
ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

474548Osobní číslo:JakubJméno:KováčPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

SoftwareStudijní obor:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Návrh a prototypová implementace logovacího frameworku pro nástroj Manta

Název bakalářské práce anglicky:

Design and prototype implementation of a logging framework for Manta Flow

Pokyny pro vypracování:
Cílem práce je analyzovat, navrhnout a implementovat ve formě funkčního prototypu rozšiřitelný logovací framework pro
nástroj Manta Flow.
Postupujte v následujících krocích:
1. Analyzujte aktuální stav logování v nástroji Manta Flow a na základě interview se zadavatelem specifikujte požadavky
na nové řešení.
2. Vypracujte rešerši běžných logovacích frameworků v jazyce Java (Log4j, Jakarta, JavaUtilLogging, Slf4j).
3. Navrhněte strukturu logování - tj. kategorie běžných chyb, logovací hlášení, ...
4. Diskutujte a navrhněte softwarovou architekturu logování a zobrazování logů.
5. Návrh implementujte formou prototypu.

Seznam doporučené literatury:
CHUVAKIN, Anton, Kevin J. SCHMIDT, Chris PHILLIPS a Patricia MOULDER. Logging and log management: the
authoritative guide to understanding the concepts surrounding logging and logmanagement. Amsterdam: Elsevier/Syngress,
[2013]. ISBN 1597496359.
NARKHEDE, Neha, Gwen SHAPIRA a Todd PALINO. Kafka: the definitive guide : real-time data and stream processing
at scale. Sebastopol, CA: O'Reilly Media, 2017. ISBN 1491936169.
RICHARDS, Mark, Richard MONSON-HAEFEL a David A CHAPPELL. Java Message Service: Creating Distributed
Enterprise Applications, CA: O'Reilly Media, [2009]. ISBN 9780596522049.
GUPTA, Ravi Kumar, Yuvraj GUPTA. Mastering Elastic Stack, Packt Publishing, [2017]. ISBN 9781786460011.

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Michal Valenta, Ph.D., katedra softwarového inženýrství FIT

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 22.05.2020Datum zadání bakalářské práce: 03.02.2020

Platnost zadání bakalářské práce: 30.09.2021

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Michal Valenta, Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZBP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZBP-2015.1

Bachelor Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Design and prototype implementation of a
logging framework for Manta Flow

Jakub Kováč

Supervisor: Ing. Michal Valenta, Ph.D.
May 2020

ii

Acknowledgements
Rád bych poděkoval své rodině, která při
mě během celého studia stála a jejíž pod-
pora, trpělivost a motivace byly během
studia klíčové.

Dále bych chtěl poděkovat Ing. Michalu
Valentovi Ph.D. za vedení práce a rady
při její tvorbě a všem z týmu Manty za
podporu při tvorbě závěrečné práce a za
to, že jsem se od nich mnohému naučil.

Declaration
I hereby declare that I have authored this
thesis independently, and that all sources
used are declared in accordance with
the “Metodický pokyn o etické přípravě
vysokoškolských závěrečných prací".

I acknowledge that my thesis (work) is
subject to the rights and obligations aris-
ing from Act No. 121/2000 Coll., on Copy-
right and Rights Related to Copyright
and on Amendments to Certain Laws (the
Copyright Act), as amended, (hereinafter
as the “Copyright Act"), in particular § 35,
and § 60 of the Copyright Act governing
the school work.

With respect to the computer programs
that are part of my thesis (work) and with
respect to all documentation related to
the computer programs (“software"), in ac-
cordance with Article 2373 of the Act No.
89/2012 Coll., the Civil Code, I hereby
grant a nonexclusive and irrevocable au-
thorisation (license) to use this software,
to any and all persons that wish to use
the software. Such persons are entitled
to use the software in any way without
any limitations (including use for-profit
purposes). This license is not limited in
terms of time, location and quantity, is
granted free of charge, and also covers the
right to alter or modify the software, com-
bine it with another work, and/or include
the software in a collective work.

Prague, May 20, 2020

Prohlašuji, že jsem předloženou práci
vypracoval(a) samostatně a že jsem
uvedl(a) veškeré použité informační zdroje
v souladu s Metodickým pokynem o et-
ické přípravě vysokoškolských závěrečných
prací.

Beru na vědomí, že se na moji práci
vztahují práva a povinnosti vyplývající
ze zákona č. 121/2000 Sb., o právu au-

iii

torském, o právech souvisejících s právem
autorským a o změně některých zákonů
(autorský zákon), ve znění pozdějších
předpisů (dále jen „autorský zákon“),
především § 35 a § 60 autorského zákona
upravující školní dílo.

V případě počítačových programů, jež
jsou součástí mojí práce či její přílohou,
a veškeré související dokumentace k počí-
tačovým programům (dále jen „software“),
uděluji v souladu s ust. § 2373 zákona
89/2012 Sb., občanský zákoník, ve znění
pozdějších předpisů, nevýhradní a neod-
volatelné oprávnění (licenci) k užití soft-
ware, a to všem osobám, které si přejí
software užít. Tyto osoby jsou oprávněny
software užít jakýmkoli způsobem a za
jakýmkoli účelem v neomezeném rozsahu
(včetně užití k výdělečným účelům), vč.
možnosti software upravit či měnit, spojit
jej s jiným dílem a/nebo zařadit jej do díla
souborného. Toto oprávnění je časově,
teritoriálně i množstevně neomezené a
uděluji jej bezúplatně.

V Praze, 20. května 2020

iv

Abstract
This thesis describes design and prototyp-
ical implementation of a log management
solution for the application ecosystem of
a Czech company Manta. Manta is spe-
cialized in developing software that ana-
lyzes and produces data lineage of data
warehouses and other data stores. The
process of building data lineage for large
enough data stores is a long process that
naturally produces a large amount of logs.
Due to this the log analysis becomes a
very difficult process for people because
the logs are stored in text files which can
grow to a significant size for a human
reader. This thesis therefore analyzes the
issues with the previous solution and the
requirements stemming from it. In the
analytical part of the thesis are analyzed
existing solutions for different aspects of
log management - logging itself, transport
to a centralized location and persisting
the transported data in a way that simpli-
fies the log analysis. The output of this
thesis are prototypes of a logging API
that enables developers to enhance logs
with additional data that are stated in
the requirements and a web application
that facilitates access and other opera-
tions with logs for the end user.

Keywords: logging, log analysis, Manta,
data lineage, Java, Spring, ActiveMQ,
Log4j 2, source code generation

Supervisor: Ing. Michal Valenta, Ph.D.
Fakulta informačních technologií ČVUT,
Thákurova 2077/7,
160 00 Praha 6

Abstrakt
Tato bakalářská práce se zabývá návrhem
a prototypovou implementací systému
pro zpracovávání logů, které jsou vyge-
nerovány aplikacemi české firmy Manta.
Manta vyvýjí software pro analýzu a
tvorbu data lineage datových skladů a ji-
ných úložišť dat. Tvorba data lineage pro
dostatečně velká úložiště dat je dlouhý
proces, během kterého je vygenerováno
velké množství logů. Logy jsou uloženy
v textových souborech, které mohou na-
růst do velikostí pro člověka nezpracova-
telných. Analýza logů a řešení problémů,
které popisují, se proto stává více a více
náročná. Tato práce analyzuje problémy s
aktuálním řešením logování v Mantě a po-
žadavky na nový systém z toho pramenící.
V analytické části práce je rešerše exis-
tujících řešení všech aspektů log manage-
mentu - samotné logování, přenos logů
do centralizovaného úložiště a ukládaní
přenesených logů takovým způsobem, aby
zefektivnil jejich analýzu. Výstupem této
práce jsou prototypové implementace lo-
govacího API, které umožní vývojářům
jednoduše obohatit logy o další důležité
informace, a webové aplikace umožňující
vygenerované logy prohlížet, filtrovat a
dále s nimi manipulovat.

Klíčová slova: logování, analýza logů,
Manta, data lineage, Java, Spring,
ActiveMQ, Log4j 2, generování
zdrojového kódu

Překlad názvu: Návrh a prototypová
implementace logovacího frameworku pro
nástroj Manta

v

Contents
1 Introduction 1
1.1 Goal of the thesis 2
1.2 Chapters . 2
2 Business analysis 3
2.1 Manta . 3
2.1.1 System architecture 3

2.2 Logging in Manta, its issues and
resulting requirements 4
2.2.1 Current state 4
2.2.2 Issues with the current logging
configuration 5

2.2.3 Requirements 7
2.3 Functional requirements 9
2.4 Non-functional requirements . . . 10
2.5 Use cases of the new solution . . . 10
2.5.1 Actors . 10
2.5.2 Use case diagram 11
2.5.3 Aggregated use cases 11

3 Logging layer 13
3.1 Logging facades 13
3.1.1 SLF4J . 13
3.1.2 Apache Commons Logging . . 14

3.2 Logging frameworks 14
3.2.1 Java Logging API 14
3.2.2 Log4j 2 15
3.2.3 Logback 18

3.3 Technology choice 19
4 Transport layer 21
4.1 Message-oriented middleware . . . 21
4.1.1 Messaging models 22

4.2 Java Message Service 23
4.2.1 JMS providers 23

4.3 Apache Kafka 24
4.4 Other industry used messaging
tools . 25

4.5 Chosen technology 26
5 Persistence layer 27
5.1 Text-based files 27
5.2 Binary files 28
5.3 Database . 28
5.3.1 Database technologies 29

5.4 Cloud and other distributed
solutions . 31

5.5 Elastic Stack 32
5.6 Choice of technology 33

6 Realization 35
6.1 Development process 35
6.2 Other technologies used in the
realization . 35

6.3 Software architecture 36
6.4 Logging layer 37
6.4.1 Categorization 37
6.4.2 Error type attributes 38
6.4.3 Logging API 38
6.4.4 Builder generation 40
6.4.5 Logging API UML model . . . 42
6.4.6 Logging context 42

6.5 Transport layer 44
6.5.1 Log4j 2 appender 44
6.5.2 Implementation 45

6.6 Persistence layer 46
6.6.1 Database schema 46
6.6.2 Indices 47
6.6.3 Components 48

6.7 Rest API endpoints and
controllers . 50

6.8 Prototype implementation 50
7 Testing 51
8 Conclusion 55
Bibliography 57

Appendices
A Abbreviations 63
B CD content 65
C Diagrams 67

vi

Figures
2.1 Current architecture of Manta and
its logging . 5

2.2 Inappropriate error messages 7
2.3 Use case diagram 11

4.1 Complex Point-to-Point Messaging,
diagram from [23] 22

4.2 Simple Publish/Subscribe
Messaging, diagram from [24] 23

5.1 An example of Elastic Stack data
pipeline [33] . 32

6.1 Deployment diagram of the new
logging solution 37

6.2 Component diagram of the
transport layer 46

C.1 Architecture of the new logging
solution . 67

C.2 Architecture of the new logging
solution . 68

C.3 UML of the designed logging API
and the underlying framework 69

C.4 Database schema of the log
repository . 70

C.5 Components of the transport layer
and logging layer 71

C.6 Components of the persistence
layer . 72

C.7 Component diagram of the whole
Log Viewer backend 73

Tables
2.1 Functional requirements 9
2.2 Non-functional requirements . . . 10
2.3 Use cases of the new solution . . . 12

3.1 Handlers of Java Logging API [10] 15
3.2 Levels of Java Logging API [11] 15
3.3 Levels of Log4j [18] 17

5.1 Relational databases and their
features . 30

vii

Chapter 1
Introduction

A significant portion of each software engineer’s work is developing, monitoring,
debugging and fixing software. In order to be efficient at these activities, it is
necessary to have information about the inner workings of the software in
question, which is provided by logging.

Log is a message emitted by an application or an operating system describing
its inner state, what it does or its communication with other entities. They
are an essential feature of most of the applications or operating systems and
are greatly utilized for dealing with issues that may arise. That is why most
of the companies developing software pay great deal of attention towards
providing relevant information in logs.

Though after time, once the volume of logs becomes too large, a new
issue arises in regards to the log analysis. As the amount of logs increases,
the analysis becomes more difficult and thus detecting and dealing with
application issues becomes more demanding. That is why log analysis tools
or specialized log storages are becoming more and more popular. Companies
also invest more into these tools in order to detect new issues early and
effectively.

The main focus of this thesis is to analyze this subject area and design a
new logging solution for the ecosystem of Manta, which is a Czech company
producing software for data lineage analysis. Data lineage diagrams show
where a piece of data origins, where it is moved, how it is transferred and
where it is outputted. Companies use data lineage to track and find errors in
their data governance or for optimizing their existing systems. The process
of building a data lineage for large data stores naturally produces a large
amount of logs. The logging solution is therefore specifically tailored to the
requirements of Manta.

The new logging solution deals with all aspects of modern log analysis
problematic - log generation, transport, storing and retrieval of logs. This
thesis will therefore focus on these areas. At the beginning of the thesis,
business and system requirements from the contractee - Manta - are stated
and analyzed. Following are chapters focusing on researching already existing
solutions and discussing their compliance with the requirements, represent-
ing the analytical part of the thesis. Last is the design and prototypical
implementation of the new logging solution as well as its testing.

1

1. Introduction
1.1 Goal of the thesis

The main goal of this thesis is to design and implement a new logging solution
for Manta ecosystem encompassing all aspects of logging - from writing a
single logging command in a Java application to presenting that log in a
user-friendly fashion in a web application to a consumer.

The implementation is therefore divided into two parts - logging API used
by the programmers and a backend of a web application, referred to as Log
Viewer, providing these logs to the end user.

1.2 Chapters

The thesis is divided into eight chapters:. Introduction which describes the issue and motivations,.Business analysis which analyzes requirements from the contractee
and the issues with the current implementation,. Logging layer which analyzes existing logging frameworks of Java
programming language and their features,.Transport layer which analyzes possible existing solutions for log data
transport and discusses them in regards to the requirements,.Persistence layer which analyzes possible solutions for log storage in
accordance to the specified requirements,.Realization which describes the design and implementation of the API
as well as the design of software architecture and implementation of the
prototype of the Log Viewer application,.Testing which describes the approaches towards the testing of the
prototype,.Conclusion ends the thesis by discussing the fulfillment of requirements
and possible other approaches that may be taken in this subject area,

2

Chapter 2
Business analysis

2.1 Manta

Manta is a Czech startup company specialized in developing software for
analyzing and visualizing data lineage. Its customers are mainly large corpora-
tions from abroad, mostly from the United States. Software produced by this
company is greatly utilized by these companies to automate data warehouse
optimization or regulatory and other processes that would normally take
weeks or months, when done by people, to be done within hours. Manta
analyzes programming languages like SQL or Java and from the created
analysis builds the appropriate data lineage.

2.1.1 System architecture

Manta application is composed of the following components:.Manta Flow CLI.Manta Flow Server. Admin UI

Manta Flow CLI

Manta Flow CLI is a Java console application. In the process of analyzing and
creating data lineage, this application serves multiple purposes - it extracts
scripts and other data from source databases or data warehouses, analyses
them and sends the retrieved metadata to Manta Flow Server. Furthermore,
the application can process and send the metadata to third-party applications,
such as IBM InfoSphere Information Governance Catalog (IBM IGC) or
Informatica EDC.

Manta CLI is run in scenarios. Each scenario may have a master scenario
and one master scenario may have multiple child scenarios. Both master
and normal scenarios are implemented as Java beans. One master scenario
usually represents one step of the data lineage creation phase for one sup-
ported technology, for example OracleExtractionMasterScenario. During one

3

2. Business analysis
application run, Manta CLI iteratively launches chosen master scenarios and
its child scenarios.

Manta Flow Server

Manta Flow Server is a Java web application built on Spring MVC frame-
work. The application saves metadata processed in Manta Flow CLI into a
graph database, transforms it into the correct format for exporting into the
previously mentioned third-party technologies or actually exports itself into
other third-party technologies, such as Collibra. Furthermore, Manta Flow
Server creates the visualisation of data lineage, which is later visualised in a
browser or third-party applications via API.

Admin UI

Admin UI is a Java web application using Spring MVC framework. Admin
UI works as an administration console for controlling Manta Flow CLI. Using
it, the user may launch the CLI, change its configuration or perform updates
of the system. The prototype implemented in this thesis is targeted to be a
component of this application.

2.2 Logging in Manta, its issues and resulting
requirements

2.2.1 Current state

Logging in Manta Flow CLI

Currently, Manta Flow CLI is configured to log into rolling files. It uses a
Rolling File Appender from the logging framework Log4j 2. Rollover of the
file is triggered on startup, i.e. every time the application is started, old log
files are archived and logs are written into a new file. All log files from all
application runs are saved into one folder. Log files that were archived are
not automatically removed.

As stated in the previous section, Manta Flow CLI is run in scenarios.
Each run of the scenario generates one log file. Both the master scenario and
the normal scenario have their own log file. Currently, Manta has more than
150 scenarios. Therefore, after each full run of the application, hundreds of
log files may be generated. If the data source is large enough, the size of one
log file may be in hundreds of megabytes (hundreds of thousands to couple of
millions of logs).

Logging in Manta Flow Server

In Manta Flow Server, logging is configured so that logs are written into
rolling log files using Rolling File Appender from Log4j 2. It uses a Time-

4

.................. 2.2. Logging in Manta, its issues and resulting requirements

Based Triggering Policy (rollover is triggered after a set time period) and
SizeBased Triggering Policy (rollover is triggered after the file reaches a
certain size). After rollover, only 10 latest log files are archived, the older
ones are automatically deleted.

Logging in Admin UI

Admin UI has the same logging configuration as Manta Flow Server.

Current logging architecture

In the Figure 2.1, current architecture of Manta Flow and its logging is
modeled. This diagram is one of the possible ways of using Manta. In the real
world, it is possible to either deploy Manta to one machine, as it is pictured
here, or decompose it to multiple physical servers.

Figure 2.1: Current architecture of Manta and its logging

2.2.2 Issues with the current logging configuration

From the descriptions of the current state of logging in the previous section it
is apparent that this configuration is not simple to maintain, read nor analyze.
The reasons are namely - large amount of log files and their potential size,
due to which searching for information contained in them becomes highly
ineffective, or a high degree of decentralization (each component logs locally
and with custom settings).

5

2. Business analysis
Large amount of log files

It is very complicated for a customer to get accustomed to a large amount of
raw information stored in log files and in case of any issue with the application,
it is very difficult, without an advanced knowledge of the application, to find
errors causing it. As a result, customers usually contact customer support with
even relatively trivial issues that can be easily fixed. It not only overburdens
the customer support, but also causes delays on the side of the customer. The
fact that old log files are not automatically deleted, or archived elsewhere,
only increases the problem.

Size of the log files

Parsing information from a text file with size ranging from tens of thousands
to millions of lines is very tedious for a human. To make this process faster,
it is necessary to be able to filter the unwanted information from the file.
Currently, the customer support uses console tools grep and sed which, using
regular expressions, are able to partially filter the logs. However, this method
is not completely reliable and flawless, since, for example, two developers
may log one error with two different messages and thus make the filtration
even more difficult. Furthermore, the scalability is very ineffective, since in
a continual development, more and more new errors are created and it is
difficult to incorporate them into this method.

Decentralized logging

As was mentioned in subsection 2.1.1, Manta works as a cluster of three closely
cooperating components. These three components each log locally, which may
cause potential issues with log analysis. During CLI scenario execution, CLI
continuously sends or receives data from Manta Flow Server, which also has
functionality of its own. In case of certain issues, it is sometimes necessary to
analyze multiple logs from the same time written in multiple files. Ideally,
the new solution would centralize logging and thus enable a user to unite the
logs from multiple sources.

Inappropriate log messages

Currently, a great amount of errors are logged in such a way that is not
understandable to a normal user. The actual users of Manta increasingly do
not have an IT background and someone, who is not familiar with the source
code of the application, will deduce very little from the log in Figure 2.2 and it
is highly unlikely that the user will successfully solve the issue. Alternatively,
if an error is not detrimental to a desired output but is logged in such a way
that it generates an impression in the user that it is, the user may think that
the output is not correct. Manta customer support is regularly contacted with
issues that are not detrimental to the output of the program only because
users think that there might be an issue due to an inappropriate log message.

6

.................. 2.2. Logging in Manta, its issues and resulting requirements

The solution to this issue may be to log errors dually - for a user and for a
developer. The error log message intended for the end user would be user
friendly, while the developer log would incorporate technical details which
are necessary during the development or fixing bugs.

Figure 2.2: Inappropriate error messages

2.2.3 Requirements

In this section, requirements for the new log management solution, stemming
from the issues with the current solution, will be discussed. The main
requirement is to design a log management system that allows to view, filter
and search logs from all components in one central component. Requirements
are described in detail in the following subsections.

Log Viewer

The main requirement is to design and implement backend of a Log Viewer
component for the Admin UI web application. In the context of this thesis the
implementation will be prototypical and will be a standalone web application.
The log viewer must enable users to filter, group, search or analyze in other
ways logs generated by all of the components of Manta.

7

2. Business analysis
Persistence layer

A central log viewer requires a central storage of all logs for effective analysis.
The new solution must handle large amount of data without affecting the
performance of the application. The data storage must be queryable.

Transport layer

Since Manta works as a cluster of three components, logs need to be trans-
ported to a central data storage using a transport layer that may be used by
any other application with a simple configuration.

Filtration and querying

The individual logs can be currently filtered by application run, scenario,
component or log severity. These parameters are not sufficient for effective
filtration, since it is possible and not rare for one scenario to log thousands
of errors. More attributes should be added to allow more effective querying
and filtration.

Error categorization

Design and implement an extendable error categorization API. This API
should be simple to use and it should not be possible to knowingly or
unknowingly log errors in any other way.

Message duality

Each categorized error should have a user friendly message for normal users
and a detailed message for developers.

Logging API

Implement a logging API incorporating additional log parameters, error
categorization and message duality functionality in such a way that it is
simple for a developer to use so that developers are not discouraged from
logging.

Support packages

Usually, when customers have any issues with an application, they send logs
from an application run. Due to a large amount of log files, the customer
often does not know which ones to send, so they send all of them. The new
solution should enable user to easily select relevant logs, package them and
send them to the customer support. It should be possible to open the package
again in the Log Viewer.

8

................................2.3. Functional requirements

Software architecture

The log viewer component should not introduce any architectural changes
to the application. That means, any third party technologies that are used
by the logging solution must be embedded into the existing application and
must not run separately to the application (e.g. no separate database server,
it must be embedded into the application).

Encryption

In order to secure the communication between components, all remote com-
munication must be encrypted using Secure Sockets Layer (or TLS) protocol,
which Manta currently also uses to secure communication. Even though
Manta is usually used on one machine where all connectivity is to localhost,
where this would not be required as much, it is possible to run it on multiple
machines where this would be required. Logs may contain sensitive user data
(mostly database metadata) and additional security is therefore useful.

2.3 Functional requirements

In the Table 2.1 are laid out all of the functional requirements on the new
solution, most of which were described more in detail in the previous section.
Later in the text, these requirements will be referenced by codes that were
assigned in this table.

Code Requirement
F1 Design software architecture for Log Viewer component
F2 Design and implement a central data storage of all logs from

all components
F3 Design and implement a transport layer between components
F4 Create a logging API that fulfills the requirements below
F4.1 Implement an extendable error categorization as a part of

the logging API
F4.2 Implement dual messages for error logs as a part of logging

API
F4.3 Logged errors should have possible solutions to resolve it
F5 Design and implement a functionality of adding context to

logs, such as assigning data source objects to logs
F6 Implement a service for support package creation
F7 Implement a service for support package upload
F8 Implement automatized pruning of old logs
F9 Implement full-text searching over error logs

Table 2.1: Functional requirements

9

2. Business analysis
2.4 Non-functional requirements

In the Table 2.2 are laid out all of the non-functional requirements on the
new solution. Later in the text, these requirements will referenced by codes
that were assigned in this table.

Code Requirement
NF1 Querying of log data storage should be fast enough to be

realistically usable
NF2 Logging API should be simple to use and the only possible

way to log
NF3 Logging API should not negatively impact the application

performance
NF4 All tools required by the new solution should be installable

using the Manta installer
NF5 Installation should be possible without using the installer
NF6 All third party tools should be free to use, have open-source

license with no GPL-like behavior
NF7 Application architecture must not be changed
NF8 Remote communication must be encrypted using SSL

Table 2.2: Non-functional requirements

2.5 Use cases of the new solution

In this section are described use cases of the Log Viewer component and
logging API that powers it, as well as actors using certain aspects of the new
solution.

2.5.1 Actors

Actors in Unified Modeling Language use case diagrams are entities that
interact with the system that is being modeled. There are four main actors
participating in the usage of the new logging solution:. Software engineer, who develops and maintains Manta software com-

ponents, will use the new solution mainly in the lower (API) levels,.Customer, who is the end user of the application, interacting with the
application purely from the front-end,.Customer support, who uses the application largely the same as a
customer,.Time, since there will be an automatized, time-triggered internal func-
tionality

10

............................. 2.5. Use cases of the new solution

2.5.2 Use case diagram

In the Figure 2.3 is an UML diagram describing use cases of the new solution
and assigning them to appropriate actors. It is apparent, that the customer
support actor shares most of the use cases with a customer. It is intended to
be so that the Log Viewer application is used to solve issues that arise in the
application as much as possible, even internally in the company.

Figure 2.3: Use case diagram

2.5.3 Aggregated use cases

In the table below is a list of use cases declared in a use case diagram
in the previous section. Use cases are named, described and mapped to
corresponding requirements.

11

2. Business analysis
Name Use case Requirement
Error categoriza-
tion

Using an API for creating and cate-
gorizing logged errors

F4.1

Error attributes Using an API for adding further in-
formation to error logs

F4.2, F4.3

Logging context Using an API for adding context to
following logged errors

F5

Package creation Create a package containing logs
from an application/scenario execu-
tion

F6

Package upload Upload a package containing logs
from an application/scenario execu-
tion and show them in log viewer

F7

Query error logs Use log viewer to query persisted
errors using its attributes or full text
search

F7

Solve errors Solve errors listed in the log viewer
using provided solution

F4.3

Prune old logs Automatically prune expired logs
from old runs

F8

Table 2.3: Use cases of the new solution

12

Chapter 3
Logging layer

The following chapter presents existing logging solutions for the Java pro-
gramming language, in which is Manta developed. The logging solutions
will be compared with each other in order to find the most fitting for the
requirements stated in the previous section. At the end of the chapter will
be stated the chosen technology discussed reasons for doing so.

When developing in Java, a developer has a great array of choices for
logging. They may use a logging facade which gives developers flexibility in
using multiple implementations of logging frameworks, or they may use one
logging framework directly.

3.1 Logging facades

Logging facade is an implementation of the facade design pattern. "Facade
defines a higher-level interface that makes the subsystem easier to use."
[1] In other words, logging facade provides an abstraction over an existing
logging framework. This allows developers to change the underlying logging
framework without having to refactor logging in the whole application. Manta
currently uses SLF4J facade.

3.1.1 SLF4J

"The Simple Logging Facade for Java (SLF4J) serves as a simple facade or
abstraction for various logging frameworks (e.g. java.util.logging, logback,
log4j) allowing the end user to plug in the desired logging framework at
deployment time."[2] "The way SLF4J works is that at runtime SLF4J scans
the class path and picks the first .jar that implements the SLF4j API."[3]
SLF4J is distributed with bindings for the following logging frameworks:. Log4j. Java Logging API. Apache Commons Logging. Logback

13

3. Logging layer.....................................
. Simple (logging to System.out or Sytem.err). Nop (discarting all logging)

Furthermore, SLF4J provides ability to reroute logging from other imple-
mentations into SLF4J. "SLF4J ships with several bridging modules which
redirect calls made to log4j, JCL and java.util.logging APIs to behave as
if they were made to the SLF4J API instead."[4] A great amount of legacy
systems still uses JCL, which is discussed in the following section. Famous
example is the IoC framework Spring, which still uses JCL. Though in its
documentation it is recommended to turn off the JCL logging and use the
SLF4J bridge. "If we could turn back the clock and start Spring now as a
new project it would use a different logging dependency."[5]

3.1.2 Apache Commons Logging

Apache Commons Logging, also known as Jakarta Commons Logging, is a
logging facade developed by Apache Software Foundation. Commons Logging
is a very thin facade and does not provide abstractions of many advanced
logging features like mapped diagnostic context, markers and others, which
SLF4J does. JCL is also infamous for its issues with the class loader. "The
class loader based automatic ’discovery process’ is the principal weakness
of the commons-logging API because it results in a substantial jump in
complexity." [6] Furthermore, the discovery algorithm also causes unexpected
behavior and even memory leaks. SLF4J deals with the classloader issues by
using static binding, i.e. the classloader always looks for an implementation
of a class org.slf4j.impl.StaticLoggerBinder, which contains binding to the
desired logging framework.

3.2 Logging frameworks

3.2.1 Java Logging API

"The JavaTM Logging APIs, introduced in package java.util.logging, facilitate
software servicing and maintenance at customer sites by producing log re-
ports suitable for analysis by end users, system administrators, field service
engineers, and software development teams."[7] It is the official logging imple-
mentation of Java distribution. It has been a part of the Java distribution
since version 1.4.

Handlers

"A Handler object takes log messages from a Logger and exports them. It
might for example, write them to a console or write them to a file, or send them
to a network logging service, or forward them to an OS log, or whatever."[9]
Developers may also implement their own handlers or extend the existing
ones. Java Logging API is distributed with following implemented handlers:

14

................................. 3.2. Logging frameworks

Handler Description
ConsoleHandler A simple handler for writing formatted records to

System.err
FileHandler A handler that writes formatted log records either

to a single file, or to a set of rotating log files
StreamHandler A simple handler for writing formatted records to

an OutputStream
SocketHandler A handler that writes formatted log records to re-

mote TCP ports
MemoryHandler A handler that buffers log records in memory

Table 3.1: Handlers of Java Logging API [10]

Levels

Every logged message has its severity as an attribute. Different implementa-
tions of logging use different names for these attributes, but the principle is
always the same. Correct usage of severities improves the effectiveness of log
analysis. Java Logging API has the following predefined levels:

Level Description
SEVERE Message level indicating a serious failure.
WARNING Message level indicating a potential problem.
INFO Message level for informational messages.
CONFIG Message level for static configuration messages.
FINE Message levels for debug information by degree of

importance.
FINER
FINEST

Table 3.2: Levels of Java Logging API [11]

3.2.2 Log4j 2

Log4j 2 is a logging framework developed by the Apache Software Foundation.
It is the continuation of Log4j framework whose development started in
1999. Log4j was the first Java logging framework. Over the years, due to
compatibility issues with very old versions of Java, its development slowed
down, until it was stopped in 2015. Framework was then refactored and
released as Log4j 2.[12]

Appenders

Appenders, which are equivalent to handlers in Java Logging API, are re-
sponsible for writing logs to the set destination. Log4j 2 is distributed with a
great amount of appenders [13]:

15

3. Logging layer.....................................
.AsyncAppender is an asynchronous appender that wraps other appen-

ders and writes data to them in another thread..CassandraAppender writes to NoSQL database Apache Cassandra..ConsoleAppender writes logs to System.out and System.err.. FailoverAppender groups multiple appenders, sorts them by impor-
tance and when an appender with higher importance fails during export,
it uses an appender with lesser importance.. FileAppender writes logs to a text file.. FlumeAppender writes logs to Apache Flume, which is a "distributed,
reliable, and available service for efficiently collecting, aggregating, and
moving large amounts of log data."[14]. JDBCAppender writes logs to a relational database using a standard
JDBC API.. JMSAppender writes logs to Java Messaging Service, which is "a
Java API that allows applications to create, send, receive, and read
messages."[15]. JPAAppender writes logs to a relational database using Java Persis-
tence API[13]..HttpAppender sends logs to a remote location using HTTP protocol..KafkaAppender writes logs to Apache Kafka, which is a "distributed
streaming platform"[16]..MemoryMappedFileAppender "maps a part of the specified file into
memory and writes log events to this memory, relying on the operating
system’s virtual memory manager to synchronize the changes to the
storage device." [13].NoSQLAppender "writes log events to a NoSQL database." [13] Log4j
2 provides further specified appenders for MongoDB NoSQL dataabse..OutputStreamAppender "provides the base for many of the other
Appenders such as the File and Socket appenders that write the event
to an Output Stream. It cannot be directly configured."[13].RandomAccessFileAppender writes to a file using RandomAccess-
File Java class..RewriteAppender "allows the LogEvent to manipulated before it is
processed by another Appender. This can be used to mask sensitive
information such as passwords or to inject information into each event."
[13]

16

................................. 3.2. Logging frameworks

.RollingFileAppender writes logs to a text file, which is rolled accord-
ing to a set TriggeringPolicy and RolloverPolicy. "The triggering policy
determines if a rollover should be performed while the RolloverStrategy
defines how the rollover should be done."[13].RollingRandomAccessFileAppender combines the functionality of
RandomAccessFileAppender and RollingFileAppender..RoutingAppender reroutes logs to correct appender according to set
conditions.. SMTPAppender "sends an e-mail when a specific logging event occurs,
typically on errors or fatal errors."[13]. SocketAppender "is an OutputStreamAppender that writes its output
to a remote destination specified by a host and port."[13]. SyslogAppender "is a SocketAppender that writes its output to a
remote destination specified by a host and port in a format that conforms
with either the BSD Syslog format or the RFC 5424 format."[13]. ZeroMQ/JeroMQ Appender writes to ZeroMQ, which is a "high-
performance asynchronous messaging library, aimed at use in distributed
or concurrent applications."[17]

Levels

Log4j 2 uses different log levels than Java Logging API:

Level Description
OFF No events will be logged.
FATAL A severe error that will prevent the application from

continuing.
ERROR An error in the application, possibly recoverable.
WARN An event that might possible lead to an error.
INFO An event for informational purposes.
DEBUG A general debugging event.
TRACE A fine-grained debug message, typically capturing

the flow through the application.
ALL All events should be logged.

Table 3.3: Levels of Log4j [18]

Parametrized logging

Parametrized logging allows developers effectively adding outside parameters
to log messages. Possible ways of inserting parameters to log messages may
be:

17

3. Logging layer.....................................
l o gg e r . i n f o (person . getName () + " i s " + person . getAge () + "

years o ld and has " + person . getNumOfChildren () + "
ch i l d r en . ") ;

l o gg e r . i n f o (" {} i s {} years o ld and has {} ch i l d r en . " ,
person . getName () , person . getAge () ,
person . getNumOfChildren ()) ;

According to the SLF4J documentation, the latter way of inserting pa-
rameters delays the message construction until after the framework checks,
whether the logging level is enabled. The first way of logging constructs the
message regardless. The latter "will outperform the first form by a factor of
at least 30, in case of a disabled logging statement."[2] Furthermore, it has an
added benefit of better readability.

Thread Context

"Stamping log events with a common tag or set of data elements allows the
complete flow of a transaction or a request to be tracked. We call this Fish
Tagging. Log4j provides two mechanisms for performing Fish Tagging; the
Thread Context Map and the Thread Context Stack. The Thread Context
Map allows any number of items to be added and be identified using key/value
pairs. The Thread Context Stack allows one or more items to be pushed on
the Stack and then be identified by their order in the Stack or by the data
itself."[19] Logging facade SLF4J provides a facade of this feature.

Asynchronous logging

"Asynchronous logging can improve your application’s performance by ex-
ecuting the I/O operations in a separate thread."[20] This feature can be
implemented by wrapping the desired output appender using AsyncAppen-
der or using AsyncLogger, which requires external dependency on LMAX
Disruptor. "Asynchronous Loggers internally use the Disruptor, a lock-free
inter-thread communication library, instead of queues, resulting in higher
throughput and lower latency."[20]

3.2.3 Logback

Logback is a Java logging framework "intended as a successor to the popular
log4j project"[21]. It is closely coupled with SLF4J library, which it natively
implements. Logback built upon the classic Log4j framework and brought
many of the advanced features that are now common in logging frameworks.
New version of Log4j - Log4j 2 - included those features and brought many
others as well. Furthremore, Log4j 2 implemented asynchronous logging,
which is much faster than async appender of Logback1.

1Benchmarks comparing throughput of different async logging implementations, available
from: https://logging.apache.org/log4j/2.x/manual/async.html#Performance

18

.................................. 3.3. Technology choice

3.3 Technology choice

Manta currently uses the combination of the logging facade SLF4J and logging
framework Log4j 2. The main reason, why SLF4J is used in different projects,
is due to flexibility it provides in changing logging frameworks. This new
solution will serve a very similar function - provide a logging facade with an
added functionality. Therefore, there is no reason to keep SLF4J anymore,
since it does not provide any further functionality above Log4j 2 and will thus
become redundant. If the developers desire to change the logging framework
some time in the future, only refactoring the base logging API classes will
be necessary. Regarding the logging framework, Log4j 2, there is no need
to change it, since it offers the most advanced functions and has the best
performance among the logging frameworks.

19

20

Chapter 4
Transport layer

In this chapter will be discussed existing solutions for communication within
distributed enterprise systems. In the scope of this work, these technologies
offer solutions for transportation of logs to the centralized data storage. At the
beginning of the chapter will be described common messaging models. After
that will be described implementations of these models and their compliance
with the requirements. At the end of the chapter will be discussed the
technology choice and reasons for doing so.

4.1 Message-oriented middleware

Message-oriented middleware is an infrastructure facilitating communication
between systems based on messages. "A client of a MOM1 system can send
messages to, and receive messages from, other clients of the messaging system.
Each client connects to one or more servers that act as an intermediary in
the sending and receiving of messages. MOM uses a model with a peer-to-
peer relationship between individual clients; in this model, each peer can
send and receive messages to and from other client peers."[22] In contrast
with an older interprocess communication technique, remote procedure calls,
message-oriented middleware allows distributed systems to be more loosely
coupled.[15]

Messaging infrastructure is usually implemented using message brokers. "A
message broker is software that enables applications, systems, and services to
communicate with each other and exchange information. The message broker
does this by translating messages between formal messaging protocols."[25]
"They serve as intermediaries between other applications, allowing senders
to issue messages without knowing where the receivers are, whether or not
they are active, or how many of them there are."[25] Most commonly known
message brokers are ActiveMQ, RabbitMQ or Apache Kafka which will be
discussed in the following sections.

1Message-oriented middleware

21

4. Transport layer
4.1.1 Messaging models

Message-oriented middleware is based on two main messaging models - Point-
to-Point and Publish/Subscribe.

Point-to-Point model utilizes First-In-First-Out (FIFO) queues. Producers
(in the context of this model also called senders) push messages to the end of
the queue, in which they are sorted in the order a messaging broker receives
them. Consequently, consumers (also receivers) consume the messages by
polling them from the queue. Each message is consumed by one receiver.
Messages are delivered and persisted in the messaging broker until a receiver
consumes them.2 In the Figure 4.1 is a diagram representing a Point-to-Point
messaging model where each message is consumed only once by a different
receiver. "The point-to-point model supports load balancing, which allows
multiple receivers to listen on the same queue, therefore distributing the
load."[27]

Figure 4.1: Complex Point-to-Point Messaging, diagram from [23]

Publish/subscribe model differs from Point-to-Point model in several as-
pects. Producers (in the context of this model also publishers) publish
messages to defined topics from which the messaging broker reroutes the
messages to consumers (also subscribers) who have subscribed to the defined
topic. A subscriber therefore does not poll a message from message queue
itself but subscribes to a topic and waits until broker delivers published
messages to it. This model furthermore allows one producer to send messages
to an arbitrary number of consumers, whereas Point-to-Point model is used to
deliver messages to one consumer. In the Figure 4.2 is a diagram representing
a simple Publish/subscribe messaging model which one message is consumed

2Paragraph sourced from [27]

22

................................. 4.2. Java Message Service

by two subscribers.3

Figure 4.2: Simple Publish/Subscribe Messaging, diagram from [24]

4.2 Java Message Service

Java Message Service (JMS) is an abstract API providing interface for message-
oriented middleware implementations. It is a part of Java Enterprise Edition.
"JMS defines a set of interfaces and semantics that allow Java applications to
communicate with other messaging implementations. A JMS implementation
is known as a JMS provider. JMS makes the learning curve easy by minimizing
the set of concepts a Java developer must learn to use enterprise messaging
products, and at the same time it maximizes the portability of messaging
applications."[26] It supports both messaging models discussed in the previous
section.

Java applications utilizing JMS providers by sending or receiving messages
are called JMS clients4.

4.2.1 JMS providers

There are many industry used implementations of JMS interface. It is possible
to choose from a wide range of open-source solutions like ActiveMQ, ActiveMQ
Artemis or RabbitMQ to properietary solutions like Amazon SQS or IBM
MQ. Due to the non-functional requirement NF6, only open-source solutions
will be considered in the following subsections.

ActiveMQ

Apache ActiveMQ is a message broker implemented in Java. According to
the ActiveMQ documentation, it supports integration not just with Java
Message Service, but also with numerous other platforms based on C++,

3Paragraph sourced from [22]
4Sourced from [26]

23

4. Transport layer
C# or Ruby. Its usage can range from running a large cluster of servers
to running embedded within an application’s Java Virtual Machine. "With
such a deployment, communication between the client and broker (server)
take place within the same JVM, avoiding the extra hop required to go
from producer to broker to consumer."[22] Therefore, ActiveMQ fulfills the
architectural requirement NF7. Furthermore, ActiveMQ supports encrypting
communication using SSL, thus complying with the NF8 requirement.

ActiveMQ Artemis

ActiveMQ Artemis is an open-source message broker implemented in Java
and is supposed to be the successor to the classic ActiveMQ, once they share
enough key features, according to the ActiveMQ documentation. It is based
on the HornetMQ codebase, developed by JBoss, that was donated to the
Apache Foundation, which re-released it under the name "ActiveMQ Artemis".
It officially supports embedded execution and SSL encryption, just like the
classic ActiveMQ.

RabbitMQ

RabbitMQ is a message broker, developed by Pivotal Software, implemented
in Erlang. Although it is one of the most popular message brokers currently
used in the industry, it does not meet the necessary requirements for this
work, since it cannot be officially executed embedded within an application’s
JVM and has to run as a separate server application.

4.3 Apache Kafka

Apache Kafka is an open-source distributed data streaming platform de-
veloped by Apache Foundation. It has a much wider scope of use cases
than traditional message brokers like ActiveMQ or RabbitMQ, ranging from
traditional messaging to website activity tracking, collecting metrics data,
log aggregation or stream processing. It is meant to be highly horizontally-
scalable and fault tolerant.

Originally, Kafka’s main use case was website activity tracking. "A website’s
users interact with frontend applications, which generate messages regarding
actions the user is taking. This can be passive information, such as page views
and click tracking, or it can be more complex actions, such as information that
a user adds to their profile."[28] This data can be further fed to applications
that process them, like monitoring applications, machine learning systems or,
more specifically, recommendation making systems on e-commerce sites.

More in the scope of this work, Kafka is also often used for log aggregation
from different systems. "Log messages can be published in the same way, and
can be routed to dedicated log search systems like Elastisearch or security
analysis applications."[28] Alternatively, it can automatically reroute physical

24

.......................... 4.4. Other industry used messaging tools

log files from client applications to centralized data storages like file servers
or Hadoop.5

Kafka has been enjoying a majorly increased popularity among large
corporations in recent years. "Kafka is being used by tens of thousands of
organizations, including over a third of the Fortune 500 companies."[28] More
recently, Confluent, a company founded by engineers who started development
on Kafka and dealing with data stream analytics, has reported that over 60
percent of Fortune 100 companies rely on Apache Kafka6.

Architecturally, Kafka is meant to be run in a distributed system on a cluster
of servers. It does not officially support execution where it is embedded within
an application’s JVM, since such limited setup defeats most of the advantages
that Kafka provides - that is horizontal scalability and fault-tolerance that
stems from it. Therefore, Kafka is not compliant with requirement NF7.

4.4 Other industry used messaging tools

With the increased focus on Big Data in the software industry, there has been
a corresponding major increase in industry focus on technologies providing
data transportation. Other major players in this sector are for example
Apache Flume or Logstash, which is a part of Elastic stack, which will also
be discussed in the next chapter.

Apache Flume is a "distributed, reliable, and available service for efficiently
collecting, aggregating, and moving large amounts of log data."[14]. According
to its documentation, its main use case is in aggregating log data within
a distributed system and pushing them forward to a data storage or other
processor, mainly Hadoop file system. Although there are official data sinks
for technologies like Elasticsearch, HBase or even Kafka. Its usage is rather
similar to Kafka in that it is meant to run in a distributed system on a cluster
of servers and does not support embedded execution.

Lastly, there are also specific networking libraries dealing with interprocess
communication. Libraries like ZeroMQ or Netty are the lowest-level imple-
mentations of data transportation methods described in this chapter. Netty,
for example, is even used internally in ActiveMQ Artemis for networking [37].
Generally, libraries like these provide a great performance potential but on the
other hand, they are often more difficult to implement than simply configuring
a message broker and may have missing some key features - ZeroMQ does
not for example support encrypting communication using SSL out of the box.
Nevertheless, these libraries are naturally embedded in the application and
fulfill other necessary requirements on the new solution.

5Previous paragraphs sourced from [28]
6Sourced from [36]

25

4. Transport layer
4.5 Chosen technology

Transport layer is an abstraction of the F3 requirement, which says that
logs from all applications should be transported to a centralized location. In
previous sections were described possible ways of implementing log aggregation
in a distributed system. The chosen solution has to meet the necessary
requirements, specifically requirements NF4, NF5, NF6, NF7 and NF8. In
summary, these requirements mean that chosen solution must be embedded
in the Admin UI web application and must be secure.

In the mentioned chapter were presented solutions that greatly differ in
size and use cases. At one end, there is a system like Apache Kafka, which
is very popular in the industry for the required use case. At the other end,
there are network libraries like Netty or ZeroMQ and lastly, middle-of-the-
road solutions like ActiveMQ. The solution that was eventually chosen was
ActiveMQ Artemis.

Firstly, it meets all of the necessary requirements - it is possible to embed it
in any Java application, which means that it does not change the installation
process of Manta in any way, and provides simple interface for securing all
communication using Secure Sockets Layer. Secondly, it already provides all
of the necessary functionality out of the box and is thus simple to configure
and implement.

The other possible solution would be to use a library like Netty for interpro-
cess communication. Netty is even used internally in the ActiveMQ Artemis
for facilitating communication. Artemis was therefore chosen because it is
already tested solution in the industry and prevents reinventing the wheel,
which would occur when using more low-level libraries.

In comparison to Kafka, ActiveMQ is a much more lightweight solution.
Kafka, despite its popularity, is not a suitable solution, given the current
architectural limitations. It cannot be embedded in an application, requires
another process to run on top of Kafka itself (Apache Zookeeper) and is a
very heavyweight solution. For example, the binary distribution of Kafka is
4 times bigger than Admin UI web application itself. This is a similar case
with many other log aggregation tools like Flume or Logstash.

Lastly, Artemis is a preferable solution to the classic ActiveMQ because
the classic version will soon be deprecated and it is generally recommended
to use Artemis when developing new applications.

26

Chapter 5
Persistence layer

This chapter will present possible industry solutions for storing logs, such
as files or databases. Choice of the data governance strategy varies greatly
depending on the organization’s needs, technologies discussed in this chapter
will therefore be examined based on the requirements stated in section 2.3
and section 2.4.

Choice of the repository is limited by non-functional requirements NF1,
NF5, NF6 and NF7. In other words, the chosen technology must be an open
source project that does not change the software architecture of the product
and must support effective querying, including full text searching over log
messages.

According to Logging and log management, logs can be stored in any
medium capable of storing data - options span from disks, DVDs, cloud
storages, RDBMS and others. The choice depends on the individual use case
where variables influencing the decision are mostly "price, capacity, and speed
of access and—what is VERY important is the ability to get to the right log
records in a reasonable period of time."[30]

5.1 Text-based files

The most common approach for log data persistence is to store it in text-based
files. The reason for that is the low computing cost of creating them and
appending to them and the simplicity of the implementation of this solution
in any programming language. Logs can be stored both in flat-text and binary
files.

Flat-text files are "a flat schema-less file that may follow a common pattern
or be free form."[30] These files are human readable and thus log analysis can
be performed by simply reading the files, presuming they are of reasonable
size. Furthermore, it is possible to use tools like grep and sed which help the
log analysis by filtering the logs and performing other text-based operations
over them.

Logs in the text files can follow a common pattern. Most of the logging
frameworks, like Log4j or Logback, enable users to choose a pattern them-
selves. Alternatively, logs can use a syslog pattern, which is standardized
in an operating system, although implementations may vary across operat-

27

5. Persistence layer
ing systems. Manta currently uses text-based files for logging in all of its
components, as described in the previous chapters.

Once flat text files become too large, aforementioned tools like grep or
sed start to become inefficient and human-based log analysis increasingly
more difficult. To counter this, it is possible to index the text files for more
effective querying. One of the tools commonly used for indexing text files
is Java-based full-text search library Apache Lucene. Lucene is commonly
used by many tools providing full-text search functionality, including many
databases or search engines like Elasticsearch or Apache Solr.1

5.2 Binary files

Alternative to the human-readable flat text files are binary files. "Binary log
files as the name indicates are machine-readable log files that applications
generate that require special utilities or tools to read and process them."[30]
Binary files are for example used for internal logging in databases like MySQL2

or MaxDB3, an enterprise relational database system from SAP, or other
enterprise applications like Informatica Service Manager4, which is a adminis-
tration console for tools developed by data governance company Informatica.
Binary files further require an encoding and decoding logic in order to make
the logs human readable, editable and searchable, which makes them more
difficult to implement and thus less popular than basic text files.

5.3 Database

A commonly used alternative for storing log data is a database. "Many
organizations find that writing log information to a database is useful in
opening access to stakeholders that need log information in a format that can
be quickly searched and queried, and to facilitate the setup and use of front-end
tools in the log review process."[30] Database systems can range from simple
file based databases like H2 or SQLite to client-server database management
systems like PostgreSQL or MySQL to highly horizontally scalable systems
like Apache Cassandra. Database systems will be more specifically discussed
in subsection 5.3.1.

According to Logging and Log Management, the main advantage of using a
database system as a repository for logs is the speed and ease of querying
specific log records, required by a user. All database systems provide pro-
grammatic interface for easy development of front-end tools manipulating
stored data. Furthermore, many database systems already provide additional

1Previous paragraphs inspired from [30]
2https://dev.mysql.com/doc/internals/en/binary-log-overview.html
3https://help.sap.com/viewer/2c2effc99b6746019aeb1af52ad59f5d/1909.001/en-

US/44d7cb202e6338d3e10000000a1553f7.html
4https://docs.informatica.com/data-integration/data-services/10-2/administrator-

guide/log-management/log-management-overview.html

28

...................................... 5.3. Database

functionality, including indexing for full-text search engines (either using a
library like aforementioned Apache Lucene or a native implementation).

On the other hand, the author states that using a database as a log
repository may bring potential risks and disadvantages in comparison to a
text-file system. Firstly, its write performance is worse than when using files
- "writing data to the database will be significantly slower than writing to a
local on disk text file due to network latency, database SQL parsing, index
updates, and committing the information to disk."[30] Secondly, database
storage has a higher disk space requirements in contrast with simple text files
due to database indices.

Although in the context of this thesis and its requirements, the disadvan-
tages of using a database system discussed in the previous paragraph are
minimized due to the architecture and the behavior of the application. Mainly,
since data would be written to the database asynchronously in a separate
web application, possibly slower insertion speed is not an issue because it
does not slow down the client application. And secondly, even if disk space
requirements are higher for a database, the log data would generally have at
most hundreds of megabytes to couple of gigabytes, which would not be an
issue.

Log data retrieval speed can also be optimized using well-designed indices.
As stated in Logging and Log Management: "A critical item will be to define
the columns in the database that will be used for daily review or part of
common queries for reporting and alerting."[30] Author further recommends to
create indices on fields severity, date and time, generating host and message.

5.3.1 Database technologies

In this subsection will be discussed relational and non-relational database
technologies in accordance to the requirements defined earlier. Specifically,
the attributes that the database must have to comply with the requirements
are open-source license, embeddability and a full-text search implementation.

Traditional relational database systems have been and still are the most
popular data stores in the industry. According to DB-Engines Ranking5,
seven out of ten most popular database systems are relational databases6.
Though many of these systems do not comply with the requirements as they
are proprietary. In the Table 5.1 are listed some of the more popular relational
database systems and their compliance with the stated requirements. Only
databases that fulfil the open-source license requirement are listed.

Databases can be generally divided into two groups - database systems
running as separate server applications using the clien/server model for access,
and serverless databases using on-disk or in-memory storage. Examples of
databases divided like this can be seen in Table 5.1, where pure database server
have a No in the Serverless column and the latter have a Yes. Nevertheless,
there are database systems that enable database access using both methods,

5https://db-engines.com/en/ranking
6As of April, 2020

29

5. Persistence layer
like Firebird.

From the Table 5.1 it is apparent, that commonly used databases that fit
the requirements are SQLite, H2, Derby and HyperSQL. In the context of
this thesis, there are no requirements on more advanced features of these
databases, therefore comparing them further based on their features is not
necessary.

Database system Serverless Full-text search
MySQL No Yes
PostgreSQL No Yes
SQLite Yes Yes
MariaDB No Yes
Firebird Yes No
H2 Yes Yes, a native implementation and

a Lucene implementation
Apache Derby Yes Using a Lucene plugin
HyperSQL Yes Yes

Table 5.1: Relational databases and their features

NoSQL database systems

Databases that do not use tabular relations or schemas, unlike traditional
relational databases are called NoSQL ("not only SQL") databases, "While
NoSQL databases have existed for many years, NoSQL databases have only
recently become more popular in the era of cloud, big data and high-volume
web and mobile applications. They are chosen today for their attributes
around scale, performance and ease of use. The most common types of
NoSQL databases are key-value, document, column and graph databases."[32]

Key-value NoSQL databases are modeled based on hash table data struc-
tures. Each record has a unique key, using which the record can be retrieved.
The values do not have to follow any pre-defined schema and they can contain
any type of data. Both key and its value are treated as simple byte arrays. Ac-
cording to DB-Engines, the most used key-value stores are Redis and Amazon
DynamoDB, which has a proprietary license. Nevertheless, key-value stores
are not very suitable for storing application logs due to its data structure.
Logs would have to have a generated unique key and operations like sorting or
querying logs based on their attributes require more implementation overhead,
in comparison to traditional relational database systems, which have these
functions already implemented.

Document-oriented NoSQL database systems use unstructured documents
as a model for storing inserted data. They can be treated as a special type
of key-value stores because they maintain the key-value structure internally
in the documents (usually they use JSON format, but XML is possible as
well). "Document databases are designed for flexibility. They aren’t typically
forced to have a schema and are therefore easy to modify. If an application
requires the ability to store varying attributes along with large amounts of

30

.......................... 5.4. Cloud and other distributed solutions

data, document databases are a good option."[32] The most widely used
document-oriented database is MongoDB, which is also one of the most used
database systems in general. Other commonly used systems are for example
Couchbase or CouchDB.

Document-oriented systems, thanks to their structure and more advanced
querying options, are much more suitable as a log repository than simple key-
value stores. Logs can be stored as separate documents and have a variable
structure, which is an advantage over relational database systems, which have
a rigid structure. Furthermore, all document-oriented systems provide an
API for querying data, which usually corresponds to classic SQL7. Though
for compliance with the stated requirements, such a system would have to
be executable in an embedded mode. Document-oriented database systems,
able to be embedded in a Java applications are for example Couchbase Lite,
OrientDB (also a graph database) or Nitrite.

(Wide) column "models enable very quick data access using a row key,
column name, and cell timestamp. The flexible schema of these types of
databases means that the columns don’t have to be consistent across records,
and you can add a column to specific rows without having to add them to
every single record."[32] Wide columns can therefore be described as two
dimensional key-value stores. Although their structure is suitable for storing
log data, there are no database systems complying with requirements in this
context due to the fact that is no serverless wide column store. Among the
most widely used are Cassandra or HBase, which are also discussed more in
the next section.

Last basic type of NoSQL database systems is a graph-based system.
"In graph theory, structures are composed of vertices and edges (data and
connections), or what would later be called ’data relationships.’ Graphs behave
similarly to how people think—in specific relationships between discrete units
of data. This database type is particularly useful for visualizing, analyzing,
or helping you find connections between different pieces of data. As a result,
businesses leverage graph technologies for recommendation engines, fraud
analytics, and network analysis."[32] This type of database may be suitable for
example when logging interconnected events, for which mutual relationships
are the most important attribute, thanks to its performance when traversing
a well-connected graph. Examples of such database systems are Neo4j or
JanusGraph.8

5.4 Cloud and other distributed solutions

Once databases store too much data, they become slower and require more
disk space and computational power. To solve issue with storing too much
data on one machine, many companies use distributed data stores or file

7An example of such API for MongoDB can be seen here:
https://docs.mongodb.com/manual/tutorial/query-documents/

8Paragraphs describing different types NoSQL databases inspired from [32]

31

5. Persistence layer
systems. Distributing the computational load to more nodes in a network
increases the query speed when handling large amounts of data.

The most popular distributed file system is a part of Apache Hadoop,
which "is a framework that allows for the distributed processing of large
data sets across clusters of computers using simple programming models."[31]
According to its documentation, it uses MapReduce programming model for
aggregating data from large horizontally scaled systems. "Hadoop shares
many of the advantages of a traditional database system. Hadoop allows
for the quick retrieval and searching of log data rather than using platform-
specific query tools on each system. Hadoop scales well as data size grows
by distributing search requests to cluster nodes to quickly find, process, and
retrieve results."[30] Furthermore, Hadoop is fault-tolerant thanks to the data
replication across multiple nodes, so that even if one node fails, data is still
available from other nodes.

On top of HDFS, there is a vast array of data stores that structurize the
usually unstructured data stored in Hadoop. Among the most popular are dis-
tributed data stores like Cassandra, HBase or Hive. Although these databases
are usually schema-less (i.e. NoSQL), in the context of log persistence they
share most of their advantages and characteristics with traditional database
systems. The major difference between these technologies is the volume of
data they are able to handle.

Lastly, in recent years, an increasingly popular alternative to using a local
instance of Hadoop in form of cloud data stores from companies like Amazon,
Google or Microsoft, has emerged. While using a cloud data store greatly
simplifies the implementation and reduces the infrastructural requirements of
having a local instance of Hadoop, they have big disadvantages: "Most notable
the time to write data to an in the cloud solution will be significantly higher
as the data is no longer in close proximity to many of the hosts generating logs.
Also, organizations with long log retention periods may find that the costs
are greater due to the growing storage size and long-term storage period."[30]

5.5 Elastic Stack

Figure 5.1: An example of Elastic Stack data pipeline [33]

Elastic Stack is an industry standard for centralized logging, providing ev-
erything from collecting raw data, normalizing it, indexing it, storing it and

32

................................. 5.6. Choice of technology

visualizing it using Kibana. In the Figure 5.1 is an example of a data pipeline,
used by many organizations not only to collect, store and visualize logs, but
many other kinds of data as well. Although it does not fit the use case and
requirements in this thesis, it is worth mentioning because it is an already
existing solution implementing most of the required functionality in this
thesis.

5.6 Choice of technology

In previous sections were presented all possible ways of storing logs, ranging
from simple flat text files to large cloud repositories. Due to limitations set
by the non-functional requirement NF7, there should not be a change to
architecture of Manta, i.e. no new external application dependencies like
database servers. This means that the log repository will have to be embedded
in the Admin UI web application.

In regards to the stated requirements, an H2 database was chosen as the
log repository for following reasons.

Firstly, an H2 database is already used in Manta for other use cases and
therefore using H2 will not introduce any new dependencies.

Secondly, it fulfills the requirement NF1 requiring a fast querying of the
log repository. Storing data in a database is much more efficient in achieving
this than using files and does not require implementing logic for writing and
reading from binary files. Although database systems have a drawback in
comparison to files in having slower write performance, in this case it is not a
large issue, as was discussed previously.

And lastly, this database is along with SQLite an industry standard in
embedded, file-based database systems and has an active support.

Generally, a database choice is often a matter of company preference, when
more database systems fit their requirements. In this case, H2 would not be
the only system achieving that (in chapter 5 were mentioned other systems
that fit the requirements).

33

34

Chapter 6
Realization

This chapter describes the implementation of the prototype and reasons
for the choices that were made in regards to the implementation. At the
beginning will be described the development process which was used for
designing and implementing this prototype. Then will be described tools
that were used during the implementation and design of the new software
architecture. After that will be described implementations of each of the
logical layers.

6.1 Development process

Work on this thesis was done using the waterfall methodology of software
development, which is an official development methodology in the company.
Professional Java explains this methodology thus: "The Waterfall methodology
consists of a series of activities separated by control gates. These control
gates determine whether a given activity has been completed and would move
across to the next activity. The requirements phase handles determining all of
the software requirements. The design phase, as the name implies, determines
the design of the entire system. Next, the code is written in the code phase.
The code is then tested. Finally, the product is delivered."[29]

6.2 Other technologies used in the realization

Spring Framework

Spring Framework is a Java framework implementing the inversion of control
principle. It not only provides modules for dependency injection, but also
for developing web applications (Spring MVC), transaction management,
authentication and testing. In this implementation will be used core Spring
for dependency injection, Spring MVC for web application backend, Spring
JMS for implementing message consumer, Spring Transaction for transaction
management, Spring JDBC and Spring Test for testing.

35

6. Realization......................................
MyBatis

"MyBatis is a first class persistence framework with support for custom SQL,
stored procedures and advanced mappings. MyBatis eliminates almost all
of the JDBC code and manual setting of parameters and retrieval of results.
MyBatis can use simple XML or Annotations for configuration and map
primitives, Map interfaces and Java POJOs (Plain Old Java Objects) to
database records."[34] It is a framework already used in Manta for mapping
Java methods to stored procedures.

Liquibase

Liquibase is a library for database version control. It is already used in Manta
for this purpose.

Javapoet

JavaPoet1 is a library providing API to generate Java source code files. It is
used for code generation in the logging layer.

6.3 Software architecture

In this chapter, the software architecture of the new logging solution will be
discussed, in accordance to the requirements discussed in subsection 2.2.3,
section 2.3 and section 2.4. Specifically, requirements dealing with the archi-
tecture of the new solution are F1, F2 and F3.

In the Figure 6.1 (appendix Figure C.2 in higher resolution) is the deploy-
ment diagram of the proposed solution.

At the beginning, logs are generated in the applications using the Logging
API, which is a part of the new logging framework. Logging API is a wrapper
to the Log4j 2 logging framework, similarly to logging facades like SLF4J.
Logging API then handles the logs, based on their type, injects placeholders
and sends them to appenders. Logs will still appended to text files in the same
way as the previous solution. Text files provide certainty that no logs will be
lost, in case of lost connection to the Admin UI web application. Manta CLI
application should not depend purely on Admin UI with its logging because
firstly, not all customers will use Admin UI and secondly, viewing logs in Log
Viewer is a less important use case of Manta and its possible failure should
not greatly affect the main use cases (having no logs at all would be an issue).

Logs from all Manta applications will be sent via SSL-secured TCP con-
nection to embedded ActiveMQ Artemis messaging broker in JSON format.
SSL in Manta uses an internal logic for accessing keystore and truststore files
and their passwords, in the prototype there will be a prototypical keystore
and truststore on the classpath.

1https://github.com/square/javapoet

36

.................................... 6.4. Logging layer

Admin UI will have an embedded ActiveMQ Artemis instance collecting
messages from all connected clients. The amount of possible clients sending
their logs is not limited. Message consumer will listen on the logging message
queue and retrieve the logs. Logs will be then parsed from JSON and sent
to services handling business logic of log persistence. After that will be logs
persisted in an embedded H2 database using DAO layer.

The front-end of the Log Viewer (design and implementation of which is
not a part of this thesis) component will be implemented as a part of the
Admin UI front-end. A user will work with the application using a web
browser, from which will be sent requests using REST API. Using requests it
will be possible to retrieve logs from the repository, filter them, group them
using dynamic filters from the front-end or do a full text search over messages.
Furthermore, it will be possible to request packages containing logs from the
repository.

Figure 6.1: Deployment diagram of the new logging solution

6.4 Logging layer

This section describes realization of functional requirements F4, F4.1, F4.2
and F4.3 while keeping in mind non-functional requirements NF2 and NF3.

6.4.1 Categorization

In order to enable effective querying, filtration and grouping of errors in log
viewer component, an extendable categorization of errors needs to be designed
and implemented. Errors are grouped into categories with a common theme.
Each error has a set of optional and non-optional attributes in accordance to
F4.2. The common terms in categorization context will be thus defined as:

37

6. Realization......................................
. Error type is a declaration of one error that can occur during an

application run..Category is a group of error types that share similar characteristics.

6.4.2 Error type attributes

Each error type has a set of optional and non-optional attributes. Requirement
F4.2 states, that errors should be logged dually, i.e. it should have a message
for a normal user and for a developer or a more advanced user. Furthermore,
according to F4.3, each error should have a possible solution that can resolve
it. Each error type has these attributes:.Name of the error sets the name of the error that will appear in the

log viewer. It is an optional parameter and normally will be generated
by the logging framework..User message is a user friendly message describing the error without
technical details that have no use for non-advanced user..Technical message is a detail-heavy, clear message intended for cus-
tomer support, developers or testers describing exactly what happened
with necessary details.. Solution is a possible way of resolving this error.. Lineage impact is an optional parameter describing how much the
error affects the resulting lineage. Allowed values are constants from
enumeration (Script, Statement, etc.), default value is UNDEFINED (it
cannot be said with absolute certainty that an error has no impact on
the lineage).. Error severity describes the severity of the error - WARN, ERROR
or FATAL. This attribute is used further in the logging API to make
logging methods error(), warn() and fatal() redundant.

6.4.3 Logging API

The above functionality is incorporated into the existing API as a wrapper of
the Log4j 2 framework. New functionality will be added to logs with severity
WARN and above, while the implementation of logs with severity INFO and
below will remain the same. It is due to the fact that these logs provide
context to the errors and it is not necessary to categorize them.

Non-functional requirement NF2 states that the API should be simple to
use and the only possible way to log errors. In order to make logging errors
as simple as possible, it is necessary to minimize the amount of files that
needs to be amended and minimize the amount of text that the developer
needs to write. Making it too difficult would have negative consequences of
a lesser amount of logged errors which would make supporting the product
even harder.

38

.................................... 6.4. Logging layer

Error type declaration in source code

@Error (
userMessage = "Data source f i l e was not found . " ,
t echn ica lMessage = "Data source f i l e was not found

whi le a c c e s s i n g a metadata r epo s i t o r y . "
s o l u t i o n = "Check db connect ion s t r i n g . " ,
s e v e r i t y = Erro rSeve r i t y .ERROR

)
pub l i c void f i leNotFound () {}

Listing 6.1: Example of an error declaration

Error type is defined as an annotated Java method, where the annotation
parameters are the attributes of the error type. The implementation is making
use of the builder design pattern where the logging event is built using fluent
API. Error type methods are declared and implemented in classes, which
represent Categories.

Parametrized logging in error types

The error type declared in the Listing 6.1 loses the option to insert parameters
into logged messages. Parametrized logging is however something that is used
in a vast majority of logs, it is therefore necessary to have this functionality
available. The most user-friendly way of implementing the insertion of pa-
rameters is by adding further methods in the logging fluent API. It is possible
to generate these methods using annotation processors. The annotation pro-
cessor parses the user message, technical message and solution and generates
a new builder class, reserved for that particular error type. The error method
only needs to return the builder and pass the category itself to the builder.
Error type declaration is then redefined to:

@Error (
userMessage = "Data source f i l e %{f i l ename } was not

found . " ,
t echn ica lMessage = "Data source f i l e %{f i l ename }was not

found whi le %{ac t i on } . "
s o l u t i o n = "Check db connect ion s t r i n g in

%{c o n f i g u r a t i o n f i l e } . " ,
s e v e r i t y = Erro rSeve r i t y .ERROR

)
pub l i c Fi leNotFoundBuilder f i leNotFound () { re turn new

FileNotFoundBuilder (t h i s) ; }

Listing 6.2: Error declaration with parametrized logging

Annotation processor will then, during compilation, generate the following
builder:

pub l i c c l a s s Fi leNotFoundBuilder extends Gener i cBui lder {
p r i va t e ErrorTypeData data ;

39

6. Realization......................................
pub l i c Fi leNotFoundBuilder f i l ename (Object arg) {

data . putArg (" f i l ename " , arg . t oS t r i ng ()) ;
r e turn t h i s ;

}

pub l i c Fi leNotFoundBuilder ac t i on (Object arg) {
data . putArg (" ac t i on " , arg . t oS t r i ng ()) ;
r e turn t h i s ;

}

pub l i c Fi leNotFoundBuilder c o n f i g u r a t i o n f i l e (Object
arg) {
data . putArg (" c o n f i g u r a t i o n f i l e " , arg . t oS t r i ng ()) ;
r e turn t h i s ;

}
}

Listing 6.3: Generated builder from Listing 6.2

6.4.4 Builder generation

Error builders are generated by an annotation processor during compile
time. Annotation processors can be described as plugins of Java compilers.
"The compiler locates the annotations of the source files. Each annotation
processor is executed in turn and given the annotations in which it expressed
an interest. If an annotation processor creates a new source file, the process
is repeated. Once a processing round yields no further source files, all source
files are compiled."[35] In the Listing 6.4 is a snippet of the annotation
processor implementation generating error builders. In this case, annotation
processor looks for methods annotated with @Error annotation. Then, it
parses placeholders of the messages, which are parameters of the annotations,
using regular expressions. Processor will then create a new error builder
class, which will extend a generic builder holding functionality common to all
builders, and implement methods for all placeholders. All code generation
logic is implemented using the JavaPoet library.
@SupportedAnnotationTypes (" ")
pub l i c c l a s s Bu i lde rProce s so r extends AbstractProces sor {

. . .
pub l i c boolean proce s s (Set<? extends TypeElement>

annotat ions , RoundEnvironment roundEnv) {
f o r (Element annotatedElement :

roundEnv . getAnnotat ion (Eroor . c l a s s)) {
Error e r r o r =

annotatedElement . getAnnotat ion (Error . c l a s s) ;

// get package name , c l a s s name , i n i t i a l i z e
c l a s s bu i l d e r e t c .

L i s t<Str ing> p l a c eho l d e r s =
MessageParser . pa r s eP la c eho lde r s (e r r o r) ;

40

.................................... 6.4. Logging layer

p l a c eho l d e r s . forEach (p l a c eho lde r −> {
MethodSpec placeholderMethod =

MethodSpec . methodBuilder (p l a c eho ld e r)
. addModi f i e r s (Modi f i e r .PUBLIC)
. addParameter (Object . c l a s s , " va lue ")
. r e tu rn s (returnType) // t h i s
. addStatement (" putArg (\ " $L\" , va lue) " ,

p l a c eho lde r)
. addStatement (" re turn $L" , " t h i s ")
. bu i ld () ;

g ene ra t edCla s sBu i lde r
. addMethod (placeholderMethod) ;

}) ;

. . .
// add cons t ruc to r
. . .
// c r e a t e new source f i l e

}
re turn true ;

}
. . .

}

Listing 6.4: Code generation

Usage

In the Listing 6.5 is a code snippet showing usage of the logging API described
in the previous paragraphs. Firstly, logger is initialized as any other Java
object, then a normal error is logged, then an error emitted from an exception
and lastly a basic log with level INFO, implementation of which stays the
same.
// I n i t i a l i z a t i o n o f the l o gg e r
Logger l o gg e r = new Logger (ge tC la s s ()) ;

//Logging an e r r o r
l o gg e r . l og (Categor i e s . IOErrors () . f i l eNotFound ()

. f i l ename (myFileName)

. a c t i on (" a c c e s s i n g metadata ")

. c o n f i g u r a t i o n f i l e (" s e t t i n g s . xml ")) ;

//Logging an except ion
try {

// do something that may throw an except ion
} catch (Exception e) {

l o gg e r . l og (Categor i e s . IOErrors () . f i l eNotFound ()
. f i l ename (myFileName)
. a c t i on (" a c c e s s i n g metadata ")
. c o n f i g u r a t i o n f i l e (" s e t t i n g s . xml ")

41

6. Realization......................................
. ca tch ing (e)) ;

}

//Logging INFO
logge r . i n f o ("INFO and below stay the same . ") ;

Listing 6.5: Usage of the logging API

Declaring a new error type requires only implementing a method and anno-
tating it in the appropriate category class.

Holder of categories

In the Listing 6.5 is further called class Categories that holds methods
returning the concrete categories classes. It is a user-defined class that may
extend some globally defined categories and their errors. For example, in
a larger project, there may be a module, that would just hold all of the
errors that may occurr anywhere in the project. In a concrete module, a
developer would then extend this class and add categories specific to that
particular module. All common development environments would then offer
the developer all categories as a hint, after calling the holder class and the
developer would not have to remember or check the names of the error
categories.

6.4.5 Logging API UML model

In the appendix Figure C.3 there is an UML representation of the logging
API and the underlying framework described in the previous section. In the
Common artifact frame is the functionality expected to be implemented from a
user - that is Categories class and ConcreteCategory class. ConcreteCategory
is any kind of error category class. The annotation processor generates the
ConcreteErrorTypeBuilder, which resides in the same package as the category
that declares that error type.

The Logging framework frame describes the underlying logging framework
and all of the functionality that happens in the background. It includes all of
the abstract classes, Logger which is a wrapper to the Log4j 2, annotation
processor and other helper classes.

6.4.6 Logging context

The functional requirement F5 states, that a part of the logging API should
be an interface providing functionality of assigning additional context to
logs. Logging context will enable more filtering parameters of logs from the
repository. Since the parameters have to be set beforehand, to enable filtering
from the front-end they are set to:.workflow_execution_id, which is a unique identifier of an application

run (application run is defined as a set of executed Manta scenarios).
The ID is provided by a different Manta component.

42

.................................... 6.4. Logging layer

. scenario_execution_id, which is a unique identifier of a Manta sce-
nario execution. The ID is as well provided by a different Manta compo-
nent.. technology is an attribute of a scenario with the name of the technology
that is being scanned, having its data lineage created or being exported
to (for example ’Oracle’ or ’IGC’).. connection_id is the name of the connection to a database or other
technology that is used during a scenario execution.. phase represents the phase of data lineage creation that the scenario is
a part of (extraction, analysis or export to a third-party technology).. scenario represents a normalized name of a scenario (e.g. ’Oracle DDL
Analysis’).. context is a dynamic context, which differentiates the logs on the lowest
level. For example, based on SQL scripts.

The above attributes are stored in the database as columns and enable
more specific filtering. An example use case may be: A user runs extraction
and analysis on their Oracle database. To see if any errors occurred, they
set the technology parameter to Oracle and see all logs emitted from Oracle
scenarios in one screen.

The logging context API is implemented using the ThreadContext feature
of Log4j 2, which servers exactly for this purpose of adding additional context
to logs. The API for developers is shown in Listing 6.6. Context is set on a
per-thread basis, where child threads inherit the context of the parent thread.
LoggingContext . setWorkf lowExecutionId (workf lowExecutionId) ;
LoggingContext . s e tScenar i oExecut i on Id (s cenar i oExecut i on Id) ;
LoggingContext . setTechnology (techno logy) ;
LoggingContext . setConnect ionId (connect ionId) ;
LoggingContext . setPhase (phase) ;
LoggingContext . s e tS c ena r i o (s c ena r i o) ;

Logger l o gg e r = new Logger (ge tC la s s ()) ;

// logged without context
l o gg e r . l og (Categor i e s . t e s tE r r o r s () . t e s tE r r o r ()) ;

// a l l l o g s from here w i l l be long to ’ someFi le . s q l ’
LoggingContext . setContext (" someFi le . s q l ")

// logged with context
l o gg e r . l og (Categor i e s . t e s tE r r o r s () . t e s tE r r o r ()) ;

// logged without context by us ing f l a g f o r ov e r r i d i ng the
context

l o gg e r . l og (Categor i e s . t e s tE r r o r s () . t e s tE r r o r () , t rue) ;

43

6. Realization......................................
// a l l l o g s a f t e r t h i s w i l l be again without context
LoggingContext . c l earContext () ;

Listing 6.6: Logging context API

6.5 Transport layer

As was discussed in section 4.5, the chosen transport layer technology is
Apache ActiveMQ Artemis. It will be implemented as an embedded messaging
broker in Admin UI. This section will describe that implementation, as well
as the necessary Log4j appender that will append the logs to the remote
broker. It is the implementation of the functional requirement F3.

6.5.1 Log4j 2 appender

In chapter 3 were described all existing Log4j 2 appenders. For communi-
cation with ActiveMQ Artemis, the ideal and inteded appender to use is
JMSAppender. Using a logging configuration with such an appender requires
only one XML file to set up, as can be seen in Listing 6.7. The JMS appender
has the following compulsory parameters:. name is the name of the appender, by which it can be referred to. destinationBindingName sets the name of the destination queue

(dynamicQueues prefix allows JMS to connect to queues programatically
without having a JNDI configuration file, where JMS looks up these
properties by default). factoryBindingName is the name of the JMS connection factory. providerURL sets the URL of the remote broker, along with parameters
for secure connection using SSL. factoryName is a class that provides JMS initial context

In the child tag of JMS, is set the layout in which logs will be sent. Log4j
2 provides JSON layout using which logs will be logged in JSON format. The
JSON log by default includes all of the internal log attributes, like for example
thread ID, log message or the timestamp in epoch seconds. It is possible to
further include the whole ThreadContext map (by using properties="true",
as is in the listing below) as well as add custom JSON key-value pairs, using
KeyValuePair tag. In the implementation, there are two custom fields - one is
for determining the type of log (ERROR, which are logs with log level WARN,
ERROR or FATAL, or DEBUG, which have log level TRACE, DEBUG
or INFO) used for object mapping the JSON log after it is received in the
consumer, and the application name. Application name is hardcoded in the
configuration, because each application has its own Log4j 2 configuration.
Excluded from this listing is the File appender because the transport layer is
not dependent on it.

44

....................................6.5. Transport layer

<Conf igurat ion>
<Appenders>

<JMS
name=" jms "
dest inationBindingName=" dynamicQueues/ loggingQueue "
factoryBindingName=" ConnectionFactory "
providerURL=" t cp : // l o c a l h o s t : 6 1 6 1 6 ? ss lEnab led=true

&trustStorePath=t r u s t s t o r e . t s
&trustStorePassword=password "

factoryName=" org . apache . activemq . artemis
. j nd i . Act iveMQInit ia lContextFactory ">

<JsonLayout p r op e r t i e s=" t rue " s ta ck t raceAsSt r ing=" true ">
<KeyValuePair key=" type " va lue=" $${marker: } " />
<KeyValuePair key=" app l i c a t i o n " value="Manta CLI " />

</JsonLayout>
</JMS>

</Appenders>
<Loggers>

<AsyncLogger name=" eu . p r o f i n i t . manta " l e v e l=" t r a c e ">
<AppenderRef r e f=" jms " />

</AsyncLogger>
</Loggers>

</Conf igurat ion>

Listing 6.7: Log4j 2 configuration with JMS appender

6.5.2 Implementation

The transport layer abstracts the functionality of consuming logs, parsing
them and passing them to DAO layer, that is a part of the persistence layer.
The following section will describe the implementation up to that point.

In the center of the implementation is an embedded instance of Apache
AciveMQ Artemis server, which is implemented as a Spring bean. In the
prototype, the server listens on port 61616 for trusted connections that use
its SSL certificate. Producer (the logging API) sends logs to the server using a
JMS appender from Log4j 2 logging framework. At the other end LogListener
listens on the designated logging message queue, retrieves the incoming logs,
parses them in from JSON using LogResolver and passes them to the handlers
which are specific based on the log type. Handlers then pass the logs to the
persistence layer from which they are written to the database.

In the Figure 6.2 are modeled components of the transport layer and their
dependencies. All of the following components are Spring-managed beans.
The components are namely:. Embedded ActiveMQ Artemis is the embedded instance of the

messaging broker, implemented as a Spring bean, communicating with
the logging API using the TCP protocol. LogListener is the message consumer that listens on the designated
logging queue, consumes the logs and passes them to handlers

45

6. Realization......................................
. LogResolver maps the logs in JSON format from String data type to

POJO using Jackson object mapping library.MessageHandler is a class handling logs depending on their type,
implementing the visitor design pattern. LogHandler is the concrete visitor for ERROR and DEBUG logs, whose
function is to pass the logs to the persistence layer

Message handlers implement the visitor design pattern to provide simple
scalability for other possible types of logs that may be wanted in the future.
More specific descriptions of these components can be read in the attached
JavaDoc.

Figure 6.2: Component diagram of the transport layer

6.6 Persistence layer

The following section will describe the implementation of the persistence
layer, i.e. the functional requirements F2, F6, F7, F8 and F9. As was stated
in the section 5.6, the chosen repository is an H2 file database.

6.6.1 Database schema

In the appendix Figure C.4 is the database schema of the log repository.
Database is designed in accordance to the queries that are going to be ran
against it. In the center of the design is a logs table that stores all logs that
were sent to the Log Viewer. It stores messages for DEBUG logs and metadata
for all logs. Error messages are stored in error_definitions table in order to
keep the size of the database smaller. Most of the main queries regarding
errors that were emitted by any application are against the error_metadata
table, which stores the aggregate information about errors that occurred in a
particular context. For example, error that occurred during a DDL Analysis
of Oracle database "OracleTestDB" has its own row, as well as an error that
occurred during a DDL Analysis of Oracle database "OracleProductionDB".
This table has a realistic upper limit of (number of scenarios * amount of
all possible errors * number of connections) which is not a large number for
database queries. This will therefore enable very fast queries regarding any

46

................................... 6.6. Persistence layer

possible errors that occurred during an application run or were emitted from
any application.

All of the database tables are namely:.workflow_execution table stores all of the application runs that cur-
rently have logs stored in the database. It is defined by a unique workflow
execution ID that is passed in the logging context. Each workflow execu-
tion has at least one scenario execution.. scenario_execution table stores all of the scenario executions that
have logs stored in the database. It always belongs to a particular
workflow execution and is defined by a scenario execution ID that is
passed in the logging context.. connections table stores all connections that were used during a par-
ticular scenario execution. Since connection_id is not a unique identifier
(e.g. ’OracleTestDB’ can be used in multiple scenario executions), it has
a database generated ID.. uploaded_packages table stores metadata regarding all uploaded pack-
ages to the database. logs table stores all logs that were sent to the repository and their
metadata. error_metadata table stores distinct errors that occurred in a partic-
ular context (combination of workflow_execution_id, scenario_execu-
tion_id, conn_db_id, package_name and error_definition_id is always
unique). error_definitions table stores all error messages and other error meta-
data that is provided from the Logging API

6.6.2 Indices

In section 5.3 was recommended that if logs are stored in a relational database,
then it is suitable to have indices on fields severity (type), date and time,
generating host (application) and message. Even though in this case are these
columns called differently, the recommendation can still be followed, since
these fields are some of the most used in queries. For example, date and
time is stored in two columns - epoch_second and nano_second, therefore
they will be stored in a composite index. The order is specified for queries
providing log context, i.e. logs that happened immediately before and after
the requested log. Other indices are based on the general queries that will be
run against the database, mostly for filtering errors from separate executions.
Lastly, full text search index using Apache Lucene engine is set on fields
user_message and technical_message. In the Listing 6.8 is the SQL script
creating Lucene indices for full text search.

47

6. Realization......................................
−− l ucene f u l l t ex t search index
CREATE ALIAS IF NOT EXISTS FTL_INIT FOR

" org . h2 . f u l l t e x t . FullTextLucene . i n i t " ;
CALL FTL_INIT() ;

−− c r e a t e index on e r r o r messages
CALL FTL_CREATE_INDEX(’PUBLIC ’ , ’ERROR_DEFINITIONS ’ ,

’USER_MESSAGE,TECHNICAL_MESSAGE’) ;

Listing 6.8: Creation of index for full text searching

6.6.3 Components

In the appendix diagram Figure C.5 are displayed components of the persis-
tence layer. The implementation has a multi-tier architecture with data layer
containing DAO interfaces and MyBatis mappers, service layer containing
business logic and presentation layer containing controllers (not pictured here
because it is discussed in the following section).

DAO components are designed on a per-table basis with additional DAO
components serving a single specific use case. Data access objects provide an
abstraction over underlying database mechanism, making it loosely coupled
with other layers, allowing developers to change the data store without greatly
affecting the business and upper layers.

Database queries are executed using persistence framework MyBatis. My-
Batis provides greater flexibility in building and generating prepared SQL
statements. In the prototype, queries are stored in the SQL files and mapped
to interfaces, which are then used by the DAO components. DAO components
are namely:.WorkflowExecutionDAO provides basic DAO interface for queries

over workflow_executions table,.PackageDAO provides interface for queries over uploaded_packages
table,. ScenarioExecutionDAO provides interface for queries over scenario_-
executions table,. LogDAO provides interface for queries over logs table,.ConnectionsDAO provides interface for queries over connecitons table,. ErrorDefinitionDAO provides interface for queries over error_defini-
tions table,. ErrorMetadataDAO provides interface for queries over error_meta-
data table,.RepositoryMetadataDAO provides interface for helper queries re-
garding the the general information about the repository, such as which
distinct applications have logs stored in the repository,

48

................................... 6.6. Persistence layer

.PackageUploadDAO provides interface for queries and H2 methods
facilitating uploading support packages to the repository, database dumps
are uploaded using H2 CSVREAD method,.PackageCreateDAO provides interface for queries and H2 methods
facilitating creation of support packages, database dumps are created
using H2 CSVWRITE method,.PruneCheckingDAO provides interface for helper queries regarding
consequences of changing pruning settings (e.g. if a user wants logs to be
deleted after one day and there are logs in the repository that are older
than one day, then these methods will provide information regarding the
amount of logs deleted)

Above the DAO layer is a serivce layer handling business logic of all
operations of Log Viewer. It creates and uploads packages, builds log context
or checks constraints of incoming logs. Services are namely:. LogPersistenceService implements write logic for logs. After it re-

ceives a new log to write, it checks whether the logs is a part of a new
workflow, scenario execution or connection and if it is, insert the new
executions to appropriate tables. After that will be the log inserted..CreatePackageService creates a zip file containing a dump of logs
from the database for a single connection used in a given scenario_-
execution or application, a JSON file containing metadata of the requested
scenario and a dump of relevant error_definitions that are used in the
log package..UploadPackageService inserts the logs from the given database dump
to the database along with its error_definitions..PruneService handles all logic regarding scheduling automatized prun-
ing of all logs. For that it uses the TaskScheduler from Spring framework.
The scheduled time is calculated by adding the user-set prune expiration
time (2 days by default) to execution_timestamp of a workflow execution.
Furthermore, it checks once an hour for expired logs that are not a part
of any workflow execution.. ForcePruneService deletes logs from the repository as a result of a
request from a user..UpdateSettingsService handles all changes to settings that a user
may make from the front-end and their consequences. For example, if a
user changes prune expiratation time, it changes the internal property
representing the expiration time and reschedules scheduled prunings..MetadataProviderService handles all requests regarding repository
metadata.

49

6. Realization......................................
. FullTextSearchService handles full text search over user_message

and technical_message of error logs.. ExpandLogsService provides concrete error logs for a given error type
to a user who requested them.. LogQueryService provides error metadata filtered according to param-
eters passed by a user.. LogContextService builds context of a requested log. Context of a
log are logs that are emitted immediately before and after the requested
log in the same thread.

6.7 Rest API endpoints and controllers

Communication with the front-end is facilitated using REST API, which is
documented in Swagger in the attached CD. The API serves only for internal
purposes and is not intended to be for integrations with other third-party
solutions, therefore it is modeled mainly according to the needs of the Log
Viewer application. API is mainly structured around the main execution types
- workflow_executions, scenario_executinos, connecions or separate uploaded
packages - which are represented as path variables. Filtering options are
passed as request parameters. It is possible to filter logs by application (user
chooses applications from which the logs should be returned), error categories
and error types. In the diagram Figure C.6 is a component diagram of the
entire Log Viewer architecture, including the presentation layer containing
controllers providing the REST endpoints.

6.8 Prototype implementation

The prototype is implemented as a separate web application distributed
as a war archive. It can be run in any Java servlet container like Apache
Tomcat. The prototype also provides a simple web page front-end used
for demonstration purposes of the back-end functionality. The web page is
implemented using HTML, CSS, JavaScript and the jQuery library.

50

Chapter 7
Testing

All implemented functionality of the prototype, except the front-end, which
only serves for demonstration purposes, is covered in tests.

Logging API is tested for correct behavior of helper classes, among which are
for example MessageParser, which reads provided messages from annotation
parameters and passes them to the BuilderProcessor, or MessageFormatter,
which inserts the provided placeholders into the messages using regular
expressions. Generated builders are tested for the correct amount of methods
and whether they have correct names. Example of such test is in the Listing 7.1.
Reflection is used for retrieving the methods of the generated builder. Using
getDeclaredMethods method enables to check only the methods that were
generated with the builder without inherited methods.
@Test
pub l i c void testTwoParams () {

TwoParamsBuilder twoParamsBuilder = twoParams () ;
Method [] methods =

twoParamsBuilder . g e tC la s s () . getDeclaredMethods () ;
a s s e r tEqua l s (3 , methods . l ength) ;

L i s t<Str ing> methodNames = Arrays . stream (methods)
.map(Method : : getName)
. c o l l e c t (Co l l e c t o r s . t oL i s t ()) ;

a s se r tTrue (methodNames . conta in s (" catch ing ")) ;
a s se r tTrue (methodNames . conta in s (" param1 ")) ;
a s se r tTrue (methodNames . conta in s (" param2 ")) ;

}

@Error (
userMessage = "%{param1} " ,
t echn ica lMessage = "%{param2} " ,
s o l u t i o n = " " ,
s e v e r i t y = Seve r i t y .ERROR

)
pub l i c TwoParamsBuilder twoParams () {

re turn new TwoParamsBuilder (t h i s) ;
}

Listing 7.1: Test of a generated builder

51

7. Testing
Each layer of the Log Viewer application is tested separately, except

the presentation layer containing Log Viewer controllers which is tested in
integration tests. A test instance of H2 database with test data is used for
testing as well as other test features provided from the Spring framework.

Transport layer is tested for correct behavior when receiving different types
of logs, correctness of object mapping from JSON format to POJO. In these
tests, LogPersistenceService is mocked using Mockito test framework.

In DAO layer, CRUD methods of each component are covered by unit tests.
UploadPackageDAO uses resource files that are in a correct format in order to
test correct behavior of reading the packages. All tests are @Transactional,
which means that each transaction from one test is reverted after the test in
order to keep the test database in the same state as before the tests.

Service layer components are tested separately with required dependencies
from the DAO layer being mocked. This approach allows to test the behavior
of the service component separately without possible issues originating in
another layer affecting the test. All service components that implement its
own logic are tested. Service components that only call the DAO layer are
tested in integration tests.

Lastly, integration tests are used to verify the correctness of behavior of the
application as a whole. These tests send mock requests to controllers using
MockMvc from Spring framework and verify whether the response is correct.
No components are mocked in these tests, in contrast to the tests of the service
layer, as they mainly test the communication between components. Example
of an integration test verifying a correct response to a query requesting error
metadata from all workflow executions is in the Listing 7.2. All possible
incorrect inputs are verified to return an error response.
@Test
pub l i c void i n t e g r a t i onTe s t () throws Exception {

// i n s e r t a l og to the t e s t db
ErrorLog log = getErrorLog ("WE1" , "SE1" ,

" OracleTestDB ") ;
l o gP e r s i s t e n c e S e r v i c e . p e r s i s tEr ro rLog (l og) ;

MvcResult mvcResult = t h i s .mockMvc
. perform (get (baseUrl)
. param(" o f f s e t " , " 0 "))
. andExpect (s t a tu s () . isOk ())
. andReturn () ;

L i s t<ErrorDTO> response = objectMapper . readValue (
mvcResult
. getResponse ()
. getContentAsStr ing () ,
new TypeReference<List<ErrorDTO>>(){}

) ;

a s s e r tEqua l s (1 , r e sponse . s i z e ()) ;

ErrorDTO errorDTO = response . get (0) ;

52

.. 7. Testing

a s s e r tEqua l s (l og . getCategory () ,
errorDTO . getErrorCategory ()) ;

a s s e r tEqua l s (l og . getErrorType () ,
errorDTO . getErrorType ()) ;

a s s e r tEqua l s (l og . getUserMessage () ,
errorDTO . getUserMessage ()) ;

a s s e r tEqua l s (l og . getTechnica lMessage () ,
errorDTO . getTechnica lMessage ()) ;

a s s e r tEqua l s (l og . g e tSo lu t i on () , errorDTO . ge tSo lu t i on ()) ;
a s s e r tEqua l s (l og . getLineageImpact () ,

errorDTO . getImpact ()) ;
a s s e r tEqua l s (l og . ge tLeve l () , errorDTO . getLogLevel ()) ;
a s s e r tEqua l s (l og . g e tApp l i ca t i on () ,

errorDTO . ge tApp l i ca t i on ()) ;
}

Listing 7.2: Integration test for log queries

All tests of the Log Viewer web application prototype are in the manta-
bachelor-thesis-log-viewer-test module, tests for the Logging API are stored in
the same module as the API. Even though the implementation is a functional
prototype, its testing is thorough, containing in total 150 test cases with
additional tests of the logging API.

53

54

Chapter 8
Conclusion

The output of this thesis is a design of a logging API providing flexibility in
declaring errors and injecting parameters to error logs that are emitted from
any Manta application and a design and implementation of the back-end
of Log Viewer web application. Both of these designs were implemented as
prototypes. These prototypes were then tested using unit and integration
tests. The prototypes can be used for logging in any Java program and
presenting those logs in the Log Viewer application with all of its required
functionality. The prototype fulfills the requirements of the contractee in full.

At the beginning of the thesis were analyzed business and system require-
ments of the logging API and Log Viewer. The main aim of the solution was
to create a framework for logging, which would be simple to use for developers
yet would provide a greater amount of detail and options for filtering for the
end user, which was the main issue with the previous solution. Since the
volume of logs produced from Manta is very large and difficult for people to
analyze, especially for people unfamiliar with the system, troubleshooting
and dealing with issues was very difficult for users and they often needed
professional help.

After an analysis of issues regarding logging in Manta and requirements
on the new solution stemming from them is a research of already existing
solutions and discussion regarding their possible usage and their compliance
with the set requirements. The analytical part of the thesis is divided into
three separate logical layers, each dealing with one part of the issue. First
was the logging layer, in which were analyzed logging frameworks of Java
programming language and their features. Second was the transport layer
analyzing technologies facilitating a transport of logs to a centralized storage
from multiple sources. And the last chapter of the analytical part of the
thesis was the persistence layer analyzing existing solution for log storage and
their compliance with the requirements. The new logging solution is built on
Log4j 2 logging framework, Apache ActiveMQ Artemis messaging broker and
H2 database.

In the implementation section of the thesis was described the implemen-
tation of the prototypes of the logging API and Log Viewer back-end. This
section also follows the same logical structure as the analytical section of the
work, dividing the implementation into three logical layers. The logging API

55

8. Conclusion......................................
implementation is largely based on the Java source code generation using
annotation processors, which greatly simplifies the work of developers when
defining new errors and thus motivating them to be more thorough at it,
which then naturally enhances the quality of the output for the end user. Log
Viewer prototype is a web application built on Spring framework.

As was stated at the beginning of the thesis, this is a solution specifically
tailored to the needs and requirements of Manta. Implementation choices are
greatly limited which disallowed the use of many of the commonly used log
analysis systems, such as Elastic stack. The resulting technology and design
choices are therefore not universal for all Java applications, except the logging
API, which, although also implemented according to Manta specifications,
provides a possible universal approach for logging errors in greater detail.

The chosen technologies for the Log Viewer would vary a lot depending on
the architecture of the required system. For example, an ideal solution for
a large enterprise application running in one environment would be to use
industry established choices of Kafka and Elastic stack.

56

Bibliography

[1] GAMMA, Erich. Design patterns: elements of reusable object-oriented soft-
ware. Reading, Mass.: Addison-Wesley, c1995, pp.185. ISBN 0201633612.

[2] SLF4J [online]. [cit. 2020-01-11]. Available from: http://www.slf4j.org/

[3] JUNEAU, Josh. Java 9 Recipes: A Problem-Solution Approach. Third
edition. New York, NY: Springer Science+Business Media, 2017, pp.232.
ISBN 978-1484219751.

[4] Log4j Bridge [online]. [cit. 2020-01-11]. Available from:
http://www.slf4j.org/legacy.html

[5] Logging Dependencies in Spring [online]. [cit. 2020-01-11]. Available from:
https://spring.io/blog/2009/12/04/logging-dependencies-in-spring/

[6] GÜLCÜ, Ceki. Think again before adopting the commons-
logging API [online]. [cit. 2020-01-11]. Available from:
http://articles.qos.ch/thinkAgain.html

[7] Java Logging Technology [online]. [cit. 2020-01-11]. Available from:
https://docs.oracle.com/javase/6/docs/technotes/guides/logging/

[8] Java.util.logging [online]. [cit. 2020-01-11]. Available from:
https://docs.oracle.com/javase/8/docs/api/java/util/logging/package-
summary.html

[9] Handler (Java Platform SE 8) [online]. [cit. 2020-01-11]. Available from:
https://docs.oracle.com/javase/8/docs/api/java/util/logging/Handler.html

[10] Java TM Logging Overview [online]. [cit. 2020-01-11]. Available from:
https://docs.oracle.com/javase/6/docs/technotes/guides/logging/overview.html

[11] Uses of Class java.util.logging.Level (Java Platform
SE 8) [online]. [cit. 2020-01-11]. Available from:
https://docs.oracle.com/javase/8/docs/api/java/util/logging/class-
use/Level.html

[12] Log4j – Overview [online]. [cit. 2020-01-12]. Available from:
https://logging.apache.org/log4j/2.x/manual/index.html

57

8. Conclusion......................................
[13] Log4j - Log4j 2 Appenders [online]. [cit. 2020-01-11]. Available from:

https://logging.apache.org/log4j/2.x/manual/appenders.html

[14] Welcome to Apache Flume — Apache Flume [online]. [cit. 2020-01-11].
Available from: https://flume.apache.org/

[15] Overview of the JMS API - The Java EE 6 Tu-
torial [online]. [cit. 2020-01-11]. Available from:
https://docs.oracle.com/javaee/6/tutorial/doc/bncdr.html

[16] Apache Kafka [online]. [cit. 2020-01-11]. Available from:
https://kafka.apache.org/intro

[17] ZeroMQ | Get started [online]. [cit. 2020-01-11]. Available from:
https://zeromq.org/get-started/

[18] Level (Apache Log4j API 2.13.0 API) [online]. [cit. 2020-01-11]. Available
from: https://logging.apache.org/log4j/2.x/log4j-api/apidocs/index.html

[19] Log4j – Log4j 2 Thread Context [online]. [cit. 2020-01-11]. Available from:
https://logging.apache.org/log4j/2.x/manual/thread-context.html

[20] Log4j – Log4j 2 Lock-free Asynchronous Loggers for Low-
Latency Logging [online]. [cit. 2020-01-11]. Available from:
https://logging.apache.org/log4j/2.x/manual/async.html

[21] Logback Home [online]. [cit. 2020-01-11]. Available from:
http://logback.qos.ch/

[22] CURRY, Edward. A Coordination Approach for Self-Managed Middle-
ware. Galway, 2006. Dissertation thesis. National University of Ireland,
National University of Ireland, Galway, Faculty of Science, Department
of Information Technology.

[23] Point-To-Point Messaging (Sun Java System Message Queue
4.3 Technical Overview) [online]. [cit. 2020-04-04]. Available from:
https://docs.oracle.com/cd/E19316-01/820-6424/aerbj/index.html

[24] Publish/Subscribe Messaging (Sun Java System Message Queue
4.3 Technical Overview) [online]. [cit. 2020-04-04]. Available from:
https://docs.oracle.com/cd/E19316-01/820-6424/aerbk/index.html

[25] What are Message Brokers? | IBM [online]. [cit. 2020-04-04]. Available
from: https://www.ibm.com/cloud/learn/message-brokers

[26] Getting Started with Java Message Service (JMS) [online]. [cit.
2020-04-04]. Available from: https://www.oracle.com/technical-
resources/articles/java/intro-java-message-service.html

[27] RICHARDS, Mark, Richard MONSON-HAEFEL, David A. CHAP-
PELL and Richard MONSON-HAEFEL. Java message service. 2nd ed.
Sebastopol, CA: O’Reilly, c2009, pp.10. ISBN 978-0596522049.

58

...................................... 8. Conclusion

[28] NARKHEDE, Neha, Gwen SHAPIRA and Todd PALINO. Kafka: the
definitive guide : real-time data and stream processing at scale. Sebastopol,
CA: O’Reilly Media, 2017, pp.XIII, 12-13. ISBN 978-1491936160.

[29] RICHARDSON, W. Clay. Professional Java JDK 6 edition. Indianapolis,
IN: Wiley Technology Pub., c2007, pp.82. ISBN 978-0-471-77710-6.

[30] CHUVAKIN, Anton, Kevin J. SCHMIDT, Chris PHILLIPS and Patricia
MOULDER. Logging and log management: the authoritative guide to
understanding the concepts surrounding logging and log management.
Amsterdam: Elsevier/Syngress, 2013, pp.71-84. ISBN 978-1597496353.

[31] Apache Hadoop [online]. [cit. 2020-04-12]. Available from:
https://hadoop.apache.org/.

[32] NoSQL Databases Explained | IBM [online]. [cit. 2020-04-12]. Available
from: https://www.ibm.com/cloud/learn/nosql-databases.

[33] The Complete Guide to the ELK Stack | Logz.io [online]. [cit. 2020-04-12].
Available from: https://logz.io/learn/complete-guide-elk-stack/.

[34] mybatis - MyBatis 3 | Introduction [online]. [cit. 2020-04-13]. Available
from: https://mybatis.org/mybatis-3/.

[35] HORSTMANN, Cay S. Core Java: Volume II–Advanced Features. 10th
edition. Boston, MA: Prentice Hall, 2016, pp.476. ISBN 978-0134177298.

[36] Confluent Propels Data Architecture into Event Streaming Era with $125
Million Series D | Business Wire [online]. [cit. 2020-04-10]. Available from:
https://www.businesswire.com/news/home/20190123005240/en/Confluent-
Propels-Data-Architecture-Event-Streaming-Era

[37] Configuring Transports · ActiveMQ Artemis Docu-
mentation [online]. [cit. 2020-04-10]. Available from:
https://activemq.apache.org/components/artemis/documentation/latest/configuring-
transports.html

59

60

Appendices

61

62

Appendix A
Abbreviations

API - application programming interface

SQL - structured query language

CLI - command-line interface

UI - user interface

MVC - model-view-controller

IT - information technology

SSL - secure sockets layer

TLS - transport layer security

UML - unified modeling language

IoC - inversion of control

NoSQL - not only SQL

HTTP - hypertext transfer protocol

JDBC - Java database connectivity

JMS - Java Messaging Service

JPA - Java Persistence API

SMTP - simple mail transfer protocol

BSD - Berkeley Software Distribution

RFC - Request for Comments

MOM - message oriented middleware

FIFO - first in, first out

JVM - Java Virtual Machine

63

A. Abbreviations
DVD - digital versatile disc

RDBMS - relational database management system

JSON - JavaScript Object Notation

XML - extensible markup language

HDFS - Hadoop Distributed File System

POJO - plain old Java object

DAO - data access object

REST - representational state transfer

URL - uniform resource locator

TCP - transmission control protocol

DDL - data definition (or description) language

CRUD - create, read, update and delete

64

Appendix B
CD content

Bachelor thesis root folder of the CD
Documentation...........................documentation directory

Javadoc......................aggregate Javadoc for all modules
Swagger Swagger docs for the REST API
Dependencies........generated list of libraries and their licenses

Source code......................... folder containing source code
manta-bachelor-thesis-logging-api
manta-bachelor-thesis-log-viewer
manta-bachelor-thesis-log-viewer-test
manta-bachelor-thesis-proof-of-concept
pom.xml ...parent pom

Thesis folder containing all thesis related documents
Diagrams...............................folder with all diagrams
thesis.pdf.....................................the thesis itself

65

66

Appendix C
Diagrams

Figure C.1: Architecture of the new logging solution

67

C. Diagrams

Figure C.2: Architecture of the new logging solution

68

.......................................C. Diagrams

Figure C.3: UML of the designed logging API and the underlying framework

69

C. Diagrams

Figure C.4: Database schema of the log repository
70

.......................................C. Diagrams

Figure C.5: Components of the transport layer and logging layer
71

C. Diagrams

Figure C.6: Components of the persistence layer

72

.......................................C. Diagrams

Figure C.7: Component diagram of the whole Log Viewer backend
73

