Bachelor Project

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Cybernetics

Charging Recommender for Electric Taxis

Martin Vybiralik

Supervisor: Ing. Marek Cuchy
May 2020



ii



e BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

Personal and study details

-

Student's name: Vybiralik Martin Personal ID number: 474403
Faculty / Institute: ~ Faculty of Electrical Engineering

Department / Institute: Department of Cybernetics

Study program: Open Informatics

Branch of study: Computer and Information Science

Il. Bachelor’s thesis details

Bachelor’s thesis title in English:

Charging Recommender for Electric Taxis

Bachelor’s thesis title in Czech:
Nastroj pro doporucovani nabijeni pro Fidice elektrickych taxi

Guidelines:

The use of electric vehicles brings in a number of challenges as is the relatively low capacity of the batteries of current
electric vehicles and long charging times which together presents the user with the problem of carefully planning the
charging stops. In contrast with typical driver of electric vehicle, the taxi driver does not know the routes he/she will drive
much in advance. Therefore, he/she needs to plan the charging in time and place when the lost revenue caused by time
spent with charging is expected to be minimal. The objective is to design and implement an algorithm able to recommend
such charging options.

1. Survey existing algorithms solving similar problems.

2. Survey and analyse existing available data sets usable for charging recommendations.

3. Define the problem of charging recommendations for electric taxis.

4. Design an algorithm solving the problem.

5. Implement the designed algorithm.

6. Evaluate the implemented algorithm.

Bibliography / sources:

[1] Tseng, C. M., Chau, S. C. K., & Liu, X. (2018). Improving viability of electric taxis by taxi service strategy optimization:
A big data study of new york city. IEEE Transactions on Intelligent Transportation Systems, 20(3), 817-829.

[2] Rong, H., Zhou, X., Yang, C., Shafiq, Z., & Liu, A. (2016, October). The rich and the poor: A Markov decision process
approach to optimizing taxi driver revenue efficiency. In Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management (pp. 2329-2334). ACM.

[3] Sun, L., Yang, J., & Yang, Z. (2013, June). Optimal charging strategy of plug-in electric taxi. In 2013 10th IEEE
International Conference on Control and Automation (ICCA) (pp. 1532-1537). IEEE.

Name and workplace of bachelor’s thesis supervisor:
Ing. Marek Cuchy, Department of Computer Science, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Date of bachelor’s thesis assignment: 09.01.2020  Deadline for bachelor thesis submission: 22.05.2020
Assignment valid until:  30.09.2021

Ing. Marek Cuchy doc. Ing. Tomas Svoboda, Ph.D. prof. Mgr. Petr Pata, Ph.D.

Supervisor’s signature Head of department’s signature Dean’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC



lll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC



Acknowledgements

Firstly, I would like to thank my super-
visor Ing. Marek Cuchy for his helpful
advice and observations during consulta-
tions of the thesis. Furthermore, I would
like to express my gratitude for the end-
less patience and support of my girlfriend
and family.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.
In Prague, 21. May 2020



Abstract

This thesis deals with the optimization
of an electric taxi driver’s strategy in
charging, passenger approaching, or wait-
ing in potentially favorable locations. It
focuses primarily on recommending charg-
ing actions and taxi driver’s decisions con-
cerning the maximization of a driver’s po-
tential profit. Firstly I focused on a gen-
eral introduction to the topic of electric ve-
hicles together with a research of the state
of the art in the taxi movement strat-
egy recommending field. Then I intro-
duced two historical taxi trip data sets
and defined the recommendation problem
as a Markov Decision Problem (MDP).
An essential part of the presented solution
method is an estimation of parameters
such as a passenger pick-up and drop-off
probability connected with particular lo-
cations on a planning map. Subsequently,
I proposed and implemented an algorithm
based on dynamic programming generat-
ing a policy for an electric taxi driver.
Finally, I experimentally showed the per-
formance of my solution working in differ-
ent environments compared with a base
model of an electric taxi driver behav-
ior. Experiments showed that my algo-
rithm outperforms the base model in sev-
eral fields, such as a total taxi driver’s
profit, distance to the next passenger, or
charging station choice efficiency.

Keywords: electric vehicles, taxi,
recommending, planning, charging,
dynamic programming, MDP, movement
strategy, decision making
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Abstrakt

Tato bakalarska prace se zabyva optima-
lizaci strategie ridice elektrického taxi ve
smyslu pldnovani nabijeni, priblizovani se
klienttim ¢i ¢ekani na klienty na potenci-
alné vyhodnych mistech. Cili predevsim
na doporucovani mista a casu nabijeni,
ale také jednotlivych rozhodnuti fidice se
snahou maximalizovat jeho zisk. Nejprve
jsem se zaméril na obecny tvod do té-
matu elektrickych vozidel, spole¢né s pru-
zkumem dostupnych zdrojua zabyvajicich
se vytvarenim strategii pro pohyb nejen
elektrickych, ale i standardnich (se spalo-
vacimi motory) taxi. Poté jsem predstavil
dva rozsahlé data sety historickych cest
vozidel taxi. Nasledné jsem cely problém
definoval pomoci frameworku MDP. Di-
lezitou c¢asti feseni je rovnéz odhad po-
tfebnych parametrt kuprikladu pravdépo-
dobnosti vyzvednuti a vysazeni zdkaznika
na konkrétnich mistech. Zavérem jsem na-
vrhl a implementoval algorritmus zaloZeny
na dynamickém programovani, ktery ge-
neruje navrhovanou sekvenci kroku, jichz
by se mél fidi¢ taxi drzet. Experimentalné
jsem ukézal jeho vysledky v riznych pro-
stfedich v porovnani se zakladnim mode-
lem chovani fidice elektrického taxi. Pro-
vedené experimenty ukazaly, ze ma me-
toda prekonéava zvoleny zakladni model,
jak v aspektu celkového prijmu tidice, ve
vzdalenosti nutné urazit k mistu vyzved-
nuti pasazéra, ale také v efektivité vybéru
nabijeci stanice.

Klicova slova: elektricka auta, taxi,
doporucovani, planovani, nabijeni,
dynamické programovani, MDP, strategie
pohybu, rozhodovani

Pteklad nazvu: Nastroj pro
doporucovani nabijeni pro fidice
elektrickych taxi
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Chapter 1

Introduction

. 1.1 Motivation

Taxis undoubtedly represent an essential part of public transportation all
around the world. Compared to trains or busses, they provide considerably
higher time and space flexibility for customers. Mainly in large cities such as
New York, Peking, Shenzhen, or Hong Kong, taxi or taxi based services still
increases in time.

Even though a number of well known yellow cabs cruising streets of New
York dropped 25 % since 2010 [18], they were replaced by another comparable
way of transport known as ride-hail services. They use online applications to
connect passengers and local drivers using their vehicles [27]. Representatives
of these services are, for example, Uber or Lyft. According to the New York
Mobility Report from 2018, a growth of these services escalated in 2016,
counting 92.5 million trips exceeding the decline of yellow cabs [18].

Furthermore, China’s ride-hailing market was marked as the fastest-growing
compared to the rest of the world with the most significant future expectation
of a growth [19].

On the other hand, the dark side of using taxis and generally cars as a pri-
mary way of public transport is naturally a production of exhaust gas emitted
as a result of a combustion of fuels [22]. In connection with the rising trend of
ride-hailing and taxi-like services, ecology became a discussed issue years ago.
For example, according to statistics from the United Kingdom, an amount of
COs produced by taxi-like services is still rising [I5]. To cope with this prob-
lem, some cities such as Shenzhen in China have already introduced an effort
to reduce emissions produced by public transportation by involving electric
vehicles [30].

B 1.1.1 Electric Vehicles

Electric vehicles represented one of the main courses in a battle against car
emissions in the previous decade. Cities mentioned above were introducing
programs to support an infrastructure, which is essential for electric trans-
portation, including building a network of charging stations or parking spots.
Nevertheless, not only these cities tried to prepare for still likely electric

1



1. Introduction

future [6]. For example, London introduced its electric vehicle infrastructure
delivery plan [4]. The Government of Canada announced its Zero-Emission
Vehicle Infrastructure Program in which they provide funding of electric
vehicles infrastructure projects [17].

Even though country governments and many other organizations make a sig-
nificant effort in this field, there is still a lack of charging stations through-
out the world, mainly in areas where electromobility has not expanded. In
connection to this, it is also necessary to mention differences in manners of
charging electric vehicles and casual refueling at filling stations. I have found
out three main circumstances as representatives of these differences. The first
example is that multiple electric car users also own their home chargers as
its price is around hundreds of dollars [20]. Secondly, a constrained driving
range that holds around 250 Km for an average electric vehicle [26]. Last but
not least is charging time, which has been depressed as much as possible in
recent years. Nevertheless, the best results are still around half of an hour
for the fastest chargers [26].

These facts together lead to some assumptions connected with charging
manners. The first one is that drivers whose daily driving distance keeps
under a driving range of their cars will rarely need to visit charging stations
because of their home chargers. A different one is that drivers with a need
to charge their vehicles outside of their homes have to spend not little time
waiting. The whole issue of charging stations and the efficiency of charging
electric cars is still the subject of many studies [31], [32].

B 12 Scope of the thesis

In my thesis, I focus on individual electric taxis or taxi-like services involv-
ing the event of charging into planning their daily shift routes to maximize
their potential profit. According to found data [14] and a piece of infor-
mation received from Prague taxi company Liftago, a regular taxi’s daily
driving range can be around 250 Km for a one-shift taxi or even around
400 Km for a two-shift taxi. Considering increased charging times, a limited
number of charging stations, and a constrained driving range, planning of
charging for electric taxis becomes a real issue as drivers could lose potentially
convenient time by inappropriately planned charging actions.

To support the trend of electrification in public transport, I decided to
develop a recommending framework for electric taxis easily extensible for data
sets from different cities. A solution will receive a historical taxi trip data
set together with available charging stations within a specific region. It will
recommend time and place to charge a taxi driver’s car concerning a profit loss
minimization. It should also assist in planning driver’s routes while searching
or waiting for passengers or even give him a helping hand in deciding whether
to accept passengers. Another self-offering usage is assisting in a pause plan-
ning for taxi drivers, which can be connected with a stop for charging a vehicle
or waiting in a potentially favorable place concerning a distance to the next
passenger.



1.2. Scope of the thesis

The recommending system should make recommendations based on the as-
sumption that taxi demand varies according to a location in a city and a part
of a day the taxi driver operates. There are some bright candidates for
potentially vantage locations in means of picking-up solvent passengers such
as an airport, railway station, bus station, etc. It is plausible to identify
these places from large taxi trip data sets by estimating a probability of
picking up a passenger in individual locations. Such an estimation should
be done in several estimation periods, representing a varying time factor
of taxi demand. The final recommending algorithm will establish a policy
maximizing a taxi driver’s potential profit.

To sum up, my thesis’s principal goal is to propose, describe, formal-
ize, implement, and evaluate the algorithm corresponding with the previ-
ous description. The first part of the thesis is dedicated to a related work
with a comparable scope as mine. As mentioned above, an indispensable part
of the proposed solution is a study of sizeable historical taxi trip data sets and
parameter estimation essential for the recommending algorithm. An introduc-
tion of such data sets is followed by a small section pointing out a basic theory
of Markov Decision Processes (MPD), which is a fundamental framework
used in the subsequently presented problem formalization, algorithm proposal,
and implementation. Finally, I concentrated on an experimental performance
evaluation comparing my solution with a base electric taxi driver behavior
model.






Chapter 2
Related Work

While researching the topic, I have encountered several papers dealing with
comparable problems to mine. Many of them consider ordinary taxis instead
of electric ones. Nevertheless, they are using methods that enable me to
make a planning of charging kind of enrichment of those previously established
methods for taxi recommending systems.

There are also papers dealing exclusively with a recommendation of a proper
charging station in time to minimize a charging cost, which does not entirely
correspond with my definition of the problem as I focus on optimizing a com-
plete taxi driver’s profit.

. 2.1 A Cost-Effective Recommender

This paper represents one of few cases touching the problem of taxi movement
recommending systems that are not using the MDP framework [12]. They
introduce and define a net profit objective function which can assign potential
profit to any Route(path) in a presented Road Segment Network. The profit
of the whole Route(consisting of Road Segments) is calculated as a sum of
potential earnings and potential costs of individual Road Segments, which
are estimated from historical data. To receive the optimal Route, they first
introduce a brute force BFS (Breath-First-Search) algorithm, searching for
Routes maximizing the profit. Then they also propose a new recursive recom-
mendation strategy based on recursive trees, which effectively finds the best
Route concerning the driver’s profit.

Such an approach is unfortunately not immediately applicable to my
problem representation as it considers only a limited length of a planned path
and so makes it impossible to plan charging actions for a future taxi demand
situation.

B 2.2 The Rich and the Poor

As written in an introduction of this paper [5], they are the first to pro-
pose a method of a recommendation of a movement for ordinary taxi drivers
concerning a more extended time interval than just an immediate next trip.



2. Related Work

Their chief innovation prevails in taking a temporal variation of a passenger dis-
tribution, and the influence of a passenger destination on the following drivers
moves into consideration. To achieve this goal, they model the problem as
MDP, where each state is a combination of a current grid (partitioning the en-
tire area into several grids), time, and a driving direction. Available actions
are traveling to a subset of neighboring cells and cruising through them. More
specifically, they define various possible courses of moves on the grid world,
and then they try to map these directions on a real-world map. They also
partition planning interval into discrete time slots for which they estimate
needed parameters from historical data independently.

They define two possible situations when transferring from one to another
state. The first one is picking-up passengers, traveling to some location, and
receiving a reward. The second is just moving to a chosen next location.
All of these events happen with some probabilities estimated from historical
taxi trips. An objective is to maximize the total expected reward. A result
algorithm yields a policy based on dynamic programming principles.

The solution presented in the paper contains several key ideas, which
inspired me in designing my recommending algorithm — namely, the MDP
problem representation, or the dynamic programming approach in receiv-
ing the policy. The most significant limitation of the proposed solution I can
see is partitioning into one-hour time slots and generating optimal policies
only within these periods. When considering charging electric vehicles, it is
essential to plan within a more significant time interval. An ideal case would
be to prepare recommendations for the whole time which taxi driver intends
to operate.

B 23 Optimization of the Revenue

This paper directly extends the previous one. The most significant contri-
bution is in a detailed case study [8] of a New York Taxi trip data set
and an application of methods proposed in [5]. It focuses on differences in
optimal policies in distinct parts of a day — daytime, nighttime and different
parts of a week — weekday, weekend.

B 24 Optimal Charging Strategy

Lihao Sun [I0] deals with different issues in his paper. He focuses directly
on finding the most suitable charging strategy reducing the charging cost
of an individual taxi driver. His primary criterion is the current electricity
price. The goal of methods introduced in this paper is to minimize a general
price of charging within some time interval by selecting an appropriate
charging station.

Planning is done by partitioning time into discrete time intervals. An inter-
val in which charging action is inevitable is computed according to the current

6



2.5. Improving Viability of Electric Taxis

state of charge (SOC). Once a charging step is done, remaining operation
slots are updated.

Comparing to my subject of research, Lihao Sun focuses merely on mini-
mizing the total cost of charging activity and planning this activity without
any respect for other taxi driver’s needs. This approach seems to me without
any further study or statistical background a bit shortsighted as ignoring taxi
driver’s incomes play undoubtedly an essential role in planning his future steps
and, from my point of view, should be involved in the charging recommender.

B 25 Improving Viability of Electric Taxis

Paper written by Chien-Ming Tseng [13] is, by its scope, the closest to my
thesis. I inspired by this paper in several parts of my work and tried to
introduce and implement improvements in Chien-Ming Tseng’s methods and
problem representation.

Even though their main objective is to increase a taxi driver’s willingness
to use electric vehicles, they propose a recommending framework based
on the MDP representation, which is useful for my work.

A state representation consists of the current time, using one-minute time
slots, a location determined by the closest OSM node (Open Street Map)?,
and a battery SOC. Actions are generally described as driver’s decisions to
travel to the next location, which more precisely means a neighboring node
in graph generated from OSM data. Another possible choice is to charge for
some time.

Formally each action is determined by two nodes (start, destination) and
time of charging. The time of charging is zero if no charging is needed. When
greater than zero, a taxi should go to the most adjacent charging station
before continuing its journey to a destination node. Transition function
determines the probability of picking-up passengers when transferring between
states. They also point out several already researched problem characteristics
such as that searching the next passenger in a drop off place of a previous
one leads to higher profits or that predicting traffic conditions leads to more
favorable results for the entire system.

Paper uses New York City taxi trip data set from 2013 to estimate proba-
bilities of picking-up passengers in individual nodes. Another critical feature
is disabling some actions (picking-up passengers, driving to some location)
concerning an insufficient SOC. Unlike Meng Qu [12], who disables a cus-
tomer’s refusal, Chien-Ming Tseng defines three possible scenarios in any
state (node, time, SOC).

® Picking-up a passenger and delivering him to his drop-off destination.

® Refusing a passenger due to a low SOC followed by traveling to the nearest
charging station.

® Not picking-up a passenger.

Thttps://www.openstreetmap.org
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2. Related Work

In subsequent chapters, I introduce several substantial improvements that
put significantly more emphasis on charging electric taxis. The most significant
limitation of Chien-Ming Tseng’s paper I can see is in choosing the nearest
charging station exclusively. Such an approach seems inefficient as the closest
charging station is not necessarily the most favorable choice. Furthermore,
I also tried to enrich a set of possible actions by Staying in a location,
which corresponds a bit more with a real-world situation. On some occasions,
it may be convenient not to drive all the time but also to wait in potentially
vantage place [1].

Despite the discussed limitations, I was inspired by the paper in the case
of Equation [4.1| computing taxi driver’s final reward or in the estimation of
several parameters.



Chapter 3
Data Sets

As it seems from the related work, creating recommendations for drivers of
electric taxis is closely connected with historical taxi trip data sets. They are
used for modeling a taxi demand in individual cities, which is a critical factor
to cope with.

In this chapter, I introduce two of these historical taxi trip data sets,
followed by two corresponding lists of charging stations, which form another
indispensable part of the charging recommendation problem.

B 31 Taxi Trip Data Sets

The primary purpose of historical taxi trip data sets is a possibility to mine
information about concrete historical taxi trip pick-up and drop-off spots.
Concerning this data, it is possible to estimate the probability of picking-up
passengers in some particular location and time.

When researching the related work, I met with papers based merely on a sin-
gle one data set (New York taxi trip data set). This fact gave me an idea to
create a solution with an interface for input data, which would be easy to
implement and enable simple extensions to cover other cities.

B pick_up_longitude B {rip_ distance

B pick_up_latitude
B start _time
B drop_of longitude

B drop_of latitude B end_ time

It should be possible to parse all of these parameters from any input data set.
Concerning a trip distance, there are two possible ways to receive it. Firstly,
it can be computed from pick-up and drop-off coordinates. On the other
hand, some data sets contain a real recorded distance of a trip. Such a dis-
tance contributes much more to modeling the real-world taxi demand than
estimating it, for example, from the shortest pathE| between a pick-up and

! A* algorithm https://www.cs.auckland.ac.nz/courses/compsci709s2c/resources/
Mike.d/astarNilsson.pdf| computes all the shortest paths in my thesis

9
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3. Data Sets

drop-off location. The proposed interface enables the use of both of these
cases.

B 3.1.1 Prague

The first is a data set from Prague received from a company Liftago [9]. It
contains historical taxi trips recorded in February 2019, counting 42 872 trips.

As observable in Table (3.1}, it almost copies the interface for a taxi trip data
sets declared above. However, its most significant shortage is a limited size,
which is reflected in a bit distorted results of parameter estimation introduced
in Chapter [5

orderID 0d7481a7el7c10bc
requestedPickUpLat 50.080
requestedPickUpLon 14.418

requestedDestinationLat | 50.080
requestedDestinationLon | 14.445

rideDistance 4801
rideStartedAt  UTC 2019-02-02 16:11:24
rideFinishedAt_ UTC 2019-02-02 16:38:32

Table 3.1: Prague taxi trip data set example.

Closer analysis of this data set confirmed the assumption that the high-
est taxi demand is in the center of the city and becomes sparser moving
to the suburbs. Nevertheless, as visible in Figure [3.1], there is also a signifi-
cantly increased taxi demand near Prague airport. An average distance of
one trip is around 8.3 Km.

B 3.1.2 New York

The second data set contains 25 960 490 taxi trips recorded during 2018 in New
York [16], which is leading to much better conditions for both the parameter
estimation in Chapter [5| and evaluation in Chapter |8 Actually, I decided to
limit the size of the data set to one million randomly chosen taxi trips to
avoid unnecessary memory consumption.

Because a trip record described in Table |3.2 does not contain longitudes
and latitudes, pick-up and drop-off places of individual trips are parsed
from an enclosed look-up table containing distinct zones in the form of
approximate address as can be seen in Table 3.3l

10
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Figure 3.1: Taxi demand in Prague historical taxi trip data set.

VendorID 2
tpep__pickup__datetime | 11/04/2018 12:32:24 PM
tpep__dropoff__datetime | 11/04/2018 12:47:41 PM
passenger__count 1

trip_ distance 1.34

RatecodelD 1

store__and_ fwd_ flag N

PULocationID 238

DOLocationID 236

payment__ type 2

fare _amount 10

extra 0

mta_ tax 0.5

tip_ amount 0

tolls__ amount 0
improvement__surcharge | 0.3

total amount 10.8

Table 3.2: New York taxi trip data set example.

11
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Figure 3.2: Taxi demand in New York historical taxi trip data set.

LocationID 2

Borough Queens
Zone Jamaica Bay
service__zone | Boro Zone

Table 3.3: New York zone lookup example.

To retrieve desired longitudes and latitudes, I used APIE] performing the con-
version from a given address.

Unlike the previous data set, here I am served with much more information
such as passenger count, fare amount, tip, and others, which can be used in
future development.

A structure of the New York data set significantly differs from the Prague
one. While in Prague, the taxi demand smoothly descends from the city center
to the suburbs, the majority of historical trips in New York comes from the area
of Manhattan and Brooklyn, as shown in Figure Also, an average taxi
trip distance is around 2.9 Km, which is 5 kilometers less than in Prague. It
is probably caused by the fact that using taxis is a much more common way
of everyday transport in New York than in Prague.

Such a shape of a taxi demand also profoundly affects the behavior of charg-
ing recommender based agents, as can be seen in the evaluation Chapter

2lhttps ://opencagedata. com/l
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3.2. Charging Station Data Sets

B 32 Charging Station Data Sets

All data connected with charging stations were received from an online OPEN
CHARGE MAP APIEL After writing a simple request specifying the desired
area, a JSON data file containing available charging stations and their charging
connections (20 KW, 50 KW, ...) is generated. An example can be seen in
Appendix [Al After receiving such a file, a set of all available charging stations
is parsed from it. Each charging station has one or more charging connections
characterized by its power in KW.

For an evaluation presented in Chapter 8, I chose 75 random charging
stations in the city of Prague and the same in New York. There were two main
reasons for such a step. First of all, reduction of a space complexity of the al-
gorithm proposed in Chapter [6| and secondly, the fact that during the study
of the data set, I encountered quite a vast amount of charging stations close
to each other so they would have a minor effect to final results.

3|https ://openchargemap. org/site/develop|
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Chapter 4

Problem Representation

In this chapter, I introduce several basic building blocks that create a formal
definition of the charging recommendation problem. Namely, it is a general
environment description of the road network, which is closely connected with
the subsequently introduced MDP framework problem representation.

. 4.1 Environment

Naturally, the first concept to be described is an environment in which a taxi
driver will operate in the future recommending algorithm. In this case, the en-
vironment signifies a mapping of a real-world road network into data structures
usable in planning.

A representation of the road network plays undoubtedly an essential role in
any route planning or recommending. This is why I decided to introduce and
evaluate more forms of environments in Chapter [6| to determine the most suit-
able one for the charging recommending problem. Here I list all requirements
for a global environment, which serve as a template for following concrete
environment implementations.

1. Environment is a directed graph G = (V,E), where V is a finite set of
nodes n and E is a finite set of edges e.

2. Each node n € V is associated with a longitude and latitude, which
represents mapping into a real-world location.

3. Each edge e € E represents a connection of two nodes n € V and so
it can be considered as a path from node n; to a neighbouring node nj;.

4. Each edge e € E is associated with three non negative integers [, d and
v, where [ signifies a length, d time needed to transfer the edge e and v
is a speed on the edge.

5. Nn;] is a function returning a set of all nodes n; € V connected
with a node n; by an edge e — neighbouring nodes.

6. The set of nodes V is enriched by the set of charging stations ¢ € C
which are fitted into the closest node n € V.
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4. Problem Representation

B 4.2 Markov Decision Process (MDP)

As announced in previous sections, I adopted MDP’s formalism to describe
and define the charging recommendation problem. I combined and adapted
approaches used in [I3] and [5] to avoid shortcomings mentioned in Chapter [2|
Nevertheless, firstly I would like to bring a brief introduction to a concept
and notation of the MDP framework introducing the main building blocks
used in the thesis.

B 4.2.1 Definition

Markov Decision Process represents a mathematical framework firstly in-
troduced in the 1950s. Nowadays, it is used as a modeling framework in
reinforcement learning but also in computational finance, gambling, graph
theory, and many others [7].

Mathematically there are several possible variations and distinct definitions
of MDP. The one used in my work is called a finite discrete-time fully
observable MDP, defined in [7] as a tuple (S, A, D, T,R), where:

B S — A finite set of states.
® A - A finite set of actions.
® D — A finite sequence of natural numbers indicating a timestamp.

® 7 — A transition function specifying the probability of going to a state
s9 when executing an action a in a state si.

® R — A reward function returning an expected reward for a transition
from a state s; to a state so executing an action a.

B 4.2.2 Policy

Another concept essential to define for future use is a policy m. According to
[7] it denotes the probability distribution of choosing an action a in a state
s and timestamp t. A reward R”™ is then described as an amount of utility
received by executing the policy 7. In other words, it is the reward received
by performing all actions according to the policy 7 starting from the current
state s and continuing further in time. An optimal MDP solution is a policy
7* maximizing the reward function R resulting in R™ [7].

. 4.3 Problem Definition

In this section, I model the charging recommendation problem representation
as a finite discrete-time fully observable MDP. As I intend to provide a driver
with recommendations during one complete shift (length of a shift is further
discussed in Chapter 8), the state space of the problem is finite with discrete
timestamps covering the entire shift. Moreover, a taxi driver has various
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4.3. Problem Definition

actions to perform, such as going to a neighboring location, staying in a par-
ticular place, or going to a charging station. The goal of the recommending
algorithm should be to provide a driver with recommendations of these activ-
ities in any possible state. It should also be maximizing his potential profit,
which perfectly fits an effort of finding policy 7* described above.

m S — A finite set of all possible states
Each state is a tuple of:

Location — An association of a taxi’s GPS location with the nearest
environment node n € V, as defined in Section |4.1.

Time — A discrete time slot indicating a number of minutes passed
after the start of a shift (planning). Represented by a single integer
t,t € D.

SOC — A discrete state of charge of a battery in %. Represented
by a single integer b,b € B = (0,100).

Now I can write s = (n,t,b) as a full description of one state.
Such a state representation corresponds with the one in [13].

® A — A finite set of all possible actions a taxi driver can take

Each action a is a tuple (ng, ng, tq, bs) where:

n, — A starting node ny; € V (current state node).
ng — A destination node ng € V (node in which action results in).
to — A duration of an action (in minutes).

by, — An amount of consumed, recuperated or charged energy (in %).
In each state there are several kinds of actions a taxi driver can take:

Driving to a next location — As declared in Section [4.1}, each
node n € V is associated with a not empty set N[n] of its
neighbours i.e. nodes that are connected by an edge e € E.
Each of these neighbouring nodes n; € N'[n] represents one feasible
action of Driving to a next location from node n. Such an action
takes time t, equivalent to a transition time d of an edge e € E
between these nodes and produces energy consumption b, estimated
in Chapter [5. It can be described as:

(g, £, by 2omle) bt b by)
Staying in a location — In some cases, it can be convenient
for a taxi driver to stay in a location with potentially high client
concentration. In such a case, starting node ng and destination
node ng are equal. t, represents a waiting time set to the minimal
time unit — one minute and energy consumption b, equals zero.
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4. Problem Representation

> (ns,n4,tq,0) <

(ng,t,b ng, t + tq, b)

Going to a charging station — In each state (except the one
when a driver is already at a charging station) a driver can decide
to go to a charging station. This action can be described as driving
from a current node ny directly (using the shortest path) to a chosen
charging station node ¢ € C.

A driver can decide to go to any possible charging station to maxi-
mize his future reward. The policy of choosing the best charging
station is described in Section 6.3l

Action time t, is received by a sum of d parameters of edges e
forming the shortest path between a current node ng and a charging
station ¢. Consumption b, is then a sum of consumption on these
edges estimated in Chapter [5.

<nsvc»ta:ba>

(ng, t,b) (Cc,t+tq, b+ by)

Charging at a charging station — As a driver arrives at a charg-
ing station, he can also decide how long he wants to charge his
car, representing t, in this type of an action. There are several
charging intervals to choose from, and they are computed according
to a charging connection type selected. This is more described in
Section 8.3l

Charging intervals are meant to provide a driver with a choice
of charging his car from a current SOC to 100 % by steps of
10 %. A state location ¢ then remains the same, and b, repre-
sents an amount of charged energy in percents again computed
concerning a type of used charging connection and chosen charging
interval.

There is also one extra parameter connected with taking an action of
Charging at a charging station and it is the price p for energy
charged. The rate for charging varies by the charging connection
type concerning the KW and is also described in Section 8.3

<C7n37ta7ba>
EE—

(c,t,b) (c,t+tg, b+ ba)

Picking-up a passenger — This is an action that differs from all the oth-
ers by its significance. First of all, it is not a member of the set of
applicable actions A as it does not depend on a taxi driver’s decision, but
it is a purely stochastic phenomenon. In other words, a taxi driver can
not decide to take this action on his own, but he must be requested to do
so. In the case of recommending algorithm, Picking-up a passenger
only reflects in transition probabilities defined below in this section.

This action is used mainly in the evaluation described in Chapter |8,
where taxi drivers receive offers from customers and are able to accept
or deny them.
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4.3. Problem Definition

There are two possibilities for picking-up a passenger. The first one is
to pick-up a passenger right on the street, which implies a zero distance
to travel to a pick-up place and going directly to a customer’s desired
destination. The second one, and these days a much more frequent case,
is picking-up customers after a phone call or an application request. This
case is connected with an extra distance, which has to be reached to
pick-up a passenger, which also brings additional energy consumption.
The recommending algorithm proposed in Chapter [6]is able to cope with
both of these cases.

Taxi trip length, duration t,, and consumption b, are again computed
from the shortest path on the environment graph G connecting a pick-up
node ng; € V and a drop-off node ng; € V.

<nsvnd7ta»ba>
) ————

<n57tab nd7t+ta7b+ba>

D — Time steps

A finite sequence of natural numbers denoting possible time epochs in
which actions can be taken, and states can occur. It can be written as
D = (to,to+1,....,t0 +tarax), where tg is a start time of a taxi drivers
shift and tas4x is a length of a shift — time of a taxi in operation. I am
using minutes as a real-time unit. This means that ¢y is a number of
minutes from the midnight, i.e., tp = 480 for a shift starting at 8 AM
(8- 60).

T — Transition function 7: S x A x S — [0,1]

A transition function 7 as defined in [7] is a mapping specifying a prob-
ability T [s;, a, s;] of going from a state s; to a state s;, taking an action
a. The transition function 7T is given by the probability of picking-
up a passenger. In the following text I will denote this probability as
Plsi,a, s;] where s; is a starting state, a is a taken action from A, and
s; is a resulting state. It denotes the probability of picking-up a passen-
ger when taking an action a in state s;, which should result in a state
sj. A value of this probability is estimated in Section 5.

I decided to partition all feasible actions from A into two groups con-
cerning the transition function 7 definition:
1. Stochastic group

Driving to a next location

Staying in a location

Tlsi,a,sj] = 1—"P[si,a,s;]

The transition probability of successfully finishing these actions

equals the probability of not picking-up a passenger. Otherwise, a taxi
driver will end up in a state determined by a drop-off node, journey

duration, and consumption of a taxi trip.
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4. Problem Representation

2. Deterministic group

Going to a charging station
Charging at a charging station

Tlsi,a,s5] = 1

In this case, I assume that there is no chance to change a taxi
driver’s mind after deciding to go to a charging station or to charge
in a charging station and accept a customer’s offer.

It is essential to mention, that I will estimate P[s;, a, s;] and Ts;, a, s;]
from historical taxi trips (Chapter [5). That is why I assume that
recommending a taxi driver’s route concerning real pick-up nodes n,
will optimize both cases of picking-up a passenger as described above in
this section. Firstly, it optimizes the probability P[s;,a, s;] of picking-
up a passenger in a current node n. But it also minimizes a potential
distance to be reached to pick-up a passenger who ordered a trip by a
phone or any kind of a taxi app.

B R — Reward function R: S xAxS =R

The reward function R[s;, a, s;] returns an expected numeric reward for
transition from a state s; to a state sj, taking an action a. Same as
in a case of the transition function 7, the reward function R will also
have two forms depending on a taken action a € A. Before defining
them, I will introduce several parameters used in their equations:

L[s] — A function returning a node n € V of a state s € S.

Z[s] — A function returning an estimation interval T; introduced in
Chapter 5| fitting a timestamp ¢ of a state s € S.

B[s] — A function returning a SOC b of a state s € S.

&[n;,n;] - A function returning an energy consumption in % needed
for transfer from a node n; to a node n;.

B™n" — A minimum SOC set experimentally concerning a taxi trip
data set structure.

Fls,n] — A fare received after picking-up a passenger in a state s
and delivering him to a desired location n introduced in Chapter [5.

G[s] — A function returning a set of all nodes n, € V that figure
as a drop-off node in some historical taxi trip that starts in node L][s].
At the same time, it returns only drop-of locations corresponding
to trips taken during an estimation interval Z[s] and satisfying at
least one of these conditions:

= E[L[s],n,] + B™" > B[s] — An energy consumption of a trip is
exceeding a current SOC.

{4+t >ty + tyax — A trip time ¢; together with a current
timestamp ¢ of a state s is exceeding a shift end time to+tprax.
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4.3. Problem Definition

In other words, it represents a set of all unreachable taxi trip drop-off
destinations.

H[s] — A function returning a set of all nodes n, € V with the same
description as G[s], but satisfying both of these conditions:

= £[L[s],np] + B™" < B[s] — An energy consumption of a trip
not exceeding a current SOC.

{4+t <to+itmax — A trip time t; together with a current time
stamp t of a state s not exceeding a shift end time tg + tarax-

In other words, it represents a set of all reachable taxi trip drop-off
destinations.

Now I can introduce recursive equations of reward functions for both
groups of actions (Stochastic and Deterministic). These groups are
the same as in the case of the transition function 7 defined above. The
most crucial reason for the definition of two reward functions is again in
the zero probability of picking-up a passenger when taking actions from
Deterministic group.

Stochastic group

Rlsi,a,s;] = R*[s;]- (1 —Plsi,a,s;] + Plsi, a,s5] - PG[s;])
+Psi,a,s;] - RH|[s;]
(4.1)

R*[sj] — A reward in a state s; received after taking an action

with the highest potential profit — a recursive part of the reward

function.

Plsi,a,s;] — The probability of picking-up a passenger when

taking an action a in a state s; going to a state s; — estimated

in Chapter [5.

Pd[s, ng] — The probability of picking-up a passenger commuting

to a drop-off node ng from a state s — estimated in Chapter [5

PGls] = Z P4[s,n,] — The probability of unreachable
ng € G[s]

trip with a passenger i.e., passenger commuting to unreachable

destination concerning an insufficient SOC or time till the end

of a shift.

RH[s] = Z Pls,ny] - (Fls,np] + R*[s4]) — A reward

ny, € H[s]

for all reachable trips with a passenger from a state s in an esti-

mation interval Z[s|. Here s, signifies a drop-off state of a taxi

driver after delivering a passenger.

This equation is inspired by the one in [I3] and can be interpreted
as that the final reward R[s;, a, s;] is a sum of rewards from two
possible situations multiplied by its probabilities:
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4. Problem Representation

a. Not picking up a passenger and receiving the reward R*[s;]
with the probability equal to a sum of the probability of not
picking up a passenger and the probability of picking-up a pas-
senger with an unreachable drop-off destination.

b. Picking-up a passenger and receiving a reward RH[s].

2. Deterministic group
Rlsi,a,s5] = R*[sj]—p-ta (4.2)

Here the final reward R[s;, a, s;] consists only of a result state s;
reward and a subtraction of a charging cost p introduced in Section
8.3. Charging cost is set to 0 when taking an action of Going
to a charging station.

B 43.1 = - Optimal Policy

As declared in the introduction of Section [4.3] the goal of the recommending
algorithm is to provide a taxi driver with an optimal policy 7* proposing an ac-
tion a € A in any reachable state, maximizing his potential profit determined
by R[si,a, sj] equations above.

Recommendations concerning such a policy 7* always depend on the current
state s. For example, a taxi driver in state s = (n, 500, 10) could receive a rec-
ommendation to go to a concrete charging station as the SOC (10 %) is quite
low. Similarly a taxi driver in state s = (n;, 550,80) could be encouraged
to go to a next location n; € AN[n;]. Both of these recommendations are
actions maximizing a taxi driver’s future potential profit.
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Chapter 5

Parameter Estimation

In this section, I introduce and estimate several parameters essential to de-
fine the above described MDP representation of the charging recommendation
problem. Historical taxi trip data sets introduced in Section |3.1] are used for
this purpose.

Unlike [I3], where they estimate the majority of parameters depending
on a current time ¢ I decided to built the whole idea of the parameter
estimation and the recommending algorithm proposal on splitting the sequence
of time steps D into ¢ larger estimation intervals T4, ..., Ty. These intervals
are of a length r (corresponding with an ESTIMATION_ INTERVAL in
Table 8.1)), where:

T, = <ti0,ti0 =+ 1, ...,tio —+ T‘)
_ tottmax
T

Here t;, is a starting time of an interval T; and ?y is a starting time of a taxi
driver’s shift.

I assume that the transition function 7 and values of the reward function
R during individual estimation intervals T; are the same. On the other hand,
they differ when transitioning from T; to T;. Thanks to this, I can now
split historical taxi trips from Section 3.1]into groups G, ..., G4. Each group
G; corresponds with its estimation interval T; during which trips in it were
taken. Then I can estimate all needed parameters separately for each group.

To illustrate such an intention I present an example introducing a simple
model situation:

Example: Taxi driver starts his shift at 8:00 AM and wants to drive for
three hours (180 minutes). I split his shift into 6 intervals T4y,..., Tg, 30
minutes long, where Ty = (0,30), T2 = (30,60),...,T¢ = (150,180). I
get all historical taxi trips and sort them according to a time of a trip into
groups G1, ..., Gg, where in 7 there are trips done from 8:00 to 8:30, in Gg
trips from 8:30 to 9:00 e.t.c.. Now I estimate all needed parameters for all of
these groups separately.
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5. Parameter Estimation

B 51 7[5, 0 5] - Pick-up Probability

As described above in Section 4.3, the pick-up probability P[s;, a, s;] is used to
define the transition function 7 [s;, a, s;| of the Stochastic group (Driving
to a next location, Staying in a location) of actions and it also figures in
Equation [4.1] of the reward function R[s;, a, s;]. This makes it one of the key
parameters of the whole charging recommendation problem.

It is essential to remind that P[s;, a, s;] is closely connected with the defi-
nition of estimation intervals T; above. When talking about the real value of
Plsi,a, s4], it automatically means the probability of picking up a passenger
during an estimation interval T;. This interval can be received by using
previously introduced function Z[s;] that returns it concerning a timestamp ¢
of a state s;. The main reason for such an emphasis is the difference in these
probabilities between individual estimation intervals T;.

In papers [5] and [§], this kind of a probability is estimated as a number of
pick-ups within a concrete cell of a grid (i.e., larger area) divided by a total
number of vacant taxi visits of the cell. This method yields a total number
of taxi visits of a particular cell as another parameter to be modeled. To do
so, they use historical taxi trip data sets again. They try to estimate a taxi
driver’s movement i.e., visited locations, from all historical trips, by computing
approximate paths between pick-up and drop-off locations. From these paths,
it is then possible to parse numbers of visits in individual cells.

In [13], the pick-up probability is estimated as a total pick-up number
in one node within some period of time divided by a sum of the pick-up
number and a total number of drop-offs of passengers within a surrounding
area. The number of drop-offs represents competitive vacant taxi drivers, who
decrease the probability of picking up a passenger.

Both of these approaches model the probability of P[s;, a, s;]. They estimate
it as a ratio between the number of successful pick-ups and a somehow
estimated number of taxi visits of an area. From my point of view, this
attitude puts two locations of completely different parameters on the same
level. For example, let me introduce two locations A and B, where, in case of
location A a number of pick-ups in some period equals to 1000 and a number
of drop-offs equals to 500. In the case of location B, these numbers are 10 and
5. The above-described estimation approach would assign the same pick-up
probabilities to both of these places, which does not correspond to reality.

That is the main reason I decided to skip the idea of modeling competition
between individual taxi drivers. Instead of this, I estimate the probability
Plsi,a,s;] between states s; and s; involving just a number of pick-ups
in an environment node L[s;] € V corresponding to a state sj, a number
of pick-ups in its neighbors NM[L[s;]] and a total number of pick-ups in
all the other nodes n € V. The inclusion of neighbors should express the pick-
up potential of a larger area than just one node, as in the case of [13].

I define:

® Np,[n] — A number of historical pick-ups in a node n € V during an es-
timation interval T;.
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5.2. P%[s,n] — Drop-off Probability

® Np,[N[n]] — A number of historical pick-ups in a set of neighbours A/ [n]
of a node n during an estimation interval T;.

® N,[V] = A number of historical pick-ups in a set of all nodesn € V
during an estimation interval T;.

Now I can define P(s;,a, s;) as:

Nzs;)[£]551] + Nags,) IV £[s5]]]

,P(SZ',CL,S]') = NI[sJ][V}

N 52 P?[s,n] — Drop-off Probability

Another parameter already used in Section 4.3| is the drop-off probability
signifying the probability of a passenger commuting from a starting node
L[s] to a drop-off node ng during an estimation interval Z[s]. It could be also
described as the probability that a taxi driver in a state s = (ng,t,bs), who
picked-up a passenger will travel to a node ng during an estimation interval
Z[s].

I estimate this parameter same as in [13]:

d - Ng[s}[ﬁ[SLH]
Plonl = N 2V

where Ng[ . [L[s],n] is a number of trips from a node L[s| to a node n

in an estimation interval Z[s|] and N%[ [L[s], V] is a number of all trips

5]
from a node L[s] to any other node n € V.

B 53 £[n;,n;] — Energy Consumption

An estimation of the function £[n;, n;] can be easily simplified into an es-
timation of an energy consumption b of an edge e € E connecting two
neighbouring nodes ny and n;, where n; € N|[ny| as introduced in Section
4.1, Function £[n;, n;| for any pair of nodes n;,n; € V is then computed
as a sum of individual consumption b,, of edges e,, on the shortest path
between these nodes.

Many models are capturing electric vehicle consumption, which represents
one whole field of study. Some studies are focused on introducing new models
aiming to predict future vehicle consumption concerning speed, acceleration,
roadway grade, and other parameters [3], [29]. Even though there are many
possibilities, I decided to include a straightforward and naive linear model
working with a traveled distance and estimated maximal vehicle driving range:

E[nk,nl] = ba = (D[nk,nl]/DMAX)-loo

Here n; € MN[ng], b, is energy consumption of Driving to a next
location from a node ny, to a node n;. D[ng, n;] returns a distance between
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5. Parameter Estimation

nodes ng and ny, here it corresponds with a length parameter [ of an edge e
connecting these two nodes. Djsax is maximal driving range of an electric
taxi. Its value is set in Table 100 is used to switch to % of SOC.

B 54 Fls,n| — Taxi Fare

I decided to introduce a simple taxi fares model generating the reward of a taxi
driver. It consists of a pick-up fee f and then a standard rate r for a mileage.

F[L[s],n] = D[L][s],n]-r+ f

Concrete values of f and r are used in evaluation Chapter
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Chapter 6

Solution Proposal

After performing a detailed definition of the charging recommendation problem
as MDP and introducing all essential parameters in previous sections, it
remains to present a solving method. Such a method receives a concrete
implementation of a general environment defined in Section [4.1] which is closely
connected with the Finite Discrete-Time Fully Observable Markov Decision
Process introduced in Section Another essential inputs are parameters
estimated in Chapter 5. The recommending algorithm returns the policy n*
providing a taxi driver with step by step recommendations of actions a € A
maximizing his potential profit.

B 6.1 Environment Implementations

First of all, I propose three concrete implementations of the general environ-
ment representation defined in Section

B 6.1.1 OSM Environment

First implementation of an environment employed also in [13] uses a graph G
that originates from Open Street MapE| (OSM) dataﬂ This kind of an envi-
ronment somehow copies a structure of the road network, presenting an ideal
case to simulate real-world conditions. OSM data fulfill all requirements listed
in Section as it is possible to parse the graph G = (V,E) together with
edge parameters [, d, v essential for the algorithm described in the subsequent
Section

To improve a performance of the algorithm, I decided to add extra edges
e € E connecting every single node n € V with every charging station
c € C. These connections are created by computing the shortest path
between each environment node n € V and each charging station ¢ € C.
Lengths [ and times d are computed as a sum of these parameters on all edges
forming the shortest path. Speed parameter v is computed as an arithmetical
average of speeds weighted by distances of these edges.

1|https ://www.openstreetmap. orgl
All OSM data were received from |https: //www.openstreetmap.org/exportl
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Figure 6.1: OSM environment graph example.

Unfortunately, planning on such an environment leads to enormous sizes
of a state-space as a number of nodes and edges covering, for example,
the whole city of Prague, is in tens of thousands. Also, time ¢ to transfer
edges e € E could be in seconds. These are the main reasons I decided
not to use such an environment implementation as it would be impossible to
evaluate a larger state space on my machine. Nevertheless, I use it extensively
to define other environments properly.

B 6.1.2 Grid World Environment

A grid world environment is a classical simplification also used in [5]. More
precisely, it partitions a map into rectangle cells. These cells represent
environment nodes n € V in graph G defined in Section Edgese € E
are created between neighbouring cells in all eight directions as showed in
Figure 6.2

The width and height of one cell are essential parameters of the grid world
environment. The smaller values of these parameters are the more detailed
representation of the real-world road network originates. On the other
hand, a higher resolution also leads to a higher number of environment nodes.
To keep the state space bearable, I set both of these parameters experimentally
to 2500 m, which preserves numbers of environment nodes in hundreds.

Then I partition a covered area into individual cells and fit every node
from the OSM environment representation introduced in the previous subsec-
tion into its corresponding cell. I compute a center of each cell by averaging
all longitudes and latitudes of OSM nodes in it.
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Figure 6.2: Grid World environment graph example.

Finally, I fit the computed center to the closest OSM environment graph
node and compute the shortest paths between center points of neighboring
cells again using the OSM environment graph. Computed paths represent
edges between neighboring cells in all eight directions together with their
lengths [, traverse times d, and speeds v. I calculate them in the same way
as in the case of edges between nodes and charging stations in previous
Subsection Calculated cell center points are precise representations
of all environment nodes n € V. I also add edges connecting charging
stations ¢ € C with all these cell center points n € V received again by
computing the shortest paths.

B 6.1.3 K-Means Clustering Environment

The last presented environment originates from a K-Means clustering of taxi
trip pick-up points from historical taxi trip data sets described in Chapter
The K-Means algorithm produces clusters containing all given pick-up points
together with finally placed centroids. These centroids represent the set of
environment nodes n € V from general environment representation defined
in Section 4.1l

Generating such an environment representation could be interpreted as an ef-
fort to partition points on a map to clusters corresponding to taxi driver’s
points of interest as the K-Means algorithm optimizes a variance of a distance
between centroids and real data set pick-up points.

K-Means [24] is a well known and simple clustering algorithm used in a wide
variety of fields such as computer vision, image segmentation, feature learning,
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6. Solution Proposal

and many others. It receives a set of data points T = {x;}£,, where L
is a size of the data set. A result of the algorithm is a set of chosen centroids
C = {cx}X, and a partitioning {7}, of original data points to clusters
corresponding to individual centroids. K signifies a number of clusters and
corresponds with the K in the name of the clustering method. The algorithm
can be described in few simple steps as [11]:

1. Initializing centroids {ck}kK:1 randomly into taxi trip pick-up points
{x;}£ |. Eventually using K-means++ initialization [23] as in my case.

2. Assigning each pick-up point of the data set T to its closest centroid cy
and so creating the current cluster partitioning 7. Euclidean distance
d = ||x — c||? is originally used to compare the distance between data
set points and centroids. Nevertheless, I replaced it by using a Haversine
formulaP| as discussed below.

3. Replacing all centroids {ci}£_ ; into a mean of data assigned to it i.e.
cp = ‘%k' >_x e T, X or re-initialization of centroids in a case of an empty
cluster cy.

4. The algorithm terminates in a case of no change in the cluster partitioning
between two steps. Otherwise, going back to the step 2.

Following the general definition of the environment from the Section
4.1, the set of finally placed centroids {ck},le represent the set of envi-
ronment nodes n € V as announced in the introduction of this subsection.
Edges e € E leading from each node n € 'V are constructed for each
neighbouring cell in a resulting Voronoi diagram [28]. A final environment
structure is observable in Figure 6.3 Lengths [, times d, and speeds v of
edges e € FE are retrieved by computing the shortest paths between OSM
environment nodes corresponding to K-means centroids. It is done again
by summing lengths, times, and computing a weighted average of speeds on
individual edges of the shortest path. Finally, edges connecting centroids and
charging stations are added.

There are several disadvantages of using the K-Means algorithm for spatial
data to be discussed. First of all, it is designed to minimize the variance
of a data distance to centroids, which leads to a decreased robustness to noise
and outliers [25]. Furthermore, Geoff Boeing discourages using the K-Means
algorithm to cluster spatial data represented by longitude and latitude in
[2]. The reason is a significant distortion of longitude and latitude data far
from the equator caused by the curved earth and again the variance optimiza-
tion. To cope with such a shortcoming, I substituted a basic euclidean distance
computation by involving a Haversine formula that considers the curved earth.

Despite some limitations, I decided to use the K-Means algorithm for its
simplicity with the possibility of future development and incorporation of
more suitable clustering algorithms such as a K-Medoids [25] or a DBSCAN
used in [2].

3https://www.geeksforgeeks.org/program-distance-two-points-earth/
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Letenskéf,

Figure 6.3: K-Means environment graph example.

B 6.2 Backward Induction Algorithm

Because I have defined the charging recommendation problem in Section [4.3
as a finite horizon problem [7], the set of timestamps D is limited. Thanks
to this I can now introduce a simple and optimal form of a Value iteration
algorithm also used in [5]. It is based on dynamic programming return-
ing the desired policy 7*.

The principal idea is in starting computing the maximal reward from the end
of a shift, i.e., from time to+tpr4x (line 5 in Algorithm 1) following backward
and choosing actions a € A (line [9) with the most significant potential
reward (line 7)) for all states s € S till the beginning of a shift (states in
time tp). This method is also called backward induction [21].

A time complexity of described algorithm is linear in each dimension of
states s € S and number of feasible actions i.e. O(|V] x |B| x |D| x |A|).
On the other hand, the space complexity is linear in each dimension of states
s € §leading to O(|V| x |B| x D).

In both cases, the complexity is affected mainly by a number of environment
nodes |V] as all the other components still stay the same and are in hundreds.
Namely, a cardinality of possible SOC |B| = 100, a number of possible time
stamps is determined by a length of a taxi driver’s shift. In the evaluation
section I use 12 hours as the upper bound ie. |D| = 60-12 = 720.
There are 4 feasible actions. A cardinality of environment nodes set |V| can
rise to hundreds of thousands in a case of the OSM environment (Section
, presenting the main reason to introduce other types of environments
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6. Solution Proposal

with a lower number of environment nodes to keep the space complexity
of the algorithm bearable.

Algorithm 1: Finite Horizon Value Iteration
Input: 87 A’ D7 T’ R? P? Pd’ g? ‘F? p’ T? f

Output: 7*

1 7S]+ NULL;

2 R*[S] < 0;

3 fort < tg+tyax to 0 do

4 for s4 € S with time t do

5 for s; € S with sq reachable from it do
6 for a feasible in ss to reach sy do
7 if R*[ss] < R]ss,a,sq] then
8 R*[ss] + Rl[ss,a, sql;

9 T [ss] + a;

10 end

11 end

12 end
13 end
14 end

15 Return 7*;

N 63 Charging Recommendations

The whole idea of the proposed solution works with an assumption that data
from historical taxi trip data sets and estimated parameters express the time
and space context of a taxi demand. Generating a policy 7*, should not only
lead a taxi driver through potentially profitable locations, but it should also
fulfill the primary purpose of my thesis which is optimal planning of charging
stops.

Such a policy proposes charging stops concerning multiple constraints such
as suitable time of a charging stop, a desirable place with the most significant
future expected profit, or a charging station connection type (Section 3.2)
influencing the price and length of charging. Moreover, thanks to the generality
of the above-declared problem definition, it is easy to introduce new factors
affecting charging recommendations such as charging connection availability
prediction or electricity price time variation. As the proposed solution
takes into account all available parameters at once, it always decides to
choose the one with the highest expected profit according to the given and
estimated parameters.
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Chapter 7

Implementation

In this section, I briefly describe an implementation of the previously defined
charging recommendation problem, together with the solving algorithm.
Everything is implemented in Java 11, and Maven manages dependencies.

The algorithm itself is then used by an agent in simulation introduced in
subsequent Chapter [8. Generated policy 7* is a base model of an agent’s
behavior, ruling his step by step decisions. All evaluation results and graphs
were received by short scripts written in MATLAB.

B 7.1 Domain Implementation

The most significant part of code is formed by so-called domain implementa-
tion, which corresponds to all sections in Chapters 4] and [5l It is all situated
in a package domain in the root source directory of a project.

B 7.1.1 Environment

I will start with description of an environment package containing an im-
plementation of all three environments introduced in Section First of
all it contains generic abstract classes of Environment, EnvironmentGraph,
EnvironmentEdge and EnvironmentNode prescribing all necessary methods
to be implemented by concrete environment classes.

As indicated in the description of individual environments in Section [6.1}
each of them is closely connected with graph originating from OSM data.
For this purpose I used Graph, RoadNode and RoadEdge implementations
defined in jones.felk.cvut repositorylﬂ in packages basestrucures and
multimodal-strucures. They contain all necessary features for my envi-
ronment definition, together with tools to serialize the final graph object to
.fst file.

As discussed in Subsection [6.1.1, the OSM environment copies the structure
of original Graph parsed from OSM data. Contrarily, GridWorldEnvironment
and KMeansEnvironment are responsible for its correct creation based on
received Graph and static parameters set in class Utils.

Ihttp://jones.felk.cvut.cz/artifactory/repo/

https://github.com/RuedigerMoeller/fast-serialization
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7. Implementation

All Environment classes create a wrapper for an environment representation
implemented in EnvironmentGraph classes. As soon as an instance of an
Environment is created, an abstract method to set properties is called.

B Grid World Environment

Besides the OSM Graph, the Grid World Environment is parameterized
by the height and width of the one cell in kilometers discussed in Subsec-
tion [6.1.2. Exact values are also specified in evaluation Chapter [8. Per
these values, numbers of rows and columns are computed, individual cells
are connected with their bounding longitudes and latitudes, and OSM
RoadNodes are fitted into corresponding cells. After such a procedure all
GridWorldEnvironmentNode and GridWorldEnvironmentEdge instances are
created in means of Subsection 6.1.2.

B K-Means Environment

The core of K-Means Environment implementation is in the K-Means algo-
rithm itself. Thank to its simplicity, I decided to use a modified implemen-
tation published in % together with the K-Means++ initialization inspired
by a Python implementation in [*. In contrast with the Grid World Envi-
ronment, the size of the K-Means Environment is parameterized by a single
integer K. This means a number of K-Means clusters that are created
during the algorithm. Its value is again specified in the evaluation Section [8|

After the clustering process finishes, KMeansEnvironmentNode instances are
created based on result clusters and connected by KMeansEnvironmentEdge
instances as Voronoi diagram borders computed by an algorithm placed in .

Bl 7.1.2 MDP Representation

A TaxiRecommenderDomain is a main class responsible for the entire domain
initialization placed in a root of the domain package. After its creation,
it loads and initializes all essential data from the OSM Graph, a historical
taxi trip data set, to estimated parameters, a charging station data set,
or transitions between individual environment nodes. All the other nested
packages contain an implementation of individual domain’s parts.

B Actions and States

Both of them are placed in identically named packages and correspond
with structures defined in Section [4.3] The most essential feature to point
out is an abstract class TaxiActionType prescribing an abstract method
createConnections to be implemented by all action types a € A to create
connections between a given state s and all the other states reachable by some

3https://www.baeldung.com/java-k-means-clustering-algorithm
4https://www.geeksforgeeks.org/ml-k-means-algorithm/
https://github.com/aschlosser/voronoi-java
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7.2. Solution Implementation

action. States s € S are implemented in a class TaxiState corresponding
with its formal definition in Section [4.3| Discussing the concept of reachability,
there are introduced several conditions such as Not running out of battery or
Not operating after the end of a shift defined in a class ActionUtils. These
conditions are used in individual implementations of a TaxiActionType to
monitor reachability together with a non zero value of the transition function
Tsi,a, sj] between two states set in the TaxiRecommenderDomain class.

B Parameter Estimation

Parameter estimation is delegated by a class ParameterEstimator consist-
ing of three main parts. Namely a PassengerPickUpEstimator comput-
ing the pick-up probability P[s;,a, s;], a PassengerDestinationEstimator
taking responsibility for estimates of the passenger drop-off probability
P4[s,n], and an EnergyConsumptionEstimator providing static methods
estimating energy consumption according to a distance of a given path.
All the other parameters are defined either in a Utils class as in a case
of the taxi fare F[s,n] or in a charging package in a ChargingRateType
enum. There is also an interface DataSetReader to be implemented for simple
adding of any other historical taxi trip data set.

B Charging

A package named the same (charging) contains all necessary methods to
parse charging stations data sets as introduced in Section [3.2l Parsing JSON
files is done by JSONParser from H

I Data Serialization

Due to a usage of several time-consuming operations such as the K-Means
clustering or the shortest paths computing, I use fast-serialization wher-
ever needed. It serializes objects into data/programdata directory placed
in a root directory of the project.

B 7.2 Solution Implementation

Thanks to the simplicity of the solution proposed in Section [6 an implemen-
tation is captured in class ChragingRecommender placed in problemsolving
package. It is also fair to mention a TaxiRewardFunction class implement-
ing the reward function R[s;, a, s;] as it plays an essential role in the Algorithm
1L

The final solution consists of three simple steps:

1. Generation of all reachable states.

6|https ://github.com/fangyidong/json- simp1e|
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7. Implementation

2. Creating all connections between individual reachable states (reachability
by taking action a € A).

3. Computing the policy 7* by the proposed Algorithm [1

After performing this procedure, parameters of the maximally profitable
action and the expected reward in each reachable state s € & are already
set. In other words, the policy 7* is computed.

B 7.3 Simulation Implementation

For the purpose of the evaluation presented in subsequent Chapter |8, I
implemented a simple Simulation of a taxi driver’s shift in a package
evaluation. The whole simulation works with the OSM Graph as a rep-
resentation of the real-world road network. This fact helps to receive results
corresponding as much as possible with the reality. Still, it also means that
using some kind of an environment as defined in Section |4.1| brings the require-
ment to fit nodes from OSM Graph to EnvironmentNode n € V. Fitting
is done by an assignment of each OSM node from the Graph to the closest
EnvironmentNode.

The simulation is prepared for two kinds of agents (based on my charging
recommending algorithm and base model agent) more specified in Section
3. 1.1

On the very beginning, a short initialization based on static parame-
ters set in a Utils class is necessary. It contains loading of all needed
data, initialization of both agents (policy 7* computation), and choosing
agent to start. A starting position is always chosen randomly from all avail-
able nodes in the OSM Graph. A starting time stamp and a SOC are de-
fined in the mentioned Utils class. These three properties together cre-
ate a SimulationState. After such a process, it is possible to start the sim-
ulation with minute steps going through an entire shift.

B 7.3.1 Actions

Both agents are allowed to take actions as defined in Section 4.3 The only
difference is that in the case of Driving to a mext location, it is not
necessary to travel into a neighboring node in the Graph, but an agent is free
to choose from all available nodes. After such a choice, action a properties
like duration t,, consumption b, or a transferred distance are computed in
means of Chapter 5. In each simulation step, the current agent’s position is
computed from them. After finishing each action, an agent is asked to choose
another one.

B 7.3.2 Taxi Trip Offers

During the whole simulation, an agent receives offers from customers and
decides whether to do or do not accept them. I assume that a taxi driver is not
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7.3. Simulation Implementation

to change his mind after deciding on taking actions of Going to a charging
station and Charging at a charging station as also announced in the def-
inition of the transition function 7 in Section 4.3l Therefore taxi trip offers
are generated exclusively in a case of taking actions:

1. Going to a next location.

2. Staying in a location

These trips are chosen randomly from the historical taxi trip data set
concerning the current estimation interval, as presented in Chapter [5|

Of course, this way of trip generation is a considerable simplification
and a way to avoid implementing a complex simulation model. On the other
hand, it still preserves assumptions for time and space varying taxi demand
used in my definition of charging recommending problems as they originate
from real data, and a start time of each trip is considered.
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Chapter 8

Evaluation

In this chapter, I present a comparison of two taxi driver agents. A behavior
of the first one is based on the proposed recommending algorithm. The second
one serves as a base model behavior presented in Subsection |8.1.2.

There are several configurations with different input parameters com-
pared. These parameters are different taxi trip data set — Prague, New
York, and a different environment representation of the charging recom-
mender agent — GridWorldEnvironment, KMeansEnvironment. I have also
compared a performance of both agents under a different starting SOC.

All data needed for comparisons were received by simulating 1000 taxi
driver’s shifts for all kinds of configurations and saving parameters introduced
in Section [8.2] for each shift. As my thesis’s primary goal was to propose an al-
gorithm that recommends charging stops for a taxi driver concerning his
profit, rewardPerShift parameter appears to be the primary choice to focus.
Nevertheless, it is closely connected with many others, and it needs to be
interpreted together with them.

Because of the fact, that comparison is made by using means of received
data. I decided to discard 5 % of the best and the worst simulated shifts
in ways of taxi driver’s reward, to avoid their harmful effect on a result
mean. Significant outliers were produced mainly by the base model agent
introduced in Section [8.1.2 so omitting them does not considerably affect
results of the charging recommender based agent.

All comparisons were made on a machine with four cores of Intel Core
i7-8565U CPU @ 1.80-4.60GHz and 16 GB of RAM. Running time of one
experiment was around 60 minutes consuming approximately 13 GB of
RAM. The calculation of the policy 7* itself took approximately 5 minutes.

Only the most critical figures capturing evaluation results are listed in
subsequent sections. The complete overview is to be found in Appendix Bl

. 8.1 Taxi Driver Models

B 8.1.1 Charging Recommender Agent (CRA)

As announced above, the first of two examined taxi driver agents makes his step
by step decisions based on the policy 7* produced by the algorithm described
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in Section [6 Each decision is made by fitting the current SimulationState

into agents TaxiState and performing an action corresponding to the policy

™.

Moreover, this agent decides whether to do or do not accept an offer to trip
comparing expected rewards in the current state with a reward in a potential
ending state of an offered trip.

B 8.1.2 Base Model Agent (BMA)

The behavior of the BMA to be compared with the CRA can be described in

several points:

8 Chooses "the most lucrative place" in means of a number of historical
passenger pick-ups and always returns back to this place while waiting
for a passenger request.

® Accepts all passenger requests. The only restriction is a SOC, which is
maintained above defined level.

® Taking Going to a charging station action after a SOC drop un-
der a defined level.

® Choosing always the closest charging station.

® Choosing the fastest charging connection in a chosen charging station.

® Charging to full SOC.

The low level of SOC is set individually for each data set. 1 decided to
use such a model as it shows base signs of rational human behavior such
as the selection of a "favorite' place, for example, near an airport and keeps
moving around it.

. 8.2 Metrics

I decided to observe several metrics that are recorded and saved in class
SimulationStatistics for each simulated taxi driver’s shift. They are used
to model and evaluate the performance of individual agents.

8 rewardPerShift — A sum of all trip fares together with payments for
charging during a shift.

® distanceTransferred — A total sum of distances transferred during a
shift.

8 numOfTripsDone — A number of trips done during a shift.
8 rewardFromTrips — A sum of all trip fares during a shift.

B costOfCharging — A sum of payments for charging during a shift.
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8.3. Static Parameters
® totalEnergyCharged — An amount of energy charged in % during a
shift.

® totalEnergyConsumed — An amount of energy consumed in % during
a shift.

® distanceToReachPassenger — A sum of distances transferred by reach-
ing passengers during a shift.

8 distance WithPassenger — A sum of distances transferred when trav-
elling with passengers during a shift.

8 timeSpentCharging — A total amount of time spent charging during a
shift.

After receiving such parameters from all simulated shifts I process them
and generate results in the form of graphs in MATLAB.

. 8.3 Static Parameters

As the problem of electric taxi shift simulating is quite complex, there are
several static parameters needed to be set. All of them are presented in Table
8.1| as rough approximations of real-world data.

SHIFT START_ TIME 8 AM
SHIFT LENGTH 12 hours
TAXI FARE FOR KM 30 K¢
TAXI_START_JOURNEY_FEE 30 K¢
ELECTRIC__VEHICLE_DRIVING_RANGE | 300 Km
BATTERY__CAPACITY 40 KW
ESTIMATION_INTERVAL 30 min

Table 8.1: Simulation static parameters.

According to charging station data introduced in Section [3.2], T also decided
to present three different types of charging and three corresponding charging
rates p based on a kind of a charring connection.

m Speed charging — 60+ KW with rate p = 15 K¢/min
® Standard charging — 20-60 KW with rate p = 10 K¢/min

® Slow charging — 0-20 KW with rate p = 5 K¢/min
Undoubtedly this is a simplification of the real-world situation. It is
introduced mainly because of inconsistencies in charging station data and

missing information about the real cost in a large number of cases.
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B 84 Prague Data Set Evaluation

For the purpose of Prague taxi trip data set evaluation, I used the OSM
Graph containing 54 821 nodes and 115833 edges. They cover an area of
approximately 30 x 22 Km. Both agents could choose from 75 charging
stations with all types of charging connections, as presented in Section
8.3l The low level of BMA’s SOC was set to 15 % as an examined area is
quite large, and distances between remote locations and the closest charging
stations are long. A taxi trip offer is generated in each minute simulation step
with the probability 0.05.

Bl 8.4.1 BMA vs. CRA (Grid World)

For a comparison of BMA and CRA using the Grid World representation
of the environment, I set the height and width of one cell to 2500 m. Such
values produce the Grid World with 12 columns and 9 rows leading to 108
GridWorldEnvironmentNodes.

B Reward

As shown in Figure 8.1a, CRA adopting a behavior lead by the policy 7*
generated by the above-proposed algorithm overwhelmingly outperforms BMA
in means of a total received reward per one shift. It is essential to state that
real values of rewards can significantly differ in real-world situations due to
approximate parameter values used in the simulation. Nevertheless, both
agents were served with the same conditions, so pointing out the difference
between them is a fair statement.

According to comparisons of remaining parameters, there are several indi-
cators of such a result. First of all, as observable in Figure [8.1bl, the price
paid for charging of 1 % of SOC by CRA is significantly lower than the one
paid by BMA. This can be interpreted as CRA successfully chooses stations
and mainly charging connections with a more favorable ratio between a price
and an amount of charged energy.

Moreover, there are several other connected indications of such an outper-
formance in the reward criteria. First of all, BMA transfers considerably
more kilometers per shift that naturally leads to higher energy consump-
tion, a higher amount of energy charged, and the most fundamentally, a longer
time spent by charging. Due to these results, a mean number of trips per
shift of BMA is about 15 % lower, making approximately 2-3 trips per shift.

Two main factors cause the longer transferred distance of BMA. Proba-
bly the more significant one is BMA’s returning to his "most lucrative place"
that presents a lot of traveled kilometers. On the other hand, the second
factor could be presented as a benefit of CRA, which successfully mini-
mizes a distance to his next passenger making around 6 Km, as shown in
Figure 8.1cl
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There are also very slight differences in Figures and indicating,
that CRA is able to slightly overcome BMA in "lucrative trip" choosing.

B Different Starting SOC

As shown in corresponding Figures and [8.1f] there is an explicit de-
pendency between a starting SOC and a resulting reward per shift. This is
caused mainly by the higher need to charge an electric vehicle and so higher
expenses.

B 8.4.2 Grid World Environment vs. K-Means Environment

As the behavior of the BMA agent is independent of the environment repre-
sentation of CRA, I decided to omit a comparison of BMA and CRA with
K-Means environment representation. In contrast to that, I highlight the dif-
ferences between two CRAs with different environment representations to
bring a more informative illustration.

It is essential to point out that there are no much differences in the results
of these agents, as in the previous case. As can be seen in Figure the K-
Means based agent proves his original purpose and outperforms the Grid World
environment in the mean distance to reach a passenger. Nevertheless, the dif-
ference is only in units of meters, and as indicates Figure the Grid world
agent outperforms the K-Means variant in the most critical performance indi-
cator — reward. These slight deviations can be caused by the fact that an effort
to model the environment concerning a distance to passenger pick-up points
slightly reduces an agent’s ability to choose a favorable charging station, as
shown in Figure 8.2c

Other figures also indicate that K-Means environment based agent tends
to transfer slightly more distance in some cases, and so needs to spend more
time charging. This fact naturally leads to higher expenses.

B 8.5 New York Historical Taxi Trip Data Set
Evaluation

In case of the New York historical taxi trip data set evaluation, used OSM
Graph contains 75 701 nodes and 173 433 edges covering an area of 20 x 35 Km.
Contrarily to the Prague data set, the low level of BMA’s SOC was set to 10 %
as agents tend to move around a smaller area of Manhattan and Brooklyn,
as discussed in Chapter 3. The taxi trip offer probability is set to 0.10.

Bl 8.5.1 BMA vs. CRA (Grid World)

The same as in the case of the Prague data set, the height and width of a one
cell in the Grid World environment representation were set to 2500 m. Here
it turned out into the Grid World with 8 columns and 14 rows leading to 112
GridWorldEnvironmentNodes.
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B Reward

As already indicated in the analysis of the New York taxi trip data set in
Section [3.1} results of a comparison of BMA and CRA slightly differ from
those received in the previous section. The main argument of such a difference
is a substantially shorter distance transferred per a shift by both agents
showed in Figure The distance is around 200 — 250 Km per a shift,
which is less than half of a range reached in the Prague’s case. The same
observation is received from Figure showing the mean distance of a one
trip or Figure with the mean distance to reach a passenger.

All of these features were triggered by a strong taxi demand within a rela-
tively small area of Manhattan and Brooklyn compared to the Prague.

Such a variance leads to several consequences that appeared in results
of the evaluation. The limited distance to transfer naturally reduces a need to
charge electric taxi during a shift in case of a higher starting SOC. This fact
causes a trend seen, for example, in Figures [8.3a], [8.4b| or [8.4¢, where CRA
keeps his performance almost independent on a starting SOC, whereas BMA
suffers a lot from a need to go charging brought by a lower starting SOC.

As a starting SOC rises, BMA benefits from an absence of charging actions
and balances it’s performance to CRA. This fact again proves CRAs ability
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Figure 8.3: New York data set evaluation results — BMA vs. CRA — part one.

to choose a right time, place, and length for a charging action, which brings
him a huge benefit. On the other hand, the structure of the New York data
set, in principle, eliminates a CRA’s ability to minimize a distance to reach
passengers as it is enough to stay in places with the highest demand density.
This is perfectly observable in Figure

Focusing exclusively on results received after higher starting SOC, BMA
tends to outperform CRA in means of reward slightly. This fact is caused
mainly by CRA’s light tendency to keep his SOC higher and to go to the charg-
ing station even if it is not necessary, as indicated in Figure [8.3b

B 8.5.2 Grid World Environment vs. K-Means Environment

The comparison of individual CRA’s environment representations does not
report such a considerable difference from the Prague taxi trip data set even
though there are some subtle nuances.

First of all, the K-Means environment based agent loses his only one
strong point, which was the mean distance to reach the passenger’s pick-
up location. Figure shows that Grid World environment based agent
outperforms the K-Means variant by about 500 meters, which represents
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Figure 8.4: New York data set evaluation results - BMA vs. CRA — part two.

quite a difference in connection with generally short distances transferred
in the New York trip data set.

Even though the K-Means based agent tends to transfer more distance, con-
sume more energy and spent more time charging, it does not turn into the final
reward considerably as the time lost charging moves in tens of minutes.
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Figure 8.5: New York data set evaluation results — Grid World vs. K-Means.
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Chapter 9

Conclusion

My bachelor’s thesis’s essential objective was to formally define the problem
of charging recommendations for electric taxis and propose a suitable solving
algorithm concerning a taxi driver’s profit. An indispensable component of
such a target was implementing the presented algorithm and evaluation of
real-world data sets, proving its performance.

For the very beginning, I researched the state of the art in a taxi movement
recommending field identifying the MDP framework as one of frequently
employed tools to model such a problem. After a short introduction of histor-
ical taxi trip data sets used to mine information regarding the taxi demand,
I introduced a detailed problem representation focusing on a generality to
facilitate future extensions and improvements followed by an estimation of
parameters essential for the subsequently proposed solving algorithm. Fi-
nally, implementation and evaluation chapters verified theoretical assumptions
made during the solution design by comparing capabilities of agents lead
by the generated policy and agent adopting the base model of a taxi driver’s
behavior.

Results of all executed experiments proved an ability of the proposed rec-
ommending algorithm to determine a convenient place and time for charging
actions with an amount of charged energy. Such a capability was identified
as the critical factor of an outperformance of the base model agent concern-
ing the overall profit. The evaluation also proved my solution’s ability to
minimize a distance to reach the next passenger under certain conditions
for a shape of the taxi trip data set and so taxi demand in the concrete
city. An additional outcome of the evaluation was the indication of unful-
filling the K-Means environment potential. Such a form of environment
representation was able to achieve minor improvement in the minimization
of a distance to reach passengers. However, it was observable only un-
der the condition of suitable taxi trip data set structure and despite that
K-Means based agent lost in comparison of terminal profits.

From my point of view, the space complexity is the most significant
limitation of the proposed solution. It manifests the most in a need to
limit the number of environment nodes to keep the computation bearable,
which decreases the accuracy of recommendations. Nevertheless, as the cal-
culation is only to be performed after each historical data sets actualiza-
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9. Conclusion

tion, the resulting recommending application could be easily implemented
as a policy database responding to individual queries.

On the other hand, I consider the generality of the proposed solution
as its strongest point. It is designed to facilitate an implementation of
additional features modeling the real-world situation to achieve better results.
Such an improvement could be accomplished by including historical data
concerning an availability of charging stations, developing information about
charging rates in individual charging stations, attaching historical data of
traffic in a city, or implementing other environment representations. All these
improvements could produce a complex recommending system taking into
account multiple constraints balancing them to maximize the profit.
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Appendix A

Charging Station Data Set Example.

"IsRecentlyVerified":true,
"DateLastVerified":"2020-03-02T06:53:00Z",
"ID":149645,
"UUID":"C5526F7B-1C39-4E7B-A7F1-F083D7C0966C",
"DataProviderID":1,
"OperatorID":23,
"OperatorsReference":"53077",
"UsageTypeID": 4,
"AddressInfo":{
"ID":149998,
"Title":"Hotel Pyramida",
"AddressLinel":"Slatina 91 Frantiskovy Lazne",
"Town":"Frantiskovy Lazne",
"Postcode":"351 01",
"CountryID":64,
"Latitude":50.109416,
"Longitude":12.360282,
"ContactTelephonel":"+420 605 440 565",
"DistanceUnit":0
1,
"Connections": [
{
"ID":207763,
"ConnectionTypeID":30,
"StatusTypeID":50,
"LevelID":2,
"PowerKw":11.0,
"CurrentTypeID":20,
"Quantity":2
}
1,
"NumberOfPoints":2,
"GeneralComments":"2 Tesla Connectors, up to 11kW
for customers. Please call ahead.",
"StatusTypeID":50,
"DateLastStatusUpdate":"2020-03-02T06:53:00Z",
"DataQualityLevel":1,
"DateCreated":"2020-03-02T06:53:00Z",
"SubmissionStatusTypeID":200
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Appendix B

Evaluation Results

B B.1 Prague Data Set Evaluation
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Figure B.1: Prague data set evaluation results - BMA vs. CRA part two.

B B.1.2 Grid World Environment vs. K-Means Environment.
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. B.2 New York Data Set Evaluation
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Figure B.5: New York data set evaluation results — K-Means vs. Grid World

part one.



B. Evaluation Results
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Figure B.6: New York data set evaluation results — K-Means vs. Grid World

part two.
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