
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

NDT SLAM Respecting Visibility

Matěj Boxan

Supervisor: Ing. Vladimír Smutný Ph.D.
Field of study: Cybernetics and Robotics
May 2020

ii

Acknowledgements
I would like to express my gratitude to my
supervisor Mr. Vladimír Smutný for his
patience and persistent help during the
whole work. I also appreciate many useful
suggestion from his colleague, Mr. Pavel
Krsek. Finally, I would like to thank my
family and my girlfriend for their never-
ending support during my studies.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of the uni-
versity theses.

Prague, 20. May 2020

iii

Abstract
This thesis is dedicated to improvements
of existing NDT (Normal distribution
transform) SLAM algorithm. The import
of static structures from CAD drawings
of the building, which the original algo-
rithm exploits, lead to duplication of cer-
tain walls. The proposed solution is the
use of visibility algorithms, known from
computer graphics. Positive consequence
of integration of visibility is an overall
speedup of the algorithm.

Another improvement of the previous
implementation is the fusion of odometry
data provided by the mobile robot, while
taking into account their uncertainty. The
motivation is to increase reliability and
robustness mainly in long corridors.

The thesis contains a description of
used methods, their implementation and
evaluation of experimental results, espe-
cially in comparison to the original algo-
rithm.

Keywords: localisation, mapping,
mobile robot, lidar, SLAM, visibility,
NDT, normal distribution transform,
ROS, odometry, CAD drawing

Supervisor:
Ing. Vladimír Smutný Ph.D.

Abstrakt
Tato bakalářská práce se zabývá vylep-
šením existujícího algoritmu pro NDT
(Normal distribution transform) SLAM.
Import statických struktur z CAD vý-
kresu budovy, které původní řešení vyu-
žívá, mělo za následek duplikaci některých
stěn. Jako řešení se nabízí algoritmy zkou-
mající viditelnost, známé z počítačové gra-
fiky. Dalším důsledkem jejich integrace je
časové zrychlení původního NDT SLAM
algoritmu.

Dalším vylepšením původního řešení je
větší zapojení dat z odometrie robota, s
přihlédnutím k jejich nejistotě. Motivací
je zvýšení spolehlivosti lokalizace a mapo-
vání, zejména v dlouhých chodbách.

Práce obsahuje popis principů použi-
tých metod, jejich implementaci a zhodno-
cení výsledků provedených experimentů,
především jejich srovnání s původním al-
goritmem.

Klíčová slova: lokalizace, mapování,
mobilní robot, lidar, SLAM, viditelnost,
NDT, transformace normálního rozdělení,
ROS, odometrie, CAD výkres

Překlad názvu: Lokalizace mobilního
robotu metodou NDT za využití
viditelnosti

iv

Contents
1 Introduction 1

2 State of the art 3

2.1 Normal distribution transform . . . 3

2.2 Score function 5

2.3 Visibility . 5

2.3.1 Bresenham’s line algorithm . . . 6

2.3.2 Supercover DDA line algorithm 7

2.3.3 Midpoint circle algorithm 8

2.4 Our motivation 9

3 Score function approximation and
the use of odometry 11

4 Implementation 15

4.1 Used software 15

4.2 Program overview 16

4.2.1 AlgorithmSlam 16

4.2.2 GridVisibility 16

4.2.3 P2DRegistration 18

4.3 Visualisation tools 19

5 Practical observations 23

5.1 Limitations of visibility algorithms
in robotics . 23

5.2 Eigen ration parameter in DXF to
NDT conversion 24

5.3 Visibility computation in our
environment 25

5.4 Inaccuracies in CAD drawings . . 25

5.5 Uncertainty of odometry 26

6 Experiments 27

6.1 Experimental platform 27

6.1.1 Robot Jackal 27

6.1.2 Laser scanner 28

6.2 Performed Experiments 29

6.2.1 First Experiment 29

6.2.2 Second experiment 34

6.3 Course of the Score function . . . 38

6.3.1 Visualisation of the Score
function . 40

7 Conclusions 43

Bibliography 45

Project Specification 47

A CD content description 49

v

Figures
2.1 Comparison of Occupancy and
NDT grids . 4

2.2 Comparison of DDA algorithms . 8

2.3 Duplication of walls imported from
CAD drawing 9

3.1 An example of planar cut
through s(p) in pf along axis X, Y 12

4.1 Overview of ndt_ciirc_slam ROS
node. Conversion of CAD drawing to
NDT map was implemented by
Pánek (orange). Represention of the
NDT map, together with scan
matching and map update (white) is
work of Nováček, who built upon
work of Jelínek. The computation of
visibility, score function
approximation and exports of data
files (green) were implemented by the
author of this work. 17

4.2 User interface of Python script
plot_func_comparison.py 20

4.3 User interface of Python script
plot_func_sum.py 21

5.1 Unsuitable use of Bresenham’s line
algorithm . 24

5.2 Comparison of NDT maps
converted from CAD drawing using
different eigen ratios parameters. . 24

6.1 The experimental platform 28

6.2 Environment of the first
experiment . 30

6.3 Comparison of the final map of the
first experiment created without
and with visibility. The areas
highlighted by red circles are
described in detail below. 31

6.4 Comparison of areas A and B of
the first experiment shows differences
in duplication of a table and a pillar.
The use of visibility prevented
duplication of the pillar, while the
duplication of the table was
suppressed. 32

6.5 Comparison of area C of the first
experiment details registration of new
cells to the opposite side of the north
wall. 32

6.6 Comparison of areas D and E of
the first experiment shows differences
of duplication of the north wall.
While without visibility, the wall was
on some places triplicated, the use of
visibility prevented this. The error in
registration of the pillar is detailed
below. 33

6.7 The final map of the second
experiment produced without
visibility. 35

6.8 The final map of the second
experiment produced with visibility. 36

6.9 Comparison of area A of the
second experiment shows detail of a
small lecture room. The original
CAD drawing was not manually
edited according to the true
dimensions of the room, which led to
duplication of north and south walls
in both scenarios. The use of
visibility prevented registration of
new cells to the opposite sides of west
and north walls. 37

6.10 Comparison of area B of the
second experiment shows map of a
kitchen and its surrounding after a
long drive through the corridor. The
use of visibility and odometry
stabilised the robot’s position when it
was driving through the corridor and
prevented its incorrect displacement. 38

vi

6.11 Graph of values of the score
function, together with robot’s poses
in a lecture room. 39

6.12 Situation 1. Both x and y axis are
conditioned by sufficient number of
points. 41

6.13 Visualisation of the score function
and its approximation where both x
and y coordinates are supported by
sufficient number of points. 41

6.14 Situation 2. Only one axis is
supported by sufficient number of
measured points, position along
corridor axis is not restricted by
data. 42

6.15 Visualisation of the score function
and its approximation where the
robot is located in a corridor. 42

Tables
6.1 Parametrs of Sick TiM561 LIDAR 28

6.2 Duration of one SLAM cycle in the
course of the first experiment 30

6.3 Duration of one SLAM cycle in the
course of the first experiment 34

vii

Chapter 1

Introduction

Simultaneous localisation and mapping is one of the basic underlying tasks
of mobile robotics. While the robot needs to determine its position in the
environment, at the same time it updates the map of the environment with
data acquired from various sensors, such as LIDARs and video cameras. Both
localisation and mapping are required for other crucial features, including
navigation and multi-robot cooperation.

State of the art solutions using point cloud matching are memory consuming,
especially in larger environments. A proposed solution to this is based on
Normal distribution transform (NDT). The environment is divided into a grid,
similar to the one used for occupancy map. Each cell in the grid contains a
normal distribution function, representing the probability of position and size
of an obstacle. Scan registration is then used to update the existing NDT
grid, by computing a score based on the distances between dedicated cells
and points obtained from the LIDAR sensor in the form of a point cloud.

In larger environments, looking for the optimal transformation between
the point cloud and NDT grid of the whole map requires longer computation
time, while the robot is carrying only limited resources which are needed
elsewhere. It is thus suitable to exploit only information about the part of
the map that the robot currently observes, or use other methods, such as
ray-tracing or visibility algorithms known from computer graphics, to further
decrease the number of possible transformations.

One of proposed uses for mobile robots are warehouses, where robots could
be employed for transportation of goods. Dynamically changing environment
of a warehouse can be well represented as an NDT map. Certain parts of
the building in standard situation don’t change, such as supporting frames.
Because the majority of modern buildings were at some stage planned in the
form of CAD drawings, these prior information could be used for creation of
the base of the NDT map. This import is strongly influenced by parameters of
the grid, particularly by the size of the cells. This may lead to duplication of
certain walls, which causes problems when fitting a laser scan to the existing
map, as the robot cannot see the wall facing in the opposite direction.

1

1. Introduction
Majority of today’s land mobile robots provide odometry data, either

from wheel encoders, or estimated from properties of motors. Although the
measurements are indirect and strongly influenced by the environment the
robot moves in (such as slippery floor) and the state of the robot itself (pressure
in wheels), odometry can still be beneficial, if appropriately combined with
other methods of localisation. These methods and especially scan matching
are rather unreliable in long corridors. For this reason, even though not
explicitly mentioned in the assignment, the need for the use of odometry
emerged during work on this theses.

These issues create a motivation to introduce visibility and odometry as a
new part to the existing NDT algorithm.

2

Chapter 2

State of the art

2.1 Normal distribution transform

Normal distribution transform is an alternative approach for storing digital
map data in a grid, firstly proposed by Biber and Straßer in [2]. Each cell is
represented by its mean

µ =

µxµy
µθ

 (2.1)

and covariance matrix

Σ =

Σxx Σxy Σxθ

Σyx Σyy Σyθ

Σθx Σθy Σθθ

 , (2.2)

that are built from each measurement {xi}Ni=1 as

µ = 1
N

N∑
i=1

xi and Σ = 1
N

N∑
i=1

(xi − µ)(xi − µ)T . (2.3)

A normal distribution is therefore assigned to each cell in the grid, modelling
the probability of measuring a point obtained from a laser scan. Those can
be easily calculated, are continuous and differentiable and can be further used
to match another laser scan into the existing map.

The probability of measuring a specific point x in a cell c is modelled by
the normal distribution

pc(x) ∼ exp(−(x− µ)TΣ−1(x− µ)
2). (2.4)

Unlike the standard occupancy grid, which represents information whether
or not a cell is being occupied, NDT provides information describing the

3

2. State of the art....................................
probability of measuring a laser scan sample for each position inside of the
cell. Using this method, we can work with more precise information about
obstacle position, orientation and size, as the probability distribution of
obstacles is normal and not uniform. Unlike storing point clouds, the memory
consumption is constant over time.

Biber and Straßer proposed usage of 4 overlapping grids, in order to
minimise effects of discretization. Similar approach was chosen by Schulz,
Hanten and Zel in [12], who opted for 4 overlapping grids in 2D space and
8 overlapping grids in 3D space. The grids are shifted by half the resolution
into different directions. The likelihood of a point x is then obtained as the
mean of the four likelihood pc(x) values of the corresponding overlapping cell
grids.

(a) : Occupancy grid (b) : NDT grid

Figure 2.1: Comparison of Occupancy and NDT grids

In dynamic environments, with people and other robots moving around,
it is important to distinguish between free and occupied space, especially
for planning algorithms. Normal distribution transform can be expanded
to the Normal distribution transform occupancy map (NDT-OM) which
explicitly describes information about the occupancy state, monitors free
space and changes in occupation of dynamic objects. This extension described
in [11] has been implemented by Jelínek [6]. The NDT-OM performs ray
tracing between the sensor origin and the point of the ray’s reflection from
an obstacle. Cells that are intersected by the cast ray are updated with low
occupancy probability and their covariance is changed accordingly, while the
last cell is updated as occupied. Similar approach was proposed by Einhorn
and Gross in [5], where they explicitly store the occupancy value of cell c
as oc and the final probability distribution expressing that a point belongs
to c is oc · N (µc,Σc). Schulz, Hanten and Zel proposed alternative solution
called kd-ONDT, where the ray casting is performed between the LIDAR
position and the means of the measurement distributions. Cells among the
ray are once again updated free and then the measurement distributions are
combined with existing distributions in the last cell. Unlike the NDT-OM,
maximum likelihood values of the ray in the cells to be updated is not covered,
to ensure independence of the new measurement from the previous ones.

4

.................................... 2.2. Score function

Biber and Straßer described the conversion between a recorded point cloud
and the NDT grid [2]. This conversion is called PCL-to-NDT matching and it
has been implemented and brought to our environment by Nováček [8], who
describes it in greater detail. Other possible scenario of scan matching is PCL-
to-PCL, standing for Point cloud to Point cloud. This is a standard technique
for scan matching, solved by the Iterative closest point (ICP) algorithm [7].
The ICP algorithm aims to find the best possible transformation between two
laser scans, in order to minimise their distance. The last possible setting is
NDT-to-NDT matching, which can be once again interpreted as minimising
the distance between two NDT grids.

2.2 Score function

The goal of a scan alignment is to recover parameters p = [tx, ty, θ]T of
transformation T between two robot coordinate frames. The transformation T
in 2D is

T (p,x) =
[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
x +

[
tx
ty

]
, (2.5)

where tx and ty are translation parameters and θ is the angle of rotation.
Optimising the parameters p is our next focus. Firstly, each point from
the measurement {xi}Ni=1 is transformed with the transform T (p,x), that
is x′i = T (p,xi). Then, the covariance matrix Σi and mean µi are looked
up in the NDT grid from a cell corresponding to the point xi

′. Score s(p) is
computed as

s(p) =
∑
i

exp(−1
2(x′i − µi)TΣ−1

i (x′i − µi)). (2.6)

The parameters p are considered optimal if the value of sum s(p) is maximal.
Score s(p), respectively its negation −s(p), represents the optimisation
criterion for Newton’s algorithm, which iteratively finds parameters p that
minimise −s(p) by solving the equation

H∆p = −g. (2.7)

Details about the hessian matrix H, gradient g and the derivatives of s(p) can
be found in the work of Nováček [8]. With respect to the existing literature,
the term score function will be further used for the score s(p).

2.3 Visibility

Visibility computation is an important part of computer graphics theory.
Nevertheless, it is also discussed in other fields, such as telecommunications,
architecture, computer vision and robotics. The aim of visibility algorithms

5

2. State of the art....................................
is to determine which objects and part of the scene are visible from the
current location of the observer. Bittner and Wonka [3] provide a summary
of existing visibility algorithms from the point of computer graphics based
on the problem domain. We will further focus only on 2D algorithms, as the
studied problem is also two dimensional.

There are many domains of visibility that computer graphics deals with.
Among visibility along a line, visibility from a point, visibility from a polygon
and others, only point to point visibility concerns us, because it is the closest
approach to our own problem. Starting with the robot’s location in the grid,
maximum range and angle of vision, the task is to find all cells visible between
the robot’s position and the sector of the circle sensors on the robot can
observe. In order to determine which cells are visible, a line between the start
and final points needs to be drawn.

2.3.1 Bresenham’s line algorithm

Bresenham’s line drawing algorithm is a Digital differential algorithm (DDA)
which approximates line between two points. As it only uses addition, subtrac-
tion and bit shifting of integers, it is widely used in today’s processing units.
The use of incremental error avoids the need for floating points, rounding and
division operation [4]. Although it was originally intended for drawing lines
on pixel screens, it can be as well used for 2D grids. Only a shortened version
of the algorithm for slope between 0 and 1 is presented in Algorithm 1. It
can be easily generalised to other octants.

Algorithm 1: Bresenham’s line algorithm
1 function drawLine (x1, y1, x2, y2)
Input :Coordinates of two 2D points

2 dx = x2 - x1
3 dy = y2 - y1
4 step = 1
5 x = x1
6 y = y1
7 error = dx
8 for i from 0 to dx do
9 x += step

10 error += 2*dy
11 drawPoint(x, y)
12 if error > 2*dx then
13 y += step
14 error -= 2*dx
15 end
16 end

6

...................................... 2.3. Visibility

From the point of computer graphics, any line drawing function must
reasonably approximate a line on a limited resolution of a computer screen,
because only horizontal, vertical and diagonal lines with slope equal to ±1 can
be drawn precisely. Secondly, it must be fast [1]. Both these characteristics,
which are met by the Bresenham’s line drawing algorithm, are also required
in our environment.

2.3.2 Supercover DDA line algorithm

A slight modification of the Bresenham’s line algorithm, which returns all grid
points crossed by a line, may be useful in cases when we need to determine
occurrence of an obstacle between two points, such as robots location and
the edge of its field of vision. The fact that the Bresenham’s line algorithm is
defined on 8-neighbourhood limits its ability to detect obstacles, especially
in situations where the wall is not continuous, or in corners. Once again,
only shortened version of the algorithm for the first octant is included in
Algorithm 2.

Algorithm 2: Supercover DDA line algorithm
1 function drawLine x1, y1, x2, y2
Input :Coordinates of two 2D points

2 dx = x2 - x1
3 dy = y2 - y1
4 step = 1
5 x = x1
6 y = y1
7 error = dx
8 errorPrev = 0
9 for i from 0 to dx do

10 x += step
11 error += 2*dy
12 drawPoint(x, y)
13 if error > 2*dx then
14 y += step
15 error -= 2*dx;
16 if error + errorPrev < 2*dx then drawPoint(x-step, y) ;
17 else if error + errorPrev > 2*dx then drawPoint(x, y-step) ;
18 else drawPoint(x-step, y) drawPoint(x, y-step) ;
19 end
20 errorPrev = error
21 end

Where the Bresenham’s line algorithm doesn’t return all points the line
crosses, conditions on lines 16-18 of Algorithm 2 check the adjacent cells and
the result covers all the crossed points. This is demonstrated on Fig. 2.2.

7

2. State of the art....................................

(a) : Bresenham’s line algorithm (b) : Supercover Bresenham’s line
algorithm

Figure 2.2: Comparison of DDA algorithms

2.3.3 Midpoint circle algorithm

Midpoint circle algorithm enables rasterization of a circle to a discrete grid.
It works similarly as the previous algorithms, that implies that it uses only
addition, subtraction and bit shifting of integers. It draws 8 octants at once
starting from the multiples of 90◦ and traverses both direction, until it reaches
a multiple of 45◦. The algorithm can be further adjusted to supercover all
crossed pixels, or to draw only a sector of a circle.

Algorithm 3: Midpoint circle algorithm
1 function drawCircle cx, cy, radius
Input :Coordinates of the centre of the circle, radius

2 r = radius;
3 x = -r;
4 y = 0;
5 error = 2-2*r;
6 do
7 Point(cx-x, cy+y);
8 Point(cx-y, cy-x);
9 Point(cx+x, cy-y);

10 Point(cx+y, cy+x);
11 r = error;
12 if r <= y then
13 y+=1;
14 error += 2*y+1;
15 end
16 if r > x or error > y then
17 x+=1;
18 error += x*2+1;
19 end
20 while x < 0 ;

8

....................................2.4. Our motivation

2.4 Our motivation

The motivation for the use of visibility algorithms is twofold. Firstly, fitting
the laser scan only on the part of the world the robot can actually observe
with its sensors speeds up scan matching. This increase of speed can then lead
to more SLAM cycles per second and therefore to more accurate localisation
and mapping.

The second reason is associated with the use of CAD drawings. The
transform of CAD drawing to NDT map may lead to duplication of certain
walls. An example of this can be seen on Figures 2.3. The original CAD
drawing 2.3a is transformed to NDT grid (blue ellipses on 2.3b). After several
rounds of NDT SLAM, where the robot is moving in the room north of the
bottom wall, the bottom wall is duplicated (green ellipses). The cause of this
improper behaviour is that the laser scan is firstly fit on the outer part of the
wall, which leads to incorrect determination of the robot’s position. When
the robot observes the wall on the other side of the room, recorded laser
scan is not fitted to this wall, which is now too far. Instead, the laser scan
is registered into empty cells in front of the wall, which is now duplicated.
Further laser scans are fitted to this duplicate, in effect returning wrong
robot’s position. When the robot once again observes the wall from Fig. 2.3,
it’s position is misaligned and the laser scan, previously fitted to the outer
side of the wall, is registered to empty cells on the outer side of the wall,
effectively creating a new wall.

(a) : Original CAD drawing

(b) : The result of NDT SLAM after several rounds in a room.

Figure 2.3: Duplication of walls imported from CAD drawing

9

10

Chapter 3

Score function approximation and the use
of odometry

The implementation by Nováček [8] performs one step of SLAM after the
robot drives a minimum distance, or rotates a minimum angle. Otherwise it
uses the odometry pose, acquired by the robot. However, in certain situations,
the Newton’s algorithm using the score function s(p) as criterion does not
converge, or converges to one of many local maximums. In cases like this, it
would be effective to use a prior odometry information about the robot’s pose
to improve the performance and correctness of the algorithm. At the same
time, if the score function s(p) with parameters p from the final iteration
of the Newton’s algorithm has high values and the robot’s position is thus
quite likely, we would like to keep this information for future use. The final
parameters p will be further referred to as pf .

As the score function s(pf) from 2.6 is not given analytically and its
computation is time consuming, we will try to approximate it with a function
similar to the multivariate normal distribution

N (µ,Σ) = e−
1
2 (x−µ)T Σ−1(x−µ)√

|2πΣ|
. (3.1)

The desired function M(µ,Σ), that approximates the score function s(p),
has several constrains

M(µ,Σ) = kN (µ,Σ), (3.2)
M(pf ,Σ) = s(pf), (3.3)

max(M(µ,Σ)) = max(s(p)), (3.4)
H(M(µ,Σ))|pf = H(s(p)|pf). (3.5)

11

3. Score function approximation and the use of odometry...................

85.85 85.90 85.95 86.00 86.05 86.10 86.15 86.20
x (m)

16.80

16.85

16.90

16.95

17.00

17.05

17.10

17.15

y
(m

)

Figure 3.1: An example of planar cut through s(p) in pf along axis X, Y

The first constrain 3.2 underlines the similarity to the multivariate normal
distribution N (µ,Σ), where k is a constant. The second 3.3 and third 3.4
constraints together define the relation between the maximal values of func-
tions M(x,Σ) and s(p). As M(µ,Σ) is similar to a multivariate normal
distribution, it has maximum in its mean µ. Subsequently, the score func-
tion s(p) reaches it’s highest point in pf , thus

max(s(p)) = s(pf) = M(µ,Σ)|µ and pf = µ. (3.6)

Finally, 3.5 implies that M(µ,Σ) approximates s(p) on its neighbourhood,
because the hessian matrices H of their second derivatives are equal.

By definition, the covariance matrix of a multivariate normal distribu-
tion N (µ,Σ) must be symmetrical and positive-definitive. Since the score
function converges to maximums and it’s hessians in these points are therefore
negative definitive, we can obtain the covariance matrix as

Σ = −H−1. (3.7)

From 3.5 and 3.2 we get

H(M(x,Σ))|µ = H(kN (µ,Σ))
= kH(N (µ,Σ))

= k
Σ−1√
|2πΣ|

= H(s(p))|µ, (3.8)

12

................... 3. Score function approximation and the use of odometry

describing the approximation of the score function s(p) by the multivari-
ate normal distribution. From 3.2 we get the relation between the score
function s(p) and its approximation in pf = µ as

M(µ,Σ)|µ = kN (µ,Σ)|µ

= k
1√
|2πΣ|

= s(p))|µ. (3.9)

When we divide 3.8 by 3.9, we get the formula for the inverse of the
covariance matrix

Σ−1 = H(s(p))|µ)
s(p))|µ

, (3.10)

leading to the unknown value k being

k = s(p))|µ
√
|2πΣ|. (3.11)

Our desired function M(x,Σ), further referred as score approximation, has
therefore the following formula

M(µ,Σ) = kN (µ,Σ)

= s(p)|)µ
√
|2πΣ|)e

− 1
2 (x−µ)T Σ−1(x−µ)√

|2πΣ|
= s(p))|µe−

1
2 (x−µ)T Σ−1(x−µ). (3.12)

During this computation, we abandoned the constraint forcing the co-
variance matrix to be positive-definitive. This creates further problems,
as the Newton’s algorithm converges to maximums. With the approxima-
tion M(x,Σ)|µ being a saddle point or a minimum, the algorithm would
fail. Because of this, the determinant of the criterion is checked beforehand.
If |H(M(µ,Σ)+s(µ))| = 0, the estimation of the robot’s pose from odometry
is returned directly and the covariance Σt−1 from the previous iteration is
kept. To include the decrease of the accuracy of odometry over time, the
covariance Σt−1 is multiplied by a matrix C, so that Σt = C · Σt−1. The
fact that the hessian H(s(µ)) is positive-semidefinitive corresponds to the
situation where there is not sufficient match between the laser scan and the
map.

13

3. Score function approximation and the use of odometry...................
The adjusted localisation algorithm in time t follows these steps:..1. Initialise the transformation p = [tx, ty, tθ]T with the odometry position

estimation et = [ex, ey, eθ]T ...2. Initialise the Score approximation M(µ,Σ) with µ = p and Σ = Σt−1
from the previous iteration...3. Transform every point from the laser scan with the transformation T (pi)
as described in 2.2...4. Compute the value of the Score function s(pi)|t as described in 2.2...5. Optimise p with Newton’s method described in Chapter 3 in [8] using
the sum M(pi,Σ)|t + s(pi)|t as criterion...6. Find a new transformation T (pi+1) and update the mean µ of score
approximation M(µ,Σ), such that µ = pi+1...7. Go to step 3. The algorithm ends when the maximum number of
iterations is reached, or when the absolute value of the difference between
the value of the sum M(pi,Σ)|t + s(pi)|t in the iteration i and i+ 1 is
smaller than the threshold...8. Store the covariance matrix Σ for score approximation in the next cycle.
If the determinant |H(M(pi,Σ)|t + s(pi)|t)| = 0, set Σt = C · Σt−1.
Otherwise, set Σt = −H(M(pi,Σ)|t + s(pi)|t).

14

Chapter 4

Implementation

Sections of code, dealing with both visibility and odometry, were added to the
ROS node ndt_ciirc_slam, implemented by Nováček, who built upon the
work of Jelínek. Further changes were made to the code, mainly to respect the
concepts of Object oriented programming (OOP). In this chapter, we firstly
briefly introduce the Robot Operating System (ROS) and other software used
in the project. Then the implemented classes and methods are described.
Finally, the third section details Python scripts developed for visualisation of
the score function and its approximation.

4.1 Used software

The Robot Operating System (ROS) is a framework designed for robotics
software development. A ROS project usually contains several Nodes, that
are independent processes performing computation and communicating be-
tween each other using data-structured Messages. Messages are published
to Topics, following the publish-subscribe pattern. Synchronous communica-
tion between nodes is supported with Services. All connectivity in ROS is
peer-to-peer. Larger systems of nodes can be organised into Packages. A
visualisation part of ROS is called RViz, exploiting the possibility to subscribe
to any topic and therefore visualise any message sent on the system [10].

The ROS node ndt_ciirc_slam performs NDT SLAM on odometry and
laser scan data. It uses Point Cloud Library (PCL), a ROS library providing
interface for point clouds, such as registration, filtering, segmentation and
other manipulation with point clouds. The second used library is Eigen,
C++ library for linear algebra. In the project, it is used for manipulation of
vectors and matrices and for numerical solving of registration algorithms.

NDT maps can be imported to ndt_ciirc_slam in a form of .txt files.
Each line contains the mean, covariance matrix, occupancy value and number
of points, separated by commas. The conversion from .dxf CAD drawing to
NDT map was implemented by Pánek [9].

15

4. Implementation....................................
4.2 Program overview

The NdtSlamNode subscribes to pairs of odometry and point cloud messages.
Once a message arrives, the odometry is used as a guessed position for visibility
computation in class GridVisibility. The returned NdtGrid is then used in
PCL-to-NDT registration class P2DRegistration. It is in this class where the
actual odometry information, combined with the approximation of the score
function from the previous iteration held in class ScoreApproximation, is used
in the optimisation cycle for scan matching.

The output of scan matching defines the transformation between the point
cloud and the NDT map. With this information, the scan can be registered
into the map via ray tracing. Before this step, one more run of Visibility
algorithm is needed in order to prevent registration to grid cells that cannot
be visible from the robot’s position, e.g. are on the opposite side of a wall.

Outputs of the algorithm are position and orientation of the robot and map
of the environment. Map data are carried in nav_msgs::OccupancyGrid mes-
sages for occupancy grid representation and visualization_msgs::MarkerArray
for grid comprised of normal distributions, published for visualisation purposes
in RViz. The pose is in the standard form of geometry_msgs::PoseStamped.
Messages are published to topics that are further specified in ROS launch files
that are part of the project. Program overview diagram is shown on Fig. 4.1.

4.2.1 AlgorithmSlam

The AlgorithmSlam class is responsible for computation of SLAM. It is
described in detail in [8], here we emphasise only changes caused by object
oriented programming approach. Two classes inhered from AlgorithmSlam are
AlgorithmNdtSlam, which is the original class, and AlgorithmVisibilityNdtSlam,
which includes support for visibility computation. Newly implemented method
save_pose_to_file, conditioned by the parameter save_trajectory_ (boolean),
enables export of pose estimation from odometry and the output of localisation
algorithm for their subsequent comparison in the form of text file, where each
line contains one pose.

4.2.2 GridVisibility

GridVisibility is an abstract class with two descendants, GridVisibilityBresen-
ham and GridVisibilityRayTracing. These classes implement public methods
getVisibility, transformCircle and visualise. The visibility circle, with a given
radius and angle of the sector of a circle, is created in the method initVisi-
bilityCircle with a supercover Midpoint circle algorithm described in 2.3.3,
called by the constructor. The generated circle is then transformed between
individual visibility computation in the method transformCircle.

16

.................................. 4.2. Program overview

Figure 4.1: Overview of ndt_ciirc_slam ROS node. Conversion of CAD
drawing to NDT map was implemented by Pánek (orange). Represention of
the NDT map, together with scan matching and map update (white) is work of
Nováček, who built upon work of Jelínek. The computation of visibility, score
function approximation and exports of data files (green) were implemented by
the author of this work.

The most important method of GridVisibility is getVisibility. This method
takes three arguments, the complete NDT map, the transformation that the
robot travelled since the last visibility computation and finally the guessed
position, acquired from odometry. Firstly, the circle of sight is transformed
by the robot motion. Visibility is than computed between the guessed
position and cells containing individual parts of the discrete circle. Three
options for visibility computation are provided. Ray casting, which utilises
existing methods, Bresenham’s line algorithm and Supercover Bresenham’s
line algorithm. New NDT map, established from the obstacles obtained by
the visibility algorithm, is returned from this method.

Both the new NDT map and the visibility circle can be visualised in-
dependently in RViz. We decided to maintain the approach established by
Nováček, therefore the frequency of visualisation is specified in an independent
parameter.

17

4. Implementation....................................
The parameters of GridVisibility class are

. cell_size_ - The size of individual NDT cells in the grid, defines the
visibility circle (double).. visibility_angle_ - The aperture angle of the laser scanner (double).. visibility_sight_ - The maximum working range of the laser scanner
(double).. visualize_circle_ - This value enables visualisation of NDT map from
the visibility algorithm (boolean).. visualize_visibility_ - This value enables visualisation of the visibility
circle (boolean).. visualize_every_x_sec_ - The frequency of visualisation of the visi-
bility circle and NDT map (double).

4.2.3 P2DRegistration

The class P2DRegistration performs scan matching between a laser scan
and an NDT map. This computation is performed by calling the method
computeTransformation. The original class is described in [8], thus we outline
only changes made with respect to the usage of prior odometry information
and data file export.

The method computeSingleGrid performs one layer scan matching. Its
arguments are the point cloud, NDT grid obtained from visibility, transfor-
mation estimate from odometry and fitting parameters. The prior odometry
transformation is needed for the creation of approximation of the last score
function s(pf)|t−1 wrapped in ScoreApproximation class, which is described
in more detail in Chapter 3.

When working with highly abstract objects like multidimensional score
functions or scan matching, it is often useful to visualise important data.
For this reason, the option to export the score function computed on certain
neighbourhood of the final pose, together with its approximation, was added.
The method exportScoreFunction numerically computes values of the score
function on the surroundings given by the following parameters

. export_step_position - The step length in metres in x and y direc-
tions (double).. export_step_orientation - The step length in radians in θ direction
(double).. export_num_of_steps - The number of steps in x, y and θ direction
(int).

18

.................................. 4.3. Visualisation tools

. export_score_data_ - This value enables the export of the score
data (boolean).. score_data_file_name_ - The name of the export file (string).

Numerical computation of the score function on a neighbourhood of a
reasonable size takes large amount of time and cannot be performed online
on the robot. It is nevertheless possible to export the values while playing
previously recorded data from a rosbag. The playing speed needs to be slowed
down accordingly, at least to 1/10. An alternative would be to store only
meta information, namely odometry and laser scan messages timestamps, last
known robot pose and the NDT map, to analyse the data offline.

Since approximation of the score function is known analytically, it can be
saved directly as the mean and covariance matrix. The two parameters are. export_score_approximation_ - This values enables the export of

the score approximation (boolean).. score_approx_file_name_ - The name of the export file (string).

4.3 Visualisation tools

Python scripts plot_func_comparison.py and plot_func_sum.py provide
way for visualisation and analysing of score functions and their approximations.
They use the Python package for scientific computation numpy for vector and
matrices manipulation and other computation. The visualisation depends on
matplotlib, a Python 2D plotting library. The scripts take two arguments,
specified in file config.py.. FILENAME_FUNC - Path to a file containing score function data

exported from P2DRegistration.. FILENAME_APPROX - Path to a file containing score approxima-
tion data exported from P2DRegistration.

The first tool, plot_func_comparison.py, displays the score function and
its approximation side by side. Its user interface can be seen on Fig. 4.2. The
second tool, plot_func_sum.py, enables analysis of the contribution of the
approximation function from the previous sample Mt−1 to the current score
function st, as it displays the sum Mt−1 + st. This permits easy examination
of flattening of the approximation based on the robot’s transformation from
the previous to the current sample. Its user interface is shown on Fig. 4.3.

Essential elements and widgets are labelled with numbers from 1 to 8.
The same elements are marked with the same numbers on both Fig. 4.2 and
Fig. 4.3. The elements are:

19

4. Implementation......................................1. Selector - Three sectional views are available. For the pose p = [x, y, θ]T ,
selection of the first option plots values of the score function for constant θ.
The second options plots the values for constant y and the third for
constant x...2. Buttons - Sample change, for moving back and forth on the timeline.
The use of keyboard arrow buttons is also possible...3. Plot - Graph of maximal values of the score function in time. The green
point highlights value of the current sample...4. Slider - Timeline slider, providing similar function as the Sample change
buttons...5. Plot - Graph of the score function. Red arrow represents the pose
obtained from odometry (the guess). The green arrow is the final
position, acquired from the optimising cycle. The arrows in sample t
point to the guessed position in sample t+ 1. White text in bottom left
corner states the euclidean distance between the guess and final pose...6. Plot - Graph of the approximation. The meaning of arrows and the
white text is the same as on 5.

1

2

3

4

5 6

Figure 4.2: User interface of Python script plot_func_comparison.py..7. Slider - A user can use this slider to modify the coefficient k controlling
maximum value of the approximation function. The maximum value
of the contribution of the approximation Mt−1 to score function st in
time t is equal to kmax(st)...8. Plot - Graph of the score function st summed with the approximation of
the score function from the previous iteration Mt−1.

20

.................................. 4.3. Visualisation tools

1
2

3

4

7

8

Figure 4.3: User interface of Python script plot_func_sum.py

21

22

Chapter 5

Practical observations

Several observations emerged during early experiments with the visibility
algorithms described in the previous chapter. These observations were borne
in mind during the experiments detailed in Chapter 6, which were performed
in the same environment as the early ones. The setting of the robot was in
all cases an office building, with the experimental platform passing though
labs, corridors, kitchens and lecture halls. The NDT grid created from the
original CAD drawing was used as the initial map.

5.1 Limitations of visibility algorithms in robotics

The algorithms introduced in Chapter 2 suffer several limitations when it
comes to obstacle detection in complicated and unknown environments. The
original CAD drawing may contain defects, whereas another may occur during
the transform of the drawing into an NDT map. The location of individual
obstacles is also influenced by the resolution of the NDT grid. Due to this,
the cells containing obstacles may not necessarily border one another and the
map therefore contains gaps. An example of unsuitable use of Bresenham’s
line algorithm, together with the effects in our environment, is shown on
Fig. 5.1.

These problems are partially solved using supercover DDA algorithms,
although in certain situations it does not help. An example of such a situation
is a robot located close to a wall, pointing in the direction along the wall.
Certain part of the rays cast from the robot’s position to the section of the
circle may end up in the same cell containing an obstacle, thus ignoring other
sections of the wall and creating gaps. One way to overcome these limitations
is using 4 overlapping grids and exploring visibility on all of them. This
improvement was nevertheless abandoned for performance reasons.

23

5. Practical observations

(a) : The ray is cast between the bot-
tom left and upper right corners. Green
colour shows cells checked by the algo-
rithm. Due to the gap between two
NDT cells, the ray goes through a
wall.

(b) : The ray cast from cell A through
B should be stopped in C. Instead, it
continues and cells D and E are re-
turned as visible (red ellipses). Original
CAD drawing (black) was transformed
to NDT (red and blue ellipses).

Figure 5.1: Unsuitable use of Bresenham’s line algorithm

5.2 Eigen ration parameter in DXF to NDT
conversion

The smallest possible ratio between the NDT covariance matrix eigen values,
eig_ratio is used in the Panek’s implementation of converter from CAD
drawing to NDT maps. This ration ensures that the covariance matrix is
always positive-semidefinitive, even if all of the measured points are collinear
and therefore one of the eigen values of the matrix is zero. Biber and Straßer [2]
set the zero eigen value to be equal to 0.001 of the largest eigenvalues and this
value was kept as default for Panek’s parameter eig_ratio. Nevertheless,
this artificially forces the ellipsoids to be narrow, which negatively influences
the ability of the NDT SLAM algorithm to fit LIDAR points to them. We
decided to increase this value to 0.5. The difference between the original
value and the new one can be seen on Fig. 5.2.

(a) : eig_ratio = 0.001 (b) : eig_ratio = 0.5

Figure 5.2: Comparison of NDT maps converted from CAD drawing using
different eigen ratios parameters.

24

........................ 5.3. Visibility computation in our environment

5.3 Visibility computation in our environment

As the robot drives through the environment, there are two possible ap-
proaches towards visibility computation. We can either compute the visibility
on the whole map, or include only the cells that are static and which rep-
resent walls and other structures imported from CAD drawings. A whole
map consists of both static and dynamic cells. Dynamic cells can stand for
humans, another robots, furniture and other moving objects. Furniture can
be specially useful when matching laser scan, as it often accounts for a great
section of the recorded laser scan measurement.

On the other hand, the algorithm does not distinguish between movable
objects and immobile furniture. The presence of dynamic, moving objects
in the robot’s map can block direct visibility to static building structures,
such as walls. Although the algorithm implements NDT-OM and formerly
occupied, now intersected cells can be updated to empty again, a passing
human could still block a large portion of the static structures, especially if it
is close to the robot. For these reasons, the implemented visibility algorithms
take into account only static cells.

5.4 Inaccuracies in CAD drawings

During a construction of a building, the architects and civil engineers use
CAD software to design and construct the building’s structure, equip the
building’s floor with fire alarms and other security systems, as well as the
air-conditioning and furniture. Different parts of CAD drawings arise in the
course of the building’s construction and may differ. It is therefore vital to
generate the NDT map from the most recent and accurate CAD drawing.

Although the drawings are designed with millimetre precision, when it
comes to the actual construction of the building, it is obviously impossible to
maintain such a precise proportion. This leads to inconsistencies between the
drawing and the real building and therefore between the NDT map and the
environment where the robot moves. The localisation and mapping algorithm
can be strongly influenced by this, as it heavily relies on a correct placement
of the obstacles in correct cells. In the case of the office building where
the experiments described in the next chapter were recorded, the difference
between the width of one lecture hall defined in CAD drawings and a manually
measured width was 5 cm. This lead to a duplication of one of the walls
during SLAM. After a manual edition of the drawing, the building’s walls
align well with the laser scan and the duplication was reduced significantly.

25

5. Practical observations
5.5 Uncertainty of odometry

The pose gained from odometry and used for the approximation of the score
function is influenced by certain error. This uncertainty, with respect to the
translation and rotation performed by the robot between two iterations, should
be taken into account and the approximation should be adjusted accordingly.
Early experimental results showed that by tuning the parameter multiplying
the diameter of the wheels of the robot, an error of less than 0.1 m can be
achieved on a travelled distance of 35 m. During this experiment, the robot
was driving only straightforward and on a flat surface of an office building’s
floor. However, if we set the minimal distance between two computations of
NDT SLAM to 0.15 m, the error on this distance is less than a 0.001 m.

For this reason, we decided to set the coefficient k of the approxima-
tion M(µ,Σ)|t of the score function s(pf)|t in time t constant

maxMt = kmax s(p)|t = 0.2 max s(p)|t = 0.2s(pf)|t. (5.1)

Even though experimental results seem reasonable for k = 0.2, more formal
approach to dealing with the uncertainty of odometry remains a subject of
future work.

26

Chapter 6

Experiments

In this chapter, we introduce the experimental platform and its components
and describe two experiments, where we evaluate the improvements and
problems brought by the use of visibility and odometry to the existing
NDT SLAM algorithm. We also examine the change of values of the score
function s(pf) during one round driven by the robot in a lecture room.

6.1 Experimental platform

The experimental platform (Fig. 6.1) is built upon robot Jackal from Clearpath
RoboticsTM. It is equipped with Sick TiM561 LIDAR and Inertial Measure-
ment Unit (IMU), which are crucial for this work. Another present accessories
include a router, HTC Vive virtual reality system, information LED interface,
safety foam elements and ceiling pointing digital camera. The camera itself
is not used in this work, although a wider concept of localisation may rely on
it. This is being addressed in a simultaneous theses.

Two computers are present on-board. The inner one is reserved for data
collection and control, while the Intel NUC unit placed on top of the robot
performs SLAM and other more complex computations. It has 8-core Intel
Core i7-8650U, 4.20 GHz processor, 16 GB of RAM and 250 GB Hard Drive
with Ubuntu 16.04 and ROS Kinetic. The Intel NUC unit is connected to the
inner computer via a router through Ethernet interface. It is also possible to
use WiFi in order to connect to the Intel NUC.

6.1.1 Robot Jackal

Robot Jackal is a small four wheel land robotics research platform, designed
for development of autonomous robots. It is equipped with an onboard
computer, GPS and IMU and offers integration with ROS with packages for
localisation, navigation and visualisation.

27

6. Experiments

Figure 6.1: The experimental platform

Two 500 W motors enable speed of up to 2 m/s with payload of at most
20 kg. A 270 Watt hours battery is mounted, which allows of up to 8 hours
of operating time. The onboard computer has CPU Celeron J1800, Dual core
2.4 GHz, 2 GB RAM, 32 GB Hard Drive together with Ubuntu 14.04 running
ROS Indigo [13].

6.1.2 Laser scanner

The experimental platform is equipped with a 2D LIDAR Sick TiM561,
mounted on the top front of the robot. It emits pulsed laser light, that
is reflected by a rotating mirror. Reflections from obstacles are detected
by a photodetector and transmitted to the robot’s integrated computer via
Ethernet interface [14]. It’s parameters are listed in Table 6.1. The maximum
working range value is used for visibility computation as the radius in the
midpoint circle algorithm, while the aperture angle defines the effective section
of this circle.

Sick TiM561
Light source 850 nm
Laser class 1, eye-sage

Horizontal aperture angle 270 ◦
Scanning frequency 15 Hz
Angular resolution 0.33 ◦

Working range 0.05 - 10 m
Systematic error ± 60 mm
Statistical error 20 mm

Connection Ethernet, USB 3
Ambient light immunity 80 000 lx

Table 6.1: Parametrs of Sick TiM561 LIDAR

28

................................ 6.2. Performed Experiments

6.2 Performed Experiments

The main focus of the following section is to evaluate improvements brought
by the inclusion of visibility computation and odometry into the existing NDT
SLAM algorithm. In the first experiment, we describe a long-term mapping
of a lecture hall, with the robot passing 10 cycles. We evaluate the quality
of the created map and compare it to the outcome of the previous version
of the algorithm, witch did not use visibility. In the second experiment, the
robot perform a passage through a corridor, an environment in which it is
generally rather difficult to achieve accurate localisation. We emphasise the
importance of the use of odometry. All the experiments share the following
common properties and settings:

. The cell size was set to 0.25 m.. All experiments used a map of the building’s floor generated from a CAD
drawing.. The minimum distance and rotation between two scan matching compu-
tations were set to 0.15 m and 3◦ respectively.. The robot was manually guided with a wireless Game controller.. The maximum speed of the robot was set to 0.5 m/s.. The frequency of odometry messages was 50 Hz and 15 Hz for the laser
scan.. The NDT map was visualised every 10 seconds..On the enclosed figures, blue ellipses represent static obstacles (walls
and pillars) and green ones obstacles created by the mapping process.. The used visibility algorithm was Bresenham’s line algorithm..When using visibility, the sight of view was set to 10 m, and the visibility
angle to 270◦ matching the parameters of the laser scanner.

6.2.1 First Experiment

The first experiment was performed in a lecture hall displayed on Fig. 6.2
with furniture placed in its central section, surrounded by a narrow alley that
the robot drove in. The original CAD drawing was manually edited to agree
with the true dimensions of the hall. The difference in length of the room
was 45 mm. The robot performed 5 rounds counterclockwise, followed by
5 rounds clockwise.

29

6. Experiments

Figure 6.2: Environment of the first experiment

Details about duration of each algorithm are presented in Tab. 6.2. On
this dataset, the use of visibility and odometry led to roughly 30 % decrease
in average time needed for one SLAM cycle. The speedup was caused mainly
by the reduction of iterations performed by the optimisation algorithm, that
now operates with fewer cells. The use of prior odometry information and
approximation of the score function decreased total number of optimising
cycles per one SLAM round.

Algorithm Minimal [ms] Maximal [ms] Average [ms]
NDT SLAM 82.113 186.273 121.683
NDT SLAM
using visibility 50.172 123.759 77.862

Table 6.2: Duration of one SLAM cycle in the course of the first experiment

30

................................ 6.2. Performed Experiments

(a) : The final map of the first experiment produced without visibility after passing
ten loops (five loops anti-clockwise and five loops clockwise).

(b) : The final map of the first experiment produced with visibility after passing ten
loops (five loops anti-clockwise and five loops clockwise).

Figure 6.3: Comparison of the final map of the first experiment created without
and with visibility. The areas highlighted by red circles are described in detail
below.

Fig. 6.3 shows the final maps generated without and with the use of visibility.
The central part of the map is occupied by furniture. Desks and chairs form a
regular grid, which can be observed after closer look. The cell size of 0.25 m
nevertheless prevents more detailed representation of such a small objects, as
table and chair legs. The cluster of green ellipses near right-bottom corner
represent a curtain, similar structure can be seen on the opposite side of the
room. Above the left curtain is a teacher’s desk. Two wide gaps in the north
blue walls of the maps represent doors. The doors were closed during the
experiment and the registration algorithm correctly filled previously empty
cells. The green circular object left of D is not a duplication of a pillar, but
a flowerpot with similar radius.

31

6. Experiments

(a) : Details of areas A and B of the
first experiment produced without
visibility.

(b) : Details of areas A and B of
the first experiment produced with
visibility.

Figure 6.4: Comparison of areas A and B of the first experiment shows dif-
ferences in duplication of a table and a pillar. The use of visibility prevented
duplication of the pillar, while the duplication of the table was suppressed.

Area A is an NDT depiction of a table. On Fig. 6.4a the upper side of the
table is noticeably duplicated, this does not repeat on 6.4b. The reason is
that the original NDT SLAM does not distinguish between reverse and closer
sides of the wall and the laser scan can be matched to the more distant side.
On the other hand, since only the nearer side of the wall is provided to the
matching algorithm by visibility computation, laser scan is matched correctly.
The duplication of the pillar 6.4a (B) has the same cause.

(a) : Detail of area C of the first
experiment produced without visi-
bility.

(b) : Detail of area C of the first ex-
periment produced with visibility.

Figure 6.5: Comparison of area C of the first experiment details registration of
new cells to the opposite side of the north wall.

Area C shown in detail on 6.5 provides example of laser data being nonsen-
sically registered on the opposite side of the wall, which the robot evidently
cannot observe. Similar issues can be also seen on the right side of Fig. 6.3a.
This behaviour was eliminated by performing one extra iteration of the
Visibility algorithm on the newly registered cells, mentioned earlier (Fig. 4.1).

32

................................ 6.2. Performed Experiments

(a) : Details of areas D and E of the first experiment produced without visibility.

(b) : Details of areas D and E of the first experiment produced with visibility.

Figure 6.6: Comparison of areas D and E of the first experiment shows differ-
ences of duplication of the north wall. While without visibility, the wall was
on some places triplicated, the use of visibility prevented this. The error in
registration of the pillar is detailed below.

Area D is a consequence of a similar phenomenon as A and B. Whereas
on 6.6a the top wall is along its entire length duplicated and on some places
triplicated, the duplicated cells on 6.6b are more sparse and the gaussians are
visibly more narrow. These emerged while the robot was driving anticlockwise
and had a good sightline on the lower wall and was conditioned to it by a
large amount of points. Laser scan data that occasionally passed through the
furniture located in the middle of the room were registered to wrong cells, but
still very close to the correct one, as can be seen from the distance between
blue and green ellipsoids on Fig. 6.6b. A future revision of the CAD drawing
may further improve the algorithm’s ability in similar situations.

The duplication of column on 6.6b (E) emerged during one of the final
rounds of the experiment. As the robot was driving clockwise in the area
between the two upper pillars (approximately D), not many points, nor cells
were available for matching. The lower wall was almost invisible for the
LIDAR, due to the furniture placed in the central section of the room. The
upper wall lacked sufficient number of NDT cells, since it contains a wide
door. Doors are not present in CAD drawings and aren’t used in Visibility

33

6. Experiments
computation. Therefore the majority of points occurred in front of the robot,
whose location then converged slightly to the wall on the right side of the
figure.

6.2.2 Second experiment

The goal of the second experiment was to study change of localisation and
mapping in long corridors. The robot travelled distance of 36 m through a
long corridor in both directions and explored three rooms along the way. In
this experiment, the original CAD drawing was not manually edited. Closed
doors, missing in the initial map, were correctly register as the robot was
driving through the corridor.

Table 6.3 contains minimal, maximal and average times needed for one
round of SLAM during this dataset. The differences are even more noticeable
than in the first experiment, with the use of visibility and odometry being
responsible for 40 % decrease in the average time.

Algorithm Minimal [ms] Maximal [ms] Average [ms]
NDT SLAM 61.967 200.440 105.330
NDT SLAM
using visibility 34.412 114.266 60.698

Table 6.3: Duration of one SLAM cycle in the course of the first experiment

Final maps obtained from NDT SLAM without and with visibility can be
seen on Fig. 6.7 and 6.8. Once again, the areas highlighted by red circles are
presented in more detail below. The two smaller rooms (below A and B)
are kitchens. The robot explored at first the kitchen in the bottom of the
picture and both algorithms produced similar results. Then, the robot drove
towards B, with a stop exploring A. From the area B it returned back to A,
where the experiment ended.

34

................................ 6.2. Performed Experiments

Figure 6.7: The final map of the second experiment produced without visibility.

35

6. Experiments

Figure 6.8: The final map of the second experiment produced with visibility.

36

................................ 6.2. Performed Experiments

(a) : Detail of area A of the second
experiment produced without visibil-
ity.

(b) : Detail of area A of the second
experiment produced with visibility.

Figure 6.9: Comparison of area A of the second experiment shows detail of
a small lecture room. The original CAD drawing was not manually edited
according to the true dimensions of the room, which led to duplication of north
and south walls in both scenarios. The use of visibility prevented registration of
new cells to the opposite sides of west and north walls.

Fig. 6.9 details area A. The observed room was a small lecture hall, with
open door on the right side and furniture in the central part. A duplication
of the north and south walls can be noticed on both Fig. 6.9a and 6.9b. The
reason is that the real room is 36 mm narrower and 50 mm longer than in the
CAD drawing. Whereas the difference in width did not cause any significant
changes to the map produced by NDT SLAM with visibility (Fig. 6.9b), this
cannot be said about the difference in length. As the robot drove through
the room counterclockwise, the laser scan was firstly matched to the northern
wall, duplicating the south one. Then the situation repeated, but reversely.
Nevertheless, the use of visibility prevented registration of LIDAR points
to the opposite sides of the north, west and south wall, as can be seen on
Fig. 6.9b. The rare cells which appear on the opposite side of south and north
wall were not registered when the robot was located inside of the lecture room
showed on Fig. 6.9, but when it moved through the corridor east of this hall,
and the kitchen south of it, respectively.

The second selected area, B, represents a kitchen and its surrounding,
explored after a long drive through the corridor. Fig. 6.10 compares detailed
map of B without and with visibility. On Fig. 6.10a, newly registere

d obstacles are clearly misaligned. The absence of odometry data lead to
displacement of the robot’s position when it was driving through the corridor.
On the trajectory longer than 30 m, the distance between the correct and
the actual position of the robot was more than 1 m. Fig 6.10b shows that
the use of score function approximation and odometry prevents this.

37

6. Experiments

(a) : Detail of area B of the second experiment produced without visibility.

(b) : Detail of area B of the second experiment produced with visibility.

Figure 6.10: Comparison of area B of the second experiment shows map of a
kitchen and its surrounding after a long drive through the corridor. The use
of visibility and odometry stabilised the robot’s position when it was driving
through the corridor and prevented its incorrect displacement.

6.3 Course of the Score function

This section describes one round performed by the robot in a lecture room
on the course of the value of the score function. Higher values of the function
mean better estimate of robot’s pose and are backed by a good alignment of
the recorded point cloud and the cells obtained from visibility.

The values on Fig. 6.11a can be divided into 3 categories. Values greater
than 500 are acquired in situations, when the robot stands in front of a wall
and at the same time, it sees a wall on one of his sides. On Fig. 6.11a, these
peaks appeared 4 times during the experiment. The robot started in the
upper left corner of the hall. The first of the two peaks between samples
0 and 50 corresponds to the initial pose of the robot. The second one was
gained after the robot’s movement along the shorter side of the room. The
third peek (around sample 100) emerged as the robot was driving along the
longer side of the room to the bottom right corner. The last peak (sample
135) corresponds to the upper right corner of the hall. Fig. 6.11b gives context
for the situation described earlier.

38

..............................6.3. Course of the Score function

(a) : Values of the score function as the robot drives around a lecture hall.

(b) : Robot’s poses giving context to the values of the score function.

Figure 6.11: Graph of values of the score function, together with robot’s poses
in a lecture room.

Second category contains values between 100 and 500. This corresponds
to the robot driving alongside a wall, matching only a part of the scanned
points.

Finally, the last category contains values less than 100. This result does
not usually represent a sufficient match between LIDAR data and the map.
In other words, the robot is lost. These are the situations when it is useful to
prefer odometry estimate of the robot’s pose. On Fig. 6.11b, this happens as
the robot approaches the hole in the upper wall of the room. While there
is a lack of NDT cells on robot’s right, due to large distance and furniture
placed in the center of the room, it does not observe the wall in front of it,
nor on its left.

39

6. Experiments
6.3.1 Visualisation of the Score function

In this section, we demonstrate several examples of visualisation of the score
function s(p). The function was plotted on a grid of 0.4 m by 0.4 m, 0.4
m by 0.4 rad respectively. Each example consists of 4 plots and 1 figure
providing context of the situation. On these graphs, LIDAR sensor located on
the robot (yellow arrow) measures a set of points (black squares). The blue
ellipses represent prior information about static structures, imported from
CAD drawing of the building, while the red ones are currently visible. Green
ellipses are newly registered obstacles, that are not part of the original CAD
drawing. Blue ellipses (non visible walls) and green ellipses are at this point
ignored, as they are not taken into account during PCL-to-NDT registration.

Since the function s(p) is a function of 3 variables p = [x, y, θ]T , the plots
represent planar cuts through score function in the final point pf . This is the
point Newton’s algorithm converges to and it can be found in the centre of
each plot.

The first situation can be seen on Fig. 6.12. This corresponds to sample
135 on Fig. 6.11a, with one of the largest values of s(p). The score function
graph of this situation is on 6.13. The brighter the colour, the more points
were matched with greater certainty. The conditions visible on Fig. 6.12 agree
with the shape visible on graph 6.13a. Both x and y axis are well aligned
with the walls (red ellipses), which forms a cross-liked shape.

The second situation is displayed on Fig. 6.14. In this case, the robot is
placed in a corridor, with nearly all measured points collinear, forming 2
lines parallel to the y axis. The score function graph of this situation can be
seen on 6.15. While the position in the direction of x axis is well constrained
with uncertainty of the range of 0.05 metres, the position among y axis is
unknown, since there are no visible obstacles matching visible NDT cells in
this direction.

40

..............................6.3. Course of the Score function

Figure 6.12: Situation 1. Both x and y axis are conditioned by sufficient number
of points.

85.85 85.90 85.95 86.00 86.05 86.10 86.15 86.20
x (m)

16.80

16.85

16.90

16.95

17.00

17.05

17.10

17.15

y
(m

)

(a) : Axes X Y

85.85 85.90 85.95 86.00 86.05 86.10 86.15 86.20
x (m)

−3.30

−3.25

−3.20

−3.15

−3.10

−3.05

−3.00

−2.95

θ
(ra

d)

(b) : Axes X θ

16.80 16.85 16.90 16.95 17.00 17.05 17.10 17.15
y (m)

−3.30

−3.25

−3.20

−3.15

−3.10

−3.05

−3.00

−2.95

θ
(ra

d)

(c) : Axes Y θ

85.85 85.90 85.95 86.00 86.05 86.10 86.15 86.20
x (m)

16.80

16.85

16.90

16.95

17.00

17.05

17.10

17.15

y
(m

)

(d) : Axes X Y - Approximation

Figure 6.13: Visualisation of the score function and its approximation where
both x and y coordinates are supported by sufficient number of points.

41

6. Experiments

Figure 6.14: Situation 2. Only one axis is supported by sufficient number of
measured points, position along corridor axis is not restricted by data.

57.20 57.25 57.30 57.35 57.40 57.45 57.50 57.55
x (m)

9.25

9.30

9.35

9.40

9.45

9.50

9.55

9.60

y
(m

)

(a) : Axes X Y

57.20 57.25 57.30 57.35 57.40 57.45 57.50 57.55
x (m)

−3.30

−3.25

−3.20

−3.15

−3.10

−3.05

−3.00

−2.95
θ
(ra

d)

(b) : Axes X θ

9.25 9.30 9.35 9.40 9.45 9.50 9.55 9.60
y (m)

−3.30

−3.25

−3.20

−3.15

−3.10

−3.05

−3.00

−2.95

θ
(ra

d)

(c) : Axes Y θ

57.20 57.25 57.30 57.35 57.40 57.45 57.50 57.55
x (m)

9.25

9.30

9.35

9.40

9.45

9.50

9.55

9.60

y
(m

)

(d) : Axes X Y - Approximation

Figure 6.15: Visualisation of the score function and its approximation where
the robot is located in a corridor.

42

Chapter 7

Conclusions

The experimental results presented in Chapter 6 showed that the use of
visibility and prior odometry information can improve both time performance
and correctness of the existing NDT SLAM algorithm. While the computation
of static objects visible from the robot’s location greatly reduced duplication
of walls, it also prevented registration of laser scan points to reversed sides of
walls. Future improvements may deal with inaccuracies of CAD drawings,
which would further improve robustness of the algorithm.

Approximation of the score function, described in Chapter 3, contributed
to better results of the algorithm in corridors, which commonly represent a
difficult environment for SLAM based on laser scans.

The implemented classes and methods extend the original NDT SLAM
algorithm with an open interface for future changes of visibility computation,
or the integration of the uncertainty of odometry. Two GUI offer easy option
to further study the score function and the behaviour of the optimising cycle.

43

44

Bibliography

[1] Michael Abrash. Michael Abrash’s graphics programming black book.
Coriolis, Albany, NY, 1997.

[2] Peter Biber and Wolfgang Straßer. The normal distributions transform:
A new approach to laser scan matching. IEEE International Conference
on Intelligent Robots and Systems, 3:2743 – 2748 vol.3, 11 2003.

[3] Jiri Bittner and Peter Wonka. Visibility in computer graphics. Environ-
ment and Planning B: Planning and Design, 30:729–755, 09 2003.

[4] J. E. Bresenham. Algorithm for computer control of a digital plotter.
IBM Systems Journal, 4(1):25–30, 1965.

[5] Erik Einhorn and Horst michael Gross. H.m.: Generic 2d/3d slam with
ndt maps for lifelong application. In European Conference on Mobile
Robots, pages 240–247, 2013.

[6] L. Jelínek. Graph-based slam on normal distributions transform oc-
cupancy map. Bachelor thesis, Department of Theoretical Computer
Science and Mathematical Logic, Faculty of mathematics and physics,
Charles University, Prague, 2016.

[7] F. Lu and E. Milios. Robot pose estimation in unknown environments
by matching 2d range scans. Journal of Intelligent and Robotic Systems
18, page 249–275, 1997.

[8] D. Nováček. Localization of mobile robot using multiple sensors. Master
thesis, Department of Cybernetics, Faculty of Electrical Engineering,
Czech Technical University in Prague, Prague, 2018.

[9] V. Pánek. Map import for mobile robot from CAD drawing. Bachelor
thesis, Department of Cybernetics, Czech Technical University in Prague,
Prague, 2018.

[10] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. ROS: an open-source

45

Bibliography
robot operating system. In ICRA Workshop on Open Source Software,
2009.

[11] J. Saarinen, T. Stoyanov, H. Andreasson, and A. J. Lilienthal. Fast 3d
mapping in highly dynamic environments using normal distributions
transform occupancy maps. In 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 4694–4701, 2013.

[12] C. Schulz, R. Hanten, and A. Zell. Efficient map representations for
multi-dimensional normal distributions transforms. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pages 2679–2686, 2018.

[13] Jackal UGV - Small Weatherproof Robot -
Clearpath. https://clearpathrobotics.com/
jackal-small-unmanned-ground-vehicle/. Accessed: 2020-05-
10.

[14] TiM561-2050101 | Detection and ranging solutions | SICK.
https://www.sick.com/us/en/detection-and-ranging-solutions/
2d-lidar-sensors/tim5xx/tim561-2050101/p/p369446. Accessed:
2020-05-10.

46

https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
https://clearpathrobotics.com/jackal-small-unmanned-ground-vehicle/
https://www.sick.com/us/en/detection-and-ranging-solutions/2d-lidar-sensors/tim5xx/tim561-2050101/p/p369446
https://www.sick.com/us/en/detection-and-ranging-solutions/2d-lidar-sensors/tim5xx/tim561-2050101/p/p369446

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

469915Personal ID number:Boxan MatějStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

NDT SLAM Respecting Visibility

Bachelor’s thesis title in Czech:

Lokalizace mobilního robotu metodou NDT za využití viditelnosti

Guidelines:
1. Get familiar with ROS and NDT SLAM.
2. Propose algorithms which improve stability and robustness of localization in NDT SLAM generally and also specifically
using visibility of the obstacles.
3. Implement algorithms, test them in the real scenarios, and evaluate results.
4. Make conclusion.

Bibliography / sources:
[1] Lifelong localization in changing environments, Gian Diego Tipaldi, Daniel Meyer-Delius, Wolfram Burgard, IJRR 2013
[2] Einhorn, E.; Gross, H.-M., "Generic 2D/3D SLAM with NDT maps for lifelong application," in Mobile Robots (ECMR),
2013 European Conference on , vol., no., pp.240-247, 25-27 Sept. 2013
[3] John F. Hughes, Andries van Dam, Morgan McGuire, David F. Sklar, James D. Foley, Steven K. Feiner, Kurt Akeley:
Computer Graphics: Principles and Practice, Addison-Wesley Professional; 3 edition (July 20, 2013)

Name and workplace of bachelor’s thesis supervisor:

Ing. Vladimír Smutný, Ph.D., Robotic Perception, CIIRC

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 22.05.2020Date of bachelor’s thesis assignment: 09.01.2020

Assignment valid until: 30.09.2021

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
doc. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Vladimír Smutný, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

48

Appendix A

CD content description

include - header .h files
...

launch - ros launch files
...

maps - example ndt maps
...

src - source .cpp files
...

visualisation - visualisation python scripts

data
score_approx

...

trajectories
...

plot_func_sum.py

plot_func_comparison.py

config.py

...

CMakeList.txt

package.xml

README.md

49

	Introduction
	State of the art
	Normal distribution transform
	Score function
	Visibility
	Bresenham's line algorithm
	Supercover DDA line algorithm
	Midpoint circle algorithm

	Our motivation

	Score function approximation and the use of odometry
	Implementation
	Used software
	Program overview
	AlgorithmSlam
	GridVisibility
	P2DRegistration

	Visualisation tools

	Practical observations
	Limitations of visibility algorithms in robotics
	Eigen ration parameter in DXF to NDT conversion
	Visibility computation in our environment
	Inaccuracies in CAD drawings
	Uncertainty of odometry

	Experiments
	Experimental platform
	Robot Jackal
	Laser scanner

	Performed Experiments
	First Experiment
	Second experiment

	Course of the Score function
	Visualisation of the Score function

	Conclusions
	Bibliography
	Project Specification
	CD content description

