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Abstract
This thesis begins with a theoretical part,
which features an analysis of CAN 2.0 and
the differences with the newer standard
CAN FD. It continues with QEMU CAN
subsystem description. The main goal of
the thesis is to contribute to QEMU main-
line with an implementation of a CAN FD
communication bus and model of a CAN
FD capable controller (open-source CTU
CAN FD in a particular case) as an ex-
tension of an already implemented CAN
2.0 capable chip SJA1000 emulation.
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Abstrakt
Tato práce začíná teoretickou částí, která
obsahuje analýzu standardu CAN 2.0 a
jeho rozdíly s nejnovějším standardem
CAN FD. Teoretická část pokračuje s po-
pisem CAN subsystémů v QEMU. Hlavní
cíl práce je přispět do vývoje QEMU im-
plementací CAN FD komunikační sběr-
nice a emulace čipu uzpůsobeného pro
CAN FD jako rozšíření již implementova-
ného CAN 2.0 čipu SJA1000.

Klíčová slova: sběrnice CAN, CAN FD,
QEMU, Linux, CTU CAN FD,
SocketCAN, SJA1000

Překlad názvu: Model kontroléru CAN
FD v emulátoru QEMU
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Nomenclature

Acronym Meaning

CTU Czech Technical University
FEE Faculty of Electrical Engineering
CAN Controller Area Network
ID Identifier
FD Flexible Data Rate
ECU Electronic Control Unit
PCI Peripheral Component Interconnect
CANH CAN-Height Line
CANL CAN-Low Line
SOF Start of Frame
RTR Remote Request
IDE Identifier Extension
DLC Data Length Code
CRC Cyclic Redundancy Check
ACK Acknowledgement
BRS Bit Rate Speed
FDF Flexible Data Rate Frame
ESI Error Status Indicator
Tx buffer Stores the Data For Transmission
Rx buffer Stores the Received Data
TMP buffer Temporary Buffer
FIFO First In First Out
TXCE "set_empty" Command
TXCR "set_ready" Command
TXCA "set_abort" Command
RXFRC RX Buffer Frame Count
RWCNT Count of Words in CAN Frame Without

FRAME_FORMAT WORD
RRB Release Rx Buffer
IRQ Interrupt Request
RAM Random Access Memory
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Chapter 1
Introduction

The goal of this bachelor thesis is to implement a CAN FD communication
bus and controller emulation for QEMU full system emulator mode. It builds
on previous and ongoing CAN bus related projects developed and coordinated
by the CTU FEE. The support of the classic SJA1000 CAN 2.0 controller
model for QEMU emulator development started by Jin Yang in RTEMS
GSoC 2013 slot. This slot, mentored by Pavel Pisa from the CTU, reached
the QEMU mainline in 2018. [1] CTU CAN FD controller [2] initiated by
Ondrej Ille at the CTU FEE is selected as the device model used by a guest
system to access the CAN FD bus variant. The Linux kernel driver for this
controller is available as the result of Martin Jerabek’s thesis. [4]
The CAN controller core emulation needs to be connected to some type of a
system bus in order to be visible to the emulated CPU and the guest system.
A model of the commercially available Kvaser PCI addon card is used for the
SJA1000 emulation. The PCI Express card integration of CTU CAN FD [5]
has been selected as a goal for this thesis.
SocketCan is used to interface a QEMU emulated CAN bus to the CAN bus
of the host system when QEMU is run on the Linux system. The QEMU
side of the interface has to be extended to support a CAN FD protocol. The
most significant implementation part of this project is to emulate CTU CAN
FD IP core register map [6] with QEMU, to get the communication through
these emulated hardware parts on a real CAN hardware bus, and to see this
communication on the other side by monitoring tools.
This project is open-source, corresponding to the whole QEMU.
My focus on the CAN bus stems from my participation in one external
company project, which which delivers utilities for trains where CAN com-
munication is used.

3



4



Chapter 2
CAN

Automotive industry often uses CAN. For instance, almost every car uses
a CAN bus. One of the reasons is the need to avoid carrying hundreds of
kilograms of wire in the car. CAN enables the connection between several
ECUs via one bus [7], instead of many analog signal lines. Another advantage
lies in the fact that all CAN nodes receive each message and decide whether
they want to utilize it or not. However, the application spectrum is broad.
CAN was standardized by the Bosch company in 1986; hence, industry needs
and CAN development have been making a significant progress. This bachelor
thesis concentrates on CAN FD, the latest and most significant innovation in
CAN technology.

2.1 CAN 2.0

ISO 11898-1:2003 describes CAN 2.0. The picture below shows the configura-
tion of the individual bits within the frame. It is apparent that in order to
send 8 bits of data, the overhead is quite significant.
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Figure 2.1: CAN frame detail [8]

The frame starts with SOF, which is always dominant zero. It serves to
notify other CAN nodes at the arbitration’s start of a new frame being sent.
Then comes the identifier, CAN 2.0 brings two length variants for ID, CAN
2.0a corresponds to a sample image and has an 11-bit identifier. CAN 2.0b
standard extends the identifier to 29-bit. RTR in dominant zero marks the
standard frame; in the recessive state, it changes into a Remote frame, which
requests data from a CAN node with the corresponding ID assigned to the
identifier place. IDE distinguishes between the standard and extended ID
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2. CAN ........................................
format. DLC holds data bytes count that is a number between 0 and 8 bytes
per message and the respective data are saved immediately afterwards. CRC
serves as a data integrity check. ACK first bit is the space for confirmation
that at least one CAN node has accepted the message and the second bit for
the information that at least one CAN node has not accepted the message
correctly. If the second condition is achieved, the whole frame is resent
automatically.

2.1.1 Physical layer

CAN physical layer consists of twisted pair cabling CANH and CANL. The
logic value is calculated as the result of CANH - CANL and is labelled as Vd
[9]. The exact threshold values generally differ, but when both wires have
a similar voltage - Vd is close to zero, it is logic 1, and both wires are in a
recessive state. A dominant state means that in CANL, the voltage decreased
while in CANH, the voltage increased, Vd gets over a decision level into logic
0.

2.1.2 Transmission priority

CAN node priority depends on its ID, which must be unique across the bus.
In this case, when more CAN nodes want to transmit data, the CAN node
with the lowest ID wins the arbitration. It means that CAN bus transmission
is priority-based, and the highest priority is assigned to a CAN node with
the frame’s ID full of zeros. The reason comes from the physical layer, the
transmission of the identifier is bitwise, and logic 0 on the bus means a
dominant state. Therefore, if the current CAN node identifier is transmitting
logic 1, it wants to change the transmission to the recessive state. However,
the dominant state representing a logic 0 prevails on the bus, the respective
CAN node realises that a CAN node with a higher priority is also transmitting
somewhere across the bus, the first CAN node, therefore, stops transmitting,
switches to receive mode only and waits until the next arbitration.

2.1.3 Bit stuffing and CRC

The actual frame, as seen on the bus, includes stuff bits in addition to a
binary representation of data bytes and other fields. This algorithm inserts
additional bits of complement value after a sequence of 5 consecutive bits.
These redundant bits relate to a synchronisation algorithm because the CAN
bus does not have a fixed clock signal. These bits can be added between SOF
and the end of the CRC and are not counted into CRC calculation [10].

2.2 CAN FD

CAN FD extends the original CAN with the flexible data rate, it means that
data could be transmitted at a higher bit rate than the rest of the frame. It

6



...................................... 2.2. CAN FD

is necessary to keep a slower bit rate for the identifier due to the arbitration
principle of selecting the highest priority CAN node [11]. The typical bit
rate speed used in the automotive industry is 500 Kbit/s for the arbitration
phase and 2 Mbit/s or more for the data phase. In CAN FD, the maximum
data length also increases from 8 bytes to 64 bytes. All the aforementioned
describes ISO 11898-1:2015.

Oliver Hartkopp
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Figure 2.2: CAN and CAN FD difference [12]

2.2.1 Compatibility

There is no direct compatibility between CAN and CAN FD due to changes
in the control field, see Figure 2.2. Inconsistency appears in a reserved bit,
which is always dominant 0 for CAN 2.0, but it now transforms into FDF flag
indicating a CAN FD frame. Classic CAN 2.0 controller would not recognise
CAN FD specific frames and would reject them while transmitting an error
frame. Three new bits have been added into the control field. Reserved bit
has been added for the possibility of future extension with a new protocol,
BRS in recessive logic 1 indicates a faster bit rate shift of data phase and ESI
informs about error passive - logic 1, or error active transmitter state.

Bit stuffing and CRC

The condition for bit stuffing has been changed. Stuffing bits can be added
between SOF and newly at the end of the data field with the same principle
as CAN 2.0. CRC now calculates with these stuff bits. Stuffed bits are
also added in CRC, but with modified principle. CRC has been improved
because several bits have been added and newly do not always have the same
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2. CAN ........................................
length. The checksum also includes stuff bit count to support CRC with data
integrity.

Data length code mapping

One of the most significant differences is the DLC control field, which holds
an individually coded length of the data. Data of arbitrary length of up to
64 bytes integrate into one of the possible intervals. First 8 bytes correspond
to the standard CAN frame and continue with 12, 16, 20, 24, 32, 48 or 64
bytes length. This non-linear ordering stems from the historical reason that
only 4 bits were available.

Oliver Hartkopp

CAN FD – new bits and def nitions in detail
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Chapter 3
QEMU emulator

QEMU is a universal virtualisation tool as it is able to function in several
distinctive modes. The original purpose was to launch a program compiled
for another architecture as a user-space process without the need to change
the current architecture (ARM, MIPS, Linux). However, it is used more
frequently nowadays for a full system virtualisation including peripherals
virtualisation. Support of the CAN bus and controllers emulation has already
been accepted into the mainline. Nevertheless, the CAN bus standard is
evolving, and a new extended variant of the protocol was introduced in 2012.
It is called CAN FD to highlight the use of higher bit rate for the data portion
of the frame.

3.1 Automated testing

Linux is already able to handle CAN FD communication, even to create a
virtual CAN bus and set up the communication there. A problem occurs
with a new CAN interface driver development or implementation of a driver
for another operating system. Most project maintainers want to be able to
test new changes automatically, without all the hardware. It is one of the
reasons why the integration of virtualisation of the CAN bus into QEMU
started [14].

3.2 QEMU Object Model

The newest QEMU device model consists only of devices and properties[15].
Properties are the external interface to an object. That means it differs from
the previous Qdev separation for devices and busses. New device creation
is initialised with properties set to default values and with no parent. Each
device has a unique name, derived from the parent name.

3.3 QEMU architecture

Linux mainlined Socket CAN API was selected as a connection between
the host - real CAN hardware, and a guest system running QEMU with

9



3. QEMU emulator ...................................
virtualised CAN devices. Each virtual CAN device is seen as a PCI device by
the guest system.
Two or more emulated controllers can be connected and create a virtual
CAN bus, and this communication will be visible only in QEMU. One or
more interfaces can be connected to the host system via SocketCan and will
be observable in the host system through monitoring tools. However, it is
necessary to connect only one controller to the host system. Otherwise, an
infinite loop occurs.
The image below serves as a quality description of emulation inside QEMU,
and CAN support to QEMU emulator documentation provides a satisfactory
explanation [1, page 2-4].

canbus0
CanBusState

canbus1
CanBusState

host=can0
CanBusHostConnectState

CanBusClientState

QEMU system emulator

HOST system
Linux kernel

SocketCAN
net device can0

module kvaser_pci

Kvaser PCI
CAN card

socket
AF_CAN (can_raw)

socket
AF_CAN (can_raw)

Real PCI bus

Real CAN bus

Host system CAN applications:
  candump, cangen, OrtCAN,canblaster
  CANopen canslave, qcanalyzer, etc.

CanBusClientState
CanSJA1000State
KvaserPCIState

device kvaser_pci
PCIDevice

CanBusClientState
CanSJA1000State
KvaserPCIState

device kvaser_pci
PCIDevice

CanBusClientState
CanSJA1000State

CanPCIState
device can_pci

PCIDevice

Emulated PCI bus

Emulated CPU, memory and IO space

Guest system
Linux kernel, RTEMS, etc.

CAN drivers
SocketCAN, LinCAN, ...

CAN application
in virtual environments

CAN application
in virtual environments

Data Address bus, etc

Figure 3.1: QEMU system emulator [20]

3.4 QEMU CAN subsystem

To be able to access CAN bus in Linux, a physical card is required. Subse-
quently, a driver must be implemented, which understands the data sent over
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..................................... 3.5. Coding style

the bus.
The emulated controller SJA1000 is I/O mapped to a single region of the
emulated Kvaser PCI CAN card. Reading and writing to this region is directly
mapped to the SJA1000 chip read or write operations, which supports only
byte size access.
QEMU also should be able to freeze, save the whole state into the prepared
VmStateDescription structures and migrate to another computer, even to
another architecture.

3.5 Coding style

QEMU coding style [21] is similar to the recommended Linux kernel style.
The QEMU repository includes the script which checks the written code
and displays all problems. The most common mistakes are tabs instead of 4
spaces, spaces or tabs on an empty line, incorrect use of parenthesis.

~/QEMU_PATH/scripts/checkpatch.pl ctucan_core.c

The example above is a check script for correct code style of ctucan_core.c.

11
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Chapter 4
Implementation

The following part of this bachelor thesis consists of the implementation of
CAN FD capable chip, which will support QEMU CAN subsystem. Essential
required mechanisms have been implemented, such as transmission and
reception.

4.1 Integration

It is necessary to extend the QEMU side SocketCan interfacing because it
accepts only CAN 2.0 messages. CAN FD support for SocketCAN has been
accepted in the Linux kernel. Therefore, it is possible to be inspired there to
expand the support of the CAN FD in the QEMU. When the bus enables
frames of CAN FD standard, two following steps are necessary to happen.
First, the SJA1000 chip emulation must be slightly modified to become CAN
FD tolerant and not generate error frames. As the next part of CAN FD
integration, a CTU CAN FD PCI card based on the Kvaser PCI CAN card
emulation implemented by Jin Yang and Pavel Pisa has to be added. Last
implementation goal is an emulation of a CTU CAN FD IP core as the
controller mapped into the CTU CAN FD PCI card.

4.1.1 SocketCan support for CAN FD

Initial host SocketCan support has been added for CAN FD. SocketCan sub-
system, allows sending and receiving from the CAN 2.0 controller. CAN FD
frames handling requires to send structure with a different memory size to the
SocketCan socket determined by the file handle. Structure qemu_can_frame
has been extended to hold to provide space for up to 64 data bytes. Fur-
thermore, a property called flags has been added into the message structure.
The flags property is uint8_t and holds additional bits newly defined in
the standard such as BRS, ESI and FDF, see 2.2.1. DLC property remains
identical, but the CAN frame stores actual data bytes count instead of DLC
code because it simplifies the kernel’s back-checking for record lengths.

13



4. Implementation....................................
4.1.2 CTU CAN FD core support

Initial CTU CAN FD core support was started as a copy of SJA1000 controller
emulation, which was the sole supported controller at the time of the project
launch. The creation of CTU controller supporting CAN FD has already
commenced.
When CTU CAN is integrated into a PCI Express board, then two BARs
(Base Address Regions) are expected by the driver. The first one stores
value to identify the CAN core and provides a number of integrated core
instances in the other region. The first region is read-only and is accessed by
ctucan_pci_id_cra_io_read function. The second region maps registers of
the core instances one after another. As an I/O mapped region, it can be
accessed by reading ctucan_pci_cores_io_read function, which immediately
calls core function ctucan_mem_read with a correctly aligned memory address
as the parameter. Function ctucan_pci_cores_io_write operates on the same
principle as the read function. The registers to control PCI Express MSI
(Message Signaling Interrupts) and other FPGA chip-specific control functions
are also mapped at a certain offset to the first region. At the beginning of
my work, attention is focused on the critical registers for transmission and
reception. Apart from the control registers, correct behaviour of access for
four TX buffer and cyclic FIFO RX buffer must be also implemented in the
first stage. Subsequently, less important read/write registers are implemented,
for example traffic counters or controller state diagnostics.

4.1.3 Registers emulation

CTU CAN FD core register definitions are generated from IPXACT CTU
CAN core specification (version 2.1), which is a part of the IP core design
architected by Ing. Ondrej Ille. It is a significant amount of memory mapping
structures, more specifically unions, which define the layout of bits in registers
in real hardware. It distinguishes between several types of bits in hardware
registers, read-only, write-only, and read/write bits. Everything is included
in product documentation, and it is necessary to follow it precisely for correct
emulation behaviour. The documentation describes the functional description
of CTU CAN FD, programmers model, and parameters of CTU CAN FD. In
order to ensure core emulation which works with Linux kernel driver, each bit
has to be handled according to the specification. Accessing CTU CAN FD
device data is possible only through the individual registers, meaning memory
access is aligned with words. To be able to read or write, it is necessary to
call a read or write function with the correct address of the required register
as a parameter.
Control registers have several functionalities; write-only commands to change
inner state, status information about internal traffic counters, errors report,
etc., and reading of received data.

14



..................................... 4.1. Integration

Data structures

The internal state of CTU CAN FD controller must be stored in some data
structure in QEMU software model. CTU CAN FD core register definitions
enable to create variables, which are structured in the same way as bits of
a specific register in VHDL design. It is not necessary to create a variable
for each register. Some control registers are write-only, for sample command
control registers, which changing inner state, but it is not a necessity to store
them. These data structures are defined in ctucan_core.h and, together with
Tx and Rx buffers and auxiliary variables form and hold the whole CTU
CAN FD core state.
CTU CAN FD PCI is described and registered in a fundamental structure
TypeInfo ctucan_pci_info. Every single device in QEMU device tree must
have one. It contains a name, as TYPE_CAN_PCI_DEV, a parent in the
hierarchal based tree; as for PCI device, it is TYPE_PCI_DEVICE, pointers
to initialisation function and some further additional information. CTU CAN
FD core is written generically, which means that it is stand-alone and it is
not unconditionally a part of the PCI device. CTU CAN FD PCI has a
place for two core slots when PCI device ctucan_pci_instance_init function
is processed; therefore, two instances of CTU CAN FD core are created,
and each takes place in one slot. PCI has one more initialisation function
ctucan_pci_class_init where are realise and exit function sets and other infor-
mation about PCI device relevant for the system. Each device in the QEMU
should be able to store the whole state into VMStateDescription structures
and be able to run from this state after some break again. This state storing
is hierarchically based. CTU CAN FD PCI device is no exception among
others device, VMStateDesciption structure called vmstate_ctucan_pci is
defined in ctucan_pci.c and stores PCI DEVICE state.

VMSTATE_PCI_DEVICE(dev, CtuCanPCIState),
VMSTATE_STRUCT(ctucan_state[0], CtuCanPCIState, 0,

vmstate_ctucan, CtuCanCoreState)

Therefore, both CTU CAN FD core states are stored, the structure where
they are stored is called vmstate_ctucan and is defined in ctucan_core.c.
There are again direction, how to store entire CTU CAN FD core state. This
time with basic variable types such as

VMSTATE_UINT32(mode_settings.u32, CtuCanCoreState)

VMStateDescription should also store the Rx and Tx buffers.

VMSTATE_BUFFER(rx_buff, CtuCanCoreState)

4.1.4 Interrupts

Interrupts are called to inform the CPU about finished processing of command
or other hardware state change which needs the CPU intervention. For a
sample, inform the CPU that the transmission has ended. Another example
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is a reception and the need to inform that the data are waiting in Rx FIFO.
Several conditions must be met and the corresponding interrupt status set to
1, and then it is possible to fire an interrupt.

qemu_irq_raise(s->irq);

It is possible that certain interrupts are not enabled or has been processed by
the software, then the function

qemu_irq_lower(s->irq);

is called.

Interrupt mask

Interrupt mask could be arbitrarily set. After power-up or reset, the interrupt
mask is full of zeros, meaning that all interrupts are enabled. When the
corresponding interrupt is required, the corresponding interrupt mask bit has
to be zero; when this condition is met, an IRQ can be fired.

Invoke interrupt

The picture below demonstrates the conditions for the interrupt to be fired.
First, it must be 0 (unmasked) in the interrupt mask. Another condition is
that the interrupt must be enabled. CTU CAN FD core sets the interrupt
status bit to 1 when conditions for the interrupt are fulfilled; for example, a
frame is received from the bus. In such a case, the interrupt would be invoked
by calling function

qemu_irq_raise(s->irq);

Figure 4.1: Interrupts [6]

4.1.5 SJA1000 CAN FD tolerant

Emulated chip SJA1000 would not be able to communicate on the bus where
CAN FD frames are sent without a few changes. First, Using new flags as
BRS and ESI should be avoided. At the minimum, FDF and BRS bits must
always be set to 0 during transmission. Another problem is posed by frames
which hold more than 8 bytes of data. If the controller tries to receive this
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frame, it can lead to undefined behaviour. Therefore, each message with the
data phase longer than 8 bytes must be ignored. These changes are sufficient
to create CAN FD tolerant SJA1000 emulated chip. It corresponds now with
the design of OpenCores SJA-1000 FD Tol. OpenCores SJA-1000 controller
modified to ignore CAN FD frames which allows it to coexists and send
frames on the network with CAN FD traffic. The core is packed as a Xilinx
Vivado component [19].

4.2 Transmission

TX buffers are used for transmission by CTU CAN FD. They are filled with
software, for example a Linux kernel driver, which knows the mapping of TX
buffers and stores the whole frame word after word. When the whole frame
is stored into an arbitrary Tx buffer, Tx command TXCR is set. During the
processing of TXCR command, i.e. writing to an exact register, the controller
sets the buffer into the READY state and immediately sends the frame and
changes buffer state into buffer OK state. There is no implementation of
delay yet. It follows that the transmission cannot be aborted. During this
procedure, all Tx buffers are iterated, and Tx buffer in the READY state,
which corresponds to the flag of the related buffer, is sent.

4.2.1 TX buffers

The initial implementation of TX buffers is 0x50 bytes uint_8t array, com-
puted to be at the minimal level of sufficiency of CAN FD frame. Four
Tx buffers are in CTU CAN FD prepared for the transmission. Support of
transmission buffers is necessary for correct message sending. Buffer with
a stored whole frame inside is transmitted to the bus. The controller then
informs the CPU through interrupt requests that transmission transpired and
that at least one buffer is again in OK state.

Buffer states

The initial state for all four buffers is the EMPTY state. It indicates that a
buffer available to use. The OK state, which is set after successful transmission,
has an identical meaning. When the data are ready to be sent, it corresponds
to the READY state. The ABORT state is not implemented due to no
transmission delay, and the same applies for the FAILED state. The FAILED
state occurs when several unsuccessful attempts are made.

4.2.2 Commands

Several Tx commands are defined. TXCE is able to reset buffer state to
initial state. This command could restore the FAILED state buffer back to
functionality, also affects the OK state and the ABORTED state. TXCA
changes the READY state into the ABORTED state. Theoretically, it is
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possible, but transmission delay is not implemented, so it is not possible to
reach this command functionality. The most important command TXCR
sends a frame to the bus. Simultaneously set the OK state, the FAILED
state or the EMPTY state to the READY state.

4.2.3 Buffer to frame

Before sending any data to the bus, it is necessary to move them from an
internal stored buffer - this format is defined the same way as the CTU CAN
FD core register definitions - to a generally understandable SocketCan frame
format. The first step is the initialisation of QEMU CAN frame structure,
and data are loaded from the internal buffer by mapping unions which enable
to copy the correct bits. At the end of the process, it is possible to directly
memcopy the data phase. Every frame stored in Tx buffer is stored there
according to the same rules, so header has always 16 bytes and the maximum
of the data phase can be 64 bytes.

memcpy(frame->data, buff + 0x10, 0x40);

Ambiguous problems

Real bytes count is encoded by the CAN FD standard into DLC. It is necessary
to take care of this non-linear mapping because in the internal buffer, DLC
is stored by CAN FD standard; however, it is required to hold in DLC real
bytes count in the frame which would be sent to the bus because it simplifies
the kernel’s back-checking for record lengths. Non-linear mapping solution
can be found in can_emu.h as dlc2len function. The identifier poses a minor
problem as it exists as one number in the frame, but it is divided into the base
and the extended identifier in defined internal buffer layout. The solution is
simple, in case of using the only base identifier, the base identifier is assigned
to CAN ID. In the opposite case, the extended identifier is assigned first, with
the subsequent use of logical OR to add the base identifier shifted by 18 to
the left.

4.3 Reception

Reception is implemented through a single FIFO organised Rx buffer. All
incoming frames from the bus are stored in a successive order. Reading from
Rx buffer is processed by the RX_DATA register. CTU CAN FD is able to
recognise the first and the last words of the frame in the Rx buffer. When the
whole frame is read by software, it can continue with the next frame reading
immediately.

4.3.1 RX buffer

Rx buffer is uint_8t array with an arbitrary length. After each reception,
RXFRC is updated. Several messages can be stored during the usual system
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running, resulting in the need to determine frame boundaries during words
reading by SW. This is the reason why the byte remainder counter was added
to the core state. After verifying that the Rx buffer is not empty, the CAN
frame reminder appears as an essential element during RX_DATA register
reading. If the CAN remainder is zero, we read the first word of the new
frame. Through frame alignment definition, it is possible to map the correct
structure on this word and read RWCNT from which the length of the frame
is calculated. Rx buffer overrun occurs when the traffic incoming from the
bus fills up Rx FIFO and reading and processing of the messages by the guest
driver is too slow. At the moment when the new frame cannot be stored,
the overrun interrupt is invoked, and the frame is discarded. It is possible to
flush the Rx buffer by writing logic 1 to the control register COMMAND flag
RRB.

FIFO implementation

There are several possibilities of how a FIFO could be implemented. For data
reading per bytes, a tail pointer is used very frequently. Head pointer is also
essential but is used only for storing the whole frame. Instead of the head
pointer, it was decided to store accurate bytes count in the Rx buffer, from
which it is easy to calculate the head pointer. Actual bytes count is used in
several conditions across the CTU CAN FD.

4.3.2 Frame to buffer

Before it is possible to store the incoming frame into the Rx buffer, it is
necessary to convert the frame from a generally understandable SocketCan
frame format to an internal stored buffer - this format is defined in the same
way as the CTU CAN FD core register definitions. For this purpose, the
TMP buffer is created with the size of one CAN FD frame. This buffer must
be set to zeros by memset.

memset(buff, 0, CTUCAN_MSG_MAX_LEN * sizeof(*buff));

The data are loaded from the frame to the internal TMP buffer by mapping
unions which enable to copied bits to the correct place in the TMP buffer.
The data phase can be copy directly by memcpy.

memcpy(buff + 0x10, frame->data, 0x40);

Ambiguous problems

They bear a high similarity to transmissions problems, but one change arises
in this case. There is an urgency to count bytes in the frame correctly because
it is used later for copying from a TMP buffer into the Rx buffer. Fortunately,
the non-data phase always has 16 bytes. The frame holds DLC in the exact
bytes count; we can therefore use this number, but on one condition - the
resulting number of bytes must be aligned with words.
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bytes_cnt = (bytes_cnt + 3) & ~3;

CAN ID is stored in the frame as a singular number. Internally, it is necessary
to divide it into the base and the extended identifier. In the case of the base
identifier only, the first 11 bits should use logical AND with 0x3FF. When the
extended identifier with 29 bits is used, it is divided into the 11 bits identifier
base and the 18 bits extended identifier. First, CAN ID must be masked by
logical AND with 0x3FFFF and stored to the extended ID. In the following
step, CAN ID must be shifted to the left by 18 and masked by logical AND
with 0x01FFFC0000.

4.4 Hardware Reset

A hardware reset is called in two cases; always after a CTU CAN FD power-up,
or it can be called through writing logic 1 to the control register MODE flag
RST. Following a power-up, the reset is more likely used to set up correct
reset values. A more complicated situation occurs during a reset in the middle
of work. In addition to setting the reset values, the work in progress must be
cleaned up by resetting traffic counters, status control registers and interrupts.
Each Tx buffer should return into the empty state. It is also necessary to
flush the Rx buffer. It involves several steps - resetting tail position pointer,
buffer bytes count and, in case of reset during frame reception, also the frame
reminder.

20



Chapter 5
Testing

The chapter focuses on the set of commands necessary to prepare the testing
environment and verify the functionality of written code, specifically if the
data pass through and message identifications correspond.

5.1 Actual testing environment setup

This section describes the setup which was used. This bachelor project was
developed in a system with Windows 10 where it runs utility for virtual
machines VMware Workstation 15 player in its free version available for
non-commercial use only [17].
Virtual machine Ubuntu 18.04.3 LTS [18] runs on VMware. The entire work
with QEMU takes place inside the Ubuntu. QEMU also uses virtualisation,
so during the work, for testing purposes, the next Linux system emulates
inside the QEMU and results in virtualisation chain, which is not the best
practice for working, but fortunately, it is possible. In this case, QEMU
uses the same build of the Linux kernel as an external system. It was kernel
version 5.3.0-51-generic for Ubuntu 18.04.3 LTS at the time of the writing of
the thesis. QEMU can be run with

-nographic

parameter, and then it uses the current terminal window as its native console.

-append "console=ttyS0"

This parameter commands Linux kernel to use ttyS0 as the system console
output for error and informative messages which are directed to the terminal
window from which they can be easily copy-pasted and saved for future
analysis. To quit QEMU running in the console, a non-trivial key combination
is required, specifically Control + ’a’ ’x’. A problem occurs several times after
the Ubuntu software update. The kernel version is precisely set, so it must
be updated.

-kernel /boot/vmlinuz-5.3.0-46-generic

The RAM disk needs to be generated
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mkramdisk-mf624

and then needs to be added as a Qemu parameter

-initrd ramdisk.cpio

Before starting the QEMU, it is possible to set a shared directory which could
be used for data transfer between host and guest systems during QEMU’s run.
This allows the option to add files or binaries into the emulated system during
its run. In this example case, a sharreddir directory (in the same directory as
a Qemu launcher qemu-run) is mapped with the use of p9 protocol to simple
QEMU virtual file system by the QEMU parameter below.

-virtfs local,path=shareddir,security_model=none,mount_tag=shareddir

These code snippets bellow are paths to access to directories for communica-
tion between inner and outer Linux systems during QEMU emulation. A file
from the host system then can be stored to

ls ~/QEMU_RUN_DIR/shareddir

and will be visible from the guest system in

ls mnt/shareddir/bin/

5.2 Test SW

This is a user-space program for communication in the bus testing. It
can be found in the public git repository CTU CAN FD IP core [22] ctu-
canfd_ip_core/driver, it must be generated by the Makefile. The Makefile
generates program called test, and then it is sufficient to copy it to the shared
directory.

test-ctucan -p -T -I 0x123 -f -b
[-p] search core through PCI card
[-T] periodically transmit
[-I] set the identifier
[-f] transmit CAN FD frames
[-b] bitrate switch
[-i] use instance 0 or 1 from certain PCI card

PCI must be enabled before this user-space program is launched, but at the
same time driver can not be loaded.
To enable CTU CAN FD PCI device

lspci -n -d 1760:ff00

is used to find on which PCI bus and in which "socket" the card is present
and then to use for example.

echo 1 >/sys/devices/pci0000:00/0000:00:06.0/enable

where bus number and device slot is adjusted according to lspci output.
It is beneficial for debugging to have the user-space program.

22



........................................5.3. Driver

5.3 Driver

The driver module must be loaded to the Linux kernel and communication
set up.

modprobe ctucanfd_pci
ip link set can1 type can bitrate 1000000 dbitrate 1000000 fd on
ip link set can1 up
cangen can1 -f

Sequence for testing purpose. Load CTU CAN FD module into the Linux
kernel, set up a virtual CAN interface and run random CAN FD frames
generator.
SocketCan offers several userspace utilities and tools. The following two tools
are enough for basic testing.

candump [can0]
cangen [can0]

[-f] CAN FD frames
[-g] time frequency in ms

Necessary tools to display, record, generate and test CAN traffic [26].
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Chapter 6
Conclusion

The goal of this thesis was to analyse the differences between CAN 2.0 and
CAN FD standards and to describe QEMU CAN subsystem, and to use this
knowledge in the subsequent part and create a functional emulation of a CAN
FD communication bus and model of a CAN FD capable controller. Both
targets were achieved.This thesis could be found in git repository [27].

6.1 Work already completed

This project analyses the basic QEMU concept and how to work with it as a
full system emulator. It also demonstrates a proper coding style for QEMU.
The next part analyses CAN frames differences between standards to be
able to understand which parts changed and how to implement them. It is
necessary to know the role of each bit of CAN frame to be able to operate
with them. The analysis offers a group of often-used commands which help
with the workflow and with the testing.

6.1.1 Transmission and reception

Emulation of CAN FD communication was achieved. QEMU virtual CAN
bus now supports CAN FD frames and preservers the possibility of CAN 2.0
communication only. Due to the changes in the bus frame, a stand-alone
chip SJA1000 was improved to make it CAN FD tolerant. Furthermore, it
can behave as an active device during communication under the condition of
ignoring frames with data phase longer than 8 bytes. Several testing methods
proved the correct transmission.

6.2 Implementation

An already functional emulation of CAN bus and stand-alone SJA1000 con-
troller support has been extended, CAN FD support has been added, and
CTU CAN FD core controller is now available with modified card CTUCAN
PCI. Nowadays, the transmission of CAN FD frames is available. The new
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implementation preserves the previous functionality of sending CAN 2.0
frames.

6.2.1 Future implementation goals

It is possible, consider message rate slowdown as on a real CAN bus. Some
mechanism prevents loss of messages to a certain level when a guest application
is slow. We can convert CAN bus model from plain C to QOM (Controllers
are QOM/Qdev already). We can add more CAN controllers model emulation
(BOSCH/Ti C CAN, Freescale FlexCAN, etc.).

6.2.2 Transmission delay

To achieve the goal of behaving like real hardware, some delay can be im-
plemented between the command to send data from the buffer and the real
sending data on the bus. Because of this delay, a possibility emerges to abort
transmission before it is sent.

6.2.3 TXT buffer selection

In the actual state of implementation, buffer selection does not take any
place. Buffer selection should be implemented together with transmission
delay because all four buffers are every time, when TXCR is set, iterated
and the Tx buffer in the READY state, which corresponds to the flag of the
related buffer are data immediately transmitted.
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Appendix A
Installation guide for programmers

Check installation of git versioning system by

git --version

if there is no installation on computer write command

sudo apt install git

Now pull QEMU mainline from git

git clone git://git.qemu.org/qemu.git

Will continue with proper installation way.
Until the project is not in mainline, it could be found here.

git remote add gitlab-fel https://gitlab.fel.cvut.cz/canbus/qemu-canbus.git
git fetch --all
git checkout -b charvj10-canfd gitlab-fel/charvj10-canfd

For more information, see the project’s documentation page [28].
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Appendix B
Useful commands

It is useful to know debugging tools and other utilities available in the
system to proceed with the work. It could make progress faster and simpler.
The shortlist of advice tools means which were used during this project
development follows.

B.1 Linux

For experienced GNU/Linux users, the following commands are natural, but
for users-beginners, or predominantly Windows programmers, they might be
helpful. The advice also contains shortcuts for Midnight Commander [24].
MC during the bachelor project proved to be an excellent file explorer to
browse and work with the file-system.

F9 + cf

MC F9 Command Find, go through the whole directory and try to find the
written filename or keyword.

lspci-full -v

Display full information list about devices connected to the PCI bus.

rdwrmem -b 4 -s 0x08010000 -l 100 -m

Dump certain memory location. [25]
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