
Faculty of Electrical Engineering

Department of Computer Science

Bachelor’s thesis

Heuristic Solution of the

Close Enough Orienteering Problem
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“No temptation has overtaken you except what is
common to mankind. And God is faithful; he will not
let you be tempted beyond what you can bear. But when
you are tempted, he will also provide a way out so that
you can endure it.”

– 1 Co. 10,13

“Nepotkala vás zkouška nad lidské śıly. B̊uh je věrný:
nedopust́ı, abyste byli podrobeni zkoušce, kterou byste
nemohli vydržet, nýbrž se zkouškou vám připrav́ı i
východisko a dá vám śılu, abyste mohli obstát.”

– 1K 10,13
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to all my friends, especially Kristýna Kučerová, who have shared the struggles with
me.

vi



Abstract

In this thesis, the combinatorial meta-heuristic Greedy Randomized Adaptive Search
Procedure (GRASP) with Segment Remove is extended to solve the Close Enough
Orienteering Problem (CEOP). The addressed problem stands to find the most re-
warding path visiting a set of disk-shaped regions such that the path does not exceed
the given travel budget. The CEOP includes a discrete combinatorial problem to
determine a subset of regions and its sequence of visits together with a continuous
optimization problem to determine the optimal waypoint location of each visit to
the regions. Three new heuristics are proposed to improve the performance of the
GRASP algorithm. All the GRASP-based approaches have been evaluated on existing
benchmarks and compared with two existing methods to the CEOP.

Keywords: Close Enough Orienteering Problem, Greedy Randomized Adaptive
Search Procedure, Routing problem with profit and with neighborhood, Selective
Traveling Salesman Problem

Abstrakt

V této práci je rozš́ı̌rena kombinatorická meta-heuristika Greedy Randomize Adap-
tive Search Procedure (GRASP) pro řešeńı úloh Close Enough Orienteering Prob-
lem (CEOP). V této úloze je ćılem nalézt cestu maximalizuj́ıćı profit navšt́ıveńım
diskových region̊u, která zároveň neńı deľśı než dané omezeńı. CEOP kombinuje
diskrétńı kombinatorický problém určeńı podmnožiny region̊u a jejich pořad́ı navšt́ı-
veńı a spojitý optimalizačńı problém nalezeńı optimálńıch mı́st navšt́ıveńı region̊u.
V práci jsou navrženy tři nové heuristiky zlepšuj́ıćı řešeńı úlohy CEOP metodou
GRASP. Všechny př́ıstupy byly empiricky vyhodnoceny na existuj́ıćıch datasetech a
porovnány s existuj́ıćımi metodami řešeńı CEOP.

Kĺıčová slova: Close Enough Orienteering Problem, Greedy Randomized Adap-
tive Search Procedure, Směrovaćı problém s profitem a okoĺım, Selektivńı problém
obchodńıho cestuj́ıćıho
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Used Abbreviations

CEOP Close Enough Orienteering Problem

CP Construction Phase

CPLEX IBM ILOG CPLEX Optimization Studio

CL Candidate List

GRASP Greedy Randomized Adaptive Search Procedure

GRASP-SR Greedy Randomized Adaptive Search Procedure with the
Segment Remove

GSOA Growing Self-Organizing Array

HOP Heuristic of the Ordered Placing

ILP Integer Linear Programming

LIO Local Iterative Optimization
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VNS Variable Neighborhood Search
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CHAPTER 1
Introduction

Let us imagine a vehicle requested to collect data from a given set of sites which may represent
remote sensing or wireless communication with sensors. In practice, the operating time of the
vehicle can be limited, e.g., by limited flight time of a small aerial vehicle due to battery
payload. Therefore, the vehicle can only collect data from a subset of the sites within its
limited travel budget. Hence, assigning a reward to each site is a suitable option to prioritize
the more important locations. Then the problem is to determine the most rewarding tour that
does not exceed the given travel budget. Such a problem can be found in the orienteering sport
game where competitors run from the start location, navigate through a number of control
locations using a map and a compass and the goal is to arrive at the final destination. In a type
of orienteering, the contestants are required to arrive at the final destination within a fixed
time limit. For that reason, they only have to choose a subset of the control points and arrive
on time, or they are penalized or disqualified. Such a problem corresponds to the motivational
data collection planning that has been introduced in the literature as Orienteering Problem
(OP).

The OP derived from the orienteering races was firstly introduced by Golden, Levy, and
Vohra in [1]. The OP stands to find a tour from the initial location, visiting the most
rewarding locations and terminating in the final location so that the tour does not exceed
the given travel budget. The OP can be considered as a combination of two well-known
combinatorial problems. The Knapsack problem [2] where we have to determine a subset of
locations satisfying the given constraint and the Traveling Salesman Problem (TSP) [3] where
the goal is to find the shortest closed tour visiting all the given sites.

The regular OP has been generalized to the OP with Neighborhood (OPN) [4]. In the
OP, the vehicle has to visit the location at the exact position. In contrast, in the OPN, the
vehicle may approach the area surrounding the location to collect the reward. Thus, the
travel cost can be saved, and the total reward can be increased by using the travel budget for
visiting more locations. The OPN with a disk-shaped sensing area is called the Close Enough
Orienteering Problem (CEOP) to emphasize the restricted shape of the sensing area to a disk.
Thus, the rewards might be collected from any point closer to the center of the region than
the particular radius of the area.

Several solvers have been proposed to address the OP [5],[6] including optimal branch-
and-cut algorithm [7], heuristic approaches such as S-Algorithm or D-Algorithm [8], and

1



Chapter 1. Introduction

combinatorial meta-heuristics the Variable Neighborhood Search (VNS) [9] and Greedy Ran-
domized Adaptive Search Procedure (GRASP) [10], but also unsupervised learning-based
approaches based on the Hopfield Neural Networks [11] and Self-Organizing Map (SOM) [12].
However, the CEOP has only been addressed by two algorithms so far. The first, Growing
Self-Organizing Array (GSOA) [13], is fast but unable to escape local optima. The second is
based on the VNS combinatorial meta-heuristic [14] that utilizes sampling of the neighbor-
hood into a finite set of locations. The VNS-based approach provides better results than the
GSOA, but it is reported to be more computationally demanding.

Motivated by the VNS-based solution to the CEOP and reported results on the GRASP-
based solution to the OP, the GRASP has been considered as a suitable approach to be
extended for solving the CEOP. We aim to address the drawbacks of the two existing ap-
proaches and provide solutions with competitive quality to the VNS-based method but with
the computational requirements of the GSOA. In practice, we propose three heuristics for de-
termining the waypoint location within the disk-shaped sensing area. The first straightforward
heuristic [15] is based on determining the waypoint location as the closest point of the disk to
the path segment. The second approach uses Local Iterative Optimization (LIO) [16] to set
the waypoint location by a continuous local descent. Lastly, the optimal solver CPLEX [17]
is employed to determine the waypoint location as the Second-Order Cone Program (SOCP),
which is an optimization problem with quadratic constraints. Since the LIO and SOCP are
computationally demanding, we propose the Heuristic of the Ordered Placing (HOP) to pre-
vent excessive waypoint location determination. All these approaches are compared to both
existing algorithms, the GSOA and VNS.

The thesis is organized as follows. The OP is formally defined in the following chapter.
Then the algorithms for the OP and CEOP are described in Chapter 3. The proposed GRASP
based approach for the CEOP is introduced in Chapter 4 and the results are presented in
Chapter 5. The whole work is summarized in Chapter 6.

2



CHAPTER 2
Problem Statement

The addressed variant of the Orienteering Problem (OP) is motivated by data collection
missions where a vehicle collects data by visiting particular locations. In the Close Enough
Orienteering Problem (CEOP), the data can be collected from the disk-shaped sensing area
of the location. Thus, the vehicle can visit the region at any point of the disk with the radius
% centered at the location vi. For clarity, all the locations are considered to be vi ∈ R2.

2.1 Orienteering Problem

Let V = {v1, . . . ,vn} be a set of n locations vi ∈ R2 with Euclidean distance between the
locations vi and vj denoted ‖vi,vj‖. Each location vi has assigned positive reward ri ∈ R+

but the initial location v1 and final location vn have zero reward, and thus r1 = rn = 0. The
OP stands to plan the most rewarding route from v1 to vn such that the length does not
exceed the travel budget Tmax. Hence, in the OP, it has to be determined a subset Sk ⊆ V of
2 ≤ k ≤ n locations and the optimal sequence of their visits to ensure Tmax is satisfied. The
solution can be described as a sequence of k locations indexes Σ = 〈σ1, . . . , σk〉 where σ1 = 1
and σk = n with the length

L(Σ) =

k∑
i=2

∥∥vσi−1 ,vσi
∥∥ . (2.1)

The OP can be formulated as an optimization Problem 2.1 where the total collected reward
R(Σ) is being maximized such that the length of the path L(Σ) ≤ Tmax. The OP is known
to be NP-hard [1].

3



Chapter 2. Problem Statement

Problem 2.1 Orienteering Problem (OP).

max
k,Σ

R(Σ) =
k∑
i=1

rσi

s. t.

L(Σ) ≤ Tmax

2 ≤ k ≤ n
Σ = 〈σ1, . . . , σk〉 , 1 ≤ σi ≤ n, σi 6= σj for i 6= j

σ1 = 1 , σk = n

2.2 Close Enough Orienteering Problem

The CEOP generalizes the OP in the way that the vehicle does not have to reach the precise
location vi to get the data. The reward can be collected from any point pi that is within the
% distance from vi where % is the radius of the disk-shaped sensing area centered at vi. In
the CEOP, we thus need to determine not only the subset of k locations and the sequence
Σ = 〈σ1, . . . , σk〉 but also the best waypoint locations P = 〈p1, . . . ,pk〉 in the disk area of
each location such that ‖vσi ,pi‖ ≤ %. Hence, the tour length can be expressed as

L(Σ, P ) =
k∑
i=2

‖pi−1,pi‖ . (2.2)

The initial and final locations v1 and v2 are prescribed as in the OP, and thus, p1 = v1,
pk = vn because the vehicle has to start from the specific location and might return to a
different one.

The CEOP can be formulated as the optimization Problem 2.2, which includes a continuous
optimization of the waypoint locations P = 〈p1, . . . ,pk〉 up to 2n variables in addition to the
OP combinatorial part, i.e., determining the subset of k sites and the sequence of their visits.
Notice, the CEOP is also NP-hard as for the % = 0, it reduces to the OP.

Problem 2.2 Close Enough Orienteering Problem (CEOP).

max
k,Σ,P

R(Σ) =
k∑
i=1

rσi

s. t.

L(Σ, P ) ≤ Tmax

2 ≤ k ≤ n
Σ = 〈σ1, . . . , σk〉 , 1 ≤ σi ≤ n, σi 6= σj for i 6= j

P = 〈p1, . . . ,pk〉
σ1 = 1 , σk = n , p1 = v1 , pk = vn

‖pi,vσi‖ ≤ % , for pi ∈ P and vσi ∈ V

4



CHAPTER 3
Related Work

Since the first work solving the OP was introduced in the late 20th century, many approaches
were proposed and later improved over time. Firstly, optimal solvers based on branch-and-
bound [18] or branch-and-cut [7] approaches were introduced, which formulates the OP as the
Integer Linear Programming (ILP). The approaches use Lagrangian relaxation of the ILP to
determine the lower and upper bounds and thus reduce the rooted search tree of solutions.
Since the OP is NP-hard, the optimal approaches are very demanding and computationally
intractable for an increasing number of locations. Therefore, methods based on meta-heuristics
or unsupervised learning have been proposed, which balance the computational time with the
quality of the provided results.

The first proposed heuristic approaches to the OP are the S-Algorithm and D-Algorithm
by Tsiligirides [8]. The stochastic S-Algorithm generates many routes using the Monte Carlo
search method. The D-Algorithm is a deterministic algorithm based on the idea of Wren and
Holliday for the vehicle-scheduling problem [19]. The routes are built up in specific separated
sectors of the location space, which minimize the total path length by predetermined rules.
The modifications of the sectors obtain 48 possibilities for each iteration that are further
evaluated. Besides, a route improvement algorithm has been proposed to improve further
found solutions by exchange, insertion and exclusion locations in the route.

Further, Golden et al. introduced the Center of Gravity heuristic [1] containing three
main steps: 1) the route construction step; 2) the route improvement step; and 3) the center-
of-gravity step. The first two steps construct the initial path, improve it by the 2-Opt [20],
which reduces the crossed segments of the path, and insert the closest locations within the
travel budget. The initial tour is further adjusted according to the center-of-gravity, where
the assigned reward represents the location weight. Thus, the remaining locations are inserted
into the path based on the rewards and the distance to the center-of-gravity. The center-of-
gravity and the improvement steps repeat until the path changes. The final solution is selected
as the best path from all produced ones.

The Four-phase algorithm [21] was presented by Ramesh and Brown. In the first insertion
phase, a location is selected based on the ratio between the minimal prolongation and its
reward. The second phase applies the 2-Opt [20] or 3-Opt [22] optimization for the TSP
based on the quality of the solution. The method repeats the first phase when the provided
route might obtain more locations without exceeding the travel budget. In the third phase,
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Chapter 3. Related Work

the algorithm deletes specific locations due to the possibility of a new insertion. The three
phases are iteratively repeated to generate the solution. In the final phase, the remaining
locations are attempted to be added into the final path based only on their prizes such that
they do not violate the travel budget.

The Tabu Search (TS) [23] has been employed to the OP in [24], where operations over
clusters of locations are proposed. It tries to avoid including location with seemingly high
profit, but the distance between the current path and the location prevents the insertion of
other closer sites, which may have higher total rewards. Hence, the algorithm is more likely
to escape the local optima. The idea of the TS insertion is to determine the candidate cluster
based on the dispersion index. Then, from the cluster, all unreachable sites are removed and
included in the current route using the TSP heuristic US [25]. The locations are also being
removed according to the length of the edges between locations. The removed sites receive a
tabu status for several iterations which restrict their insertion.

The Ant Colony meta-heuristic [26] has been deployed to the OP in [27], where agents
called ants leave their pheromone scent on visited edges between the sites. A state transition
rule is implemented based on the left pheromone and the rate between the location profit and
its distance to balance the solution space exploration with the path improvement.

The Variable Neighborhood Search (VNS) meta-heuristic [28] has been utilized for the OP
in [29] to systematically search through the solution space using predetermined neighborhood
structures. The VNS consists of two main procedures Shake and Local Search, which try to
improve the generated initial solution. The Shake procedure chooses the next route from a
set neighborhood structure, and the path is further improved in the Local Search procedure.
If the newly produced solution has a better sum of rewards than the current one, the path
is used in the next iteration. When the route does not improve, the algorithm continues
with a different neighborhood structure. The method performance is highly connected to the
demands of the neighborhood structures, and for the OP, four of them were proposed. The first
Insert specifies the closest solution neighbors obtained by a single location insertion, deletion,
or a location reordering. The second structure is the Exchange, which swaps two sites, not
depending on whether the locations are included in the route or not. The next structure is the
Path Insert, which is similar to the simple Insert, but sub-paths are inserted or deleted. The
fourth structure is the Path Exchange that swaps two sub-paths of the same number of sites.
Several variants of VNS were proposed in [30] to address the computational requirements of
the systematical search. Such modifications are the Variable Neighborhood Descent, which
uses only the Local Search phase, the Reduced VNS that runs only the Shake part, and
Randomized VNS (RVNS), which randomly chooses the next neighborhood structure instead
of systematical search.

The last herein reviewed meta-heuristic approach is based on the Greedy Randomized
Adaptive Search Procedure (GRASP) [31] that is a highly effective, constructive meta-heuristic
used for different types of optimization problems. In 2014, Campos et al. presented GRASP
with Path Relinking [10] and applied it to the OP. It provides high-quality solutions in a rea-
sonable time compared to the state-of-the-art algorithms. Combining the GRASP approach
and local combinatorial optimization is further employed in the novel GRASP with Segment
Remove (GRASP-SR) [32], which further outperformed the existing approaches.

In contrast to the combinatorial heuristic approaches, there are also approaches based on
unsupervised learning. Wang et al. proposed the Hopfield Neural Network to solve the OP [11]
using a path represented as a two-dimensional matrix. The matrix cell (i, j) represents the
i-th region at the j-th position in the path. The goal is to minimize the energy function that

6



Chapter 3. Related Work

takes into consideration the OP constraints as the visitation of each location no more than
once, the initial and final locations, and not exceeding the travel budget.

The addressed CEOP is highly connected with the solution of the OP because the exist-
ing methods for the CEOP are extensions of the existing OP solvers. Therefore, not only
the existing methods to the CEOP are detailed in the following sections to make the thesis
more self-contained, but also the perspective GRASP-based solution to the OP is detailed to
provide insights to the developed solutions. In particular, the Growing-Self Organizing Array
(GSOA) [13] is described in Section 3.1 and the VNS-based approach [14] in Section 3.2.
Finally, the herein proposed approach is based on GRASP, and therefore, it is detailed in
Section 3.3.

3.1 Growing Self-Organizing Array (GSOA)

The Growing Self-Organizing Array (GSOA) [13] is an unsupervised learning technique to ad-
dress routing problems. It is developed from the Self-Organizing Map (SOM) for the TSP [33],
later generalized to the OPN in [34]. The GSOA is an array of nodes where each node has
its position, and it is associated with the region, and the particular waypoint location visiting
the region. Since nodes are organized in an array, the GSOA naturally encodes the path as a
sequence of regions with their waypoint locations. The learning of the GSOA is an iterative
adaptation of the array to the locations in a fixed number of learning epochs. During each
learning epoch, a new node might be created for each region together with the corresponding
waypoint location as the closest point of the node to the region. The new node is kept if
the path length does not exceed the travel budget. Otherwise, the node is not added to the
array and continues with the next site. At the end of each learning epoch, the GSOA only
keeps the new nodes, and nodes from the previous epoch are removed. The GSOA can be
considered as a constructive heuristic because it provides a solution very quickly (in several
epochs); however, once the array converges to a stable solution, it cannot escape the local
optima.

3.2 Variable Neighborhood Search

The VNS-based combinatorial meta-heuristic has been employed to the CEOP in its RVNS
variant in [14]. Since the solution of the CEOP needs to determine the waypoint locations
of visits to the regions, the sensing areas are sampled into a finite set of locations. Then,
the problem can be solved as a poorly discrete combinatorial optimization. However, the
approach has been further extended in [35] to use the Local Iterative Optimization (LIO)
that continuously determines locally optimal waypoint locations. The VNS-based solver is
reported to provide high-quality solutions, but it is computationally demanding.

3.3 Greedy Randomize Adaptive Search Procedure

The GRASP algorithm consists of two main parts. The first is the Construction Phase (CP)
that is applied to build the initial path by inserting new locations to the current solution,
which at the beginning contains the initial and final locations. Then, the route is improved
in the Local Search Phase (LSP) that might remove sites from the solution, uses 2-Opt [20]
to shorten the path and attempts new insertions.
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Chapter 3. Related Work

Figure 3.1: An example of the Candidate List before restriction based on the greedy insertion of
unvisited locations, which are added at a position of the shortest path prolongation. The dotted line
visualizes the path before the insertion.

At the beginning of each iteration of the CP, an unvisited location is greedily inserted into
the current path such that the route prolongation is minimal. If the newly created path does
not exceed the travel budget, this path is considered as a candidate for the next CP iteration.
The path is stored in the Candidate List (CL) containing promising paths. Nevertheless,
when the budget is not met, the path cannot be included in the CL. Hence, the part named
Segment Remove (SR) tries to remove sub-paths to examine whether the inserted location
is more beneficial to the total rewards. When the value of the route increases, it is also
added into the CL. The SR continues until all meaningful segments are examined, and every
improving solution is marked as a candidate. At the end of a single CP iteration, the CL is
restricted in the way that each solution with at least 20 % of the best found total rewards are
kept. Notice that the threshold value of 20 % is recommended in [10] based on the empirical
evaluation. Finally, the ongoing path is randomly chosen from the restricted CL. The whole
CP phase terminates when the CL is empty, which means no improving path has been found.
An example of the CL before the restriction is depicted in Figure 3.1.

(a) The old path (b) The improved path

Figure 3.2: An example a path improved by 2-Opt optimization heuristic.

8



Chapter 3. Related Work

After the CP, the solution is further improved in the LSP. Firstly, a single location is
removed from the current path to escape the local extreme. Subsequently, the GRASP utilizes
the 2-Opt heuristic [20] to eliminate crossed segments of the path, which may shorten the
route, see Figure 3.2. At the end of a single iteration of the LSP, unvisited locations are
attempted to be inserted in the same way as in the CP. If the current path improves the total
collected rewards or has the same total rewards and the path length is shortened, it becomes
the new current path for the next iteration. The whole GRASP algorithm terminates when
no improving path is found in the LSP.
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CHAPTER 4
Extension of GRASP to the Close
Enough Orienteering Problem

For this thesis, the GRASP combinatorial meta-heuristic has been chosen to address the
drawbacks of the existing VNS and GSOA-based approaches for the CEOP. The VNS-based
algorithm provides high-quality solutions, but its computational employment is very demand-
ing. Unlike VNS, the GSOA produces results quickly; however, it is unable to escape the
local optima once it converges to a stable solution. The GRASP-SR approach for the OP
managed to outperform the state-of-the-art algorithms in the quality of solutions where it re-
peatedly tries to escape the local optima. Furthermore, it is reported that its computational
requirements are low.

Algorithm 1: GRASP

Input: V = {v1, . . . ,vn} – n locations to be visited, each vi ∈ V with the reward ri,
where v1 and vn are the specified initial and final locations, respectively.

Output: (P,Σ) – Final path from v1 to vn with the waypoint locations P and the
sequence of visits Σ to the subset of V .

1 Σ← 〈1, n〉; // Initial path

2 P ← 〈v1,vn〉
3 repeat // Construction Phase

4 (P,Σ)←addLocation(P,Σ);

5 until P is changed
6 (P,Σ)←localSearch(P,Σ) // Local Search Phase

7 return (P,Σ)

The main difference between the GRASP-based approach for the OP and the CEOP is in
determining the waypoint locations in the disk-shaped sensing areas, which may shorten the
total path length. Thus, it might enable the addition of new locations, and the total sum of
rewards may increase. Therefore, the GRASP for the CEOP is mainly about determining the
waypoint locations pj for j ∈ {1, . . . , k} while locations vi are being inserted by the operation
addLocation. However, once the waypoint location is set, it is not further improved. Thus,
in the localSearch procedure, an optimization operator is implemented to improve the
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Chapter 4. Extension of GRASP to the Close Enough Orienteering Problem

waypoint locations of the whole path. The GRASP is overviewed in Algorithm 1 and the
proposed modifications in addLocation and localSearch are detailed in the rest of the
chapter.

In a single iteration of the Construction Phase (CP) depicted in Algorithm 2, an unvisited
region centered in vi is greedily inserted into the current path by the insertion operator
defined in (4.1).

Definition 4.1 insertion(P,Σ, j,vi).

Σ∗ =
〈
σ1, . . . , σj−1, i, σj , . . . , σ|Σ|

〉
P ∗ =

〈
pσ1 , . . . ,pσj−1 ,p

∗,pσj , . . . ,pσ|Σ|

〉 (4.1)

The insertion puts the region of vi at the position j′ defined in (4.2) such that the prolon-
gation of the path (P ∗,Σ∗) is minimal.

j′ =
|Σ|

arg min
j=2

‖L(P ∗,Σ∗)− L(P,Σ)‖ (4.2)

For the OP the waypoint location p∗ is directly the location vi. In the case of CEOP, it
has to be determined as the most suitable location of the region. Three approaches detailed
in Section 4.1–4.3 are proposed. Afterward, the newly created path (P ′,Σ′) is determined
whether the path length is within the travel budget Tmax and it is decided to include the
route in the Candidate List (CL) or not.

For the current insertion, if the travel budget is exceeded, the Segment Remove (SR) is
employed to remove different sub-paths named segments to test whether the newly added
location is more valuable to the total reward. In practice, the SR can be implemented very
effectively with a linear time complexity to the number of sites in the current path O(k). It
starts by excluding a single location after the initial location such that two segments of the
tour are removed. Then, the path length is checked, whether it reached the travel budget. If
the travel budget is satisfied and the sum of the rewards of the new route (P ′′,Σ′′) improves
compared to the current path (P ′,Σ′), the route is included in the CL. Then, the first location
of the removed sub-path is returned to the solution. When the travel budget is exceeded, the
segments are extended with the following one. The whole cycle repeats until the end of the
path is not reached. An example of the SR is depicted in Figure 4.1.

At the end of the addLocation procedure, the final candidate list CL′ is created by
restrict operation (4.3) which keeps only solutions with a greater total reward then cbest of
the highest found rewards Rbest. According to [10], the cbest is set to 20 %, which removes
only the least promising routes and maintains the possibility of escaping the local optima.

Definition 4.2 restrict(CL).

Rbest = max {R(Σ) | (P,Σ) ∈ CL}
CL′ = {(P,Σ) | (P,Σ) ∈ CL,R(Σ) ≥ cbestRbest}

(4.3)

Finally, the successor to the current path is randomly chosen from the restricted CL′. The
CP continues while an improved route is found, which means that the CL is not empty. The
time complexity of a single CP iteration depicted in Algorithm 2 can be bounded by O(n2).
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Algorithm 2: addLocation(P,Σ, b = −1)

Input: P,Σ – the current path.
Input: b – blocked index; if not specified b = −1 is used.
Output: P ,Σ – the updated path.

1 CL← ∅ // A candidate list of solutions

2 for i ∈ {1, . . . , |V |} do
3 if i /∈ Σ ∧ i 6= b then
4 for j ∈ {2, . . . , |Σ|} do
5 (P ∗,Σ∗)← insertion(P,Σ, j,vi) // Using (4.1)

6 if (j = 2) ∨ (L(P ∗,Σ∗) < L(P ′,Σ′)) then
7 (P ′,Σ′)← (P ∗,Σ∗)
8 end

9 end
10 if L(P ′,Σ′) < Tmax then
11 CL← CL ∪ {(P ′,Σ′)}
12 end
13 else // Segment Remove

14 β ← 2
15 for α ∈ {2, . . . , |Σ′| − 1} do
16 if β < α then
17 β ← α
18 end
19 Σ′′ ← Σ′ \ {σα, . . . , σβ}
20 P ′′ ← P ′ \ {pσα , . . . , pσβ}
21 while (β + 1 < |Σ|) ∧ (L(P ′′,Σ′′) > Tmax) do
22 β ← β + 1
23 Σ′′ ← Σ′ \ {σα, . . . , σβ}
24 P ′′ ← P ′ \ {pσα , . . . , pσβ}
25 end
26 if L(P ′,Σ′) ≤ Tmax then
27 if (R(Σ′′) > R(Σ)) ∨ (R(Σ′′) = R(Σ) ∧ L(P ′′,Σ′′) < L(P,Σ)) then
28 CL← CL ∪ {(P ′′,Σ′′)}
29 end

30 end

31 end

32 end

33 end

34 end
35 if CL 6= ∅ then
36 restrict(CL) // Using (4.3)

37 (P ,Σ)← random(CL)

38 end

39 return (P ,Σ)
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(a) The current path with
L(P,Σ) ≤ Tmax and R(Σ) = 23
before insertion of the new green
location.
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(b) A greedy insertion of the new
location but with the exceeded
travel budget L(P,Σ) > Tmax.
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(c) A removal of a single location
at the beginning of the path still
with L(P,Σ) > Tmax.
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(d) An expansion of the removed
segment with L(P,Σ) ≤ Tmax

and R(Σ) = 24. This path is in-
cluded into the CL.
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(e) A shortening of the segment
but with exceeded travel budget
L(P,Σ) > Tmax again.
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(f) An expansion of the segment
to the following location with
L(P,Σ) ≤ Tmax and R(Σ) = 22.
This path is not better then the
current path.
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(g) An expansion of the removed
segment with L(P,Σ) > Tmax.
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(h) Another expansion still with
L(P,Σ) > Tmax.
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(i) Obtained travel budget
L(P,Σ) ≤ Tmax but with the
reward R(Σ) = 19.
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(j) A shortening of the removed
segment with L(P,Σ) ≤ Tmax

and R(Σ) = 25. Thus, the path
is put into the CL.
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(k) Another shortening but
with the exceeded travel budget
L(P,Σ) > Tmax.
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(l) The last shortening of the re-
moved segment with L(P,Σ) >
Tmax. Thus, the Segment Re-
move terminates.

Figure 4.1: An example of the Segment Remove for the radius % = 0 and insertion of the location
shown in green.

Definition 4.3 remove(P ,Σ, i).

Σ∗ =
〈
σ1, . . . , σi−1, σi+1, . . . , σ|Σ|

〉
P ∗ =

〈
pσ1 , . . . ,pσi−1 ,pσi+1 , . . . ,pσ|Σ|

〉 (4.4)

Subsequently, the Local Search Phase (LSP) depicted in Algorithm 3 is launched. In a
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Algorithm 3: localSearch(P,Σ)

Input: P,Σ – the current path.
Output: P ,Σ – the updated path.

1 (P ,Σ)← (P,Σ)
2 repeat

3 for i ∈ {2, . . . , |Σ| − 1} do

4 P ′,Σ′ ← remove(P ,Σ, i) // Using (4.4)

5 2-opt(P ′,Σ′) // See [20]

6 optimization(P ′,Σ′) // Using (4.5)

7 b← σi // Blocked index σi ∈ Σ
8 repeat
9 P ′,Σ′ ← addLocation(P ′,Σ′, b)

10 until (P ′,Σ′) is changed

11 if (R(Σ′) > R(Σ)) ∨ (R(Σ′) = R(Σ) ∧ L(P ′,Σ′) < L(P ,Σ)) then

12 (P ,Σ)← (P ′,Σ′)
13 end

14 end

15 until (P ,Σ) is changed

single LSP iteration, a location vb at i-th position in the path is removed according to (4.4) to
escape the local extreme. Then the path is being improved by the 2-Opt optimization, which
removes the crossed segments.

Definition 4.4 optimization(P ′,Σ′).

(P ∗,Σ∗) = remove(P ′,Σ′, j)

(P ′,Σ′) = insertion(P ∗,Σ∗, j,vσ′j ) , ∀j ∈ {2, . . . , |P ′| − 1} (4.5)

After that, the optimization operator is executed to shorten the path length. It iteratively
adjusts the path waypoint locations pj for j ∈ {2, . . . , |P ′| − 1} by removal and insertion at
the same position j based on the three proposed approaches detailed in Section 4.1–4.3. The
position is updated to p′j only if (4.6) holds.

‖pj−1,pj‖+ ‖pj ,pj+1‖ >
∥∥pj−1,p

′
j

∥∥+
∥∥p′j ,pj+1

∥∥ (4.6)

The optimization converges quickly, and three iterations provide suitable trade-off between
the solution quality and computational requirements. Finally, the insertion of new locations
might be enabled. The unvisited locations are attempted to be inserted in the same way as
in the CP, but the location vb is not included. The LSP procedure is more complex due to
the usage of the addLocation procedure and a single iteration can be bounded by O(n4).

4.1 Naive Approach

The Naive approach of the waypoint location determination is based on a straightforward idea
of the closest point of a disk to a line, and it has already been employed in the GSOA [13].
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There may occur two situations that are depicted in Figure 4.2. In the first situation, the
current path does not cross the disk-shaped neighborhood area. Thus, the waypoint location
is determined as the closest point of the sensing area to the path segment. In the second
situation, the path goes through the disk-shaped area. Hence, the waypoint location is set to
the closest point to the disk center of the crossing route part. Although the idea is relatively
simple, it provides competitive solutions to the other approaches, as reported in [15] and
Chapter 5.

(a) The location neighborhood area do not cross
the path.

(b) The path go through the location neighbor-
hood area.

Figure 4.2: Determination of a waypoint locations by the Naive approach.

Furthermore, the naive insertion can be employed in the CP only, or it can also be employed
during the LSP. Thus, two variants are considered in the performed evaluation reported in
Section 5.1 to study the influence of the optimization procedure.

4.2 LIO Approach

The second approach to the waypoint determination is based on the Local Iterative Optimiza-
tion (LIO) [16] which is a continuous descendant procedure converging to the local optima.
The initial position of the waypoint location is set in the same way as in the Naive approach.
When the path does not go through the disk-shaped area, the LIO tries to shift the initial
position within the edge of the sensing area by a small step, and path prolongation is exam-
ined. If the path is shortened, the waypoint location is updated, and the step is increased.
Otherwise, the waypoint is not changed, the step is decreased and changes its direction. The
descent is repeated until a given threshold for the step size is not reached. The particular
value of the step threshold is 10−10 for all the results reported in this thesis. The idea is
visualized in Figure 4.3.

4.3 SOCP Approach

Finding optimal waypoint location can be formulated as an optimization problem with quadratic
constraints called the Second-Order Cone Program (SOCP). The path is determined for the
sequence of k locations Σ = 〈σ1, . . . , σk〉 where we are searching for |k| − 2 waypoint loca-
tions pj that the distance between each waypoint location ‖pi,pi+1‖ for i ∈ {1, . . . , k − 1}
is minimal. The optimization problem is formally defined as Problem 4.1 with the notation
visualized in Figure 4.4.

16



Chapter 4. Extension of GRASP to the Close Enough Orienteering Problem

Figure 4.3: The Local Iterative Optimization (LIO) method refines the waypoint location. The black
arrow shows the examined step of the adjustment. When it is accepted, the next step is the green one.
Otherwise, the waypoint location do not change and the next examined step is the red one.

The SOCP can be solved using IBM ILOG CPLEX Optimization Studio [17]. The solution
of the SOCP provides the optimal waypoint locations for the particular order of visit to the
currently selected regions. Even though it can be computationally demanding, it has been
implemented to observe the influence of determining optimal waypoint location to the solution
quality of the CEOP.

Notice that the SOCP formulation in the CP is only for the insertion of the new location
between two existing waypoints. Therefore, the SOCP is for a sub-path of the size k = 3. On
the other hand, the optimization operator in the LSP finds the optimal waypoint locations
of the whole path k = |P |.

Problem 4.1 The Second-Order Cone Program (SOCP) for the waypoint locations.

min
pj

k−1∑
i=1

di

s. t. di = ‖pi,pi+1‖ , ∀i ∈ {1, . . . , k − 1}∥∥vσj ,pj∥∥ ≤ % , ∀j ∈ {2, . . . , k − 1}
p1 = vσ1 , pk = vσk

dj−1 dj

vσ1

vσj−1

pj−1

vσj

pj

vσj+1

pj+1

vσk

Figure 4.4: Relations of the variables for the SOCP formulation of Problem 4.1.
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4.4 Heuristic of the Ordered Placing

Due to the relatively demanding waypoint location determination based on the LIO and
SOCP, we propose the so-called Heuristic of the Ordered Placing (HOP) to prevent exces-
sive determination of new waypoint locations. The idea is based on sorting the prospective
prolongations to save the computational time, and it works as follows.

Before a possible insertion of a new location, the lower bound on the expected prolongation
∆L is precalculated based on the distance to the center of the new sensing area according to

∆L = ‖pi,v‖+ ‖v,pj‖ − 2%− ‖pi,pj‖ , (4.7)

where the relation between the waypoint locations is visualized in Figure 4.5. Afterward, the
new location is attempted to be inserted into the path segment in ascending order of the
lower bound values. The possible insertion is examined only if the estimated lower bound
of the prolongation ∆L is shorter than the current shortest prolongation determined so far.
Therefore, the LIO or more computationally expensive SOCP is examined only for the most
promising insertions. Determination of (4.7) is computationally efficient, and thus, the real
impact on the computational requirements is reported in the next chapter.

pi

pj

v
%

Figure 4.5: Relation of the waypoint location and possible insertion of the v between pi and pj in
the computation of the lower bound estimation of the path prolongation utilized in the proposed HOP.
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CHAPTER 5
Results

The proposed GRASP-based algorithms to the CEOP have been empirically evaluated using
three datasets of existing benchmark instances. The first three scenarios proposed by Tsili-
girides [8] are called Set 1, Set 2, and Set 3, each with 31, 20, and 32 locations, respectively,
which is rather small. Therefore the second sets include larger instances of the diamond-
shaped Set 64 and the square-shaped Set 66 introduced by Chao et al. in [36]. The last
dataset is Set 130 [13], where the number of locations increases to 130. Examples of instances
are depicted in Figure 5.1. Each instance is defined by the scenario, the travel budget Tmax,
and the sensing range %. For each dataset, a set of particular instance values is established.
Increasing sensing range and the travel budget allow the visitation of all the sites. Thus, if
one approach with a specific sensing radius has obtained all locations, the higher values of
the travel budget are excluded because the solution would be the maximal reward possible.
By avoiding such instances, it limits the bias of the average relative value representing the
quality of the solutions. The sensing range is selected from the set % ∈ {0.0, 0.5, 1.0, 1.5, 2.0},
where % = 0 stands for the regular OP.

The developed GRASP approaches are compared to the existing heuristics, the GSOA [13]
based on unsupervised learning, and the combinatorial VNS [14], which searches through
the solution space with eight samples per each disk-shaped neighborhood area. The VNS-
based algorithm is terminated after 1000 iterations or 200 iterations without improvement.
All the algorithms have been implemented in C++ and run within the same computational
environment using a single core of the Intel Core i5-4460 CPU running at 3.2 GHz.

Each test instance is solved 20 times by each solver because all the methods are randomized
algorithms. The reported solution R is the maximal collected reward overall particular runs
as utilized in the previous OP and CEOP studies [14]. However, due to several runs of many
instances defined by the number of the travel budget Tmax and sensing radius %, aggregated
results are reported as the average gap G among the solutions of the particular scenario. The
gap G represents the relative difference to the best-found solution Rref among all performed
runs by all examined methods. Thus, for each problem instance, defined by the scenario, the
travel budget Tmax and the sensing range %, the particular value of the reference solution Rref

is established. Then, the value of the gap G is calculated as

G(Σ) =

(
1− R(Σ)

Rref

)
· 100 [%] (5.1)
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(a) Set 1 (b) Set 2 (c) Set 3

(d) Set 64 (e) Set 66 (f) Set 130

Figure 5.1: Example of examined instances of the selected benchmark datasets where the colored
disks represent the sensing area of each particular location. The red color shows the most valuable
locations and the blue stands for the least rewarding ones.

where R(Σ) is the reward of the solution found by the individual algorithm for the particular
instance.

5.1 Influence of the Waypoint Locations Optimization

Firstly, the influence of the optimization operator on the final solution is studied, and two
variants of the Naive approach proposed in Section 4.1 have been evaluated. The first variant
is denoted GRASP-Naivesimple, and it employs the waypoint location heuristic only for
determining the waypoint location while inserting. The second approach denoted GRASP-
Naive employs the waypoint determination also in the LSP to improve the waypoint locations
of the whole path.

The average gap for each dataset is listed in Table 5.1 to show the importance of the
optimization procedure for finding high-quality solutions. The best-provided results for each
dataset are highlighted in bold. An example instance of the square-shaped Chao Set 66 with
the sensing radius % = 0.5 is depicted in Figure 5.2. It shows the solution quality according
to the mean collected rewards normalized to the reference Rref with an 80 % non-parametric
confidence interval. The right plot depicts the required computational time in milliseconds
on a logarithmic scale.

Even though the GRASP-Naive approach is based on a simple and straightforward
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Table 5.1: Aggregated results for the optimization of the waypoint locations

Instances
GSOA VNS GRASP-Naivesimple GRASP-Naive

G [%] G [%] G [%] G [%]

Set 1 9.27 2.94 1.53 0.64

Set 2 2.17 2.15 0.79 0.40

Set 3 0.75 1.46 0.67 0.16

Set 64 2.69 3.29 0.97 0.54

Set 66 15.70 3.02 3.24 0.55

Set 130 6.44 0.01 5.00 1.26

heuristic, it provides better solutions than the GSOA with competitive computational require-
ments. Furthermore, the proposed GRASP-Naive provides solutions with the competitive
quality to the VNS while it is only slightly more demanding than GRASP-Naivesimple.
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Figure 5.2: Solution quality and computational requirements of the existing methods and proposed
approaches with and without the waypoint optimization for Set 66 with the sensing radius % = 0.5.
The quality is shown as the relative sum of the collected rewards R normalized by the reference
solution Rref for each specific problem instance. The showed curve represents the mean value, and the
semi-transparent area stands for 80 % non-parametric confidence interval.

5.2 Influence of the Waypoint Location Determination

The three proposed methods of the waypoint location determination proposed in Section 4
are the Naive approach, the LIO approach denoted GRASP-LIO, and the SOCP approach
denoted GRASP-SOCP. Based on the results on variants of the Naive approach reported in
Section 5.1, only the GRASP-Naive is considered here as it provides noticeable better results
with only a minor increase in the computational requirements. For now, the GRASP-LIO
and GRASP-SOCP are both without the proposed HOP.

The aggregated results with the average gap G for each examined benchmark scenario are
listed in Table 5.2. The results for Set 64 with the sensing radius % = 0.5 are depicted in
Figure 5.3. The plots show the average relative sum of rewards normalized to referential Rref
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Table 5.2: Aggregated results for the existing methods and proposed approaches

Instances
GSOA VNS GRASP-Naive GRASP-LIO GRASP-SOCP

G [%] G [%] G [%] G [%] G [%]

Set 1 10.42 4.33 2.02 0.92 0.00

Set 2 3.15 3.13 1.38 0.00 0.79

Set 3 1.69 2.40 1.09 0.00 0.00

Set 64 3.96 4.55 1.83 1.20 0.00

Set 66 17.17 4.64 2.17 0.68 0.05

Set 130 6.78 0.37 1.62 0.73 0.16
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Figure 5.3: Solution quality and computational requirements of the existing methods and proposed
approaches for Set 64 with the sensing radius % = 0.5. The quality is shown as the relative sum of
the collected rewards R normalized by the reference value Rref for each specific problem instance. The
showed curve represents the mean value and the semi-transparent area stands for 80 % non-parametric
confidence interval.

and the mean computational time. Detailed results for the selected travel budgets Tmax and
sensing radii % are reported in Table A.1, Table A.2 and Table A.3.

The LIO and SOCP based approaches improve the solution quality and grant more stable
collected rewards within all batches of a single instance. Although the SOCP provides an
optimal solution, its results correspond to the VNS method solution quality and computa-
tional requirements. Furthermore, the SOCP-based approach usually obtained the reference
Rref overall runs. On the other hand, the LIO-based approach is able to reach half of the
computational time of the VNS with no significant change in the solution quality. All three
approaches outperformed the GSOA with the total collected rewards, where only the Naive
approach competes with the computational requirements. However, the proposed GRASP-
LIO seems to provide a suitable trade-off between the solution quality and computational
requirements.
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(b) Set 130 with the sensing radius % = 1.0
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(c) Set 2 with the sensing radius % = 0.5
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Figure 5.4: Required computational time of the developed LIO and SOCP-based GRASP methods
with and without the proposed Heuristic of the Ordered Placing in selected scenarios. The showed
curves represent the mean values and the semi-transparent areas stand for 80 % non-parametric confi-
dence intervals.

5.3 Efficiency of the Heuristic of the Ordered Placing (HOP)

The Heuristic of the Ordered Placing (HOP) has been proposed to reduce real-time compu-
tational requirements of the LIO and SOCP based approaches. Thus, the variants with the
HOP are denoted GRASP-LIOHOP and GRASP-SOCPHOP. The HOP addresses only the
computational requirements and does not change the solution quality. Therefore only the re-
quired computational times are reported in Figure 5.4 that empirically support the efficiency
of the proposed HOP. In all instances, the average computational time of both methods has
decreased. For a comparison with the existing approaches, the solution quality and computa-
tional time are reported for the HOP-based improved and GRASP-SOCPHOP in Figure 5.5
together with the solutions for the GSOA and VNS based methods. By employing the pro-
posed HOP, the computational requirements are reduced such that the average computational
time of the GRASP-SOCPHOP is lower than the one of VNS. Also, the GRASP-LIOHOP

becomes similarly demanding as the GSOA.
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Figure 5.5: Conparison of the improved HOP approaches to the existing methods. It shows relative
sum of the collected rewards R and the required computational time of the evaluated approaches of
Set 64 with the sensing radius % = 0.5. The sum of the collected reward is normalized to the referential
value Rref for each specific instance of the evaluated methods. The line represents the mean and the
semi-transparent area stands for 80 % non-parametric confidence interval.

5.4 Candidate List Restriction

Finally, we examined the restriction of the CL to the solution quality. Campos et al. [10]
suggested the optimal value of the restriction parameter is cbest = 20 %. Since the proposed
GRASP-based approach for the CEOP differs from the original approach to the OP, we studied
the influence of cbest to the solution quality of the proposed GRASP-LIO and GRASP-SOCP.
The results for different values of the restriction parameter are reported in Table 5.3 and
Table 5.4 as the average gap G. Four values of cbest are considered for the LIO-based approach:
cbest = 0 %, cbest = 10 %, cbest = 20 %, cbest = 40 %, cbest = 60 % and cbest = 80 %. For the
SOCP-based approach, we examined its performance for cbest = 20 %, 40 %, 60 % and 80 %.

The LIO-based approach performs best (in average) for cbest = 10 %, but cbest = 20 % (as
suggested in [10]) does not provide significantly worse solutions. On the other hand, for the
SOCP-based approach, the best results are provided with cbest = 60 %. Nevertheless, when we
look at all the aggregated instances and mean results in Figure 5.6, the restriction parameter
does not significantly influence either solution quality nor computational time. Thus, we
cannot uniformly choose the best cbest for the GRASP-based CEOP approaches. However,
the aggregated results for cbest = 0 % show that some restriction is essential.
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Table 5.3: Aggregated results for the restriction parameter of the LIO approach

Instances
LIO cbest 0 % 10 % 20 % 40 % 60 % 80 %

G [%] G [%] G [%] G [%] G [%] G [%]

Set 1 0.53 0.53 0.53 0.72 0.53 1.77

Set 2 0.62 0.00 0.62 0.00 2.09 1.60

Set 3 0.00 0.00 0.00 0.15 0.30 0.00

Set 64 1.31 1.29 1.08 1.16 0.74 0.18

Set 66 1.02 0.83 0.61 0.94 0.73 0.54

Set 130 1.12 1.07 1.05 1.38 1.50 1.10

Average 0.77 0.62 0.65 0.73 0.98 0.87

Table 5.4: Aggregated results for the restriction parameter of the SOCP approach

Instances
SOCP cbest 20 % 40 % 60 % 80 %

G [%] G [%] G [%] G [%]

Set 1 0.00 0.00 0.00 0.39

Set 2 0.62 0.62 0.62 0.62

Set 3 0.15 0.00 0.00 0.00

Set 64 0.53 0.22 0.14 0.59

Set 66 0.21 0.39 0.09 0.14

Set 130 0.53 0.82 0.28 0.11

Average 0.34 0.34 0.18 0.31
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Figure 5.6: Relative sum of the collected rewards R and the required computational time of the
evaluated approaches of Set 130 with the sensing radius % = 1.0. The sum of the collected reward
is normalized to the highest found collected rewards Rref for each specific instance of the evaluated
methods. The curve represents the mean and the semi-transparent area stands for 80 % non-parametric
confidence interval.
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CHAPTER 6
Conclusion

In this thesis, we address the Close Enough Orienteering Problem (CEOP) motivated by
data collection planning. A survey of the existing methods has outlined the drawbacks of
existing algorithms for the CEOP, where the GSOA [13] is unable to escape the local extreme
and the VNS [14] is computationally demanding. Based on reported results of the Greedy
Randomized Adaptive Search (GRASP) with Segment Remove [32] in the solution of the OP,
we proposed to generalize the GRASP-based approach to the solution of the CEOP, and thus
address drawbacks fo the GSOA and VNS based methods.

The GRASP for the OP might be extended for the CEOP in two parts. The first is in
the determination of the suitable waypoint location during the possible insertion of the site
into the solution. However, when such a waypoint is determined, it is not further updated.
Therefore we further propose to optimize the waypoint locations during the GRASP finding
of the solution. We propose three approaches on how to determine waypoint locations. The
first is the Naive approach that has been published in [15]. Although it utilizes an easy and
straightforward heuristic that sets the waypoint location as the closest point of the sensing area
to the current path, it provides competitive performance to the existing methods to the CEOP.
The next proposed approach is based on the Local Iterative Optimization (LIO) [16], which
by continuous descent, determines the waypoint location to the position with the shortest
prolongation, and it further improves the quality of the found solutions. Finally, the third
approach is based on the optimal waypoint location determined by the Second-Order Cone
Program (SOCP), which is an optimization problem with quadratic constraints. The SOCP
is solved by IBM ILOG CPLEX Optimization Studio [17], and the SOCP-based approach
provides the best results of the examined benchmarks of the CEOP. However, LIO and SOCP
are computationally demanding. Therefore, we propose the Heuristic of the Ordered Placing
(HOP) to decrease the computational burden by excluding excessive waypoint determination.

The performance of the proposed GRASP-based approaches has been studied for existing
benchmarks on the CEOP already utilized in the literature, and solutions have been com-
pared to the existing GSOA and VNS based approaches. At first, the importance of the
waypoint location optimization has been examined for the proposed Naive approach, and
according to the reported results, the proposed optimization improves the solution quality
noticeably. Although the Naive approach is based on a relatively simple heuristic, the results
are competitive to the VNS-based solver, but the computational requirements are competitive
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to the fast GSOA. The proposed LIO and SOCP based approaches are able to grant more
rewarding solutions than the GSOA and more stable than the VNS approach. Furthermore,
the SOCP based approach provides the best solutions overall methods for most of the ex-
amined instances. The increased computational requirements of the LIO and SOCP based
approaches are addressed by the proposed Heuristic of the Ordered Placing (HOP). Thus, the
developed GRASP-LIOHOP has computational requirements similar to the GSOA, but it
provides significantly better solutions. Moreover, the GRASP-SOCPHOP outperforms the
examined VNS-based solution in the solution quality, and it is less demanding in most of the
cases. Therefore, the proposed GRASP-SOCPHOP can be recommended to obtain high-
quality solutions when computational time is not a limiting factor. In contrast, the proposed
GRASP-LIOHOP provides a suitable trade-off between the computational requirements and
solution quality.

For future work, the GRASP-based method can be further extended to 3D instances.
Besides, it can be modified to the Dubins OP, where the connections path connecting the
sensing sites has to satisfy curvature constraints, and which has also been addressed by the
GSOA and VNS-based approaches. Based on the herein reported results, the GRASP-based
method can outperform the current existing solvers similarly as in the addressed CEOP.
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[9] Pierre Hansen and Nenad Mladenović. Variable neighborhood search: Principles and
applications. European Journal of Operational Research, 130(3):449–467, 2001.
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