
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering

Bachelor’s Thesis

Redaction and reservation system
for project SHerna

Jozef Bugoš
Study program: Open Informatics
Branch: Software

May 2020
Supervisor: Ing. Richard Vachula

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

466219Osobní číslo:JozefJméno:BugošPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

SoftwareStudijní obor:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Redakční a rezervační systém pro projekt SHerna

Název bakalářské práce anglicky:

Redaction and reservation system for project SHerna

Pokyny pro vypracování:
Navrhněte a implementujte rozšíření a případné úpravy systému projektu SHerna.
Info o projektu na súčasnom webe1.
1) Seznamte se s aktuálním řešením systému. Dohodněte s ostatními členmi
pracujícími na tomto projektu funkcionalitu pro jeho rozšíření. Provedenou analýzu
zdokumentujte pomocí UML diagramů
2) Navrhněte architekturu nového řešení webu a následně ji implementujte.
2) Na základe analýzy navrhněte a následně implementujte daná rozšíření.
3) Implementaci otestujte jednotkovými a integračními testy.
4) Navrhněte možnosti budoucího rozšíření systému.

Seznam doporučené literatury:
[1] Sherna. Sherna [online]. Praha: Lukáš Figura, 2017 [cit. 2020-01-21]. Dostupné z: https://sherna.siliconhill.cz/

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Richard Vachula, Fakulta Dopravní ČVUT

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 22.05.2020Datum zadání bakalářské práce: 12.02.2020

Platnost zadání bakalářské práce: 30.09.2021

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Richard Vachula

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgement / Declaration

I would like to thank Ing. Richard
Vachula, the supervisor of the bachelor
thesis for his valuable advice and guid-
ance, which was very helpful.

I declare, that I have done assigned
project alone led by supervisor. I used
only literature, that is listed in work. In
Prague 10. 5. 2020

. .

v

Abstrakt / Abstract

Tento projekt sa zaoberá analýzou
súčasného a návrhom nového webového
redakčného a rezervačného systému pre
projekt SHerna. Web je navrhnutý na
základe potrieb používateľov aj admi-
nistrátorov a zameriava sa na jednodu-
chosť pre používateľov a rozšíriteľnosť.
Výsledkom tohto projektu je analýza
súčasného riešenia, zhromaždenie po-
žiadaviek od používateľov a navrhnutie
a prevedenie krokov na implementáciu
týchto požiadaviek v novom systéme.

Kľúčové slová: Webový systém, Re-
dakčný systém, PHP, Laravel, SHerna,
rezervácie

This project deals with analysing the
current redaction and reservation sys-
tem and designing a new one for project
SHerna. The web is designed based on
needs of both users and administrators,
and focuses on simplicity for the user
and extensibility. The result of this
project is an analysis of the current
solution, gathering a requirements from
users and designing and performing
steps to implement these requirements
to in the new system.

Keywords: Web system, Content
Management System, PHP, Laravel,
SHerna, reservations

vi

/ Contents

1 Introduction .1
2 Analysis .2
2.1 Target audience2
2.2 Technology used2
2.3 Goals .3
2.4 Conclusion .3

3 Current Problems4
3.1 Access to code and docu-

mentation .4
3.2 Redaction system4
3.3 Reservation system5
3.4 Testing .6
3.5 Architecture .6
3.6 Javascript .9
3.7 Conclusion .9

4 Requirements . 10
4.1 Administrators requirements . . 10
4.2 User requirements. 10
4.3 Conclusion . 11

5 Application design 12
5.1 Technology . 12
5.2 Architecture . 12
5.3 Development process. 15
5.4 Conclusion . 16

6 Implementation 17
6.1 Front-end . 17

6.1.1 Administration 17
6.1.2 Client . 20

6.2 Back-end . 23
6.2.1 Development 24
6.2.2 Database design. 25
6.2.3 Localisation in the code . 26
6.2.4 Roles and permissions . . . 26
6.2.5 Navigation bar 27
6.2.6 Services 28
6.2.7 Authentication 29
6.2.8 Notifications. 29

7 Testing . 30
7.1 Tests . 30
7.2 Conclusion . 31

8 Future work and deployment 32
8.1 Future features 32
8.2 Deployment . 33

9 Conclusion . 34
A Symbols . 35

References . 36

vii

/ Figures

3.1. (red) navigation bar, (blue)
About submenu5

5.1. Sequence diagram 13
5.2. Project Structure. 14
5.3. MVC workflow 15
5.4. Life cycle of development 16
6.1. Administration side 17
6.2. Create view . 18
6.3. Index view . 18
6.4. Content management system . . 19
6.5. Reordering of navigation bar . . 19
6.6. Client side . 20
6.7. Reservations . 21
6.8. Comments . 21
6.9. Inventory . 22

6.10. Localised Inventory 23
6.11. Admin controllers 24
6.12. Client controllers 24
6.13. Trello dashboar 24
6.14. Database. 26
6.15. Roles . 27
6.16. Creating navigation page 28
6.17. Creating navigation subpage . . 28

7.1. Tests passing 31
8.1. Deployment docker 33

viii

Chapter 1
Introduction

Project SHerna is project from students living at Strahov dormitory to their fellow
students. While having 2 rooms equipped with all manners of things that helps people
relax while enjoying playing games, like VR, but also old DOS games, and organising
events and tournaments, people will not use our services if the information is hard to
find, or if they are hard to use. Therefore, having a nice, easy web service is crucial.
However, our currents system is outdated and after people who built it left, it is also
almost unmanageable.

In short, the purpose of the web for users is to inform students about our services and
inventories, announce news like acquiring new equipment or announcing tournaments,
and enabling them to reserve one of the two fully equipped game rooms for their use.
From the administrative side, the purpose is to have easy and intuitive interface to
manage the whole web site, administration, reservations and redaction system to create
and edit articles.

In this project, my primary goal is to address these issues. Firstly, I will have to
analyse current solution and its design, write up all the problems we as administrators
and also users face. Secondly, gather up requirements about functionality that is critical
and is missing right now, but also about things that would be useful and that would help
to ease the usability of our system. Lastly, design and implement all the requirements
from the previous step.

As I will address later in this thesis, the current solution is not made out to be scal-
able, and the architecture and implementation requires complete makeover. Therefore,
in this project, I will redesign the whole architecture and implementation from the
scratch with all the requirements in mind.

This thesis will consist of two main parts. First part will deal the current implemen-
tations and its issues with throughout analysis and breakdown the problems of it. In
the second part, I will address those issues with my own implementation. In this part,
I will talk about how I managed to avoid the same problems our current system has,
and I will discuss the new architecture and implementation.

1

Chapter 2
Analysis

In this chapter, I will be looking into the current implementation of the web system.
I will discuss technologies used but also I will address the primary goals our system
is trying to achieve and how are they being fulfilled. I will also briefly discuss target
audience.

2.1 Target audience
As of the definition, I would like to split the targeted audience into two. The first
would be the users themselves and second group would be the people administrating
our services.

Firstly I would define the users. The user of the application is a user between 18 -
25 years old student living at Strahov dormitory that likes to play video games. The
definition would be used during feature design and testing of the application. The age
range has been chosen like this because users in this range are most likely to live at
Strahov dormitory.

The second group as mentioned before are the administrators. There are few rea-
sons behind this. First of all the application could simplify the process for managing
reservations and all information about them and thanks to this some problems and
misunderstandings could be avoided. The last reason is that it would propagate their
events and services, as the users that are using it is mostly interested in the video games
themselves. With this in mind, I can analyse current workflows and in my new design
try to tackle the problems they are now facing.

2.2 Technology used
Web systems have two parts, that are separate but tightly coupled. There is the backend
side and frontend side of the system. I will now address both of them and in the end
I will discuss how they are working together. First, let me define what backend and
frontend is.

The backend part of the application, sometimes called the server-side is basically
how the site works, updates, and changes. This refers to everything the user cannot see
in the browser, like databases and servers. On backend side, we manipulate and store
all the data, like user profiles, images, blog posts, etc.

The front-end is everything involved with what the user sees and interacts, including
design.

For our backend we use PHP as its main programming language. We are using PHP
in old version 5.6.4. The database with which we are working is MySQL.

Frontend, so everything a user sees, is made up from HTML and CSS. For better
ease of use we are using Bootstrap1, version 3. Bootstrap is an open source toolkit for
developing with HTML, CSS, and JS, that helps you design websites faster and easier.
1 https://getbootstrap.com/

2

https://getbootstrap.com/

. 2.3 Goals

For joining both side of the system we are using PHP web application framework, Lar-
avel. From their official documentation: „Laravel is a web application framework with
expressive, elegant syntax. ... Laravel attempts to take the pain out of development
by easing common tasks used in the majority of web projects, such as authentication,
routing, sessions, and caching.“[1] It means, that we do not have to tackle every single
problem that can come up during developing bigger systems and their architecture.

Laravel architecture is based on the MVC (Model — View — Controller) : „The
Model-View-Controller design pattern is simply stated: 1. Data model objects encap-
sulate information. 2. View objects display information to the user. 3. Controller
objects implement actions. 4. View objects observe data model objects and update
their display whenever it changes. 5. View objects gather user input and pass it to a
controller object that performs the action.“[2]programming paradigm which forces sep-
aration of concerns of application. We can say that Model represents backend side of
the system (all the data we work with) and View represents frontend side (everything
users see). The Controller is what is mediating cooperation between the Model and the
View, and therefore, it is joining both our sides of the system.

As I said, Laravel is PHP Framework, therefore it is using special template for Views,
called Blade, „the simple, yet powerful templating engine provided with Laravel. Unlike
other popular PHP templating engines, Blade does not restrict you from using plain
PHP code in your views.“[3]. This way, our frontend consist not only of HTML, CSS
and JavaScript, but using Laravel’s templating engine we can use PHP code and special
directives to address the data we get from our backend.

2.3 Goals
There are two primary functions of our system right now: 1. Informational — To
inform students living at Strahov dormitory about our services 2. Reservation system
— Service to reserve one of our rooms for chosen day and time The first goal is to have
system that can not only communicate the information to users in eloquent and also
elegant way, but also that can post visible updates and news in a way, that is visible
and consistent with our social media. We want a blog-like feature, that would enable
us to publish articles about various events, review of games, etc, and announce our
events. Another goal is to have interactive inventory of our equipment and hopefully
connect to gaming consoles to show data. For this, we need system that will enable
us to easily maintain and manage all the information. The second goal is to make our
services easily available to everyone who wants to use them and consistent for both of
our game rooms. This consists of making reservations for one of our game rooms. Also,
as administrators, we want to maintain all the reservation, and be notified in time of
all and every change that we need to address. Therefore, we need a nice and intuitive
administrator interface.

2.4 Conclusion
This chapter aims to introduce our current implementation and explaining what the
goals of our system are. I will build on this in the later chapters.

3

Chapter 3
Current Problems

In this chapter, I will be looking into the problems of our current implementation of the
web system. I will discuss the technical side, but also the way our system fulfils goals
we established in the previous chapter. I will be considering problem from two sides,
with customers and with administrators in mind. Firstly, I will look at the problem we
as administrators have right now.

3.1 Access to code and documentation
The first problem came up as I tried to get access to the code and to the machine
on which the server is running. This project was developed more than 3 years ago,
and after 1 year of maintaining it, the people who worked on it did not have time to
continue the maintenance and nothing was done for some period of time. It started as
a simple side project, and nobody bothered with any documentation or readability of
code. Therefore, after the handful of people who had knowledge about this project left,
there was no easy way to find all the parts needed to even locally run it. In the end, I
found out that this whole project was in a private github repository, so only two people
have access to it.

Second problem arose after I finally got the github repository and wanted to get
familiar with the code. As the project is using Laravel framework, the architecture
was the same as for every Laravel project, and everyone can understand the basic logic
behind it. But after digging just bit deeper, you will realise the lack of documentation.
Controllers, which should have only one primary responsibility, are managing multiple
pages and models, most of the time absolutely unrelated to each other. Some of the
views and their forms where all managed by one big Javascript file, sending data using
AJAX even though it was unnecessary. For this kind of bigger project I would expect
at least generated PHPDoc for public methods, but there is none. Furthermore, there
are almost zero comments in the code, which makes it hard for people to understand
what is going on. Without documentation or commented code, it is easy to get lost in
ambiguous calls and methods.

3.2 Redaction system
One of the biggest problems for us as administrators is the redaction system. Right
now, the only way to add a new page with content, we need to manually add a title
to the database, then add to database also page content, and after this, we need to
update code in the corresponding view, to layout navigation bar view and also into
the controller. After this, we can use the web interface to edit the content and make
it public. The biggest problem with all this is that no one from the administrators
has access to the code and to the server where the web is running. The only one with
that access left the project more than a year ago, and nobody requested the access yet.

4

. 3.3 Reservation system

However, even if we do everything I mentioned, there are only two possible subcategories
of articles.

Figure 3.1. (red) navigation bar, (blue) About submenu

Firstly, you can add another article to the navigation bar. But this is not ideal, as it
violates the hierarchy of information, as well as you will soon run out of place on the
screen. Second option is to add new article to the subsection of O projektu (About).
However, this does not make sense for the majority of articles, that are thematically
different. It would only confuse the viewer, as he would not expect the information to
be placed there. The resolution of this problem would be to edit the whole layout view,
and all the corresponding views with hardcoded values of the navigation bar and its
pages and subpages.

The problem is not only creating and placing of new pages. Right now, every article
is treated and considered as a static page that is displaying important information
about the project. However, this goes against the reason why we wanted redaction
system. It was supposed to provide blog-like function — creating not pages, but
articles. Semantic difference aside, we wanted to be able to create new articles, sort
and place them under categories, and search through all articles. Also, as part of this,
it would be nice for users to add comments. This cannot be supported with the current
implementation, as we cannot add any metadata to the pages.

3.3 Reservation system
As I said in previous chapters, we have two equipped game rooms. For both you can
make reservations using our web, by picking a date and a time, and then you will have
access for the chosen time into one of the rooms. These uses card readers that are
installed to the doors, so it will open only for the one who made the reservation. How-
ever, in one of the rooms the reader has been broken for more than 2 years. Therefore,
to reserve that room, you must also write an email so someone can give you key to the
room. Since the reader never worked in that room, it is inconvenient that you cannot
actually reserve it via our service. It would make sense to have the reservation system
work for both rooms the same, but for the one without card reader, it would automat-
ically email available administrator. This way the user interacts with our system the
same way, and the difference will be in the background, unknown to him.

Users face another obstacle when trying to reserve a time slot. In one of our rooms,
we have Virtual Reality with many games set up. However, to use this, you need to
have an initial ’How to operate VR’ training, and only those that have the training can
request access to VR, which is locked in the room. Right now, there is no direct way
of requesting the key however, requiring the user to write another email requesting the
access.

5

3. Current Problems .
Even after successfully creating a reservation, the problems for users do not end

there. If the user wants to prolong his reservation, the room is available he cannot do
it. The only way would be to cancel the actual reservation, and create a new one.

Another problem appears when we look at the reservation from the administrator’s
side. The normal user can have only 1 active reservation with maximal duration that
is globally set up by the administrators. However, as active members of the project we
have the right to have more reservations, and also exceeding the time limit. Sometimes,
it is even required. When we organise an event in one of the locations, we must create
a reservation that will last minimally for the whole day, so we can make preparations.
Right now, the only way to do this is to navigate to administration section, and create
a new reservation there. That is not only unnecessary time consuming, you do not have
a clear view of when are the current reservations, and you need to make sure you do
not create a reservation that overlaps with another one. This is one of the biggest pain
points for us, the administrators, as we are using our game rooms periodically multiple
times a week, and having to always go to the not that much user friendly view, that is
created mostly for managing and editing the reservations, can be quite frustrating.

There is one last, but not least, problem with reservations, and that is the fact that
it is maintained and served by javascript. I will address this issue in a separate section
3.6.

3.4 Testing
One of the biggest problems is with testing. Better said, lack of it. As this project was
not small at all, without proper testing, any change could break the application. There
are no units tests for any part of the application, so every bug that is detected is only
thanks to reports of our users. Every change is potentially a breaking one. Changing or
adding a new feature would always require throughout control of the system functions
manually, to see if the change did not break anything. This would prolong any kind of
bigger system modification almost indefinitely.

3.5 Architecture
Current implementation and architecture matches the kind of project this was at the
beginning. We need to understand that it was a small project that was supposed to
help SHerna to gain a bit of attention as it was just starting. The main goal at the
time was to have a nice eye-pleasing web that would attract users and let them use our
services, and to have it up and running as soon as possible.

Therefore, by using Laravel framework and its predefined foundation, they achieved
the separation of concerns. It was okay until this point. They followed good practices
of MVC of creating controller for every page and its view in an Administration section.
However, for the client side of the app, there is only one ClientController, that has huge
amount of responsibilities, servicing request from all pages that user can navigate to. It
shows every view, that user has access to, but also it create and manage reservations,
login and authorisation services that could have been created by its own specialised
class or factory.

/**
* @return array
*/

private function getISService()

6

. 3.5 Architecture

{
/**
* Create a new instance of the URI class with the current URI
*/

$uriFactory = new UriFactory();
$currentUri = $uriFactory->createFromSuperGlobalArray($_SERVER);
$currentUri->setQuery(’’);

// Setup the credentials for the requests
$credentials = new Credentials(
env(’IS_OAUTH_ID’), //Application ID
env(’IS_OAUTH_SECRET’), // SECRET
action(’Client\ClientController@oAuthCallback’) //callback url
);

// Session storage
$storage = new Session();

// Instantiate the service using the credentials, http client and storage
$serviceFactory = new ServiceFactory();
$service = $serviceFactory->createService(’IS’, $credentials, $storage);

return [$currentUri, $service];
}

This is also true for views, where sometimes there is twice as much php code as
it has mark-up language. As an example, there is a view, where 3 different views are
situated, each one with it is own logic, and there is a simple if that determines which one
should be shown. This way, the whole solution is extremely unintuitive and disarranged,
where even trying to understand the working of one method can take you on a journey
throughout a whole system. The current implementation does not follow SOLID[4].
That is a problem, as right now, the whole solutions uses almost no abstraction, and
because of that, the code is not scalable and repairable.[5]The problem behind this is
that models in this current solutions are only java beans-like. They consists of only
properties and Laravel’s default CRUD operations. This means that all the logic is left
to controllers and sometimes even views.

Also, because of this, throughout the project, there is a lot of parts that violate the
DRY rule and the code is hard to read and understand. For example, you can see a lot
of reservations querying in controllers:

$reservationExist = Reservation::whereNull(’canceled_at’)
->where(’location_id’, ’=’, $request->location)
->where(function ($q) use ($request, $startTime, $endTime) {
$q->where(function ($query) use ($request, $startTime, $endTime) {
$query->where(’end’, ’>’, $startTime)
->where(’start’, ’<’, $startTime);
})->orWhere(function ($query) use ($request, $startTime, $endTime) {
$query->where(’end’, ’>’, $endTime)
->where(’start’, ’<’, $endTime);
})->orWhere(function ($query) use ($request, $startTime, $endTime) {
$query->where(’end’, ’>=’, $endTime)
->where(’start’, ’<=’, $startTime);
})->orWhere(function ($query) use ($request, $startTime, $endTime) {

7

3. Current Problems .
$query->where(’end’, ’<=’, $endTime)
->where(’start’, ’>=’, $startTime);
});
})
->exists();

$parallelReservationExist = Reservation::whereNull(’canceled_at’)
->where(’location_id’, ’!=’, $request->location)
->where(’tenant_uid’, ’=’, $request->userUID)
->where(function ($q) use ($request, $startTime, $endTime) {
$q->where(function ($query) use ($request, $startTime, $endTime) {
$query->where(’end’, ’>’, $startTime)
->where(’start’, ’<’, $startTime);
})->orWhere(function ($query) use ($request, $startTime, $endTime) {
$query->where(’end’, ’>’, $endTime)
->where(’start’, ’<’, $endTime);
})->orWhere(function ($query) use ($request, $startTime, $endTime) {
$query->where(’end’, ’>=’, $endTime)
->where(’start’, ’<=’, $startTime);
})->orWhere(function ($query) use ($request, $startTime, $endTime) {
$query->where(’end’, ’<=’, $endTime)
->where(’start’, ’>=’, $startTime);
});
})
->exists();

By using models without any logic except the basic one provided by Laravel, you
are forced to repeat the same code many times. This is a repeating occurrence in the
project. By splitting some logic to functions, it would follow the DRY rule, but it would
also make code mode understandable, with just a bit of documentation. Right now,
you need to go line by line to understand what exactly is going on, because, as I stated
earlier, there are no comments throughout the code.

The whole point of separation of concerns that the MVC architecture brings is laid to
waste with some of uses in the current solution. Let’s take the whole ClientController
as an example:

/**
* ClientController constructor.
*/

public function __construct(){}
public function index(){}
public function show($code){}
public function getAuthorize(){}
public function getLogout(){}
/**
* @param $result
*/

private function controlLoginUser($result){}
/**
* @return array
*/

private function getISService(){}
public function changeLang($langCode){}
public function oAuthCallback(){}

8

. 3.6 Javascript

public function postUserData(Request $request){}
public function postCreateEvent(Request $request){}
public function postUpdateEvent(Request $request){}
public function postDeleteEvent(Request $request){}
public function getDeleteEvent($event){}
public function postEvents(Request $request){}
public function postConsoles(Request $request){}
public function getReservations(){}
public function getReservationICS($reservationID){}
public function getBadges(){}
public function postEvent(Request $request){}

This is the whole class, except implementation. No documentation and no comments
either. Is it clear what the responsibility of this controller is? The name is ClientCon-
troller, that tells us it is something on the client side. But what is it doing, exactly?
What does the method ’show(code)’ shows? Why is it doing authorisation? It even
handles and manages reservations. In fact, everything the client can do, is handled in
this one class. Does not matter whether is creating a new reservation, navigating to
information pages, or reviewing his own profile, everything is in there.

This class demonstrates another problem I mentioned before. The lack of documen-
tation. One way around it is usually by searching where in the code are the methods
called. However, even this is not possible. As most of the methods are never mentioned
in the PHP code again. This brings us to another problem, the javascript handling the
business logic. This I will discuss in the next section.

3.6 Javascript
One of the biggest problems I faced when analysing and trying to get grasp of the
current solution was the fact that most of the client side is handled by javascript. It
is used to initiate all the special widgets, which is understandable, as there is often no
other way around it. However, it would help to have the functionality broke down to a
functions at least, better yet to have separate javascript files based on the responsibility
of the code. This was not the case. The javascript was in the end compressed into one
big file. That alone would not be bad, if not for the fact that even the base javascript
was all over the place, with some of the code never used, some declared multiple times
or even copy pasted to another file. It was used to create a request using AJAX, instead
of simply submitting it by the form in blade view. Because of this, many methods are
never used in the PHP code, only called via AJAX, therefore making the understanding
what action is called when more difficult, as I mentioned earlier.

3.7 Conclusion
This chapter aims to sum up the biggest and the most obvious errors and problems we
are currently facing. Some of it will be addressed in chapters with requirements that I
collected from people associated with the project and also from the users. As anyone
can see, there are numerous features that need update, but there are also problems that
are limiting the continuous maintenance and development of the current solution and
its upgrade. Therefore, the decision was made that I will create a new implementation
of the system from scratch, using all the knowledge gained in school and at work to
create a better solution that would address all the issues mentioned in this chapter and
attempt to satisfy all the requirement which I will talk about in the next chapter.

9

Chapter 4
Requirements

In this chapter I will be presenting the list of requirements I collected from administra-
tors and users.

4.1 Administrators requirements
As an administrator, I need to be able to create a new article, edit it and categorise it,
because that way I can inform our viewers with a blog. (x)1

As an administrator, I need to be able to manage and modify comments under blog
articles, because that way I can protect our users from potential hate speech. (x)

As an administrator, I need to be able to manage reservations, because that way I
have a full control over our services.

As an administrator, I need to be able to make reservation that exceeds time limit
and other settings, because that way I can use game rooms for special events.

As an administrator, I need to be able to change limits and settings for reservations,
because that way I can change it according to current situation.

As an administrator, I need to be able to manage locations and its statuses, because
that way I can close or open reservations for our rooms.

As an administrator, I need to be able to close Location for a specified amount of
time, because that will help us close the locations for events or maintenance. (x)

As an administrator, I need to be able to get notified if reservation contains request
for VR, because that way I can provide them with key to a locked VR. (x)

As an administrator, I need to be able to edit our inventory, because that way I have
full control over it and may update it based on the actual situation.

As an administrator, before any impactful edits, I need to be notified and asked for
confirmation, because that way I am less prone to errors. (x)

As an administrator, I need to be able to manage navigation bar, create a new part
or reorder it, because that way I have control over how the users see the website. (x)

As an administrator, I need to be able to assign roles to users, because that way, I
can control what actions can users take. (x)

As an administrator, I need to be able to create tournaments with registration forms,
because that way I can ease managing the event. (x)

As an administrator, I want to be able to create tournament brackets, be-
cause that will save time and allow me to control everything on one site. (x)

4.2 User requirements
As a user, I need the web to have nice, pleasing and intuitive design and user interface.
1 (x) means not implemented in the current solution)

10

. 4.3 Conclusion

As a user, I need to be able to reserve game room for chosen date and time, so I can
go there to play and relax.

As a user, I need to be able to reserve game room at Block 6 via web page (same as
for Block 4), so I do not have to write them email. (x)

As a user, I need to be able to cancel my reservation, so I will not take up space for
somebody else.

As a user, I need to be able to prolong my reservation -if it does not exceed time limit
or collide with another reservation-, so I do not need to create another reservation. (x)

As a user, I need to be able to edit my reservation, so I can have control over it and
do not need to delete it and create again. (x)

As a user, I need to be able to use the calendar widget to create and manage my
reservations, co I can use intuitive way of creating even for specific times. (x)

As a user, I need to be able to request VR for my reservation, so I do not need to
contact members of SHerna via mail to get keys for VR. (x)

As a user, I need to be able to comment on blog articles, so I can express my point
of view. (x)

As a user, I need to be able to informed about new events organised by SHerna, so
I can decide if I want to attend or not. (x)

As a user, I need to be able to find information about SHerna projects and its
members, so I know who is responsible for what and what exactly is that project.

As a user, I need to be able to contact representatives of project SHerna, so I can
ask them questions. (x)

As a user, I want to be able to be notified of new changes or articles via other channels,
e.g. Facebook, Instagram, so I do not need to check only one site for information. (x)

4.3 Conclusion
In this chapter, I listed all the requirements I was able to collect, from users and the
administrators of current system alike.

I have highlighted the requirements that are not yet implemented in the current
system. As you can see, there are a lot of them, therefore a lot of features users and
administrators are yet to be implemented. This only shows that the original purpose
of the web was only to satisfy the most fundamental requirements.

11

Chapter 5
Application design

After analysing the current solution, it is clear that I must redesign the whole system, as
the state in which it is right now is not fulfilling our requirements, and is not extendable.
The reason for this are:

1. Code is hard to understand
2. Code doesn’t follow good practices
3. Solutions in not easily expandable and modifiable
4. Project does not follow separations of concerns thoroughly, and because of this
5. Every new feature will only add to the difficulty of understanding the solution
The cost of using the current solution as a whole would be even higher than using

some of its components and creating the whole design and system from scratch.
Therefore, in this chapter, I will discuss how I will proceed in designing the system

from scratch.

5.1 Technology
For the technology, I will continue to use the Laravel framework even for the new
solutions. There are few reasons that lead me to this decision:

1. Possible usage of some of the spare parts from the previous solution
2. Previous experience with web development using PHP
3. Opportunity to learn new and popular framework, that I found very interesting

and intriguing during my analysis of the previous system
4. Experience of my supervisor with Laravel projects and technology
For all the reasons mentioned above, I will stick with the same technology, although

in its most recent version, 7.x.x.

5.2 Architecture
As it is the main cornerstone of Laravel, the main architecture will again be MVC, as it
is also the standard for such apps. The main goal of the new architecture will however
be to be more scalable and modular, creating layers of services and reusable groups.
I will try follow the separation of concerns, and have one controller for one specific
responsibility, if possible, with logic for only one model. My first basic idea for an
architecture was to have one central controller that will be used as main communication
access point, selecting the right action and controller. The main reason behind this was
that this way, the whole app and its logic would be connected, and it would help
code understanding and expandability. However, this part of the application is already
provided by Laravel, although a little bit differently. Routes are stored in separate files,
defining the url, parameters, request method, and the action that should be taken. For
example, if I wanted to declare what will happen when I type url /login, it is done as
easy as this:

12

. 5.2 Architecture

Route::get(’/login’, ’Auth\LoginController@login’)->name(’login’);

First parameter is the url, second is the action, and lastly I name the route ’login’,
and now I can reference it by this name anywhere in code. All in all, this one line
tells us, that after calling url /login with GET method, LogincController’s action login
should be called. Here is the abstract sequence diagram capturing the abstraction of
the flow:

Figure 5.1. Sequence diagram of url processing

Another attempt to make the code easier to understand will be to create an easy-to-
follow project structure, splitting the files into logical directories which makes it easier
to find them when working on large projects. This will be the case for all three parts of
MVC - splitting models, controllers and views files in the same logical structure. As our
system will have 2 main parts, Administration and the Client side, both with multiple
subparts, following structure suits us the best.

13

5. Application design .

Figure 5.2. Project Structure

With the logical project structure I established above, it is very intuitive what code
will be executed based on the user’s action, and where to look in code. If the user
viewed the Blog, the route he called is stored in routes/client.php, the controller named
BlogController inside Controllers/Client folder was called, and it showed view from
views/client/blog.

Another advantage is that this way, the adding of new functionality is well docu-
mented and repeatable process. After creating all the files needed for the new feature,
you will just simply follow the example in the code, and add the specific route.

For models, I will make sure that they not only have java beans-like properties and
defined basic CRUD operations, but also that some of the logic is happening in this
layer, in order to follow separation of concerns. For models that are handled by multiple
Controllers, e.g. Reservation that can be created via both Admin and Client sides, I
will create a service layer where the logic will take place.

In a very simple and basic MVC workflow, when a user interacts with our application,
the steps in the following image are performed.

14

. 5.3 Development process

Figure 5.3. MVC workflow [6]

5.3 Development process
During the development process, I shall focus on creating comprehensive documenta-
tion, so in addition to understandable architecture, future developers that may come
after me will have an easy time adapting to the system.

I will try to follow agile style with its sprints, in order to focus on one specific feature
at time.This will in turn encourages simple designs and it will incrementally improve the
Minimum viable product(MVP), as „Unfortunately adding features doesn’t necessarily
improve the business case. It may take longer, make the product less usable, and
carry more risk...We define MVP as that unique product that maximizes return on
risk for both the vendor and the customer... The MVP solves a variety of problems,
especially on a product’s first release. Products without required features fail at sunrise
but products with too many features cut return and increase risk for both vendor and
customer.“[7], as instead of wasting resources in a feature that no one would use, it is
crucial to focus on the key features that contribute to the product. Furthermore, with
components covered by tests, every future change could be easily tested and it would
be easy to recognise that change broke something it the system.

With this comes cyclic incrementing development. This style will also benefit from
my closeness with the project users. By being in contact with them during the whole
process, I can spot wrong approaches right away and fix it in the next cycle.

15

5. Application design .

Figure 5.4. Life cycle of development[8]

5.4 Conclusion
In this chapter, I aimed to outline the architecture and the development process along-
side providing the reasons for my choices. In the next chapter, I will build onto this
and I will talk about the whole implementation, problems I have encountered and how
did I resolve them and the problems of the previous solution.

16

Chapter 6
Implementation

In this part, I would like to go through a high-level overview of the implementation of
the front-end and the back-end of the application.

6.1 Front-end
For the front-end, the idea was to use the parallel programming that MVC enables us
to do, with me dealing with the architecture and the implementation, and our graphic
creating a new design for the website. However, due to the covid pandemic, this was not
possible. Therefore, I mainly used the same styles and design as the previous solution.
As I stated multiple times before, our web consists of 2 main parts, administration, and
the client section. I will briefly talk about these in the next few sections.

6.1.1 Administration

Figure 6.1. Administration

For the administration, the Gentelella admin template is used1. Navigation bar is
located on the left side. Of course, the whole template is responsive thanks to Bootstrap.
The purpose of the administration is to manage the whole web page, as well as all the
data and settings, like creating a new location, adding a new game to an inventory, etc.

Even though the template is the same as it was in the previous solutions, multiple
changes has been made. For starters, the template was updated to the latest version.
Other changes came with the functionality change that I will mostly talk about in the
1 https://colorlibhq.github.io/gentelella/

17

https://colorlibhq.github.io/gentelella/

6. Implementation .
Back-end section 6.2. Here I will provide only small overview. The basic responsibility
of every page in this section is to manage and handle CRUD operations. Therefore,
there are 3 different views for every model that can be managed - Create, Edit, Index.
Create and Edit views are almost the same, with only minor changes as some data can
not be modified after creation. Their whole purpose is to put data in a database.

Figure 6.2. Create view

Index page, on the other hand, gathers all the data from the database, and shows
overview of it. Due to possible numerous of data, it is paginated with the Laravel’s
build in solution. In the next screenshot, I manually set the number of instances shown
per page to 5, in order to demonstrate it.

Figure 6.3. Index view

The most changes came with the new functionality. As I said before, the previous
system lacked the complete and functioning content management system(CMS), there-

18

. 6.1 Front-end

fore I had to create new one. More information will be provided in the back-end section
6.2. Example of using the CMS for blog articles:

Figure 6.4. Content management system

Here you can see the edition of an article. Every article can have many categories,
which are highlighted using the javascript widget Tags Input 1. For this input, there
is also an autocomplete configured, so users get suggestions to prefill already existing
categories. If the category user typed does not yet exists, it will be created.

One of the biggest changes comes with the new possibility to manage the client
navigation bar, create new parts for it and more. For that, I used drag and drop
functionality in the index view to easily and intuitively reorder the navigation bar. You
simply need to drag the row and select in what order you want the user to see the
pages.

Figure 6.5. Reordering of navigation bar

1 http://xoxco.com/projects/code/tagsinput/

19

http://xoxco.com/projects/code/tagsinput/

6. Implementation .
Other parts of the administration look similar, following the unified layout, appear-

ance and functionality.

6.1.2 Client

Figure 6.6. Client side

The first big change on the client side is the navigiation bar. As I talked about in
the previous section, the navigation bar can be edited. Therefore, it is now loaded
dynamically from the database, not statically hardcoded in the view as it was before.

For the clients side, there are 3 constants pages (excluding home page and simple
contact us form): Reservation, Inventory and Blog with its articles. Other pages and
subpages can be created and managed, but these 3 cover special functionality.

First, the most important one, reservations page. On this page, users can create
and manage their reservations. For that, I am using the fullcalendar javascript widget1

Users can use the control of the calendar to create, prolong, or completely move the
reservation. This is a big improvement from the previous solution, where users had to
manually fill the form to create a reservation, and there was no way to edit it. The
user’s own reservation is shown in green colour, all others are blue.

1 https://fullcalendar.io/

20

https://fullcalendar.io/

. 6.1 Front-end

Figure 6.7. Reservations

The next constant page comes with the new Blog feature, The article created from the
CMS can have comments, so that logged in users can share their opinion on the article,
and have a discussion with each other, as they can even reply to another comments.
These nested comments have predefined limit of nesting to 5, in order to avoid the
comment to get smaller and smaller. Every article has an option to have comments
disabled, and also, only logged in user can post comments. In the next iteration of
work, edition of comments will be enabled, for users or administrators alike, but right
now this feature is not coded yet. However, guests can view all the comments without
the requirement to be logged in. The users icon that there is right now will be replaced
by the users’ images taken from the Information System.

Figure 6.8. Comments

21

6. Implementation .
The inventory shows all the items that are located in the game rooms, sorted in the

categories, and of course all the consoles and their games. The content of this page
is gathered dynamically from the database with data managed in the administration
section. Every location has its own games and inventory, and inventory is split into
categories defined by administrators. For games, they are separated for each console
in the location, and there are also additional information displayed. Right now it is
shown only in its base form, as this page is ought to be redesigned by our graphic to
have more pleasing and intuitive form.

Figure 6.9. Inventory

Whole web is localised, with every article and page having content for every language
supported (right now they are per requirements 2 languages supported - English, and
Czech). Static messages and notifications also have translations. So after changing the
language, everything will show the correct version.

22

. 6.2 Back-end

Figure 6.10. Localised Inventory

There are few more screens, however, there is no special behaviour in them, only
showing the content. Although bear in mind, I am no graphic and was using just base
styles and templates. Once the COVID pandemic will be through, it will enable us the
meet and work more closely, as well as test the new User Interface the new design will
for sure bring.

6.2 Back-end

The main difference between the previous system and this new one is in the back-end.
As I started from scratch, I had to design every part of this. I followed the cornerstones
of the design I mention in the Application Design section 5. For the administration side,
it was easy. Every model has its own controller handling the index, edit and create view
for data for CRUD operations. For the client side, it was a bit more difficult, considering
my aim was to create a web that could be configured and managed almost entirely from
the Administration section. In this section, I will start be describing the development
process, then I will move and describe the database, and after that, I will touch upon
the most interesting features and problems I encountered.

23

6. Implementation .

Figure 6.11. Admin controllers Figure 6.12. Client controllers

6.2.1 Development

As I stated before, I was trying to adopt some king of agile development, where I had
sprints during which I worked on chosen tasks and created a MVP. For this, I created
a dashboard with epics, stories, and tasks, using a Trello 1.

Figure 6.13. Trello dashboar

The next step to ease the process was to use GIT2 as a versioning system. For every
sprint, I selected one epic I wanted to implement, created tasks, and created a new
branch in my repository. After the functionality was tested and working, I merged the
branch. This way, I achieved easily revertible incrementing changes, therefore creating
an MVP in a cyclic process.

1 https://trello.com/
2 https://github.com/SHernaSH/sherna-web-v2

24

https://trello.com/
https://github.com/SHernaSH/sherna-web-v2

. 6.2 Back-end

6.2.2 Database design

The current implementation is using MySQL database, and I decided to stick with that
for a few reasons:

1. Popularity - with large number of users and developers, it is bound to stay
supported and at the top of the game for a long time

2. Ease to use - From installation to actual working with the database, MySQL is
very intuitive

3. High performance - „MySQL is designed to meet even the most demanding appli-
cations while ensuring optimum speed, full-text indexes and unique memory caches for
enhanced performance.“[9]

4. Costs - For our intended purposes, the MySQL database is free of charge

I chose to use the relational database(SQL), instead of non-relational (NoSQL), as
it is easier to understand and use, due to its traditional status, and the experience I
have with this kind of databases. Also, the main advantages that NoSQL provides,
would not be used much in our use case: „NoSQL tends to be a better option for
modern applications that have more complex, constantly changing data sets, requiring
a flexible data model that doesn’t need to be immediately defined. Most developers
or organizations that prefer NoSQL databases, are attracted to the agile features that
allow them to go to market faster, make updates faster. Unlike traditional, SQL based,
relational databases, NoSQL databases can store and process data in real-time.“[10]

Laravel provides a powerful ORM implementation called Eloquent for work with
databases. „The Eloquent ORM included with Laravel provides a beautiful, simple
ActiveRecord implementation for working with your database. Each database table has
a corresponding Model which is used to interact with that table. Models allow you to
query for data in your tables, as well as insert new records into the table.“[11] Eloquent
creates an abstract layer over the database, so it - in most cases- does not depend
on the concrete database realisation, and it works with majority of currently available
databases. All in all, every model has a corresponding table in the database, and has
methods to query this table, automatically mapping retrieved results to the right object,
or a collection of objects. Models are not self-contained. They have relationships that
intertwine with each other, representing the 1:1, 1:N and M:N relations.

The main problem with designing the database was how to implement localisation.
In order to resolve that, the languages table was created, and every table that needs
localised data has a foreign key referencing it. Furthermore, localised models consists
of 2 tables. One the main table with common information, and second table with
information that is different for each language. For example, there is table articles with
id, url and user that created it, and another table articlestexts with all the information
in the associated language.

25

6. Implementation .

Figure 6.14. Database

6.2.3 Localisation in the code

The localisation had to be resolved not only in the database, but also in the code. For
this reason, I created a new LocalisedModel with local scope, ensuring that every query
will return only results with the current language. Therefore, when I wanted to make
a model localised, all I had to do was to extend LanguageModel, instead of Model,
and that was all. The handling of the model is the same as if it was not localised, as
everything is resolved in the background.

6.2.4 Roles and permissions

The next obstacle appeared in a form of permissions. The previous solution just had
in code check if the user is admin, and that was all for the roles. That is why I had to
create a whole new system.

I used the build-in functionality of Laravel to generate all actions possible, and store
them as a permission, assign a permission to a role and create a middleware that after
every request is sent, checks whether the user’s role has the permission to perform this
action.

This way, we can dynamically create new roles, or edit the existing ones, based on
our needs.

As every action is by default disabled for everyone, after creating a new Controller or
action, there is a need to generate the new permission. By doing that, the permission
is assigned to a super admin, that can then assign it to other roles. This way, by using
a whitelist, instead of a blacklist, we can ensure no unauthorised person can access
something he does not have permissions for.

26

. 6.2 Back-end

Figure 6.15. Roles

6.2.5 Navigation bar

Maybe the biggest setback I encountered was with a navigation bar. I wanted it to
be completely modifiable though administration. To chose if the navigation will be a
dropdown with subpages, or whether it would lead right the the page with the content.
Change an order in which the navigation bar is showed, to edit the contents of all the
pages. But there was a small problem. Some of the pages in the navigation have their
own logic and their own controller to handle them. Even the way the content are shown
is different. For example, in reservations page, there is a calendar for every location.
In order to resolve this, I added a new attribute to the database, a special code, that
determines whether the navigation page should be treated a bit differently.

For the reordering, as I mentioned, I used javascript that enables to simply and
intuitively drag and reorder to navigation as user wishes.

However, the real problem that took a long time to crack was how to create a new
navigation dropdown page. I wanted to enable user to create the page, and the subpages
associated with it in the same page, as it is intuitive. But to create a new subpage, I
must first create the parent page and save it into the database, which would mean the
creation would have to have at least 2 steps. One to create and save the parent page,
and afterwards create the subpages, and associate it with the parent.

I found the solution for that using the session variable. After creating a subpage, it
is stored inside the session for the next redirect, refreshing everytime the edition of the
page go on. After the whole page is saved, every subpage is consequently saved and
associated with it.

27

6. Implementation .

Figure 6.16. Creating navigation page

Even though the subpages are currently stored only inside the sessions, you can still
manipulate them as if they were stored in the database. You can even reorder them
the same way the navigation pages can be reordered.

Figure 6.17. Creating navigation subpage

6.2.6 Services
Usually, one model is handled by one controller. However, sometimes the model has
more controller associated with it, e.g. Reservation can be created both from adminis-
tration and the client side. Therefore, for these cases (namely it is Reservation, Page,
and User), I created a Service layer, in order to avoid repetition of code.

In both - Admin and Client - Reservations controllers, this is the only repetition of
code, instead of having the whole setting and storing logic repeated in two places.

$validation = $this->reservationService
->makeReservation($request, Auth::user());

if (!is_string($validation)) {
flash(trans(’reservations.success_added’))->success();

} else {
flash(trans($validation))->error();

}

28

. 6.2 Back-end

6.2.7 Authentication
For the Authentication our application is connecting to the Information System(IS) of
SiliconHill, via the OAuth2 Server Api. For that, I used PHPoAuthLib1.

This way, our application does not need to store the passwords of our users, and
can use the users of the IS, which makes sense, as it is also the requirement to use our
Services, and it stores all the data the application needs. After the authentication, if
the users is not in our database, we create him from the data from IS.

6.2.8 Notifications
Another new feature I added is the notification. Users and administrators are automat-
ically notified - for only only per email, slack can be easily added’ - when they create a
reservation that depends on more than just using the reader on game room doors. For
instance, everytime users request Virtual Reality, email is send to the administrators,
to contact the user about providing him the key for the VR. Same goes when the users
creates a reservation for a location that has access on key, both user and administrators
are notified, as per requirement, for this enables the user to treat every location the
same during creation of the location

These notification used the fact that the Users in Laravel automatically use Notifiable
trait2.

1 https://github.com/Lusitanian/PHPoAuthLib
2 https://laravel.com/docs/7.x/notifications

29

https://github.com/Lusitanian/PHPoAuthLib
https://laravel.com/docs/7.x/notifications

Chapter 7
Testing

As I stated previously, on of the biggest problems of the previous solution was the total
lack of testing. My goal was to cover all and every functionality of the application with
tests. For that, I used the LaravelShift[12] service, to generate the template test for
every route and create unit test covering my custom request validation.

7.1 Tests
Laravel provides us with 2 distinctive test categories. Unit and Feature. For Unit test,
I am testing the Form Validation and its rules for every form request, to validate the
rules are set up correctly. This is paired with a feature that that asserts an action is
using the correct Form Request validation. In doing so, it ensures everything is wired
together as required by Laravel to perform the validation.

However, the most important are the feature tests that check whether the action, or
in other words, the feature is working as intended. This is ensured by using the requests
to send data, and after the action is performed, asserting the state of application is as
desired. For example, after sending request index reservations, I want to assert that at
the page I can see all the reservations with the correct data. Another example, after
sending request to update the user role, the test needs to ensure the user has a correct
role assigned after the action was performed.

Lets take the following test as an example:

public function store_returns_an_ok_response()
{

$user = factory(\App\Models\Users\User::class)->create();
$status = Helpers::createLocationStatus();
$data = [

’location_uid’ => $this->faker->word,
’reader_uid’ => $this->faker->word,
’status’ => $status->id,

];
foreach (Language::all() as $language) {

$data[’name-’ . $language->id] = $this->faker->name;}
$response = $this->actingAs($user)->post(route(’location.store’),
$data);

$response->assertStatus(302);
$response->assertRedirect(route(’location.index’));
foreach (Language::all() as $language) {

$this->assertDatabaseHas(’locations’, [
’name’ => $data[’name-’ . $language->id],
’language_id’ => $language->id,
’status_id’ => $status->id,]);

}
}

30

. 7.2 Conclusion

This test is asserting that the storing of Location is working as intended. Firstly,
the test must create a new user and new location status - whether the location is
opened/closed, etc.). Then, data is populated using Faker1, so everytime, there u is
new and unique data, not hardcoded values. Afterwards, request is sent with this data
to create a new location. Then, the test asserts that response has correct status and is
redirecting to the right page. In the next step, the test is asserting that the database
contains the newly created location with correct data.

As of right now, the application has 162 passing test, with 24 more that are incom-
plete, and need more assertions to enable them - most of them are Form Assertions.

Figure 7.1. Tests passing

7.2 Conclusion
In conclusion, the current state of tests covers all functionality, making it easy for
developers to spot and find the errors. Everytime the application is changed, or a
feature is added, these test can help to ensure all the functionality is woking as intended,
or, in case something is broken, quickly find the cause of the error.

This will ease the workflow of adding new features and changes, greatly increasing
the scalability of the solution. More work is still needed, to tests wrong data, assert
errors are shown, etc. But for know, I wanted to have a coverage of basic test for every
action, to ensure everything runs smoothly.

1 https://github.com/fzaninotto/Faker

31

https://github.com/fzaninotto/Faker

Chapter 8
Future work and deployment

In this chapter, I would talk about the future work and features that will the application
have during public release. The next part would be discussing deployment of the web
on a server.

8.1 Future features

There are many features that I plan on adding before the web is released. One of them,
of course, it the new design. For this, I plan on using the Vue.js1 framework, which has
a great integration with Laravel framework.

The next features will be to satisfy the requirements not yet implemented in my new
solution. This includes a notification integration with Slack, and also with Instagram
and Facebook. As our project is active on social sites, it would be nice to have our
followers notified every time a new event is created, article published, etc.

For the integration, if it is possible, I would like to connect to our consoles and create
a page showing the games we have, the gametime played, achievements achieved.

The next big feature would be to have a system created and ready to host events,
register our users and create a tournament brackets for the participants. The reason
for this is that we often host a tournaments in one of our competitive games, and right
now the user registration is manual, they write their name on a paper, and we then
create a tournament brackets using some of the online tools.

One more small feature based on requirements is to enable an option to closed location
for a specified amount of time, in order to enable us to close the location for an event, or
for a maintenance, instead of just reserving a time slot for that, as it is more informative.

1 https://vuejs.org/

32

https://vuejs.org/

. 8.2 Deployment

8.2 Deployment
For deployment, we have our own machine where the server is hosted. However, I plan
on creating a container for the application. „A container is a standard unit of software
that packages up code and all its dependencies so the application runs quickly and
reliably from one computing environment to another. A Docker container image is a
lightweight, standalone, executable package of software that includes everything needed
to run an application: code, runtime, system tools, system libraries and settings.“[13].
By dockerizing the application, new docker image will be automatically released when
changes are pushed into our git repository. On the server, the only thing that needed to
be done is to automatically fetch the latest image. This way it would all be automated
and changes and new features easily deployed. Another advantage is having a complete
control over the environment, so at all times we know exactly what versions of the
dependant services are we using. This would be a big improvement over the way
changes to the application are made today. Right now, you need to log in into the
server, and manually change the code.

Figure 8.1. Deployment docker[14]

Right now, the application is deployed online using Heroku 1 on the url 2. The app
is deployed automatically once changes are pushed to the github repository on branch
deployment.

1 https://dashboard.heroku.com/
2 https://sherna-web.herokuapp.com/

33

https://dashboard.heroku.com/
https://sherna-web.herokuapp.com/

Chapter 9
Conclusion

The purpose of the bachelor thesis was to analyse the current implementation of the
SHerna web system, design and implement a new version of this application that would
satisfy the requirements and would be expandable.

First, I have discussed the technologies used, the architecture, and its perks and
disadvantages. I have analysed and listed all the problems with the current solution. I
have written down the requirements for the system. Then I presented the draft of the
new implementation.

Afterwards, I followed the implementation process, describing the new architecture
and obstacles I faced, and how I resolved the problems of the previous solution. Then
I moved on to describe the testing process.

At the end, I drafted the future work that needs to be done on the application, with
new features that are still missing or could be improved. Briefly I talked about the
deployment and how the system will be managed in the future.

34

Appendix A
Symbols

PHP Recursive initialism for PHP: Hypertext Preprocessor
MVC Model View Controller

CRUD Create read update and delete
SOLID Single responsibility, Open–closed principle, Liskov substitution princi-

ple, Interface segregation principle principles, Dependency inversion prin-
ciple

DRY Don’t repeat yourself
MVP Minimum viable product
SQL Structured Query Language

NoSQL Not Only Structured Query Language

35

References

[1] Laravel philosophy.
https://laravel.com/docs/4.2/introduction.

[2] James Bucanek. Learn Objective-C for Java Developers. Apress, 2009. ISBN 978-
1-4302-2369-6.
https://link.springer.com/book/10.1007/978-1-4302-2370-2.

[3] Laravel Blade.
https://laravel.com/docs/7.x/blade#introduction.

[4] Steve Fenton. Pro TypeScript: Application-Scale JavaScript Development. Edition
1 edition. Apress, 2014. ISBN 978-1430267911.

[5] WHY SHOULD EVERY MAGENTO DEVELOPER FOLLOW SOLID PRINCI-
PLES?
https://dckap.com/blog/why-should-every-developer-follow-solid-principles.

[6] The basic architecture of Laravel applications.
https://subscription.packtpub.com/book/web_development/9781788833912/1/
ch01lvl1sec11/the-basic-architecture-of-laravel-applications.

[7] Frank Robinson. MINIMUM VIABLE PRODUCT .
http://www.syncdev.com/minimum-viable-product/.

[8] Common Mistakes Agile Software Development Teams Make.
https://number8.com/common-mistakes-using-agile-method.

[9] 8 Major Advantages of Using MySQL.
https://www.datamation.com/storage/8-major-advantages-of-using-mysql.html.

[10] NoSQL vs Relational Databases.
https://www.mongodb.com/scale/nosql-vs-relational-databases.

[11] Eloquent ORM .
https://laravel.com/docs/7.x/eloquent.

[12] Laravel Tests Generator .
https://laravelshift.com/laravel-test-generator.

[13] What is a Container?
https://www.docker.com/resources/what-container.

[14] How to dockerize your PHP application for AWS Fargate?
http://cloudonaut.io/how-to-dockerize-your-php-application-for-aws-fargate.

[15] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Edi-
tion 1 edition. Prentice Hall, 2008. ISBN 978-0132350884.

[16] Matt Stauffer. Laravel: Up & Running: A Framework for Building Modern PHP
Apps. 2nd ed. edition edition. O’Reilly, 2019. ISBN 978-1492041214.

36

https://laravel.com/docs/4.2/introduction
https://link.springer.com/book/10.1007/978-1-4302-2370-2
https://laravel.com/docs/7.x/blade{#}introduction
https://dckap.com/blog/why-should-every-developer-follow-solid-principles
https://subscription.packtpub.com/book/web_development/9781788833912/1/ch01lvl1sec11/the-basic-architecture-of-laravel-applications
https://subscription.packtpub.com/book/web_development/9781788833912/1/ch01lvl1sec11/the-basic-architecture-of-laravel-applications
http://www.syncdev.com/minimum-viable-product/
https://number8.com/common-mistakes-using-agile-method
https://www.datamation.com/storage/8-major-advantages-of-using-mysql.html
https://www.mongodb.com/scale/nosql-vs-relational-databases
https://laravel.com/docs/7.x/eloquent
https://laravelshift.com/laravel-test-generator
https://www.docker.com/resources/what-container
http://cloudonaut.io/how-to-dockerize-your-php-application-for-aws-fargate

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	/Figures
	Introduction
	Analysis
	Target audience
	Technology used
	Goals
	Conclusion

	Current Problems
	Access to code and documentation
	Redaction system
	Reservation system
	Testing
	Architecture
	Javascript
	Conclusion

	Requirements
	Administrators requirements
	User requirements
	Conclusion

	Application design
	Technology
	Architecture
	Development process
	Conclusion

	Implementation
	Front-end
	Administration
	Client

	Back-end
	Development
	Database design
	Localisation in the code
	Roles and permissions
	Navigation bar
	Services
	Authentication
	Notifications

	Testing
	Tests
	Conclusion

	Future work and deployment
	Future features
	Deployment

	Conclusion
	Symbols
	References

