
Bachelor Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Reservoir Computing Framework in Apache
Flink

Hynek Noll

Supervisor: Sebastián Basterrech, MSc., Ph.D.
Field of study: Software
May 2020

ii

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

425233Osobní číslo:HynekJméno:NollPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

SoftwareStudijní obor:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Reservoir Computing Framework v Apache Flink

Název bakalářské práce anglicky:

Reservoir Computing Framework in Apache Flink

Pokyny pro vypracování:
Apache Flink is an open source framework and distributed processing engine for manipulations of unbounded and bounded
data streams. The framework is ideal for operating large streaming time-series. At the beginning of 2000s, a new
computational concept for designing and training Neural Networks was introduced and is popularly known with the name
of Reservoir Computing (RC).
A RC model is designed with basic sparse matrices operations. In spite of its simplicity is very powerful for modeling
time-series. In this thesis, the student should implement in the Apache Flink framework the Echo State Model (ESN) that
is the canonical and most popular RC method. The developed framework should be evaluated over well-known real and
simulated time-series provided by the supervisor.

Seznam doporučené literatury:
[1] Apache Flink tutorials available at: https://ci.apache.org/flink
[2] H. Jaeger and H. Haas, “Harnessing Nonlinearity: Predicting Chaotic
Systems and Saving Energy in Wireless Communication,” Science, vol.
304, no. 5667, pp. 78–80, 2004.
[3] H. Jaeger, M. Lukosevicius, D. Popovici, and U. Siewert, “Optimization
and applications of Echo State Networks with leaky-integrator neurons,”
Neural Networks, vol. 20, no. 3, pp. 335–352, 2007.
[4] D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt, “An
experimental unification of reservoir computing methods,” Neural Networks,
vol. 20, no. 3, pp. 287–289, 2007.

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Sebastian Basterrech, MSc., Ph.D., centrum umělé inteligence FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 22.05.2020Datum zadání bakalářské práce: 14.02.2019

Platnost zadání bakalářské práce: 20.09.2020

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedrySebastian Basterrech, MSc., Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZBP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZBP-2015.1

Acknowledgements
I would like to thank my parents (es-
pecially my mom) for supporting me
throughout the whole studies, both men-
tally and financially.

Furthermore, I would like to thank my
supervisor for investing a lot of time and
patiently guiding me through the whole
work. And for explaining concepts to me
in an easily understandable manner.

Declaration
I hereby declare that I have worked on
this thesis independently and specified
all the used information sources in ac-
cordance with the Methodical guidelines
about following ethical principles during
the preparation of university theses.

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o
dodržování etických principů při přípravě
vysokoškolských závěrečných prací.

v

Abstract
Stream processing for Machine Learning
has become popular with the need to
analyze large amounts of data in real-
time. The focus is shifting to scalable
solutions using clusters and processing the
data in real-time. Recurrent Neural Net-
works are expensive to train (require large
amounts of data). These requirements are
reduced when using the Reservoir Com-
puting framework. Reservoir Computing
introduces a specific paradigm that the
first part (reservoir) of a Recurrent Neu-
ral Network is left untrained, and the
second part (readout) focuses on linear
modelling.

Apache Flink is a scalable stream
processing framework. Flink can pro-
vide fault-tolerance guarantees (such as
exactly-once semantics) and low latency
thanks to processing the stream records
individually.

We’ve developed a new, extensible
Reservoir Computing library in Apache
Flink. In this work, we present the theory
behind it and the performed experiments.

Keywords: Apache Flink, Recurrent
Neural Networks, Data Streams,
Reservoir Computing, Real-Time
Processing, Echo State Networks, Time
Series Prediction, Stochastic Gradient
Descent, Linear Regression

Supervisor: Sebastián Basterrech, MSc.,
Ph.D.
Department of Computer Science, FEI,
VSB-TUO, Ostrava, Czech Republic
Sebastian.Basterrech@vsb.cz

Abstrakt
Zpracovávání datových proudů je popu-
lární metodou pro strojové učení díky po-
třebě analyzovat velké množství dat v
reálném čase. Perspektivními se stávají
škálovatelná řešení používající počítačové
clustery a zpracovávání dat v reálném čase.
Rekurentní neuronové sítě vyžadují velké
množství dat k trénování. V případě Re-
servoir Computing frameworku jsou tyto
nároky snížené. Reservoir Computing při-
náší specifický způsob konstrukce reku-
rentních neuronových sítí, kdy první část
(reservoir) je netrénovaná a druhá část
(readout) typicky využívá lineárního mo-
delování.

Apache Flink je škálovatelný framework
zaměřený na stream processing (zpraco-
vávání datových proudů). Flink umožňuje
zvýšenou odolnost vůči chybám (např. po-
mocí tzv. “exactly-once semantics”) a níz-
kou latenci díky zpracovávání prvků dato-
vého proudu individuálně.

V rámci této práce jsme vyvinuli novou,
rozšiřitelnou knihovnu Reservoir Compu-
ting funkcionalit pro Apache Flink. Před-
stavíme teorii v pozadí a provedené expe-
rimenty.

Klíčová slova: Apache Flink, umělé
neuronové sítě, lineární regrese

vi

Contents
1 Introduction 1
Thesis Organization 2
Nomenclature . 2
2 Data Streams 5
2.1 Basic Definitions 5
2.2 Time Series Data 5
2.3 Bounded and Unbounded Streams 6
2.4 Stream Processing Frameworks . . 7
3 Linear Modelling 9
3.1 Machine Learning Context 10
3.2 Training . 10
3.2.1 Algebraic Approach 11
3.2.2 Numerical Approach 12
3.2.3 Summary 14

3.3 Testing . 14
4 Reservoir Computing 17
4.1 Overview of Recurrent Neural
Networks . 17

4.2 Reservoir Computing Models . . . 18
4.3 Echo State Network 19
4.3.1 Echo State Property 20
4.3.2 Memory Length 21
4.3.3 Cyclic Reservoirs 21
Cycle Reservoir with Jumps. 22

5 Reservoir Computing Framework
in Apache Flink 25
5.1 Introduction to Apache Flink . . . 25
5.2 Characteristics of Apache Flink . 26
5.2.1 Concepts 26
5.2.2 Flink Program Anatomy 27
5.2.3 Common Characteristics of the
Core APIs . 28
Supported Data Types 28
Copying Behavior 29

5.2.4 Operations of the Core APIs 29
Sources . 29
Transformations 29
Iterations . 30

5.3 Differences of DataStream and
DataSet API 31
5.3.1 DataStream API 31
5.3.2 DataSet API 32
5.3.3 Specific Differences 33

5.4 Features . 33
Decompression of Input Files 33

Configuration Functions 33
Passing Parameters 34

5.4.1 Notions of Time 34
Event Time Watermarks 34

5.4.2 Windows. 35
5.4.3 Keyed Collections 35
5.4.4 State . 35
5.4.5 Broadcasting 35
5.4.6 Distributed Cache 36
5.4.7 Debugging 36
5.4.8 Semantic Function
Annotations 36

5.4.9 Parallel Computing in the
Context of Apache Flink 37

5.4.10 Using DataStream for Matrix
Representation 37
Demonstrating the Problems on
Matrix Multiplication 37

5.4.11 Efficient Matrix
Representation 38

5.5 Implementation Description 38
5.5.1 Project Structure 39
5.5.2 Data Representation 39
5.5.3 Linear Model Functions
(Readout) . 39
5.5.4 Reservoir 40
5.5.5 Higher-Level Examples 40
Null Values 41

5.5.6 Default Configuration 41
6 Experimental Results 43
6.1 Linear Regression 44
6.1.1 Glaciers 44
6.1.2 CO2 Emissions 46
6.1.3 PM2.5 Outdoor Air Pollution 52
6.1.4 Limitations of Linear Models 54

6.2 Reservoir Computing 54
6.2.1 Glaciers 55
6.2.2 CO2 Emissions 56
6.2.3 PM2.5 Pollution 58

6.3 Sensitivity Analysis of Reservoir
Parameters . 58
6.3.1 Reservoir Size 59
6.3.2 Spectral Radius 64
6.3.3 Reservoir Topology 65

6.4 Controlling Spectral Radius 70

vii

7 Conclusions and Future Work 73
7.1 Conclusions 73
7.2 Recommendation for Future
Extensions . 73

Bibliography 75
Acronyms 83
Acronyms 83

viii

Figures
4.1 Simple Cycle Reservoir 21
4.2 Cycle Reservoir with Jumps 23
4.3 Cycle Reservoir with Jumps
(Randomized Weights) 23

5.1 Flink Dataflow 27
5.2 Flink Iterations Diagram 31

6.1 Glaciers Meltdown (Training
Data) . 45

6.2 Glaciers Meltdown 45
6.3 Glaciers Meltdown (80% data for
training) . 46

6.4 CO2 Emissions By Nation
(Training Data) 47
6.5 CO2 Emissions By Nation LR . . 47
6.6 CO2 Emissions of United Kingdom
(Training Data) 48
6.7 CO2 Emissions of United Kingdom
LR . 49

6.8 CO2 Emissions of Norway
(Training Data) 49
6.9 CO2 Emissions of Norway LR . . 50
6.10 CO2 Emissions of Czech Republic
(Training Data) 50
6.11 CO2 Emissions of Czech Republic
LR . 51

6.12 CO2 Emissions of Mainland
China (Training Data) 51

6.13 CO2 Emissions of Mainland
China LR . 52

6.14 PM2.5 Pollution in Seattle Area
(Training Data) 53
6.15 PM2.5 Pollution in Seattle Area
LR . 53

6.16 ’Enhanced Identity’ (Combined) 54
6.17 Glaciers Meltdown 55
6.18 Glaciers Meltdown 56
6.19 CO2 Emissions of CHINA
(MAINLAND) 56
6.20 CO2 Emissions of United
Kingdom . 57

6.21 CO2 Emissions of Norway. 57
6.22 CO2 Emissions of Czech
Republic . 58

6.23 PM2.5 Pollution in Seattle Area 58

6.24 Analyzing the impact of reservoir
size using CO2 Emissions of UNITED
KINGDOM data. 60

6.25 Analyzing the impact of (larger)
reservoir size using CO2 Emissions of
UNITED KINGDOM data. 60

6.26 Analyzing the impact of reservoir
size using Glaciers Meltdown data. 61

6.27 Analyzing the impact of (larger)
reservoir size using Glaciers
Meltdown data. 61

6.28 Analyzing the impact of reservoir
size using Mackey-Glass Time Series
data. 62

6.29 Analyzing the impact of (larger)
reservoir size using Mackey-Glass
Time Series data. 62

6.30 Analyzing the impact of reservoir
size using PM2.5 Pollution in Seattle
Area data. 63

6.31 Analyzing the impact of (larger)
reservoir size using PM2.5 Pollution
in Seattle Area data. 63

6.32 Analyzing the impact of spectral
radius using Mackey-Glass Time
Series data . 64

6.33 Analyzing the impact of spectral
radius using CO2 Emissions of
UNITED KINGDOM data. 64

6.34 Analyzing the impact of spectral
radius using Glaciers Meltdown . . . 65

6.35 Analyzing the impact of spectral
radius using PM2.5 Pollution in
Seattle Area data. 65

6.36 Analyzing the impact of changing
the pattern of connectivity using
Mackey-Glass Time Series data . . . 66

6.37 Analyzing the impact of changing
the pattern of connectivity using CO2
Emissions of UNITED KINGDOM
data. 66

6.38 Analyzing the impact of changing
the pattern of connectivity using
Glaciers Meltdown 67

ix

6.39 Analyzing the impact of changing
the pattern of connectivity using
PM2.5 Pollution in Seattle Area
data. 67

6.40 Analyzing the impact of changing
the pattern of connectivity (excluding
“Sparse”) using Mackey-Glass Time
Series data . 68

6.41 Analyzing the impact of changing
the pattern of connectivity (excluding
“Sparse”) using CO2 Emissions of
UNITED KINGDOM data. 68

6.42 Analyzing the impact of changing
the pattern of connectivity (excluding
“Sparse”) using Glaciers Meltdown 69
6.43 Analyzing the impact of changing
the pattern of connectivity (excluding
“Sparse”) using PM2.5 Pollution in
Seattle Area data. 69

6.44 CRJ with α = 0.1 70
6.45 CRJ with α = 0.4 70
6.46 CRJ with α = 0.6 71
6.47 CRJ with α = 0.9 71

Tables

x

Chapter 1
Introduction

In today’s world, there is a huge amount of data (called big data) that can’t
be processed in a traditional way. At the same time, an increasing amount
of computing power is available, which allows for ambitious new paradigms
and architectures to arise. One such paradigm, stream processing, is about
processing data that arrives rapidly in real-time. (Near) real-time processing
is achieved by processing individual (small) records of data. This approach
may require benevolence in terms of data orderliness (allowing records to
arrive out-of-order and late within some fixed time threshold, with the actual
order given by timestamps associated with each record). Typically, stream
processing uses parallel and distributed computing (running on clusters and
multiple threads) to provide scalability. This fact then imposes further
requirements on the system such as solid fault tolerance.

In the area of machine learning, recurrent neural networks are used for
various prediction and classification tasks. They mimic brain in basic contours
and might be difficult to configure properly. A simpler way of constructing
recurrent neural networks was introduced under the name Reservoir Com-
puting [1, p. 2]. It allows for a faster learning with the paradigm being more
accessible. Therefore, both reservoir computing and stream processing is
suitable for problems where we need the results quickly.

Apache Flink is a stream processing framework. It is made to be scalable,
provide low-latency and be fault-tolerant. Flink has historically had a machine
learning library entitled FlinkML. The library includes some algorithms for
supervised (such as multiple linear regression) and unsupervised learning,
data preprocessing, etc. It is written in Scala and only for the DataSet API.
This library is no longer a part of the distribution since version 1.9 [2]. The
development was mostly halted and the library wasn’t keeping up with the
rest of the framework.

We’ve developed a library for Apache Flink (1.8) focusing on Reservoir
Computing, specifically Echo State Networks that are probably the most
widely used type. The library is implemented in the popular Java language,
and compatible with both DataSet and DataStream API. Although we’ll
demonstrate the library usage only on time series predictions, it can potentially
be used in many other different areas. The present parameters of the model
are fully configurable. In our implementation, we’ve also included some

1

1. Introduction
popular extensions or modifications of the standard Echo State Network.
Namely, we’ve focused on selected deterministic topologies of the reservoir
like “Cycle Reservoir with Jumps” [3]. The linear readout can be trained by
either Stochastic Gradient Descent or Ridge Regression (using Moore-Penrose
inverse (pseudoinverse) with Tikhonov Regularization). Apart from example
datasets that were used for experiments and processed solely as historical
data (mainly for convenience, as it was slightly easier to produce graphs
and other output), we’ve also attempted to simulate a real-time streaming
application, by periodically writing data to and reading it from file. We
present a performance analysis of the model over the developed examples,
analyzing the impact of individual hyperparameters.

A JavaDoc is included with the developed library. The whole project can
be found on GitHub1 with plotting scripts in a separate repository2.

Thesis Organization

The next Chapter presents the main concepts related to data streaming and
time series. In Chapter 3, we thoroughly describe Linear Regression which
is applied as a part of Reservoir Computing. In Chapter 4 we introduce the
concepts of Reservoir Computing and put it into the context of Machine
Learning. We then focus on Echo State Networks in Section 4.3. In Chapter 5,
we’ll first introduce the Apache Flink framework, and after that in Section 5.5,
we’ll zoom in on our implementation. In Chapter 6, we present the experiments
testing the validity and possibilities of our implementation. Using both real-
world and function-generated data. Lastly, we summarize the presented work
and outline the possibilities of future extension in Chapter 7.

Nomenclature

Vectors are denoted by a bold, lowercase letter. Matrices are denoted by a
normal, uppercase letter. We’ll consider all vectors to be column vectors
(by default) and omit their column dimension (which is 1). For example, an
n-dimensional vector would be denoted as belonging to Rn instead of Rn×1.
We might write out a vector as an n-tuple, which will be considered equivalent

to the matrix notation, e.g. u = (u1, . . . , un) =

u1
...
un

 ∈ Rn.

Some terms will appear several times, also in case of Apache Flink the
terms can have a meaning that differs from a strict mathematical terminology.
In order to avoid ambiguity, we specify them as follows:.Mapping: used when referring to a “general type of function”, i.e. f : Rm

→ Rn.
1https://github.com/h4nek/flink-rc
2https://github.com/h4nek/flink-rc-plotting

2

https://github.com/h4nek/flink-rc
https://github.com/h4nek/flink-rc-plotting

......................................1. Introduction
. Transformation: a particular type of mapping where input and output

domains are the same, i.e. Rn → Rn. When applying a scalar function to
a higher-dimensional structure (vector) and using it as a transformation,
it is to be understood as an element-wise application.. Function: by functions we are referring to mappings whose outputs are
scalars, i.e. Rn → R.

A list of used acronyms can be found at the end of thesis, after bibliography.

3

4

Chapter 2
Data Streams

2.1 Basic Definitions

Data is a collection of information in an electronic form that is being stored
and used by a computing unit (we might say data point, event or data sample
when referring to a single piece of data) [4]. A computing unit is a group of
resources with close physical relationship that is capable of executing a task.
We can think of it as a generalization of a computer [5, p. 112].

Sometimes we might want to impose order on the data, and it then becomes
sequential [6]. For example, a set of natural numbers can be ordered by the
numbers’ values and if we were to process it as a stream (see below), we
would go from the lowest to the highest. Time series data is a subcategory of
sequential data where the order of the data is dependent on their timestamp,
i.e. the time of their creation or time of entering a data processing application.
In practice, we are only able to process discrete data and any continuous
sequence (e.g. real numbers) has to be discretized.

Then, a stream of data (also known as data stream or simply stream) is a
sequence of data that is meant to be transferred [7]. It is typically (roughly)
ordered by a timestamp marking the creation of each data point, so it can be
seen as a type of time series data. Data streaming means transferring a stream
of data in a continuous flow from one place to another [8, 9]. Stream processing
is simply processing a data stream by some computing unit [10]. This stands
in contrast to batch processing, which means processing a collection of data in
“batches” and is preceded by storing and aggregating the data. Real-time data
processing means processing the data as soon as it arrives and producing an
output almost instantaneously [11, 12]. Stream processing is often associated
with real-time processing since at the heart of it, there is no need to wait for
additional data when some data arrives, and it therefore allows for a lower
latency [13].

2.2 Time Series Data

More formally, a time series data is a sequence of events obtained through
measurements (observations) over time [14, section 2.1]. We typically receive

5

2. Data Streams
timestamped data with a fixed time gap in-between individual data points
(events) (i.e. receiving a data sample every k > 0 units of time). Most
commonly, the event at time t may have an impact on the events at time
t + ik (k > 0, i ∈ N), i.e. the events are dependent on each other [15]. For
the purpose of our implementation, let’s formally define a data stream as an
ordered set of values (vectors) {x(1),x(2), . . . ,x(n)}. Having another such
set {y(1),y(2), . . . ,y(n)}, we can say that their elements form input-output
pairs (x(i),y(i)). The purpose of this pairing can be seen later when talking
about Linear Regression (3) and Reservoir Computing (4).

Usage. The most common problems in the area of Reservoir Computing
that involve time series data are:. Classification: where the system receives a stream, and the goal consists

of classifying each element by assigning it to some class (category, label).
This is commonly used in areas such as speech recognition (assign a voice
to a person), medicine or intrusion detection [16, p. 116].. Forecasting (Prediction): we typically want to predict (estimate) future
data given data from the past (and present). This process is called
multi-step ahead time series prediction (a special case would be the basic
1-step ahead) [17, pp. 765-766]. (We’ll refer to it as x-time-step ahead in
the implementation.) Symbolically

xt−p, . . . ,xt → (xt+1, . . . ,xt+tsa−1,) xt+tsa, (2.1)

where x ∈ Rn is a data vector, t ∈ N is the current time-step, p is the
number of past data used for the prediction and tsa ∈ N is the number
of time-steps ahead we want to predict.
This can be used in a wide variety of fields, such as agricultural produc-
tivity, stock prices or electricity consumption [17, p. 765].

In general, we want to predict some information that will (or might) be
known to us in the future. While learning to predict through already available
information from the past.

2.3 Bounded and Unbounded Streams

Since stream is a sequence of data, it has a sense of orderliness of its elements.
A bounded data stream is simply a stream that has a defined start and
end [18]. Similarly, an unbounded data stream is a stream that doesn’t have
a defined end, but it still does have a defined start. This is understandable
considering how stream processing works. We have to start processing at
some point (typically rooted in time) and work onward from there. Therefore,
what was before that point (if anything) becomes unavailable. Yet, we can
theoretically process the data forever, or we might not know when we will
want to stop for now. Unbounded streams are also called never-ending due

6

.............................2.4. Stream Processing Frameworks

to this characteristic. There are some practical implications that come with
processing a potentially infinite amount of data. First of all, we can’t wait
until all of the data arrives, so we have to process them on the run. We have
to produce some partial results, typically periodically. Second of all, we can’t
just store all of the historical data, as it would grow in size infinitely. We
have to manage what we keep and potentially discard data that are older
than some chosen period of time. Having the data relatively ordered might
also be crucial in order to have a sense of completeness of the partial results
as well as responsibly manage old data and create reasonable backups. On
the other hand, bounded data streams can be processed after aggregating all
data. They can also be sorted as a whole afterwards and therefore can be
allowed to arrive in a chaotic fashion.

2.4 Stream Processing Frameworks

If we look at open source frameworks working with big data using streams,
we are offered tools like Apache Spark, Apache Flink, Apache Kafka, Apache
Storm and other less popular ones [19, p. 1] 1. All of the mentioned solutions
are distributed frameworks focused on cluster processing.

Apache Flink is slightly newer, therefore slightly less developed and more
experimental big data processing framework compared to Apache Spark.
It makes use of true streams (incoming data are immediately queued for
stream processing) and is generally faster (lower latency) [20, section 5:
Results]. Apache Spark processes the given data in groups of elements
(micro-batches) [21].

Apache Kafka is an earlier started project focused on distributed cluster
processing, where distributed coordination is done with nodes being equal
(consumers form consumer groups) and therefore it has to have a solid fault
tolerance [22]. In Flink, on the other hand, there is a master-slave hierarchy,
although fault tolerance is also an important aspect [23, section Distributed
Execution]. Kafka is often used as a source that creates streams and then
forwards them to other stream processing frameworks [24].

We’ll work with Apache Flink, which is in active, ever-growing development,
whilst already having a stable release.

1A collective infographic of big data solutions can be found here: http:
//mattturck.com/wp-content/uploads/2018/07/Matt_Turck_FirstMark_Big_Data_
Landscape_2018_Final.png (Accessed: 20. May 2020)

7

http://mattturck.com/wp-content/uploads/2018/07/Matt_Turck_FirstMark_Big_Data_Landscape_2018_Final.png
http://mattturck.com/wp-content/uploads/2018/07/Matt_Turck_FirstMark_Big_Data_Landscape_2018_Final.png
http://mattturck.com/wp-content/uploads/2018/07/Matt_Turck_FirstMark_Big_Data_Landscape_2018_Final.png

8

Chapter 3
Linear Modelling

Linear regression (LR) (the most common way of linear modelling) tries to
find the best linear model (LM) according to some criteria (typically using
the least squares method, described later) [25, p. 48]. A linear model takes
input variables xi (observations, independent variables), uses them in a linear
transformation (more specifically, a function that is linear with respect to its
coefficients αi) and produces the output variables yi (dependent variables), or
more precisely their predictions (estimations) ŷi that are as close as possible
(have the lowest chosen error). In other words, there has to be a linear
relationship between the input and the output variables for the method to
be applicable [26, pp. v, 2-3]. (In the joint input-output space, the set of
input-output pairs generally represents a(n affine) hyperplane.)

We’ll narrow the view to only having one output variable y and predicting
the respective scalar ŷ. More specifically, we’ll work with time series (described
in the above section 2.2), where the input and output variables can be viewed
as functions of time t. Note that we’ll use t here as a label, denoting that
(x(t), y(t)) is an input-output pair where in reality, y(t) is typically from a
later time. The linear predictor function (representing the theoretical linear
model) has the following form:

y(t) = α0 + α1x1(t) + . . .+ αnxn(t) + ε, t = 1, . . . ,m (3.1)

In practice, the following equation is used instead:

ŷ(t) = α0 + α1x1(t) + . . .+ αnxn(t), t = 1, . . . ,m (3.2)

which can be shortened using a matrix notation into:

ŷ = Xα (3.3)

where ŷ ∈ Rm,α ∈ Rn+1, X ∈ Rm×(n+1). While the first equation (3.1)
includes an unobservable error ε and shows us the actual relationship between
input and output variables, the second equation (3.2) gives us a computable
estimate ŷ(t) of the real output value (we will call it the prediction) at one
point in time. To be precise, we should also use α̂, since it’s an estimate of
the theoretical model parameters, but we’ll omit this notation for brevity.

(A verbal description of the function (3.2) is that in one fixed point in time
t, it provides a scalar prediction (of an output variable) ŷ(t) based on an

9

3. Linear Modelling
n-dimensional vector (of input variables) x(t), using an (n+1)-dimensional
vector (of parameters/coefficients) α.) Note that X =

[
1 x1 . . . xm

]
,

where 1 is a vector of 1s that will get multiplied by the so-called y-intercept
(the constant) α0. Y-intercept is the value of ŷ(t) when x(t) = 0 (∀t). Because
of accepting multiple input variables, this process is also more specifically
called the multiple linear regression [26, pp. 2, 3]. If we’d like to predict
multiple values at the same time t, we can just create a separate linear model
for each of them.

3.1 Linear Regression in the Context of Machine
Learning

In machine learning (supervised learning), there exists a training phase and
a testing phase of a model. (We could also have a validation phase/set
if we were choosing between multiple models [27, p. 7].) In the case of
linear regression, the training phase aims to create the “best” (according
to the chosen criteria) linear regression model by computing the optimal α
vector of parameters (regression coefficients) [26, p. v]. The testing phase is
simply about evaluating the computed model’s performance by applying it
on input vectors x(t) (usually different from the training data), obtaining
the corresponding prediction value ŷ(t) and comparing it to the actual value
y(t) using the chosen criteria. In both phases, X and y are available to us.
In production, the testing phase is substituted with (or a part of) the model
usage and the real outputs y(t) typically come to us with a delay, therefore
we can evaluate the performance retroactively.

If we only have one set of data available at the beginning, the data should
be split (e.g. in half) to have disjoint datasets for the training and testing
phase. This can also prevent overfitting, because we might otherwise create a
function that fits perfectly, but only for the set it was trained on. And this
would not work so well in the future as the data probably follows a more
complex/random pattern.

Taking the data through a linear model that is typically created using linear
regression is the final phase of a reservoir computing framework (discussed in
the next chapter) [1, pp. 3, 5, 20].

3.2 Training

Under ideal conditions, what we’d try to achieve is to create a model that
outputs perfect predictions (such that ŷ = y).

In reality, we can hardly predict anything perfectly, let alone when requiring
a linear relationship. Therefore, we need to choose some criteria which will
tell us how good our model is. The most common approach is to minimize
the distance between our predictions and the actual values (there are other

10

.......................................3.2. Training
approaches which we won’t discuss). This can be written mathematically as:

arg min
ŷ

||ŷ − y||2 (3.4)

It’s an optimization problem called the method of (linear) least squares. One
reason to square the norm (put it to the second power) is that the (euclidean)
norm itself is defined as

||y||2 =

√√√√ m∑
i=1

y2
i (3.5)

where yi are the coordinates of vector y (with respect to the standard basis).
And squaring non-negative real numbers means applying a monotonically
increasing function on them, which preserves the argument of minimum.
Therefore squaring the norm just makes the computation easier while giving
us the same result (since we’re mainly interested in the argument of minimum,
not the value (which we could easily compute afterwards)). Another reason
will be apparent when using numerical methods in subsection 3.2.2: the
squared norm gives us a smoother function. This in effect means that we’ll
get a better convergence overall (the function approaches minimum faster
when farther from it and becomes smoothly slower when closer to it). So it
might get us close to the minimum faster while also making us less prone to
overshooting it. [28, p. 25]

Since we know what the function ŷ (3.3) looks like and that it depends
solely on the α vector of parameters (X is given to us in the training phase),
we can rewrite the equation (3.4) as

arg min
α

||Xα− y||2. (3.6)

So in the training phase, our goal is to compute (get close to) the optimal
α (sometimes denoted as α∗). There are multiple ways to do that which
can be divided into two major types. First type is an algebraic (analytical)
approach and second type is a numerical one.

3.2.1 Algebraic Approach

An algebraic approach effectively means trying to solve a set of linear equations

y (= ŷ) = Xα, (3.7)

which aren’t expected to have an exact solution.
Since the gradient of a (differentiable) function has to equal 0 at the

argument of minimum, we get the following equations from the least squares
method function (3.6):

||Xα− y||2 = (Xα− y)T (Xα− y) = αTXTXα− 2yTXα+ yTy. (3.8)

∇||Xα− y||2 = ∂||Xα− y||2

∂α
= 2XTXα− 2XTy = 0 (3.9)

11

3. Linear Modelling
XTXα = XTy (3.10)

The equation (3.10) is called the normal equation.
Now suppose that X has linearly independent columns (its columns, viewed

as vectors, form a linearly independent set). Then XTX is invertible and we
are able to write an equation for computing the α directly using a Moore-
Penrose inverse (specifically the left inverse of X):

α = (XTX)−1XTy. (3.11)

But in general, there might be cases where X has linearly dependent
columns or where XTX is ill-conditioned (that means we’re expected to meet
with a great inaccuracy when computing its inverse). Then we can introduce
a regularization factor λ ∈ R+

0 (using Tikhonov regularization) and have a
new equation

α = (XTX + λI)−1XTy (3.12)
where I ∈ Rn×n is the identity matrix. This is also known as ridge regression.
λ is called the hyperparameter [29, p. 281], since we will not optimize it as part
of the training but will choose it beforehand, usually by trial and error. We
can see that for λ = 0, this new equation is the same as the previous (3.11).
Otherwise if λ > 0, then XTX + λI is always invertible (in theory). The
larger our parameter λ is, the more well-conditioned the matrix becomes (and
the model is less prone to overfitting). The smaller it is, the closer we are to
the real solution (the global minimum argument). So we need to balance the
λ to best fit our concrete problem.

3.2.2 Numerical Approach

In numerical approach, we use iterative methods to converge to the optimal
α. One such method is the gradient descent (GD). The idea is to start at
some initial α0 and go in the direction of the negative gradient. Since the
gradient vector points in the direction of the steepest ascent, its negative
counterpart will lead us in the direction of the steepest descent, geometrically
speaking. Therefore we’ll approach a local minimum (or a saddle point)
with each step (if the step we take is small enough). In practice, we don’t
ever expect to arrive exactly at the optimum (especially with the numerical
approach), so the important condition for us to ensure is that the function
value is decreasing with each step (by choosing the right step size) and we
therefore get better results (lesser error).

Gradient descent can be further divided into batch gradient descent and
stochastic gradient descent (SGD). Batch gradient descent takes the whole
training dataset (batch) for each iteration. Conversely, stochastic gradient
descent only uses one record from the training set in each iteration, eventually
iterating over the whole set [30, p. 2]. This record might be chosen at random
(by shuffling the training set first), hence the name “stochastic”. The formula
for one iteration of the batch gradient descent for the linear least squares
minimization (3.6) is

αk+1 = αk − η∇(||Xαk − y||2) (3.13)

12

.......................................3.2. Training
αk+1 = αk − 2ηXT (Xαk − y) (3.14)

where η ∈ R+
0 , called the learning rate, directly affects the step size. It should

be chosen so that we approach the minimum as quickly as possible without
“overshooting” and getting a larger function value than the one from the
previous iteration. The constant 2 can be seen as part of the learning rate and
ignored. Furthermore, it’s common to divide the gradient by the number of
samples (training set size), which we’ll denote by m. This makes the change
of α independent of the size of the dataset, which would otherwise have to be
accounted for by modifying the learning rate [31]. The edited formula would
now be

αk+1 = αk − η
XT (Xαk − y)

m
. (3.15)

We can adjust the learning rate in each iteration and control it so that we
don’t ever increase the function value. A good initial estimate of α0 is also
desirable to get close to the minimum more quickly.

If ∇(||Xαk − y||2) = 0, it would mean we’re at some stationary point.
Generally, the stationary point might even be a (local) maximum, but if we
ensure a decreasing tendency, then we’d only end at a maximum if we picked
it as our starting point (αk = α0). Otherwise, the stationary point might be
a saddle point or a (local) minimum. We can infer more properties in specific
cases. If the function being minimized is convex and differentiable, then any
stationary point is a global minimum [32, pp. 652, 653]. But we expect the
function to be differentiable in order to compute its gradient. And then since
(any) norm is convex (and power of 2 is convex and non-decreasing), our
function (3.6) therefore has the needed properties.

The formula for one iteration of the stochastic gradient descent for the
linear least squares minimization is

αk+1 = αk − η
(αT

k x(k)− y(k))x(k)
m

(3.16)

where we’ve already left out the constant 2 and divided by the number of
samples m. We don’t need to have the whole dataset upfront. The model
improves with every (individual) record it receives. Compared to the batch
version, first of all, the updates are faster. And it’s also useful for cases where
the whole training dataset might not fit into memory. The disadvantage
might be that the function (and therefore its arg min) keeps changing [30,
p. 2].

Now the final question is when to stop iterating. We can set a proximity
threshold and stop the algorithm when we’re close enough. We can also set
the maximum number of iterations (or do a combination of both). By doing
a combination of both, we can try to get satisfactorily close while not getting
stuck in an endless computation. By default, we’ll just iterate over the whole
dataset once.

Setting the Learning Rate. The simplest approach is tuning the value by
“trial and error” while setting the learning rate η constant. If we wanted an

13

3. Linear Modelling
optimal learning rate (at each step), there exists what is called the line search,
where we basically compute the global minimum of a real-valued function
(f : R→ R). In practice, this would mean computing the derivative at each
iteration, instead of just applying a learning rate “blindly”, and is typically
too expensive.

An interesting approach that might provide a good compromise between
precision and computational cost is to introduce a specified decay. That is,
an initially chosen learning rate gets smaller according to some criteria. This
cooperates nicely with the fact that as we get closer to a minimum, we’ll
need to perform smaller steps to prevent overshooting. One type of decay,
which we implemented, is the step decay, where we simply lower the value
every couple of steps. The questions of how often (decayGranularity) and
how much (decayAmount) should the learning rate change, can again be
approached through (perhaps informed) experimentation and set manually.
We apply the formula

η = ηprevious ∗ (1− decayAmount) (3.17)

every dnumberOfSamples
decayGranularity e steps, where numberOfSamples is the size of the

training set.

3.2.3 Summary

We’ve chosen to implement two representative methods to compute the
optimal α parameter. First one (algebraic, offline) is by computing the
formula (3.12), where we have to set the hyperparameter λ (regularization
factor). We used Moore-Penrose inverse with Tikhonov regularization. Second
one (iterative, online) is by repeatedly computing the formula (3.16), where
we set the hyperparameter η (learning rate). We used stochastic gradient
descent.

3.3 Testing

Testing the model (3.2) (created in the training phase) is about first applying
it on input vectors x(t) and getting predictions ŷ(t). Then we compare the
corresponding predictions ŷ(t) to the real output values y(t). To realize all
that, we need a testing dataset (preferably one that is disjoint from the
training dataset, as mentioned earlier). In other words, we’re computing some
sort of error.

There are multiple types of errors we can compute. One of the most
common and basic ones is the mean squared error (MSE). As the name
suggests, we square the difference and then also divide it by the number of
samples m to get a result independent of the size of the used dataset.

It has the following formula:

MSE = 1
m

m∑
i=1

(ŷ(i)− y(i))2 (3.18)

14

....................................... 3.3. Testing

which can be written in a matrix notation as

MSE = (ŷ − y)T · (ŷ − y)
m

= ||ŷ − y||
2

m
, (3.19)

where m is the number of samples (testing dataset size). We can assume that
the lower the value of MSE is, the more precise our model is.

15

16

Chapter 4
Reservoir Computing

4.1 Overview of Recurrent Neural Networks

To discuss reservoir computing, we should first put it in a context and define
the encompassing terms. The broadest relevant area could be the so called
“artificial intelligence”. Basically, artificial intelligence (AI) can mean any
behavior done by machines that resembles the natural human intelligence.

A more specific and more precisely defined field is called machine learning
(ML). ML strives to make computing units complete tasks (and do them
with gradually better results) by learning them in a given bounded domain
with specified properties, instead of following the traditional explicit set of
instructions (that would be given by the programmer). More exactly, a ML
task is about finding a relation between an input and an output based on
given input-output pairs [1]. This relation can then be used to “predict” the
output from only the given input (e.g. receiving a sequence of (not completely
random) 0s and 1s and predicting what the next number is going to be). A
ML task can be dependent on the input history (temporal) or just the input
in the current moment (non-temporal) [1, pp. 4, 5]. Non-temporal task is
thus suitable for problems where individual input-output pairs are unrelated.

In the broadest sense, ML can be seen as an approach to create and train
AI, even if just within a very narrow domain (e.g. playing chess). But
possibly a better look at it would be that ML is an approach that might
get us closer to developing a real general-purpose AI. ML can be divided
into supervised and unsupervised. In supervised learning, a set of pairs with
inputs and desired outputs is given at the very beginning. A specific model is
then trained on these pairs whilst the machine knows that it should give out
results as close as possible to the desired outputs when it receives the paired
input. A common specification of “being close” is having the lowest possible
mean squared error (described later; generally, we try to minimize any chosen
type of error). Supervised learning is standard in the type of neural networks
we’re interested in.

An artificial neural network (ANN) (commonly just neural network) is a
system that tries to mimic the biological neural network (neural circuit). In
a nutshell, we can see that ANNs are an attempt to make machines simulate
human (and animal) brain. Again, we can divide ANNs in subcategories.

17

4. Reservoir Computing
One criteria is whether or not they allow cycles. If they do, they’re called a
recurrent neural network (RNN). If not, (they form a directed acyclic graph)
they’re called feedforward neural networks.

We’ll be interested in RNNs, since reservoir computing is used to train
them. Moreover, it’s apparent from the above description that feedforward
networks are just a subset of RNNs, so they’ll technically not be left out [33].

Some well-known families of RNNs are:. Vanilla RNN: are the original type of RNN that was used in the past.
It had some problems like the vanishing/exploding gradient, where over
time, thanks to the nature of the used activation (typically sigmoid)
functions, the gradient could either vanish (go to 0) or explode (go to
∞) [34, p. 1]. Which meant the network would stop learning or get to
NaN values. This basically happens because the weight matrix that the
gradient is being repeatedly multiplied by has typically values either < 1
or > 1 [35, p. 194].. Long Short-Term Memory (LSTM): tries to eliminate the vanishing and
exploding gradient problems by using gates with logistic functions on
top of the basic RNN [36, p. 3]. So it’s generally more complex. It also
enables forgetting past information through one of the gates (modify the
memory length). LSTM is used for problems like speech recognition [36,
p. 2].. Reservoir Computing: started training only the output layer of RNN
in a linear fashion, leaving the hidden/input layer untrained (its weight
matrices are instantiated before the model starts training and fixed). This
all can save us a lot of unnecessary computation. The gradient problems
are avoided by operating near the “edge of stability” through scaling the
spectral radius of the hidden weights matrix (discussed in 4.3.1) [37].

4.2 Reservoir Computing Models

Reservoir Computing (RC) is an approach to creating RNNs that addresses
the problems of classical approaches using mainly a gradient descent method
(GD described later). It (typically) imposes the following properties on the
training [1, pp. 2, 3]:

First, a reservoir (input layer and hidden layer of the RNN, mainly referring
to the latter) is created randomly. It then guides the input through nonlinear
transformations which can be affected by the previous inputs and “lifts it”
into a higher dimension.

Second, a readout (output layer) is trained, typically through linear re-
gression to form a linear model. For each output of the reservoir, a linear
transformation is applied on it to create the final RNN output. While we
could allow the readout output to belong to Rn in general, we’ll only consider
it to be a single real value for simplicity (the general output could then be
created by putting n real-valued outputs into a vector).

18

................................. 4.3. Echo State Network

In comparison to classical RNN training methods, RC appears to be less
computationally expensive by not having to train the reservoir (only updating
its state x(t)).

By doing this, it managed to outperform past RNN architectures in various
types of prediction and classification tasks [1, p. 3]. For the future, RC mainly
showed that we don’t yet know of a good way to train RNNs [1, p. 25].

Two major types of RC are echo state networks and liquid state machines.
Due to their similarities, the term “reservoir computing” was introduced.
Liquid State Machine (LSM) follows a more biologically realistic path and
finds its usage in the computational neuroscience. It uses spiking neurons in
the readout. Spiking neurons produce an output (“fire a spike”) only once
a sum of specific input signals has reached a given threshold [38, pp. 6, 7].
Echo State Network (ESN), on the other hand, typically has linear readout.
It uses classic neurons, which accept an input and produce an output at each
iteration of the network.

4.3 Echo State Network

There isn’t one way to implement or express an RC model. We’ll be using
a simple RNN with one hidden layer, and express the formulas in matrix
notation (presented as a state-space model) as is done in [1, pp. 6, 5]. For
the reservoir computation (also called an expansion), we have

x(t) = f(Winu(t) +Wx(t− 1)), t = 1, ..., T, (4.1)

where u(t) ∈ RNx is the input vector in time t, T is the size of the processed
dataset (T → ∞ for data streams), Win ∈ RNx×Nu is a matrix of input
weights, W ∈ RNx×Nx is a matrix of weights of internal network connections,
f is some chosen nonlinear transformation (e.g. hyperbolic tangent) and x is
the state vector (reservoir output).

We can interpret this as doing a linear mapping of the input data and a
linear mapping of the reservoir outputs from the previous time instance. Then
adding them together and finally computing some nonlinear transformation
of it. Due to this recursive definition, x(t) keeps a nonlinear expansion of
the whole input history. We expect that Nx � Nu [1, p. 5]. Also, u(t) is
typically included as part of x(t). (Hence why we also call it an expansion -
we’re expanding u by adding more dimensions to it.) Effectively, the reservoir
consists of matrices Win and W .

Both matrices Win,W are instantiated randomly or according to some
predefined pattern (the reservoir is untrained). Typically, their elements come
from a uniform distribution on the interval [−0.5, 0.5] (more generally an
interval symmetric around 0). While Win is dense (with virtually no 0s), W
is typically sparse, with sparsity around 80% or more.

We could also work with an extended model

x(t) = f(Winu(t) +Wx(t− 1) +Wofby(t− 1)), t = 1, ..., T, (4.2)

19

4. Reservoir Computing
where Wofb is an “output feedback” weight matrix and y(t− 1) is the readout
output at previous time instance. So the expansion gets affected by the
previous final output value as well.

For the readout computation, we have

y(t) = Woutx(t), (4.3)

where Wout ∈ RNy×Nx is the matrix of trained output weights and y(t) ∈ RNy

is the final output of RC in time t. Another nonlinear transformation could
also be applied on y(t) but that’s beyond our scope of interest. Note that
we could also view this as a linear basis function model, where x would be a
vector of results of the basis functions applied on the vector u.

To introduce an intercept value (also called bias), we add a constant (1)
as the first coordinate of x. If we then set all (other) coordinates of x to
0, the value of the output vector is determined by the 1st column of Wout.
Geometrically, for function y : R→ R dependent on input x ∈ R, plotted in
Cartesian plane, this would be the point at which the line intercepts the y-axis.
(The input vector would actually be x ∈ R2 when considering the intercept.)
Thanks to this, our model doesn’t have to map to a linear subspace (doesn’t
have to include origin in it’s range) and is thus more flexible.

We can see that this is a temporal task, even though we do not remember
the original input vector u. Instead, we keep its nonlinear expansion x.

As mentioned before, we’ll consider Ny = 1 for our implementation.
The most popular approach to computing the readout (more specifically

the Wout matrix) is using linear regression, which was discussed in detail in
chapter 3.

4.3.1 Echo State Property

A desirable feature of an ESN to have is the echo state property. It represents
a condition that the effect of older states x(t) and inputs u(t) should be
getting smaller as time goes by [1, p. 11]. That is, they would have an
infinitely small impact on the state x(t+ k), where k →∞.

Typically (but not necessarily), this property is satisfied when the spectral
radius of W is less than 1 [1, p. 11].

Spectral radius of a (square) matrix is defined as the largest absolute value
of its eigenvalues. Formally

ρ(M) = max{|λ1|, . . . , |λn|}, (4.4)

where λ1, . . . , λn ∈ C are the eigenvalues of matrix M ∈ Rn×n (real-valued
matrices are sufficient for our case).

To ensure that ρ(W) < 1 in an implementation, we can simply scale the
original matrix (here denoted W old):

W = α

ρ(W old)W
old, (4.5)

where α ∈ (0, 1) is a configurable(tonable) hyperparameter [3, pp. 4-5].

20

................................. 4.3. Echo State Network

If we wanted a truly sufficient condition for ensuring the echo state property,
we could replace the spectral radius with the largest singular value of W
(singular values are non-negative, so no need to compute their absolute
values) [1, p. 11].

4.3.2 Memory Length

Spectral radius also affects another property which is the length of the
memory [1, p. 11, 39, p. 17]. Memory length of ESN roughly means how long
can an information be kept (and be significant) inside the network. That
is, for the computation of x(t+ k), how large can k be for x(t) to have an
impact on it? When the spectral radius is close to 0, we speak about short
memory. When it is close to 1, it provides long memory. (Of course, what’s
short and long can be arbitrary.)

4.3.3 Cyclic Reservoirs

Apart from ensuring the echo state property, we might find other properties
to be desirable. Like having cycles inside the reservoir (represented by the
W matrix), or having a symmetric W .

Cycles enable that an information (from input u(t)) can be stored forever,
although typically with a diminishing impact. Otherwise, it has to be lost or
“emitted” at some point.

Instead of creating the W randomly, we can do it deterministically. The
most basic type is the Simple Cycle Reservoir (SCR) [40, p. 132]. Viewing it
as a directed graph, we want to have connections going from the first node to
the second, etc. and finally from last to the first. Creating one big cycle.

u1

u2

uN_u

x1

x2

xN_x

y

Input
Layer

Win

W
Wout

Hidden
Layer

Output
Layer

Figure 4.1: Simple Cycle Reservoir. Win is assumed to be 100% dense, which
corresponds to a fully connected hidden layer (layer of state vectors x(t)) in the
graph representation.

21

4. Reservoir Computing
Weights are constant. That is, we generate a random weight rc from some

interval and assign it to every connection. This topology corresponds to
having a matrix W with this non-zero weight on the subdiagonal, as well as
in the top-right corner.

Generally, when considering W ∈ RNx×Nx , this corresponds to having Nx
nodes in the reservoir. A non-zero elementWi,j then corresponds to a directed
edge from j-th to i-th node.

Now it’s clear why we have Wi+1,i = rc ∀i and W1,Nx = rc to create the
unidirectional cycle.

Cycle Reservoir with Jumps

On top of the simple cycle, we can consider adding bidirectional jumps [3].
They effectively work as shortcuts, lowering our average path length. We need
to specify the jump size j. The jumps will then connect nodes that are j places
apart, starting from the 1st node - ideally forming one (bidirectional) cycle.
And once again, we’ll have a constant weight rj for all our jump connections
(different from the cycle weight). Then our first jump is represented by
W1,1+j = rj = W1+j,1. Other jumps simply follow from the reached nodes until
we can’t create any more. That is, for the general formula, W[1+(k−1)j],1+kj =
rj = W1+kj,[1+(k−1)j], k ∈ 1, . . . , bNx−1

j c and then the last jump that ideally
goes to the first node (W[1+Nx−j],1 = rj = W1,[1+Nx−j]). This can be ensured
by satisfying j | Nx. This is called the Cycle Reservoir with Jumps (CRJ)1.

W will generally be a sparse matrix, so we don’t have to worry about that
property. However, due to the cycle, it will not be symmetric.

An obvious alteration that we’ll support is to have individually randomized
weights, instead of rc and rj.

We can think of creating a symmetric matrix with only jumps. In that
case, we’ll realize a jump from every node. That is, Wi,[(i+j) mod Nx] = rj =
W[(i+j) mod Nx],i ∀i and all other elements will be 0. This will automatically
create one big (encompassing every node) bidirectional cycle or multiple small
ones (i.e. when j | Nx).

1Note that we call this topology “Cyclic with Jumps” in the implementation and in the
generated plots.

22

................................. 4.3. Echo State Network

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48

Cycle Reservoir with Jumps

0.4

0.2

0.0

0.2

0.4

Figure 4.2: A visualization of W ∈ R50×50 with random constant cycle weight
of approx. 0.3569, jumps of size 3 and random constant jump weight of approx.
−0.4235.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48

Cycle Reservoir with Jumps (Randomized Weights)

0.4

0.2

0.0

0.2

0.4

Figure 4.3: A visualization of W ∈ R50×50 with jumps of size 3 and random
individual weights.

In these figures, we’ve ignored the scaling hyperparameter α. The compari-
son of W ’s with different α values can be found in section 6.4.

The sparsity of such W ’s can be computed relatively easily. Given Nx
nodes, we have Nx weights for the whole cycle and the number of jumps is

23

4. Reservoir Computing
bNx

j c:
Nx + 2bNx

j c
N2

x
× 100 (%) (4.6)

24

Chapter 5
Reservoir Computing Framework in
Apache Flink

5.1 Introduction to Apache Flink

Apache Flink is a framework for distributed stream (and batch) processing of
data [18]. It mainly consists of a streaming engine and builds batch processing
on top of it [41]. Flink has been developed by The Apache Software Foundation
with the purpose of being capable of fast and reliable data processing on a
large scale [42].

The data that Flink processes can be either bounded (finite) or unbounded
(infinite, never-ending) streams (see Section 2.3 for further description), where
bounded streams can be seen as a special case of unbounded streams (we just
define an end). Flink provides DataSet API and DataStream API respectively
to process them.

Although Flink is community-driven, a major support comes from a com-
pany called Ververica (formerly Data Artisans), which is composed of the
original developers.

History and Future. Apache Flink’s foundational concepts were laid out
in 2008 [43]. The development of its direct predecessor named Stratosphere
started in 2010 through a collaboration between three German universities.
The goal of the project was to develop next generation big data analytics
platform [44]. (It was built on top of a research project called Nephele,
developed at the Technical University of Berlin [45]. It introduced building a
dataflow through constructing a Job Graph by the users and then turning
it into an Execution Graph by the framework.) In 2014, Stratosphere was
accepted as an Apache Incubator project (and subsequently renamed to
Apache Flink), which enabled it to expand into a more global frame and
made it a part of the open-source-focused Apache Software Foundation [46].

On 8. March 2016, Flink 1.0 was released [47]. Flink has been in active de-
velopment since then, with a major (1.x) release roughly every 4-6 months [48,
section History].

The focus of future development is on the Table API and further unifying
the batch and stream processing. Since DataStream API is more general, it

25

5. Reservoir Computing Framework in Apache Flink
should fully incorporate the capabilities of the DataSet API in the future [49].

5.2 Characteristics of Apache Flink

Flink has been mainly developed for Java and Scala programming languages,
which are both based on Java Virtual Machine (JVM). More recently (since
1.9) a limited support of Python for the Table API has been available [50].

Flink provides APIs on multiple levels of abstraction (LoAs) [51, section
“Levels of Abstraction”].

The Core APIs of Flink consist of the DataSet API and the DataStream
API. They are the second most descriptive LoA. Each of the APIs consists of
a class of the same name and operations (transformations) defined on it.

The lowest level of abstraction is provided by ProcessFunction which
is actually integrated into DataStream API so users can seamlessly switch
between them. It gives the ability to create and customize stateful streaming.

A LoA one higher than the Core APIs is the Table API that utilizes the rela-
tional model used in database systems. It is related to the TableEnvironment.

The highest LoA is called SQL, which specifically provides the ability to
write SQL query expressions. It is closely related to the Table API. It mainly
provides a sqlQuery method called on a TableEnvironment which accepts
SQL queries as a String parameter. The SQL API is considered incomplete
(as of version 1.8) [52].

We’ll focus on the Core APIs in this chapter from now on.

5.2.1 Concepts

A function is the most general concept, often meaning any executable sequence
of instructions. Although from a mathematical point of view, a function should
be deterministic, i.e. give the same output when receiving the same input
arguments. This might not be true for OOP (Object-Oriented Programming)
languages, hence why Java’s “functions” are called methods and they are a
part of some class. The word function has a special meaning in Flink, where it
is the argument of an operation (operator function) [53]. Implementation-wise,
we actually define a class to represent the function, and then pass an instance
of it (object) as an argument to the called operation. The class can also be
anonymous or a lambda expression [54]. The requirement for these classes is
only that they implement the interface that corresponds to the given operation
(e.g. MapFunction or RichMapFunction for map transformation). Inside the
function class we have the actual methods that need to be implemented and
specify the behavior of the concrete function. Even though the documentation
uses this term in various contexts, we’ll try to apply it more strictly only on
cases that fit the mentioned Flink definition.

An operation in Flink is a method that’s manipulating the data stream. The
types of operations are: transformation, iteration, source and sink. Operations
in Flink are lazy (utilize lazy evaluation), which means they are only executed
when their result is needed. More specifically, an execute method of the

26

.............................5.2. Characteristics of Apache Flink

execution environment needs to be called. An exception to this are a few sink
operations that cause eager execution when called on a DataSet. Namely
print, collect and count [55, slide 35]. [51, 56] (Note that printToErr
(for printing to standard error stream instead) and printOnTaskManager, an
operation that can be used to add a String prefix to each printed element - a
more general version of the print operation, are also evaluated eagerly [57].)
An argument to the operation is either a function object or just some Java
objects (like Integers) in simpler cases [53].

An operator is a representation of an operation. A way to look at it is:
when building the Flink dataflow, we specify the operators (nodes) and the
data streams (edges) that will later move (flow) between them in the specified
direction. When the dataflow is executed, each operator invokes an operation
on the data that is being transferred, creating a data streaming environment.

Figure 5.1: Flink Dataflow

5.2.2 Flink Program Anatomy

The basis of a Flink program is an execution environment (ExecutionEnvironment
for DataSet, StreamExecutionEnvironment in case of using a DataStream,
and TableEnvironment for Table API [58]). Calling a getExecutionEnvironment()
method on the appropriate class will provide a local environment when the
program is run as a regular Java program (from an IDE) or a remote envi-
ronment (for cluster execution) when invoked from a command line as a JAR
file [53]. The execution environment is used to set up the properties of the
program (job) and execute it when it’s ready [59, 60].

The execution environment provides a data source from which the DataS-
tream/DataSet collection is created. This can be e.g. a file to read the
elements from, a whole directory of files (we can also configure the envi-
ronment to read files from nested directories [61]), a Java Collection whose
elements get extracted or a connector to external systems like Apache Kafka.
We then apply a series of transformations on the collections and output the
results using a data sink (the destination to output the data - can be a

27

5. Reservoir Computing Framework in Apache Flink
file, console or some other framework that processes them, like using the
Kafka connector) [62]. These courses of action form a Flink dataflow and
we can view them as building a directed graph topology. Finally, we start
the execution of these dataflow processes by calling an execute() method
on the environment. We can see that the operations are first set up and then
executed lazily.

In case of a DataStream, the data are read from the specified sources
periodically, so these sources need to be periodically checked. Analogically,
they are then being periodically output through the specified sink [63]. On
the other hand, sources/sinks of DataSet can be read/written to only once
and never checked again.

5.2.3 Common Characteristics of the Core APIs

The two APIs (DataStream and DataSet) have a lot in common and many
operations of the same name and functionality can be performed on both
(discussed in the next Subsection 5.2.4).

The provided classes (DataStream and DataSet)1 are immutable collec-
tions of data of the same type. This means that their elements can’t be
added or removed after the collection’s instantiation [53]. Yet the elements
themselves might be mutable and therefore modified in the process. The
immutability allows for the “old” collection to be forked and sent to multiple
operators, creating multiple different new collections [64]. They can also
contain duplicates. Unlike typical Java Collections, their contents can’t simply
be “inspected”. (In Java Collections like List and Map, we have an iterator
available.)

Supported Data Types

Flink distinguishes between six categories of data types (of elements of the
DataStream or DataSet collection). It handles the elements according to the
type category they belong to.

The categories are:..1. Tuples (and Scala Case Classes) - A composite type storing a fixed
number of fields of possibly different types...2. POJOs - Plain Old Java Objects. To be in this category, a class must:
be public, have a default constructor (public and without arguments) (it
can then have other constructors), have all of its fields either public or
accessible through appropriate getter and setter methods, and finally, it
must be supported by the registered Flink serializer...3. Primitive types - Or more specifically the wrapper classes that provide
their object representation. (E.g. instead of int we use Integer, instead
of double we use Double.)

1Note: We won’t typeset these classes in further mentions for brevity.

28

.............................5.2. Characteristics of Apache Flink..4. General Classes - If a class is not identified as a POJO, it falls in this
category. Can be e.g. any user-defined Java class. Flink treats these data
types as “black boxes” and therefore might work with them less efficiently
than in case of POJOs. The types in this category are serialized by Kryo
- an external serialization framework...5. Values - Define a custom serialization and deserialization by implementing
the org.apache.flinktypes.Value interface and the appropriate read
and write methods. It’s useful in situations when a general serialization
strategy would be deemed inefficient...6. HadoopWritables - Types that implement the org.apache.hadoop.Writable
interface.

Finally, special types like the Scala’s Either, Option, and Try are sup-
ported.

Copying Behavior

By default, the DataStream collection is copied upon every transformation.
The DataSet collection is copied (new element objects are created) at the start
of the job execution. An ability to lessen the amount of copying is provided by
the function enableObjectReuse() of ExecutionConfig class. In particular,
it brings the DataStream copying behavior on the level of the default DataSet
behavior and in case of being called in bounded ExecutionEnvironment,
it makes the DataSet operate in a “full reuse” mode where reused objects
coming from an external system are used throughout the whole job [65]. This
comes with some additional precautions that must be taken in order to avoid
unexpected and undesired behavior (e.g. not modifying the input objects
inside certain transformations) [61].

5.2.4 Operations of the Core APIs

Sources

Source can refer both to the (typically external) place that contains the data
and to the “source function”, an operation that reads the data from the
specified place and creates a data stream from them [61].

A most general source operation for DataStream is addSource that accepts
a custom function class implementing the SourceFunction<T> interface.

Transformations

A transformation is a type of operation that is performed on a data stream.
The provided stream’s data is modified (transformed) as a result of such
operation and a new stream is returned (intermediate operation). Examples
include filtering, mapping, joining, grouping, aggregating, updating state or
defining windows [66, 67].

29

5. Reservoir Computing Framework in Apache Flink
A basic transformation is map. It takes the collection’s elements one by

one and transforms each one into a new element according to the supplied
function. The type of the resulting elements can be different.

A flatMap transformation offers a more general approach. Instead of
outputting exactly one element for each input, it can output any number of
elements each time through a Collector object.

A filter transformation is used to, as the name suggests, filter out elements
and therefore shrink the collection (or in the “best” case, keeping it as is)
while retaining the elements’ type. A FilterFunction class that is supplied
as an argument returns a boolean for each element indicating if it should stay
(true) or be filtered out (false). For simpler filter functions, use of the lambda
expressions is convenient. For an example, let’ say we have a collection of
integers and want to only keep the ones between 10 and 100 (exclusive). We
achieve that by simply calling

.filter(x -> 10 < x && x < 100)

on the said collection.
A project transformation is only applicable on collections of Tuples. It out-

puts a new collection of Tuples each containing only the specified fields of the
original Tuple and in the order they were specified in for the transformation.

Iterations

We can define a general iteration on a DataStream. An analogy for DataSet is
the BulkIteration. Additionally for DataSet, a more complex DeltaIteration
is available where efficiently only the necessary part of the solution is modi-
fied [68]. The DeltaIteration keeps a second DataSet (called the WorkSet)
whose elements are used in the loop, while the DataSet of elements that are
being transformed in each iteration and output at some point is called the
SolutionSet [57].

An iteration is initiated with calling iterate() (iterateDelta()) on the
collection whose elements you want to send through the iterations. Those
functions accept as arguments the conditions on which the loop execution
terminates (the conditions can be e.g. a max number of iterations or an
empty WorkSet). This creates an initial iterative collection, which we should
keep a reference of.

We then define all the transformations that are part of the loop, collectively
called the step function. (In a parallel setting, one execution of the step
function on all partitions is called the superstep. All partitions need to
complete the superstep before the next superstep is started.)

When we’re done, we supply this transformed collection as an argument into
the closeWith() transformation called on the initial iterative collection (in
case of a DeltaIteration, both the transformed WorkSet and a SolutionSet of
which just the affected part where the elements have been changed (“delta”)
is needed). This final transformation gives us the iteration output (the
transformed SolutionSet) in the form of a DataStream or DataSet, on which
we can continue to define further transformations or start new loops.

30

....................... 5.3. Differences of DataStream and DataSet API

Figure 5.2: Flink Iterations Diagram. Visualizes how the general iteration works,
pointing out the specifics of DeltaIterations.

DataSet also supports iterations, namely bulk and delta iterations. The bulk
iteration can be initiated by calling the iterate method, where we can specify
the maximum number of iterations. This creates an IterativeDataSet which
we should save into a variable. After that, we apply all transformations that
should be in the loop and pass the result of them into the closeWith method
called on the saved IterativeDataSet that was created right after calling the
iterate method. (There’s an optional second parameter to closeWith - a
DataSet which, if empty, causes the termination of the loop.) The second type
of iterations - delta iterations - keeps a state in the form of another DataSet.
Each subsequent iteration then accepts the new transformed DataSet (called
the workset) produced from the previous one along with the update (delta)
of the state (called the solution set). This type of iteration terminates when
the workset is empty or when the maximum amount of iterations has been
reached.

5.3 Differences of DataStream and DataSet API

5.3.1 DataStream API

A DataStream API is an interface for processing (possibly) unbounded data
streams [63, 51]. It consists of the DataStream class and transformations
(methods) that can be called on it. A DataStream is initialized from and run
inside of a StreamExecutionEnvironment [59].

A source operator socketTextStream to read from a network socket is
available only for DataStream [63].

31

5. Reservoir Computing Framework in Apache Flink
5.3.2 DataSet API

A DataSet API is used to process bounded sets of data. Although a DataSet
is internally handled as a data stream so we can talk about streams in all
cases [51, section “Batch on Streaming”]. As mentioned previously, the
DataSet API consists of the DataSet class and transformations defined on
it. We can also view ExecutionEnvironment as being part of it [60]. The
DataSet class is a bounded (finite) collection of data of the same type (but it
doesn’t implement Java Collection or Iterable interface). This API can
be useful for processing historical data.

DataSet has additional tranformations not found in DataStream. One of
them is a mapPartition function that transforms a whole parallel partition
of the collection. The partition data with an Iterator are given as an input
and a transformed partition with an arbitrary number of data is output [57].
A reduce function, gradually combining all elements (one-by-one) into one
result, can be applied on the whole DataSet as well as on a grouped DataSet
where it provides one result for each group [61]. (Unlike for DataStream,
where reduce can be applied only on Windows, as the result of reducing the
whole stream would never come.) Similarly a reduceGroup function works
on a whole group of elements at once and returns any number of elements as
a result (a transformed group). The “group” might be the whole DataSet.
Another special function is distinct, returning only distinct elements by
removing all duplicates of the DataSet (with respect to all or just selected
fields of each element). It can be thought of as effectively creating what we
know as a mathematical set. This and other following transformations closely
resemble SQL operations and have a similar functionality. xOuterJoin trans-
formations (left, right or full) combine two DataSets and produce the same
output elements as an (inner) join operation. But an outer join preserves the
elements that had no matching element in the other stream. It does so for
the elements of the first/second/both stream(s) respectively. (In such case,
the “missing” input element is replaced by a null value.) A cross operation
creates a cross join (cross product) of two DataSets. In other words, it creates
all possible pairs of elements. A user-defined function can be supplied to the
follow-up with operations to define a custom logic of combining each pair of
elements into one. Since this transformation can be very computationally ex-
pensive, one can use a crossWithHuge or crossWithTiny function to tell the
optimizer that the second DataSet is much larger/smaller than the first one
respectively. A union transformation simply combines two input DataSets
into one containing all of their elements. Note that if the input DataSets
contained duplicates, the output will contain them as well, thus it is a bit
different from a mathematical set union. Some partition-level transformations
are also present, like rebalance, which rebalances the load of each parallel
partition. There are functions to hash-partition, range-partition or apply a
custom partitioning of the whole DataSet on a given key. A sortPartition
transformation sorts the partition based on a specified filed and in a specified
order. (Similarly, a sortGroup transformation can be applied on a grouped
DataSet.) It then makes sense to be able to use a first function that returns

32

.......................................5.4. Features
the first n elements (n being specified as an argument).

So in summary, the DataSet API with the corresponding class can be applied
to finite collections of data. It provides more functionality thanks to that
property, but it’s less general and can’t deal with never-ending streams (while
DataStream API can handle both).

Most functions that can be applied on the full or grouped DataSet, can be
applied only on a windowed DataStream.

5.3.3 Specific Differences

DataStream and DataSet APIs have some interesting differences - mostly
details that can be observed in code [69].. To print elements of a DataStream in console with each having a cho-

sen prefix, we can call print() with String argument. For DataSet,
an operation of the same name is deprecated and we can instead call
printOnTaskManager(). The interesting part is, that printOnTaskManager()
is one of the few operations that trigger eager execution (see 5.2.1).. Only the DataStream API gives an access to the low-level ProcessFunction,
which exposes timestamps, etc.. It also supports windowed operations,
which are essential for DataStreams but unneeded for DataSets.. For DataSets of Tuple, transformations like keyBy give a convenient
ability to specify keys by only typing the numbers of selected Tuple
fields. In DataStreams we need to have a keySelector function as usual.. A join transformation is called differently. For DataSet, we later call
with to specify the function to be performed on the joined sets. If the
return type can’t be inferred, we have to subsequently call returns and
specify it. For DataStream, the operation to invoke the function on
joined streams is called apply, and it also accepts the types of output
elements directly.

5.4 Features of Apache Flink

Decompression of Input Files

Flink supports decompression of certain types of extensions (e.g. .gzip,
.deflate) for any type of readable input file. But the process isn’t parallelizable,
which might impact the overall job scalability [61].

Configuration Functions

By the term “calling function on a transformation”, we’ll mean the practice
of calling a “special type” of function (method) directly after the given trans-

33

5. Reservoir Computing Framework in Apache Flink
formation function. This “special type” will configure the transformation’s
behavior in some way.

Passing Parameters

One case of the function call on a transformation is supplying parameters to
the transformation, which can be done using the withParameters() method.
The parameters are supplied in a Configuration object. An alternative
is to pass the parameters into the transformation’s constructor. The first
approach requires the implementation of a RichFunction interface, as the
Configuration object is passed into the transformation’s implementation of the
open() method. Another alternative is to pass the Configuration object into
the job’s execution environment and therefore having it accessible globally
from any transformation implementing the RichFunction interface. Passing
in a custom class that extends the ExecutionConfig.GlobalJobParameters
class is also possible.

5.4.1 Notions of Time

Flink has three notions of time associated with individual collection ele-
ments [70].
Processing time is the simplest notion of time, analogical to standard

programs. It refers to the local time of the machine at an operator performing
a time-based operation. Processing time mode might be useful for applications
where low latency is prioritized over precision of results.

Event time is the time of creation of each event. This time is typically
already associated with events when they arrive into Flink dataflow. It
is represented by timestamps (long values), which are assigned to each
event based on a custom strategy. Using event time allows for accurate and
consistent results, whether recorded or real-time processing takes place.
Ingestion time is the time when an event enters the Flink dataflow, i.e.

when it’s being processed by the source operator.

Event Time Watermarks

Event time needs special constructs to work. Apart from a strategy to
assign timestamps, special elements of the stream called watermarks have
to be created. This can all be done in a assignTimestampsAndWatermarks
transformation or directly in a source operation.

Watermark can be thought of as a special element of the stream that
contains a timestamp and tells the program that event time has progressed to
that given timestamp. The purpose of watermark system is to define when to
stop waiting for the arrival of earlier events. When a stream is being processed
and a watermark t is encountered, the program doesn’t expect any further
events from that stream with a timestamp t′ <= t, and can for example close
a past window. Common, simple types of automatic watermark generation
include periodically generated watermarks with ascending timestamps, used in

34

.......................................5.4. Features
cases where events in a given (source) task simply occur in an ascending order
and their timestamps can therefore be used as watermarks, and “bounded-
out-of-orderness” watermarking, where the watermarks are generated based
on a fixed maximum amount of lateness of events [71].

When working with windows, an event is late when, at the time of its
arrival, its event time is less than the time set by the most current watermark.
Applications can allow (deal with) lateness, though unbounded lateness would
mean unbounded (ever growing) state and is thus undesirable [72].

5.4.2 Windows

Window is a finite block of stream elements, over which we can make computa-
tions [73]. Windows have a defined scope: they can be time driven (aggregate
data over 30 seconds) or data driven (aggregate 100 elements). Windows can
also be distinguished based on mutual overlapping: tumbling, sliding and
session windows.

5.4.3 Keyed Collections

The collection can be structuralized by grouping together the elements sharing
some common characteristic. This is realized by defining keys on them (using
a keyBy() on DataStream or a groupBy() on DataSet). A key is a function
performed on each element of the collection and giving a value that determines
which group of elements it belongs to. So all elements that have the same
value assigned by the key function will be in one group. The subsequent
operations are then applied on the keyed collection.

5.4.4 State

One of the major features is keeping a persistent state between processing
individual elements in the given transformation. Flink provides this possibility
and more by implementing a RichFunction interface. State can be used
for both keyed and non-keyed collections. There are more types of state
supported for the keyed collections (e.g. ValueState, ListState, MapState).
We can use CheckpointedState for the non-keyed collections.

Passing initial parameters to the transformations can be realized in a
standard way by using constructor or by other means. The configuration
parameter in the open() function is obsolete and empty for the DataStream
class.

5.4.5 Broadcasting

A broadcasting of one collection’s elements to the function that processes
another collection is available. For DataStream, this is done by calling
broadcast(), which creates a broadcasted connected stream (two connected
streams where the elements of one will be available when processing any
element of the second one inside a specified transformation). For DataSet,

35

5. Reservoir Computing Framework in Apache Flink
it means broadcasting the whole collection by calling withBroadcastSet()
specifying the set and the name that it should be identified with inside the
function. The function can then access it through its runtime context. In
DataStream, it’s called the broadcast state and in DataSet, the broadcast
variable we access it with getBroadcastState()/getBroadcastVariable()
respectively, specifying the state descriptor / broadcast variable name respec-
tively [74].

5.4.6 Distributed Cache

We can register files (local and remote) in the execution environment to make
them available in each node (parallel instance) of the distributed cache. They
can then be accessed from the runtime context of any transformation that
implements the RichFunction interface.

5.4.7 Debugging

When debugging, it is easier to run the program locally instead of it being dis-
tributed on a cluster. Furthermore, it is appropriate to test it on a smaller set
of data. For this purpose, a LocalEnvironment/LocalStreamEnvironment
(subclass of ExecutionEnvironment/StreamExecutionEnvironment) can be
created and used for DataSet/DataStream testing. This should be used to-
gether with obtaining the “test data” from any Java Collection initialized
directly in code, outputting the results to another Collection and setting
breakpoints in a local-run IDE.

5.4.8 Semantic Function Annotations

One can use Java annotations to give Flink a hint about the behavior of
a function. More specifically, to explicitly state what does the function do
with its input/output fields. They can be specified before a function class.
This feature might help optimizing the program. Based on the provided
information, the optimizer can conclude that a sorting or partitioning of some
data is preserved. This might mean that a data shuffle or sort is unnecessary.

One type is @ForwardedFields, which accepts field expressions to specify
fields which remain unmodified by the function. Furthermore, if a field was
unmodified but e.g. received as the 2nd field of the input Tuple and sent as
the 4th field of the output Tuple, we’d write

"f1->f3"

as an argument. A wildcard * can be used to refer to all fields of the given
Tuple. An alternative is to pass the arguments into a withForwardedFields()
function called right after the respective transformation.

A @NonForwardedFields annotation is used to only specify all the non-
forwarded input fields. All of the unspecified fields are then considered as
being left unchanged and output in the same position as they’ve been input

36

.......................................5.4. Features
in. The class function that this annotation is used on must have an identical
input and output type.

A @ReadFields annotation, if used, has to declare all fields that are
accessed and used by the respective function in some way. This does not
include the forwarded fields. The optimizer then knows that all of the other
(i.e. unspecified) input fields were either forwarded or not used at all.

5.4.9 Parallel Computing in the Context of Apache Flink

Parallel computing in general means simultaneous use of multiple resources to
complete a computational task. Such task first has to be broken into discrete
parts that can be processed concurrently [75, section “What is Parallel
Computing?”]. This approach provides concurrency, allows for solving more
complex and larger (i.e. requiring more memory) problems and can also
significantly save time.

Flink supports parallel execution and has a specific conception of parallelism.
A parallelism of an operator is the number of operator subtasks that are being
executed in parallel. Together, these parallel instances form what is called
a task. Each parallel instance processes a part of the task’s input data [76].
The parallelism of a stream is determined by (and equal to) the parallelism
of its producing operator [51]. The degree of parallelism can be specified for
each operator individually, for the whole execution environment (affecting all
operators it executes), through the client that represents a program, or at
the system level, providing default parallelism for all execution environments
it creates. The priority of the aforementioned settings goes from the highest
to the lowest. E.g., setting a parallelism of an individual operator overrides
everything else.

5.4.10 Using DataStream for Matrix Representation

When one wants to represent matrices using DataStream class, they’ll stumble
upon one fundamental problem. Since DataStream was made to process
elements as they arrive, it wouldn’t make sense to wait for all matrix elements
as processing it whole can also be done by using DataSet API.

Demonstrating the Problems on Matrix Multiplication

Let’s focus on matrix multiplication as a concrete operation we’d like to
implement/use. For matrices A ∈ Rm×n, B ∈ Rn×p we want to compute

AB = C. (5.1)

By definition, we can compute each element of C ∈ Rm×p using the equa-
tion [77]

cij =
n∑

k=1
aikbkj . (5.2)

37

5. Reservoir Computing Framework in Apache Flink
We can see that for any cij ∈ C to be fully computed, we need to receive the
whole corresponding row of A and the whole corresponding column of B. But
we don’t know when the sum is complete unless we are provided additional
information. A sufficient information could be knowing the dimensions of
the matrices we’re working with beforehand (for dense matrices), or getting
a signal when the row/column is ‘complete’ - meaning we received all of
its elements (for sparse and possibly dense matrices; In Flink, this could
be realized by using event time timestamps and watermarks or by some
convention (wait for a given amount of time after the last element was
received) or custom special elements that would tell the index of completed
row/column). We can then compute the elements of C which have all the
required row/column elements known, even before receiving the rest of the
input matrices.

We could view each column of matrix C in (5.1) as a linear combination
of column vectors of A where the individual scalars are represented by the
corresponding column vector of B. If multiple chained multiplications are
present, we could multiply the “scalars” first and do the linear combinations
last.

5.4.11 Efficient Matrix Representation

We want to be able to perform basic matrix operations and some more specific
ones, like computing the spectral radius. It is also desirable to be as efficient as
possible (in speed, memory, etc.). There might be other considerable factors
like scalability. There exist some solid established Java matrix libraries like
Jama and EJML. A less known library called ojAlgo (oj! Algorithms) seems to
be performing very well in Java matrix libraries benchmark that tests various
properties using different matrix sizes and operations (even coming off as the
best one) [78]. Note that this benchmark tool wasn’t developed by ojAlgo
creators (it was actually developed by the creator of EJML). The library is
written purely in Java, supports multithreading, and the authors demonstrate
its usage on creating artificial neural networks and solving mathematical
programming problems [79]. Therefore it seems like a good choice for us. The
disadvantage is in having almost no JavaDoc, which leads to the need for
reading some external instructions or studying the source code in order to
understand the exact functionality.

5.5 Implementation Description

The core of the implementation is the RC library itself. Of course, various
testing classes, especially application examples are a large and important part
of the project too.

38

.............................. 5.5. Implementation Description

5.5.1 Project Structure

The project folder is flink-rc and the library rests under src/main/java,
which is a standard Maven structure. There are two parts: lm, representing
the linear model (readout) implementation, and rc_core, representing the
reservoir implementation. All the examples and other experimental, testing
and test-supporting code can be found under src/test/java.

By default, the examples create plots when running. In order to properly run
the plotting scripts (without rewriting paths in the code), the python_plots
folder has to be in the same parent folder as the project. The plots are then
generated in the plots subfolder.

5.5.2 Data Representation

Since our library is build using Flink’s DataStream/DataSet API, it is de-
signed to accept DataSet or DataStream (collectively referred to as Collection
here for brevity) of Tuple2<Long, List<Double>>. as labeled inputs and
Collection of Tuple2<Long, Double> as labeled outputs.

The Long value represents an index of the record. Input records and output
records with the same index get paired together during the model training
and testing/predicting. Note that their timestamps might be different, if
used. List<Double> represents the vector of input features x(t), where t is
basically the associated index. Each input feature xi(t)

We could think about supporting different (numerical) data types. Java has
a Number superclass that encompasses all the different classes like Integer,
Float, Double or BigDecimal. But standard arithmetic operations are not
defined on it, so it is practically unusable. An alternative would be to overload
our function with different types of input parameters, but it might not be
worth the hassle. For now, we decide to stick with Double class (and the
corresponding double primitive type). Note that Double is just a wrapper
class to represent the double as an object. This allows us to represent real
numbers with a finite precision of at least 15 significant decimal digits [80].

5.5.3 Linear Model Functions (Readout)

We’ve created a LinearRegression class for online (SGD) training and test-
ing (both DataStream/DataSet API) and a LinearRegressionPrimitive
class that realizes the LR with a non-Flink approach, and can be mainly used
for the offline (pseudoinverse) training.

A fit function for the input stream serves to train the linear model using
Gradient descent and make it better with time. It returns a new optimal α pa-
rameter with each incoming input-output pair. It accepts the outputStream
parameter to make input-output pairs based on a common timestamp. It
also accepts specifications for the training. An alphaInit parameter tells
the function what should be the initial value of the α vector. It’s the value
from which the Gradient descent attempts to converge towards a minimum.

39

5. Reservoir Computing Framework in Apache Flink
Another parameter, numIterations, denotes the number of Gradient descent
iterations for each input-output pair. A learningRate parameter influences
the step size of GD. This means how far in the direction of negative gradient
we want to go in each iteration. A smaller size is safer in the sense that we
are less likely to “overshoot” and go past the minimum. A bigger size might
mean faster convergence but a bigger chance of “overshooting”.

A predict function predicts an output from the input stream using the
fitted model. It is designed to build on the computations from the fit
function. It’s first parameter, alphaStream, is a DataStream of optimal α
vectors. When a list of alphas with a more recent timestamp arrives, it is
considered more optimal and the current α list is replaced by it. This allows
for the “online” learning to take place. The second parameter is alphaInit
and provides the list of alphas that are used in the initial model until the first
element from the alphaStream arrives. The alphaStream can be viewed as
a stream of instructions that modify the function. It is expected to be much
“slower” than the input stream the function is called on (several input vectors
will be processed before an updated α vector arrives).

5.5.4 Reservoir

At first, we were trying to develop the Echo State Network reservoir using
multiple approaches. But the only truly developed and up-to-date one is the
ESNReservoirSparse using ojAlgo and SparseStore classes to represent the
Win,W matrices. This class extends the RichMapFunction and can therefore
be called throu a map transformation.

5.5.5 Higher-Level Examples

The originally developed testing examples (for LM) were in separate classes
and can be found in lm package under test/java/. A more elaborate
example structure was developed later, called “higher-level” examples, to
support much more convenient development and modification of individual
examples. The most up-to-date core class that was used for all experiments
is the HigherLevelExampleBatch. Its configurable fields and more is in the
HigherLevelExampleAbstract abstract class.

All of the individual examples that use the complete RC model are in
the rc package. All examples have the *Example suffix and serve mostly to
store and modify the program configuration. IdentityTest is just for some
basic validation. HyperparameterAnalysis class was developed to be able
to conveniently analyze chosen hyperparameters and produce plots shown in
the later Section 6.3.

The easiest way to learn how to properly create a custom RC model is by
looking at the HigherLevelExampleBatch class and ignoring e.g. the plotting
functionality. An outline of how to use DataStreams instead of DataSets is
given in HigherLevelExampleStreaming.

40

.............................. 5.5. Implementation Description

Besides the RC parameters configuration specified in the following subsec-
tion, there are a couple of boolean variables to “switch” between behaviors
of the example programs, they are:. includeMSE – if we want to include and print MSE estimates during the

LM training.. plottingMode – if we want to plot the results. debugging – if we want to print multiple values to console during execution. lrOnly – if we want run only the LR (readout phase)

Null Values

Flink might have problems with null values inside a Collection. In particular
it explicitly doesn’t support null values when working with a Collection
of Tuples and the built-in TupleSerializer will throw an Exception [81,
section “Flink’s TypeInformation class”]. Strangely, when reading Collection
of List<Double> elements, it depends. If we use DataSet, everything seems
to run smoothly. When using DataStream, we get an Exception from the
ListSerializer.

The easy general solution is to never let any transformation (or source)
output a null value and reserve a different value if we really need to signify
an invalid record. E.g. if a map function originally outputs null values, turn
it into a flatMap function and output nothing in that case.

5.5.6 Default Configuration

Here we provide the list of default values of all configurable parameters that are
relevant to RC. All of them can be found specified in the HigherLevelExampleAbstract
class.. Reservoir. size of W (Nx): 10 (always required to specify when calling our

ESN implementation). topology of W : “Cyclic with Jumps”. range of Win,W weights: 1. shift of Win,W weights: 0. scaling parameter of W (α): 0.8. size of jumps: 2 (for deterministic topologies with jumps). sparsity of W : 0.8 (80%) (for “Sparse” topology). activation function (transformation): Math::tanh (hyperbolic tan-
gent). initial state vector (x(0)): 0

41

5. Reservoir Computing Framework in Apache Flink
. Readout. initial vector of regression coefficients (α0): 0. learning rate (η): 0.01. step-based decay of η: active (true). regularization factor (µ): 10−10. bias constant (1): included. input vector (u): included. decay granularity of η: 32. decay amount of η: 1/16.Other. n-time-steps ahead prediction: 0 (disabled). applying only linear regression (readout) part: disabled (false)

The “range” and “shift” parameters together result in having the weights
from the interval [−0.5, 0.5].

The scaling hyperparameter α that is equal to the spectral radius (ρ) of
W was by default set to 0.8 instead of a more neutral 0.5, since values close
to 1 are generally considered more optimal [82, p. 29].

To include the “bias” and “input”, we perform concatenation of values at
the end of reservoir phase, resulting in (1,u,x) as the new readout input (x).

The step-based decay of learning rate was used as it generally shows a
slight improvement over the constant version. The learning rate was updated
by applying the previously introduced equation (3.17).

42

Chapter 6
Experimental Results

During implementation of some task, it seems reasonable to first focus on
functionality (getting the expected result). And then on performance (highest
speed, lowest memory possible). We were comparing the speed of some
elementary implementations (that perform the same tasks). One, maybe
obvious, but commonly mistaken thing that we checked was comparing
implementation using Java 8 streams

double spectralRadius = eigenpairs.parallelStream()
.map(x -> x.value.norm())
.max(Comparator.naturalOrder()).get()

with a more native one

eigenpairs.sort(Comparator.comparing(x -> x.value));
double spectralRadius = eigenpairs

.get(eigenpairs.size() - 1).value.norm();

here demonstrated on computing the spectral radius.
After a couple of “warmup” runs, the stream approach takes ~2.5ms, while

the “native” approach takes only ~1.7ms. We probably don’t need a more
precise measurement to see the difference.

Even if we were using for loops, the cost of creating a stream is very high
and can only get faster when processing a very large amount of data.

To test the linear models produced by linear regression (readout phase)
as well as the complete “reservoir computing models”, we have developed
the following real-world examples: Mass Balance of Glaciers, Yearly CO2
Emissions by Nation, PM2.5 Pollution in Seattle Area. We’ve also used some
datasets generated by mathematical functions for specific purposes.

These datasets were used for both offline (using Moore-Penrose inverse)
and online (using Gradient descent) learning.

43

6. Experimental Results
6.1 Linear Regression

With LR, we’ll be modelling and plotting a linear relationship between an
example-specific notion of time (x-axis) and the target (model output) value
(y-axis). This mainly serves as a validation of our LR implementation as well
as a demonstration of its capabilities. Note that the y-scales for training and
testing (if training is shown) are probably different.

In our experiments, we’ve used the following configuration values (unless
stated otherwise): The initial learning rate value η was chosen by trial-and-
error. The offline version was fitted without regularization (µ = 0).

We’ll be splitting all datasets according to the simple, commonly applied
80:20 ratio (training:testing). Since our example datasets are rather small,
we need to have enough data points to train the model. But we also want
to avoid overfitting and perceiving models as too precise compared to how
they would perform in production. We’ll then visualize the fitting of testing
datasets.

Note that we didn’t normalize the data in this part, and therefore the
MSEs of the experiments may vary based on the scale of values.

Apart from that, we’ve used the default configuration specified in Subsec-
tion 5.5.6 under “Readout”.

6.1.1 Fitting Average Cumulative Mass Balance of
Reference Glaciers Worldwide

The data used for this example is sourced from ([83], [84] 1). Our input
variable x has one feature, the Year column. And our output variable y is
the Mean cumulative mass balance column (describing how much the mass
has increased or decreased since “Year Zero” (1945 in this case); given in
meter water equivalent).

1Data has been obtained via: https://datahub.io/core/glacier-mass-balance (Ac-
cessed: 4. December 2019)

44

https://datahub.io/core/glacier-mass-balance

...................................6.1. Linear Regression

1945 1950 1955 1960 1965 1970 1975 1980

Year

−10

−8

−6

−4

−2

0

M
ea
n
cu
m
u
la
ti
ve

m
as
s
b
al
an
ce

(m
w
e)

Glaciers Meltdown (Training Data)

real data

Figure 6.1: The data used for linear model training (50% of total).

1980 1985 1990 1995 2000 2005 2010 2015

input

−27.5

−25.0

−22.5

−20.0

−17.5

−15.0

−12.5

M
ea

n
cu

m
u

la
ti

ve
m

as
s

b
al

an
ce

(m
w

e)

Glaciers Meltdown

real data

linear predictor function (online)

linear predictor function (offline)

Figure 6.2: Using 50% of data for testing. Online: η = 0.01, MSE ≈ 4.3109.
Offline: MSE ≈ 7.8349.

45

6. Experimental Results

2002 2004 2006 2008 2010 2012 2014

input

−28

−26

−24

−22

−20

−18

M
ea

n
cu

m
u

la
ti

ve
m

as
s

b
al

an
ce

(m
w

e)

Glaciers Meltdown

real data

linear predictor function (online)

linear predictor function (offline)

Figure 6.3: Using only 20% of data for testing. Online: η = 0.01, MSE ≈ 14.1336.
Offline: MSE ≈ 28.9949.

We can see that for the 50/50 (training/testing) split in Figure 6.2, the fitted
line looks more appropriate than in the case of 80/20 split (Figure 6.3). This
might be simply because the glacier mass started decreasing more rapidly in
the past few years, and therefore the historically trained model can’t produce
a good-fitting line.

6.1.2 Yearly CO2 Emissions from Fossil Fuels by Nation

This dataset [85] 2 contains (estimated) annual CO2 emissions of countries
that existed (and produced emissions) at the time. The data spans from 1751
to 2014. The emissions are measured in thousand metric tons (kt) of CO2.
For the purpose of testing LR, we’ve chosen a subset of 4 countries (United
Kingdom, Norway, Czech Republic and Mainland China). Note that e.g. the
first entry for Czech Republic is from the year 1992 (at the end of which it
became independent), whilst the first entry for UK is from 1751 (beginning
of Industrial Revolution). So the amount of data for each country is different.

We’ll be predicting the total number of emissions for the given country
and year. Since we need to have only numerical input, we’ll substitute the
country string using one-hot encoding [86]. It creates a series of 1s and 0s
where the i-th country will have 1 on the i-th place and the rest will be 0. So
for 4 countries, we need 4 new input values in the model. Then e.g. Czech
Republic will be replaced with 0, 0, 1, 0. This is generally useful when we
don’t want to assume any relationship between the different input values with
regards to the output value that we’re predicting. The downside might be

2Data has been obtained via: https://datahub.io/core/co2-fossil-by-nation (Ac-
cessed: 22. January 2019)

46

https://datahub.io/core/co2-fossil-by-nation

...................................6.1. Linear Regression
the number of new variables it creates when transforming a larger amount of
distinct values.

1750 1800 1850 1900 1950

Year

0

100000

200000

300000

400000

kt
of

C
O

2

CO2 Emissions By Nation (Training Data)

real data

Figure 6.4: Training data for CO2 Emissions By Nation using United Kingdom,
Norway, Czech Republic and Mainland China

1985 1990 1995 2000 2005 2010 2015

Year

0.0

0.5

1.0

1.5

2.0

2.5

kt
of

C
O

2

×106 CO2 Emissions By Nation

real data

LR fit (online)

LR fit (offline)

Figure 6.5: Online: η = 100, MSE ≈ 3.5597× 1011. Offline: µ = 10−11,
MSE ≈ 5.1174× 1011.

We can tell from the graph that the data is not very fit for creating a
generalized model. First of all, the data isn’t linear, which could be fixed by
adding more features that make the fit nonlinear. Another problem arises

47

6. Experimental Results
from the differences between countries. China’s emissions have started rising
more recently, especially in the years belonging here to the testing dataset.
Czech Republic isn’t even present in the training dataset, but not because it
hasn’t produced any emissions (geographically speaking) - here we could’ve
combined it with data for Czechoslovakia, the preceding nation. The large
MSE values are also due to a large span of output values (from zero to few
million). For some η values here, the online version performs better than the
offline (probably by chance).

With this type of data, it seems much better to create a separate model
for each country. Below, we present the training and fitted testing datasets
for all 4 countries.

1750 1800 1850 1900 1950

Year

0

20000

40000

60000

80000

100000

120000

140000

160000

kt
of

C
O

2

CO2 Emissions of UNITED KINGDOM (Training Data)

real data

Figure 6.6: CO2 Emissions of United Kingdom (Training Data)

48

...................................6.1. Linear Regression

1960 1970 1980 1990 2000 2010

Year

120000

130000

140000

150000

160000

170000

180000

190000

kt
of

C
O

2

CO2 Emissions of UNITED KINGDOM LR

real data

linear predictor function (online)

linear predictor function (offline)

Figure 6.7: Online: η = 10, MSE ≈ 3.1896× 108. Offline: µ = 10−11, MSE ≈
8.7852× 108.

1840 1860 1880 1900 1920 1940 1960 1980

Year

0

2000

4000

6000

8000

kt
of

C
O

2

CO2 Emissions of NORWAY (Training Data)

real data

Figure 6.8: CO2 Emissions of Norway (Training Data)

49

6. Experimental Results

1980 1985 1990 1995 2000 2005 2010 2015

Year

6000

8000

10000

12000

14000

16000

kt
of

C
O

2

CO2 Emissions of NORWAY LR

real data

linear predictor function (online)

linear predictor function (offline)

Figure 6.9: Online: η = 150, MSE ≈ 7866859. Offline: µ = 10−11, MSE ≈
3.8894× 107.

1992.5 1995.0 1997.5 2000.0 2002.5 2005.0 2007.5

Year

30000

32000

34000

36000

38000

kt
of

C
O

2

CO2 Emissions of CZECH REPUBLIC (Training Data)

real data

Figure 6.10: CO2 Emissions of Czech Republic (Training Data)

50

...................................6.1. Linear Regression

2010.0 2010.5 2011.0 2011.5 2012.0 2012.5 2013.0 2013.5 2014.0

Year

27000

28000

29000

30000

31000

kt
of

C
O

2

CO2 Emissions of CZECH REPUBLIC LR

real data

linear predictor function (online)

linear predictor function (offline)

Figure 6.11: Online: η = 1, MSE ≈ 3860411. Offline: µ = 10−11, MSE ≈ 6966984.

1900 1920 1940 1960 1980

Year

0

100000

200000

300000

400000

500000

600000

700000

kt
of

C
O

2

CO2 Emissions of CHINA (MAINLAND) (Training Data)

real data

Figure 6.12: CO2 Emissions of Mainland China (Training Data)

51

6. Experimental Results

1995 2000 2005 2010 2015

Year

0.5

1.0

1.5

2.0

2.5

kt
of

C
O

2

×106 CO2 Emissions of CHINA (MAINLAND) LR

real data

linear predictor function (online)

linear predictor function (offline)

Figure 6.13: Online: η = 100, MSE ≈ 1.3605× 1012. Offline: µ = 10−11,
MSE ≈ 1.6139× 1012.

We can see that most of the nations seem to have had an increase of
emissions in the past, while their emissions stagnate or get lower in the more
recent years (used in testing). For China, on the other hand, the increase
in the past few years is even more rapid. This results in our fits “staying
behind”. Overall, the used training sets weren’t the most suitable due to the
tendency of data.

6.1.3 PM2.5 Outdoor Air Pollution

The used dataset contains detailed information on the amount of PM2.5
air pollutant (particles of solid or liquid matter that are less than 2.5µm in
diameter and are able to pass into lungs and cause health problems [87]) in the
region Seattle–Tacoma–Bellevue, WA (core-based statistical area) in 2019 [88].
The daily average concentration of PM2.5 is measured in micrograms per
cubic meter (µg/m3).

We’ll want to predict the average of all measurement sites for each given
day.

The dataset contains some missing values (NaN), where some measurement
sites have almost no valid values. A simple way to deal with them would
be to delete the corresponding columns. We could also think about some
more complex data imputation. But for the sake of simplicity, since we want
to compute the average, we’ll consider them taking on the current running
average value (that is the average of already processed sites for a given day).

We’ll normalize the data by dividing each sample by 50, which almost all
the values seem to be lower than.

52

...................................6.1. Linear Regression

0 50 100 150 200 250 300

Day

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

µ
g
/m

3

PM2.5 Pollution in Seattle Area (Training Data)

real data

Figure 6.14: PM2.5 Pollution in Seattle Area (Training Data)

290 300 310 320 330 340 350 360

Day

2

4

6

8

10

12

14

16

µ
g
/m

3

PM2.5 Pollution in Seattle Area

real data

LR fit (online)

Figure 6.15: Online: η = 0.001, MSE ≈ 19.5336.

We can see that this data has a nonlinear tendency. Based on the graph,
we can guess that there is some periodicity and exponential-like increasing
function that decreases once in a while.

Even when adding some nonlinearities to the input vectors, it’s more
challenging to fit this type of data.

53

6. Experimental Results
6.1.4 Limitations of Linear Models: Nonlinear Function
Approximation

Ensuring the correctness of gradient descent implementation was by far the
most challenging part. For that purpose, we additionally tested the online
version with a variation of function-generated data.

We created multiple simple functions with increasing complexity, last of
which was the function

f(x) = 5 + x ∗ sin(x)
500 +

(
x

500

)2
. (6.1)

This function introduces a shift of the data as well as nonlinearity/periodicity,
so it’s not so straightforward to fit using linear regression. Here we’ve also
normalized the input values (divided each by N) to get a better result for
the “online” version.

0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 1.000
x

5.0

5.5

6.0

6.5

7.0

f
(x
)
=

5
+
x
∗s

in
(x
)/
50

0
+
(x
/
50

0)
2

’Enhanced Identity’ (Combined)

real data

linear predictor function (online)

linear predictor function (offline)

Figure 6.16: Online: η = 8.5; MSE ≈ 0.5526. Offline: without regularization
(λ = 0); MSE ≈ 0.4504.

The limitations of LR, which could already be seen in the previous examples,
are that at its core, it only assumes a linear dependency between input-output
pairs and we need to “manually” linearize the original relationship, if it was
nonlinear.

6.2 Reservoir Computing

Now that we have the linear readout tested, we shall also demonstrate the
complete reservoir computing (ESN) functionality on the same set of examples.

All of the following examples have been conducted as 1-time-step ahead
time series predictions, predicting the y-axis values. We’ve conducted both

54

................................. 6.2. Reservoir Computing

online and offline training. In the online case, we’ve tried tuning the learning
rate η solely by doing multiple runs and picking the most optimal one. If one
played with the configuration long enough, it is possible that they could’ve
gotten significantly better results for both offline and online case.

6.2.1 Glaciers

For the dataset description, see 6.1.1.

2002 2004 2006 2008 2010 2012 2014

Year

−30

−28

−26

−24

−22

−20

−18

M
ea

n
cu

m
u

la
ti

ve
m

as
s

b
al

an
ce

(m
w

e)

Glaciers Meltdown

real data

predictor function (online)

predictor function (offline)

Figure 6.17: Using 80% of data for testing. A randomly good model (other runs
with the same configuration performed worse for the online case). Online: η = 50,
MSE ≈ 0.3444. Offline: MSE ≈ 0.1547. (Note: The MSEs were computed before
output normalization was used, so they’re not comparable with later examples.)

55

6. Experimental Results

2002 2004 2006 2008 2010 2012 2014

Year

−28

−26

−24

−22

−20

−18

M
ea

n
cu

m
u

la
ti

ve
m

as
s

b
al

an
ce

(m
w

e)

Glaciers Meltdown

real data

predictor function (online)

predictor function (offline)

Figure 6.18: Using 80% of data for testing. Online: η = 20, MSE ≈ 0.2145.
Offline: MSE ≈ 0.002.

6.2.2 CO2 Emissions

For the dataset description, see 6.1.2.

1995 2000 2005 2010 2015

Year

1.0

1.5

2.0

2.5

kt
of

C
O

2

×106 CO2 Emissions of CHINA (MAINLAND)

real data

RC fit (online)

RC fit (offline)

Figure 6.19: Online: η = 10, MSE ≈ 10.4774. Offline: MSE ≈ 0.897.

56

................................. 6.2. Reservoir Computing

1970 1980 1990 2000 2010

Year

120000

140000

160000

180000

200000

kt
of

C
O

2

CO2 Emissions of UNITED KINGDOM

real data

RC fit (online)

RC fit (offline)

Figure 6.20: Online: η = 10, MSE ≈ 0.0479. Offline: MSE ≈ 0.0139.

1980 1985 1990 1995 2000 2005 2010 2015

Year

8000

10000

12000

14000

16000

kt
of

C
O

2

CO2 Emissions of NORWAY

real data

RC fit (online)

RC fit (offline)

Figure 6.21: Online: η = 10, MSE ≈ 0.0015. Offline: MSE ≈ 3.91× 10−4.

57

6. Experimental Results

2011.0 2011.5 2012.0 2012.5 2013.0 2013.5 2014.0

Year

26000

27000

28000

29000

30000

31000

32000

33000

34000

kt
of

C
O

2

CO2 Emissions of CZECH REPUBLIC

real data

RC fit (online)

RC fit (offline)

Figure 6.22: Online: η = 10, MSE ≈ 7.90× 10−4. Offline: MSE ≈ 0.0029.

6.2.3 PM2.5 Pollution

For the dataset description, see 6.1.3.

290 300 310 320 330 340 350 360

Day

2

4

6

8

10

12

14

16

µ
g
/m

3

PM2.5 Pollution in Seattle Area

real data

LR fit (online)

Figure 6.23: Online: η = 200, MSE ≈ 0.0083. Offline: MSE ≈ 0.0038.

6.3 Sensitivity Analysis of Reservoir Parameters

When manually choosing any of the RC (hyper)parameters, it is crucial to
understand their impact. Here we’ll analyze each hyperparameter separately

58

....................... 6.3. Sensitivity Analysis of Reservoir Parameters

by changing its values with every other hyperparameter being fixed for that
particular series of experiments.

We’ll compare the performance of the resulting ESNs by plotting the
obtained MSEs (lower MSE corresponds to a better model). We’ve used
only offline learning (pseudoinverse), since the online (GD) version generally
performs worse, and we usually have to search for optimal η, which is example-
dependent. (Choosing a very low regularization factor µ in the offline case is
much more stable.)

All example data (input and output) have been normalized to have values
approximately from the range [−1, 1].

All examples have been conducted as 1-time-step ahead time series predic-
tions, like in the Reservoir Computing section (6.2).

We’ve done 10 experimental trials for each evaluated hyperparameter and
example, and represented them through different colors in the graph. Each
trial consists of one measurement for each value of the evaluated hyperpa-
rameter. The amount of trials is limited to ensure low computational time.
These experiments therefore do not carry a statistical significance mainly to
gain a rough understanding of how modifying each parameter can affect the
model performance.

For the real-world examples, we’ve used an 80/20 training/testing set split
ratio. In the Mackey-Glass time series example, we’ve used 2000 data samples
for training, out of 10000 total samples, therefore using 20% of data for
training (and 80% for testing).

Besides the aforementioned details, all measurements have been conducted
using the default configuration described in Subsection 5.5.6.

6.3.1 Reservoir Size

Each colored line represents one experimental trial.

At first, we’ve used values of Nx ∈ {50, 75, 100, 125}. But for some real-
world examples, we can see a very high MSE. We’ve then tried to use a new
set of values where Nx ∈ {4, 10, 20, 50}. In the case of all real-world examples
this seems more appropriate, giving lower errors. Probably because the sizes
of the used datasets are very small (maximum of hundreds of samples in
total). We’ve then adjusted for that by using Nx = 50 for Mackey-Glass time
series when analyzing other hyperparameters.

59

6. Experimental Results

10 20 30 40 50

Nx

0

100

200

300

400

500

600

M
S
E

Analyzing reservoir size using CO2 Emissions of UNITED KINGDOM

Figure 6.24: Analyzing the impact of reservoir size using CO2 Emissions of
UNITED KINGDOM data.

50 60 70 80 90 100 110 120

Nx

0

1000

2000

3000

4000

5000

M
S
E

Analyzing reservoir size using CO2 Emissions of UNITED KINGDOM

Figure 6.25: Analyzing the impact of (larger) reservoir size using CO2 Emissions
of UNITED KINGDOM data.

60

....................... 6.3. Sensitivity Analysis of Reservoir Parameters

10 20 30 40 50

Nx

0

20

40

60

80

100

120

M
S
E

Analyzing reservoir size using Glaciers Meltdown

Figure 6.26: Analyzing the impact of reservoir size using Glaciers Meltdown data.

50 60 70 80 90 100 110 120

Nx

0

20

40

60

80

100

120

140

M
S
E

Analyzing reservoir size using Glaciers Meltdown

Figure 6.27: Analyzing the impact of (larger) reservoir size using Glaciers
Meltdown data.

61

6. Experimental Results

10 20 30 40 50

Nx

0

1

2

3

4

5

6

7

M
S
E

×10−5 Analyzing reservoir size using Mackey-Glass Time Series

Figure 6.28: Analyzing the impact of reservoir size using Mackey-Glass Time
Series data.

50 60 70 80 90 100 110 120

Nx

1

2

3

4

5

M
S
E

×10−6 Analyzing reservoir size using Mackey-Glass Time Series

Figure 6.29: Analyzing the impact of (larger) reservoir size using Mackey-Glass
Time Series data.

62

....................... 6.3. Sensitivity Analysis of Reservoir Parameters

10 20 30 40 50

Nx

0.004

0.006

0.008

0.010

0.012

0.014

M
S
E

Analyzing reservoir size using PM2.5 Pollution in Seattle Area

Figure 6.30: Analyzing the impact of reservoir size using PM2.5 Pollution in
Seattle Area data.

50 60 70 80 90 100 110 120

Nx

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

M
S
E

Analyzing reservoir size using PM2.5 Pollution in Seattle Area

Figure 6.31: Analyzing the impact of (larger) reservoir size using PM2.5 Pollution
in Seattle Area data.

The pattern here is quite clear: almost all of the experiments give higher
MSE values when increasing Nx, whereas the Mackey-Glass time series shows
an opposite tendency.

63

6. Experimental Results
6.3.2 Spectral Radius

Each colored line represents one experimental trial. We’ve used values of
α ∈ {0.1, 0.5, 0.8, 0.9}.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
α

0.2

0.4

0.6

0.8

1.0

1.2

M
S
E

×10−5 Analyzing spectral radius using Mackey-Glass Time Series

Figure 6.32: Analyzing the impact of spectral radius using Mackey-Glass Time
Series data

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
α

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
S
E

Analyzing spectral radius using CO2 Emissions of UNITED KINGDOM

Figure 6.33: Analyzing the impact of spectral radius using CO2 Emissions of
UNITED KINGDOM data.

64

....................... 6.3. Sensitivity Analysis of Reservoir Parameters

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
α

0

2

4

6

8

10
M
S
E

Analyzing spectral radius using Glaciers Meltdown

Figure 6.34: Analyzing the impact of spectral radius using Glaciers Meltdown

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
α

0.0032

0.0034

0.0036

0.0038

0.0040

0.0042

0.0044

M
S
E

Analyzing spectral radius using PM2.5 Pollution in Seattle Area

Figure 6.35: Analyzing the impact of spectral radius using PM2.5 Pollution in
Seattle Area data.

We can see a very clear tendency for Mackey-Glass and even for Glaciers
and PM2.5, where the optimal α(ρ) seems to lie somewhere between 0.8− 0.9.
For the CO2 Emissions of UK, a lower α might be preferred.

6.3.3 Reservoir Topology

Each color of dots represents one experimental trial.

65

6. Experimental Results

Ju
m
p
s

S
at
u
ra
te
d

Ju
m
p
s

S
at
u
ra
te
d

R
an
d
om

iz
ed

C
yc
lic

w
it
h
Ju
m
p
s

C
yc
lic

w
it
h
Ju
m
p
s

R
an
d
om

iz
ed

S
p
ar
se

Topology of W

2.5

3.0

3.5

4.0

4.5

5.0

M
S
E

×10−6 Analyzing topology using Mackey-Glass Time Series

Figure 6.36: Analyzing the impact of changing the pattern of connectivity using
Mackey-Glass Time Series data

Ju
m
p
s

S
at
u
ra
te
d

Ju
m
p
s

S
at
u
ra
te
d

R
an
d
om

iz
ed

C
yc
lic

w
it
h
Ju
m
p
s

C
yc
lic

w
it
h
Ju
m
p
s

R
an
d
om

iz
ed

S
p
ar
se

Topology of W

0

5

10

15

20

25

30

M
S
E

Analyzing topology using CO2 Emissions of UNITED KINGDOM

Figure 6.37: Analyzing the impact of changing the pattern of connectivity using
CO2 Emissions of UNITED KINGDOM data.

66

....................... 6.3. Sensitivity Analysis of Reservoir Parameters

Ju
m
p
s

S
at
u
ra
te
d

Ju
m
p
s

S
at
u
ra
te
d

R
an
d
om

iz
ed

C
yc
lic

w
it
h
Ju
m
p
s

C
yc
lic

w
it
h
Ju
m
p
s

R
an
d
om

iz
ed

S
p
ar
se

Topology of W

0

50

100

150

200
M
S
E

Analyzing topology using Glaciers Meltdown

Figure 6.38: Analyzing the impact of changing the pattern of connectivity using
Glaciers Meltdown

Ju
m
p
s

S
at
u
ra
te
d

Ju
m
p
s

S
at
u
ra
te
d

R
an
d
om

iz
ed

C
yc
lic

w
it
h
Ju
m
p
s

C
yc
lic

w
it
h
Ju
m
p
s

R
an
d
om

iz
ed

S
p
ar
se

Topology of W

0

200

400

600

800

1000

1200

1400

M
S
E

Analyzing topology using PM2.5 Pollution in Seattle Area

Figure 6.39: Analyzing the impact of changing the pattern of connectivity using
PM2.5 Pollution in Seattle Area data.

Unfortunately in some figures, we can’t really see the details of MSE because
the “Sparse” topology’s values are too large. This topology (with sparsity set
to 80%) apparently has the worst results. Amidst the deterministic topologies,
“Cyclic with Jumps” performs reasonably well, but at this level of detail is
comparable to the rest. We’ve therefore conducted the experiments again,
while omitting the “Sparse topology”.

67

6. Experimental Results

Ju
m
p
s

S
at
u
ra
te
d

Ju
m
p
s

S
at
u
ra
te
d

R
an
d
om

iz
ed

C
yc
lic

w
it
h
Ju
m
p
s

C
yc
lic

w
it
h
Ju
m
p
s

R
an
d
om

iz
ed

Topology of W

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

M
S
E

×10−5 Analyzing topology using Mackey-Glass Time Series

Figure 6.40: Analyzing the impact of changing the pattern of connectivity
(excluding “Sparse”) using Mackey-Glass Time Series data

Ju
m
p
s

S
at
u
ra
te
d

Ju
m
p
s

S
at
u
ra
te
d

R
an
d
om

iz
ed

C
yc
lic

w
it
h
Ju
m
p
s

C
yc
lic

w
it
h
Ju
m
p
s

R
an
d
om

iz
ed

Topology of W

0

2

4

6

8

10

12

M
S
E

Analyzing topology using CO2 Emissions of UNITED KINGDOM

Figure 6.41: Analyzing the impact of changing the pattern of connectivity
(excluding “Sparse”) using CO2 Emissions of UNITED KINGDOM data.

68

....................... 6.3. Sensitivity Analysis of Reservoir Parameters

Ju
m
p
s

S
at
u
ra
te
d

Ju
m
p
s

S
at
u
ra
te
d

R
an
d
om

iz
ed

C
yc
lic

w
it
h
Ju
m
p
s

C
yc
lic

w
it
h
Ju
m
p
s

R
an
d
om

iz
ed

Topology of W

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
S
E

Analyzing topology using Glaciers Meltdown

Figure 6.42: Analyzing the impact of changing the pattern of connectivity
(excluding “Sparse”) using Glaciers Meltdown

Ju
m
p
s

S
at
u
ra
te
d

Ju
m
p
s

S
at
u
ra
te
d

R
an
d
om

iz
ed

C
yc
lic

w
it
h
Ju
m
p
s

C
yc
lic

w
it
h
Ju
m
p
s

R
an
d
om

iz
ed

Topology of W

0.0030

0.0035

0.0040

0.0045

0.0050

M
S
E

Analyzing topology using PM2.5 Pollution in Seattle Area

Figure 6.43: Analyzing the impact of changing the pattern of connectivity
(excluding “Sparse”) using PM2.5 Pollution in Seattle Area data.

We can see that, when ignoring the outliers, all deterministic topologies
make the model perform similarly well. There seems to be a bigger MSE for
“Jumps Saturated” topologies, and “Cyclic with Jumps” still seems as being
consistently the most usable.

69

6. Experimental Results
6.4 Controlling Spectral Radius

To control the spectral radius (4.4) ofW , we’ll use the scaling hyperparameter
α, which is equal to the spectral radius of the scaled W (4.5) [82, p. 28].

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48

Cycle Reservoir with Jumps (Randomized Weights)

0.4

0.2

0.0

0.2

0.4

Figure 6.44: α = 0.1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48

Cycle Reservoir with Jumps (Randomized Weights)

0.4

0.2

0.0

0.2

0.4

Figure 6.45: α = 0.4

70

.............................. 6.4. Controlling Spectral Radius

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48

Cycle Reservoir with Jumps (Randomized Weights)

0.4

0.2

0.0

0.2

0.4

Figure 6.46: α = 0.6

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48

Cycle Reservoir with Jumps (Randomized Weights)

0.4

0.2

0.0

0.2

0.4

Figure 6.47: α = 0.9

Larger values (darker colors) start to appear when setting larger α.

71

72

Chapter 7
Conclusions and Future Work

7.1 Conclusions

In this work, we have developed a library in Apache Flink (1.8) for the most
popular Reservoir Computing model called Echo State Network. The library
supports the use of Flink’s DataStream and DataSet API (Core APIs) and it
was implemented in Java. We have included several reservoir topologies such
as standard sparse (with modifiable sparsity), “Cycle Reservoir with Jumps”
and our own slight modifications such as “Jumps Saturated Reservoir”. The
user has the choice of training the model parameters using offline schema
(Ridge Regression) or online (Stochastic Gradient Descent), together with an
option to apply a step-based decay on the learning rate.

We’ve visually demonstrated the basic functionality of both the Linear
Regression (readout part of the Reservoir Computing) and the whole (reservoir
and readout) Reservoir Computing model on developed examples over real-
world and function-generated datasets. We have also performed experimental
comparisons of chosen hyperparameters’ values on a small scale.

We could see that using just Linear Regression is much more straightforward,
as it involves less parameters and no hidden state, but it can produce results
with bad accuracy when estimating data with non-linear relationships. Still, a
concrete Reservoir Computing model is less complicated to build in comparison
to standard Recurrent Neural Networks, and we’ve tried to make this process
easier by including a default configuration (as part of the examples framework).

7.2 Recommendation for Future Extensions

With regards to generalizing concepts, some possibilities have been noted
throughout the text. We could think of creating a general neural network
library with different predefined types of ANNs. The output of RC could be
made such that it belongs to a multidimensional space (now the output space
is the real domain). That is, we would predict multiple output features at
once.

Regarding Java implementation, we could support a more general data type
for the input/output vector elements, like a Number or Comparable, instead

73

7. Conclusions and Future Work..............................
of just double.

The code could always be more user-friendly (convenient) and provide even
more customization of calls. But at some point, a library that is concise, yet
clear and effective might be preferable. There are several other RC models
that haven’t been included in this library, such as: hierarchical reservoirs, self-
organized reservoirs, cascade reservoirs, and so on. They could be included in
the future by extending our developed library. We could also offer alternative
types of error measurement apart from MSE, such as cross-entropy and
normalized root mean squared error.

74

Bibliography

[1] Mantas Lukoševičius and Herbert Jaeger. “Reservoir Computing Ap-
proaches to Recurrent Neural Network Training”. In: Computer Science
Review 3.3 (Aug. 2009), pp. 127–149. issn: 1574-0137. doi: 10.1016/j.
cosrev.2009.03.005.

[2] Shaoxuan Wang. Remove the legacy flink-libraries/flink-ml. url: https:
//issues.apache.org/jira/browse/FLINK-12597.

[3] Ali Rodan and Peter Tiňo. “Simple Deterministically Constructed Cycle
Reservoirs with Regular Jumps”. In: Neural Computation 24.7 (2012).
PMID: 22428595, pp. 1822–1852. doi: 10.1162/NECO_a_00297. url:
https://www.cs.bham.ac.uk/~pxt/PAPERS/esn_jumps.pdf.

[4] Cambridge Dictionary. Meaning of data in English. url: https://
dictionary.cambridge.org/dictionary/english/data (visited on
05/11/2020).

[5] E. Udoh. Handbook of Research on Grid Technologies and Utility Com-
puting: Concepts for Managing Large-Scale Applications. Information
Science Reference, 2009. isbn: 9781605661858. url: https://books.
google.cz/books?id=sQ6IKhTlzyIC.

[6] Cambridge Dictionary. Meaning of sequential in English. url: https:
//dictionary.cambridge.org/dictionary/english/sequential
(visited on 05/11/2020).

[7] Institute for Telecommunication Sciences. Definition: data stream. url:
https://www.its.bldrdoc.gov/fs-1037/dir-010/_1451.htm.

[8] Techopedia. What is Data Streaming? url: https://www.techopedia.
com/definition/13604/data-streaming.

[9] Attunity. What is Data Streaming. url: https://www.attunity.com/
what-is-data-streaming/.

[10] Ververica. What is Stream Processing? url: https://www.ververica.
com/what-is-stream-processing.

[11] Microsoft Docs. Real time processing. url: https://docs.microsoft.
com/en- us/azure/architecture/data- guide/big- data/real-
time-processing.

75

https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1016/j.cosrev.2009.03.005
https://issues.apache.org/jira/browse/FLINK-12597
https://issues.apache.org/jira/browse/FLINK-12597
https://doi.org/10.1162/NECO_a_00297
https://www.cs.bham.ac.uk/~pxt/PAPERS/esn_jumps.pdf
https://dictionary.cambridge.org/dictionary/english/data
https://dictionary.cambridge.org/dictionary/english/data
https://books.google.cz/books?id=sQ6IKhTlzyIC
https://books.google.cz/books?id=sQ6IKhTlzyIC
https://dictionary.cambridge.org/dictionary/english/sequential
https://dictionary.cambridge.org/dictionary/english/sequential
https://www.its.bldrdoc.gov/fs-1037/dir-010/_1451.htm
https://www.techopedia.com/definition/13604/data-streaming
https://www.techopedia.com/definition/13604/data-streaming
https://www.attunity.com/what-is-data-streaming/
https://www.attunity.com/what-is-data-streaming/
https://www.ververica.com/what-is-stream-processing
https://www.ververica.com/what-is-stream-processing
https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/real-time-processing
https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/real-time-processing
https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/real-time-processing

7. Conclusions and Future Work..............................
[12] Techopedia. What is Real-Time Data Processing? url: https://www.

techopedia.com/definition/31742/real-time-data-processing.
[13] Michael Stonebraker, Uǧur Çetintemel, and Stan Zdonik. “The 8 re-

quirements of real-time stream processing”. In: ACM Sigmod Record
34.4 (2005), pp. 42–43.

[14] Chris Chatfield. Time-series forecasting. CRC press, 2000.
[15] Sebastián Basterrech. “Pattern Matching in Sequential Data Using

Reservoir Projections”. In: June 2019, pp. 173–183. isbn: 978-3-030-
22795-1. doi: 10.1007/978-3-030-22796-8_19.

[16] Pierre Geurts. “Pattern Extraction for Time Series Classification”. In:
Principles of Data Mining and Knowledge Discovery. Ed. by Luc De
Raedt and Arno Siebes. Berlin, Heidelberg: Springer Berlin Heidelberg,
2001, pp. 115–127. isbn: 978-3-540-44794-8.

[17] Haibin Cheng et al. “Multistep-Ahead Time Series Prediction”. In:
Advances in Knowledge Discovery and Data Mining. Ed. by Wee-Keong
Ng et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 765–
774. isbn: 978-3-540-33207-7. doi: 10.1007/11731139_89.

[18] The Apache Software Foundation. What is Apache Flink? — Architec-
ture. url: https://flink.apache.org/flink-architecture.html.

[19] Z. Karakaya, A. Yazici, and M. Alayyoub. “A Comparison of Stream
Processing Frameworks”. In: 2017 International Conference on Com-
puter and Applications (ICCA). 2017, pp. 1–12.

[20] G. van Dongen and D. Van den Poel. “Evaluation of Stream Pro-
cessing Frameworks”. In: IEEE Transactions on Parallel and Dis-
tributed Systems 31.8 (Aug. 2020), pp. 1845–1858. issn: 1558-2183.
doi: 10.1109/TPDS.2020.2978480.

[21] Shivangi Gupta. Streaming in Spark, Flink, and Kafka. June 18, 2017.
url: https://dzone.com/articles/streaming-in-spark-flink-
and-kafka-1 (visited on 05/20/2020).

[22] Michael G. Noll (https://stackoverflow.com/users/1743580/michael-g-
noll). Answer to: master node in multi-node kafka cluster. (version:
2016-04-12). url: https://stackoverflow.com/a/36571070.

[23] The Apache Software Foundation. Apache Flink Concepts. url: https:
//ci.apache.org/projects/flink/flink- docs- release- 1.0/
concepts/concepts.html (visited on 05/20/2020).

[24] The Apache Software Foundation. Apache Kafka. url: https://kafka.
apache.org/intro (visited on 05/20/2020).

[25] Tomáš Werner. Optimalizace. (In Czech). Jan. 28, 2019. url: https:
//cw.fel.cvut.cz/b181/_media/courses/b33opt/opt.pdf (visited
on 05/21/2020).

[26] Xin Yan and Xiaogang Su. Linear regression analysis: theory and com-
puting. World Scientific, 2009.

76

https://www.techopedia.com/definition/31742/real-time-data-processing
https://www.techopedia.com/definition/31742/real-time-data-processing
https://doi.org/10.1007/978-3-030-22796-8_19
https://doi.org/10.1007/11731139_89
https://flink.apache.org/flink-architecture.html
https://doi.org/10.1109/TPDS.2020.2978480
https://dzone.com/articles/streaming-in-spark-flink-and-kafka-1
https://dzone.com/articles/streaming-in-spark-flink-and-kafka-1
https://stackoverflow.com/a/36571070
https://ci.apache.org/projects/flink/flink-docs-release-1.0/concepts/concepts.html
https://ci.apache.org/projects/flink/flink-docs-release-1.0/concepts/concepts.html
https://ci.apache.org/projects/flink/flink-docs-release-1.0/concepts/concepts.html
https://kafka.apache.org/intro
https://kafka.apache.org/intro
https://cw.fel.cvut.cz/b181/_media/courses/b33opt/opt.pdf
https://cw.fel.cvut.cz/b181/_media/courses/b33opt/opt.pdf

......................... 7.2. Recommendation for Future Extensions

[27] Brian D. Ripley. Pattern Recognition and Neural Networks. Cambridge
University Press, 1996. doi: 10.1017/CBO9780511812651.

[28] Mark Schmidt. CPSC 540: Machine Learning - Group L1-Regularization,
Proximal-Gradient. University of British Columbia, 2017. url: https:
//www.cs.ubc.ca/~schmidtm/Courses/540-W17/L5.pdf (visited on
03/05/2020).

[29] James Bergstra and Yoshua Bengio. “Random search for hyper-parameter
optimization”. In: Journal of machine learning research 13.Feb (2012),
pp. 281–305.

[30] Sebastian Ruder. “An overview of gradient descent optimization algo-
rithms”. In: CoRR abs/1609.04747 (2016). arXiv: 1609.04747. url:
https://arxiv.org/pdf/1609.04747.pdf.

[31] angryavian (https://math.stackexchange.com/users/43949/angryavian).
Why divide by 2m. Mathematics Stack Exchange. (version: 2014-08-01).
url: https://math.stackexchange.com/q/884903.

[32] R Osuna-Gómez, A Rufián-Lizana, and P Ruiz-Canales. “Invex functions
and generalized convexity in multiobjective programming”. In: Journal
of optimization theory and applications 98.3 (1998), pp. 651–661. doi:
https://doi.org/10.1023/A:1022628130448.

[33] Yoshiyasu Takefuji. “A Feedforward neural network is a subset of a
recurrent neural network”. In: Science (Oct. 2018).

[34] Bing Xu, Ruitong Huang, and Mu Li. Revise Saturated Activation
Functions. 2016. arXiv: 1602.05980 [cs.LG].

[35] Martin Sundermeyer, Ralf Schlüter, and Hermann Ney. “LSTM neural
networks for language modeling”. In: Thirteenth annual conference of
the international speech communication association. 2012. url: https:
//www.isca-speech.org/archive/interspeech_2012/i12_0194.
html.

[36] Junyoung Chung et al. Empirical Evaluation of Gated Recurrent Neural
Networks on Sequence Modeling. 2014. arXiv: 1412.3555 [cs.NE].

[37] Benjamin Schrauwen, David Verstraeten, and Jan Van Campenhout.
“An overview of reservoir computing: theory, applications and implemen-
tations”. In: Proceedings of the 15th european symposium on artificial
neural networks. 2007, pp. 471–482. url: https://biblio.ugent.be/
publication/416607/file/447949.

[38] Hélene Paugam-Moisy and Sander M Bohte. “Computing with spiking
neuron networks.” In: Handbook of natural computing 1 (2012), pp. 1–
47.

[39] Herbert Jaeger. “The “echo state” approach to analysing and training
recurrent neural networks-with an erratum note”. In: Bonn, Germany:
German National Research Center for Information Technology GMD
Technical Report 148.34 (Jan. 26, 2010).

77

https://doi.org/10.1017/CBO9780511812651
https://www.cs.ubc.ca/~schmidtm/Courses/540-W17/L5.pdf
https://www.cs.ubc.ca/~schmidtm/Courses/540-W17/L5.pdf
https://arxiv.org/abs/1609.04747
https://arxiv.org/pdf/1609.04747.pdf
https://math.stackexchange.com/q/884903
https://doi.org/https://doi.org/10.1023/A:1022628130448
https://arxiv.org/abs/1602.05980
https://www.isca-speech.org/archive/interspeech_2012/i12_0194.html
https://www.isca-speech.org/archive/interspeech_2012/i12_0194.html
https://www.isca-speech.org/archive/interspeech_2012/i12_0194.html
https://arxiv.org/abs/1412.3555
https://biblio.ugent.be/publication/416607/file/447949
https://biblio.ugent.be/publication/416607/file/447949

7. Conclusions and Future Work..............................
[40] A. Rodan and P. Tiňo. “Minimum Complexity Echo State Network”. In:

IEEE Transactions on Neural Networks 22.1 (Jan. 2011), pp. 131–144.
issn: 1941-0093. doi: 10.1109/TNN.2010.2089641.

[41] Apache Flink Documentation. Apache Flink Documentation. url: https:
//ci.apache.org/projects/flink/flink-docs-stable/ (visited on
05/21/2020).

[42] Apache Flink - Apache Project Information. url: https://projects.
apache.org/project.html?flink (visited on 05/21/2020).

[43] Juan Soto. A Historical Account of Apache Flink: Its Origins, Growing
Community, and Global Impact. Technische Universität Berlin, May 31,
2016. url: https://www.dima.tu-berlin.de/fileadmin/fg131/
Informationsmaterial/Apache_Flink_Origins_for_Public_Release.
pdf (visited on 05/11/2020).

[44] Stratosphere. url: http://stratosphere.eu/ (visited on 05/21/2020).
[45] Daniel Warneke and Odej Kao. “Nephele: Efficient Parallel Data Pro-

cessing in the Cloud”. In: Proceedings of the 2nd Workshop on Many-
Task Computing on Grids and Supercomputers. MTAGS ’09. Portland,
Oregon: ACM, 2009, 8:1–8:10. isbn: 978-1-60558-714-1. doi: http:
//doi.acm.org/10.1145/1646468.1646476.

[46] Stratosphere accepted as Apache Incubator Project. Apr. 16, 2014. url:
http://stratosphere.eu/blog/apache/2014/04/16/stratosphere-
goes-apache-incubator.html.

[47] Announcing Apache Flink 1.0.0. Mar. 8, 2016. url: https://flink.
apache.org/news/2016/03/08/release-1.0.0.html.

[48] Wikipedia contributors. Apache Flink — Wikipedia, The Free Encyclo-
pedia. May 4, 2020. url: https://en.wikipedia.org/w/index.php?
title=Apache_Flink&oldid=954804006 (visited on 05/10/2020).

[49] The Apache Software Foundation. Apache Flink Roadmap. url: https:
//flink.apache.org/roadmap.html (visited on 05/10/2020).

[50] Jincheng Sun. FLIP-38: Python Table API. url: https://cwiki.
apache.org/confluence/display/FLINK/FLIP- 38%3A+Python+
Table+API (visited on 05/09/2020).

[51] Apache Flink 1.8 Documentation. Dataflow Programming Model. url:
https://ci.apache.org/projects/flink/flink-docs-release-
1.8/concepts/programming-model.html.

[52] Apache Flink 1.8 Documentation. SQL. url: https://ci.apache.org/
projects/flink/flink-docs-release-1.8/dev/table/sql.html.

[53] Apache Flink 1.8 Documentation. Basic API Concepts. url: https:
//ci.apache.org/projects/flink/flink-docs-release-1.8/dev/
api_concepts.html.

[54] Apache Flink 1.8 Documentation. Java Lambda Expressions. url:
https://ci.apache.org/projects/flink/flink-docs-release-
1.8/dev/java_lambdas.html.

78

https://doi.org/10.1109/TNN.2010.2089641
https://ci.apache.org/projects/flink/flink-docs-stable/
https://ci.apache.org/projects/flink/flink-docs-stable/
https://projects.apache.org/project.html?flink
https://projects.apache.org/project.html?flink
https://www.dima.tu-berlin.de/fileadmin/fg131/Informationsmaterial/Apache_Flink_Origins_for_Public_Release.pdf
https://www.dima.tu-berlin.de/fileadmin/fg131/Informationsmaterial/Apache_Flink_Origins_for_Public_Release.pdf
https://www.dima.tu-berlin.de/fileadmin/fg131/Informationsmaterial/Apache_Flink_Origins_for_Public_Release.pdf
http://stratosphere.eu/
https://doi.org/http://doi.acm.org/10.1145/1646468.1646476
https://doi.org/http://doi.acm.org/10.1145/1646468.1646476
http://stratosphere.eu/blog/apache/2014/04/16/stratosphere-goes-apache-incubator.html
http://stratosphere.eu/blog/apache/2014/04/16/stratosphere-goes-apache-incubator.html
https://flink.apache.org/news/2016/03/08/release-1.0.0.html
https://flink.apache.org/news/2016/03/08/release-1.0.0.html
https://en.wikipedia.org/w/index.php?title=Apache_Flink&oldid=954804006
https://en.wikipedia.org/w/index.php?title=Apache_Flink&oldid=954804006
https://flink.apache.org/roadmap.html
https://flink.apache.org/roadmap.html
https://cwiki.apache.org/confluence/display/FLINK/FLIP-38%3A+Python+Table+API
https://cwiki.apache.org/confluence/display/FLINK/FLIP-38%3A+Python+Table+API
https://cwiki.apache.org/confluence/display/FLINK/FLIP-38%3A+Python+Table+API
https://ci.apache.org/projects/flink/flink-docs-release-1.8/concepts/programming-model.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/concepts/programming-model.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/table/sql.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/table/sql.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/api_concepts.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/api_concepts.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/api_concepts.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/java_lambdas.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/java_lambdas.html

......................... 7.2. Recommendation for Future Extensions

[55] Ververica. Apache Flink Training - DataSet API Basics Slides. url:
https://www.slideshare.net/dataArtisans/flink- training-
dataset-api-basics.

[56] Apache Flink 1.10 Documentation. DataStream API Tutorial. url:
https://ci.apache.org/projects/flink/flink-docs-release-
1.10/getting-started/tutorials/datastream_api.html.

[57] Apache Flink 1.8 JavaDoc. org.apache.flink.api.java.DataSet. url: https:
//ci.apache.org/projects/flink/flink-docs-release-1.8/api/
java/org/apache/flink/api/java/DataSet.html.

[58] Apache Flink 1.8 Documentation. Table API. url: https : / / ci .
apache . org / projects / flink / flink - docs - release - 1 . 8 / dev /
table/tableApi.html.

[59] Apache Flink 1.8 JavaDoc. org.apache.flink.streaming.api.environment.StreamExecutionEnvironment.
url: https : / / ci . apache . org / projects / flink / flink - docs -
release - 1 . 8 / api / java / org / apache / flink / streaming / api /
environment/StreamExecutionEnvironment.html.

[60] Apache Flink 1.8 JavaDoc. org.apache.flink.api.java.ExecutionEnvironment.
url: https : / / ci . apache . org / projects / flink / flink - docs -
release-1.8/api/java/org/apache/flink/api/java/ExecutionEnvironment.
html.

[61] Apache Flink 1.8 Documentation. Flink DataSet API Programming
Guide. url: https://ci.apache.org/projects/flink/flink-docs-
release-1.8/dev/batch/index.html.

[62] Apache Flink 1.8 Documentation. Streaming Connectors. url: https:
//ci.apache.org/projects/flink/flink-docs-release-1.8/dev/
connectors/index.html.

[63] Apache Flink 1.8 Documentation. DataStream API Programming Guide.
url: https : / / ci . apache . org / projects / flink / flink - docs -
release-1.8/dev/datastream_api.html.

[64] Fabian Hueske. Answer to: Apache Flink Process Stream Multiple Times.
url: https://stackoverflow.com/a/44647003/4584464.

[65] Stephan Ewen. FLIP-21 - Improve object Copying/Reuse Mode for
Streaming Runtime. url: https://cwiki.apache.org/confluence/
pages/viewpage.action?pageId=71012982.

[66] Apache Flink 1.8 Documentation. DataSet Transformations. url: https:
//ci.apache.org/projects/flink/flink-docs-release-1.8/dev/
batch/dataset_transformations.html.

[67] Apache Flink 1.8 Documentation. DataStream API: Operators. url:
https://ci.apache.org/projects/flink/flink-docs-release-
1.8/dev/stream/operators/.

[68] Apache Flink 1.8 Documentation. Iterations. url: https://ci.apache.
org / projects / flink / flink - docs - release - 1 . 8 / dev / batch /
iterations.html (visited on 08/20/2019).

79

https://www.slideshare.net/dataArtisans/flink-training-dataset-api-basics
https://www.slideshare.net/dataArtisans/flink-training-dataset-api-basics
https://ci.apache.org/projects/flink/flink-docs-release-1.10/getting-started/tutorials/datastream_api.html
https://ci.apache.org/projects/flink/flink-docs-release-1.10/getting-started/tutorials/datastream_api.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/api/java/org/apache/flink/api/java/DataSet.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/api/java/org/apache/flink/api/java/DataSet.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/api/java/org/apache/flink/api/java/DataSet.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/table/tableApi.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/table/tableApi.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/table/tableApi.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/api/java/org/apache/flink/streaming/api/environment/StreamExecutionEnvironment.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/api/java/org/apache/flink/streaming/api/environment/StreamExecutionEnvironment.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/api/java/org/apache/flink/streaming/api/environment/StreamExecutionEnvironment.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/api/java/org/apache/flink/api/java/ExecutionEnvironment.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/api/java/org/apache/flink/api/java/ExecutionEnvironment.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/api/java/org/apache/flink/api/java/ExecutionEnvironment.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/batch/index.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/batch/index.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/connectors/index.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/connectors/index.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/connectors/index.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/datastream_api.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/datastream_api.html
https://stackoverflow.com/a/44647003/4584464
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=71012982
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=71012982
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/batch/dataset_transformations.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/batch/dataset_transformations.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/batch/dataset_transformations.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/stream/operators/
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/stream/operators/
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/batch/iterations.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/batch/iterations.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/batch/iterations.html

7. Conclusions and Future Work..............................
[69] The Apache Software Foundation. Apache Flink. Version 1.8. Apr. 9,

2019. url: https://flink.apache.org/.
[70] Apache Flink 1.8 Documentation. Event Time. url: https://ci.

apache . org / projects / flink / flink - docs - release - 1 . 8 / dev /
event_time.html.

[71] Apache Flink 1.8 Documentation. Pre-defined Timestamp Extractors /
Watermark Emitters. url: https://ci.apache.org/projects/flink/
flink - docs - release - 1 . 8 / dev / event _ timestamp _ extractors .
html.

[72] Data Arisans alpinegizmo. Apache Flink training video about event time
Watermarks. Youtube. Nov. 25, 2018. url: https://www.youtube.
com/watch?v=zL5JWWgm3xA.

[73] Apache Flink 1.8 Documentation. Windows. url: https://ci.apache.
org / projects / flink / flink - docs - release - 1 . 7 / dev / stream /
operators/windows.html (visited on 05/22/2020).

[74] Apache Flink 1.8 Documentation. The Broadcast State Pattern. url:
https://ci.apache.org/projects/flink/flink-docs-release-
1.8/dev/stream/state/broadcast_state.html.

[75] Blaise Barney. Introduction to Parallel Computing. Lawrence Liver-
more National Laboratory. url: https : / / computing . llnl . gov /
tutorials/parallel_comp.

[76] Apache Flink 1.8 Documentation. Parallel Execution. url: https :
//ci.apache.org/projects/flink/flink-docs-release-1.8/dev/
parallel.html.

[77] Raphael Yuster and Uri Zwick. “Fast Sparse Matrix Multiplication”.
In: ACM Trans. Algorithms 1.1 (July 2005), p. 5. issn: 1549-6325. doi:
10.1145/1077464.1077466. url: http://doi.acm.org/10.1145/
1077464.1077466.

[78] Peter Abeles. Java Matrix Benchmark. url: https://lessthanoptimal.
github.io/Java-Matrix-Benchmark/.

[79] Optimatika. oj! Algorithms. url: https://www.ojalgo.org/.
[80] Prof. William Kahan. Lecture Notes on the Status of IEEE Standard

754 for Binary Floating-Point Arithmetic. url: https://people.eecs.
berkeley.edu/~wkahan/ieee754status/IEEE754.PDF.

[81] Apache Flink Documentation. Data Types & Serialization. url: https:
/ / ci . apache . org / projects / flink / flink - docs - stable / dev /
types_serialization.html (visited on 05/01/2020).

[82] H. Jaeger. Tutorial on training recurrent neural networks, covering
BPPT, RTRL, EKF and the "echo state network" approach. GMD-
Report 159. Fraunhofer Institute for Autonomous Intelligent Systems
(AIS), Dec. 2013. url: http : / / minds . jacobs - university . de /
uploads/papers/ESNTutorialRev.pdf.

80

https://flink.apache.org/
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/event_time.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/event_time.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/event_time.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/event_timestamp_extractors.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/event_timestamp_extractors.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/event_timestamp_extractors.html
https://www.youtube.com/watch?v=zL5JWWgm3xA
https://www.youtube.com/watch?v=zL5JWWgm3xA
https://ci.apache.org/projects/flink/flink-docs-release-1.7/dev/stream/operators/windows.html
https://ci.apache.org/projects/flink/flink-docs-release-1.7/dev/stream/operators/windows.html
https://ci.apache.org/projects/flink/flink-docs-release-1.7/dev/stream/operators/windows.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/stream/state/broadcast_state.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/stream/state/broadcast_state.html
https://computing.llnl.gov/tutorials/parallel_comp
https://computing.llnl.gov/tutorials/parallel_comp
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/parallel.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/parallel.html
https://ci.apache.org/projects/flink/flink-docs-release-1.8/dev/parallel.html
https://doi.org/10.1145/1077464.1077466
http://doi.acm.org/10.1145/1077464.1077466
http://doi.acm.org/10.1145/1077464.1077466
https://lessthanoptimal.github.io/Java-Matrix-Benchmark/
https://lessthanoptimal.github.io/Java-Matrix-Benchmark/
https://www.ojalgo.org/
https://people.eecs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
https://people.eecs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
https://ci.apache.org/projects/flink/flink-docs-stable/dev/types_serialization.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/types_serialization.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/types_serialization.html
http://minds.jacobs-university.de/uploads/papers/ESNTutorialRev.pdf
http://minds.jacobs-university.de/uploads/papers/ESNTutorialRev.pdf

......................... 7.2. Recommendation for Future Extensions

[83] World Glacier Monitoring Service. Global Glacier Change Bulletin No.
1 (2012–2013). 2015. url: https://wgms.ch/downloads/wgms_2013_
gmbb12.pdf (visited on 12/10/2019).

[84] United States Environmental Protection Agency. Climate Change In-
dicators: Glaciers. Aug. 2016. url: https://www.epa.gov/climate-
indicators / climate - change - indicators - glaciers (visited on
12/10/2019).

[85] G. Marland T.A. Boden and R.J. Andres. Global, Regional, and National
Fossil-Fuel CO2 Emissions (1751 - 2014). Oak Ridge, Tennessee, U.S.A.:
Carbon Dioxide Information Analysis Center, Oak Ridge National
Laboratory, U.S. Department of Energy, 2017. doi: 10.3334/CDIAC/
00001_V2017. (Visited on 01/25/2020).

[86] Kedar Potdar, Taher S Pardawala, and Chinmay D Pai. “A comparative
study of categorical variable encoding techniques for neural network
classifiers”. In: International journal of computer applications 175.4
(Oct. 2017), pp. 7–9. doi: 10 . 5120 / ijca2017915495. (Visited on
01/25/2020).

[87] Yu-Fei Xing et al. “The impact of PM2. 5 on the human respiratory
system”. In: Journal of Thoracic Disease 8.1 (Jan. 2016), E69. doi:
10.3978/j.issn.2072-1439.2016.01.19.

[88] Air Quality System Data Mart (internet database). US Environmen-
tal Protection Agency. url: https://www.epa.gov/outdoor-air-
quality-data/download-daily-data (visited on 01/23/2020).

81

https://wgms.ch/downloads/wgms_2013_gmbb12.pdf
https://wgms.ch/downloads/wgms_2013_gmbb12.pdf
https://www.epa.gov/climate-indicators/climate-change-indicators-glaciers
https://www.epa.gov/climate-indicators/climate-change-indicators-glaciers
https://doi.org/10.3334/CDIAC/00001_V2017
https://doi.org/10.3334/CDIAC/00001_V2017
https://doi.org/10.5120/ijca2017915495
https://doi.org/10.3978/j.issn.2072-1439.2016.01.19
https://www.epa.gov/outdoor-air-quality-data/download-daily-data
https://www.epa.gov/outdoor-air-quality-data/download-daily-data

82

Acronyms

AI Artificial Intelligence 17

ANN Artificial Neural Network 17

CRJ Cycle Reservoir With Jumps 22

ESN Echo State Network 19

GD Gradient Descent 12

JVM Java Virtual Machine 26

LM Linear Model 9

LoAs Levels Of Abstraction 26

LR Linear Regression 9

LSM Liquid State Machine 19

LSTM Long Short-Term Memory 18

ML Machine Learning 17

MSE Mean Squared Error 14

RC Reservoir Computing 18

RNN Recurrent Neural Network 18

SCR Simple Cycle Reservoir 21

SGD Stochastic Gradient Descent 12

83

	Introduction
	Thesis Organization
	Nomenclature

	Data Streams
	Basic Definitions
	Time Series Data
	Bounded and Unbounded Streams
	Stream Processing Frameworks

	Linear Modelling
	Machine Learning Context
	Training
	Algebraic Approach
	Numerical Approach
	Summary

	Testing

	Reservoir Computing
	Overview of Recurrent Neural Networks
	Reservoir Computing Models
	Echo State Network
	Echo State Property
	Memory Length
	Cyclic Reservoirs
	Cycle Reservoir with Jumps

	Reservoir Computing Framework in Apache Flink
	Introduction to Apache Flink
	Characteristics of Apache Flink
	Concepts
	Flink Program Anatomy
	Common Characteristics of the Core APIs
	Supported Data Types
	Copying Behavior

	Operations of the Core APIs
	Sources
	Transformations
	Iterations

	Differences of DataStream and DataSet API
	DataStream API
	DataSet API
	Specific Differences

	Features
	Decompression of Input Files
	Configuration Functions
	Passing Parameters
	Notions of Time
	Event Time Watermarks

	Windows
	Keyed Collections
	State
	Broadcasting
	Distributed Cache
	Debugging
	Semantic Function Annotations
	Parallel Computing in the Context of Apache Flink
	Using DataStream for Matrix Representation
	Demonstrating the Problems on Matrix Multiplication

	Efficient Matrix Representation

	Implementation Description
	Project Structure
	Data Representation
	Linear Model Functions (Readout)
	Reservoir
	Higher-Level Examples
	Null Values

	Default Configuration

	Experimental Results
	Linear Regression
	Glaciers
	CO2 Emissions
	PM2.5 Outdoor Air Pollution
	Limitations of Linear Models

	Reservoir Computing
	Glaciers
	CO2 Emissions
	PM2.5 Pollution

	Sensitivity Analysis of Reservoir Parameters
	Reservoir Size
	Spectral Radius
	Reservoir Topology

	Controlling Spectral Radius

	Conclusions and Future Work
	Conclusions
	Recommendation for Future Extensions

	Bibliography
	Acronyms
	Acronyms

