.
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Number Name Data type Length Note

1 Detection cube
slice at zero
Doppler

complex32
(int16 imag-
inary part,
int16 real
part)

Number
of fft
bins
multi-
plied
by the
num-
ber of
vir-
tual
anten-
nas

Samples through all virtual anten-
nas for the 0th range bin first, then
that for the second range bin, etc.

Tab. A.7: The structure of the azimuth heatmap source samples message.

Number Name Data type Length Note

1 Sample uint16 The
num-
ber of
range
bins
multi-
plied
by the
num-
ber of
Doppler
bins

All Doppler bins for the 0th range
bin first, then for the 1st range bin,
etc.

Tab. A.8: The structure of the range – Doppler heatmap message.

Number Name Data type Length Note

1 Interframe pro-
cessing time

uint32 1

2 Transmit output
time

uint32 1

3 Interframe pro-
cessing margin

uint32 1

4 Interchirp process-
ing margin

uint32 1

5 Active frame cpu
load

uint32 1

6 Interframe cpu
load

uint32 1

Tab. A.9: The structure of the processing performance (stats) message.
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Range – Doppler heatmap plots

Columns of all the rdh plots are normalized by their maximum value.

B.1 Adjustment of idle time

0 3.22 6.43 9.65 12.86
−3.83

0

3.83

d [m]

v
[m

s−
1 ]

(a) Ti = 100 µs.

0 3.22 6.43 9.65 12.86
−1.49

0

1.49

d [m]

(b) Ti = 300 µs.

Fig. B.1: Range – Doppler heatmap plots for f1 = 77 GHz, Ts
adc = 7 µs, Tr = 27 µs, fp = 6 MHz,

N = 64, and two different Ti values.
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(a) Ti = 130 µs.

0 1.07 2.15 3.22 4.29
−3.25
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(b) Ti = 100 µs.

Fig. B.2: Range – Doppler heatmap plots for constant Tc = 150 µs. Here, f1 = 77 GHz, Ts
adc = 7 µs,

Tr|Ti=130 µs = 20 µs, Tr|Ti=100 µs = 50 µs, fp|Ti=130 µs = 5 MHz, fp|Ti=100 µs = 2 MHz, N = 64.

B.2 Adjustment of ramp time
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Fig. B.3: Range – Doppler heatmap plots for f1 = 77 GHz, Ts
adc = 7 µs, Ti = 200 µs, fp = 5 MHz,

N = 64, and two different Tr values.
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Selected source codes

C.1 PAPR modeling

100 import numpy as np
100 import pandas as pd
100 import re
100 import matplotlib.pyplot as plt
100 from mpl_toolkits import mplot3d
100 from scipy import stats
100 from sklearn.linear_model import LinearRegression
100 from sklearn.preprocessing import PolynomialFeatures
100 from sklearn.pipeline import make_pipeline
100 from sklearn.metrics import r2_score
100 from sklearn.model_selection import train_test_split

101 # ----- Data preprocessing
100 data = pd.read_table(r’measured_data.dat’, sep = ’ ’)
100 data.columns = [re.sub(r’\[.+\]’, ’’, i) for i in data.columns] # Removing unit brackets
100 data_input = data.loc[:, [’S’, ’fs’]]
100 data_target = data[’papr’]

101 # ----- Defining a model
100 model_poly = make_pipeline(PolynomialFeatures(3), LinearRegression())

101 # ----- Calculating accuracy using R^2
100 r_squared = []
100 for c in np.arange(1000):
100 data_input_train, data_input_test, data_target_train, data_target_test = train_test_split(

data_input, data_target, test_size=.3)
100 model_poly.fit(data_input_train, data_target_train)
100 papr_modeled = model_poly.predict(data_input_test)
100 r_squared.append(r2_score(data_target_test, papr_modeled))
100 r_squared = np.array(r_squared)

101 print(’Median: {}, IQR: {}, 1st quartile: {}, 3rd quartile: {}’.format(np.median(r_squared3),
stats.iqr(r_squared3), np.percentile(r_squared3, 25), np.percentile(r_squared3, 75)))

101 fig, ax = plt.subplots()
100 ax.hist(r_squared, bins=20, density=True, alpha=.5)
100 ax.axvline(np.percentile(r_squared, 50))
100 ax.axvline(np.percentile(r_squared, 5))
100 ax.axvline(np.percentile(r_squared, 95))

101 # ----- Fitting the model to all data and predicting PAPR at parameter space
100 fp = np.linspace(np.min(data[’fs’]), np.max(data[’fs’]), num = 100)
100 S = np.linspace(np.min(data[’S’]), np.max(data[’S’]), num = 100)
100 fp_mesh, S_mesh = np.meshgrid(fp, S)
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101 model_poly.fit(data_input, data_target)
100 papr_model = model_poly.predict(np.vstack((np.ravel(S_mesh), np.ravel(fp_mesh))).T).reshape(np.

shape(fp_mesh))

101 # ----- Getting parameters of the model
100 feature_names = model_poly.steps[0][1].get_feature_names([’S’, ’fs’])
100 coefficients = model_poly.steps[1][1].coef_

100 intercept = model_poly.steps[1][1].intercept_

100 print(’PAPR = {} + {}’.format(str(intercept), ’ + ’.join([’ * ’.join([str(coefficients[i]),
feature_names[i]]) for i in np.arange(1, len(feature_names))])))

101 # ----- Examining error
100 chi = data_target - model_poly.predict(data_input)
100 fig, ax = plt.subplots()
100 ax.hist(chi, bins=20, density=False)
100 ax.axvline(np.median(chi), color=’k’)
100 ax.axvline(np.percentile(chi, 1), color=’k’)
100 ax.axvline(np.percentile(chi, 99), color=’k’)
100 ax.axvline(np.mean(chi), linestyle=’dashed’, color=’k’)

101 chi = chi[chi < np.percentile(chi, 95)]
100 print(stats.kstest(stats.zscore(chi), ’norm’))

101 # ----- Visualizing results
100 fig = plt.figure()
100 ax = fig.add_subplot(111, projection = ’3d’)
100 ax.plot_surface(fp_mesh, S_mesh, papr_model, cmap = plt.get_cmap(’gray’), alpha = .5)
100 sc = ax.scatter(data[’fs’], data[’S’], data[’papr’], c = np.abs(chi), cmap = plt.get_cmap(’hot’),

alpha = 1)
100 ax.set_xlabel(’fp’)
100 ax.set_ylabel(’S’)
100 ax.set_zlabel(’papr’)
100 plt.colorbar(sc)
100 plt.show()

Listing C.1: Modeling PAPR using linear model with third-order polynomial kernel

C.2 Other

100 import numpy as np
100 import matplotlib.pyplot as plt

101 rax = np.arange(100) # Range axis
100 papr = -.004 * rax + 1.8 + np.random.normal(0, .04, np.size(rax)) # Generating PAPR

101 n_movmean = 10
100 papr_threshold = 1.6

101 movmean = np.convolve(papr, np.ones(n_movmean) / n_movmean, mode=’same’)
100 movmean[:n_movmean // 2] = np.nan
100 movmean[-n_movmean // 2:] = np.nan

101 # ----- Cut the PAPR vector accordingly to provide an example and plot it
100 papr[np.nanargmin(np.abs(movmean - papr_threshold)):] = np.nan

101 fig, ax = plt.subplots()
100 ax.plot(rax, papr)
100 ax.plot(movmean)
100 plt.show()

Listing C.2: Selecting maximum range bin to consider according to moving mean of artificial PAPR values.



Acronyms

adc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analog-to-digital converter
aoa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Angle of arrival
aor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Area of reflection
ascii . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . American standard code for information interchange
can . . . . . . . . . . . . . . . . . . . . . . . . . . . Controller area network (Standard automotive data interface)
ccs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Code Composer Studio (ide provided by Texas Instruments)
cli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Command line interface
cpu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Central processing unit
cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cell under test
cw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous wave
dfe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Digital front-end
dft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Discrete Fourier transform
dsp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Digital signal processor
evm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Evaluation module
fft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fast Fourier transform (The algorithm for dft computation)
fmcw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frequency modulated continuous wave
fpga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Field-programmable gate array
gps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Global positioning system
gui . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Graphical user interface
hf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High frequency
hp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High pass
hw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hardware
ide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Integrated development environment
if . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Intermediate frequency
iqr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interquartile range
led . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Light-emitting diode
lp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Low pass (filter)
lsq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Least squares
mac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Media Access Control
mimo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multiple input, multiple output
mss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Master subsystem
mur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum unambiguous range
mwut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mann – Whitney U test
na . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Not applicable
nrl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Naval Research Laboratory
papr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Peak to average power ratio
pwm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pulse-width modulation
rdh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Range – Doppler heatmap
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rf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Radio frequency
rx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receiving; Connected with reception
si . . . . . . . . . . . . . . . . . . . . . . . . . . . . Système international (d’unités) (International system of units)
sop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sense-on-power
ssb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single side band
ti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Texas Instruments (Semiconductor company)
tx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmitting; Connected with transmission
uart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Universal asynchronous receiver and transmitter
usd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . u.s. dollar (Currency of the United States)
vga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Variable gain amplifier
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[2] Š. Matějka. Radarová odometrie. Určení brzdné dráhy vozidla pomocí mikrovlnného dopplerovského
radaru (zpráva za rok 2016), v. 0.9, 01/2017. Prague, Jan. 2017.

[3] A. G. Stove. Linear FMCW radar techniques. IEE Proceedings F – Radar and Signal Processing,
139(5):343–350, Oct 1992. ISSN 0956-375X.
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