
Bachelor Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Radioelectronics

SW for Indoor Visible Light Positioning
Testbed

Martin Suda

Supervisor: Ing. Stanislav Vítek, Ph.D.
May 2020

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

474251Personal ID number:Suda MartinStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Radioelectronics

Electronics and CommunicationsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

SW for Indoor Visible Light Positioning Testbed

Bachelor’s thesis title in Czech:

SW řešení systému pro navigaci uvnitř budov s využitím komunikace ve viditelném světle

Guidelines:
The aim of this work is to design a platform for testing algorithms for indoor navigation using visible light communication.
Follow these guidelines:
1) Introduce yourself with the algorithms of navigation using visible light communication
2) Testbed consists of nodes communicating with the central unit
3) Design a protocol for setting up individual nodes of the testbed
4) Design and implement a program able to use testbed in different work modes and configurations
5) Perform basic measurements to verify the functionality of the entire system under laboratory conditions

Bibliography / sources:
[1] CHAUDHARY, Neha; ALVES, Luis Nero; GHASSEMBLOOY, Zabih. Current Trends on Visible Light Positioning
Techniques. In: 2019 2nd West Asian Colloquium on Optical Wireless Communications (WACOWC). IEEE, 2019. p.
100-105.
[2] GONG, Chen. Visible Light Communication and Positioning: Present and Future. 2019.
[3] XU, Jiaojiao; GONG, Chen; XU, Zhengyuan. Experimental indoor visible light positioning systems with centimeter
accuracy based on a commercial smartphone camera. IEEE Photonics Journal, 2018, 10.6: 1-17.

Name and workplace of bachelor’s thesis supervisor:

Ing. Stanislav Vítek, Ph.D., Department of Radioelectronics, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: __________Date of bachelor’s thesis assignment: 03.02.2020

Assignment valid until: 30.09.2021

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
doc. Ing. Josef Dobeš, CSc.

Head of department’s signature
Ing. Stanislav Vítek, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

iv

Acknowledgements
First and foremost, I would like to express
my sincere gratitude to my supervisor,
Ing. Stanislav Vítek, Ph.D. for his con-
tinuous support during the preparation
of my Bachelor thesis, for his enthusiasm,
motivation, immense knowledge, and his
time he devoted to me.

Besides my supervisor, I would like to
thank my family, for the patience and for
their support throughout my study.

Finally, I would like to thank my col-
league Štěpán Bosák for a great team col-
laboration on this project.

Declaration
I declare that I have written submitted
thesis by myself and that I have listed all
information sources in accordance with
Methodical Guideline on Compliance with
Ethical Principles.

In Prague, 22 May 2020

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze, 22. května 2020

v

Abstract
The aim of this work is to propose a

communication design for a VLC indoor
positioning system. In the beginning, the
thesis is dedicated to the classification of
indoor positioning systems, their math-
ematical interpretation, and to the algo-
rithms using VLC. The next part contin-
ues with an introduction to the technolo-
gies utilized in the implemented system.
The following technologies are discussed:
LoRa™, LoRaWAN™ protocol, MQTT
protocol, Ionic and Angular framework.
With the help of these technologies, a
system is presented in the second half
of this work. The system is formed by
end-devices (LEDs controlled by a micro-
controller), a gateway and mobile appli-
cation. The thesis discusses, in detail,
the architecture and implementation of
the gateway, and mobile application. The
documentation of end-devices is available
in Reference [1].

Keywords: VLC, visible light
positioning, LoRa™, LoRaWAN™,
gateway, Ionic, Angular, mobile
application

Supervisor: Ing. Stanislav Vítek, Ph.D.

Abstrakt
Cílem této práce je návrh implemen-

tace komunikačního systému pro navigaci
uvnitř budov s využitím komunikace ve
viditelném světle. V úvodu práce je te-
oreticky popsána problematika navigace
uvnitř budov z dostupných zdrojů, neboli
rozdělení navigačních systémů, popsání
jejich matematických interpretací a před-
stavení algoritmů použitých v literatuře.
Dále je popsána technologie LoRa™, Lo-
RaWAN™, MQTT protocol, Ionic a An-
gular, které jsou využity v navrženém ko-
munikačním systému. Navržený systém
obsahuje koncové zařízení (LED diody
ovládané mikrokontrolérem), gateway a
mobilní aplikaci. Gateway a mobilní apli-
kace je detailně popsána v druhé části této
práce. Koncové zařízení lze nalézt v práci
mého kolegy Štěpána Bosáka, uvedené ve
zdroji [1].

Klíčová slova: VLC, komunikace
viditelným světlem, LoRa™,
LoRaWAN™, gateway, Ionic, Angular,
mobilní aplikace

Překlad názvu: SW řešení systému pro
navigaci uvnitř budov s využitím
komunikace ve viditelném světle

vi

Contents
1 Introduction 1

Part I
Theoretical Part

2 Algorithms of indoor navigation
using visible light communication 5
2.1 Algorithms of network-based
systems . 5
2.1.1 Mathematical techniques used
in IPs algorithms 6

2.1.2 Received signal strength 7
2.1.3 Angle of arrival 9
2.1.4 Time of arrival and Time
difference of arrival 10

2.1.5 Fingerprinting 12
2.1.6 Proximity 12

2.2 Inertial based systems 13
2.3 Hybrid systems 14
2.4 Indoor positioning systems using
VLC . 15

3 Overview of used technologies 19
3.1 LoRa™. 19
3.2 LoRaWAN™ protocol 21
3.3 MQTT protocol 22
3.3.1 MQTT architecture 23
3.3.2 Quality of Service (QoS) 23
3.3.3 Message format 24

3.4 Angular . 25
3.5 Ionic . 25

Part II
Practical Part

4 Communication design 29
4.1 The gateway architecture 29
4.2 The gateway implementation . . . 31
4.2.1 Components installation 32
4.2.2 Components configuration. . . 34
4.2.3 The network setup 35

5 Configuration App 39
5.1 The prototype of web application 39
5.1.1 The application architecture . 39
5.1.2 The application design 40

5.2 The prototype of mobile
application . 41
5.2.1 The application architecture . 41
5.2.2 The application design 42

5.3 Network functionality test 42
6 Conclusions 45

Appendices
A List of Abbreviations 49
B Bibliography 53

vii

Figures
2.1 Classification of indoor navigation
systems. 6

2.2 Trilateration and triangulation
technique. 6

2.3 Multilateration technique. 7
2.4 RSS based sysem. 7
2.5 AoA structure scheme. 9
2.6 Model of the multi-element. 10
2.7 The TDoA visualization. 11

3.1 The up-chirp (left) and down-chirp
(right).[2] . 20
3.2 LoRa™ decoding. 20
3.3 The LoRaWAN™ protocol stack. 21
3.4 The typical LoRaWAN™
topology. 21

3.5 QoS communication timeline. . . 24
3.6 MQTT message format. 24

4.1 Architecture of the testing
platform. 29

4.2 The gateway architecture. 30
4.3 Example of mosquitto.conf. 33
4.4 Example of service file. 33
4.5 Example of the service profile. . . 36
4.6 Example of the device profile. . . 36
4.7 Final end-device communication. 38
4.8 System structure. 38

5.1 The web application prototype
design. 41

5.2 The mobile application prototype
design. 42

6.1 Example of received messages in
end-device. 46

Tables
2.1 An overview of network based
algorithms. 13

5.1 Combinations of test data. 43

viii

List of Listings
4.1 The PostqreSQL role and

database creation 34
4.2 global-conf.json file changes. 35
4.3 chirpstack-network-

server.toml file changes. . 35
4.4 chirpstack-application-

server.toml file changes. . 35
4.5 Encode function example. 37
4.6 Key code parts in end-device

implementation. 37

ix

Chapter 1
Introduction

Increasing development in robotic systems, location-based services (LBS) and
overall future technologies has necessitated a cost effective, easy and accurate
implementation of indoor positioning systems (IPs).

First attempts to achieve this goal led to traditional indoor positioning meth-
ods. However, these techniques have not delivered desired results. Systems
based on Radio frequency (RF-based) struggled with aspects of multipath
fading, interference with other RF devices and had a poor accuracy. Moreover,
they are limited in certain environments like hospitals and other areas with
RF sensitive equipment.[3] Another technique used Infrared (IR) or utrasonic
signals. However, both aforementioned techniques need additional time and
cost to deploy a network infrastructure of location sensors. WiFi, Bluetooth
and Zigbee, just to name a few, were also attempted, but with the same
outcome.[4]

In light of these circumstances, significant hopes are put in visible light
communication (VLC) due to its physical properties and recent rapid devel-
opment. VLC, often called visible light positioning (VLP), is a technology
with many strengths that makes it a promising candidate for IPs.

This thesis provides an introduction into the field of indoor positioning.
Furthermore, it will propose a system, that enables system configuration
using a native mobile application. The system utilizes LoRaWAN™ and
MQTT protocol in order to connect a mobile application with an end-device.

The thesis structure is divided into two main parts: Theoretical and Prac-
tical. The Theoretical part focuses on positioning techniques and algorithms,
which are widely used in VLC. The VLC systems are organized based on
their nature at the beginning of the part. Then, all the groups are described
in detail. Moreover, this part introduces various technologies used in the
system, which will be proposed in the Practical part of the work.

The Practical part contains two chapters: Communication design (Chapter 4)
and Configuration app (Chapter 5). The Communication design chapter
discusses the central unit (gateway) architecture, including hardware and
software implementation. The Configuration app chapter presents two appli-
cation prototypes, which use different code architectures and languages. The
first prototype is a web application written in HTML, CSS and JavaScript.
The second prototype is a cross-platform mobile app utilizing Ionic and

1

1. Introduction
Angular framework. Finally, a test is performed in order to verify the correct
functionality.

2

Part I

Theoretical Part

3

4

Chapter 2
Algorithms of indoor navigation using
visible light communication

This chapter will introduce several mathematical techniques such as trilatera-
tion, triangulation and multilateration. It will also discuss the conventional
VLC positioning algorithms and its practice in real-life applications.[5]

Traditionally, indoor positioning systems are classified into three groups:
Network based, Inertial based and Hybrid systems. Hybrid systems
usually combine more different algorithms together with the intention of
increasing positioning accuracy. Inertial-based systems utilize integrated
sensors in order to measure the motion of the target. The estimation of the
position is evaluated from the sensor measurements. Therefore, the phys-
ical infrastructure deployed in the building is not required.[6] Hybrid and
inertial-based systems will be introduced briefly in section 2.2. This chapter
will focus on network-based systems because they are fundamental for VLC
systems. Besides this classification, VLC systems can be also divided into
two groups based on its receiver: Photodiode based (PD-based systems) and
image sensor based systems. PD-based systems are usually unstable due to
their vulnerability on ambient light or reflections from walls and furniture,
which induce a steep accuracy fall. On the other hand, image sensor based
structure can easily deal with the background light interference by utilizing an
image processing method. Therefore, this technique has been deeply explored
and the positioning accuracy can reach centimeters.[7]

2.1 Algorithms of network-based systems

The network-based systems use infrastructure of lights deployed in the build-
ing. Based on the information transmitted by the optical signals, they estimate
the position of the target. There are two kinds of network-based systems:
Range-based and Range-free systems. The full classification structure of IPs is
shown in Figure 2.1. Firstly, this section will introduce range-based algorithms
such as received signal strength (RSS), time of arrival (ToA), time
difference of arrival (TDoA) and angle of arrival (AoA). Secondly, the
section will introduce the range-free algorithms: Fingerprinting and Prox-
imity. However, before this, there are three main mathematical techniques:

5

2. Algorithms of indoor navigation using visible light communication..............
Trilateration, Triangulation and Multilateration, which are used in the
algorithms and will be discussed next, in the section 2.1.1.[8]

Indoor positioning

system

Network based

Inertial based

Hybrid

Range based

Range free

RSS

AoA

ToA/TDoA

Fingerprinting

Proximity

Deterministic

Probabilistic

Figure 2.1: Classification of indoor navigation systems.

2.1.1 Mathematical techniques used in IPs algorithms

Trilateration determines the object’s position (Rx) from the intersection of
three circles as shown in Figure 2.2a. The circle radius is evaluated based
on distance measurements between individual reference points (Txs). In
real environment, the distance measurements are imprecise, therefore more
than three Txs are required for correct localization. This technique is mostly
applied in RSS and will be further discussed in section 2.1.2.[9]

RxLED 1

LED 2

LED 3

Tx2 (x2, y2)

Tx1 (x1, y1)

Tx3 (x3, y3)

(a) : Trilateration.

d

LED 2

LED 1

Tx2 (x2, y2)

Tx2 (x2, y2)

Rx

αLED 2

αLED1

(b) : Triangulation.

Figure 2.2: Trilateration and triangulation technique.

Triangulation uses trigonometry laws in order to determine the position
of an object. The determination is based on the angle information from two
reference points and their positions. The structure is visualized in Figure
2.2b. The triangulation algorithm is utilized in AoA-based systems which
will be further discussed in section 2.1.3.[8]
Multilateration measures the difference of distances between Rx and Txs.

For example, in TDoA systems, the true range distances are calculated from
multiplication of the difference of ToAs and propagation speed. The difference
in distance between two Txs, with respect of measured TDoA, results in a

6

.......................... 2.1. Algorithms of network-based systems

function, that expresses the infinite possible Rx locations. These possible
locations, if plotted, forms a hyberbolic curve as shown in Figure 2.3. Thus,
multilateration is also called hyperbolic positioning.[10, 11] This technique is
used in GPS, ToA or TDoA. The last two will be further discussed in section
2.1.4.

LED 2
Tx2

LED 4

LED 3
LED 1

Tx4

Tx3 Tx1

Figure 2.3: Multilateration technique.

2.1.2 Received signal strength

RSS-based systems are widely utilized in the field of indoor navigation because
of its simple measurements and no need of additional hardware. However, the
main disadvantage of RSS algorithm is the high dependency on received signal
strength. Thus, in noisy environments, the signal strength will fluctuate, and
the localization accuracy can severely fall.[12] Model of RSS-based system is
shown in Figure 2.4a and 2.4b.

For better understanding, assume the following architecture: Tx (LED)

r1

r3

r2

d2

d1

d3

LED 1

LED 2

LED 3
Tx1 (X1,Y1) Tx3 (X3,Y3)

Tx2 (X2,Y2)

(x,y)

(a) : System structure.

Rx

θ

h
d

FOV
φ

x

(b) : Tx and Rx.

Figure 2.4: RSS based sysem.

transmits an optical signal, specific for the Tx. The signal is evaluated in
Rx, which is formed by a PD-sensor or image sensor. The Rx’s position is
estimated based on the strength (power) of the signal at the Rx’s location.

7

2. Algorithms of indoor navigation using visible light communication..............
The received power is given by Prx = H(0)Ptx, where H(0) is the channel
gain between Tx and Rx for the directed line of sight (LOS) and Ptx is
the transmitted power from the Tx. The channel gain for LOS is given in
References [3, 4, 13] as:

H(0) =


m+1
2πd2A cosm(θ) cos(ϕ)rect

(
ϕ

FOV
)
, for 0 ≤ ϕ ≤ FOV ,

0, for otherwise
(2.1)

where θ is the radiation angle between Rx and Tx with respect to the Tx’s
perpendicular axis, ϕ is the angle of incidence with respect to the Tx’s axis,
d is the true distance between Tx and Rx, A is the physical area of the Rx,
rect(.) is the rectangular function defined by rect(x) = 1, for |x| ≤ 1 and
rect(x) = 0, for |x| < 1, FOV is the Rx’s field of view and m is the order of
the Lambertian source given as:[3]

m = ln (1/2)
ln (cos (θ1/2)) . (2.2)

Assume both Tx’s and Rx’s axis are perpendicular to the ceiling. From 2.2
can be derived:[14]

cos(φ) = cos(θ) = h/d, (2.3)

where h is the height between Tx and Rx’s plane as shown in 2.2.
If condition 0 ≤ ϕ ≤ FOV is satisfied, than power at the location of Rx is

equal to the combination of equation (2.1) and (2.3)):

Prx = H(0)Ptx = m+ 1
2πdm+3Ah

m+1Ptx. (2.4)

Accordingly, the distance d between Tx and Rx can be obtained from equation
(2.4) as follows:

d = (m+3)

√√√√Ptx
Prx

(
(m+ 1)Ah(m+1)

2π

)
, (2.5)

then the projection distance r can be expressed with the help of Pythagorean
theorem as:

r =
√
d2 − h2. (2.6)

Finally, if position of the Rx is (x, y) and the RSS-based system has at least
three Txs with coordinates (X1, Y1), (X2, Y2) and (X3, Y3). The Rx’s position
can be calculated from the system of equations 2.7.[13]

(x−X1)2 + (y − Y1)2 = r1
2

(x−X2)2 + (y − Y2)2 = r2
2

(x−X3)2 + (y − Y3)2 = r3
2

(2.7)

8

.......................... 2.1. Algorithms of network-based systems

2.1.3 Angle of arrival

AoA is a positioning technique that calculates the angles under which the
incident signals fall on Rx from different Txs. A great advantage of AoA-based
systems is no necessity for time synchronization as it is in ToA or TDoA.
Also, AoA does not require any signal strength measurements.[5] However,
besides these advantages, there is a drawback. The cost of these systems is
generally high. It is because the system needs an antenna array or receivers
with orientation capability in case of VLC implementation. Aside from this
drawback, AoA has interesting options.

Since light beams can be made directional, some AoA applications utilize

α1
α2

α3α4

VLC
RECEIVER

(x,y)

(x4, y4)

(x3, y3)

(x2, y2)(x1, y1) (x-x1)

(y-y1)

AOA estimate
from VAP-1

Figure 2.5: AoA structure scheme.

multi-element visible light access points (VAPs). Model of such multi-element
light source is shown in Figure 2.3.[15]

For a deeper understanding of AoA, assume a setup from Reference [15]
given in Figure 2.5. There is a multi-element VAP placed in each corner. To
simplify this problem, consider a two-dimensional topology, where the VAP
is on the same horizontal plane as the Rx. LEDs in VAP have the same field
of view (FOV) and are directed to a different angle as shown in Figure 2.6.
The different angle of each LED causes, that at a given time, there is just
one LED beam per VAP received by Rx. This LED transmits message which
has a specific header identifier and encrypted information about its position.
The location is calculated as shown in Figure 2.5. Each LED transmits its
message. The ones that are within line of sight (LOS) are connected and Rx
will locate itself based on their message.

If there are just two LEDs connected to Rx (meaning Rx receives and
evaluates their messages), the location will be estimated as the intersection of
lines extending from the center of the LEDs’ FOV. If the number of connected
LEDs is greater than two, least square estimator (LSE) can be used to

9

2. Algorithms of indoor navigation using visible light communication..............
LED

FOV

Figure 2.6: Model of the multi-element.

determine the location. From Figure 2.5, for i = 1, ..., 4, can be stated:[15]

cosαi
sinαi

= x− xi
y − yi

=⇒ x sinαi − xi sinαi = y cosαi − yi cosαi. (2.8)

Than a generalized matrix (2.9) for AoA can be created by evaluating the
expression (2.8) for each VAP:

Ax = b, (2.9)

where

A =


sinα1 − cosα1
sinα2 − cosα2

...
...

sinαN − cosαN

 , b =


x1 sinα1 − y1 cosα1
x2 sinα2 − y2 cosα2

...
xN sinαN − yN cosαN

 . (2.10)

Assume x = [x, y]T to be the Rx’s location. Then LSE solution is given as:

x̂ = (ATA)−1ATb, (2.11)

where (ATA)−1AT is Moore-Penrose pseudoinverse matrix, that can be used
for LSE because A is a invertible matrix and has right inverse.

2.1.4 Time of arrival and Time difference of arrival

ToA is well-known range based technique that is used in GPS. ToA principle
is based on measuring time delay of a transmitted signal from Tx to Rx. Thus,
the transmitted message includes the time of transmission and Rx calculates
the time of reception. The time delay can be computed from this information,
and the true distance between Tx and Rx can be obtained by multiplying
time delay and the propagation velocity of the utilized technology (e.g. speed
of light in VLC) as in (2.12).

d = 4t v. (2.12)

The target’s location is evaluated by employing the lateration methods
mentioned earlier. Accordingly, the location is the intersection of circles

10

.......................... 2.1. Algorithms of network-based systems

whose center lies in reference points, and the radius is equal to the computed
distance from Rx. For two dimensional space, at least three different reference
points are required.[6]

The main drawback of ToA-based systems is the requirement of precise
and strong time synchronization between all Txs and Rxs, in order to achieve
high positioning accuracy. Such synchronization can significantly increase
the cost of the system though. Thus, most indoor navigation systems tend to
use ToA’s alternative approach instead. The alternative approach is called
TDoA.[5] Both of these techniques are robust for the environment noise.[9]

TDoA is a range-based technique that relaxes the synchronization con-
straints. In TDoA, the synchronization is required just between Txs or Rxs.
In other words, there is no necessity for synchronization between Tx and Rx .
TDoA can be categorized into two groups: multi-node TDoA and multi-signal
TDoA. Multi-signal TDoA uses two signals with different propagation velocity
to calculate the distance from Rx. The second group computes the difference
in the ToA of signals transmitted from two Txs to Rx. The difference defines a
hyperbolic (hyberboloid in 3D) curve on which the Rx should lie as in Figure
2.7. For two dimensions, the intersection of two hyperbolas can effectively
point to the location of Rx. In the case of the three-dimensional system at

LED 1 (Tx1) LED 2 (Tx2)

LED 3 (Tx3)
TDoA (Tx3 - Tx1)

TDoA (Tx2 - Tx1)

Figure 2.7: The TDoA visualization.

least three TDoAs are required to find the position of the target.[9, 6]
To better understand the ToA technique, assume four reference LEDs (Txs)

which will emit a message at a time t0. The message contains, besides the
LED identifier, also the time t0. The Rx receives four messages at the time
ti, for i = 1, ..., 4. From this data, it is easy to calculate the offset between
reception times: τ2 = t2 − t1, τ3 = t3 − t1, τ4 = t4 − t1. The Rx position
(x, y, z) and t1 can be computed from the system (2.13), where (Xi, Yi, Zi) is

11

2. Algorithms of indoor navigation using visible light communication..............
the position of i-th LED.[10]

(x−X1)2 + (y − Y1)2 + (z − z1)2 = (c(t1 − t0))2

(x−X2)2 + (y − Y2)2 + (z − z2)2 = (c(t1 − t0 + τ2))2

(x−X3)2 + (y − Y3)2 + (z − z3)2 = (c(t1 − t0 + τ3))2

(x−X4)2 + (y − Y4)2 + (z − z4)2 = (c(t1 − t0 + τ4))2

(2.13)

2.1.5 Fingerprinting

Fingerprinting is an algorithm that estimates the Rx’s position based on a
comparison of received Tx’s values and stored values in a database. These
stored values are called fingerprints. Fingerprints are basically, character-
istics of the signals at different reference positions. This algorithm uses
previously mentioned techniques (RSS, AoA, TDoA, ToA) for evaluation.
The fingerprinting has two phases: calibration and operating phase. During
the calibration phase, fingerprints are created and saved in the database.
Whenever system settings are changed, the calibration has to be repeated
because fingerprints may also differ. Besides this drawback, the fingerprinting
algorithms are power and time-saving.[16, 6]

When in the operating phase, real-time measurements are matched with
fingerprints in order to find the target’s location.[5, 16] There are two kinds
of fingerprinting algorithms: deterministic and probabilistic.

In the deterministic fingerprinting systems, the position is estimated
as the fingerprint of a Tx which minimizes the Euclidean distance between
the received measurements and the fingerprints. Some of the deterministic
fingerprinting techniques employ the k-Nearest Neighbours (kNN) approach,
which reduces the computational complexity of the technique and increases
the accuracy of the system. kNN is an instance-based learning method that
basically compares new measured instances with instances seen in training.
Also, other approaches have been proposed, such as linear discriminant
analysis or Support Vector Machines (SVM).[6]

The probabilistic technique finds the location with maximum likelihood
and sets it as the target’s location. Such probabilistic algorithm is used in
Reference [16], where the location is calculated based on RSS measurements
and Bayes’s theorem.

2.1.6 Proximity

The proximity algorithms are based on a simple idea: If the Rx receives a
signal from a reference LED, it must be close by. In order to use the proximity
algorithm, a large number of reference LEDs is required. Even then, however,
the accuracy is far from perfect. Mostly in higher tens of centimeters. On
the other hand, this method is easy to implement in comparison to other
positioning algorithms. Thus, it is an ideal candidate for room accuracy
applications.

After the Rx receives transmitted messages, the location is determined by

12

.................................2.2. Inertial based systems

its proximity from the transmitted location. If Rx receives more than one
message, the Rx position is to establish in terms of RSS.

The error committed by the proximity method is proportional to the size
of the LED’s coverage. If the LED’s coverage is low, accuracy will rise.
Although, if the coverage is reduced, the number of reference LEDs has to be
increased in order to keep the whole area covered. That results in extra cost
of the system.[6] The accuracy can be increased by overlapping LED beams,
where more identifiable regions are created.

A significant role in proximity-based systems is played by the optical
boundaries of LEDs. If the boundaries are well defined, it will prevent
unnecessary delays in positioning time. The Reference [3] states, that a single
LED transmitter with properly defined boundaries can reduce significantly
the positioning delay. To be specific, with well-determined boundaries, the
positioning delay is reduced by factor of 13 and 230 for 4-bit and 12-bit packet
with no overlaps. In case of systems with LED overlapping beams, the reduce
factor is 12 and 287 for 4-bit and 12-bit packet.

Algorithm Accuracy Additional hardware cost

RSS Low None Low
AoA High Receiver with orient. capability High
ToA High precise clock Medium/High
TDoA High precise clock Medium

Fingerprinting Medium None Low
Proximity Poor None Low

Table 2.1: An overview of network based algorithms.

2.2 Inertial based systems

Unlike the network-based systems, the inertial based systems do not use the
physical infrastructure in the building for computing the target’s location.
These systems measure the target movement using the forces applied to the
inertial measurement unit (IMU) in the portable device. The IMU is usually
formed by 3 axis gyroscope, 3 axis magnetometer and 3 axis accelerometer.
The crucial estimation part is to compute the relative orientation of the IMU
and the body of the target. Whenever IMU is placed on the body of the
target, the axis of the IMU may not coincide with the axis of the target. Any
misalignment results in errors of the measurement. The transformation is
obtained by sequentially rotating around three axes. Angles of the rotation
are expressed as Euler angles (roll, pitch, yaw).[6]

Inertial navigation can be classified into two groups: Strapdown systems
and Step and Heading systems (SHS).[6]

The Strapdown systems use the fact that the position is double integration
of acceleration. First, the angular velocity is measured by the gyroscope
and orientation is evaluated. The actual integration is performed after
the accelerometer’s signal is adapted to the correct rotation and also the

13

2. Algorithms of indoor navigation using visible light communication..............
gravitational force is subtracted from the signal. Each sensor in IMU affects
differently the estimation of the position. The error of the accelerometer
produces a drift in location due to the integration, which accumulates errors
over time. The gyroscope error, on the other hand, leads to an incorrect
rotation matrix and therefore, the accelerometer is wrongly projected into
the measurement system. However, many algorithms are proposed in order
to reduce these errors.[6]
Step and Heading systems evaluate signals from gyroscope and ac-

celerometer, so to detect steps and estimate their length and heading. The
position of the target is then computed recursively by accumulating the
movement vectors at each step. The evaluating process is usually divided
into two phases: the stance phase, where the foot is firmly on the ground
and the swing phase, where the foot is clearly in the air. Most of the SHS
algorithms detect the stance phase in order to get the number of steps. Other
approaches detect the repetitive data patterns in the walking. That can be
obtained by counting the peaks or zero crossings in the acceleration signal.
There was also a detection technique using the pitch angle from the gyroscope
of a smartphone placed in a pocket. The length of the step was determined
from the vertical displacement of the pelvis or from the linear function of
the step frequency. The final information about heading is obtained by the
integration of the gyroscope signal, as it is in the strapdown systems.[6]

2.3 Hybrid systems

A hybrid system combines multiple systems in order to enhance the position-
ing accuracy. There are countless options of hybrid systems; thus any general
classification is practically impossible. This paragraph will introduce a few
interesting approaches.

The first hybrid system worth noting, is definitely the combination of RSS
and an inertial sensor. This approach is widely used due to its low monetary
and computational cost. Both methods have complementary errors. The
inertial sensor has a very accurate position estimation in the short term. The
RSS system is less reliable, but the accuracy is time-invariant.

Another approach of hybrid systems utilizes smartphones. Smartphones
are ideal for IPs because millions of people use them and there would be no
need for an additional device. Therefore this group is highly investigated.

There are numerous applications using Wi-Fi, LTE, GSM and Bluetooth.[6]
For instance in Reference [17], the navigation system is utilizing an accelerometer-
based technique. The technique uses the smartphone’s accelerometer and
gyroscope to obtain the underground train movement. The gyroscope is
filtering the gravity factor out of the accelerometer measurements. They
experimentally found out that the train movement results in multiple small
accelerations in all three axis as the moving train shakes with the passenger
in a high speed. Thus, it is possible to distinguish stations from the moving
train. Basically, they looked for places in the time with accelerations closer to
zero and less variation. The accuracy of the system reached 74.2%. Another

14

.......................... 2.4. Indoor positioning systems using VLC

smartphone-based system, but utilizing VLC is proposed in Reference [7] and
will be further discussed in section 2.4.

2.4 Indoor positioning systems using VLC

This section is dedicated to the introduction of various indoor navigation
projects using visible light communication. All of the mentioned projects
utilize the Multiple LEDs Estimation Model (MLEM). MLEM is a positioning
technique, that uses transmitted optical signals from multiple sources for
estimating the target’s location. The orientation of LEDs can be either with
or without overlap. Thus, there are two types of receivers. The first type
of receivers are made for single access, and they are used for the no-overlap
approach. The second type is multiple access receivers, which are designed
for MLEM with overlap. However, the overlap causes interference, since data
transmitted are at the same wavelength and are asynchronous. This interfer-
ence can be minimized by packet-based pulse duration multiplexing (PDM)
and a low duty cycle transmission protocol. It is experimentally proven that
MLEM with overlap increases positional accuracy, and the multiple access
systems are shown to be more reliable for positioning. Therefore, this strategy
is often utilized in VLC.[18]

An excellent example of the proximity algorithm is proposed in Reference
[7]. The algorithm uses the properties of the CMOS rolling shutter to de-
termine signals origin. For those who are not familiar with rolling shutter
technology. There is a little introduction. The main idea of the rolling
shutter is that it exposes pixels just in one row at a time and reads them
out immediately after the exposure is finished. The same process repeats for
each row individually until all rows are read. On the other hand, there is
also another technology the Charge-Coupled Device sensor. The CCD sensor
can often be found in ordinary cameras and it uses a global shutter. Unlike
the rolling shutter, the global shutter exposes all the pixels at the same time,
and after the exposure, it reads the data. As it will be explained later, the
global shutter can not be used in the algorithm. The proposed scheme uses
PWM with variable frequency and duty-ratio. This PWM modulates the LED
transmitters with a unique signal. Each LED is then provided with a set of
frequency and duty-ratio in order to differentiate them from each other. The
CMOS image sensor with the rolling shutter can capture a specific number of
bright stripes based on the unique PWM. This is possible because of the row
by row exposure and readout of the rolling shutter. The LED’s identification
is calculated by Fisher discriminant analysis (FDA), which basically finds a
projection vector that separates two or more classes of objects. The algorithm
has proven to be sufficient as it can offer 1035 unique LED-ID with 100%
recognition rate and maximum distance between Tx and Rx up to 6m. It
was also shown, that the scheme is fitting for large-scale systems and is easily
integrated with smartphone’s camera.

Next algorithm uses similar system topology as will be proposed in this
thesis. The structure consists of a controller part which controls the con-

15

2. Algorithms of indoor navigation using visible light communication..............
figuration of the whole system. Then, there is a gateway that accepts both
configuration signals and controlling signals from Txs. The Tx is formed by
a LED and its driver circuit. Finally, the Rx contains a PD or APD and
it is connected to an analyzer, that is responsible for the localization result.
Both analyzer and controller are console programs that communicate with
gateways or Rxs via a serial port. The Analyzer locates the Rx based on
fingerprinting, and the kNN algorithm was used to decrease the positioning
error. The scheme was experimentally verified. The experiment topology
was formed by 4 Txs (height of 20 cm), 256 evenly distributed sampling
(fingerprinting) points, the radius of appropriate candidate sampling points
was to 15 cm and the number of k-Nearest Neighbors was set to 12. The
results showed positioning error lower than 7 cm in case of using just the
fingerprinting. The accuracy was significantly improved with the kNN, where
it reached positioning error 1 cm.[19]

Another algorithm, proposed in Reference [20], is based on TDoA. It uses
frequency modulation as the identifier of the light source. Frequency address
(F-ID) is assigned to each LED. LEDs transmit their unique F-ID and the
Rx detects the phase difference between the transmitted signals. The Rx
estimates the phase differences of two transmitted signals and uses them to
calculate the distances between LEDs and Rx. The final location is evaluated
by trilateration. The scheme was performed via computer simulation. The
simulation model space was 5 m × 5 m × 3 m and considering 3 LEDs on
the ceiling. The result of the simulation showed that the maximum and the
mean value of location error were 4.5 mm and 1.88 mm, respectively.

Next algorithm uses AoA localization method as it is discussed in section
2.1.3. To estimate the target’s location, they use the optical signal containing
LED-ID and information about the VAP associated with the connected LED.
The performed simulation showed, that the location error will become less
than 40 cm, if four VAPs with azimuthal and polar angles are used.[21]

A great example of RSS-based system is in Reference [22] The RSS-based
system is implemented with sub-meter accuracy. This result exactly demon-
strates, that RSS systems do not possess the best localization accuracy, if they
are used by itself. The proposed algorithm utilizes a simplex communication
with an effective data rate of 20 kbps. As a light source, 10 W LEDs are
used and Rx is formed by a PIN photodiode. To increase the accuracy of the
system, they used an image processing in the computer simulation. However,
image processing was not integrated into the prototype they made. The
image processing could not be used because of the poor transmitter-receiver
separation.

In reference [23] are LED’s coordinates modulated with undersampled
phase shift ON-OFF keying (UPSPOOK). A programmable microcontroller
controls the transmitting process. A smartphone camera records video frames
of two LEDs at the same time. The captured frames are demodulated. The
target’s localization is performed by receive signal feature (RSF) method,
which separates each pixel to 128-dimensional vector as a dense scale-invariant
feature transform (SIFT) descriptor. The thorough description of the dense

16

.......................... 2.4. Indoor positioning systems using VLC

SIFT descriptor recovery is in the Reference [23]. The scheme was experi-
mentally demonstrated. The results showed successful localization of the Rx
with positioning error 5 cm for a height of 170 cm.

The last algorithm, which is going to be discussed in this section, is pro-
posed in Reference [24]. It is a hybrid architecture utilizing VLC, proximity
and Zigbee network. The idea of the scheme is that visible light identifica-
tion is sent from the light source and received by the target (smartphone),
as it is in other algorithms. However, the received data are evaluated by
the proximity method and reconstructed in the target. Then data are sent
through the Zigbee network to the main node. They are displayed on the
system controller screen, which is connected to the main node. This approach
is significantly different from others. Unlike previous algorithms, this one
sends the position information to the main node, where it is seen and can be
evaluated from the user. This algorithm would be great for robot monitoring
in manufactures.

17

18

Chapter 3
Overview of used technologies

This chapter will acquaint readers with technologies that will be later used
in the system implementation. Particularly, the design utilizes LoRa™, Lo-
RaWAN™ and MQTT protocol in the central unit. These three technologies
will be discussed first. Then, this chapter will present a basic introduction
into Angular and Ionic framework, that will be used in order to develop
a cross-platform mobile app. This application will eventually be used for
system configuration purposes.

3.1 LoRa™

LoRa™, which stands for "Long Range", is a proprietary PHY (physical)
layer, developed by Semtech and now maintained by LoRa™ alliance. LoRa™
is using a wireless chirp spread spectrum (CSS) modulation technology to
encode the messages. Generally, a spread spectrum modulations extent data
rate in a wider bandwidth in order to increase the reach of the system.
Besides wider bandwidth, CSS adds another feature. It uses frequency chips
for encoding data. A LoRa™ chirp is a signal with a linear variation of
frequency over time. The variation of the frequency can increase, then the
chirp is an up-chirp. In the case of decreasing frequency, the chirp is called a
down-chirp. Both chirp types are visualized in Figure 3.1.[2] The transmitted
signal is composed of these chirps. Each chirp, in the signal, represents a
symbol that holds the data. The symbol is unity for data.

The decoding process works as follows: The Rx receives the signal and
generates a so-called inverse chirp signal. The inverse chirp signal is the
opposite signal to the one that was received. In other words, for every up-
chirp received, a down-chirp will be generated, and so forth. After the inverse
chirp signal is generated, the Rx adds both signals together. The result is a
flat lines signal, where each line represents the transmitted data. The process
is shown in Figure 3.2.[25]

The great advantage of LoRa™ is the long-range capability as one gateway
(central unit) can cover an entire city or hundreds of square kilometers.
Another advantage is its high link budget and its low battery usage. The
link budget is dependent on modulation and transmission power. In Europe,
the transmission power limit is 14 dBm; therefore the link budget can get

19

3. Overview of used technologies
3.3 Chirp Spread Spectrum

LoRaTM modulation, derivative of Chirp Spread Spectrum (CSS), works by moving an RF tone around
through time in a very linear way. LoRaTM transmissions work by chirping, breaking the chirps in di↵erent
places in terms of time and frequency in order to encode a symbol. One of the important LoRaTM features
is the ability to generate a stable chirp using a frac-N phase lock loop (PLL) [15]. On Figure 5 we can see
the waveform of an up and down linear chirp and its frequency evolution through time.

Figure 5: A linear chirp waveform; a sinusoidal wave that increases or decrease in frequency linearly through
time. Left: Up chirp waveform. Right: Down chirp waveform.

Depending on the bandwidth and the Spreading Factor selected, the time of the frequency sweep (time
symbol) will take more or less time. One increment on the selected Spreading Factor will duplicate the time
of the symbol, so one symbol sent at SF12 will be 32 times longer than one symbol sent at SF7. However the
bandwidth will be inversely proportional with time, duplicate the bandwidth will divide the symbol time by
a half.
On Figures 6 and 7 we see how this two parameters (Spreading Factor and bandwidth) determine the symbol
time of our transmission.

13

Figure 3.1: The up-chirp (left) and down-chirp (right).[2]

up to 156 dB. The LoRa™ communication is divided into several frequency
channels and data rates. LoRa™ data rates are in a range of 0.3 kbps to 20
kbps. If channel aggregation is used, the data rate can reach up to 50 kbps.

In order to utilize LoRa efficiently, there are a few parameters that can be
used to customize the communication. First is a Spreading Factor (SF). SF
indicates the duration of a chirp. In other words, it measures how many chirps
can be sent per second. LoRa™ operates with SF ∈ {7, ..., 12}, where SF7 is
the shortest time on-air, and SF12 is the longest.[26] This mechanism provides
resistance to interference and multipath fading.[27] The Second parameter
is Bandwidth (BW), which is the interval of minimum chirp frequency, to
maximum chirp frequency as shown in Figure 3.2. BW for Europe is 125 kHz
or 250 kHz. The last parameter is Coding Rate (CR), which is the number
of forward error corrections.[28]

X =

Received LoRa signal Inverse chirp Decoded symbols

Preamble PayloadSync
message

Fr
eq

ue
nc

y

Message Detail

Time

Symbol

BW

Figure 3.2: LoRa™ decoding.

20

.................................3.2. LoRaWAN™ protocol

3.2 LoRaWAN™ protocol

LoRaWAN™ is a Media Access Control (MAC) layer on top of LoRa PHY
layer. LoRaWAN™ manages the network architecture, security, capacity and
battery lifetime of nodes. The LoRaWAN™ stack is shown in Figure 3.3.

Application Layer

LoRa® Modulation

LoRa® MAC
MAC Options

Class C

Regional ISM band
EU 433 [MHz] }

}MAC layer (LoRaWAN)

PHY layer (LoRa)

Class B Class A

EU 868 [MHz] US 915 [MHz]

Figure 3.3: The LoRaWAN™ protocol stack.

To establish a proper connection between gateway and nodes, data from
the application layer and MAC commands are encapsulated in MAC payload.
The MAC layer then creates a MAC frame using the MAC payload. Besides
MAC payload this frame consists MAC header and Message Integrity Code
(MIC). The header defines the protocol version and type of the message (e.g.
management or data frame and downlink or uplink). MIC is responsible for
authentication of end-nodes and also prevents the message forgery. MAC
frame is then used in LoRa™ PHY layer to create a PHY frame by inserting
preamble, PHY header, Cyclic Redundancy check (CRC) of the PHY header
and entire payload CRC.[2] Finally, the PHY frame is ready and transmitted.

The typical LoRaWAN™ architecture is star-of-stars topology as it is
visualized in Figure 3.4.

Gw

Gw

Gw

NS

End Nodes
AS

AS

AS

Application
ServerGateways

Network Server
EN 1

EN 2

EN 3

Figure 3.4: The typical LoRaWAN™ topology.

There are two types of authentications between the end-node and the
network: Over-the-Air Activation (OTAA) and Activation by Personaliza-
tion (ABP). ABP is a connection procedure, where the authentication data
(DevAddr, NwkSKey and AppSKey) are statically hardcoded in the device.
Even though it is simple, there are serious security downsides and should be
used cautiously. On the other hand, OTAA is authentication, where devices
perform a join-procedure with the LoRaWAN network, during which the keys
are negotiated and DevAddr dynamically assigned. Thus, OTAA is usually a

21

3. Overview of used technologies
better option, but it requires more time and computational resources.

All communication in LoRaWAN™ is bi-directional in general. The uplink
communication is associated with the node to the gateway direction. The
opposite communication is called downlink as it goes from the gateway to
nodes. The ordinary structure uses a gateway as a bridge between LoRa™
nodes and the network server. A complete solution of a gateway is provided
in Chapter 4. This gateway utilizes LoRaWAN™ and MQTT protocol. Back
to the architecture though. The network server is basically a brain that holds
most of the system complexity and intelligence. It manages the security
checks, schedules the acknowledgments, and performs ADR based on the
node’s location.[2] ADR allows the network server to adapt data rate by
changing SF in order to find the best trade-off between power efficiency and
link robustness.[29]

LoRaWAN™ networks distinguish three bi-directional classes of end-nodes
based on the application:.Class A (for All) nodes schedule uplink transmission based on their

own needs. This communication type is strictly asynchronous. Each
uplink transmission is followed by two short downlink receive windows,
where the gateway can transmit packets to the node. Class A is the most
power-saving bi-directional class provided in LoRaWAN™, but as a trade-
off there is the least flexibility in downlink communication. These nodes
are suited for applications that only require downlink communication
shortly after the uplink transmission (e.g. temperature control sensors,
traffic sensors).[2].Class B (for Beacons) nodes provide additional downlink windows at
scheduled times. Besides the receiving slots after an uplink communica-
tion, the gateway sends a synchronized periodic beacon type message
which activates the receiving slots. This class can be useful for battery-
powered devices, which needs to be occasionally configured or controlled
from the server. [26, 2].Class C (for Continuously listening) has the maximum downlink
flexibility. The gateway can downlink data at any time except when
the node is transmitting. However, this low downlink communication
latency comes with the price of higher power consumption. That might
be a crucial disadvantage for some applications.[2]

3.3 MQTT protocol

Message Queue Telemetry Transport also known as MQTT is an application
layer protocol, which utilizes a broker-based publish/subscribe messaging
transport. The protocol was developed by Andy Stanford-Clark of IBM and
Arlen Nipper in 1999. In 2013, MQTT became a standardized protocol of
OASIS. MQTT is mostly used on top of TCP/IP. Compared to HTTP, that
also relies on TCP/IP, MQTT has lower protocol overhead.[30] MQTT is

22

................................... 3.3. MQTT protocol

extremely lightweight and easy to implement. Thus, it is an ideal protocol for
constrained devices and high-latency, low-bandwidth, or unreliable networks,
which can benefit from its design. The main principle of the protocol is
to minimize network bandwidth and device resource requirements. These
principles make it an outstanding candidate for Machine to Machine (M2M),
Internet of Things (IoT), and mobile applications, where battery power
efficiency and bandwidth are at a premium.[31]

3.3.1 MQTT architecture

The MQTT based systems consist of clients and MQTT broker (server). A
client can be an IoT device that sends or receive telemetry data. The client’s
role varies based on the application. For instance, the structure, proposed
in the second part of this thesis, the client will mainly publish messages.
Either way, in order to start the communication, MQTT client needs to
connect to the MQTT broker first. It will do so by using a particular type
of message (CONNECT). Message types will be further discussed in section
3.3.3. After the connection is established, the client has to declare its role in
the network.[32]

In the case of being a publisher, a topic has to be set. The topic is a string
identifier, by which different messaging channels can be distinguished. In
other words, topics organize and filter messages to different groups. On the
other hand, if the client wants to receive data, it will need to subscribe to a
specific topic.[32]

In order to create a client from a device, a MQTT library has to be properly
installed. There are multiple open source MQTT client’s libraries, that can
be used for this purpose. Another fundamental piece of MQTT structure
is a MQTT broker. MQTT broker is mainly responsible for handling the
communication between clients. It can manage thousands of clients at the
same time. Whenever a message is received, MQTT broker has to find all
clients subscribing to this particular topic and distribute the message to them.
Besides handling communication, brokers have to manage the authentication
of clients. The authentication is accomplished by including username and
password in the CONNECT message and topic permissions are implemented
on the broker side in order to confine clients to publish or subscribe. To secure
the communication between clients and broker TLS and SSL encryption is
used. There are a few implementations of MQTT brokers. In this thesis, we
will use an open-source MQTT broker called Mosquitto.[32]

3.3.2 Quality of Service (QoS)

There are three QoS in MQTT, and they are distinguished by a number
from 0 to 2. If QoS is zero, the publisher will send a message at most once
and will not check the delivery of the message. The receiver will not send
an acknowledgment and the sender will not resend the message. This QoS
structure is also called At most once option.

If QoS = 1, the publisher will store and send the message. MQTT Broker

23

3. Overview of used technologies
publishes the message to subscribers and sends an acknowledgment to the
publisher. The publisher deletes the message as soon as he receives the
acknowledgment. Some literature refers to QoS = 1 as At least once QoS
option.

The last QoS, sometimes also called Exactly once option, is the most
reliable QoS scheme. As in QoS = 1, the publisher stores and sends a
message. MQTT broker stores and publishes the message to subscribers.
The broker also sends PUBREC (publish received) message to the publisher
and the publisher sends PUBREL (publish release) to the broker, when he
receives the PUBREC. The broker receives the PUBREL, deletes the stored
message and sends the PUBCOMP to the publisher. The publisher deletes
the message and the communication is completed.[32] The timeline of each
QoS is shown in Figure 3.5.

PUB BROKER SUB

DELETE MSG

PUBLISH

PUBLISH [QoS=0]

PUB BROKER SUB

DELETE MSG

PUBLISH

PUBLISH [QoS=1]

PUB BROKER SUB

DELETE MSG

PUBLISH

PUBLISH [QoS=2]

STORE MSG

PUBACK

STORE MSG
STORE MSG

STORE MSG

PUBACK

PUBREL

PUBACK

DELETE MSG

QoS = 0 QoS = 1 QoS = 2

Figure 3.5: QoS communication timeline.

3.3.3 Message format

Every MQTT message is composed of a fixed header (at minimum 2 bytes),
variable header and message payload, which are not always present. The
message structure is depicted in Figure 3.6.

0 1 2 3 4 5 6 7

QoS DUP RetainMessage Type

Remaining Length (1-4 bytes)

e.g.
RL 1 B => msg length < 127 B
RL 2 B => 127 B < msg length > 16383 B
...
max msg length = 256 MB

Message Type

Variable Length Header (Optional)

Message Payload (Optional)

Byte 1 }Fixed header
(min 2 bytes)Byte 2

Byte 3

Byte n

Byte m

Byte n+1

bit

Figure 3.6: MQTT message format.

The first byte of the fixed header consists of the message type in four
most significant bits (MSB) and flags in the last four bits. The message
type is for instance: CONNECT (client request to connect to the broker),
CONNACK (connection acknowledgment), PUBLISH (publish message),
PUBACK (publish acknowledgment) and SUBSCRIBE. A full list of message
types can be found in the official documentation. Flags examples are DUP

24

....................................... 3.4. Angular

(duplicate message), QoS (Quality of Service), and RETAIN (Retain message).
The second part of the fixed header informs about the remaining length of
the message. This part can be up to 4 bytes long, where each byte uses 7 bits
for the length information, and MSB is a continuation bit. If the continuation
bit is zero, there will be no other length information behind this byte. These
length bytes informs about the length of the variable header and the payload
together.[32, 33] Another piece of the message is the variable header. It is
used if the message needs additional control information. The structure of
the variable header differs based on the message type.

3.4 Angular

Angular is an open-source JavaScript Framework for creating reactive Single-
Page-Applications (SPAs). SPA is a web page that seems to visit different
pages based on the changing URL; however, in the end, the page has never
changed. SPA is one HTML file wrapped with JavaScript code that is
downloaded from the server. Every change on the page is then rendered in
the browser. Thus, there is no need to reach out to the server for every page
change or every piece of new data. However, if the application requires new
data from the server, it can be downloaded in the background. Moreover,
such a web page gives the user a very reactive user experience with a feeling
of being in a native mobile application. To expand on Angular applications,
they are written in TypeScript, which is a super-set of JavaScript. TypeScript
features help to write more robust code. Angular, as a framework, can be
classified into two groups: AngularJS (Angular1), which will not be discussed
in this thesis and Angular. Angular refers to all versions of Angular since
Angular2, which was realized in 2016 and it fixed all the issues AngularJS
had. It is important to say that Angular2 was rewritten from the ground
up; therefore AngularJS is a significantly different framework. In this thesis
latest Angular v9.1.1 was used with Ionic framework to build a native mobile
application.

3.5 Ionic

Ionic is an open-source framework that allows building preferment mobile
and desktop applications using web technologies (HTML, CSS, JavaScript).
It can also be easily integrated with Angular or React framework as it will
be shown in the practical part of this thesis. Ionic focuses mainly on the
front-end of an application, such as UI animations, gestures, and controls.
Thus, it introduces a set of web components, which is a technology supported
by modern browsers. A web component is basically, a HTML element, that
has behind the scenes more complex logic (e.g. menu bar, tabs,...). The
great advantage is that one codebase runs on all platforms with just minor
adjustments. The ionic platform also consists of a Capacitor and Ionic CLI.
Capacitor is a tool, that is capable of taking an existing web application and

25

3. Overview of used technologies
wrapping it into so-called web-view into a native application. In other words,
Capacitor gives a native mobile application, that runs the web application in
the side of it, but in a way, it is indistinguishable from a native application
written in Swift or Java.

26

Part II

Practical Part

27

28

Chapter 4
Communication design

This chapter will provide a communication design for the indoor navigation
testing platform. The whole system structure is shown in Figure 4.1. End-
nodes are formed by 10W LED which is controlled by NUCLEO-F446RE
with a LoRaWAN™ extension shield (I-NUCLEO-LRWAN1). The detailed
architecture of the end-nodes is documented in the Reference [1]. The previ-
ously mentioned LoRaWAN™ shield on the end-node will be crucial for the
communication design, which will be introduced here in detail. The core idea
of the structure is well visualized in Figure 4.1.

The application responsible for system arrangement sends configuration
data to the gateway via MQTT protocol (section 3.3). The gateway restruc-
tures the received MQTT payload to a readable format for LoRaWAN™
protocol (section 3.2). The configuration data are then transmitted to the
particular end-node using LoRa™ modulation (section 3.1), where they are
also processed. The gateway is crucial for the correct data transmission;
therefore the architecture and realization will be proposed in the next section.

Configuration
App

Gateway

LED 1

LED 2

LED 3
LoRa

MQTT over
Websockets

Figure 4.1: Architecture of the testing platform.

4.1 The gateway architecture

As it was mentioned in the introduction, the gateway is a central unit of the
system. It allows transferring data between two discrete networks. Another
key feature of gateways is its ability to connect various networks using more
communication protocols. Our gateway connects end-nodes (LEDs), that use
LoRaWAN™ protocol, with mobile or web application, which utilizes MQTT

29

4. Communication design.................................
protocol over websockets. In other words, it is a hypothetical gate between
LoRaWAN™ and MQTT protocol. Our gateway is not a gateway by the def-
inition. Typically gateways are formed by the concentrator, packet forwarder,
and a bridge that forwards data to a remote network server. However, the
proposed design wraps all later discussed components to one portable device.
The detailed architecture of the gateway is well visualized in Figure 4.2.

In the case of uplink communication (3.1), end-nodes send messages to

Concentrator Packet Forwarder

LoRa Gateway
Bridge

LoRa Server

LoRa App Server

GATEWAY

MQTT Broker

UDP

SPI

MQTT

PostgreSQL

Redis

MQTT

gRPC MQTT

Figure 4.2: The gateway architecture.

the gateway. The messages are received by the concentrator component,
which concentrates all RF messages sent in a particular bandwidth. The
concentrator then hands over all received messages to the packet forwarder via
SPI protocol. The packet forwarder is a program that forwards RF messages
received by the concentrator to the network server (LoRa Server) and emits
RF messages to the concentrator in case of a downlink message. Before
the received message reaches the network server, it has to be reinterpreted
in LoRa Gateway Bridge. The LoRa Gateway Bridge abstracts the packet
forwarder UDP protocol data into a JSON. The JSON is published through
the MQTT broker to the network server.

Our gateway uses the LoRa Gateway Bridge because the configuration of
the packet forwarder is unnecessarily complicated. Moreover, the UDP proto-
col utilized by the packet forwarder is unreliable and unsecured. However,
the security flaw of UDP would not be crucial in our case, because the whole
proposed structure is implemented on one device.

The LoRa Server holds most of the complexity and intelligence. It handles
the LoRaWAN™ mac layer and mac commands, schedules the downlink trans-
missions, handles communication with an application server, authentication
and de-duplication of the uplink messages. Finally, the LoRa Server data are
sent via gRPC to the LoRa App Server. The LoRa App Server is responsible
for the encryption of application payloads, handling the join requests and
offers various APIs. On the other hand, downlink communication starts in
the MQTT broker that receives a configuration message from the mobile or
web application and forwards the message to the subscribers. The LoRa App

30

..............................4.2. The gateway implementation

Server, as one of the subscribers, takes the message and encodes. The further
action is similar to the uplink communication, just opposite.

4.2 The gateway implementation

For the gateway creation, a Raspberry Pi 3 was used as a host, PRI 2 Bridge
RHF4T002 as a connection between Raspberry Pi 3 and the Gateway module
RHF0M301–868 supplied with 0 dBi Rubber Duck Antenna. The Gateway
module RHF0M301-868 enables LoRa™ communication on the Raspberry
Pi 3, which was required. In order to test the created network, a Seeduino
LoRaWAN with GPS was used as a temporary end-node.

The first step in gateway development was choosing an appropriate OS,
which would run on the Raspberry Pi 3. The main requirement was the light
weightiness of OS because Raspberry Pi 3 has limited memory storage. For
that matter, Raspbian Lite GNU/Linux 10 (buster) was chosen. Raspbian
Lite is an open-source operating system based on Debian, which is optimized
for Raspberry Pi with no desktop environment. Thus, it is really lightweight
and an excellent candidate for this design. In order to install Rasberian, a
USB keyboard and a display was required.

First of all, an image of the OS was made. A nice tool to make an image
of the Raspberry Pi OS is the Raspberry Pi Imager. A great advantage of
this tool is that it automatically configures the SD card and downloads the
chosen OS release.

Secondly, the actual installation was made on Raspberry Pi. There was
minor Raspbian configuration required after the installation. For instance,
SPI protocol was enabled (sudo raspi-config → Interfacing Options → SPI),
which is fundamental for communication between the concentrator and packet
forwarder. The Wi-Fi connection was set. There are two ways to do so.
Either, it could be done through raspi-config or by editing the actual network
configuration file manually1. In order to use the edited network settings, the
network has to be reconfigured with a command2. Sometimes the reconfigura-
tion or raspi-config will not succeed and the Raspberry Pi has to be rebooted.
After the reboot, the network connection should be set and the IP address
assigned3.

The last configuration was made in order to control the Raspberry Pi
without external peripherals (the keyboard and the display). In that matter,
the SSH protocol was enabled through raspi-config (sudo raspi-config →
Interfacing Options → SSH). After that, the Raspberry Pi was ready for the
installation of the gateway components.

1/etc/wpa_supplicant/wpa_supplicant.conf
2wpa_cli -i wlan0 reconfigure
3ifconfig wlan0 | grep inet

31

4. Communication design.................................
4.2.1 Components installation

The first component, which was installed, was the packet forwarder. Our
design uses the original UDP packet forwarder from Semtech. This packet
forwarder is open source and easy to implement. Full source code is avail-
able on GitHub repository4. Before the actual build though, there must be
Semtech LoRa Gateway library (libloragw)5 on the device.

Even though both codes could be downloaded, built, and manually config-
ured from their original repository, another more efficient method is possible.
This method uses different repository6, which implements an additional basic
configuration and installation shell scripts. These scripts significantly speed
up the entire process. This way, there is no need for additional major con-
figurations after the installation. On the other hand, in order to fulfill our
implementation needs, minor adjustments were made to the scripts, before
the installation (e.g. paths, naming, service configuration, ext.). Even then,
it is a faster way, that prevents mistakes in the configuration. These mistakes
are usually hard to discover. After the packet forwarder was installed, it runs
as a service. The service is easily controlled by systemctl commands.

The rest of the components, particularly the LoRa Gateway Bridge, the
LoRa Server and the LoRa App Server, uses ChirpStack implementation.
ChirpStack is an open-source LoRaWAN™ Network Server stack. All Chirp-
Stack components are licensed under MIT license and can be used even for
commercial purposes. This network server stack was chosen for its well-
documented specification and mainly for its offline servers. Most gateways
use third party cloud-like remote servers for managing the network (e.g. The
Things Network, LORIOT). This was meant to be avoided in our design,
thus ChirpStack was ideal for this project. Full documentation is available
on their website chirpstack.io. Before installing the ChirpStack components,
a few dependencies were set up.

First was the MQTT broker. ChirpStack requires mosquitto MQTT bro-
ker/client. However, mosquitto broker does not support websockets protocol
by default. Websockets protocol was needed in this project in order to imple-
ment the communication between mobile/web application and gateway. For
that matter, mosquitto could not be installed via apt package manager, but it
was built and installed manually as follows: The libwebsockets-dev library is a
prerequisite of mosquitto with websockets. Therefore, it needs to be installed
first. The libwebsockets-dev is a lightweight pure C library, which allows
the implementation of modern network protocols using a nonblocking event
loop. It was installed via apt package manager. Then, a mosquitto directory
needs to be downloaded. For this matter, the Eclipse mosquitto directory
was cloned7 to the gateway. In the newly cloned mosquitto directory, the
config.mk was edited to support websockets. That was done by changing
the line "WITH_WEBSOCKETS:=no" to "WITH_WEBSOCKETS:=yes".

4https://github.com/Lora-net/packet_forwarder
5https://github.com/Lora-net/lora_gateway
6https://github.com/robertlie/RAK831-LoRaGateway-RPi
7git clone https//:github.com/eclipse/mosquitto

32

..............................4.2. The gateway implementation

After this minor edit, the mosquitto can be built by the "make" command
and installed by "make install" command. In order to run mosquitto with
websockets, there are two more things which have to be set. Firstly, the main
mosquitto configuration file (/etc/mosquitto/mosquitto.conf) must contain
default port 1883, which is used for the gateway components communication.
Also, there has to be a listener on a websocket port. In this design 9001 is
used. An example of such mosquitto.conf is shown in Figure 4.3. Secondly,

Figure 4.3: Example of mosquitto.conf.

mosquitto was set as a service. The easiest way to do so, is copying the service
template included in the downloaded mosquitto directory8 to the directory,
where all the services are stored (e.g. /lib/systemd/system). The final service
file is shown in Figure 4.4. Then, the MQTT broker is ready.

Figure 4.4: Example of service file.

Last dependencies, that were required for the components, were Redis
and PostgreSQL. Redis is an open-source, in-memory data structure store,
used as a database. In the gateway, Redis stores transient data such as
device-sessions. On the other hand, PostgreSQL is long-term storage and the
gateway uses it for data, which should not expire. The PostgreSQL stores
gateway’s settings for instance. Redis and PostgreSQL was installed through
apt package manager.

The last step was the LoRa Gateway Bridge, LoRa Server and LoRa App
8mosquitto/service/systemd/mosquitto.service.simple

33

4. Communication design.................................
Server installation. Dirmngr and apt-transport-https package was used for
downloading the software repository as follows: Firstly, the repository key
was set up9. Secondly, the created repository was added to the repository
list by creating a new file10. Finally, the apt package cache was updated and
components were installed via apt package manager11.

4.2.2 Components configuration

With all the dependencies and components installed, the configuration process
could begin. Firstly, as mentioned earlier, the LoRa Server and LoRa App
Server store data in PostgreSQL database. Both components need their
own database; therefore a role with a database was created for each of
them via postgreSQL prompt as it is shown in Listing 4.1. Before executing
commands from Listing 4.1, the postgreSQL prompt was entered using the
proper command12. The LoRa App Server database requires two additional
extensions, which are not needed in LoRa Server database. Thus, a few extra
steps were made in the case of LoRa App Server database creation.
-- create a role
create role role_name with login password 'dbpassword ';

-- create database with the created role as the owner
create database database_name with owner role_name ;

-- following is only for the LoRa App Server database
-- connect to the LoRa App Server database
\c as_database_name

-- create required extensions
create extension pg_trgm ;
create extension hstore ;

-- leave postqreSQL
\q

Listing 4.1: The PostqreSQL role and database creation

Secondly, all components were configured manually through their configu-
ration files. The packet forwarder’s global-conf.json file changes are in the
Listing 4.2. The MQTT broker address and port was edited in the LoRa
Gateway Bridge configuration file13 (lora-gateway-bridge.toml). The changes
in the LoRa Server configuration file (chirpstack-network-server.toml) are
shown in Listing 4.3 and changes made in the LoRa App Server configuration
file (chirpstack-application-server.toml) are listed in Listing 4.4. The jwt

9sudo apt-key adv –keyserver keyserver.ubuntu.com –recv-keys 1CE2AFD36DBCCA00
10sudo echo "deb https://artifacts.chirpstack.io/packages/3.x/deb stable main" | sudo tee

/etc/apt/sources.list.d/chirpstack.list
11sudo apt install chirpstack-gateway-bridge chirpstack-network-server chirpstack-

application-server
12first entry: sudo -u postgres psql, database: psql -h localhost -U role_name -W

database_name
13server="tcp://localhost:1883"

34

..............................4.2. The gateway implementation

token was generated14 in the terminal before the LoRa App Server’s configu-
ration file was edited. Finally, after the configuration, all components were
started15 as a service. In order to make certain of correct functionality, the
logging file16 was investigated and occurred errors were solved.
" serv_port_down ": 1700 ,
" serv_port_up ": 1700 ,
" server_address ": " localhost ",

Listing 4.2: global-conf.json file changes.

dsn=" postgres :// ns_role_name : dbpassword@localhost /
ns_database_name ? sslmode = disable " # database dsn
automigrate =true
name=" EU_863_870 " # EU LoRa freq
timezone ="Local"
MQTT broker address and port
server ="tcp :// localhost :1883"

Listing 4.3: chirpstack-network-server.toml file changes.

dsn=" postgres :// as_role_name : dbpassword@localhost /
as_database_name ? sslmode = disable " # database dsn
jwt_secret = " generated_token "
MQTT broker address and port
server ="tcp :// localhost :1883"
internal API used by LoRa Server
public_host =" localhost :8001"

Listing 4.4: chirpstack-application-server.toml file changes.

4.2.3 The network setup

All components were running at this point; thus I moved to the last step,
which was the gateway and end-nodes registration. The LoRa App Server
Web interface was used for that matter. In order to open the Web interface,
the IP address with the appropriate port was entered into the browser. Login
was accomplished by entering the default username and password17, which
were changed immediately after the first login. The first step in the network
setup was creating a network server. It was created by choosing the Network-
server tab, followed by an add button. There, in the General configuration,
the name, the server (localhost:8000), and enable gateway discovery were
filled.

After that, an organization was created, where the organization name and
display name were filled, and the "Organization can have gateways" option
was checked. Next, a service profile, device profile and a gateway were created.

14openssl rand -base64 32
15sudo systemctl start <service_name>
16tail -f /var/log/syslog
17username: admin, password: admin

35

4. Communication design.................................
The service profile was added as shown in Figure 4.5, device profile as in
Figure 4.6. Other device profile tabs were left with default configuration for
now. The gateway was created in Gateways tab, where the name, gateway
ID and description were filled.

The last thing before adding the actual end-node was the creation of

Figure 4.5: Example of the service profile.

Figure 4.6: Example of the device profile.

network application. That was done through the Application tab, by filling
the name, description and service profile, which was created earlier. In the
new application, a device was created. The device must contain a name,
description, device EUI, and our recently created device profile. The new
device was activated in Activation tab, where device address, network session
key, application session key, and frame counters were specified. The device
address, device EUI and the keys must also be included in the end-node code.

Finally, in order to send downlink messages, the codec was specified under
the device profile (Figure 4.6). An example of the encode function is shown

36

..............................4.2. The gateway implementation

in Listing 4.5. The gateway configuration was on its end and ready to use.

function Encode (fPort , obj , variables) {
// json to string conversion
var strmsg = JSON. stringify (obj);
// bytes array
var bytes = []; // char codes

// filling the bytes array
for (var i = 0; i < strmsg . length ; ++i) {

var code = strmsg . charCodeAt (i);
bytes = bytes. concat ([code]);

}
return bytes;

}

Listing 4.5: Encode function example.

The test end-node implementation is inspired by the code from brady-aiello
repository18. The crucial parts of the end-node implementation are presented
in Listing 4.6.
// LORA SETUP
const float EU_channels [8] = {868.1 , 868.3 , 868.5 , 867.1 , 867.3 ,

867.5 , 867.7 , 867.9}; // EU channels
char buffer [256]; // buffer of 256 bits
lora.setId(DEV_ADDR , DEV_EUI , APP_EUI); // sets Ids
lora. setKey (NWK_S_KEY , APP_S_KEY , NULL); // sets keys
lora. setDeciveMode (LWABP); // sets ABP mode
lora. setDataRate (DR0 , EU868); // sets EU data rate
lora. setPower (MAX_EIRP_NDX_EU); // sends at+power=

MAX_EIRP_NDX_EU
setChannelsFreq (EU_channels); // loop of lora. setChannel

// LORA COMMUNICATION
lora. transferPacket ("UpAck!", 10); // uplink
lora. receivePacket (buffer , 256, &rssi); // downlink receive
SerialUSB . println (rssi); // communication 's RSSI
// output received data
for(unsigned char i = 0; i < length ; i ++)

{
SerialUSB .print(buffer [i], HEX); // hex
SerialUSB .print(buffer [i]); // ascii
}

Listing 4.6: Key code parts in end-device implementation.

The end-device implementation, presented in Reference [1], utilizes the I-
NUCLEO-LRWAN1 library19, which has a similar code structure. The
communication of the final end-device was tested. The uplink was performed
without malfunction, but downlink communication reported minor issues.
The device did not receive all configuration files that were sent. I believe the

18https://github.com/brady-aiello/Seeeduino_LoRaWAN_for_hybrid_gateways/tree/master/Seeeduino-
LoRaWAN-ABP

19https://github.com/stm32duino/I-NUCLEO-LRWAN1

37

4. Communication design.................................
solution to this malfunction lies in the LoRaWAN™ configuration, particularly
in the receiving window duration, which needs to be changed. The example
of communication is depicted in Figure 4.7. The entire system structure is
shown in Figure 4.8, where the gateway is on the left side, the test end-device
is in the middle and the final end-device is on the right side.

Figure 4.7: Final end-device communication.

Figure 4.8: System structure.

38

Chapter 5
Configuration App

This chapter provides two possible app prototypes, which utilize MQTT pro-
tocol in order to communicate with end-nodes through the gateway (Chapter
4). In other words, they are able to connect to the gateway and send downlink
messages with a configuration data required for system configuration. Both
apps implement a MQTT client, but using different MQTT libraries. The first
prototype is a web application. Second is a cross-platform mobile application
based on Ionic and Angular framework. Prototypes will be further introduced
in the following sections.

5.1 The prototype of web application

The web application prototype is written in HTML, CSS, and JavaScript. On
top of these languages, the application utilizes the Eclipse Paho JavaScript
Client1, which is an open-source MQTT browser-based client library. This
client library uses websockets for connecting to the MQTT broker. That is
why the MQTT broker on the gateway had to support websockets in the first
place. This prototype is inspired by the steves-internet-guide website2, where
Paho JavaScript library is nicely introduced with real-life examples.

5.1.1 The application architecture

The proposed web application consists of four source files: index.html,
styles.css, vender.js and app.js. The index.html wraps the whole HTML
code required in the application. The styles.css file preserves the additional
application design, which was not satisfactory in the bootstrap library. The
bootstrap is an open-source CSS framework, containing the design of compo-
nents such as typography, forms, buttons just to name a few. It significantly
speeds up the work; thus it was used as the primary design template also
in this web application. The two remaining files hold the entire website
logic. First is the vendor.js file. This file is mainly responsible for rendering
all required DOM objects to the JavaScript. On top of that, the vender.js
includes the function, which controls the visibility of certain objects. It

1https://github.com/eclipse/paho.mqtt.javascript
2http://www.steves-internet-guide.com/mqtt-websockets/

39

5. Configuration App
will be further discussed in section 5.1.2. Finally, the last file contains the
main intelligence of the application. The app.js implements the MQTT over
websockets communication; thus it connects with the MQTT broker on the
gateway, evaluates the user input, and creates the MQTT message based on
the data input. Moreover, it interactively outputs the current status of the
MQTT communication.

5.1.2 The application design

The website design is divided into five sections as it is shown in Figure
5.1. The first section is responsible for the connection. A user inputs the
gateway’s IP address, the appropriate port number, and in case of secured
MQTT communication, also username and password. On top of that, the
user can decide whether the communication is led as a clean session or not.
When a clean session is set to one, that means the checked option in the
application, the MQTT broker does not store any data about the MQTT
client. However, the clean session set to zero (unchecked Clean Session option
in the application), the MQTT broker stores information such as subscribed
topics or messages with certain QoS and topic, which the client subscribed
to.

The second section is used for testing the topic subscription. The user
inserts the name of the topic, which is intended to be subscribed, and QoS.
Then, upon clicking the subscribe button, the new topic is subscribed.

The third section is for sending a string message to a specific topic. In
other words, publishing to a topic. To publish the message, the user needs
to insert the message payload (a string in this case), QoS, and topic, the
message is published to. Before sending the string payload, the user can
decide whether the message will contain a retain flag or not. If the retain
flag is set to zero, MQTT broker discards the message if no subscriber is in
the topic. On the other hand, if the retain flag is set to one (checked Retain
Message option), MQTT broker will store the last message in the topic. This
may become handy if an end device sends data just a few times a day. With
a retain flag equal to zero, any new subscriber would have to wait for a new
publish in order to get the current status. However, with the retain flag set
to one, a new subscriber does not have to wait for a new publish, because it
will receive the last retained message from the broker.

The fourth section is responsible for publishing the configuration data.
This data is meant to be sent to the end-nodes. End-nodes process this
data and reconfigure itself. The fourth section has a modulation dropdown
selection. A form parameters are updated based on the selected modulation
type. Whenever modulation type changes, the form parameters updates.
When the publish button is pressed, the data are rendered and inserted into a
JSON message. The JSON message is sent to the MQTT broker, where it is
translated by the encode function, presented in the Listing 4.5 of Chapter 4.

The last section is placed on the bottom of the website, and it informs the
user about the MQTT communication status. It outputs connection status,
new subscriptions and message payloads.

40

...........................5.2. The prototype of mobile application

Figure 5.1: The web application prototype design.

5.2 The prototype of mobile application

The mobile application prototype is built in the combination of Ionic and
Angular framework. This approach was chosen, because of its robustness,
great documentation, and its ability to build cross-platform native mobile
applications with minor code adjustments for the most part. Moreover,
they are fairly new, fast-growing frameworks, which are supported by big
companies like Google. This framework combination might play a significant
role in future app development. The code itself is written in TypeScript.
Where TypeScript is a super-set of JavaScript, which enables to write more
robust code.

5.2.1 The application architecture

The application utilizes the object-oriented architecture. The core of the
application is designed to be divided into page tabs, which should help
the scalability in the future. The configuration page, which will also be
the main topic of this section, is shown in Figure 5.2. I believe, as the
project continues, more functionality will be needed, and new tabs will
be implemented. However, focus on the configuration page for now. The
configuration page contains a modulations component, where all the prototype
modulation forms are located. The modulations component is responsible
for sending the user input to the configuration page, where it is processed.
This design is easily scalable in case of new modulation is required. So far,
the application implements three prototypes: PWM, SIN and OOK. Each
prototype contains its own parameters, which will be configured. Another
key part of the page is the config-message.service.ts, which is responsible for
restructuring the configuration payload. The rest of the logic is implemented
in the config.page.ts, where MQTT client is created and controlled.

41

5. Configuration App
5.2.2 The application design

The mobile application follows a similar design concept as the web application
introduced earlier. The pages, carrying various functionality, are ordered into
tabs. This practice is usual in mobile applications because it allows us to
clearly organize the functionality around the app. The page of main interest
is the configuration page, whose architecture was discussed in the previous
section 5.2.1.

This page is divided into three sections. The first section is the header
and it only plays the design role. The second section is responsible for the
connection between the app and MQTT broker. The last section contains
the configuration variable form, which updates based on the modulation type
selection. The same practice was utilized in the first web prototype. There
are three modulation types implemented in the application so far: PWM, SIN
and OOK. Each modulation form contains "Number of nodes" input field. The
vision behind this field is, that the app will create original configuration data
for every single end device. Thus, no configuration duplicates are possible,
and it is positive, that each node will transmit its own signal, distinguishable
for the receiver.

Figure 5.2: The mobile application prototype design.

5.3 Network functionality test

An end-to-end test was performed in order to confirm the correct functionality
of the proposed system. The vision of this project is to configure the system
through the mobile application. Therefore, the following tests were performed
only on the second prototype. The communication was traced in the gateway

42

............................... 5.3. Network functionality test

log files and on the end device.
The first test case verified the connection procedure. The connect button

was clicked, the status of the connection changed from "Disconnected" to
"Connecting". The gateway’s IP address and port appeared in the browser
console and connection status eventually updated to "Connected". A new
client connection arose in the gateway log file. Then, the connection was
interrupted by clicking the Disconnect button. The status changed to "Dis-
connected".

The next test case was focused on the data validators. If the inserted data
are invalid, the "Configure" button will fade, and it can not be clicked. For
instance, the duty cycle parameter acquires values between zero and one.
Thus, if 1.2 is inserted the "Configure" button will fade and the input field
will be marked as invalid. All validators passed the testing values.

The last test case was aimed at data transmission. Different combinations
of configuration data were chosen, sent to the end device and tracked along
the way. The full list of the tested combinations is shown in Table 5.1. Every
sent message was verified in the gateway log file and then in the end device.

Modulation Parameters Expected

PWM Freq. Duty cycle Num. of nodes
100 0.5 1 sent X
1000 1.2 50 not sent X
0 0.7 1 not sent X

100 KHz 0.5 50 sent X
10 MHz 0.5 50 sent X
variable 0.2 1 sent X

SIN Freq. Amplitude Phase shift
1000 2 180 sent X

10 kHz 3 0 sent X
100 1 370 not sent X

variable 2 120 sent X
0 2 270 not sent X

OOK Freq. Log1 Log0
100 MHz 3 0 sent X
2 kHz 1.5 -1.5 sent X
100 5 0 not sent X
0 3 1 not sent X

variable 1.5 -1.5 sent X

Table 5.1: Combinations of test data.

43

44

Chapter 6
Conclusions

The goals of this work were successfully accomplished. Firstly, the VLP
techniques and algorithms were closely investigated and then described at
the beginning of the thesis. The research significantly helped with designing
the system, which was proposed later in this work. The system supposed to
enable a configuration of end-devices in the VLC network. Various commu-
nication approaches were considered and studied in order to pick the most
favorable for this project. Eventually, the decision has been made, and the
proposed system utilizes the LoRaWAN™ and MQTT communication proto-
col. These protocols were chosen, because LoRaWAN™ uses the license-free
sub-gigahertz radio frequency bands and it is a powerful LPWAN. The MQTT
protocol was chosen because of its light-weight, which is very important in
IoT. Both protocols and other technologies used in the system were studied
and described within Chapter 3.

Secondly, the proposed system was implemented. The system structure
was formed by the gateway (central unit), end-devices and mobile application.
The gateway software is hosted on a Raspberry Pi 3, which is equipped with
the PRI 2 Bridge RHF4T002 and the Gateway module RHF0M301–868. All
gateway components such as packet forwarder, LoRa Gateway Bridge, and
mosquitto MQTT Broker are implemented on the Raspberry Pi 3 alongside
the LoRa Server and LoRa App Server. Each component was properly con-
figured and the network was set up. Verification of the correct functionality
was checked by uplink/downlink communication between the end-device and
the LoRa App Server.

The last piece of the system is the mobile application. There were two
prototypes proposed. The first prototype was implemented as a web applica-
tion, which was used mainly for testing purposes. Moreover, this prototype
helped to understand the more advanced MQTT Client library, which was
used in the mobile application. The mobile prototype was implemented
with the help of Ionic and Angular framework. These frameworks enable to
build native cross-platform mobile apps with a robust codebase. Eventually,
the mobile application was used in the final end-to-end test that verified
the full functionality of the system. Configuration messages were sent to
the end-device through the gateway, and it was successfully received and
processed in the end-device. The specification of the entire test is available

45

6. Conclusions
in section 5.3 and the example of communication is shown in Figure 6.1.

Even though the system was fully functional, I believe that the potential
of this project is far more promising. The vision is to design an indoor posi-
tioning system, that would be able to locate the target in real-time. There is
still a huge amount of work to be done and obstacles to overcome in order to
achieve such objective. However, I believe, employing the proposed system,
with a few additional features, could be a great start to do so.

The next step would be definitely implementing class B end-devices, be-
cause class A devices have large downlink latency. This latency could result
in significant unwanted configuration delay. Then, I would try to utilize the
mobile phone camera in order to capture visible light signals, transmitted from
end-devices to the mobile phone. There comes the tricky part though. There
must be a powerful algorithm implemented on the phone. The algorithm
has to localize the target fast and precisely. The speed is crucial because
the algorithm must evaluate the target’s position in real-time. Otherwise,
it would be poor navigation. There are numerous techniques proposed in
the literature to achieve the correct target localization, but many are to slow
to use in the real-time positioning. However, I believe, employing an image
processing method (e.g. Optical flow) with a probabilistic technique (e.g.
Bayesian forecast) as it is proposed in the Reference [34], might be the way
to solve this complicated problem.

Figure 6.1: Example of received messages in end-device.

46

Appendices

47

48

Appendix A
List of Abbreviations

ABP Activation by Personalization.
ADR Adaptive Data Rate.
AoA Angle of Arrival.
APD avalanche photodiode.
API Application Programming Interface.

CCD Charge-Coupled Device.
CSS chirp spread spectrum.
CSS Cascading Style Sheets.

DOM Document Object Model.

FDA Fisher discriminant analysis.

GPS Global Positioning System.
gRPC Remote Procedure Calls.

HTML Hypertext Markup Language.
HTTP Hypertext Transfer Protocol.

IMU inertial measurement unit.
IoT Internet of Things.
IPs indoor positioning systems.

JSON JavaScript Object Notation.

kNN k-Nearest Neighbours.

LBS location-based services.
LED light emitting diode.
LoRa™ Long Range.
LoRaWAN™ Long Range Wide Area Network.

49

A. List of Abbreviations
LOS line of sight.
LSE least square estimator.

MAC Media Access Control.
MLEM Multiple LEDs Estimation Model.
MQTT Message Queue Telemetry Transport.
MSB most significant bits.

OASIS Organization for the Advancement of Struc-
tured Information Standards.

OS operation system.
OTAA Over-the-Air Activation.

PDM pulse duration multiplexing.
PIN positive-intrinsic-negative.
PWM pulse-width modulation.

RF radio frequency.
RSF receive signal feature.
RSS received signal strength.
Rx receiver.

SHS Step and Heading systems.
SIFT scale-invariant feature transform.
SPA Single-Page-Application.
SPI Serial Peripheral Interface.
SSH Secure Shell.
SSL Secure Socket Layer.

TCP/IP Transmission Control Protocol/Internet Pro-
tocol.

TDoA time difference of arrival.
TLS Transport Layer Security.
ToA time of arrival.
Tx transmitter.

UDP User Datagram Protocol.
USB Universal Serial Bus.

VAP visible light access point.
VLC visible light communication.
VLP visible light positioning.

50

.................................. A. List of Abbreviations

51

52

Appendix B
Bibliography

[1] Štěpán Bosák, “Hw for indoor visible light positioning testbed,” Bache-
lor’s Thesis, CTU FEE, Technická 2, 5 2020.

[2] E. R. Lin, “Lora protocol. evaluations, limitations and practical test,”
Master’s Thesis, Universitat Politècnica de Catalunya, 2016.

[3] O. Popoola, S. Sinanović, W. Popoola, and R. Ramirez-Iniguez, “Optical
boundaries for led-based indoor positioning system,” Computation,
vol. 7, no. 1, p. 7, Jan 2019. [Online]. Available: http:
//dx.doi.org/10.3390/computation7010007

[4] S. Jung, S. Hann, and C. Park, “Tdoa-based optical wireless indoor
localization using led ceiling lamps,” IEEE Transactions on Consumer
Electronics, vol. 57, no. 4, pp. 1592–1597, 2011.

[5] C. Neha, A. Luis Nero, and Z. Ghassemlooy, “Current Trends on Visible
Light Positioning Techniques,” in The 2nd West Asian Colloquium on
Optical Wireless Communications (WACOWC2019), Tehran, Iran, Apr.
2019. [Online]. Available: https://hal.archives-ouvertes.fr/hal-02135266

[6] A. Correa Vila, M. Barceló, A. Morell, and J. Lopez Vicario, “A review
of pedestrian indoor positioning systems for mass market applications,”
Sensors (Switzerland), vol. 17, 08 2017.

[7] C. Xie, G. Weipeng, X. Wu, L. Fang, and Y. Cai, “The led-id detection
and recognition method based on visible light positioning using proximity
method,” IEEE Photonics Journal, vol. PP, pp. 1–1, 02 2018.

[8] N. A. Azmi, S. Samsul, Y. Yamada, M. F. Mohd Yakub, M. I. Mohd
Ismail, and R. A. Dziyauddin, “A survey of localization using rssi and
tdoa techniques in wireless sensor network: System architecture,” in
2018 2nd International Conference on Telematics and Future Generation
Networks (TAFGEN), 2018, pp. 131–136.

[9] A. R. Kulaib, R. M. Shubair, M. A. Al-Qutayri, and J. W. P. Ng, “An
overview of localization techniques for wireless sensor networks,” in 2011
International Conference on Innovations in Information Technology,
2011, pp. 167–172.

53

http://dx.doi.org/10.3390/computation7010007
http://dx.doi.org/10.3390/computation7010007
https://hal.archives-ouvertes.fr/hal-02135266

B. Bibliography.....................................
[10] L. Jaulin, “5 - instantaneous localization,” in Mobile Robotics, L. Jaulin,

Ed. Elsevier, 2015, pp. 171 – 196. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/B978178548048550005X

[11] Wikipedia contributors, “Multilateration — Wikipedia, the free
encyclopedia,” 2020, [Online; accessed 27-March-2020]. [Online]. Avail-
able: https://en.wikipedia.org/w/index.php?title=Multilateration&
oldid=947549616

[12] M. Horiba, E. Okamoto, T. Shinohara, and K. Matsumura, “An im-
proved nlos detection scheme using stochastic characteristics for indoor
localization,” vol. 2015, 03 2015, pp. 478–482.

[13] H. Lv, L. Feng, A. Yang, P. Guo, H. Huang, and S. Chen, “High
accuracy vlc indoor positioning system with differential detection,” IEEE
Photonics Journal, vol. 9, no. 3, pp. 1–13, 2017.

[14] W. Xu, J. Wang, H. Shen, H. Zhang, and X. You, “Indoor positioning
for multiphotodiode device using visible-light communications,” IEEE
Photonics Journal, vol. 8, no. 1, pp. 1–11, 2016.

[15] Y. S. Eroglu, I. Guvenc, N. Pala, and M. Yuksel, “Aoa-based localization
and tracking in multi-element vlc systems,” in 2015 IEEE 16th Annual
Wireless and Microwave Technology Conference (WAMICON), 2015, pp.
1–5.

[16] J. Machaj, P. Brida, and R. Piché, “Rank based fingerprinting algorithm
for indoor positioning,” in 2011 International Conference on Indoor
Positioning and Indoor Navigation, 2011, pp. 1–6.

[17] T. Stockx, B. Hecht, and J. Schöning, “Subwayps: Towards enabling
smartphone positioning in underground public transportation systems,”
11 2014.

[18] O. R. Popoola, F. B. Ogunkoya, W. O. Popoola, R. Ramirez-Iniguez, and
S. Sinanović, “Indoor localization based on multiple leds position estima-
tion,” in 2016 IEEE 17th International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC), 2016, pp. 1–6.

[19] M. Xu, W. Xia, Z. Jia, Y. Zhu, and L. Shen, “A vlc-based 3-d indoor
positioning system using fingerprinting and k-nearest neighbor,” in 2017
IEEE 85th Vehicular Technology Conference (VTC Spring), 2017, pp.
1–5.

[20] S. Jung, S. Hann, and C. Park, “Tdoa-based optical wireless indoor
localization using led ceiling lamps,” IEEE Transactions on Consumer
Electronics, vol. 57, no. 4, pp. 1592–1597, 2011.

[21] A. Hajihoseini, A. Dargahi, and A. Ghorashi, “3d indoor localization
using visible light communications,” IJIREEICE, vol. 4, pp. 119–122, 07
2016.

54

http://www.sciencedirect.com/science/article/pii/B978178548048550005X
http://www.sciencedirect.com/science/article/pii/B978178548048550005X
https://en.wikipedia.org/w/index.php?title=Multilateration&oldid=947549616
https://en.wikipedia.org/w/index.php?title=Multilateration&oldid=947549616

..................................... B. Bibliography

[22] P. K. Aswin, P. Shyama, and L. B. Das, “Indoor localization using visible
light communication and image processing,” in 2018 IEEE International
Conference on Consumer Electronics (ICCE), 2018, pp. 1–6.

[23] B. Zhang, M. Zhang, Z. Ghassemlooy, D. Han, and P. Yu, “A visible
light positioning system with a novel positioning algorithm and two
leds,” in 2019 24th OptoElectronics and Communications Conference
(OECC) and 2019 International Conference on Photonics in Switching
and Computing (PSC), 2019, pp. 1–3.

[24] Y. U. Lee and M. Kavehrad, “Long-range indoor hybrid localization
system design with visible light communications and wireless network,”
in 2012 IEEE Photonics Society Summer Topical Meeting Series, 2012,
pp. 82–83.

[25] “Lora crash course by thomas telkamp,” USA, 2016. [Online].
Available: https://www.youtube.com/watch?time_continue=68&v=
T3dGLqZrjIQ&feature=emb_logo

[26] A. Augustin, J. Yi, T. H. Clausen, and W. Townsley, “A study of lora:
Long range & low power networks for the internet of things,” Sensors,
vol. 16, p. 1466, 10 2016.

[27] A. Lavric and V. Popa, “Internet of things and lora™ low-power wide-
area networks: A survey,” in 2017 International Symposium on Signals,
Circuits and Systems (ISSCS), 2017, pp. 1–5.

[28] L. Angrisani, P. Arpaia, F. Bonavolontà, M. Conti, and A. Liccardo,
“Lora protocol performance assessment in critical noise conditions,” in
2017 IEEE 3rd International Forum on Research and Technologies for
Society and Industry (RTSI), 2017, pp. 1–5.

[29] L. Vangelista, A. Zanella, and M. Zorzi, “Long-range iot technologies:
The dawn of lora™ ,” in Future Access Enablers for Ubiquitous and
Intelligent Infrastructures, V. Atanasovski and A. Leon-Garcia, Eds.
Cham: Springer International Publishing, 2015, pp. 51–58.

[30] D. Thangavel, X. Ma, A. Valera, H. Tan, and C. K. Tan, “Performance
evaluation of mqtt and coap via a common middleware,” in 2014 IEEE
Ninth International Conference on Intelligent Sensors, Sensor Networks
and Information Processing (ISSNIP), 2014, pp. 1–6.

[31] “Foundational iot messaging protocol, mqtt, becomes in-
ternational oasis standard,” USA, 2020. [Online]. Avail-
able: https://www.oasis-open.org/news/pr/foundational-iot-messaging-
protocol-mqtt-becomes-international-oasis-standard

[32] K. Grgić, I. Špeh, and I. Heđi, “A web-based iot solution for monitoring
data using mqtt protocol,” in 2016 International Conference on Smart
Systems and Technologies (SST), 2016, pp. 249–253.

55

https://www.youtube.com/watch?time_continue=68&v=T3dGLqZrjIQ&feature=emb_logo
https://www.youtube.com/watch?time_continue=68&v=T3dGLqZrjIQ&feature=emb_logo
https://www.oasis-open.org/news/pr/foundational-iot-messaging-protocol-mqtt-becomes-international-oasis-standard
https://www.oasis-open.org/news/pr/foundational-iot-messaging-protocol-mqtt-becomes-international-oasis-standard

B. Bibliography.....................................
[33] S. Cope, “Understanding the mqtt protocol packet structure,” 2011-

2020. [Online]. Available: http://www.steves-internet-guide.com/mqtt-
protocol-messages-overview/

[34] W. Guan, X. Chen, M. Huang, Z. Liu, Y. Wu, and Y. Chen, “High-speed
robust dynamic positioning and tracking method based on visual visible
light communication using optical flow detection and bayesian forecast,”
IEEE Photonics Journal, vol. 10, no. 3, pp. 1–22, 2018.

56

http://www.steves-internet-guide.com/mqtt-protocol-messages-overview/
http://www.steves-internet-guide.com/mqtt-protocol-messages-overview/

	Introduction
	Theoretical Part
	Algorithms of indoor navigation using visible light communication
	Algorithms of network-based systems
	Mathematical techniques used in IPs algorithms
	Received signal strength
	Angle of arrival
	Time of arrival and Time difference of arrival
	Fingerprinting
	Proximity

	Inertial based systems
	Hybrid systems
	Indoor positioning systems using VLC

	Overview of used technologies
	LoRa™
	LoRaWAN™ protocol
	MQTT protocol
	MQTT architecture
	Quality of Service (QoS)
	Message format

	Angular
	Ionic

	Practical Part
	Communication design
	The gateway architecture
	The gateway implementation
	Components installation
	Components configuration
	The network setup

	Configuration App
	The prototype of web application
	The application architecture
	The application design

	The prototype of mobile application
	The application architecture
	The application design

	Network functionality test

	Conclusions

	Appendices
	List of Abbreviations
	Bibliography

