
Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Mobile app for collecting data about
objects placed on the city pavements

Jan Kraus

Supervisor: Ing. Ivo Malý, Ph.D.
Field of study: Software Engineering and Technology
May 2020

ii

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

434202Osobní číslo:JanJméno:KrausPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologieStudijní program:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Mobilní aplikace pro sběr dat z chodníkové sítě

Název bakalářské práce anglicky:

Mobile app for collecting data about objects placed on the city pavements

Pokyny pro vypracování:
Analyzujte požadavky pro sběr a ověřování chodníkových dat, které byly definovány v
rámci projektu Cityplan, tj. vyžádané ověření stavu konkrétních objektů a nahlášení
problému na chodníkové síti. Dále analyzujte požadavky na aplikace sbírající data
pomocí davu (crowdsourcing). Na základě analýzy vytvořte návrh struktury mobilní
klientské aplikace, která umožní davový sběr dat dle definovaných scénářů. Tato
klientská aplikace bude využívat také serverovou část (resp. její programové rozhraní),
která je vytvářena v jiné práci. Dále vytvořte vysokoúrovňový prototyp (HiFi prototyp)
mobilní aplikace na platformě Flutter. Funkčnost aplikace ověřte pomocí softwarových
testů. Dále proveďte vyhodnocení aplikace pomocí kvalitativních uživatelských testů s
alespoň 5 uživateli nad alespoň 3 typy chodníkových objektů.

Seznam doporučené literatury:
[1] Riganova, M., Balata, J. and Mikovec, Z., 2017, September. Crowdsourcing of
Accessibility Attributes on Sidewalk-Based Geodatabase. In IFIP Conference on
Human-Computer Interaction (pp. 436-440). Springer, Cham.
[2] T. Lowdermilk, User-Centered Design, O'Reilly Media, 2013.
[3] B. Fling, Mobile Design and Development, O'Reilly Media, 2009
[4] F. ZAMMETTI. Practical Flutter: Improve your Mobile Development with Google’s
Latest Open-Source SDK. Apress, 2019.

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Ivo Malý, Ph.D., katedra počítačové grafiky a interakce FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 22.05.2020Datum zadání bakalářské práce: 11.02.2020

Platnost zadání bakalářské práce: 30.09.2021

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Ivo Malý, Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZBP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZBP-2015.1

Acknowledgements
I would like to express my great apprecia-
tion for Ing. Ivo Malý, Ph.D., my super-
visor, for his patient guidance, encourage-
ment and useful critique. I would also like
to extend my thanks to my family and
my friends, that accompanied me on my
academic journey.

Declaration
I hereby declare that I have written this
bachelor thesis independently and quoted
all the sources of information in accor-
dance with Methodical instructions about
ethical principles for writing academic the-
ses.

In Prague, 21. May 2020

v

Abstract
The motivation for this thesis was the
creation of a cross-platform application
to provide data for better navigation of
visually and movement impaired people
with the help of crowdsourcing. In the
beginning, core principles and problems
are defined concerning geographical data
crowdsourcing, followed by a system de-
sign analysis. Later, technologies used in
Flutter framework are discussed and ana-
lyzed with Redux and Firebase being the
chosen approaches. The mobile applica-
tion is then implemented using provided
designs. In the end, the application is ver-
ified with software tests and user-testing.

Keywords: flutter, mobile development,
crowdsourcing, geodata, redux, firebase

Supervisor: Ing. Ivo Malý, Ph.D.

Abstrakt
Motivace této bakalářské práce je vytvo-
ření mobilní aplikace pro všechny plat-
formy s cílem poskytnout lepší data pro
navigaci pohybově a zrakově postižených
lidí za pomoci široké veřejnosti. Nejdřív
jsou definovány základní pojmy a principy
týkající se sběru dat veřejností a následně
jsou analyzovány požadavky pro danou
aplikaci. Následně jsou analyzovány tech-
nologie pro vývoj aplikací za použití ná-
stroje Flutter, kde Redux a Firebase jsou
zvoleny hlavními nástroji. Poté je mobilní
aplikace implementována na základě do-
stupného grafického návrhu. Nakonec byla
funkčnost aplikace ověřena softwarovými
a uživatelskými testy.

Klíčová slova: flutter, vývoj mobilních
aplikací, crowdsourcing, geodata, redux,
firebase

vi

Contents
1 Introduction 1

2 Problem description 3

2.1 Crowdsourcing geological data . . . 3

2.1.1 Definition 3

2.1.2 Consideration 4

2.1.3 Types of inducement 4

2.1.4 Related work 5

2.2 Geographical data definition 6

2.2.1 Obstacles 7

2.2.2 Orientation points 7

2.2.3 Points of interest 8

3 System design 9

3.1 Application scope 9

3.2 Application requirements 9

3.2.1 Functional requirements 10

3.2.2 Non-functional requirements . 11

3.3 Use cases . 11

3.4 Domain model 12

3.4.1 Enumeration package 12

3.4.2 Datatype package 13

3.4.3 Entity package 13

4 Technical analysis 17

4.1 Software development kit 17

4.2 Architecture 18

4.3 State management 19

4.3.1 Framework solution 20

4.3.2 Business Logic Components
(BLoC) . 20

4.3.3 Redux . 21

4.4 Data management 22

4.4.1 Database 23

4.5 Map framework 25

4.6 Conclusion 25

5 Implementation 27

5.1 Project setup 27

5.2 Application functionality 28

5.2.1 Application overview 28

5.2.2 Serialization of JSON-like data 30

5.2.3 Services 30

5.2.4 Data synchronization 32

5.2.5 Modular scenarios 32

5.2.6 Location-based query 34

5.3 Testing . 35

5.3.1 Unit tests 36

5.3.2 Widget UI tests 36

5.3.3 User testing 37

6 Conclusion 41

6.1 Future work 42

6.1.1 Fix issues 42

6.1.2 User education system 42

6.1.3 Gamification 42

Bibliography 43

A Use cases 45

A.1 Use case 1 - Login 45

A.2 Use case 2 - Show objects on map 46

A.3 Use case 3 - Add new report . . . 47

A.4 Use case 4 - Add report to an
object . 48

A.5 Use case 5 - Filter objects 49

A.6 Use case 6 - Survey overview. . . 50

A.7 Use case 7 - Profile overview . . . 51

A.8 Use case 8 - Logout 52

B Code snippets 53

B.1 State management 53

vii

B.1.1 Business Logic Component . . 53

B.1.2 Redux 55

B.2 Implementation 57

B.2.1 Services 57

B.2.2 Synchronization 61

B.2.3 Unit testing 61

B.2.4 UI testing 64

C Application screenshots 65

D Examples of provided graphical
design 69

E Contents of the attached CD 71

viii

Figures
2.1 User motives, incentives and
incentive mechanisms [7] 5

3.1 Domain model - enumeration
package . 13

3.2 Domain model - data types
package . 14

3.3 Domain model - entity package . 15

4.1 Flutter architecture 18

4.2 Clean Architecture by Uncle Bob
(Robert C. Martin) [9] 18

4.3 Business Logic Components
architecture . 20

4.4 Redux architecture 22

4.5 Point data using GeoJSON 23

4.6 Line data using GeoJSON 23

4.7 Polygon data using GeoJSON . . 24

4.8 Firebase Suite - list of Firebase
services [13] . 24

5.1 Composable scenarios for data
collection . 33

5.2 Simplified implementation of the
condition selection widget 34

5.3 Location based query to Firestore 34

5.4 Debouncer class 35

5.5 Images provided to scenarios . . . 37

B.1 Data source example for BLoC . 53

B.2 Repository example for BLoC . . 53

B.3 Business Logic Component
example . 54

B.4 Presentation layer example for
BLoC . 54

B.5 Store definition for Redux 55

B.6 Example of Actions for Redux . 55

B.7 Example Middleware
implementation for Redux 56

B.8 Reducer example for Redux. . . . 56

B.9 Example implementation of View
in Redux . 56

B.10 Authentication service 57

B.11 Authentication service functions 58

B.12 Location service 59

B.13 Navigation service 60

B.14 Redux Epic for synchronizing
data with Firestore 61

B.15 User mocks 61

B.16 User is saved - unit test 62

B.17 User is updated - unit test 62

B.18 User location is updated - unit
test . 63

B.19 Helper function for widget tests 64

B.20 SignInButton in non-loading
state - widget test 64

B.21 SignInButton in loading state -
widget test . 64

C.1 Login flow 65

C.2 Map view 66

C.5 Profile and survey overview views
and filter modal 66

C.3 Scenario for new reports 67

C.4 Scenario for crosswalks 68

D.1 Provided design of the map
interface . 69

D.2 Provided design of the sidewalk
scenario . 69

D.3 Provided design of the New
Report scenario - part one 70

D.4 Provided design of the New
Report scenario - part two 70

ix

Tables
5.1 Problems found by users and their
respective proposed solutions 39

x

Chapter 1
Introduction

Navigation is an essential asset to people to reach new destinations and
explore unknown places. Mapping systems have a vast amount of information
about roads, but not so much about pavements, which makes the navigation
car-centred. However, for people with impaired mobility and vision, the
most common navigation systems fail to convey important information about
pavement obstacles and accessibility attributes for existing landmarks and
pedestrian segments.

To address this problem, Czech Technical University works closely
with the Central European Data Agency and T-MAPY as a part of a grant
provided by the Technology Agency of the Czech Republic. The project is
called CityPlan and has an objective to develop a sidewalk-based Geographical
Information system (GIS) with features outlining the pedestrian segments
and their attributes.

Pedestrian segments are drawn into GIS by experts using utilities
like satellite imagery. When they finish this step, attributes are later collected
by professional on-site exploration. By using professionals, data collection is
costly and time-demanding. The aim is to reduce the cost and time needed
for this exploration by developing a mobile application for the collection
of pavement data by non-experts, the crowd. Professionals later aggregate
this data for the specialized navigation systems used by mobility and vision
impaired individuals.

My thesis follows up on the work of Ms Riganová [11], that con-
structed the basic concept of the application, including its gamification and
educational system for the users. The main focus of my thesis is to analyze
and create a proof of concept for both Android and iOS using Flutter, that
centres its attention mainly on the data collection part. User education and
gamification aspects of the application are not a part of the implementation.

1

2

Chapter 2
Problem description

This chapter describes the subject matter around crowdsourcing as a way
of collecting geographical data. It also touches on topics like motivation of
people to gather data or related works done in the field. We will also define
elements on the pavement networks that are cardinal for navigation of people
with visual or movement impairment.

2.1 Crowdsourcing geological data

In this section we centre our attention to geological crowdsourcing as an
alternative to professional data collection, examining some real-life exam-
ples, underline possible shortcomings related to amateur data collection and
look for possible solutions to promote the interest of people for geological
crowdsourcing.

2.1.1 Definition

Crowdsourcing provides us with a way to mitigate the time- and cost-
consuming process of collecting professional data onto the crowd. Primarily
geographical crowdsourcing specializes in accumulating spatial data. We swap
experts for ordinary people (crowd) to provide annotations for geographical
features. The original term crowdsourcing was made up by Jeff Howe’s article
[6] in the popular magazine Wired.

“Crowdsourcing represents the act of a company or institution taking
a function once performed by employees and outsourcing it to an undefined
(and generally large) network of people in the form of an open call.”

Crowdsourcing differs from its sibling commons-based peer produc-
tion (which is a term coined by Yochai Benkler in [1]), where people cooperate
voluntarily to reach a shared goal. There is no top-down directive of what
needs to be done (like in crowdsourcing), and all the work is generated and
governed by the participants, and the locus of control resides in the hands of

3

2. Problem description..................................
the community.

2.1.2 Consideration

Technology improved the possibilities for collecting and sharing geographical
data that almost anybody can be a part of it. Combining technology and
crowdsourcing, we can assess a significant volume of data in a short time with
minimal investments (time or cost) and make modifications to them quickly.
But with great power comes great responsibility, and crowdsourcing has its
disadvantages. We need to consider these things:

. Amateur contributions are generally of lower quality than those of ex-
perts.. Amateur contributors use worse equipment, which is less precise than
professional equipment..Motivation differs between participants; some may even abuse the system
and put incorrect data on purpose.

Even though these can be valid concerns, a case study by [12] showed,
there is little to no difference between data collected by amateurs and those
collected by experts. This study also tracked the confidence level for each
identification and unsurprisingly, the more confident in identification the
amateurs were, the more consistent and correct their findings were. As much
as experts are invaluable in collecting data, crowdsourcing is a valid and
powerful tool to collect data.

2.1.3 Types of inducement

Crowdsourcing systems highly depend on sustained interest and participation
of individuals, which relies on their motives. These may vary on situational
context or participant. Based on this paper [7] inducement of users can be
divided into several categories (shown in Figure 2.1) with real-life examples
and applications.

. Reputation systems. platform’s users rate each other based on their conduct. the system combines ratings to form an assessment of the reputation. reputation is measured in several ways, usually represented by a
numeric value. blocking functionality for users with low/lousy reputation. Social incentive mechanisms

4

............................. 2.1. Crowdsourcing geological data

Figure 2.1: User motives, incentives and incentive mechanisms [7]

. uses the users need for a good social images and wanting to be
perceived as smart or wealthy. introduces mechanics that act as enablers of social interactions and
giving the ability to showcase their skill. Financial/Career rewards. compensation for the lack of enjoyable tasks or social rewards. the compensation varies from a chance to win a prize, monetary
compensation or free service/product.Gamification. using game design elements in a non-game context. they usually include badges, achievements, leader-boards or include
virtual goods or gifts. users are rewarded for in-app activity, which incentives their be-
haviour

2.1.4 Related work

The leader in collecting geographical data by using crowdsourcing is probably
OpenStreetMap1 project, which was first introduced in 2004 with a common

1https://www.openstreetmap.org/

5

2. Problem description..................................
goal to generate a free and editable alternative with the help of volunteers to
the traditional GIS systems and data providers. Even though it surpassed the
traditional suppliers in having more detailed, accurate and up-to-date data,
it still does not take special needs of people with disabilities into account.

There are successful projects on the market that either use the
dataset that OpenStreetMap provides or are build on other available data
like Google Street view. We can take a quick look at two of them and see,
how they handle the data collection.

.WheelMap2

.OpenStreetMap based solution for finding wheelchair accessible
places. Anyone can mark public places based on their wheelchair accesibility. They use simple traffic light based system. Green - fully accessible by wheelchair. Yellow - partly accessible by wheelchair. Red - not wheelchair accessible. It has a web app and mobile applications for both iOS and Android.Multilanguage support. Sidewalk3

. Research project from the University of Washington. Using Google Street View4 as a tool for sourcing data from users. Provides interactive guide for first-time users. User can either gather new data or approve already collected data. Training a neural network for future automation of the labeling
task (users will then be used just for checking the validity). Is only available in few big cities in the USA

2.2 Geographical data definition

This section lays out the types of geographical objects and data needed for a
navigation system of disabled people. Based on on project documentation [2],
we could classify them into three separate categories, that help us understand
the different properties we have to store and each come with their needs.

2https://wheelmap.org/
3https://sidewalk-sea.cs.washington.edu/
4https://www.google.com/streetview/

6

.............................. 2.2. Geographical data definition

2.2.1 Obstacles

Obstacles are one of the most common entities for which information needs
to be collected. Without spatial information about impediments, it is really
hard for navigation systems to redirect users through another route. This
can lead to aggravating situations where a normal walk to work is made into
an obstacle course for impaired people. To avoid this, we will invite users to
collect the following data for obstacle objects.

.Geographical location. Type - bin, lamp post, tree, road work, etc.... Position on the sidewalk - to the left, to the right, right in the middle. Throughput of the sidewalk - how much space is there to go through. Dimensions - length and width (in various units). Image - photo of the object with context to its surrounding. Additional information - any information not covered by previous points

2.2.2 Orientation points

Another type of objects we need information about are orientation objects.
These include any pavement structure that is important for safe passage
around pavements and through traffic. A tutorial about its parameters is
recommended to collect data about these, because a casual user, the ones
that have no beforehand experience with city accessibility design, would
be confused about what exactly they should be looking for. For now, we
differentiate two entities - a crosswalk and a corner.

. Crosswalk.Marking of crosswalk side. Information needed for each side of crosswalk. Types are signal strip, warning strip or sound signal. Type of the surface finish. Information needed for each side of crosswalk. Types are asphalt, Prague mosaic, cobblestones, etc.... Number of traffic lines the crosswalk goes through. Series of yes or no questions. Is there an island?. Is it crossing any bike/tram lines?

7

2. Problem description..................................
. Image - visual representation of the crosswalk. Additional information not covered by above questions. Corner. Shape - sharp, round or polygonal. Image - visual representation of the crosswalk. Additional information not covered by above questions. Sidewalk.Minimum width of the sidewalk. Type of material - asphalt, Prague mosaic, cobblestones, etc.... Condition - poor, average or excellent. Type of surroundings in a direction - buildings, greenery, misc, etc.... Image - visual representation of the crosswalk. Additional information not covered by above questions

2.2.3 Points of interest

The last group of objects are points of interest. They encompass structures
that are generally helpful for impaired people to know about. It can range
from public transport infrastructures like subway entries or exits, bus or tram
stops, etc..., or are of general use like public toilets or benches. For now, only
benches have defined data needed for collection, but more should be available
in the future.

. Bench. Head rest presence. Condition - poor, average or excellent.Material - wooden, metal, stone, etc.... Photo. Additional information not covered by above entries

8

Chapter 3
System design

This chapter encompasses the process of structuring and designing the ap-
plication architecture, which is simple to extend, scale and overall great to
work with. It is platform/programming language independent, to give us the
ability to compare technologies later and helps us make strategical decisions.

3.1 Application scope

The scope and user interface is closely based on design prototypes proposed by
Ms Riganová in her master thesis [11]. She constructed the basic concept of
the entire application including its gamification and educational system of the
users. Both of these aspects were omitted and not part of this implementation.

The design team from the Cityplan project [2] made further im-
provements upon the initial design. I received access to the Figma tool the
designers used to iterate over the designs and I used them as my stepping
stone. I did not try to fully recreate provided design as user testing is still in
progress and final design is not yet finished.

I still tried to closely recreate the user experience and the main
components of the application like interactive map, step wizard for data
collection or sliding panel for showing a list of objects. In the Chapter
Examples of provided graphical design, you can see examples of the latest
design suggested by the designers.

3.2 Application requirements

This section contains a comprehensive overview of functional and non-functional
requirements to be taken into consideration for designing the application.
These requirements were either defined by the design provided by the project
documentation [2] or discovered during consultation with the client repre-
sented by my supervisor.

9

3. System design
3.2.1 Functional requirements

. User management. The client application must allow users to create an account within
the system.. The client application must allow users to log in, respectively log
out. Data representation. The client application must allow users to see objects in their
immediate vicinity. The client application must plot the data in a map interface and
show a list in a comprehensive form. Visual recognition. The client application must allow users to identify different types
of objects. The client application must differentiate the object by a name and
with a visual cue. Explore. The client application must allow users to explore data outside his
immediate vicinity. Report new object. The client application must allow users to report upon a new object
with a user-friendly interface. Survey an object. The client application must allow users to report upon a existing
object with a user-friendly interface. The client application picks a scenario based on the type of the
object. Image resources. The client application must allow users to use their camera or a
library to upload an image. Personal dashboard. The client application must allow users to see an overview of their
progress in the application

10

...................................... 3.3. Use cases

3.2.2 Non-functional requirements

.OS independent. The client application is implemented to work on both iOS and
Android. Supported OS versions. The client application supports Android version 4.4 or newer (96%
of Android devices) and iOS version 9 and newer (more than 99%
of iOS devices). Secure data storage. The client application uses a service for storing JSON-like data and
multimedia data with ability to restrict access to that data.Offline use. The client application needs to work temporarily without an internet
connection. Data consumption efficient. The client application needs to be optimize to use as little data as
possible. Testable. The client application needs to be easily testable

3.3 Use cases

With each project, there should be a general understanding, what actions
should the user be able to take. There are many approaches of writing use-
cases and how their visual representation looks like. I decided to follow the
simple eight steps defined in [10] and let each use-case have clear definition
of following things:..1. Clear identification - identification number and a unique name..2. Actor - who takes the actions..3. Preconditions - what state the system or the actor are in before..4. Success scenario - happy path of the use-case..5. Fail scenarios - what can fail at which step

11

3. System design
I recognized and defined eight use-cases that are viable in the scope

of this application (proof of concept). I described them in detailed using the
guide above and they can be found in the Chapter Use cases. Here is a simple
list with references to each use-case description.

. Use Case 1 - Login (Section A.1). Use Case 2 - Show objects on map (Section A.2). Use Case 3 - Add new report (Section A.3). Use Case 4 - Add report to an object (Section A.4). Use Case 5 - Filter objects (Section A.5). Use Case 6 - Survey overview (Section A.6). Use Case 7 - Profile overview (Section A.7). Use Case 8 - Logout (Section A.8)

3.4 Domain model

Before describing a domain model, we need to define it. Based on [3], domain
model is "a structured visual representation of interconnected concepts or
real-world objects that incorporates vocabulary, key concepts, behaviour, and
relationships of all of its entities."

Domain model should closely resemble the code that is written and
shares the vocabulary and should not try to capture the entire scope of the
project but focus more on one part that is encapsulated by a package. This
way, we can iterate the project and make it easier to modularize.

3.4.1 Enumeration package

In domain models enumerations are generally used for a property, that has a
limited set of values. For example, Geometry may have a property Type that
could have values Point, LineString or Polygon. One disadvantage of this
approach is that enumeration should only be used for non-expending static
lists.

One example from our domain is SurveyType, which does not have
a final set of values but is still considered an enumeration (there will be a
final set of values). Other enumeration types are described in detail in Figure
3.1.

12

.................................... 3.4. Domain model

Figure 3.1: Domain model - enumeration package

3.4.2 Datatype package

A data type is an object recognizable by its value, but where we are not
interested in its identity or its associations. They usually have a more
complicated structure and are shared between entities. Data types used in
our domain model can be seen in Figure 3.2.

3.4.3 Entity package

Entities are the first thing we need to think about when creating a domain
model. We need to define what properties an entity has and how it relates to
other entities. Our domain model (entity package described in Figure 3.3)
has three fundamental entities:

. User - describes a person using our application, which is identified by
his unique ID. User can create a Survey either based on GeoObject or a
completely new one.GeoObject - describes an object that encompasses geographical objects
in the real world. Multiple Surveys can be created on one GeoObject. Survey - it describes a report made by a User, that can belong to a
GeoObject. It is extended by multiple sub-surveys (NewReport, Cor-

13

3. System design

Figure 3.2: Domain model - data types package

nerReport, BenchReport and SidewalkReport) and it is probable, that
more specific types can be defined later in development.

14

.................................... 3.4. Domain model

Figure 3.3: Domain model - entity package

15

16

Chapter 4
Technical analysis

At the start of a project I need to make few decisions, which steer the
development in a particular direction. I introduce Flutter as our software
development kit and lay out principles how I will structure the project
from architecture stand point. I will also compare two state management
approaches and pick one based on the analysis. Also database, storage
management system and map frameworks are shortly discussed.

4.1 Software development kit

Official Flutter documentation [14] defines Flutter as a UI toolkit complete
with widgets and tools for cross-platform application development. It enables
users to create visually attractive, natively compiled applications with its
ability to draw straight into the platforms canvas as described by Figure 4.1.

The main programming language is Dart, and it is an open-source
project that was released by Google. The architecture style is based on
reactive programming, following the same style as React. It is being constantly
developed and new features are being introduced every minor release.

One interesting feature of Flutter is hot reload, which helps develop-
ers to easily experiment, iterate over designs or fix bugs. It works by injecting
new source code into the Dart Virtual Machine, which then updates the
classes with the new versions, which in turn triggers an update to the widget
tree.

Another important feature of Flutter is so called tree shaking. It is
a method, where function calls are presented by a tree-like structure and so
functions that are never called can be eliminated. This optimizes the size of
the app bundles and leads to less code the end device needs to run.

17

4. Technical analysis...................................

Figure 4.1: Flutter architecture

4.2 Architecture

Architecture is usually defined as an aggregation a system that is composed
of components, their interaction and the principles of design and further
improvement. It is crucial for setting common ground and helps make a
sustainable, flexible, extensible and usable software.

Figure 4.2: Clean Architecture by Uncle Bob (Robert C. Martin) [9]

18

.................................. 4.3. State management

Architectures vary in details but they all share a common objective,
which is Separation of Concerns (SoC). Clean architecture tries to adhere to
rules defined by [9] and Figure 4.2 is trying to integrate them into a single
actionable idea.

This architecture follows the Dependency Rule, which states, that
source code dependencies can only point inwards. So nothing in the inner
circle knows anything about the outer layers relative to it. So, for example
Entities layer shouldn’t know anything about how the UI works. By definition,
there are four layers:

. Entities. encapsulate the Enterprise business rules. usually an object with methods or set of data structures or functions. is the least likely to change when something external changes. Use cases. contain application specific business rules. implement all use-cases of the system. handle changes from and to entities. Interface adapters. set of adapters that convert data from the most convenient format
for the use-cases and entities to external agencies like database and
UI. convert data from an external agency like a database to a one
understood by the system. Frameworks and drivers. composed of frameworks and tools like the database and UI. glue together code that communicates inwards

In conclusion, adhering to the Dependency law and Separation of
Concerns, we can save development time by having an intrinsically testable
system, which is one of the requirements. As discussed in the Application
scope section, design could still change, and having a robust architecture will
make it easy in the future to refactor the user interface.

4.3 State management

Every app needs a way to manage and control its inner state, like user
interactions, data fetching, what is currently happening etc. And when the

19

4. Technical analysis...................................
application grows in size and complexity, you can run into issues. Without a
single source of truth, your application can easily go out of sync, and weird
visual or logical bugs can occur.

There are many different solutions or architectures how to solve the
issue, and the Flutter team provides an example repository [4] and overview
for each one of them with description and simple implementation. Few of them
were chosen for analysis, that are used by the community or are commonly
used concepts in programming.

4.3.1 Framework solution

The basic state management solution that vanilla Flutter provides is called
Lifting State Up and works on a simple principle. If two widgets need access
to the same data, find their nearest shared parent, store the data there and
pass it to the widgets mentioned above. If you need to change the state of
the data from its children, you give them a callback function responsible for
updating the state, and you invoke them inside the children widgets.

This approach is great for small apps and quick proof of concepts.
Still, as the app grows more extensive, you get a large root widget that is
hard take care of, and you need to waterfall down the callback and data
through multiple layers of widgets, cluttering the overall project. It makes
the code less readable and harder to debug.

4.3.2 Business Logic Components (BLoC)

In the article by Kacper Kagut [8], Business Logic Components (BLoC) is
outlined as a new architecture pattern, whose essence is an event stream that
handles all communication through managed Widgets. This pattern has four
layers (UI, BLoC, Repository and Data Sources) as showcased in Figure 4.3.

Figure 4.3: Business Logic Components architecture

20

.................................. 4.3. State management

Data source is the lowest layer in this architecture, which exposes
simple API for making CRUD operations (createData, readData, updateData
and deleteData). Its responsibility is providing raw data and should be
generic and versatile, example shown in the Figure B.1. It usually provides
those data from database, network calls or shared preferences.

A repository takes in raw data from data sources (there can be
multiple data sources handled by one repository) and transforms them into
data that can be handed over to the business logic layer, which could be
implemented like in Figure B.2.

The BLoC layer has a responsibility responding to events from
presentation layer with a new state. It can depend on multiple repositories
to retrieve the data needed to build up the application state. Each BLoC
has a state stream that other BLoCs can subscribe to, which allows them to
respond to changes and can handle errors like shown in Figure B.3.

The presentation layer has a responsibility to figure out, how it
should render itself based on data provided by BLoC, which is injected like
in Figure B.4. It also handles user inputs, which it sends as events to the
BLoC layer, which then triggers the architecture to fetch data.

4.3.3 Redux

Redux1 is originally a Javascript library based around functional program-
ming (taking advantage of reducing functions) and was introduced as an
improvement to Facebook popular data architecture Flux2. It uses a stan-
dardized unidirectional data flow architecture that makes it easy to maintain
and test applications.

Redux has lifecycle as outlined in Figure 4.4. Creators of Redux
define five components of Redux (Store, Action, Reducer, Middleware and
View), where each one has a different purpose in managing the state.

First, we need to define a Store, which is the container that holds
data and functions as the single source of truth for the application and also
AppState, which is the data structure of your app. You need to inject your
app through a StoreProvider in the upper most parent component (usually
MaterialApp) as you can see in Figure B.5, which allows you to access the
Store from anywhere.

Redux uses Actions for transferring information a triggering some
functionality. They can either be empty classes or can carry important data
as defined in Figure B.6. Middleware gains access to Store by injecting
it into the Store object. This allows the Middleware to intercept actions
and do any API calls necessary as can be seen in Figure B.7. This process
of calling into the outside world is also defined as a side effect. Actions

1https://redux.js.org/
2https://facebook.github.io/flux/

21

4. Technical analysis...................................

Figure 4.4: Redux architecture

are consumed by reducers that can transform and filter data to be used by
the presentation layer which is a switch based on the type of the action as
presented in Figure B.8.

Finally we can consume data in the presentation layer by using
the StoreBuilder widget, which has the store injected and you have access
to all the data in the store. Also with the store object, you can dispatch
actions triggered by the user, which are further consumed in the Redux cycle.
Example implementation can be seen in Figure B.9

4.4 Data management

The biggest part of the application is geopositional data, and the most
commonly used format is GeoJSON. According to [5], GeoJSON is a geospatial
data interchange format based on Javascript Object Notation (JSON). It
also defines several types of JSON objects and the proper use-case in which
they are combined to represent the data about features, their geometry and
properties.

There are three main types of geometry, that are interesting to us and examples
of their structure can be seen in Figure 4.5, Figure 4.6 and Figure 4.7..1. Point - can describe the simplest geometry, a point, used mostly for

single objects..2. Line - usually used to describe streets and roads, in our application also
crossings..3. Polygon - describes finite number of straight lines that form a closed
segment, used for forming boundaries and describe object shape in detail

22

.................................. 4.4. Data management

'type': 'Feature',
'geometry': {

'type': 'Point',
'coordinates': [-122.414, 37.776]

}

Figure 4.5: Point data using GeoJSON

'type': 'Feature',
'geometry': {

'type': 'LineString',
'coordinates': [

[-122.48369693756104, 37.83381888486939],
[-122.48348236083984, 37.83317489144141],
[-122.48339653015138, 37.83270036637107],
[-122.48356819152832, 37.832056363179625],

]
}

Figure 4.6: Line data using GeoJSON

4.4.1 Database

When working with JSON-like data, the go-to solution is NoSQL (non-
relational) database that is good at storing unstructured or semi-structured
data. They do not have to follow rigid schemas like relational database. There
is few types of relational databases, but document store database fits our
application the best.

Popular NoSQL database is Firestore, which is part of a bigger
ecosystem called Firebase. As stated by [13], Firebase is a Backend-as-a-
Service (BaaS) that grew up as a next-generation app-development platform
on Google Cloud Platform. It contains a toolset to build, improve, and
grow applications and covers most of the services that a developer would
have to develop themselves. This platform includes things like analytics,
authentication, databases, configuration, file storage, etc... Detailed overview
is described in Figure 4.8.

The build part of the service is what is most interesting for our
application in early development. The Cloud Firestore is not just a simple
NoSQL database but provides a lot more functionality.

. User-based security.Google provides their own declarative security language. Restricting data access based on user identity and other patterns
(one of our requirements). Integrates easily with Firebase Authentication service

23

4. Technical analysis...................................
'type': 'Feature',
'geometry': {

'type': 'Polygon',
'coordinates': [

[-122.48369693756104, 37.83381888486939],
[-122.48348236083984, 37.83317489144141],
[-122.48339653015138, 37.83270036637107],
[-122.48369693756104, 37.83381888486939],

]
}

Figure 4.7: Polygon data using GeoJSON

Figure 4.8: Firebase Suite - list of Firebase services [13]

. Data syncing. Firebase automatically synchronizes data between devices using
streams and listeners. Users can access and make changes to their data at any time (even
offline).Offline persistance. Any recently listened to data is persisted to the database. The data is cached and is persisted even through app restarts and
device reboots

One of our requirements is for our applciation to have a user manage-
ment system (allowing the creation of accounts and login/logout functionality).
This is where Firebase Authentication comes in. It provides backend services,
easy-to-setup SDKs and ready-made UI libraries for user authentication in the
app. It supports multiple different ways of authentication using passwords,
phone numbers or using identity providers like Facebook or Twitter.

24

................................... 4.5. Map framework

Another part of Firebase Suite we will use in our application is
Firebase Cloud Storage as we need a place to store multimedia. It provides
massively scalable storage for files and functionality to upload and download
files directly into you own bucket (which works well with Firebase Authen-
tication to allow access to files in a way you allow) and making it more
secure.

4.5 Map framework

The last thing we need to figure out is the choice of the mapping framework
that comes with all the functionality we need. Two most significant packages
for Flutter are Google Maps and Mapbox. Both packages come with simi-
lar usability. They allow location tracking, navigation, markers and other
necessary functionality that this project will need.

On one hand Mapbox uses vectors, unlike Google Maps that use
raster, for their maps system, which makes them faster to load and more
performant. But where Mapbox comes short is, that it is community-driven.
Mapbox themselves created it, but after the first release, it was up to the
community to improve it. It is currently on version 0.0.5 and is in really early
development.

4.6 Conclusion

In the technical analysis, I have talked about a few technologies and solutions
we could use to implement the application. I would now like to go through
them and justify why I picked them. Flutter was a requirement from the
assignment. Nevertheless, I would still pick Flutter if I had the option to
pick, because of the quick development cycle and performance advantage over
the other cross-platform alternatives.

When analyzing the state management solution, the Lifting State
Up solution that is native to Flutter wasn’t an option because of its waterfall
effect. Flutter developers usually recommend BLoC, but at the time of
analysis felt clumsy to me. As a web developer, I felt the most comfortable
with using Redux even though it was hard to setup.

There were no real contenders against Firebase. It provided us with
all the different pieces of functionality (database, data storage, authentication)
we needed and the libraries for Flutter were easy to use as they are all
developed by Google, which is the company responsible for Flutter. Both map
frameworks had the same functionality, and they were equally comfortable to
use. In the end, I chose Google Maps to keep up with the theme, as there
was no clear winner in this category.

25

26

Chapter 5
Implementation

In this chapter, I start by introducing the process of setting up the project
from an integrated development environment to app publishing pipeline in
Flutter. Then I showcase an overview, what I implemented in the application
and explain interesting parts in greater detail. At the end of this chapter,
I showcase unit and UI testing in Flutter and go over the results of the
user-testing.

5.1 Project setup

As I am familiar with JetBrains products, I chose to develop using Android
Studio1, which they develop in cooperation with Google. I opted in for using
GIT as a version control system, specifically Github, which allowed me to
keep track of functionality.

Using Githubs tagging system I created an auto-publishing pipeline
using CodeMagic2, that was trigger by creating a new tag on the master
branch. CodeMagic automatically build the application distribution package
and published it to the Google Play Console. This made it easy to test on
multiple devices by multiple users by allowing them to enter the application
beta testing in Google Play store.

I divided the functionality into feature modules (login, map, survey,
profile) with common functionality being stored in a core module. Adhering
to the Clean Architecture principles, each module was further divided into
three separate packages (data, domain and presentation). These are further
divided, each having their own responsibilities.

. Data layer. Data sources - handles communication to Firestore
1https://developer.android.com/studio
2https://codemagic.io/start/

27

5. Implementation....................................
. Epics - synchronizes data from Firestore to Redux store.Models - representation of data from Firestore. Domain layer. Actions - contains Redux actions. Reducers - contains Redux reducers. Selectors - either simple getters from Redux store or more complex

selectors with filters and conditions. Use-cases - each use-case can use multiple actions or selectors, are
used by presentation layers. Presentation layer. Pages - contains unique pages (aggregate multiple widgets).Widgets - contains unique widgets to the feature

Before diving into the application, I needed a simple way to fill the
database with data provided by my supervisor. I created a small client-side
React application that transforms the provided data into a format expected by
our database. As it was only a side project, I did not implement authentication
for this service. Every time I wanted to feed new data into the database, I
had to disable security rules temporarily.

One piece of data I needed for my implementation of proximity
search queries, I needed for this service to calculate a geohash for every object.
Geohash is an alphanumerical string that encodes geographic coordinates of a
cell (small area on the map). The longer the string, the more precise location
it encodes. I opted for the precision of nine, which encodes the location of a
five by five meters area.

5.2 Application functionality

In this part I will go deep into interesting parts of my solution, explain which
solutions failed, which succeeded and how I later build upon them. For each I
reference application requirements to give better context for decisions I made
during the process.

5.2.1 Application overview

At the start, I would like to overview the state of the application in the
current version (v2.5.0 at the time of writing this thesis). I implemented
all use-cases that are defined in this thesis. Following this paragraph is the
list of use-cases with references to screenshots from application and short
description.

28

................................5.2. Application functionality

. Use Case 1 - Login. Ability to login through Google (Figure C.1a). Showing progress of authentication with a loader (Figure C.1b). Redirect to the main Map View which triggers a request for access
to device’s location (Figure C.1c). Use Case 2 - Show objects on map. Ability to see objects on map with unique icons (Figure C.2a). Ability to open a list with objects sorted by the closest to the
furthest (Figure C.2b). Start of UC3 (plus button upper left corner), UC4 (button next to
each item in the list - disabled if report on that object exists by the
user), UC5 (chart button upper left corner) and UC7 (profile icon
bottom navigation bar) all seen on Figure C.2b. Use Case 3 - Add new report. This scenario starts by clicking the plus button in upper left corner
shown in this Figure C.2b. Scenario can be canceled at any time by clicking the cross in upper
left corner or pressing the back space. Location can be selected by clicking the map or skipped (Figure
C.3a).Object type can be selected or skipped (Figure C.3b).Measurement unit and values for length and width can be selected
(decimal point precision) or skipped (Figure C.3c). Photo can be added either from camera or from a library (Figure
C.3d).Once photo is selected, it can be cropped or removed, it is also
shown on the screen (Figure C.3e). Last selection screen from scenario has a Submit button, with which
we send our report to the server. Use Case 4 - Add report to an object (example for crosswalk). This scenario starts by clicking the button next to the wanted object
C.2b. Scenario can be canceled at any time by clicking the cross in upper
left corner or pressing the back space. Series of selection screens (Figures C.4a, C.4b and C.4c is presented
to the user for data collection with the option to skip each item. This scenario also has the photo selection screen. Can be submitted just as UC3

29

5. Implementation....................................
. Use Case 5 - Filter objects. Ability to filter objects based on type (Figure C.5a). Use Case 6 - Survey overview. Ability to see your previous surveys (Figure C.5c). Each item has all info that was collected. Reports of new objects have an address created based on geolocation. Use Case 7 - Profile overview. User has ability to see his info (Figure C.5b). Use Case 8 - Logout. User can logout of the application (Figure C.5b)

5.2.2 Serialization of JSON-like data

As Firestore communicates using documents, which are JSON-like structured
data, I had to come up with a solution, how to turn them into our models.
The conventional way of representing JSON data in Dart is by using a Map,
where strings are the keys, and we can have anything else as a value. For our
application to interpret a Map as a model class, we need to create two helper
functions for each model we use in the database. There are two solutions,
how to generate these helper functions.

The first solution is using a third-party package. I tried using
json_annotation package combined with json_serializable which you can
use to annotate classes that should be serializable. This approach generates
a new file, which includes helper functions. This solution is easy and fast,
but sometimes the generation of packages took up to four minutes with more
complex classes.

The second solution was creating the helper functions myself, which
is a time-consuming process, but it allows you more atomic control over
the serialization. I also appreciated having the helper functions inside the
appropriate classes without the need for the creation of new files.

In the end, I preferred the second solution, as it seemed more agile
in the early development where things changed quickly, and I wanted more
control over it. In retrospective, I should have chosen the automatic generation
as it is a more robust solution and in newer versions provide even more control
than doing it manually.

5.2.3 Services

The first service I implemented was the AuthenticationService (seen in Figure
B.10). Thanks to Firebase Authentication, I did not need to implement any

30

................................5.2. Application functionality

token handling or server logic and just had to implement the client-side logic.
I opted-in for signing through the Google Sign In, but any other option (like
sign-in through email and password) could be added in the future. I used
three separate packages for the service - firebase_auth, google_sign_in and
cloud_firestore.

. google_sign_in - used for triggering the native authentication modal for
Google accounts which after successful authorization returns a credential
object (function signInWithGoogle in Figure B.11). firebase_auth - credential object is in turn used to communicate with
Firebase Authentication service, which returns a Firebase User (function
authenticate in Figure B.11). cloud_firestore - we use the FirebaseUser to either create a new User
in the database or update his data (function updateUserData in Figure
B.11)

Without authenticating in Firebase, the system denies entry into the
application. Even if a malicious user would get into the application without
authentication, I setup Firestore rules in a way, that disallows data requests
for unauthorized users. In the future, anonymous authentication could be
implemented to allow users to collect data as sign-in could be a deciding
factor for some people not to use the application.

As tracking users location is one of the requirements, we needed
service, that would handle it. I implemented it by using a package called
location (as seen in Figure B.12), which offers functionality I needed for the
application. One of those is requesting permission from the user and the
device to use GPS tracking (done by function requestPermission), and once
permission is granted through the popup, it creates a listener that is updated
with current users location. The listener then updates location in the Redux
store on every update (function updateLocation), keeping it in sync. It is all
initialized on the first load of the Map view, which is the first screen user
sees once logged in.

Once I implemented more views based on design, I needed a con-
venient way to switch between them. As the vanilla solution provided by
Flutter wasn’t sufficient and flexible, I created a service, as shown in Figure
B.13. With every navigation, you either need to move forward (see function
navigateTo) or backwards (see function goBack). Later in development, when
implementing multiple types of surveys, I needed a way to switch to the view
with a specific scenario. For that, I added the ability to pass down arguments
which forward them to the view we switch to.

NavigationService is linked to the application through the static
function generateRoute, which is injected into the MaterialApp and every-time
a route changes (using NavigationService) MaterialApp triggers the function

31

5. Implementation....................................
with new arguments. Then based on current settings, we render the right
view in the switch statement.

5.2.4 Data synchronization

I showed basic Redux setup in the analysis, but that just shows, how data
could be stored inside the application. Usually in most applications, we
need to synchronize some data from the backend. One type of data we need
synchronized in the application are the objects shown on the map. I used
redux_epics package as a middleware in the Redux implementation, which
is able to listen to Redux actions and even have access to the Redux store.
What I expected from the synchronization is as follows:

. Consume StartGeoObjectsSearch action

. Create a new Stream based on that action

. If the action comes when Stream is still active, dispose it

. Call the data source to get the updated data

. Dispatch actions to save data into Redux store

. If EndGeoObjectsSearch action comes, dispose the Stream

Using rxdart package, which adds useful Extension methods to
Stream, I could implement the wanted behaviour of the epic (see Figure B.14)
by using whereType (filters out other actions from the Stream), switchMap
(converts the emitted item into a Stream that is collected by the epic) and
takeUntil (disposes created Stream when condition met).

5.2.5 Modular scenarios

During the development of the application, a few parts of the code needed a
more sophisticated solution for them to work effectively and is scalable in the
future. One of the requirements for the application is the possibility to create
scenarios based on the object type or situation and display it to the user.

I created a system, where it is possible to add different steps of the
scenario with the preferred order as you can see in Figure 5.1. This allows the
developer to create any combination of selection or question screens without
touching any other part of the application.

32

................................5.2. Application functionality

List<Widget> selectWizard(SurveyType surveyType) {
switch (surveyType) {

case SurveyType.NEW:
return [

LocationSelection(),
GeoTypeSelection(),
MeasureSelection(),
PhotoSelection(),

];
case SurveyType.BENCH:

return [
HeadRestSelection(),
ConditionSelection(),
MaterialSelection(),
PhotoSelection(),

];
case SurveyType.CROSSWALK:

return [
TrafficLanesSelection(),
CrossingSelection(),
MarkingSelection(),
PhotoSelection(),

];
default:

return [];
}

}

Figure 5.1: Composable scenarios for data collection

Each SelectionWidget configuration and are rendered based on it.
Perfecting this dynamic implementation would be creating the actual scenario
(widget tree) by generating it with a JSON configuration, which could be
served from a server and created even by a non-developer. Even though Dart
support run-time reflection, it is not allowed in Flutter due to interference
with tree shaking, so we would need to use some code generating library to
achieve this.

33

5. Implementation....................................
class ConditionSelection extends StatelessWidget {

final String question = 'In what condition is the object?';
final Map<String, String> answers = new Map.from({

'undefined': 'I do not know',
'pristine': 'Pristine',
'used': 'Used',
'damaged': 'Damaged',
'unusable': 'Unusable',

});
}

Figure 5.2: Simplified implementation of the condition selection widget

5.2.6 Location-based query

Another requirement for the application is to query data based on either user
location or camera position (when the user is scrolling through the map).
This should also have a small footprint on data usage when not connected
to a WiFi. I used geographical queries based on geohashes [see in Figure
5.3), which was implemented in a package called geoflutterfire. I had to
fork the package as it was using an outdated version of rxdart that used
deprecated class Observable and update it to the current one (the maintainer
later accepted this pull request, and I could then use the updated version).

Stream<List<DocumentSnapshot>> getGeoObjects(LatLng cameraPosition)
{↪→

Geoflutterfire geoFlutterFire = Geoflutterfire();
Query collectionReference =

Firestore.instance.collection('geoData');↪→

if (cameraPosition == null) {
return Stream.empty();

}
GeoFirePoint location = geoFlutterFire.point(

latitude: cameraPosition.latitude,
longitude: cameraPosition.longitude,

);
double radius = QUERY_RADIUS;
return geoFlutterFire

.collection(collectionRef: collectionReference)

.within(center: location, radius: radius, field: 'position');
}

Figure 5.3: Location based query to Firestore

By querying data based on the location, I came into a performance
issue. Both the location package (that handles use location updates) and

34

....................................... 5.3. Testing

GoogleMap (that provides camera position updates) trigger the updates too
frequently, and both Redux store and Firestore were overwhelmed by them
(dropping frames per second into single digits when scrolling on the map).
Even though we need the current location of both camera and the user, it
would be enough to get an update every one to two seconds (as the actual
fetch of data is quick).

class Debouncer {
static Map<String, Timer> _timers = {};

static void debounce(String tag, Duration duration, Function
onExecute) {↪→

if (duration == Duration.zero) {
Debouncer.cancel(tag);
onExecute();

} else {
_timers[tag]?.cancel();
_timers[tag] = Timer(duration, () {

Debouncer.cancel(tag);
onExecute();

});
}

}

static void cancel(String tag) {
_timers[tag].cancel();
_timers.remove(tag);

}
}

Figure 5.4: Debouncer class

This lead me to implement a simple Debouncer class (seen in Figure
5.4). It has a Map of Timers (each having a unique key) and a function called
debounce. It only allows a function to be called once the given time has passed.
If the function is invoked again and the Timer for that function already exists,
it is just disposed of. Having the calls debounced improves the performance
significantly.

5.3 Testing

This section showcases software and user testing. Three types of automatic
testing for Flutter exist - unit (test single function, method or class), widget
(test a single widget from UI perspective) and integration (test complete
functionality of the app or a single flow in the app). I decided to omit
integration tests, as I had trouble setting up the flutter_driver package to

35

5. Implementation....................................
function properly. User testing done in this project focused mostly on smoke
tests as qualitative tests were not possible due to the pandemic.

5.3.1 Unit tests

Unit tests are mainly useful for verifying behaviour of a small part of the
application (as small as a single function) and should be tested with all
possible inputs. Flutter provides two packages - test package that provides
core testing framework and flutter_test that provides additional utility
functions. Flutter has a dedicated directory for packages, where all the tests
reside. Each test filename needs to end with _test for Flutter to register
them.

Example of a unit test is the UserReducer_test file, which tests
inputs for the user state in the application. I mocked two unique users for
testing the functionality (seen in Figure B.15) and created three unit tests.
They test, if user is saved when UpdateUser action is called (Figure B.16), if
user is updated, when UpdateUser action is called with different data (Figure
B.17) and if we can update location by calling the UpdateUserLocation action
(Figure B.18).

5.3.2 Widget UI tests

Widget UI test assess functionality of single widgets in a confined environment.
I used package flutter_test, that provides multiple tools for testing widgets.

. testWidgets() - automatically creates a WidgetTester for each test case,
which allows building and interacting with widgets in test environment

. Finder - allows searching for widgets in a widget tree from your test
environment

.Matcher - used for verification of what Finder locates

For example I created a test case to test, how a SignInButton. As
it is a StatelessWidget, it only reacts on passed parameters, which makes
testing it quite easy. Expected behaviour of the SignInButton is, when it
is not in loading state, it displays the Google Sign In text and icon as
its contents (Figure B.20). If it is in a loading state, we should find a
CircularProgressIndicator instead (Figure B.21). For the WidgetTester to
be able to build our widget, I had to create a helper function (Figure B.19),
that encases the tested widget with Material App widget to provide the
proper context, that the tested widget is expected to have.

36

....................................... 5.3. Testing

5.3.3 User testing

As already foreshadowed in the section description, due to the current situation
around the CoVid-19, user testing had some limitations. I could not ask the
testers to go outside and do the selected scenarios in the actual environment.
This meant, that the user testing was actually done remotely and by specifying
the exact location they should be on the map and also providing them with
an image of the location.

The test scenarios are based on data provided by the project Cityplan
(crosswalks around Karlovo náměstí in Prague and benches in the vicinity of
Masaryk University in Brno). Scenarios are created in a way to cover the full
functionality of the implementation and should lead to discovering the most
amount of problems or bugs.

(a) : Photo of a crosswalk provided for
first scenario

(b) : Photo of an obstacle provided for
second scenario

Figure 5.5: Images provided to scenarios

Crosswalk survey

. Login into the application using you Google account. Accept the request for location tracking.Move to Karlovo náměstí on the map.Open the object list. Start Survey on crosswalk with ID 52. Fill in the survey based on the provided photo (also add the photo to
the survey) on Figure 5.5a. Submit the report. Try to survey the same crosswalk again (you should not be able to).Go to the Profile section and look at your submitted survey. Logout

37

5. Implementation....................................
New report

. Login into the application using you Google account. Accept the request for location tracking.Move to the corner of street Lazarská and Spálená on the map. Filter the objects to just show benches (no items should be shown on
the map or in the list). Create a new report for an object and fill information based on provided
photo on Figure 5.5b. Submit the filled survey. Logout

The test participants were not required to have any special knowledge
before the testing. Users tested the latest version of the application (v2.5.0,
build number 24) on their own devices. They were also asked to try to break
the application. Following problems were found by the users during the
testing described in Table 5.1.

38

....................................... 5.3. Testing

Found issue Proposed solution
User expects that swipe in profile
view will switch section

Add a GestureDetection to the
screen to listen to swipe event and
switch section accordingly

User expects visual distinguish-
ment of markers on the map (done
vs. not done yet)

Do not show objects, that the user
already collected information for

User expects select/deselect all
functionality in the filter view

Add checkbox that either turns ev-
ery filter on, or turns every filter
off

User expects select/deselect all
functionality in the filter view

Add checkbox that either turns ev-
ery filter on, or turns every filter
off

User expects to be able to
edit/delete his surveys (eg. add
photo retrospectively)

This flow is not expected to be sup-
ported

User is confused while surveying,
as he has no prior knowledge

This part will be mitigated by
adding the user education part,
that was not part of this implemen-
tation.

User expects his surveys to be
shown on the map

Create a new set of markers from
users surveys and add them to the
map

User expects panel with the list to
open on click, not just drag

Add a button that opens/closes the
panel from provided controller

User expects a message in sur-
vey list to be shown if no surveys
present

Add an info text with a call to ac-
tion button, if there are no surveys
done yet by the user

User expects more information in
the Google Play store for the appli-
cation

Add proper description and infor-
mation about the application in
Google Play store

Table 5.1: Problems found by users and their respective proposed solutions

39

40

Chapter 6
Conclusion

The motivation for this thesis was the creation of a cross-platform application.
It is part of CityPlan project, that has the goal to provide better navigation
for visually and movement impaired people. The goal of the application is to
provide data using crowdsourcing as the primary source of information. The
data is later processed by experts who insert refined data into the navigation
system.

I start the thesis by defining the core principles and problems I could
face implementing the solution. I specify what is meant by crowdsourcing and
what issues are faced when using this data for geographical data collection. I
also go through how the application could induce users to collect data and
introduce some projects that work on related topics. Lastly, I go through the
object types recognized to be essential for such a project.

In the chapter System design, I define the scope of the application
and which part of it I implement based on the previous design. Then I provide
a comprehensive overview of functional and non-functional requirements and
based on them define use-cases needed to span the application scope. In the
end, I created a domain model to represent the interconnectivity of entities
inside the application.

I continue with a technical analysis with which I introduce technolo-
gies I intend to use in implementation and compare options. Firstly I provide
a quick overview of the cross-platform framework Flutter and describe the
architecture style used. I compare three possibilities when it comes to state
management, and I have chosen Redux as the best one. Finally, I choose
Firebase Suite to handle things like authentication, database and multimedia
storage.

In the chapter Implementation, I start by introducing the process
of setting up the project from an integrated development environment to
app publishing pipeline in Flutter. Then I showcase an overview, what I
implemented in the application and explain a few parts in greater detail. At
last, I verify the implementation with unit tests, widget tests and also by
user-testing.

41

6. Conclusion......................................
6.1 Future work

Even though I full-filled the required functionality, many opportunities for
improving and extending the current application are still present, and I plan
to continue my work beyond the scope described in the thesis.

6.1.1 Fix issues

The user-testing in Section User testing uncovered multiple problems from the
user perspective. I proposed solutions to the issues, but they were not verified
nor implemented. I expect to fix them during the upcoming collaboration on
the project.

6.1.2 User education system

In future iterations, the application will have a system in place for educating
the users. Such a system will educate users on topics like recognizing the
right markers on a crosswalk. Initial design and functionality are already
defined. As the application is easily extendable, this part should be easy to
implement.

6.1.3 Gamification

As talked about in Chapter Problem description, we need to induce users to
collect the data. The project owners decided to go with gamification as the
key concept. With users already being registered, putting a scoreboard and
other gamification ideas into place should be relatively easy. One pain point I
can see is the scoring itself, which should probably be done by some backend
service, that would aggregate the data. Doing this on the client application
could become too bothersome.

42

Bibliography

[1] Yochai Benkler and Helen Nissenbaum. Commons-based peer production
and virtue. Journal of Political Philosophy, 14(4):394–419, December
2006.

[2] T-MAPY CEDA Maps, České vysoké učení technické v Praze
Fakulta elektrotechnická. Integrace služby hledání tras a navigačního
systému pro hendikepované osoby s agendními systémy a open daty
měst. https://starfos.tacr.cz/cs/project/TH03010447. Accessed:
2020-05-17.

[3] Oleg Chursin. A brief introduction to domain
modeling. https://medium.com/@olegchursin/
a-brief-introduction-to-domain-modeling-862a30b38353. Ac-
cessed: 2020-05-19.

[4] Brian Egan, David Marne, Pascal Welsch, et al. Flutter architecture
samples. http://fluttersamples.com/. Accessed: 2020-05-11.

[5] Internet Engineering Task Force. The geojson format. https://tools.
ietf.org/html/rfc7946. Accessed: 2020-05-14.

[6] Jeff Howe. The rise of crowdsourcing. https://www.wired.com/2006/
06/crowds/. Accessed: 2020-05-01.

[7] Aikaterini Katmada, Anna Satsiou, and Ioannis Kompatsiaris. Incentive
mechanisms for crowdsourcing platforms. In Internet Science, pages
3–18. Springer International Publishing, 2016.

[8] Kacper Kogut. Getting started with flutter bloc. https://www.netguru.
com/codestories/flutter-bloc. Accessed: 2020-05-15.

[9] Robert C. Martin. The clean architecture. https://blog.cleancoder.
com/uncle-bob/2012/08/13/the-clean-architecture.html. Ac-
cessed: 2020-05-20.

43

https://starfos.tacr.cz/cs/project/TH03010447
https://medium.com/@olegchursin/a-brief-introduction-to-domain-modeling-862a30b38353
https://medium.com/@olegchursin/a-brief-introduction-to-domain-modeling-862a30b38353
http://fluttersamples.com/
https://tools.ietf.org/html/rfc7946
https://tools.ietf.org/html/rfc7946
https://www.wired.com/2006/06/crowds/
https://www.wired.com/2006/06/crowds/
https://www.netguru.com/codestories/flutter-bloc
https://www.netguru.com/codestories/flutter-bloc
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

6. Conclusion......................................
[10] Gary Randolph. Use-cases and personas: A case study in light-weight

user interaction design for small development projects. Informing Science:
The International Journal of an Emerging Transdiscipline, 7:105–116,
2004.

[11] Michaela Riganová. Motivation methods for crowdsourcing accessibility
attributes. Master’s thesis, Czech Technical University, 1 2020.

[12] Linda See, Alexis Comber, Carl Salk, Steffen Fritz, Marijn van der Velde,
Christoph Perger, Christian Schill, Ian McCallum, Florian Kraxner,
and Michael Obersteiner. Comparing the quality of crowdsourced data
contributed by expert and non-experts. PLoS ONE, 8(7):e69958, July
2013.

[13] Doug Stevenson. What is firebase? the complete story,
abridged. https://medium.com/firebase-developers/
what-is-firebase-the-complete-story-abridged-bcc730c5f2c0.
Accessed: 2020-05-18.

[14] Google Flutter Development Team. Flutter documentation. https:
//flutter.dev/docs. Accessed: 2020-05-12.

44

https://medium.com/firebase-developers/what-is-firebase-the-complete-story-abridged-bcc730c5f2c0
https://medium.com/firebase-developers/what-is-firebase-the-complete-story-abridged-bcc730c5f2c0
https://flutter.dev/docs
https://flutter.dev/docs

Appendix A
Use cases

A.1 Use case 1 - Login

Use Case 1 Login

Actor: User

Preconditions: No preconditions

Success scenario:..1. System requests that the user authenticates..2. The end-user tries to authenticate..3. System validates user’s authentication attempt..4. System logs in the user

Fail scenarios:
3.a Failed authentication:

1. System shows failure message
2. User returns to step 1

45

A. Use cases
A.2 Use case 2 - Show objects on map

Use Case 2 Show objects on map

Actor: User

Preconditions: . User is logged in. System has data about objects

Success scenario:..1. User requests to see objects on a map..2. System requests access to user’s location..3. User allows access to his location..4. System presents data based on user’s location

Fail scenarios:
3.a User denies access:

1. System does not present data

46

..............................A.3. Use case 3 - Add new report

A.3 Use case 3 - Add new report

Use Case 3 Add new report

Actor: User

Preconditions: User is logged in

Success scenario:..1. User requests to add a new report..2. System presents a new report scenario..3. User fills in the scenario..4. User submits his new report..5. System saves the report

Fail scenarios:
4.a User cancels action:

1. User cancels the scenario
2. System is returned to previous state

47

A. Use cases
A.4 Use case 4 - Add report to an object

Use Case 4 Add report to an object

Actor: User

Preconditions: . User is logged in. User did not report on this object

Success scenario:..1. User requests to report on an object..2. System picks a scenario based on object type..3. User fills in the scenario..4. User submits his report..5. System saves the report

Fail scenarios:
4.a User cancels action:

1. User cancels the scenario
2. System is returned to previous state

48

...............................A.5. Use case 5 - Filter objects

A.5 Use case 5 - Filter objects

Use Case 5 Filter objects

Actor: User

Preconditions: User is logged in

Success scenario:..1. User requests to filter objects based on type..2. System presents options..3. User selects filter options..4. System presents filtered objects

Fail scenarios:
3.a User cancels action:

1. User cancels the action
2. System is returned to previous state

49

A. Use cases
A.6 Use case 6 - Survey overview

Use Case 6 Survey overview

Actor: User

Preconditions: . User is logged in. User created any surveys

Success scenario:..1. User requests to see surveys he created..2. System presents user’s surveys

50

............................. A.7. Use case 7 - Profile overview

A.7 Use case 7 - Profile overview

Use Case 7 Profile overview

Actor: User

Preconditions: User is logged in

Success scenario:..1. User requests to see his profile info..2. System presents user’s profile info

51

A. Use cases
A.8 Use case 8 - Logout

Use Case 8 Logout

Actor: User

Preconditions: User is logged in

Success scenario:..1. User requests to be logged out..2. System logs out the user

52

Appendix B
Code snippets

B.1 State management

B.1.1 Business Logic Component

class DataSource {
Future<RawData> readData() async {

// Read from DB or make network request etc...
return new RawData();

}
}

Figure B.1: Data source example for BLoC

class Repository {
final DataSource dataSource;

Repository(this.dataSource);

Future<Data> getAllData() async {
final RawData dataSet = await dataSource.readData();
// here you can transform, filter, etc... your data
return filteredData;

}
}

Figure B.2: Repository example for BLoC

53

B. Code snippets

class BusinessLogicComponent extends Bloc {
final Repository repository;

BusinessLogicComponent(this.repository);

Stream mapEventToState(event) async* {
if (event is AppStarted) {

try {
final data = await repository.getAllData();
yield Success(data);

} catch (error) {
yield Failure(error);

}
}

}
}

Figure B.3: Business Logic Component example

class PresentationComponent {
final BusinessLogicComponent bloc;

PresentationComponent(this.bloc) {
bloc.add(AppStarted());

}

build() {
// render UI based on bloc state

}
}

Figure B.4: Presentation layer example for BLoC

54

..................................B.1. State management

B.1.2 Redux

class AppState {
List<Data> data;
AppState(this.data);

}

class MainApp extends StatelessWidget {
final Store<AppState> store = new Store<AppState>(

reducer,
initialState: new AppState(),
middleware: new DataFetcher(),

)

@override
Widget build(BuildContext context) {

return new StoreProvider(
store: store,
child: new MaterialApp(

child: new DataComponent()
),

);
}

}

Figure B.5: Store definition for Redux

class AppStart {}

class LoadData {
Data data;
LoadData(this.data);

}

Figure B.6: Example of Actions for Redux

55

B. Code snippets

void DataFetcher(
Stream<dynamic> actions,
Store<AppState> store

) {
return actions.whereType<AppStart>().flatMap((action) {
// Read from DB or make network request etc...

store.dispatch(new LoadData(data));
});

}

Figure B.7: Example Middleware implementation for Redux

AppState reducer(AppState appState, dynamic action) {
switch (action.runtimeType) {

case LoadData:
// here you can transform, filter, etc... your data
return appState;

default:
return appState;

}
}

Figure B.8: Reducer example for Redux

class DataComponent extends StatelessWidget {
@override
Widget build(BuildContext context) {

onInit: (store) => store.dispatch(new AppStart()),
return StoreBuilder(

builder: (context, Store<AppState> store) {
// Here you can consume data from the store
return Text(store.data)

});
}

}

Figure B.9: Example implementation of View in Redux

56

................................... B.2. Implementation

B.2 Implementation

B.2.1 Services

class AuthService {
static final AuthService _authService = AuthService._internal();
factory AuthService() => _authService;

final GoogleSignIn googleSignIn = GoogleSignIn();
final FirebaseAuth firebaseAuth = FirebaseAuth.instance;
final Firestore firestoreDB = Firestore.instance;

Stream<FirebaseUser> user;

AuthService._internal() {
user = firebaseAuth.onAuthStateChanged;
user.switchMap((FirebaseUser u) {

if (u != null) {
return firestoreDB

.collection('users')

.document(u.uid)

.snapshots()

.map((snap) => snap.data);
}
return Stream.value({});

});
}

Future<bool> signInWithGoogle() async {}
Future<bool> authenticate(AuthCredential authCredential) async {}
void updateUserData(FirebaseUser user) async {}

}

Figure B.10: Authentication service

57

B. Code snippets

Future<bool> signInWithGoogle() async {
store.dispatch(new TriggerLoading(true));
GoogleSignInAccount googleUser = await googleSignIn.signIn();
GoogleSignInAuthentication googleAuth = await

googleUser.authentication;↪→

AuthCredential credential = GoogleAuthProvider.getCredential(
accessToken: googleAuth.accessToken,
idToken: googleAuth.idToken,

);
return authenticate(credential);

}

Future<bool> authenticate(AuthCredential authCredential) async {
AuthResult authResult = await

firebaseAuth.signInWithCredential(authCredential);↪→

updateUserData(authResult.user);
store.dispatch(new TriggerLoading(false));
return authResult.user == null ? false : true;

}

void updateUserData(FirebaseUser user) async {
store.dispatch(new UpdateUser(new User(

uid: user.uid,
email: user.email,
displayName: user.displayName,
photoUrl: user.photoUrl,
lastSeen: DateTime.now(),

)));
}

Figure B.11: Authentication service functions

58

................................... B.2. Implementation

class LocationService {
static final LocationService _locationService =

LocationService._internal();↪→

factory LocationService() => _locationService;
Location location = Location();
LocationService._internal();

void initiliaze() async {
PermissionStatus permissionStatus = await requestPermission();
if (permissionStatus == PermissionStatus.granted) {

updateLocation();
}

}

Future<PermissionStatus> requestPermission () async {
return location.requestPermission();

}

void updateLocation() {
location.onLocationChanged.listen((LocationData locationData) {

store.dispatch(
new UpdateUserLocation(

new GeoPoint(
locationData.latitude,
locationData.longitude,

),
),

);
});

}
}

Figure B.12: Location service

59

B. Code snippets

class NavigationService {
static final NavigationService _navigationService =

NavigationService._internal();
factory NavigationService() => _navigationService;
NavigationService._internal();

final GlobalKey<NavigatorState> navigatorKey =
new GlobalKey<NavigatorState>();

Future<dynamic> navigateTo(String routeName, {arguments}) {
return navigatorKey.currentState.pushNamed(

routeName,
arguments: arguments,

);
}

void goBack() {
navigatorKey.currentState.pop();

}

static Route<dynamic> generateRoute(RouteSettings settings) {
switch (settings.name) {

case '/login':
return MaterialPageRoute(builder: (_) => LoginView());

case '/main':
return MaterialPageRoute(builder: (_) => MainView());

case '/survey':
SurveyArguments surveyArguments = settings.arguments;
return MaterialPageRoute(

builder: (_) => SurveyView(surveyArguments.surveyType),
);

default:
return MaterialPageRoute(builder: (_) => LoginView());

}
}

}

Figure B.13: Navigation service

60

................................... B.2. Implementation

B.2.2 Synchronization

Stream<dynamic> searchObjectsEpic(Stream<dynamic> actions,
EpicStore<AppState> store) {↪→

return actions
.whereType<StartGeoObjectsSearch>()
.switchMap((StartGeoObjectsSearch requestAction) {

LatLng cameraPosition =
store.state.mapData.cameraPosition;↪→

return getGeoObjects(cameraPosition).map((documents) {
return new LoadGeoObjects(documents

.map((document) =>
GeoObject.fromJSON(document.data))↪→

.toList());
}).takeUntil(actions.whereType<EndGeoObjectsSearch>());

});
}

Figure B.14: Redux Epic for synchronizing data with Firestore

B.2.3 Unit testing

final User user1 = new User (
uid: '12345',
displayName: 'Jan Kraus',
email: 'email@email.cz',
userLocation: null,

);

final User user2 = new User (
uid: '12345',
displayName: 'Jan Michal Kraus',
email: 'email@email.cz',
userLocation: new GeoPoint(10, 10),

);

Figure B.15: User mocks

61

B. Code snippets

test('should add user to store in response to UpdateUser
action', () {↪→

final store = Store<AppState>(
reducer,
initialState: AppState(

user: new User(),
),

);

expect(selectAuthenticatedUser(store).uid, isNull);
store.dispatch(new UpdateUser(user1));
expect(selectAuthenticatedUser(store).uid, user1.uid);

});

Figure B.16: User is saved - unit test

test('should update user info from new user object', () {
final store = Store<AppState>(

reducer,
initialState: AppState(

user: User.from(user1),
),

);

expect(selectAuthenticatedUser(store).uid, user1.uid);
expect(selectAuthenticatedUser(store).userLocation,

isNull);↪→

store.dispatch(new UpdateUser(user2));
expect(selectAuthenticatedUser(store).displayName,

isNot(equals(user1.displayName)));↪→

expect(selectAuthenticatedUser(store).userLocation,
user2.userLocation);↪→

});

Figure B.17: User is updated - unit test

62

................................... B.2. Implementation

test('should update user location in response to
UpdateUserLocation action', () {↪→

final store = Store<AppState>(
reducer,
initialState: AppState(

user: User.from(user1),
),

);

expect(selectAuthenticatedUser(store).uid, user1.uid);
expect(selectAuthenticatedUser(store).userLocation,

isNull);↪→

store.dispatch(new
UpdateUserLocation(user2.userLocation));↪→

expect(selectAuthenticatedUser(store).userLocation,
user2.userLocation);↪→

});

Figure B.18: User location is updated - unit test

63

B. Code snippets
B.2.4 UI testing

Widget buildTestableWidget(Widget widget) {
return new MaterialApp(

home: widget,
);

}

Figure B.19: Helper function for widget tests

testWidgets('SignInButton is not loading', (WidgetTester
tester) async {↪→

await tester.pumpWidget(buildTestableWidget(SignInButton(
false,
() {},
GoogleSignInButton(),

)));
expect(find.byType(GoogleSignInButton), findsOneWidget);

});

Figure B.20: SignInButton in non-loading state - widget test

testWidgets('SignInButton is loading', (WidgetTester
tester) async {↪→

await tester.pumpWidget(buildTestableWidget(SignInButton(
true,
() {},
GoogleSignInButton(),

)));
expect(find.byType(CircularProgressIndicator),

findsOneWidget);↪→

});

Figure B.21: SignInButton in loading state - widget test

64

Appendix C
Application screenshots

(a) : Login view (b) : Login view loading (c) : Allow access to
location modal

Figure C.1: Login flow

65

C. Application screenshots

(a) : Map view (b) : Map view with object list

Figure C.2: Map view

(a) : Filter modal (b) : Profile overview (c) : Survey overview

Figure C.5: Profile and survey overview views and filter modal

66

.................................C. Application screenshots

(a) : Location selection (b) : Object type selection (c) : Measurement se-
lection

(d) : Photo selection (e) : Photo selection
with photo

Figure C.3: Scenario for new reports

67

C. Application screenshots

(a) : Traffic lines selection (b) : Markings selection (c) : Crossing type se-
lection

Figure C.4: Scenario for crosswalks

68

Appendix D
Examples of provided graphical design

Figure D.1: Provided design of the map interface

Figure D.2: Provided design of the sidewalk scenario

69

D. Examples of provided graphical design..........................

Figure D.3: Provided design of the New Report scenario - part one

Figure D.4: Provided design of the New Report scenario - part two

70

Appendix E
Contents of the attached CD

source_code...............................directory with source code
motion_vision..........................Flutter mobile application
data_loader utility web application

source_latex.......................directory with LaTex source code
user_testingdirectory with user testing scenarios
thesis.pdf...............................exported PDF of the thesis

71

	Introduction
	Problem description
	Crowdsourcing geological data
	Definition
	Consideration
	Types of inducement
	Related work

	Geographical data definition
	Obstacles
	Orientation points
	Points of interest

	System design
	Application scope
	Application requirements
	Functional requirements
	Non-functional requirements

	Use cases
	Domain model
	Enumeration package
	Datatype package
	Entity package

	Technical analysis
	Software development kit
	Architecture
	State management
	Framework solution
	Business Logic Components (BLoC)
	Redux

	Data management
	Database

	Map framework
	Conclusion

	Implementation
	Project setup
	Application functionality
	Application overview
	Serialization of JSON-like data
	Services
	Data synchronization
	Modular scenarios
	Location-based query

	Testing
	Unit tests
	Widget UI tests
	User testing

	Conclusion
	Future work
	Fix issues
	User education system
	Gamification

	Bibliography
	Use cases
	Use case 1 - Login
	Use case 2 - Show objects on map
	Use case 3 - Add new report
	Use case 4 - Add report to an object
	Use case 5 - Filter objects
	Use case 6 - Survey overview
	Use case 7 - Profile overview
	Use case 8 - Logout

	Code snippets
	State management
	Business Logic Component
	Redux

	Implementation
	Services
	Synchronization
	Unit testing
	UI testing

	Application screenshots
	Examples of provided graphical design
	Contents of the attached CD

