
Bachelor Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

A Platform for Virtual Reality Applications

Jakub Hlusička

Supervisor: Ing. David Sedláček, Ph.D.
January 2020

ii

Acknowledgements
I would like to express my gratitude to
my supervisor Ing. David Sedláček, Ph.D.
for the opportunity to work on a topic I
find genuine interest in, and for his useful
advice.

I would also like to thank my family
for the support they provided me with
during my studies and the completion of
this thesis.

I am very thankful for being in a privi-
leged enough position to be able to work
on personally motivated projects, such as
the one covered in this thesis. One of the
reasons why I chose this topic for my the-
sis, is that I believe that free communi-
cation is the basis of a free society, and
I hope it will benefit those who were not
as fortunate as me.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the method-
ical instructions for observing the ethical
principles in the preparation of university
theses.

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

Prague, 13. 5. 2020 __________

iii

Abstract
The World Wide Web has revolutionized
the way humanity shares and accesses in-
formation. Despite its success, the World
Wide Web has numerous deeply rooted
shortcomings. I investigate these short-
comings and come up with solutions to
creating a platform based on consumer
VR technology. This part of the work fo-
cuses on the development of the base ren-
dering and virtualization engine for appli-
cations utilizing the platform.

Keywords: virtual reality, real time
rendering, rasterization, communication,
virtualization, glTF, WebAssembly, Rust

Supervisor: Ing. David Sedláček, Ph.D.
Department of Computer Graphics and
Interaction

Abstrakt
Vynález webu (World Wide Web) vyvolal
převrat ve způsobu, jakým lidstvo sdílí in-
formace. Přes jeho úspěch obsahuje web
mnoho hluboce zakořeněných nedostatků.
V této práci zkoumám tyto nedostatky a
vymýšlím řešení pro vytvoření platformy
založené na technologiích VR. Tato část
práce je soustředěna na vývoj základo-
vého vykreslovacího a virtualizačního en-
ginu pro aplikace této platformy.

Klíčová slova: virtuální realita,
vykreslování v reálném čase, rasterizace,
komunikace, virtualizace, glTF,
WebAssembly, Rust

Překlad názvu: Platforma pro aplikace
virtuální reality

iv

Contents
1 Introduction and Motivation 1
1.1 Centralized Services 1

1.1.1 Encryption 1
1.1.2 Availability 2
1.1.3 Decentralization as a Solution 3

1.2 The Lack of a Universal Platform
for VR Applications 3
1.2.1 Web Browsers 3
1.2.2 Metaverses 4
1.2.3 Virtualization as a Solution . . 4

1.3 Introduction Summary 5
2 Implementation 7
2.1 Platform Design 7
2.2 Used Technologies 7

2.2.1 Primary Programming
Language . 7

2.2.2 Graphics API 8
2.2.3 API for VR Devices 9
2.2.4 Model Format 10
2.2.5 Virtualization Technology . . . 10

2.3 Project Structure 11
2.4 Platform Lifecycle 11
2.5 The metaview API 12

2.5.1 Required Module Exports . . . 13
2.5.2 Command Types 14
2.5.3 Potential Changes Induced by

the Addition of Function Imports 16
3 Sample metaview Applications 19
3.1 An Example mapp #1,
example-mapp 19
3.1.1 The Lifecycle of
example-mapp 19

3.2 An Example mapp #2,
example-mapp-2 20

4 Performance Evaluation 23
4.1 Application Load Time Test . . . 23
4.2 Application Frame Time and

Framerate . 24
4.3 Conclusion of Performance

Evaluation . 24
5 Usage Guide 27
5.1 Acquiring Dependencies 27
5.2 Compiling metaview and related

projects . 27
5.3 Running mapps 28

6 Conclusion 29
6.1 Notable Issues Encountered

During Development 29
6.1.1 View Matrix Confusion 29
6.1.2 Compiling Rust to
WebAssembly 29

6.1.3 Lack of OpenXR Runtimes . . 30
6.1.4 Vulkano 30

6.2 Future work 30
6.2.1 A Lower-Level Graphics API 30
6.2.2 Error Handling 31
6.2.3 Permission System 31
6.2.4 Networking 31

Bibliography 33
A Discussing the Requirements of a
Lower-Level Graphics API 35
A.1 Translucency 35
A.2 Visual Cohesiveness 36
A.3 Input Handling and Interaction 36
B Project Specification 39

v

Figures
2.1 A visualization of how invocations

of functions exported by the
WebAssembly module are
performed . 13

3.1 A screenshot of the metaview
window running the example-mapp
application . 20

3.2 A screenshot of the HMD screen
while metaview is executing the
example-mapp application 21

3.3 A side-by-side view of both the
main metaview window and a
debug screen displaying picture sent
to the HMD. 21

3.4 A screenshot of the metaview
window running the
example-mapp-2 application 22

4.1 Machine Configuration 24
4.2 Results of the load time test . . . 25
4.3 Results of the frame time test . . 25

A.1 Composition of mapps using
layers . 37

vi

Chapter 1
Introduction and Motivation

Virtual Reality (VR) has been an active area of research since the 20th cen-
tury. Arguably, one of the most immersive devices related to Virtual Reality,
is the head-mounted display (HMD). This device is used to display stereo-
scopic video to the user, significantly improving the immersion in Virtual
Reality.

With recent developments, VR devices, such as the HMD, are becoming
more affordable to the general public than ever before. However, various ven-
dors of VR devices have engaged in tactics such as making software exclusive
to their platform in order to gain market advantage, despite there being no
fundamental limitations to making such software available on a wider range
of functionally equivalent devices.

I envision an application platform able to bridge the gap between VR
devices of various vendors, one inspired by the ubiquitous web browser. In
this chapter, I cover the motivations behind the project and I distill those
motivations into goals for the implementation of my solution.

1.1 Centralized Services

1.1.1 Encryption

In the news, there have been many articles about well known companies
getting breached by hackers. Despite these recurrent occurrences, users still
place their trust into these companies, as many of these companies dominate
their targeted market sectors. There are simply no worthy competitors to
some of these companies, and even if there were, they would suffer from
the exact same shortcomings, which lead to their IT infrastructure getting
breached. The main problem is, that there is a single point of failure. If a
company gets hacked, the hacker may get access to the private data of all
of the company’s users. This is caused by the fact, that the services these
companies run are built on centralized architectures.

Take a company, that provides services to their users, in a personalized
way. Facebook1, for example, one of the largest, most popular social media

1https://facebook.com/

1

https://facebook.com/
https://facebook.com/

1. Introduction and Motivation
platforms. In order for a company to be able to deliver their services, it needs
to be able to store information about its users. For Facebook, that might be
the list of friends a user has, so that the user may use Facebook to exchange
messages with their friends. The users essentially share valuable information
with the company, and in turn, they entrust the company to handle the data
carefully. However, what happens, if the company’s services get breached by
hackers? The data we entrust to these companies gets stolen and very likely
abused by parties we do not trust.

The obvious solution to personal data getting stolen is to make sure it is
encrypted. How can we encrypt the users’ data, so that it cannot be stolen?
We cannot entrust the company to encrypt the personal data for us, because
they would have to manage the encryption key pair themselves, which means,
that the encryption key could itself be stolen, and the personal data could
be decrypted by whoever stole it.

The key (no pun intended) lies in end-to-end encryption (E2EE). At no
point in time does the company get access to the encryption key pair. When-
ever the users’ personal data needs to be stored, the data is encrypted before
being sent to the company’s servers. When the data needs to be accessed by
the user, it is sent back to the user in its encrypted form, to be decrypted by
the user. The key pair never leaves the user’s device and the company (nor
the attackers) never get access to the unencrypted personal data.

However, in most cases, as it is with the most popular services such as
those provided by Facebook, there exists a conflict of interest: data is very
valuable from the company’s perspective. It is often used to make executive
decisions on the future direction of the company, thus having overwhelming
impact on the company’s future success and earnings. The fact, that the
companies need to keep innovating their services is indisputable, otherwise
they would get steamrolled by the competition. However it would be very
naive to think, that new technologies are perfectly secure and not prone to
breaches.

If we assume, that these companies do not encrypt their users’ data in an
effective way (by using E2EE, for example), it is impossible for these com-
panies to ensure the security of the data, while keeping up the innovation.
These companies end up in a perpetual chase after security, which is funda-
mentally never going to be sufficient, all just to keep the access to the data
provided by their users.

1.1.2 Availability

It is worth mentioning, that there do exist centralized services, which use
effective encryption. Examples include the messaging applications Signal2
and Keybase3. The success of these companies proves, that there do exist
monetization schemes compatible with effective personal data encryption.

2https://signal.org/
3https://keybase.io/

2

https://signal.org/
https://keybase.io/
https://signal.org/
https://keybase.io/

...................1.2. The Lack of a Universal Platform for VR Applications

Nevertheless, there is still a significant drawback to relying on these ser-
vices. The users of these services have to assume, that the service will remain
available in the timespan they plan on using the service. If something were
to happen to the service, the users’ personal data would become inaccessi-
ble, possibly forever. The users still end up relying on the fact, that the
centralized service does not delete the data the user stored there.

If the company the user relies on goes bankrupt, unless the user has made
local backups, they will never be able to access their data anymore.

1.1.3 Decentralization as a Solution

Assuming the goal is to provide services to the user, we can take existing
centralized services and redesign them in a way, which removes all single
points of failure, effectively making them decentralized. However, due to
the nature of decentralized services, it may be very difficult to come up
with a working monetization scheme. This may not be a problem, if such
decentralized service is created for non-profit purposes. Nonetheless, even
non-profit efforts require funding, making the development of decentralized
services difficult.

1.2 The Lack of a Universal Platform for VR
Applications

VR headsets and peripherals have finally matured enough to be affordable
by the general public and serve primarily as entertainment media. How-
ever, I believe that VR devices have the untapped potential to be used by
the general public not just as a source of entertainment, but as devices for
communication, in the broad sense of the word.

Let me present the idea of a universal platform; such a platform would
work in the following way. The user would turn on their VR device along
with the peripherals, put on the head-mounted display (HMD), launch the
platform application (a kind of VR application browser), then choose which
VR applications to launch. These applications would manifest themselves
in the shared virtual space the user finds themselves in. The user would
be free to interact with these coexisting applications, and by interacting
with them, other applications could be downloaded, which the user could
seamlessly launch and use. The user would be able to make use of multiple
applications simultaneously. This platform would provide an uninterrupted,
immersive experience, as the user would not have to take off their VR headset
to download new applications or switch between them.

1.2.1 Web Browsers

The World Wide Web, in its current state, does not harness the potential of
VR devices in a seamless way. While it is true, that it is possible to browse

3

1. Introduction and Motivation
some web content with a VR device, such content must have been purpose-
fully created with the intent to be viewed using a VR device, while the over-
whelming majority of web content remains unsuitable to be viewed via this
method. While there are efforts to integrate VR support into web browsers,
the content that has traditionally been distributed via web browsers differs
fundamentally from the content, which would be viewed using VR devices.
New APIs are being added to web browsers, adding onto their complexity,
which is very high already. Moreover, developers hoping to create VR con-
tent viewable in the web browser are encumbered with the requirement of
non-VR boilerplate for compatibility reasons. A VR developer should not be
required to have the skills of a web developer. Nevertheless, it is undeniable,
how much momentum the World Wide Web currently has, and that efforts
to get VR content to the web browser will continue.

1.2.2 Metaverses

There exist many environments, some more popular than others, which aim
to aid communication through VR devices. Those, which focus on the social
aspect, have been dubbed as Metaverses. The two, arguably among the most
popular and therefore relevant, are VRChat4 and NeosVR5. Both are being
developed in the Unity6 engine.

NeosVR makes a successful attempt at creating a metaverse with a built-in
visual scripting language. Built on the Unity game engine, it makes use of a
set of sophisticated rendering techniques, which make it appealing for devel-
opers. While the visual scripting language makes scripting easily accessible,
as users can develop without having to take off the HMD, this approach has
many drawbacks. The developer is required to learn the visual scripting lan-
guage, which is unique to NeosVR. Creating a new programming or scripting
language can become very demanding, as optimization requirements rise with
the development of the platform; after all, programming languages are a very
active area of research, so no wonder it would be difficult to get right. More-
over, dealing with code reuse becomes problematic, as novel mechanisms for
package management, suitable for the development environment of a visual
scripting language, need to be invented. While, without any doubt, well
crafted metaverses can become successful communication platforms, their
potential is limited by how much the scripting language is integrated with
the platform and therefore how much control the developer gains by using
the scripting language.

1.2.3 Virtualization as a Solution

Let us take a different approach to creating a platform for VR applications.
We are not interested in creating a game, in which the user can use a scripting
language to influence the world around them, after all. What we are truly

4https://vrchat.com/
5https://neosvr.com/
6https://unity.com/

4

https://vrchat.com/
https://neosvr.com/
https://unity.com/
https://vrchat.com/
https://neosvr.com/
https://unity.com/

................................ 1.3. Introduction Summary

interested in, is creating an environment, which itself is built by its users; a
platform, which only provides the protocols and the APIs — in other words,
the glue, which makes these applications interplay. With this idea in mind,
it becomes clear, that we cannot cherry-pick functionalities to provide to the
application developers. It is, after all, our goal, to provide the developers
with as much freedom of expression as possible, to let them create any kind
of VR application, without restrictions on which capabilities of the platform
become accessible through the scripting language.

I believe, that the way this can be achieved, is by building a platform with
the utmost focus on the VR applications themselves. The experience pro-
vided to the user should be provided first and foremost by the applications
running on the platform, not the platform itself. By shifting the source of
the functionality from the platform to the applications, the platform devel-
opers can focus on providing the most basic low-level APIs to the application
developers. The application developers, in turn, get the freedom to develop
complex systems using these low-level APIs (instead of already being handed
the limited pre-built systems of the engine), which can be adjusted as they
wish, to suit their needs.

The idea seems simple enough. The platform provides low-level APIs, and
applications are made, which make use of those APIs. Nonetheless, there is
a concern to be had about the users’ security. How can we ensure, that the
applications do not act in a malicious way toward the users? The applications
could be made by anyone, after all. Even by people with the malicious intent
of stealing the user’s personal data stored on their computer, for example.
This pitfall can be avoided by the use of virtualization, which is a fancy
word for making sure, that whatever code we run, cannot interact with the
rest of the operating system, unless we grant it permission to do so. This
is a very powerful idea, which has been used by web browsers to display
interactive content to the user, without compromising the user’s security.
Not only is virtualization a great tool for ensuring security, it can often be
implemented in a cross-platform way, meaning an application can run in a
virtual environment on any operating system, without the need to recompile
the application for that particular operating system. These properties are
ideal for our platform.

However, it should be noted, that virtualizing the applications is not
enough to ensure the safety of the users. Careful attention must be put
towards ensuring the safety of the low-level API provided by our platform,
so that it cannot be abused in a malicious way.

1.3 Introduction Summary

During the introduction, we set our goal to develop a novel communication
platform, addressing issues of the current, most widely used communication
media. We also explored the idea of a platform, which would provide primary
support for virtual reality devices. We have come to the conclusion, that it
would be desirable, for such platform, to have the following properties.

5

1. Introduction and Motivation1. The user should be protected from getting their sensitive personal infor-
mation stolen...2. The platform should encourage developers to create decentralized appli-
cations, rather than centralized applications, so as to improve security
and availability of the applications...3. The platform should be primarily built for VR devices...4. The platform should support and encourage multitasking...5. The platform should provide functionality for seamless plug-and-play
installation of applications...6. The platform should provide low-level APIs to the applications, so as
to empower application developers to iterate on complex systems they
build on top of the APIs...7. It should be possible to write the applications in a well known pro-
gramming language, so as to take advantage of the developments of the
language, such as the optimization capabilities of its compiler...8. The platform should execute the applications in a virtual environment.

6

Chapter 2
Implementation

In this chapter, I justify the chosen approach to fulfilling the goals specified
in the introductory chapter.

2.1 Platform Design

Our platform should be able to facilitate rendering capabilities to the ap-
plications. These capabilities should ideally be as flexible as possible, so
that application developers can harness their functionality to create complex
systems. If possible, they should not impose biased restrictions upon the
developers. Nevertheless, providing a safe graphics API and ensuring its safe
implementation is no easy task. For this reason, I decided to simplify the first
iteration of the implementation of our platform. This simplification lies in
the decision not to expose the rendering API directly, but instead to expose
an API to load models in a certain format and render the loaded models in
the scene.

The decision to simplify rendering by only allowing applications to render
models reveals a nice property: the platform gains access to the mesh of
every object in the scene. This fact makes it possible to provide applications
with a unified method to ray trace the scene for rendered geometry.

In this work, I do not focus on the networking part of the project. Our
main task is going to be creating the base rendering engine, a way to execute
applications in a virtual environment, and providing those applications with
APIs to communicate with the platform.

In the end, we will focus on creating a sample application for our platform.
The sample application will display an interface, which will allow us to switch
between displayed models provided by the sample application.

2.2 Used Technologies

2.2.1 Primary Programming Language

The programming language Rust has been chosen to provide as little execu-
tion overhead as possible. It is a language, which compiles to machine code,

7

2. Implementation....................................
and requires no runtime or garbage collection. It can integrate well with
other programming languages, as it provides a foreign function interface for
C. Rust has a rich type system and an ownership model, which provides
guarantees about memory-safety and thread-safety. It provides unparalleled
tooling in the world of systems programming, which makes package manage-
ment very simple. Rust is a modern language, which strives to be as fast as
C/C++, while avoiding many of their pitfalls.

[Rust] is designed to support concurrency and parallelism in building
applications and libraries that take full advantage of modern hard-
ware. Rust’s static type system is safe and expressive and provides
strong guarantees about isolation, concurrency, and memory safety.
[6]

Languages such as C, C++, Rust and Zig would all be great candidates
for our project. However, I think, for our use case, Rust’s features outshine
those of its competitors. Additionally, before starting to work on the project,
I already had experience with Rust, so I did not have to learn the language
from the ground up, which sped up the development process. I think learning
Rust has been a great investment, which has paid off during the development
of this project.

2.2.2 Graphics API

The graphics API Vulkan1 has been chosen, for this project. Vulkan is a
very attractive graphics API, because of its cross-platform availability and
because it is designed with the intention of imposing as low performance
overhead as possible. It is a modern graphics API, in structure similar to
DirectX 12, yet unlike DirectX 12, it is available on more platforms, including
Windows, Linux, Android, and, despite the lack of official support on macOS,
it can even be used there, thanks to the open source MoltenVK2 compatibility
layer. Like Vulkan, the widely used graphics API OpenGL3 is also supported
by many different platforms. However, despite OpenGL being, in terms
of usability, comparatively simpler than Vulkan, this simplicity affects the
performance of the API in a negative way.

It is worth mentioning, that there is an experimental graphics API in
the works, which could be very useful for our project. The API is currently
called WebGPU4 and is supposed to become the web standard for accelerated
graphics and compute, maintained by W3C. Because of its purpose to be
used on the World Wide Web, it is built with security guarantees in mind,
which would be ideal for our project. In Vulkan, the developer must ensure
the API is used correctly; incorrect usage of the API results in undefined
behavior. Because of this, any APIs making use of Vulkan exposed by our

1https://www.khronos.org/vulkan/
2https://github.com/KhronosGroup/MoltenVK
3https://www.khronos.org/opengl/
4https://webgpu.io

8

https://www.khronos.org/vulkan/
https://github.com/KhronosGroup/MoltenVK
https://www.khronos.org/opengl/
https://webgpu.io
https://www.khronos.org/vulkan/
https://github.com/KhronosGroup/MoltenVK
https://www.khronos.org/opengl/
https://webgpu.io

.................................. 2.2. Used Technologies

platform to the VR applications must be implemented with sanity checks in
mind, otherwise the security of the users could be put at risk. The usage
of WebGPU instead of Vulkan would simplify the aspect of ensuring the
API is interacted with correctly. Unfortunately, at the time of writing, the
WebGPU specification has not yet been finalized. It remains an attractive
option for future consideration.

2.2.3 API for VR Devices

There are many different APIs for communication with VR devices. Many
of them are proprietary, such as those made by Oculus and Microsoft. Those
APIs only support devices produced by their respective companies. If we
were to support as wide range of VR devices as possible, we would need to
choose such an API, which allows us to do that.

The name of the OpenVR API might suggest, that it would support VR
devices from multiple vendors. The reality is, that while it is, in fact, an API
any vendor may implement for their devices, the support is limited, with no
sign of vendors adding support for new devices. OpenVR was developed by
Valve and does provide support for the HTC Vive, and somewhat surprisingly,
the devices Oculus DK1, Oculus DK2 and Oculus CV1 are supposedly also
supported.

There have been efforts by the OSVR5 developers to unify VR devices
under a single API, but progress on the OSVR SDK seems to have become
stagnant, without any progress by its original developers.

Finally, in July 29th, 2019, a new specification was announced by the
Khronos Group, the organization behind OpenGL and Vulkan. This API,
called OpenXR6, strives to be ”a royalty-free, open standard that provides
high-performance access to Augmented Reality (AR) and Virtual Reality
(VR)—collectively known as XR—platforms and devices”7. Currently, the
API is implemented by two runtimes. There is a runtime by Microsoft8 for
Windows Mixed Reality headsets, and an open source runtime by Collabora9,
called Monado10, with support for OpenHMD11-compatible devices.

OpenXR is an API, which may be implemented both in a closed source,
as well as in an open source manner. This makes it especially interesting for
developers, because vendors of new VR devices may choose to implement a
proprietary runtime with support for the newly released device, and software
making use of OpenXR should work correctly with the new device, without
having to wait for a community-made open source runtime. Being maintained
by the Khronos Group, with their legacy of support for widely used APIs, it
is safe to say, that the longevity of the API will be great.

5http://www.osvr.org/
6https://www.khronos.org/openxr/
7https://www.khronos.org/openxr/
8https://aka.ms/openxr
9https://www.collabora.com/

10https://monado.dev/
11http://www.openhmd.net/

9

http://www.osvr.org/
https://www.khronos.org/openxr/
https://aka.ms/openxr
https://www.collabora.com/
https://monado.dev/
http://www.openhmd.net/
http://www.osvr.org/
https://www.khronos.org/openxr/
https://www.khronos.org/openxr/
https://aka.ms/openxr
https://www.collabora.com/
https://monado.dev/
http://www.openhmd.net/

2. Implementation....................................
Additionally, Monado, the open source OpenXR runtime by Collabora,

provides support for the HTC Vive, which I currently own, meaning I can
prototype using this API and my VR device. For this reason, I chose to use
OpenXR as the API to interface with VR devices.

As a side note, it is worth mentioning, that the production of the HTC
Vive seems to have been discontinued, despite it being, in my opinion, a very
cost effective option for many users.

2.2.4 Model Format

There are many formats for 3D model transmission to choose from. A for-
mat, which would let artists encode surfaces with physically-based proper-
ties, would be preferred, with the assumption that the content we want to
display is supposed to represent the physical reality. If we consider, that
the artists might want to represent real-life objects within the applications,
it only makes sense to choose a format, that allows for such objects to be
approximately represented. One such format for 3D models is the GL Trans-
mission Format12, or glTF for short. It is another standard developed by
the Khronos Group, with its second major version released in 2017. Being a
royalty-free specification with support for physically-based rendering makes
it a great candidate for our use case. The format is well documented with
a publicly available specification[3]. Furthermore, it is supported by a wide
range of tools, and has found its use as a common model transmission format
for the World Wide Web. For these reasons, I have made the decision to use
glTF in the implementation.

2.2.5 Virtualization Technology

There are various kinds of virtualization to consider. Because we are mainly
interested in sandboxing application logic, it is not necessary to maintain
entire virtual operating systems for our applications. It is instead possible to
choose a language designed to be run within a virtual machine. JavaScript,
the Java bytecode and Lua are all examples of languages, which are com-
monly executed in virtual machines made specifically for each language. Re-
cent developments in this space have lead to the creation of WebAssembly13.

[WebAssembly] offers compact representation, efficient validation
and compilation, and safe low to no-overhead execution. Rather
than committing to a specific programming model, WebAssembly is
an abstraction over modern hardware, making it language-, hard-
ware-, and platform-independent, with use cases beyond just the
Web. [2]

WebAssembly is one of the compilation targets of LLVM14, which is a com-
piler infrastructure used by many modern programming languages, including

12https://www.khronos.org/gltf/
13https://webassembly.org/
14https://llvm.org/

10

https://www.khronos.org/gltf/
https://www.khronos.org/gltf/
https://webassembly.org/
https://llvm.org/
https://www.khronos.org/gltf/
https://webassembly.org/
https://llvm.org/

...................................2.3. Project Structure

Rust. This property lets us use Rust as a programming language not only
for the platform itself, but also for the applications running on top of the
platform. However, application developers are not forced to use the Rust
programming language to develop their applications in; they can use any
language targeting WebAssembly, such as C, C++, Go, Java, Python, and
many other. Furthermore, in the Rust ecosystem, there already exist sev-
eral open source virtual machine implementations to execute WebAssembly.
With WebAssembly being such a promising piece of technology, I could not
pass on the chance of using it within the project.

Another reason why WebAssembly is well suited for our case, is the possi-
bility of embedding additional non-executable resources within WebAssembly
binaries. In Rust, this can be done, for example, using the include_bytes!
macro, which embeds the file at the specified path as a byte array within the
source code. This allows us to distribute various kinds of resources alongside
the application logic, including 3D models, scripts, or multimedia files.

2.3 Project Structure

All git repositories related to the work can be found on the page of the
metaview-org GitHub organization15 I made. There is also a website16 I
maintain, with articles about updates related to the project.

The project is structured into several sub-projects. Rust projects main-
tained using the Cargo package manager for Rust are called crates.. metaview: The platform for VR applications.. ammolite: The Vulkan-based rendering engine with glTF support,

used by metaview directly.. ammolite-math: A linear algebra mathematics library, located in the
ammolite git repository, currently used by all crates for most geometric
computations.. mlib: Common utilities for developing metaview applications in Rust.. example-mapp: An example metaview application.. example-mapp-2: Another example metaview application.

2.4 Platform Lifecycle

The initialization phase of the lifecycle of metaview consists of the follow-
ing events. ammolite is initialized with OpenXR. A single window and a
single HMD are used. Next, the Specs17 entity-component system (ECS)

15https://github.com/metaview-org/
16https://metaview.link/
17https://github.com/amethyst/specs

11

https://github.com/metaview-org/
https://metaview.link/
https://github.com/amethyst/specs
https://github.com/metaview-org/
https://metaview.link/
https://github.com/amethyst/specs

2. Implementation....................................
is initialized. The ECS is used to maintain the scene hierarchy. Finally,
the wasmtime18 WebAssembly runtime with the provided metaview appli-
cation (mapp) is loaded. Which mapp to execute is determined by the first
command line argument when running the metaview binary:

> metaview [PATH_TO_MAPP.wasm]

When the initialization is finished, the main part of the lifecycle takes
place, where the loaded mapp is initialized and executed.

2.5 The metaview API

WebAssembly supports function imports and exports. This functionality lets
the host invoke a specific function, that is exported by the WebAssembly
module. Function imports make it possible for the WebAssembly module
to invoke functions provided by the host. At the time of writing, while the
functionality for function exports was already implemented, function imports
were not. Therefore, I decided to resort to using a command-based API
architecture.

WebAssembly supports only a handful of types with exported functions.
Those include i32 (32-bit integer), i64 (64-bit integer), f32 (32-bit float-
ing point number) and f64 (64-bit floating point number). Using just these
types would quickly become tedious. The low applicability of these types has
spurred the creation of the WebAssembly Interface Types proposal19. An ex-
perimental implementation of the proposal is provided by the wasmtime-
interface-types crate20. This implementation currently provides addi-
tional support for integers with distinct signedness, and, most importantly,
dynamically allocated strings. The ability to use UTF-8 strings as parameter
types and return types of exported functions makes it possible for arbitrary
types to be transferred, by the use serialization. Serde21, a well known and
widely used serialization and deserialization crate, can be employed for this
task.

However, since we want to avoid having the mapp developers do the serial-
ization and deserialization themselves, as that would contribute to the boil-
erplate, we can provide a macro to generate the exported functions. These
generated exports perform the argument deserialization, they pass the dese-
rialized arguments to a function implemented by the mapp developer, they
serialize the return value, which is then returned as a string. This is one of
the use-cases of the mapp procedural macro provided by mlib.

As an example, take a hypothetical exported_function, function ex-
ported by the mapp and invoked by the metaview platform. This function
takes a single argument I and returns a single value O. A visualization of the
steps required to invoke the function is shown in 2.1.

18https://github.com/bytecodealliance/wasmtime
19https://github.com/WebAssembly/interface-types
20https://crates.io/crates/wasmtime-interface-types
21https://serde.rs/

12

https://github.com/bytecodealliance/wasmtime
https://github.com/WebAssembly/interface-types
https://crates.io/crates/wasmtime-interface-types
https://crates.io/crates/wasmtime-interface-types
https://serde.rs/
https://github.com/bytecodealliance/wasmtime
https://github.com/WebAssembly/interface-types
https://crates.io/crates/wasmtime-interface-types
https://serde.rs/

................................. 2.5. The metaview API

O := MappInterface::exported_function(I)

IS := json5::to_string(I)

OS := MappExports::exported_function(IS)

I := json5::from_str(IS)

O := Mapp::exported_function(I)

Implementation provided by the WASM module

OS := json5::to_string(O)

Generated by mlib

WebAssembly module interface
facilitated by the WebAssembly runtime

O := json5::from_str(OS)

Generated by mlib

Figure 2.1: A visualization of how invocations of functions exported by the We-
bAssembly module are performed. The string conversions necessary to transfer
arbitrary types across the WebAssembly module interface are handled by code
generated by the mlib library.

2.5.1 Required Module Exports

In order for a WebAssembly module to be a fully qualified mapp, it must
implement the following functions. These functions are implemented by the
mapp developer and are invoked within the exports generated using the mapp
macro.

fn update(&mut self, elapsed: std::time::Duration);

The update function is called in every iteration of the render loop. The
argument elapsed is the duration since the initialization.

fn send_command(&mut self) -> Option<mlib::Command>;
fn receive_command_response(

&mut self,

13

2. Implementation....................................
response: mlib::CommandResponse,

);

The functions send_command and receive_command_response are used
for communication between the host and the mapp via commands. mapps
schedule commands in a queue during the invocation of update. When the
execution of update is finished, the host polls for the scheduled commands by
calling send_command, and executes the commands accordingly, invoking re-
ceive_command_response with an appropriate response after each command.
The types mlib::Command and mlib::CommandResponse are described in
2.5.2.

fn receive_event(&mut self, event: mlib::Event);

This function is invoked by the host whenever a window-related, device-
related or OpenXR-related event has occurred. It allows the application to
respond to events such as the mouse buttons being pressed, or the state of the
OpenXR session being changed. Every invocation of this function is followed
up by invocations of send_command, so as to allow the application to apply
desired changes immediately in response to receive_event being invoked.

fn flush_io(&mut self) -> mlib::IO;

The function flush_io is used to transfer the content of mapp buffers to
be printed to the stdout and stderr by the host. The buffers should be
emptied as a result of the invocation. This function is especially useful when
debugging mapps. It is worth clarifying, that WebAssembly modules, being
executed in a sandboxed environment, do not have access to the standard
IO by default.

2.5.2 Command Types

The types used in the command-based API are described by the mlib crate.
The commands and responses are generated by the macro command_kinds!:

macro_rules! command_kinds {
{$(

$name:ident
$({ $($request_fields:tt)* })?
$(-> { $($response_fields:tt)* })?

),*$(,)?} => { /* Macro body omitted. */ }
}

The macro generates variants for the enums CommandKind and Comman-
dResponseKind. The syntax of this particular macro consists of:..1. the name of the command, followed by

14

................................. 2.5. The metaview API..2. fields of the command (request) variant surrounded by curly brackets
(or nothing for no fields), followed by..3. the arrow symbol -> and fields of the response variant surrounded by
curly brackets (or nothing for no fields).

The following commands are generated.

ModelCreate {
data: Base64ByteSlice,

} -> {
model: Model,

},

Requests a model to be loaded from the provided byte slice. The byte
slice takes form of a Base64 string to speed up command serialization and
deserialization described in 2.5. As a response, the platform provides a refer-
ence to the loaded model. References are encoded as indices of the respective
resources.

EntityRootGet -> {
root_entity: Entity,

},

Requests the scene root entity, which is unique to every mapp instance.
In order for entities to be visible in the scene, they must be descendents of
the scene root entity, in terms of the scene graph hierarchy. The response
contains a reference to the scene root entity.

EntityCreate -> {
entity: Entity,

},

Requests an entity to be created. The response contains a reference to the
created entity.

EntityParentSet {
entity: Entity,
parent_entity: Option<Entity>,

} -> {
previous_parent_entity: Option<Entity>,

},

Requests the entity’s parent to be set to parent_entity. The response
contains the previous parent entity assigned to the entity, or None, if none
was assigned.

15

2. Implementation....................................
EntityModelSet {

entity: Entity,
model: Option<Model>,

} -> {
previous_model: Option<Model>,

},

Requests the entity’s model to be set to model. The response contains
the previous model assigned to the entity, or None, if none was assigned.

EntityTransformSet {
entity: Entity,
transform: Option<::ammolite_math::Mat4>,

} -> {
previous_transform: Option<::ammolite_math::Mat4>,

},

Requests the entity’s transformation matrix to be set to transform. The
response contains the previous transform assigned to the entity, or None, if
none was assigned.

GetViewOrientation -> {
views_per_medium: Vec<Option<Vec<View>>>,

},

Requests information about the views. These contain the view transforms
for each resulting framebuffer; that is, the view matrices used for rendering
the scene to the windows, as well as view matrices used for each eye of HMDs.

RayTrace {
origin: ::ammolite_math::Vec3,
direction: ::ammolite_math::Vec3,

} -> {
closest_intersection: Option<Intersection>,

}

Requests a ray to be cast into the scene from the origin origin, with
direction direction. The response contains the closest intersection with
any rendered object within the scene. The intersection contains the point of
intersection, the distance of that point from the origin, and a reference to
the intersected entity.

2.5.3 Potential Changes Induced by the Addition of
Function Imports

When the support for function imports is added to wasmtime, command
types will be transformed into imported functions, which will be possible to
invoke directly from the application source code. The command fields will

16

................................. 2.5. The metaview API

take form of the function parameters and the response fields will take form of
individual structs (or () if no fields are specified) to be used as the return
type. This change will result in significant simplification of the API and
lowering of cognitive load when implementing metaview applications.

17

18

Chapter 3
Sample metaview Applications

Two example mapps, example-mapp and example-mapp-2, were created in
order to demonstrate the capabilities of the metaview platform.

3.1 An Example mapp #1, example-mapp

When loaded into the metaview platform, the application displays an in-
terface to list through displayed models packaged with the application. The
application is interacted with via two buttons, which may be triggered by
directing the HMD at them for a brief while.

3.1.1 The Lifecycle of example-mapp

When the application is loaded, several commands are scheduled for exe-
cution. First, the scene root model is requested using the EntityRootGet
command, then, all required models, which are embedded in the WebAssem-
bly module, are loaded via the ModelCreate command. Finally, commands
to create the entities are scheduled. One for each button (Previous and Next),
one for the ray intersection indicator (which is shown as a red sphere), and
as many as specified (by default, 3) for the currently displayed model.

The update function uses the elapsed parameter to compute the trans-
formation matrices for each entity used to display the current model, which
are then updated using the EntityTransformSet command. The function
also queries the view orientations using GetViewOrientation on every invo-
cation.

The receive_command_response function takes track of the current state
of the initialization, and processes the responses accordingly. During the
response to GetViewOrientation, the forward vector of the HMD is calcu-
lated as an average of the direction of both views. Using this forward vector,
the RayTrace command is scheduled. The RayTrace command is used to
keep track of how long the user has been looking at which button entity, and
whether the button should be triggered.

The triggering of a button results in the entities used to display the current
model being assigned the next (or previous) model using the EntityModelSet
command.

19

3. Sample metaview Applications

Ba
tt

le
D

am
ag

ed
Sc

i-fi
He

lm
et

-P
BR

by
th

eb
lu

et
ur

tle
_,

pu
bl

ish
ed

un
de

ra
Cr

ea
tiv

e
Co

m
m

on
s

At
tri

bu
tio

n-
No

nC
om

m
er

cia
ll

ice
ns

e.
Li

nk
.

Figure 3.1: A screenshot of the metaview window running the example-mapp
application. A helmet model can be seen, along with a pair of buttons, and a
small red sphere indicating the ray intersection point.

3.2 An Example mapp #2, example-mapp-2

The second example application, example-mapp-2, builds on top of the struc-
ture of the example-mapp, but differs in functionality. The goal of this appli-
cation is to demonstrate the ability of the platform to handle more complex
interactivity requirements, which is demonstrated by allowing the user to
rearrange a set of objects in the scene. It additionally introduces mouse han-
dling to control whether the user is picking up an object, holding onto it,
dropping it, or whether they are performing none of those actions. Several
additional models are included in the scene for world-space position reference.

20

https://sketchfab.com/models/b81008d513954189a063ff901f7abfe4

........................ 3.2. An Example mapp #2, example-mapp-2

Ba
tt

le
D

am
ag

ed
Sc

i-fi
He

lm
et

-P
BR

by
th

eb
lu

et
ur

tle
_,

pu
bl

ish
ed

un
de

ra
Cr

ea
tiv

e
Co

m
m

on
s

At
tri

bu
tio

n-
No

nC
om

m
er

cia
ll

ice
ns

e.
Li

nk
.

Figure 3.2: A screenshot of the HMD screen while metaview is executing the
example-mapp application. A helmet model can be seen, along with a pair of
buttons, and a small red sphere indicating the ray intersection point, this time
from two points of view.

Bo
at

”J
os

ef
a”

by
Al

ex
an

dr
e

Go
nz

ál
ez

Ri
va

s,
pu

bl
ish

ed
un

de
ra

Cr
ea

tiv
e

Co
m

m
on

s
At

tri
bu

tio
n

lic
en

se
.

Li
nk

.

Figure 3.3: A side-by-side view of both the main metaview window and a
debug screen displaying picture sent to the HMD. Notice the barrel distortion
applied by OpenXR. This image was taken before the addition of buttons to
example-mapp.

21

https://sketchfab.com/models/b81008d513954189a063ff901f7abfe4
https://sketchfab.com/3d-models/boat-josefa-90f8077289544059b03f974efeda6093

3. Sample metaview Applications

Ba
tt

le
D

am
ag

ed
Sc

i-fi
He

lm
et

-P
BR

by
th

eb
lu

et
ur

tle
_,

pu
bl

ish
ed

un
de

ra
Cr

ea
tiv

e
Co

m
m

on
s

At
tri

bu
tio

n-
No

nC
om

m
er

cia
ll

ice
ns

e.
Li

nk
.

Ba
tt

le
D

am
ag

ed
Sc

i-fi
He

lm
et

-P
BR

by
th

eb
lu

et
ur

tle
_,

pu
bl

ish
ed

un
de

ra
Cr

ea
tiv

e
Co

m
m

on
s

At
tri

bu
tio

n-
No

nC
om

m
er

cia
ll

ice
ns

e.
Li

nk
.

Figure 3.4: A screenshot of the metaview window running the
example-mapp-2 application. The helmet model being grabbed in the first
screenshot, then being released in the second screenshot, with its position and
orientation changed in relation to the world, but unchanged in relation to the
camera.

22

https://sketchfab.com/models/b81008d513954189a063ff901f7abfe4
https://sketchfab.com/models/b81008d513954189a063ff901f7abfe4

Chapter 4
Performance Evaluation

In order to benchmark the performance of the implementation, two different
tests were performed on the example-mapp-2 application. The tests were
constructed to measure the impact of using the abovementioned approach
to host a mapp using a WebAssembly module (labeled as ”WASM”) as op-
posed to an approach where the mapp would be compiled with metaview
and where no command serialization and deserialization would have to be
performed (labeled as ”Native”).

In order to perform the evaluation, an abstraction had to be created so that
both ”Native” and ”WASM” applications could be interfaced with the same
way. This abstraction has been added to the mlib library, which generates
appropriate bindings for both approaches.

The hardware specifications of the machine this evaluation was performed
on are shown in figure 4.1.

4.1 Application Load Time Test

During the development of the example metaview applications, I have no-
ticed a significant impact on application load times, proportional to the size
of the models embedded in those applications. Undeniably, the cause of this
issue was the fact, that since every command sent across the metaview
interface has to be serialized, even the glTF models (embedded in the func-
tionally equivalent binary format .glb) had to be first serialized into UTF-8,
then sent across, and finally, deserialized again, into its original binary form.
An inspection of the serialized form of the ModelCreate command showed,
that the type Vec<u8> (the Rust type for an array-backed list of unsigned
bytes) was being serialized as a JSON array of individual bytes in their deci-
mal form. That is reasonable behaviour one would expect from a serialization
library, but it was not ideal for our use-case. I managed to lower the size of
this command type by encoding the binary data using the Base64 encoding
scheme, which yields a UTF-8 string, that can be used directly in the seri-
alized version of the command. This change significantly improved the load
times of the applications, but measurements still show a large difference in
load times.

This test measured the time it takes to initialize the application module

23

4. Performance Evaluation
CPU Model AMD Ryzen 9 3900X

CPU Core Count 12
CPU Thread Count 24

Max Single-Core CPU Clock 4.6 GHz
CPU Base Clock 3.8 GHz
CPU L1 Cache 768 KiB
CPU L2 Cache 6 MiB
CPU L3 Cache 64 MiB

GPU Model NVIDIA GeForce GTX 1070
GPU Core Count 1920
GPU Boost Clock 1638 MHz
GPU Base Clock 1506 MHz

RAM Architecture Dual Channel
RAM Memory Type DDR4
RAM Configuration 2x 8 GB

RAM Clock 3.6 GHz
RAM Latency 16-16-16-36-2N

Operating System elementary OS 5.1 (Ubuntu 18.04),
Linux 4.15.0

Figure 4.1: Machine Configuration

(either loading the WebAssembly module in the ”WASM” case or simply
instantiating the application in the ”Native” case) and process all commands
sent by the application during the first invocation of the ‘update‘ function.
The results are shown in 4.2.

4.2 Application Frame Time and Framerate

This test was constructed to measure the difference in the time it takes to
update the application and render it to the head-mounted display and the
window. The results are shown in 4.3.

4.3 Conclusion of Performance Evaluation

As can be seen from the results, the performance impact of the current im-
plementation is significant enough to become a drawback when considering
the metaview platform. However, I am convinced that most of the per-
formance regression is caused by the serialization and deserialization steps
when communicating with the applications across the WebAssembly inter-
face. This approach was suitable enough for the prototyping of the platform
and the applications, but would be insufficient in real-world applications,
where high-framerates and short load times are desirable.

Fortunately, this drawback could be mitigated by making use of WebAssem-

24

..........................4.3. Conclusion of Performance Evaluation

Figure 4.2: A histogram of measured load times. 100 samples each.
Load time statistics (s):
”WASM” (red): median of 13.42, mean of 13.42, standard deviation of 0.21.
”Native” (cyan): median of 2.68, mean of 2.67, standard deviation of 0.03.

(a) : Frame time (b) : Framerate (inverse of frame time)

Figure 4.3: A histogram of measured frame times. 1000 samples each.
Frame time statistics (ms):
”WASM” (red): median of 18.58, mean of 18.71, standard deviation of 0.75.
”Native” (cyan): median of 16.87, mean of 17.05, standard deviation of 0.83.

bly Interface Types from the WebAssembly Interface Types proposal1, once
it is finalized and made available through a WebAssembly runtime. This
should make it possible to transfer data across the interface without the
necessity to serialize it into UTF-8, thereby reducing the time spent on seri-
alization and deserialization of commands.

1https://github.com/WebAssembly/interface-types

25

https://github.com/WebAssembly/interface-types
https://github.com/WebAssembly/interface-types

26

Chapter 5
Usage Guide

This chapter documents the way the metaview platform is compiled and
run on a machine with the configuration in figure 4.1 and the HTC Vive
headset.

5.1 Acquiring Dependencies

Install the official, proprietary NVIDIA drivers. I used version 440.59.
The following libraries are required to compile and install Monado:

sudo apt install libeigen3-dev libv4l-dev libglew-dev \
libusb-1.0-0-dev libhidapi-dev libxcb1-dev \
libxcb-randr0-dev

Compile and install OpenHMD by following the installation instructions1.
Follow the build instructions2 to install glslang.
Follow the installation instructions for Monado3. It may be possible to

use another OpenXR runtime, but during the time of writing, Monado is the
only runtime with Vulkan support.

In order for Monado to be able to interact with the HTC Vive headset,
the following dependencies must be installed via the package manager:

sudo apt install steam-devices libudev-dev

Following these steps, a system restart may be required.

5.2 Compiling metaview and related projects

Install the Rust toolchain via the official installer rustup4.
Install wasm-pack via Rust’s package manager cargo:

cargo install wasm-pack --version 0.8.1
1https://github.com/OpenHMD/OpenHMD#compiling-and-installing
2https://github.com/KhronosGroup/glslang#building
3https://gitlab.freedesktop.org/monado/monado#getting-started
4https://rustup.rs/

27

https://github.com/OpenHMD/OpenHMD#compiling-and-installing
https://github.com/KhronosGroup/glslang#building
https://gitlab.freedesktop.org/monado/monado#getting-started
https://rustup.rs/
https://github.com/OpenHMD/OpenHMD#compiling-and-installing
https://github.com/KhronosGroup/glslang#building
https://gitlab.freedesktop.org/monado/monado#getting-started
https://rustup.rs/

5. Usage Guide
Clone the following projects into their respective directories:

git clone --branch bachelor-thesis \
https://github.com/metaview-org/metaview

git clone --branch bachelor-thesis \
https://github.com/metaview-org/example-mapp

git clone --branch bachelor-thesis \
https://github.com/metaview-org/example-mapp-2

In order to compile example mapps, resources must be added to the source
directories. These resources are included alongside the digital version of the
thesis.

To compile a mapp, run the following command from within the repository:

WASM_INTERFACE_TYPES=1 wasm-pack build

This generates a WebAssembly binary file in the pkg subdirectory.
To compile metaview, navigate to the metaview repository and execute

the following:

cargo build --release

This generates a native metaview_bin binary in the target/release sub-
directory.

5.3 Running mapps

Compiled metaview binary and mapp binaries may be found in the Releases
page of each respective GitHub repository. An installed OpenXR runtime is
necessary to run metaview.

To run a compiled mapp, execute the following:

XR_RUNTIME_JSON=$PATH_TO_MONADO/build/openxr_monado-dev.json \
./metaview_bin $PATH_TO_WASM

where $PATH_TO_MONADO is the path to the Monado repository and $PATH_-
TO_WASM is the path to the compiled mapp. Multiple mapps may be specified.

28

Chapter 6
Conclusion

In this work, I have explored the reasons for the creation of a new browser-
like application platform. I have focused on implementing a subset of the
platform, under the name metaview. I have justified the usage of chosen
technologies for the creation of the platform. The implementation consisted
of a glTF rendering engine, built on top of Vulkan, with support for VR
devices via the OpenXR API. Furthermore, the execution of applications
(mapps) was virtualized using a WebAssembly runtime and an API for com-
munication between the applications and the host platform was developed.

Finally, two example applications, example-mapp and example-mapp-2,
were developed, to demonstrate the capabilities of metaview, and the perfor-
mance impact of the virtualization approach was measured on the example-
mapp-2 application.

6.1 Notable Issues Encountered During
Development

This section contains issues, that I have encountered during the development
of the metaview platform, in no particular order.

6.1.1 View Matrix Confusion

Getting the transformation chain right, so that the shaders, used to render
the scene, would work correctly, was no easy task, and was very difficult to
debug. Additionally, HMDs require off-axis perspective projection matrices,
which resulted in more complexity. Thankfully, I could use a derivation[1] of
the off-axis perspective projection matrix by Song Ho Ahn.

6.1.2 Compiling Rust to WebAssembly

While the WebAssembly ecosystem within Rust is very active, it is fair to
say, that many tools in this space lack maturity.

First, as previously mentioned in 2.5, is the lack of function imports in the
wasmtime runtime.

29

6. Conclusion......................................
Second, there currently seems to be a problem with compiling Rust projects

with large embedded files (such as glTF models) into WebAssembly. The
compilation seems to run out of memory, if a file too large is embedded within
the module. I believe, that this is due to a bug in the LLVM compiler.

6.1.3 Lack of OpenXR Runtimes

Currently, only two OpenXR runtimes exist. One of them, Monado, was very
useful to me during the development of metaview, but it is far from feature-
complete. Its support for the HTC Vive, a VR device I own, is currently
limited to 3DOF (3 degrees of freedom) tracking, with experimental 6DOF
tracking based on libsurvive1, and does not support the HTC Vive controllers
at all. Hence, why I had to resort to interactions by pointing the HMD at
entities, as described in 3.1.1. Additionally, I believe there to be some bugs
in the Monado runtime, like incorrect color space handling, as can be seen
in fig. 3.3.

Despite these shortcomings, I would like to express my gratitude to the
developers of Monado, who were very willing to offer a helping hand. I feel
very lucky that the existence of Monado allowed me to pursue this effort.

I was hoping an official OpenXR runtime by HTC would be released during
the development of metaview. However, it seems that the production of
the HTC Vive has been discontinued, and I am now unsure, whether such a
runtime will ever be released, and if it is, whether support for the HTC Vive
will be included.

6.1.4 Vulkano

The ammolite rendering engine was built using the Vulkano2 Rust library,
which aims to provide a safe abstraction over Vulkan. However, during the
development of ammolite, it became evident, that many adjustments to
the library were necessary3. As ammolite grew, the practicality of Vulkano
became questionable, and so did its performance. I was told by a colleague
about his ongoing work on rewriting the Vulkano library, as Vulkayes4, which
I believe would be a good idea to eventually switch to.

6.2 Future work

6.2.1 A Lower-Level Graphics API

The idea of using a lower-level graphics API is explored in appendix A. The
usage of such a lower-level API will have a significant impact on the structure
of the entire platform, which should not be neglected. In order to create a

1https://github.com/cnlohr/libsurvive
2https://github.com/vulkano-rs/vulkano
3https://github.com/Limeth/vulkano
4https://github.com/TheEdward162/Vulkayes

30

https://github.com/cnlohr/libsurvive
https://github.com/vulkano-rs/vulkano
https://github.com/Limeth/vulkano
https://github.com/Limeth/vulkano
https://github.com/TheEdward162/Vulkayes
https://github.com/cnlohr/libsurvive
https://github.com/vulkano-rs/vulkano
https://github.com/Limeth/vulkano
https://github.com/TheEdward162/Vulkayes

..................................... 6.2. Future work

truly flexible platform, such an API is going to be required. I think the
best course of action, currently, would be to use the Vulkan-based glTF
rendering engine, until WebGPU becomes more mature. Once the usability
of WebGPU becomes better, I believe it would be a great candidate for our
project, as discussed in 2.2.2.

6.2.2 Error Handling

The command-based API explored in 2.5 currently assumes, that no errors
occurr during the execution of mapps and during the fulfillment of commands
received from mapps. Better error handling should be employed.

6.2.3 Permission System

With multiple mapps running at the same time, a need for some kind of
inter-mapp communication protocol might emerge. The platform should as-
sume application sandboxing by default, so some kind of permission system
for communication between applications should be developed. It should be
investigated as to how resources should be shared between mapps.

6.2.4 Networking

This work has not focused on the implementation of one of the most im-
portant properties of the platform, and that is decentralized networking, as
discussed in 1.1.1. I intend to consider exploring this part of the platform in
my master thesis, as it is a very extensive topic.

31

32

Bibliography

[1] Song Ho Ahn. OpenGL Projection Matrix. url: http://www.songho.
ca/opengl/gl_projectionmatrix.html (visited on 01/05/2020).

[2] Andreas Haas et al. “Bringing the Web up to Speed with WebAssem-
bly”. In: SIGPLAN Not. 52.6 (June 2017), pp. 185–200. issn: 0362-1340.
doi: 10.1145/3140587.3062363. url: https://doi.org/10.1145/
3140587.3062363.

[3] The Khronos Group Inc. The GL Transmission Format 2.0 specifica-
tion. url: https://github.com/KhronosGroup/glTF/tree/master/
specification/2.0 (visited on 04/24/2020).

[4] Jason Jerald. The VR Book: Human-Centered Design for Virtual Reality.
Association for Computing Machinery and Morgan & Claypool, 2015.
isbn: 9781970001129.

[5] Steven M. LaValle. Virtual Reality. Cambridge University Press, 2019.
[6] Nicholas D. Matsakis and Felix S. Klock. “The Rust Language”. In: Pro-

ceedings of the 2014 ACM SIGAda Annual Conference on High Integrity
Language Technology. HILT ’14. Portland, Oregon, USA: Association for
Computing Machinery, 2014, pp. 103–104. isbn: 9781450332170. doi:
10 . 1145 / 2663171 . 2663188. url: https : / / doi . org / 10 . 1145 /
2663171.2663188.

33

http://www.songho.ca/opengl/gl_projectionmatrix.html
http://www.songho.ca/opengl/gl_projectionmatrix.html
https://doi.org/10.1145/3140587.3062363
https://doi.org/10.1145/3140587.3062363
https://doi.org/10.1145/3140587.3062363
https://github.com/KhronosGroup/glTF/tree/master/specification/2.0
https://github.com/KhronosGroup/glTF/tree/master/specification/2.0
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1145/2663171.2663188

34

Appendix A
Discussing the Requirements of a
Lower-Level Graphics API

In this appendix, I would like to explore the implications of using a safe
graphics API, such as WebGPU, to expose lower-level graphics functionality
to mapps. This would allow mapps to render graphics in a cutomizable way,
without the limitations of glTF. This discussion serves as a reference for
future work.

Let us strive for an implementation, where every mapp defines their own
rendering pipelines with custom shaders. Common uniform variables, such
as the view and projection matrices, should be provided to those shaders
automatically by the metaview platform, so as to prevent implementation
discrepancies between mapps. Using a single framebuffer for all of the cus-
tom pipelines would make it possible to render geometry with correct depth
occlusion, as long as the geometry is either fully opaque or fully transpar-
ent. However, a problem arises when also considering translucent geometry,
which would most certainly also be required.

A.1 Translucency

Rendering translucent geometry correctly is a fundamental problem in ras-
terization based rendering. In order to get an accurate result, fragments need
to be rendered and blended from the farthest to the closest. However, draw
calls are typically not scheduled in this order, because ordering them would
be resource demanding. Additionally, in our case, where draw calls would be
scheduled by mapps, we would have no control over the order of these draw
calls. It would be possible analyze the geometry passed to the draw calls,
break it up into sorted pieces, and reschedule it. This would however come
at a great cost of computational resources, if this analysis were to be done
every frame.

A more feasible, yet opinionated approach, would be to make use of order-
independent transparency (OIT), which is a set of techniques, one of which
I used in the implementation of the glTF rendering engine ammolite. OIT
attempts to approximate the result one would get by rendering ordered ge-
ometry, without actually ordering it. The techniques do not yield perfect

35

A. Discussing the Requirements of a Lower-Level Graphics API
results, but they come with great improvements to computational require-
ments, with often indistinguishable results from those one would get from
order-dependent techniques.

A.2 Visual Cohesiveness

Perhaps an OIT technique could be applied globally to all fragment shaders
used for rendering translucent geometry. This would ensure, that the result
would look visually cohesive, assuming that the usage of multiple different
blending techniques would be easy to spot. The advantage of this approach
would be the ease of implementation by the mapp developers. They would
only have to create a fragment shader with a function that returns the frag-
ment RGBA color and depth. This shader (in the SPIR-V format) would
then be automatically patched by metaview, overriding the shader’s entry
point with a function implementing the OIT technique-specific blending.

Nonetheless, I cannot help but feel that using this approach would end up
limiting mapp developers too much. We have basically replaced the problem
of requiring a specific model transmission format by the requirement of a
specific blending implementation.

I think that a reasonable solution would be to make mapps be rendered
in a user-defined order. The rendered frames of each mapp could then be
blended together into a single frame using the user-defined order. If two
subsequent layers opted to use the platform-provided OIT technique as de-
scribed above, by default, they would be rendered into a single frame, sharing
the depth buffer for opaque geometry and buffers required for the OIT tech-
nique. However, it would make it possible to let applications opt-out of the
platform-provided OIT technique to implement custom blending within the
application’s layer, which could be an acceptable compromise. Moreover,
this layer-based solution would allow the user to enforce a specific order of
rendering on the mapps, which could be useful to prioritize access to certain,
more important, applications. An example is shown in figure A.1.

A.3 Input Handling and Interaction

Input handling, like rendering, should be as customizable as possible, to sat-
isfy the interaction requirements of arbitrary geometry rendered by mapps.
While I was implementing the ray casting used to detect intersections with
glTF models, it became clear to me, that the usage of an acceleration struc-
ture is necessary for an efficient ray casting implementation. However, con-
sider the scenario, where many mapps are running, while each contains a
single object that the user can interact with. Since each mapp would imple-
ment its own acceleration structure, acceleration structures of all currently
displayed mapps would have to be traversed.

In order to allow interaction prioritization based on the layered structure
as shown in section A.2, the interactions would have to be managed by the

36

.............................A.3. Input Handling and Interaction

System Settings
The system settings are of highest priority and
should always be displayed on top of other mapps.
Uses platform-provided OIT.

Video Player

Voice Call

Applications that render only a few user interface
elements into the scene. Uses platform-provided OIT
and therefore can apply depth and blending to both
mapps within the layer.

Game
A game with a custom implementation of blending.
Does not use platform-provided OIT.

Game Launcher
A layer with a single mapp. May not be rendered at
all, if the layer above is always fully opaque. Uses
platform-provided OIT.

Figure A.1: An example of how mapps (yellow) could be composed using layers
(surrounding boxes).

platform. First, an intersection point would be requested from all currently
running mapps using a common ray. Then, the mapp with the closest inter-
section within the uppermost layer which contained an intersection, would
actually be notified of the interaction happening.

I think this could be a reasonable approach, and if needed, it would be
possible to introduce a global acceleration structure accessible by all mapps.
A common acceleration structure for mesh-based geometry could even make
it possible to implement a shared physics engine. I do not think these imple-
mentations should be provided by the platform, as they would inherently be
biased. Maybe a better solution would be to implement these global accel-
eration structures and shared physics engines as mapps themselves. There
could be a single physics engine mapp, that the other mapps would register
their geometry in.

This proposal raises many other questions, such as how the communication
between mapps would be facilitated by the platform, how versioning of such
mapps would work, etc. More work needs to be done to research suitable
solutions for the creation of a truly universal platform for VR applications.

37

38

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

474372Personal ID number:Hlusička JakubStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Computer and Information ScienceBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

A Platform for Virtual Reality Applications

Bachelor’s thesis title in Czech:

Platforma pro aplikace virtuální reality

Guidelines:
Design and implement the foundation of a platform for browsing virtual reality (VR) applications on immersive devices
based on the Vulkan graphics API.
Devise a way to develop applications for the platform and choose suitable formats for the distribution of such applications.
Make it possible to distribute content along with the application, such as 3D models, scripts, and necessary multimedia
files. Measure the performance impact of the final implementation.
Demonstrate the functionality of the solution by creating minimally two sample applications and running it on the platform.

Bibliography / sources:
[1] Jason Jerald. The VR Book: Human-Centered Design for Virtual Reality. Association for Computing Machinery and
Morgan & Claypool, New York, NY, USA 2015.
[2] Steven M. LaValle. Virtual Reality. Cambridge University Press 2016.
[3] Khronos Group. Vulkan API. Online: https://www.khronos.org/vulkan/ , 2018.

Name and workplace of bachelor’s thesis supervisor:

Ing. David Sedláček, Ph.D., Department of Computer Graphics and Interaction, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 22.05.2020Date of bachelor’s thesis assignment: 10.01.2020

Assignment valid until: 30.09.2021

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. David Sedláček, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

	Introduction and Motivation
	Centralized Services
	Encryption
	Availability
	Decentralization as a Solution

	The Lack of a Universal Platform for VR Applications
	Web Browsers
	Metaverses
	Virtualization as a Solution

	Introduction Summary

	Implementation
	Platform Design
	Used Technologies
	Primary Programming Language
	Graphics API
	API for VR Devices
	Model Format
	Virtualization Technology

	Project Structure
	Platform Lifecycle
	The metaview API
	Required Module Exports
	Command Types
	Potential Changes Induced by the Addition of Function Imports

	Sample metaview Applications
	An Example mapp #1, example-mapp
	The Lifecycle of example-mapp

	An Example mapp #2, example-mapp-2

	Performance Evaluation
	Application Load Time Test
	Application Frame Time and Framerate
	Conclusion of Performance Evaluation

	Usage Guide
	Acquiring Dependencies
	Compiling metaview and related projects
	Running mapps

	Conclusion
	Notable Issues Encountered During Development
	View Matrix Confusion
	Compiling Rust to WebAssembly
	Lack of OpenXR Runtimes
	Vulkano

	Future work
	A Lower-Level Graphics API
	Error Handling
	Permission System
	Networking

	Bibliography
	Discussing the Requirements of a Lower-Level Graphics API
	Translucency
	Visual Cohesiveness
	Input Handling and Interaction

	Project Specification

