
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Scene reconstruction from multiple RGB-D
cameras and detection of the best
additional camera viewpoint

Jan Jirman

Supervisor: Mgr. Karla Štěpánová, Ph.D.
Co-supervisor: Mgr. Radoslav Škoviera, Ph.D.
Field of study: Open informatics
Subfield: Software
May 2020

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

466370Personal ID number:Jirman JanStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Open InformaticsStudy program:

SoftwareBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Scene reconstruction from multiple RGB-D cameras and detection of the best additional camera
viewpoint

Bachelor’s thesis title in Czech:

Rekonstrukce scény z více RGB-D kamer a určení vhodného přídavného pohledu kamery

Guidelines:
The goal of the thesis is to reconstruct a scene viewed by multiple RGB-D cameras, find occlusions in the scene,
and compute ideal viewpoint that would minimize the occlusion. The objects in the scene are of known type and
shape. However, their position and orientation is unknown. The computed information about occlusion in the
scene should contain uncertainty of the object pose detection. Based on this information, the proposed system
should find a view that would minimize the occlusion and the uncertainty. The proposed system is to be utilized
as a part of a collaborative robotic workplace with multiple cameras, with one camera attached to a robotic
manipulator.
1. Preparation of experiments in both virtual and real environments.
2. Detection of objects based on AruCo markers from RGB-D data.
3. Fusion of data from multiple cameras.
4. Visualization of the detected objects.
5. Computation and visualization of scene occlusion by the detected objects.
6. Evaluation of the quality of the object pose and shape detection.
7. Viewpoint optimization based on the collected and computed data. The optimal viewpoint should minimize
the amount of occlusion in the scene.
8. Incorporating restrictions of the real robot (at least a size of the workspace)
9. (optional) Extension to objects without AruCo markers.

Bibliography / sources:
1. Hu, Yinlin, et al. "Segmentation-driven 6d object pose estimation." Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2019.
2. Vidal, Joel, et al. "A Method for 6D Pose Estimation of Free-Form Rigid Objects Using Point Pair Features on Range
Data." Sensors 18.8 (2018): 2678.
3. Lepetit, Vincent, Francesc Moreno-Noguer, and Pascal Fua. "Epnp: An accurate o (n) solution to the pnp
problem."International journal of computer vision 81.2 (2009): 155.
4. Rad, Mahdi, and Vincent Lepetit. "BB8: A scalable, accurate, robust to partial occlusion method for predicting the 3D
poses of challenging objects without using depth." Proceedings of the IEEE International Conference on Computer Vision.
2017.
5. Hodaň, Tomáš, et al. "Detection and fine 3D pose estimation of texture-less objects in RGB-D images." 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE, 2015.

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Name and workplace of bachelor’s thesis supervisor:

Mgr. Karla Štěpánová, Ph.D., Robotic Perception, CIIRC

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 22.05.2020Date of bachelor’s thesis assignment: 12.02.2020

Assignment valid until: 30.09.2021

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
Head of department’s signatureMgr. Karla Štěpánová, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgements
I would like to thank my thesis supervisor Mgr. Karla Štěpánová, Ph.D. for all the

help with this work, valuable advice, consultations and comments provided to help me
with this work. I would also like to thank Mgr. Radoslav Škoviera, Ph.D. for valuable
consultation and advice with this work.

v

Declaration
I declare that the presented work was developed independently and that I have listed

all sources of information used within it in accordance with the methodical instructions
for observing the ethical principles in the preparation of university theses.

Prague, May 22, 2020

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uved lveškeré
použité informační zdroje v souladu s Metodickým pokynem o dodržování etických
principů při přípravě vysokoškolských závěrečných prací.

V Praze, 22. května 2020

vi

Abstract
In a multi-camera environment, scene reconstruction and merging data from multiple

cameras is an important task with applications in numerous areas. In this work, we
develop multiple methods of scene reconstruction and camera pose suggestion for an
additional viewpoint at the scene that maximizes visible area. We create a software that
implements those methods, for a use case scenario of a human-robot shared workspace
with multiple fixed cameras and one camera on a movable robot arm, for additional
viewpoint.

Keywords: Multicamera environment, Scene reconstruction, Camera pose suggestion

Supervisor: Mgr. Karla Štěpánová, Ph.D.

Co-supervisor: Mgr. Radoslav Škoviera, Ph.D.

Abstrakt
V prostředí s více kamerami je důležitá úloha správně složit informaci z těchto kamer

a zrekonstruovat scénu. Tato úloha najde uplatnění v mnoha odvětvích. V této práci
se zabýváme vývojem několika metod pro rekonstrukci scény a návrhu pozice a rotace
kamery pro přidaný pohled na scénu, který maximalizuje viditelnou oblast. Vytvořili jsme
software, který tyto metody používá jako součást většího projektu sdíleného pracoviště
mezi člověkem a robotickou rukou. Na tomto pracovišti je několik pevných kamer a jedna
přimontovaná kamera na robotické ruce, pro přídavný pohled.

Klíčová slova: Vícekamerové prostředí, rekonstrukce scény, návrh polohy kamery

Překlad názvu: Rekonstrukce scény z několika RGB-D kamer a detekce nejlepšího
dalšího pohledu kamery

vii

Contents
Glossary 1
1 Introduction 3
1.1 Use case scenario . 3
1.2 Description of the goal . 4
1.2.1 Evaluation and the results . 5

2 Related work 7
2.1 Object detection and pose estimation . 7
2.2 Scene and object reconstruction . 8
2.3 Reasoning . 8
3 Methods and algorithms 11
3.1 Voxelization . 11
3.2 PnP . 11
3.3 ArUco Markers . 12
3.4 Octree data structure . 12
3.5 SVD . 12
4 Experimental setup 13
4.1 Datasets and collection . 14
4.1.1 Wall . 14
4.1.2 Corridor . 15
4.1.3 ForeignObjects . 15
4.1.4 TwoPillars . 16
4.1.5 Castle . 16

4.2 Implementation . 16
5 Architecture 19
5.1 Modules . 20
5.1.1 Detection module . 20
5.1.2 Scene reconstruction module . 20
5.1.3 Assignment module . 21
5.1.4 Camera pose suggestion module . 21

5.2 Knowledgebase . 21
6 Scene reconstruction methods 23
6.1 6DoF estimation method using SVD . 23
6.2 Voting method . 25
6.3 Multiview solvePnP . 26
6.4 Possible extensions and future work . 28
6.4.1 Temporal filtering . 28
6.4.2 Reasoning about empty spaces . 28
6.4.3 Reasoning about support and stability . 28
6.4.4 Propose disambiguation camera views . 29

7 Camera pose optimization methods 31
7.1 Light sources method . 31
7.2 Sum of voxel volumes method . 31
7.2.1 Generate candidate camera poses . 32
7.2.2 Scene voxelization . 32

viii

7.2.3 Find shadow voxels . 33
7.2.4 AntiAlias shadow voxels . 35
7.2.5 Score each camera pose . 35
Discussion about the method . 36

7.3 Render and count shadow pixels method . 37
7.3.5 Render voxelized scene . 38
7.3.6 Count shadow pixels . 38
Discussion about the method . 39

7.4 Shadow mesh method . 40
7.4.2 Construct visibility mesh . 41
7.4.3 Combine visibility meshes . 42
7.4.4 Add reconstructed objects . 42
7.4.5 Render colored work area mesh . 43
7.4.6 Count shadow pixels . 43
Discussion about the method . 44

7.5 Simulated visual servoing . 45
7.5.1 Generate candidate camera poses . 45
7.5.2 Find the shadow bounds . 45
7.5.3 Repeat iteration . 46
7.5.4 Chose the best pose . 46
Discussion about the method . 46

8 Experimental results – Scene reconstruction 47
9 Experimental results – Camera pose suggestion 49
9.1 Evaluation metric . 50
9.2 Visualization guide . 50
9.3 Different datasets . 51
9.3.1 Wall dataset with only side camera enabled . 51
9.3.2 Two Pillars . 52
9.3.3 Corridor . 54

9.4 Summary and evaluation of experimental results . 55
9.4.1 Iterative visual servoing . 58
9.4.2 Special cases . 58
9.4.3 Comparison of methods . 59
9.4.4 Evaluation vs Production environment . 61

10 Conclusion and discussion 65
10.1 Future work . 66
Resources 67
Literature . 67
Code references . 69

ix

Figures
1.1 Schematic image of human-robot workstation. 3
1.2 Schematic diagram of a bigger software pipeline. 4

3.1 Stanford bunny voxelized at different resolutions. 11
3.2 An example of an ArUco marker. 12

4.1 Photo of a board with ArUco markers and a simple scene. 13
4.2 Wall dataset. 14
4.3 Corridor dataset, seen from the sides. 15
4.4 Corridor dataset, seen from above and front. 15
4.5 ForeignObjects dataset. 16
4.6 TwoPillars dataset. 16
4.7 Castle dataset. 17

5.1 Diagram of modular architecture. 19
5.2 Feature detection and pose estimation visualization. 20
5.3 Diagram of selected part of the ontology KB structure. 22

6.1 An image showing transformation from object to word coordinate frame. 24
6.2 Graph showing probability of occurrence of an object instance of given type. . . 26

7.1 Example sets of initial camera poses. 32
7.2 Image of voxels of different sizes, showing variability of level of detail. 33
7.3 Image of axis misaligned cube and thin layer of SHADOW on its side. 35
7.4 Visualisations of voxelized scene and shadows. 37
7.5 Rendered suggested camera view and an overview of the scene. 39
7.6 Image of camera visibility mesh on the Wall dataset. 41
7.7 Image of work area mesh reconstruction. 42
7.8 Partially work area mesh with reconstructed and objects. 43
7.9 Rendered view of reconstructed work area mesh. 44
7.10 Image of small false shadow areas on the ground and walls. 45

8.1 Castle dataset with most cameras disabled. 48
8.2 Plot showing error values and their standard deviations. 48

9.1 Image of camera poses relative to a scene. 49
9.2 Suggested camera visualization guide. 51
9.3 Best camera pose using the voxel volumes method on Wall dataset. 51
9.4 Best camera pose according to pixel count with ShadowD0 method. 52
9.5 First 5 iterations of visual servoing algorithm using “ShadowD3” method. 53
9.6 6 iterations of visual servoing algorithm using “ShadowD6” method. 54
9.7 Comparison of best poses using ShadowD0 and ShadowD6. 55
9.8 Comparison of best poses using ShadowD0 and ShadowD6 with removed FOV. 55
9.9 Corridor scene using VOX method. 56
9.10 Corridor scene using ShadowD6 method. 56
9.11 Corridor scene using ShadowD3 method. 57
9.12 Corridor scene using ShadowD0 method. 57
9.13 Camera pose suggestion using mesh method. 59

x

9.14 Camera pose suggestion using voxel method on ForeignObjects dataset. 59
9.15 Camera pose suggestion using mesh method on ForeignObjects dataset. 60
9.16 Graph showing run time vs and voxel ratio. 61
9.17 Image of fewer camera poses relative to a scene. 61
9.18 Graph showing run time vs and voxel ratio with only 40 initial poses. 63

Tables
9.1 ShadowD6 score values on Wall dataset. 53
9.2 ShadowD6 score values on Corridor dataset. 56
9.3 ShadowD3 score values on Corridor dataset. 57
9.4 ShadowD0 score values on Corridor dataset. 58
9.5 Camera poses comparison by different methods. 60
9.6 Speedup and quality change on smaller camera poses set. 62

xi

Glossary

. Pose , 6DoF – transformation information using both position and rotation.
We have opted for using quaternion to describe rotation. 6DoF is
represented as a quaternion and translation vector: q[a, b, c, d] + [x, y,
z].. Detection , Object detection – process of transforming raw pixel data to
information about object type and its pose. This serves as input for this
project.. Software pipeline – All software and connections used for entire robot
arm system (described in more details in [Sec: 5]). This thesis serves as
one of many parts of this pipeline.. Ray – Half line, starting at its origin and continues in only one direction,
as defined by its direction vector.. Object type – Definition (3D model, ...) of an object, which might be
seen at the workspace, as described by knowledgebase.. Object instance – One observed occurrence of an object. There can be
many observed occurrences of object of the same type, at any given time.. Feature – Structure consisting of a value of measured property in a data
source (e.g.: an ID of an ArUco marker detected in an image) and its
reconstructed 6DoF pose.

1

2

Chapter 1
Introduction

In a multi-camera environment, scene reconstruction is an important task
with applications in multiple areas. It is not sufficient to only detect objects
in each camera alone, but a combination of these views is necessary to:.Overcome occlusion problems from some cameras.. Fully utilize range and coverage of entire setup, not just single camera.. Increase precision and stability of reconstructed scene.

1.1 Use case scenario

This project is part of a bigger software pipeline controlling a robot arm in a
human-robot shared workspace. The goal is to merge data and reconstruct a
scene from multiple camera streams, gathered from cameras mounted around
the workspace and one mounted on the robot arm. This software will also
propose a new camera pose, to which the robot will move its arm maximizing
visual information detected from the scene, if there isn t enough relevant
information already.

Figure 1.1: Schematic image of human-robot workstation.

3

1. Introduction
Workspace

Sensors

Audio Keyboard RGB-D HTC Vive
Speech

recognition

NLP node
Tokenizer and Tagger

Grammar parser

Template detector

New
program
template

Unground program

Grounded program

List of services:
get_grammar

get_templates

get_objects

add_or_update_scene

save_new_template

save_new_robot_program

set_suggested_camera_pose

save_calibration

get_programs_to_run

mark_program_finished

Knowledge base node Vision node

Detection and
6DoF Estimation

Scene
reconstruction

Executor node
Wait for new program

Detect new program

Check grounding

Add new program

Execute

Finished

Robot node
Check grounding

Check grounding

Execute action

Program k

Program n

Program k+1

...

Remove program and
ask for the next one

ge
t n

ex
t p

ro
gr

am

Program queue:

Ready for newcommand

\new_grounded_program

Camera pose
suggestion

Figure 1.2: Schematic diagram of a bigger software pipeline. Vision node
is shown in green, external modules are in gray. The focus of this thesis is
implementing yellow modules (part of vision node). Red modules are sensor
inputs to the entire system.

1.2 Description of the goal

The goal of this thesis is to develop software implementing VisionNode
(as shown on [Fig: 1.2]), its modules and provide a framework for their
communication. Modules which are not fully implemented yet, but are
required for the operation of the vision node are replaced with a mockup
version, until the time when the production modules are ready, at which point
we will only swap module for module and all communication systems will
already in place. Part of this software is also a visualization tool, screenshots
from which are shown throughout this thesis.

Goal of scene reconstruction module [Sec: 6] and camera pose suggestion
module [Sec: 7] is to merge multiple views of the scene to one reconstructed
scene. Detect unknown areas (due to occlusion or other factors) and propose

4

................................ 1.2. Description of the goal

new camera viewpoint such that would minimize information loss (unknown
areas/ambiguous object detections or poses). The software takes already
detected objects, or “features” (Described in [Sec: 5])) as its input from a
detection module. Development of a module for detection in the color images
and 6DoF pose estimation is outside of the scope of this work. At the time of
writing the thesis, the detection module which would be used in production
was not ready and therefore we could not connect to it and use it.

1.2.1 Evaluation and the results

This work proposes several different approaches (methods) for tackling both
Scene reconstruction [Sec: 6] and Camera pose suggestion [Sec 7] tasks. These
methods have been qualitatively evaluated and compared to each other, with
some quantitative evaluation as well [Sec: 8, Sec: 9].

5

6

Chapter 2
Related work

Related work in this area can be split into multiple sections, none of which
are trying to solve the same problem as this thesis does.

2.1 Object detection and pose estimation

There are multiple papers describing transformation using color images (and
some in combination with depth images) to detect what type of object the
camera is looking at, and its pose. These works use only one camera and are
potential candidates for detection module (described in [Sec: 5.1.1]).. Segmentation-driven 6D Object Pose Estimation [1].

A segmentation-driven 6D pose estimation framework where each visible
part of the objects contributes a local pose prediction in the form of 2D
keypoint locations. From a set of 3D-to-2D correspondences, a reliable
pose estimate can be obtained..A Method for 6D Pose Estimation of Free-Form Rigid Objects
Using Point Pair Features [2].
A feature-based method for 6D pose estimation of rigid objects based
on the Point Pair Features voting approach. The presented solution
combines a novel preprocessing step, which takes into consideration the
discriminative value of surface information, with an improved matching
method for Point Pair Features..Deep Object Pose Estimation for Semantic Robotic Grasping
of Household Objects [3].
One of the key challenges of synthetic data, to date, has been to bridge the
so-called reality gap, so that networks trained on synthetic data operate
correctly when exposed to real-world data. The authors of this paper
explore the reality gap in the context of 6-DoF pose estimation of known
objects from a single RGB image and show that for this problem the reality
gap can be successfully spanned by a combination of domain randomized
and photorealistic data..Detection and Fine 3D Pose Estimation of Texture-less Objects
in RGB-D Images [4].

7

2. Related work.....................................
This paper proposes a practical method for the detection and accurate 3D
localization of multiple texture-less and rigid objects depicted in RGB-D
images.

2.2 Scene and object reconstruction

There are several papers, which propose techniques of scene (or object) recon-
struction and representation. Most of these methods aim at reconstructing a
scene or object which shape is not known. Whereas the problem solved is
similar as multiple camera viewpoints have to be merged together to gather
information, it i not the same as object detection and pose estimation, because
in the latter case, the shape of the objects to detect is known. Our work
explores techniques for reconstructing a scene from known 3D models and
their estimated poses.. Scene reconstruction from multiple cameras [5].

The paper reviews some approaches to the problem of recovering a depth
map from two or more images. It then describes a number of representa-
tions, including volumetric representations, layered plane-plus-parallax
representations, and multiple depth maps..Pixels, voxels, and views: A study of shape representations for
single view 3D object shape prediction [6].
This study compares surface-based and volumetric 3D object shape rep-
resentations, as well as viewer-centered and object-centered reference
frames for single-view 3D shape prediction. The comparison is with
respect to the neural net model prediction.. 3D scene reconstruction from multiple uncalibrated views [7].
In this project, the authors explore different methods, even try some com-
mercial applications to reconstruct a 3D scene from multiple uncalibrated
views..Real-Time 3D segmentation of cluttered scenes for Robot Grasp-
ing [8].
This paper presents a real-time algorithm that segments unstructured and
highly cluttered scenes. Using depth information, the algorithm robustly
separates objects of unknown shape in congested scenes of stacked and
partially occluded objects.

These papers study different methods and techniques related to object
modeling (prediction of the model shape), whereas this work focuses on
merging information about known object models.

2.3 Reasoning

This group of papers talks about different reasoning or post-processing strate-
gies with already obtained scene and reconstruction quality improvements.

8

...................................... 2.3. Reasoning
. 3D-Based Reasoning with Blocks, Support, and Stability [9].

The authors propose a new approach for parsing RGB-D images using
3D block units for volumetric reasoning. The algorithm fits image seg-
ments with 3D blocks, and iteratively evaluates the scene based on block
interaction properties.
This has not been used in this work yet, but it could be integrated
into the scene reconstruction module[6.4.3] in the future, for improved
object detection and pose estimation quality, by reasoning about physical
possibilities of reconstructed scenes. (E.g.: Are objects floating in the
air? Are some on top of different ones, with enough support and stability
to not tip over? If not, the detected scene is probably wrong, because in
the real-life “source” objects are clearly not tipping over.).Guidance of Robot Arms using Depth Data from RGB-D Cam-
era [10].
Image Based Visual Servoing (IBVS) is a robotic control scheme based
on vision. This scheme uses only the visual information obtained from a
camera to guide a robot from any robot pose to a desired one.
This paper has inspired the idea of Simulated Visual Servoing for camera
pose suggestion method enhancement (see [Sec: 7.5]. One of the main
differences is that we are not using a real camera, but rather a simulated
view from a specific pose, which gets refined according to what is visible
from that pose.

9

10

Chapter 3
Methods and algorithms

All the code used in this thesis is available at [Src: 1].

3.1 Voxelization

Voxelization is the process of taking general 3D meshes and turning them
into an occupancy grid that covers the entire work area without overlap (see
[Fig: 3.1], image from [11]).

Figure 3.1: Stanford bunny voxelized at different resolutions. Left-most bunny
is the original mesh. Grid resolution at the bottom. Image from [11]

For performance reasons, we have used octree data structure [Sec: 3.4] for
storing and manipulating voxels.

3.2 PnP

PnP – “perspective-n-point problem” (PnP) is coined by Fischler and Bolles
[12] for the problem of estimating the pose of a calibrated camera given a set
of n 3D points in the world and their corresponding 2D projections in the
image. The camera pose consists of 6 degrees-of-freedom (DoF).

The problem is to find rotation-translation matrix [R ~t] in

xc

yc

1

 =

fx 0 cx

0 fy cy

0 0 1


R ~t




xw

yw

zw

1

 ,

11

3. Methods and algorithms
where xc and yc are coordinates of point projection into 2D camera reference

frame, fx, fy, cx, cy are camera intrinsic parameters (focal length and principal
point), and xw, yw and zw are coordinates of a point in world reference frame.
This formulation neglects lens distortion.

3.3 ArUco Markers

An ArUco marker [13, 14] is a type of fiducial square marker composed by a
wide black border and an inner binary matrix that determines its identifier
(ID). The black border facilitates its fast detection in the image and the binary
codification allows its identification and the application of error detection
and correction techniques.

Figure 3.2: An example of a 6x6 ArUco marker with ID=23.

3.4 Octree data structure

An octree [15] is a tree data structure in which each internal node has exactly
eight children. Octrees are most often used to partition a three-dimensional
space by recursively subdividing it into eight octants.

3.5 SVD

SVD – singular value decomposition is a factorization of matrix M such that
M = USVT , where S is a diagonal matrix with non-negative real numbers
on diagonal. U and VT are orthonormal matrices.

In this work, SVD is used for solving overdetermined homogeneous linear
equations while minimizing the total least squares error. More detail is
[Sec: 6.1].

12

Chapter 4
Experimental setup

The experimental environment consists of a board (roughly 50x35 cm) with
ArUco markers on its edges and corners (shown in [Fig: 4.1]) and a handheld
D435 Intel Realsense camera that is pointed at this board, such that enough
markers are in its viewport. The camera was held in the hand for added
flexibility when recording datasets for later use (multiple viewpoints and
transitions between them. Easy setup of the desired viewpoint to test a
specific phenomenon or edge case.) We can still detect the camera’s extrinsic
transformation relative to the board’s coordinate system (Also referred to
as “scene coordinate system” or “world coordinate system”) using the ArUco
markers. The only added benefit to having a fixed structure is the elimination
of motion blur, but the amount of motion blur introduced by holding a camera
was negligible and did not pose a problem for this work.

Figure 4.1: Photo of a board with ArUco markers and a simple scene.

Objects to be detected are placed on the board. We refer to the specific
placement of these objects on the board as a “scene”. One such scene consisting
of three cubes and one rubber duck is shown in the [Fig: 4.1]. To simplify
detection, objects are 5 cm cubes with a unique ArUco marker on each side.
This is a simplified setup for the development. The board and handheld

13

4. Experimental setup
camera will be replaced with actual robot-human workspace and multiple
fixed cameras and one arm-mounted camera. In [Sec: 5.1], we will discuss that
in spite of this simplification, we can still use the rest of this work without
any major modification for real-world scenarios, without the need for any
markers.

Robot arm-mounted camera creates several constraints for viewpoint sugges-
tion, mainly the reach of the robot arm and reach with the desired orientation
of the end effector. The other constraint is self-occlusion (the robot arm may
hold the camera in such a way that it will partially occlude its view).

We will neglect this as the issue can be partially mitigated with camera
placement on the end effector and selecting a good way of moving the robot
arm to the desired pose. For the remainder of this work, let us assume that
transformation between the end-effector pose and actual camera pose is small
and therefore negligible, for purposes of suggesting optimal camera pose (and
therefore viewpoint).

4.1 Datasets and collection

Dataset is a scene taken from one or multiple views, where color and depth
information from the camera are recorded, as well as its intrinsic parameters
(focal point, principal point, distortion coefficients)

Few selected datasets are shown in the following subsections. In the
following subsections, there are images that show the color view from selected
viewpoint of each dataset (on the left side) and a merged reconstructed scene,
with cameras visualized at the original camera’s extrinsic transformation.

4.1.1 Wall

Figure 4.2: Wall dataset. Color camera images on the left, reconstructed scene
including camera poses on the right.

The red cube is occluded from the view of the front camera and blue
and magenta cubes are occluded from the top view. Both camera views are

14

................................ 4.1. Datasets and collection

therefore required for full reconstruction of this scene.

4.1.2 Corridor

Figure 4.3: Corridor dataset, seen from the sides. Color camera images on the
left, reconstructed scene including camera poses on the right.

Figure 4.4: Corridor dataset, seen from above and front. Color camera images
on the left, reconstructed scene including camera poses on the right.

A gray cube is hidden between two slightly elevated walls. Middle cube
cannot be seen from either side view. Each side view can see only its respective
wall. The front view does not show the entire wall. The only viewpoint from
which everything can be seen at the same time is from the top.

4.1.3 ForeignObjects

View is obstructed by non-detectable objects. Non-detectable objects repre-
sent foreign occlusion, such as, but not limited to, human hands in the view,
parts of the robotic arm, a random coffee mug and many others. Because
of the occlusion, the reconstructed scene appears to be empty without any
objects on the scene.

15

4. Experimental setup

Figure 4.5: ForeignObjects dataset. Color camera images on the left, recon-
structed scene including camera poses on the right.

4.1.4 TwoPillars

Figure 4.6: TwoPillars dataset. Color camera images on the left, reconstructed
scene including camera poses on the right.

Scene casting two different non-intersecting shadows (again, from the front
view).

4.1.5 Castle

Scene consisting of perfectly corner-to-corner aligned cubes taken from nine
different camera viewpoints. This is later used for evaluation of scene recon-
struction.

4.2 Implementation

The code is written in C++17 and some methods use GLSL to leverage
the power of the GPU. It is implemented as a ROS node (Robot Operating

16

................................... 4.2. Implementation

Figure 4.7: Castle dataset. Color camera images on the left, reconstructed scene
including camera poses on the right.

System [16]). ROS is used for communication with other parts of the software
pipeline, such as detection module or knowledge base.

Major used libraries are. librealsense [17], library for communicating with D435 RGB-D camera
and reading live image streams from it.. OpenCV [18], library used for image processing of captured images and
simple ArUco detection.. ROS [16], used for communication with other nodes of the pipeline.. CGAL , The Computational Geometry Algorithms Library [19], a library
for mesh operations, such as boolean or decimation, (library used through
libigl [20]).. VTK , Visualization ToolKit [21], a library used by the visualization
subsystem of the software.

17

18

Chapter 5
Architecture

Detection module

RGB-D camera

Scene reconstruction module

(Other inputs)

Per camera/input device

Set of
detected
features

Set of
detected
features

Assignment module Camera pose
suggestion module

Reconstructed scene Reconstructed scene

Knowledgebase
Previous scene

Assigned scene objects

Suggested camera pose

Object types and
their features

Object hierarchy

Figure 5.1: Diagram of modular architecture. Green modules are part of this
work, Yellow module is future extension of this work and Gray modules are
external, developed independently.

Vision node can be broken down into multiple modules (as shown in
[Fig: 5.1]), which can interact with each other.

19

5. Architecture
The modular design allows us to change modules between development and

production environment, artificially manipulate information that goes in or
out to find and isolate the strengths and weaknesses of the system or quickly
test out multiple different methods to solve the same sub-task.

We intend to replace the detection module used in this work with a different
one for production, which is currently being developed independently. This
new detection module will be able to work on real-world objects, without
relying on ArUco markers, either for pose estimation or camera extrinsic
calibration. The module itself is outside of the scope of this project.

5.1 Modules

5.1.1 Detection module

The first action is to detect features and their 6DoF estimation, along with
camera 6DoF. Currently, the detection module is a mockup that provides
adequate data flow. The “feature” consists of an ID of the ArUco marker and
marker’s 6DoF. This feature is then paired with the camera extrinsic and is
sent along the line to the next module (Scene reconstruction module). This
module will be replaced by an independently developed one in the future, one
which would not require ArUco markers.

This process happens for each camera (and potentially other pose tracking
devices, such as HTC Vive) in each frame, effectively yielding multiple
instances and potentially multiple types of detection modules.

Feature: [21]: 6DoF: q[0.72, -0.68, -0.13, -0.12] + [-0.02, 0.05, -0.01]
Feature: [26]: 6DoF: q[0.98, -0.03, -0.19, 0.01] + [-0.03, 0.03, 0.02]
Feature: [22]: 6DoF: q[0.61, -0.39, 0.39, -0.57] + [0.01, 0.03, 0.00]

Figure 5.2: Feature detection and pose estimation of ArUco cube by the mockup
detection module. 6DoF represented by a quaternion and a translation vector.

5.1.2 Scene reconstruction module

The purpose of this module is to collect all the features from all the detection
modules connected and output the final scene representation, which is a set
of pairs [object type, 6DoF] with a confidence value. The module has to

20

....................................5.2. Knowledgebase
combine pieces of information that might conflict with each other because of
imperfect measurements of detection module and ambiguities in the scene. It
has to then decide on the quality of each piece of information and how to use
it. More information about the actual function and multiple methods used in
[Sec: 6]

The scene reconstruction module communicates with a knowledge base,
from where it downloads descriptions of the object types using all the feature
types that the detection module might return. E.g., In human words, “There
is an object type, let us call it a lemon , and it is yellow and round” or “There
is a red cube , with an ArUco marker 13 on the front side . This red cube
has other markers as well.”

5.1.3 Assignment module

This module will keep track of instances of the same type of objects throughout
the changing logical frames in the scene outputs from the scene reconstruction
module. This information is essentially quantization of a statement “This
particular instance of this type of an object has been moved from here to
there, whereas all others stayed at their original locations.” Implementation
of the assignment module is subject to future work.

5.1.4 Camera pose suggestion module

The purpose of this module is to determine which parts of the reconstructed
scene are unknown, and based on this information, suggest a new camera
pose that will maximize collected information. We call the unknown areas
“shadows”. More details in [Sec: 7].

5.2 Knowledgebase

Knowledgebase (KB) provides information to different modules and expects
a result (reconstructed scene, suggested camera pose, ...) to be stored in
it. All software systems (e.g., robot arm motion optimization, NLP system,
...) share the same KB in a production environment. As such, every system
queries it through a shared network connection, managed by ROS. KB itself
is not part of this work as it is developed independently. However, because
production KB is not fully implemented yet, we are using a mock KB [Src:
2], which implements common interface [Src: 3] that provides the rest of the
modular architecture with adequate data flow and will be used for actual KB
in the future.

Mock KB is initialized with data describing cube shapes, names an object
hierarchy (e.g., “ Red cube is also a Cube , but not every Cube is a Red cube ”)
and what features (only of ArUco feature type) are associated with each
object and in what relative 6DoF to each other (to a reference point of the
object) [Src: 4].

The knowledgebase used in this project is an ontology (see [Fig: 5.3]).

21

5. Architecture

Figure 5.3: Diagram of selected part of the ontology KB structure.

22

Chapter 6
Scene reconstruction methods

Scene reconstruction outputs a hypothesis about objects and their poses.
There can be multiple ambiguous “explanations of observations”, for example
a front view of a cube or a long box with the same color. In such a case, we
output a “superposition” of both.

In the following sections, we will describe multiple scene reconstruction
methods. The only implemented method is the first one SVD 6DoF estima-
tion method [Sec: 6.1] which has serious limitations and is not suitable for
production environment. The other two are at the conceptual level only and
we would like to implement and explore the methods in the future.

There was not enough time to explore all of these methods, as the camera
pose suggestion system is more important in the current context. Sub-optimal
results of scene reconstruction module do not affect the quality of camera
pose suggestion module, because it can just assume that its input is correct
and when reconstruction module gets exchanged for a different one, the
camera pose suggestion will only work on slightly different data (a cube is at
a different position than it was before in the same dataset) which is essentially
invisible change from the perspective of the camera pose suggestion module.

6.1 6DoF estimation method using SVD

We can use SVD method for estimating 6DoF of objects from feature’s
representative set of 3D points ~xF (in the world coordinate system) from the
detection module (in this case, four corners of each ArUco marker, in world
space) and finds affine transformation T between corners of each marker
belonging to given object and 3D positions of respective points ~xS in the
object’s coordinate frame (equal to world coordinate frame, if the object is at
origin, with zero rotation). See [Fig: 6.1]. Matrix [A ~t] of this transformation
T , describing the projection between points ~xF = T (~xS) = [A ~t]~xS is found
using SVD [Sec: 3.5] method:

Find centroid of each set of points:

~cF = 1
‖~xF ‖

∑
i

~xFi ,

23

6. Scene reconstruction methods
~cS = 1

‖~xS‖
∑

i

~xSi ,

then construct 3x3 covariance matrix H:

H =
∑

i

(~xSi − ~cS) · (~xFi − ~cF)T .

From SVD decomposition:

H = USVT .

Matrix S is a diagonal matrix and matrix A = UVT is a rotation-only
transformation matrix, representing optimal rotation of set of points ~xS such
that errors between transformed points and ~xF are minimal.

As a last step, we have to construct adequate translation ~t, because so far
we have been treating all points as linear, not affine.

~t = −A · ~cS + ~cF .

We now know the matrix [A ~t] which is our desired transformation T .

Figure 6.1: An image showing transformation from object (cube, on the right)
at world origin (3D cross) to new object’s pose (cube, on the left), using detected
feature points ~xF (colored dots near corners, on the left cube), matched with their
source positions ~xS (dots of the same color, on the right cube). Transformation
of these points defines transformation T of the entire object.

This is a very simple reconstruction method, which works under two strong
assumptions:..1. There is at most one instance of an object type visible in the scene at

any given time. Current implementation of this method makes a list
of all 3D points belonging to one object type and uses that to find its
pose. Therefore it does not differentiate between different instances or
occurences of objects (of the same type) and in the case of multiple

24

....................................6.2. Voting method

instances per object type, it tries to find a transformation that best
fits all the points, yielding object pose appearing in the centroid of all
instances of that object type, with “averaged” rotation...2. Every feature value references only one object type. This is somewhat
related to the previous assumption. Once feature value (let us say, a
marker with the same ID) is assigned to an object type (its corner
points are added to a list of vectors for SVD) it cannot be removed
or ignored anymore as it is treated as a support evidence for that
particular object type. If there were multiple objects (cubes) in the
knowledgebase with same marker IDs (on at least one side), a detected
marker would be assigned to each cube and therefore multiple cubes
would get reconstructed at the same time.

Assumption 1 will not be satisfied in the production environment. There
will be many instances of the same object type on the scene (for example a
box full of screws, each screw in the box being an instance of the object type
screw)
Assumption 2 may or may not be satisfied in the production environment,

depending on the detection module used. There might be however multiple
detection modules, outputting multiple feature types for the same scene (for
example one detecting shape of an object, other detecting a color of an object).
This assumption would have to be satisfied for all feature types, which will
very likely not be the case.

6.2 Voting method

Voting method gets its name from the fact that it combines pieces of informa-
tion that might conflict with each other (because of imperfect measurements
of detection module and ambiguities in the scene) using a voting scheme.
Every feature casts a “vote” in a 7-dimensional table (6 for 6DoF and 1 for
object type) in a respective cell for quantized values of the object’s 6DoF and
object’s type. Features also cast negative votes on nearby 6DoF for objects of
a different type. The negative votes are the case only for object types which
do not share features with same (or similar) values (In human words “If I see
an object with red color at this pose, I will vote positively for each object
type that is characterized by feature an object with red color around that
pose. And negatively for each that is not.”).

After each vote is counted, this table represents (if normalized such that it
sums to one) a distribution of probabilities that at given 6DoF there is an
instance of an object of a given type (see [Fig 6.2]). We can extract local
maximal values from this table and save object instances to the reconstructed
scene at their respective poses.

This method does not require either of the assumptions mentioned in
the previous method to hold, making it a viable choice for the production
environment. One of several advantages is that it can easily combine many

25

6. Scene reconstruction methods

Figure 6.2: Graph showing probability of occurrence of an object instance of
given type (vertical axis) based on different 6DoFs (one component of 6 6DoF
axes projected onto a horizontal axis). There are three object instances present,
marked with green dashed lines at their respective 6DoFs.

feature streams of different feature types from multiple sources at the same
time (for example different detection methods from visual streams of cameras,
different detection methods from a depth only camera stream, HTC Vive
trackers, etc.).

A major disadvantage is the voting process, which requires discretization of
all 6DoF values (6DoF are continuous variables, but table has only discrete
cells) and therefore the table has to be very large (have many small cells),
in all 6 dimensions of 6DoF, to achieve required accuracy. On the other
hand, the smaller the cells are, the more votes get “dilluted” among the
neighbouring cells, effectively hiding the local peaks. There are techniques
to improve quantization artefacts to be explored, including casting votes to
neighboring cells to mitigate the negative effect of values which get quantized
to near border of a cell (as described in [2]).

This method has not been implemented yet. It is only a proposal which is
subject to further work.

6.3 Multiview solvePnP

PnP (Perspective n points) [Sec: 3.2] is a technique normally used for recon-
structing 3D points from their projection to 2D plane (e.g., a camera plane),
in such a way that reprojection error is minimized. Reprojection error is
an image distance between a point projected from the reconstructed scene
and a point in the measured camera image. This leads to different error
numbers when 3D points are moved in different directions relative to the

26

..................................6.3. Multiview solvePnP

camera (moving points further away or closer to the camera will have less
effect than moving it side to side).

We can extend this process to the multicamera environment and use
this interesting property, where the directions with small sensitivity (depth
direction in camera reference frame) will be very different for each camera
(assuming very different positions or orientations between different camera
views) in the world coordinate system. When we reconstruct 3D points in
a way that minimizes global reprojection error (sum of reprojection errors
from all cameras), we can achieve precise reconstruction, because the method
intrinsically cherry picks parts of information from each camera that are
relevant with respect to the camera pose (e.g., it is better to set a point’s
left-right position from the front facing camera, but not its depth. Use a
different (for example top facing) camera for that). More views of the same
object instance should improve its reconstructed pose precision dramatically.

This approach creates a challenge of what to do if you do not see corre-
sponding points in all of the camera views. It is essential to not to reason
about each point separately, but rather with constraints between them (“this
is a corner of a cube, this is a different corner of the same cube, therefore they
have to be placed at a given distance from each other”). If one of them moves
in order to minimize reprojection error in first camera’s view, the second
one has to move with it, even if it increases reprojection error in the second
camera’s view).

Related problem to this, is a detection of points that belong to a different
instance of the same object type, even if the objects are relatively close to
each other. This could be addressed with multipass/iterative approach:..1. Say that all points of given type belong to the same object instance...2. Run PnP...3. Cut away points from this instance which introduce large reprojection

error (split the object instance to two or more)...4. Repeat PnP on each...5. If some reprojection errors are outside of threshold, split again and repeat
from step 3 ...6. Otherwise stop.

This is similar to K-means problem, where we are also solving which data
point belongs to which “center” and where that center is. The difference is
that with K-means, there is a given number of centers and we assign data
points to the one with closest distance, whereas in our method we do not
know the number of centers (object instances) beforehand and have to “split”
(or possibly “merge”) said “centers”. We do however have a way of deciding
that the result is sufficient – based on threshold of global reprojection error.

The disadvantage of the multiview solvePnP is that it requires “features”
with specific information and cannot deal with any arbitrary feature type.

27

6. Scene reconstruction methods
The features have to contain information where specific known points of the
objects are being projected to (in camera plane coordinates), and information
about the camera itself (its extrinsic transformation, intrinsic calibration and
distortion coefficients). All of this information should be available in the
production environment though, so this does not pose a major problem.

This method has not been implemented yet. It is only a proposal which is
subject to further work.

6.4 Possible extensions and future work

6.4.1 Temporal filtering

One possible improvement is using short-term memory of last several frames
of scenes and average over them (or use more advanced statistical method) for
filtering to remove small movements caused by instability or near-instability
of current observation of a scene or confusion between two similar types of
object for one object instance. This would make the scene more stable.

Possible ways of implementing this feature are either:. Adding features from older frames to current frames with smaller and
smaller weights, based on the age of the said features and evaluate with
the rest of the data, without any modification to the method itself. A
different implementation strategy might be native support for short term
temporal filtering in the method itself.. Native support for short term temporal filtering in the method itself.

6.4.2 Reasoning about empty spaces

Shadow information from the camera’s depth sensor can be used not only for
occlusion and visibility detection, but also to remove some of the “superposi-
tion candidates” that cannot be correct, based on the shadow information.
At places where there is no SOLID_or_SHADOW space detected from cameras, we
have knowledge that the space is empty and therefore cannot be occupied by
any object or part of it. In human words, we are filtering areas where the
proposed object candidate would not be able to fit. That is, using information
about what we do not see, to refine knowledge acquired from information
about what we do see.

6.4.3 Reasoning about support and stability

Paper [9] proposes using an information about support and stability interac-
tions between different objects on the scene and refining reconstruction in
such a way that it will output stable scenes (e.g., without floating objects or
objects that would fall instantly, but they do not in the real world, therefore it
means that the detection and pose estimation must have been wrong). Their
approach could be adapted to our system.

28

...........................6.4. Possible extensions and future work

6.4.4 Propose disambiguation camera views

Some reconstructions might be ambiguous or very hard for the system, from
current camera views. An example would be 2 instances of thin (in the
direction of camera view) object type, which may be accidentally merged into
one, because of failing depth perception. Imagine a camera looking at the
front side of a phone. It knows that it is a phone and where it is in the image
(left-right, top-bottom). There is one more camera looking from the back
side of the phone. It also knows where a phone is in the image (left-right,
top-down). Neither camera has a very good depth estimate. It is reasonable
to assume that both of them are looking at the same phone (one instance
of a phone). If there were two phones, positioned such that the front side of
one would be glued to (or just aligned with) the back side of the other, the
second phone is virtually invisible, unless we have a side view available.

It would be nice, if a method used would be able to detect situation such
as this and pass information to camera pose suggestion module that it wants
a view from a particular side or angle to enhance reconstruction.

29

30

Chapter 7
Camera pose optimization methods

In this section, we will describe four different camera pose suggestion methods,
each with different strengths and weaknesses and an enhancement which can
be applied to each of mentioned methods. The first method is only a concept,
all the other ones have been implemented and tested.

7.1 Light sources method

Light sources method is a first concept which never got implemented at the
end.

The idea was to construct a 3D scene (from voxels or some other represen-
tation), add point lights to the scene, at the positions of the original cameras,
render it and areas which are in shadow were not visible. Add a next light
source (camera in real life) such that the new shadow area will be minimized.
This method would not work, because a correctly detected object would still
be in shadow, from a different side. E.g.: Top-down view of a single cube
would yield 2 more necessary camera views, one centering north east edge of
the cube and other one south west edge (or 90 deg rotated equivalent). It
also suffers from an inability to handle scenes with foreign or not detected
objects and would-be shadows cast by them. All such shadows and occlusions
are treated as if the respective parts of the scene were known, but without
any SOLID objects.

7.2 Sum of voxel volumes method

Sum of voxel volumes method (In the thesis referenced as “Voxel method” or
just “VOX” for short) works by scoring each camera view by a “voxel score”
or “vox score” and then selecting a view with the best score (highest number).

The process could be broken down into several steps:..1. Generate candidate camera poses to test...2. Voxelize the scene. We are using Octree [Sec: 3.4] as a voxel structure,
for performance reasons.

31

7. Camera pose optimization methods3. Find shadow areas (voxels) which are not visible from any camera...4. AntiAlias shadow voxels, to mitigate some discrete world artefacts...5. Score each of candidate camera pose. Score is volume of area that was
marked as SHADOW in step 2, but is not marked as SHADOW anymore, with
the new (tested) camera pose.

7.2.1 Generate candidate camera poses

Camera pose suggestion works by scoring candidate poses using some metric
and selecting the best one. For that, we need to have good starting candidate
poses.

Currently the software generates [Src: 5] two half-spheres each with different
radius and uniform regular distribution of positions on these half-spheres [22]
(see [Fig: 7.1]). Each position is coupled with a camera rotation (to create
6DoF pose) that looks to the center of the work area. The smallest sphere
also generates poses where camera direction is different, to have more poses
inside of the scene, to add the ability to look through or under structures in
the scene.

Camera poses are generated with the reach of the robot arm in mind, such
that they are not too far from the scene, where the robot arm could not reach
and use the pose for camera viewpoint. We can generate poses at different
distances from the center, in different configurations or amount, if we need to
for that particular robot arm setup.

Figure 7.1: Example sets of initial camera poses. Two half spheres with low
point density (on the left), Two half spheres with medium density (in the middle)
and 3 half spheres with high point density (on the right).

7.2.2 Scene voxelization

Scene voxelization [Sec: 3.1] is a process of creating a grid of non-intersecting
cubes (or “voxels”), the union of which covers the entire work area based
on 3D models of objects in the reconstructed scene. Each voxel gets a type
assigned in this process, either EMPTY or SOLID .

This grid is in fact Octree data structure [Sec: 3.4]. This is an implemen-
tation decision for performance and memory reasons. Base voxels (voxels
in the first octree level) (in current implementation have the size (length
of voxel’s edge; voxels are cubes – all edges have the same length) set to

32

............................. 7.2. Sum of voxel volumes method

75 mm) can be split into eight smaller voxels, each of exactly half the size. In
the current implementation there is a level limit of maximum 3 subdivisions
(which means four sizes, one base and three splits – as shown in [Fig: 7.2]).
This datastructure achieves high voxel detail where needed, while saving
memory and processing power at areas which are the same and do not need
that level of detail (for example: empty spaces far from the reconstructed
objects)

Figure 7.2: Image of voxels of different sizes, showing variability of level of detail.

7.2.3 Find shadow voxels

SHADOW is another voxel type that represents a volume in space which is not
solid (no reconstructed object was found at that location in the scene), but
is not directly visible by any of available cameras. Meaning that in the real
world, there can be an object or empty space, we have no way of knowing
just yet.

Process of finding shadow voxels (in codebase, function named processVisibility

[Src: 6]) first sets every EMPTY voxel as SHADOW and then iterates over every
reconstructed camera pose and over every SHADOW voxel and either sets it
to EMPTY if this voxel is visible from the current camera or leaves it as a
SHADOW . Voxel is considered visible if and only if there is no SOLID voxel in
the ray from tested voxel’s center to the camera position and at the same
time, the angle at which the ray enters the camera is within its field of view.
Voxels can also be subdivided into eight more voxels if it is required for more
detail and maximum subdivision level has not been reached yet. Camera
visibility is evaluated from the center position of voxel and positions near its
corners. If these do not return the same result, voxel is subdivided and each
part is processed individually. Empirical results showed that this subdivision
check is sufficient, even though in theory there might be (rare) cases where

33

7. Camera pose optimization methods
subdivision is required but not triggered.

Pseudocode:

// Actual code: VoxelConstruction.cpp:isPointVisible
function isPointVisible(Vec3 pos, CamPose cam) {

Ray r = Ray(origin: pos, direction: cam.pos - pos);

if (cam.isRayOutsideFov(r)) return false;

foreach (Voxel in the octree : vox) {
if (vox.type == SOLID && r.intersects(vox)) {

return false;
}

}
return true;

}

// Actual code: VoxelConstruction.cpp:processVisibility
function processVisibility(Voxel vox, CamPose cam) {

bool isVisible = isPointVisible(vox.center, cam);

if (!vox.levelOfSubdivisionsReached) {
foreach (near-corner position : p) {

if (isPointVisible(p, cam) != isVisible) {
vox.split();
foreach (vox.children : child)

processVisibility(child, cam);

return;
}

}
}

if (isVisible)
vox.type = EMPTY;

}

// Actual code: VoxelConstruction.cpp:calculateVisibility
function calculateVisibility() {

foreach (Voxel in the octree : vox) {
if (vox.type == EMPTY)

vox.type = SHADOW;
}
foreach (Reconstructed camera pose : cam) {

foreach (Voxel in the octree : vox) {
processVisibility(vox, cam);

}
}

}

After running calculateVisibility() correct voxels will end up being marked
as SHADOW in the octree, voxels will be split if needed.

34

............................. 7.2. Sum of voxel volumes method

7.2.4 AntiAlias shadow voxels

Voxelization and subsequent operations in voxelized world have inevitable
discretization artefacts. One of them is occurence of “thin shadow layers” on
objects not aligned with scene axes. (see [Fig: 7.3]). This behaviour is caused
by a “stair effect” – each step (voxel) is casting a small shadow and the center
of the next voxel is in it, resulting in being marked as SHADOW voxel type.

Figure 7.3: Image of axis misaligned cube and thin layer of SHADOW on its
side (on the left) and the same scene, same camera positions with anti-aliasing
applied.

This is very undesirable behaviour as it incentifies suggested camera pose to
look at this thin layer even though it may be an area well known. This wrong
incentive is even more manifested in the subsequent method [Sec: 7.3] which
takes into account the visible surface area of shadow, not its full volume, as
this method does.

To counteract this issue, we filter detected SHADOW voxels and remove some
of them (mark them as EMPTY) if they do not satisfy our filter criterion.

The criterion is for each smallest allowed SHADOW voxel v to have a score
sv at least number thr or more of smallest (or equivalent number of larger)
voxels touching it, summed across all cardinal directions. Number thr set to
5 in current implementation.

Score s for voxel v is determined as:

sv =
∑

~dv∈{(±sz,0,0),(0,±sz,0),(0,0,±sz)}

JvoxelAt(~vpos + ~dv) == SHADOWK.

Function voxelAt(p) returns voxel v which contains given position p. ~vpos

is a position vector of voxel v and sz is a size of the smallest voxel, making
expression voxelAt(~vpos + ~dv) return a voxel which is just next to given voxel
v, in every cardinal direction direction.

7.2.5 Score each camera pose

Score s (or quality) of each camera pose is calculated as

35

7. Camera pose optimization methods

s =
∑
i∈E

vol(vi),

where vol(vi) is a volume of voxel vi, E is a set of voxels which changed
state from SHADOW to visible (EMPTY) for the new camera pose, when step
3 Find shadow voxels was applied.
Current implementation does not actually mark these voxels as EMPTY and

does not even subdivide them. It only calculates volume if they are already
marked as SHADOW . This calculation is done recursively in place where step
3 Find shadow voxels would split the voxels. Because we are avoiding splitting
(and therefore modification of the grid in octree), we can run this operation
in parallel, testing multiple camera poses at the same time, with shared voxel
grid datastructure (no copies are required).

After all scores are computed, we select the pose with the best score (highest
number) as the “new suggested camera pose” to instruct a robot arm with
camera to look from that viewpoint.

For visualisation purposes, step 3 Find shadow voxels is ran again on the
selected pose and it marks all originally SHADOW voxel that would have been
marked as EMPTY because of this suggested camera pose as a type SHADOW_EMPTY ,
which has a different color (cyan, instead of red) in the visualisation, as shown
in [Fig: 7.4].

Discussion about the method

The Sum of voxels method described in this section has the following proper-
ties:

. Speed: Rather slow because the evaluation of shadows is asymptotically
O(|C| ∗ |V | ∗ |V |) where C is a set of cameras on the scene and V is set
of all voxels in grid octree. V is rather large and slow to traverse because
of random access through non-continuous memory block. It is still faster
than one continuous memory block filled with many more smallest-sized
voxels. Because of this random access and numerous branching in the
evaluation algorithm, this method is not suitable to run on massively
SIMD compute devices (such as GPUs). It can however be parallelized
when scoring camera poses, because the algorithm does not need to write
anything into a shared structure (or deep-copy it before each camera
pose scoring)..Quality of estimate: Good results (see [Sec: 9]) because it takes into
account entire volume of shadows, not just visible surface area of shadow,
which makes it more robust to voxelization artefacts (as described in
[Sec: 7.2.4]) and helps with reasoning about “importance” of a shadow:
“This big shadow mountain behind a wall of objects is probably more
relevant than a long thin line of shadow near the edge of this wall or
underneath a spherical object”

36

.........................7.3. Render and count shadow pixels method

Figure 7.4: Visualisations of voxelized scene (green voxels), with cast shadow
(red voxels) and “de-shadowing” by suggested camera pose (red camera, cyan
voxels).

.Artefacts: Distance from the expected location of a possible object on
the scene (inside a shadow) is not reflected in the score of the viewpoint
in any way. Therefore camera parameters such as focal length (and
therefore effective range) are ignored and the method does not optimize
for good detail and coverage of detection of new hidden objects. Empirical
results show that suggested camera pose is sometimes way too close (and
therefore unusable)..Dealing with foreign occlusions: Does not handle scenes with foreign
(not detected) objects and would-be shadows cast by them. All such
shadows and occlusions are treated as if the respective parts of the scene
were known, but without any SOLID objects. For real-world use cases,
this will very likely prove problematic and insufficient.

7.3 Render and count shadow pixels method

Render and count shadow pixels method also works by assigning a score value
to each proposed camera pose and then selecting a pose/view with the best

37

7. Camera pose optimization methods
score (highest number). Computation of score is described in [Sec: 7.3.6].

The process could be broken down into several steps. The first four are
shared with the Voxel method (described in [Sec: 7.2]):..1. Generate candidate camera poses to test.

Shared with Voxel method. For details see [Sec: 7.2.1]...2. Voxelize the scene. Using Octree [Sec: 3.4] like voxel structure, for
performance reasons.
Shared with Voxel method. For details see [Sec: 7.2.2]...3. Find shadow areas (voxels) which are not visible from any camera.
Shared with Voxel method. For details see [Sec: 7.2.3]...4. AntiAlias shadow voxels, to mitigate some discrete world artefacts.
Shared with Voxel method. For details see [Sec: 7.2.4]...5. Render voxelized scene with 100% ambient light, no shadows, no trans-
parency. Shadow voxels are represent by red color...6. Count shadow pixels we see in a given frame (render FOV matches real
camera’s FOV).

7.3.5 Render voxelized scene

Software renders voxelized scene from viewpoint of each candidate camera
pose. The rendering is done in memory only, not on the screen. It does not
need to create an extra window (there is still the ability to create such a
window for debugging purposes).

Scene gets rendered with ambient light only (there are no shades or light
“intensities” caused by directional or point light bouncing from source to
camera at varying angles). SHADOW voxels are rendered as red cubes, all other
objects have zero red channel (they are not red, or even mixed from anything
that contains any amount of red color). Only other rendered objects are
SOLID voxels and a box aligned with ground plane to serve as occlusion for
any camera pose which might want to look up, underneath a scene (even
partially) as this camera pose is not legal in a real-world scenario.

Render camera has focal length and FOV parameters set to copy real
camera parameters.

Rendered scene consists of two parts: color buffer and depth buffer (visual-
ized in [Fig: 7.5]. We will need both later.

7.3.6 Count shadow pixels

Score of given camera pose is determined by a number of shadow (red) pixels
visible in the color buffer obtained in the previous step. This, however, leads
to choosing a pose “inside” or very close to a shadow voxel, because the closer
the camera is, the “bigger” red voxels are (the entire view is red)

38

.........................7.3. Render and count shadow pixels method

Figure 7.5: Color buffer showing shadow voxels (now pixels) (on the top left),
depth buffer of the same scene, using green channel to visualize depth (on the
bottom left) and the entire overview of the scene (on the right). Rendered from
viewpoint of suggested (red) camera.

Because of its poor performance in its simplest form (more details in [Sec: 9],
we have an enhanced version where instead of counting the number of red
pixels, we sum each pixel’s score values.

Score =
∑

p∈Image

Cp ·Dp
pow,

where C is 1 if pixel p has a red color, 0 otherwise, D is the depth distance
from camera to pixel p in meters. pow is an enhancement parameter – when
set to 0, the depth enhancement is mitigated and simple method of just
counting amount of red pixels is used. For higher values of pow, the depth
has a bigger effect on the overall score. We have experimentally found that
value of pow = 6 gives the best results.

Polynomial degree of depth value (at given pixel) serves as a weight of
depth information against shadowness (how much is given pixel red) valuing
pixels that are further away more, even though there are less of them.

For simplicity we will be referring to this method as Shadow method , and
ShadowD0 , ShadowD3 , ShadowD6 for versions of this method with parameter pow
set to 0 , 3 or 6 respectively.

Discussion about the method

The Shadow method described in this section has the following properties:. Speed: Relatively fast method. All rendering is done on GPU, a hard-
ware specialized for fast rendering. Scoring is processed on a GPU as well,
via a fragment shader which uses atomic_counter to count accumulate
score of the view from individual pixel score. Thanks to this shader,
we do not have to download framebuffer from GPU to CPU for every

39

7. Camera pose optimization methods
camera pose and count pixels on CPU, which would be quite costly. In
the future we can experiment with multithreaded rendering techniques,
which would evaluate (score) multiple camera poses at the same time,
further reducing the time required for this operation..Quality of estimate: ShadowD0 tends to choose a pose “inside” or
very close to a shadow voxel, because the closer the camera is, the “bigger”
red voxels are (the entire view is red). “ShadowD3” and “ShadowD6”
do not suffer from this issue anymore. In fact, unlike the voxel method,
ShadowD3 and D6 prefer views which are further away from the scene,
better accomodating for the focus and 3D precision distance sweetspot
of the D435 camera..Artefacts: Looks at the “top” surface, not the entire volume of shadows.
More prone to be mislead by discretization artefacts, described in An-
tiAliasing section [Sec: 7.2.4]. Voxelized “stairs” of depth 0-1 voxel have
high score. This is mitigated using AntiAliasing technique [Sec: 7.2.4].Dealing with foreign occlusions: Does not handle scenes with foreign
(not detected) objects and would-be shadows cast by them. All such
shadows and occlusions are treated as if the respective parts of the scene
were known, but without any SOLID objects. For real-world use cases,
this will very likely prove problematic and insufficient.

7.4 Shadow mesh method

Same as previous methods, Shadow mesh method (or only “Mesh method”
for short) also works by assigning a score value to each proposed camera pose
and then selecting a pose/view with the best score (highest number):..1. Generate candidate camera poses to test.

Shared with Voxel method. For details see [Sec: 7.2.1]...2. Construct a visibility mesh from the depth information of each camera...3. Combine visibility meshes from multiple cameras...4. Add reconstructed objects to work area mesh and color them...5. Render mesh for each candidate camera pose and score the same way
as described in method “Shadow method” (Only “ShadowD6” used and
tested in practice)...6. Count shadow pixels in the given frame (render FOV matches real
camera’s FOV).

40

.................................7.4. Shadow mesh method

7.4.2 Construct visibility mesh

We create a 3D point from each pixel in the camera’s depth image. All areas
with missing data (due to occlusion, bad lighting conditions, or other reasons)
are linearly extrapolated from the 3D positions of surrounding points. After
this, the mesh is constructed by connecting neigbouring points in a way that
creates a waterproof layer on top (similar to how heightmap works) after
this, each edge of the mesh (rectangular from camera’s point of view) gets
connected to the 3D coordinate of camera position, creating a “pyramid-like”
object, with its top vertex in the camera origin and bottom plane copies the
shape of the scene and sides will represent borders of FOV. See [Fig: 7.6].

Figure 7.6: Image of camera visibility mesh on the Wall dataset (with only side
camera view).

For performance reasons, in actual implementation [Src: 7] we do not
construct the mesh from every neighbouring vertex, but every n-th (in current
code n = 8). This seems to be a good balance between the level of detail and
processing requirements (in later stages). We also do not use the entire depth
frame returned from the camera, but only a rectangular cutout (ROI, region
of interest) obtained from positions of board’s ArUco markers in the camera’s
color frame (see [Fig: 4.1]) and construct the visibility mesh from the cutout
with added border around camera’s field of view, again saving quite a lot of
unnecessary vertices for later processing.

Inner part of this camera mesh represents EMPTY space – a space that is
seen through by a camera and does not contain any SOLID object (detectable
or not).

41

7. Camera pose optimization methods
7.4.3 Combine visibility meshes

We start with a “work area” mesh – a box spanning the size of the work area
extending to the desired height above it (see left image in [Fig: 7.7]). We then
do boolean subtract operation where from this mesh, we subtract visibility
mesh of each camera, one after the other. We are left with an updated
work area mesh. This mesh represents “ SOLID or SHADOW volume”. All of
reconstructed objects from a scene lie inside of this mesh and everything that
is not SOLID can be considered SHADOW or undetectable object (very likely
casting shadow as well). See [Fig: 7.7] for visualisation of this substraction
process.

Figure 7.7: Image of work area mesh reconstruction. Initial box work area mesh
(on the left), work area mesh with first camera visibility mesh substracted (in
the middle) and work area mesh with second camera visibility mesh substracted
(on the right).

We assign a color, or rather shadowness value v, to each face of this work
area mesh. A face that is visible from its source camera (camera that was
used to generate visibility mesh of which this face is part of) gets value v
ranging from 0 to 1:

v = (~FC − ~CC)T · ~FN .

~FC is centroid vector of the face, ~CC is center position of camera (or its
origin) and ~FN is face normal. Value v (0 when face is orthogonal to camera
view and therefore unobservable, and 1 when face is dead front facing the
camera with good visibility) is a visibility value. We have already seen and
have a good idea about parts of view where this visibility value is near 1
and we do not need to see it again – either the corresponding part of an
image was used to detect an object and we have it detected now, or it failed
and is not useful for detecting an object and as such it would be a waste to
look at the same place again. What we need to do now is to point a camera
towards the mesh positions where shadowness v is near 0. We will call this
parameter shadowness – 0 is very much a SHADOW , 1 is SOLID_or_NOT_USEFUL .
Implementation of this entire process can be found at [Src: 8].

7.4.4 Add reconstructed objects

We need to add all reconstructed objects to our mesh and color them as a
SOLID_or_NOT_USEFUL (which means with shadowness value v = 1). This step

42

.................................7.4. Shadow mesh method

ensures that the system does not suggest views at already known scene from
a different side. E.g.: If our scene consisted of one cube and camera looking
at it from top, we pretty much have all we need now. Sides of the cube would
look red (= in need of another look) even though we actually do not need
another look from different perspective, we have all the information we can
get from the scene already. Adding a colored 3D model of a cube positioned
over its detected location effectively overrides the red (shadow) color with
the green (solid or not useful; in this case solid) color.

For scene reconstruction and depth information imprecisions and missalign-
ments, we scale up the 3D model by about 20% around its origin before
applying boolean add operation to the work area mesh. See [Fig: 7.8].

Figure 7.8: Partially transparent work area mesh with reconstructed and colored
objects (green cubes) and reconstructed objects (cubes) visible through the mesh
at their reconstructed poses.

7.4.5 Render colored work area mesh

This is very similar to rendering for Shadow method [Sec: 7.3.5]. The only
difference is that instead of rendering SHADOW and SOLID voxels, we render
entire work area mesh, with red (shadow) color according to shadowness value.
See [Fig: 7.9].

7.4.6 Count shadow pixels

Shared with shadow method. For details see [Sec: 7.3.6]

43

7. Camera pose optimization methods

Figure 7.9: Color buffer showing shadowness of a mesh (now pixels of varying
red value) (on the left), depth buffer of the same scene, using green channel to
visualize depth (in the middle) and entire overview of the scene (on the right).
Rendered from viewpoint of suggested (red) camera.

Discussion about the method

The Mesh method described in this section has the following properties:

. Speed: Method is quite slow in its current state, because the boolean
operations take a lot of time (5-25 s, depending on the scene). The
rendering and scoring, however, is very fast, because everything is done
on GPU (just like “Shadow method” [Sec: 7.3]), but it is even faster,
because we are rendering only one mesh per frame, not many (as is the
case with voxels). Performance is subject to future research, namely I
am interested in trying rendering method of boolean operations – the
result is not a mesh, but rather an image, from give camera angle. This
method has the potential to be much faster.

.Quality of estimate: Using ShadowdD6 (as described in [Sec: 7.3.6])
for scoring the rendered scene comes with an advantage of D3 and D6
preferring views which are further away from the scene, better accomo-
dating for the focus and 3D precision distance sweetspot of the D435
camera.

.Artefacts: Looks at the “top” surface, not the entire volume of shadows.
This makes reasoning about the level of importance of the shadows more
challenging, especially considering noisy depth data from the sensor itself,
which has a tendency to create numerous small areas of shadow on the
scene. (See [Fig: 7.10])

.Dealing with foreign occlusions: Can handle foreign objects and
occlusion caused by them (shadows cast by the foreign objects or their
parts). Even partial occlusion by non-detected objects (which might even
be known type of object, but occluded in such a way that is invisible for
the object detection module. Furthermore, because of composing depth
meshes directly, there are no artefacts caused by voxelization (non axis
aligned object poses, not grid aligned poses, discretization in general)

44

............................... 7.5. Simulated visual servoing

Figure 7.10: Image of small false shadow areas on the ground and walls of
detected objects.

7.5 Simulated visual servoing

Simulataed visual servoing is an iterative enhancement method, that can be
applied to all of the aforementioned methods. Its functionality and integration
can be broken down into several steps:..1. Generate candidate camera poses to test...2. Render scene from viewpoint of currently tested camera pose. Find

bounds of shadow areas (leftmost pixel, rightmost pixel, ...) and update
camera pose accordingly...3. Repeat step 2 several times (limit in current implementation is set to 5)
and record method score in each iteration...4. Chose final candidate camera pose that had the best score in any of the
iterations or even initial candidate pose itself.

7.5.1 Generate candidate camera poses

Shared with Voxel method. For details see [Sec: 7.2.1].
Fewer number of initial generated test poses is needed than in the case

without any iterative enhancement.

7.5.2 Find the shadow bounds

Render scene from viewpoint of currently tested camera pose, using the same
method as described in “Shadow method”. The rendered scene is actually

45

7. Camera pose optimization methods
reused, both for scoring of Shadow method and Mesh method. For the voxel
method, the shadow method’s render is applied but the score value is not
used.

From the rendered scene, find bounds of shadow areas (leftmost pixel,
rightmost pixel, ...) and rotate the camera to center the view. If both the left
and right most pixel are too close to image border, then move the camera
back. Same for the top/bottom most pixels. Analogically for moving camera
closer. Left/right/top/bottom most shadow pixels are calculated on GPU,
using atomic_min/max operations. This way we still do not have to download
the entire image buffer from GPU to CPU at every frame.

7.5.3 Repeat iteration

Repeat the previous step, each time with a new starting pose – the one from
the previous iteration. We calculate the respective method score at each
iteration of each camera pose and keep the pose with the best score. It is
worth noting, that this pose will not be one of the initial poses, but a new
one, which means we have to store a copy of the pose, not just its index.

7.5.4 Chose the best pose

We are interested in only one pose and that is a pose with the best method
score, regardless of the way how we found it (Is it one from the initial set?
Is it a new iterated one? Were some iteration useless, because the best pose
was found sooner? It does not matter).

In the actual implementation [Src: 9], the steps 2 , 3 and 4 are merged
and executed as one iterative step.

Discussion about the method

This simulated visual servoing can be applied to any and all methods discussed
above and in all cases reduces runtime (as there are fewer poses to test) and
increases quality of results (as search space of all possible poses is navigated
more quickly, zeroing in on more useful poses).

46

Chapter 8
Experimental results – Scene
reconstruction

We have been reconstructing the scene from real captured data, without
ground truth, which poses a challenge on evaluation. Because of that our
metric is of self-consistency of the reconstructed scene. More specifically error
value e is a square distance (in mm) between corners of cubes which are
supposed to touch (and therefore the desired distance is 0).

e =
∑

[i,j]∈Corners

‖~ci − ~cj‖2,

where e is the error value, Corners is a set of pairs of corners which are
supposed to touch each other (in any direction, even red and purple cube,
as shown in [Fig: 4.7 or Fig: 8.1] have two touching corners) and ~ci, ~ci are
positions of those corners in the scene reference frame.

For this purpose, we have created a new dataset “Castle” [Sec: 4.1.5]
which has many (nine) different camera viewpoints. We have tested the
reconstruction error while activating different cameras [Fig 8.1] to see, if more
camera views yield better accuracy (smaller error values). We have tested
all camera combinations which were able to reconstruct the full scene (have
all five cubes present at the scene) and measured their error values. Graph
[Fig: 8.2] shows error values clustered by camera counts.

It can be clearly seen that with the exception of the single camera-viewpoint,
reconstruction is getting more accurate with the increasing number of ac-
tive views (the means are getting lower and lower) and at the same time,
reconstructions are getting more stable (the sample standard deviations are
smaller and smaller). This demonstrates the need for multiple camera views
even if the smaller number of views covers the entire scene. This importance
will be more profound once we implement and use more elaborate scene
reconstruction methods (described in [Sec: 6]).

The reason for the single-camera viewpoint having significantly better
error values than reconstructions with few more cameras is that we are only
considering local error – how much are the objects on the scene misaligned
from each other. Objects reconstructed from a single view have the same
absolute error (e.g., they might all be little further back than predicted) but it

47

8. Experimental results – Scene reconstruction

Figure 8.1: Castle dataset with most cameras disabled. Only three cameras
are active at the moment. Color camera image on the left, reconstructed scene
including camera poses on the right.

Number of cameras

E
rr

or
 v

al
ue

0

200

400

600

1 2 3 4 5 6 7 8 9

Figure 8.2: Plot showing mean error values and their respective sample standard
deviation for different number of activated cameras.

is the same for all of the objects, effectively making this type of error invisible
for our metric.

In the future when we will implement other scene reconstruction methods,
we will also run them in a fully simulated environment, which will provide us
with a ground truth for measuring this global error as well.

48

Chapter 9
Experimental results – Camera pose
suggestion

We have tested multiple methods on multiple scenes, with a much larger num-
ber of camera poses to test than there will be in the production environment
(34 225 poses, half spheres at 3 distances from the center, with several camera
angles centered around “looking towards the center” viewpoint.

Figure 9.1: Image of camera poses relative to a scene.

Furthermore, simulated visual servoing is active, with a limit of 5 iterations
per pose, meaning we are computing about 170k test views and choosing the
best one. There may be multiple best views or “good enough” views which
might be taken from very different poses (e.g., a view behind an object from
one side or the other). We are however only interested in one pose and how
good is it.

In this section we will explore different methods, their strengths and
weaknesses and visual artefacts. All of the evaluated methods are fully
deterministic and multiple runs will not change or increase the quality of the
results.

49

9. Experimental results – Camera pose suggestion
9.1 Evaluation metric

Score value: As an evaluation metric we have chosen a score value of Vox
method [Sec: 7.2], because it represents how much volume (not just surface
area, as is the case with rendering) that has been previously unknown (each
voxel in an unknown – SHADOW) area can, in reality, be SOLID or EMPTY) will
become known, assuming all voxels are see-through, accommodating for the
fact that there might be an unknown object somewhere “deeper” in the
“shadow mountain” or even not at all (in which case, it is important to know
that there is no object at all)

Vox ratio: The quality of suggested pose from a different method will be di-
rectly compared to the voxel one: voxel_ratio = best_scorediff /best_scorevox ,
where best_scorevox is a score of the best pose, found by voxel method and
diff_scorevox is a vox score of a pose proposed by a different method. In other
words, what is the ratio of the current pose’s voxel score to the best possible
voxel score in this scene. This is referred to as the “vox ratio”. From the
design of this metric, the vox ratio of the voxel method will always be 1.

Voxel method consistency: We have tested different parameters of
voxel method – lowering base grid size and increasing subdivision count – in
an effort to increase voxel grid resolution and therefore precision. It turns
out that poses suggested by the voxel method (on WallSide and Corridor
datasets) score 97% and 89% of the maximum achievable score of the test
with increased resolution. This does not necessarily mean that one set of
parameters is better or worse, it just gives slightly different values. We
have decided that 7 percentage points difference means that the method is
consistent enough and can be used to compare other methods to itself.

Run time: Run time is a time that it took to run the method itself, on all
tested camera poses. Does not involve ArUco marker detection (the detection
module). Experiments have been run on i7-6700HQ laptop with 32 GB of
RAM.

9.2 Visualization guide

All results are accompanied by visualisations from Visualisation guide. In
these visualisations:. New suggested camera pose is rendered in the scene using red color.

Gray ones are original camera poses used to take the scene.. In visualisations, green voxels represent solid objects, red voxels represent
shadows and cyan voxels represent parts of shadows that are visible to
the new suggested camera pose.. Rendered image of the expected view from the suggested camera pose
consists of 2 channels. Red represents shadow intensity and green rep-
resents depth from camera. Most of the shadow objects look yellow,
because that is the combination color of green and red. See [Fig: [9.2]].

50

.................................. 9.3. Different datasets

Figure 9.2: Suggested camera visualization guide: Each row is a picture of
different scene. Red channel (isolated on the left side) shows where shadow from
scene get projected to camera view. Green channel (isolated in the middle) shows
distance from camera to an object (object in bottom row is very close, as the
values are near zero (near black)). Image on the far right is combination of both
red and green channel.

9.3 Different datasets

9.3.1 Wall dataset with only side camera enabled

Voxel method: Best camera pose using the voxel volumes method is shown
in [Fig: 9.3], with score of 9.43 E-04 (cubic meters of shadow. The higher
number the better).

Figure 9.3: Best camera pose using the voxel volumes method on Wall dataset.
Color camera stream on the top left, suggested camera view on the bottom left
and reconstructed scene on the right, with suggested camera pose shown in red.
Refer to visualization guide [Fig 9.2].

As we can see, the suggested camera is positioned above shadow mountain,
looking straight down at it, having its entirety in view. It can be argued that
this pose is similar to the one where a human would place the camera.

51

9. Experimental results – Camera pose suggestion
Shadow method: We have tested the same scene using the “Shadow

method”, where red (shadow) pixels are used as a stencil and the score is
then sum of depthpow at those shadow pixels. pow is a parameter, and the
experiment was run for values pow = 0, 3, and 6.

For ‘pow = 0’ – “ShadowD0” – (therefore ignoring the depth value, just
counting red pixels) see [Fig: 9.4].

Figure 9.4: Best camera pose according to pixel count with ShadowD0 method.
Color camera stream on the top left, suggested camera view on the bottom left
and reconstructed scene on the right, with suggested camera pose shown in red.
Refer to visualization guide [Fig 9.2].

As we can see, the camera is zoomed in as close as it can go towards the
shadow, because the closer it gets, the more red pixels it will see, up to a point
when the pixels fill its entire view, yielding maximum score. This artefact
can be tackled by taking into account depth at which the camera sees the
pixels, counteracting the effect of “the closer object is, the bigger it appears”

Visual servoing: You can see first 5 iterations of visual servoing, using
ShadowD3 in [Fig: 9.5] for one initial camera pose.

The camera movement between iteration is caused by the “simulated visual
servoing” algorithm, which rotates the camera to move visible shadow pixels
to the center of an image and moves the camera backward if the red pixels are
too close to the edges (it is zoomed in way too much) and moves it forward
when all of the shadow pixels are positioned only in the middle (zoomed out
way too much, resulting in lack of detail).

Same experiment has been done for ‘pow = 6’ – “ShadowD6” ([Fig: 9.6,
Table: 9.1]).

The best view (according to this method) is at iteration number 4 (center
image in bottom row) (and this initial camera pose) and all but the first
iteration have VOX score 100% of achievable (at this scene).

9.3.2 Two Pillars

ShadowD0 vs ShadowD6: The extreme case of near-touching the object
(using ShadowD0 method) could be easily filtered out using only further away

52

.................................. 9.3. Different datasets

Figure 9.5: First 5 iterations of visual servoing algorithm using “ShadowD3”
method. Iteration 0 is in top left corner. Suggested camera view on the bottom
of each iteration and reconstructed scene on the top, with suggested camera pose
shown in red. Refer to visualization guide [Fig 9.2].

Visual servoing iteration Method score Vox score Vox ratio

0 0.011 E+06 5.67 E-04 60.1%
1 1.51 E+06 9.43 E-04 100%
2 1.66 E+06 9.43 E-04 100%
3 1.56 E+06 9.43 E-04 100%
4 1.99 E+06 9.43 E-04 100%
5 1.56 E+06 9.43 E-04 100%

Table 9.1: Score values for visual servoing iteration on Wall dataset with
ShadowD6 method. Best iteration according to the method score is in bold,
which does not imply the best vox ratio.

initial poses or introducing some area where the camera is not allowed to be
in. However, that does not solve the problem of it favoring views of objects
that are closer. This effect is most profoundly visible on the “TwoPillars”
dataset, where two pillars are casting two distinct non-overlapping shadows.
Without the depth value in the score, the camera is just trying to look at
one, not both shadows at the same time, because it can be closer to it.

53

9. Experimental results – Camera pose suggestion

Figure 9.6: 6 iterations of visual servoing algorithm using “ShadowD6” method.
Iteration 0 is in top left corner. Suggested camera view on the bottom of each
iteration and reconstructed scene on the top, with suggested camera pose shown
in red. Refer to visualization guide [Fig 9.2].

The voxel shape that appears to be floating in the air is actually shadow
area caused by voxels being outside of FOV of the current camera on the scene
and therefore are not visible. The methods are using this kind of shadows as
well, for suggesting the camera pose. As you can see, viewpoint suggested
by ShadowD6 contains the outside of FOV shape and both shadows cast by
pillars.

In the [Fig: 9.8] shows the same task with camera FOV constraint artificially
removed.

9.3.3 Corridor

Corridor scene yields sub-perfect vox ratio score for all ShadowD6 [Fig: 9.10,
Table: 9.2], ShadowD3 [Fig: 9.11, Table: 9.3] and ShadowD0 [Fig: 9.12,
Table: 9.4] methods:

Best vox score: 6.20 E-04

54

..................... 9.4. Summary and evaluation of experimental results

Figure 9.7: Comparison of best poses using ShadowD0 (on the left) and Shad-
owD6 (on the right). Suggested camera view on the bottom and reconstructed
scene on the top, with suggested camera pose shown in red. Refer to visualization
guide [Fig 9.2].

Figure 9.8: Comparison of best poses with artificially remove camera FOV
constraint using ShadowD0 (on the left) and ShadowD6 (on the right). Suggested
camera view on the bottom and reconstructed scene on the top, with suggested
camera pose shown in red. Refer to visualization guide [Fig 9.2].

9.4 Summary and evaluation of experimental
results

Methods have been evaluated in two different ways – qualitatively, using
visualisation techniques, and quantitatively using score metrics introduced in

55

9. Experimental results – Camera pose suggestion

Figure 9.9: Corridor scene using VOX method. Color images of scene on the left,
reconstructed scene on the right, with red suggested camera pose and camera
view on the bottom.

Figure 9.10: Corridor scene using ShadowD6 method. Suggested camera view
on the left, reconstructed scene on the right, with red suggested cam pose.

Visual servoing iteration Method score Vox score Vox ratio

0 0.019 E+06 1.92 E-04 31.1%
1 1.26 E+06 5.29 E-04 85.4%
2 1.49 E+06 5.97 E-04 96.4%
3 1.07 E+06 5.87 E-04 94.8%
4 1.43 E+06 5.91 E-04 95.3%
5 1.18 E+06 5.87 E-04 94.8%

Table 9.2: Score values for visual servoing iteration on Corridor dataset with
ShadowD6 method. Best iteration according to the method score is in bold,
which does not imply the best vox ratio.

56

..................... 9.4. Summary and evaluation of experimental results

Figure 9.11: Corridor scene using ShadowD3 method. Suggested camera view
on the left, reconstructed scene on the right, with red suggested cam pose.

Visual servoing iteration Method score Vox score Vox ratio

0 0.082 E+06 1.17 E-04 18.8%
1 0.158 E+06 1.38 E-04 22.3%
2 1.85 E+06 5.72 E-04 92.3%
3 3.48 E+06 5.90 E-04 95.2%
4 1.41 E+06 5.67 E-04 91.4%
5 3.72 E+06 5.90 E-04 95.2%

Table 9.3: Score values for visual servoing iteration on Corridor dataset with
ShadowD3 method. Best iteration according to the method score is in bold,
which does not imply the best vox ratio.

Figure 9.12: Corridor scene using ShadowD0 method. Suggested camera view
on the left, reconstructed scene on the right, with red suggested cam pose.

[Sec: 9.1].

57

9. Experimental results – Camera pose suggestion
Visual servoing iteration Method score Vox score Vox ratio

0 1.05 E+06 3.01 E-04 48.5%
1 22.94 E+06 2.60 E-04 42.0%
2 3.58 E+06 5.97 E-04 96.4%
3 4.42 E+06 5.97 E-04 96.4%
4 3.44 E+06 5.97 E-04 96.4%
5 4.39 E+06 5.97 E-04 96.4%

Table 9.4: Score values for visual servoing iteration on Corridor dataset with
ShadowD0 method. Best iteration according to the method score is in bold,
which does not imply the best vox ratio.

9.4.1 Iterative visual servoing

Results of every tested method improved with the addition of iterative visual
servoing. The method score and the vox ratio is in every case (see [Table: 9.1,
Table: 9.2, Table: 9.3, Table: 9.4]) better in some iteration other than 0. It is
worth noting that neither the method score nor vox ratio is always improving
monotonically with visual servoing iterations and it is not expected that
increasing the limit of 5 iterations would have a dramatic impact on the
quality of suggested pose.

This behaviour is caused by the simulated camera rotating and moving
without prior knowledge of what will be seen after that movement – suppose
there is a lot of shadow area on the left side of the camera’s view, it then
rotates to the left, because there might have been more shadow hidden behind
the left border of the image. In fact, the next frame shows, that there is
no additional shadow at all. Some of the shadow that was visible in the
previous frame, towards the right side, is not visible anymore, because the
camera rotation moved the shadow outside of the frame. This visual servoing
iteration, therefore, has a lower method score and vox ratio than the previous
one and will not get chosen at the end.

9.4.2 Special cases

All of the methods mentioned above (including the VOX) have a common
issue: They cannot deal with shadows caused by not-detected/non-detectable
objects. If there is an occlusion or a partial occlusion of non-scene nature
(human hand, robot hand, dirt on one of the cameras, foreign objects on the
scene...), there is no object on the scene that can cast shadows and therefore
no shadows, making the entire workspace visible. “Mesh method” attempts to
solve this issue, by using the depth data from the camera directly, bypassing
the object detection and merging modules.

On a Corridor dataset with only one side view available, we can clearly
see the difference between shadow reconstructed using the mesh method and
voxel method. Cubes from the far side cast a shadow as well, even though
they are only partially visible and not detected. See [Fig: 9.13].

58

..................... 9.4. Summary and evaluation of experimental results

Figure 9.13: Camera pose suggestion using mesh method. Reconstructed scene
with red shadow mesh and suggested camera (in the middle) and the same scene
with voxel-based shadow overlaid (cyan voxels) (on the right). Camera source
color image on the top left, suggested cam pose view on the bottom left. Refer
Refer to visualization guide [Fig 9.2].

The advantage of the Shadow mesh method is even more visible on the
ForeignObjects dataset, where there are no detected and reconstructed cubes
on the scene, and yet this method suggests correct camera pose – a view from
the other side. Unlike the vox method, which does not suggest any view at
all because of no shadows present in the scene. See [Fig: 9.14, Fig: 9.15].

Figure 9.14: Camera pose suggestion (there is none) using voxel method on
ForeignObjects dataset.

9.4.3 Comparison of methods

As has been already shown, “ShadowD6” is on all datasets superior to
“ShadowD0” and even “ShadowD3”. Let us remove D0 and D3 from further
comparisons and keep only D6 as a representative of the Shadow method.

Relative quality comparison of suggested camera pose in terms of vox
score on different datasets, excluding ForeignObjects dataset to keep methods
comparable (Mesh method is the only one that can handle it correctly) is
shown in [Table: 9.5] and [Fig: 9.16].

VOX method gives the best result, but is significantly slower than all of the
other ones. D6 gives results only slightly worse than VOX, but is 2-3 times

59

9. Experimental results – Camera pose suggestion

Figure 9.15: Camera pose suggestion (red color, other side of the scene) using
mesh method on ForeignObjects dataset.

Method Method score Vox score Vox ratio Run time

Wall dataset with side camera view
VOX 9.43 E-04 9.43 E-04 234.8 s
ShadowD6 1.99 E+06 9.43 E-04 100% 107.6 s
Mesh 2.23 E+06 9.43 E-04 100% 74.4 s

Wall dataset with top camera view
VOX 3.23 E-04 3.23 E-04 174.9 s
ShadowD6 0.796 E+06 3.16 E-04 98.0% 100.9 s
Mesh 0.559 E+06 2.49 E-04 77.0% 52.2 s

TwoPillars dataset
VOX 22.81 E-04 22.81 E-04 480.9 s
ShadowD6 3.93 E+06 22.71 E-04 99.6% 150.9 s
Mesh 4.62 E+06 20.87 E-04 91.5% 86.5 s

Corridor dataset with both side view cameras
VOX 6.20 E-04 6.20 E-04 272.8 s
ShadowD6 1.49 E+06 5.97 E-04 96.4% 152.3 s
Mesh 1.43 E+06 5.95 E-04 96.0% 72.5 s

Averaged results
VOX 290.9 s
ShadowD6 98.5% 127.9 s
Mesh 91.1% 71.4 s

Table 9.5: Comparison of best suggested camera poses according to different
methods.

faster. Mesh method does not always give a very good score (namely Wall
dataset with only the Top camera enabled) but can handle ForeignDataset
well. This method is even faster than D6, but requires a one-time calculation
of a mesh, which takes long time compared to other methods when evaluating
only a few initial camera poses (see table below)

60

..................... 9.4. Summary and evaluation of experimental results

Methods
 ShadowD6
 Voxel
 Mesh

Datasets
 WallSide
 WallTop
 TwoPillars
 Corridor

Figure 9.16: Graph showing run time (on horizontal axis) and voxel ratio (on
vertical axis) of different methods and datasets, on 34 225 of initial camera poses.
From the design of this metric, vox ratio of voxel method will always be 1.

Because the evaluation of the methods was comparing them against each
other, the results are biased towards the one chosen “master” method, however
still useful for understanding these methods in more detail.

9.4.4 Evaluation vs Production environment

For evaluation purposes we have used way more initial camera poses (34 225)
than would be practical for real-time or near real-time calculations. In the
production environment, we only use 40 base poses, 2 half spheres, each with
a different radius, with each camera looking to the center.

Figure 9.17: Image of fewer camera poses relative to a scene.

This combined with iterative visual servoing mechanism seems to be
enough, as the table below shows. Vox quality is ratio vox_quality =
vox_scorefull/vox_scoreproduction , where vox_scorefull is a voxel score of cam-
era pose suggested by the evaluated method on the full set of initial camera

61

9. Experimental results – Camera pose suggestion
poses (34 225) and vox_scoreproduction is a voxel score of camera pose sug-
gested by the evaluated method on production set of initial camera poses
(40).

Method Vox quality Speedup

Wall dataset with side camera view
VOX 1 234.8 s -> 0.76 s
ShadowD6 1 107.6 s -> 0.60 s
Mesh 1 74.4 s -> 3.2 s

Wall dataset with top camera view
VOX 1 174.9 s -> 0.62 s
ShadowD6 0.99 100.9 s -> 0.51 s
Mesh 0.98 52.2 s -> 2.6 s

TwoPillars dataset
VOX 1 480.9 s -> 1.1 s
ShadowD6 0.96 150.9 s -> 0.62 s
Mesh 1.09 86.5 s -> 3.8 s

Corridor dataset with both side view cameras
VOX 1 272.8 s -> 0.90 s
ShadowD6 0.99 152.3 s -> 0.72 s
Mesh 0.99 72.5 s -> 7.0 s

Averaged results
VOX 1 290.9 s -> 0.85 s
ShadowD6 0.99 127.9 s -> 0.61 s
Mesh 1.02 71.4 s -> 4.2 s

Table 9.6: Method behaviour on smaller initial camera poses set (40 instead of
34 225). Vox quality is a ratio between vox score of the particular method on full
34 225 initial poses to vox score of the method on production 40 initial poses.

For comparison with the full camera poses (34 225), [Fig: 9.18] shows
different methods and datasets with only 40 initial camera poses, in the same
way as [Fig: 9.16] shows it for all initial camera poses. It is worth noticing
that run times of Mesh method are slower than linear with the number of
initial poses. The one-time mesh processing (boolean operations) takes a lot
of time which is not negligible when evaluating only on few initial camera
poses.

62

..................... 9.4. Summary and evaluation of experimental results

Methods
 ShadowD6
 Voxel
 Mesh

Datasets
 WallSide
 WallTop
 TwoPillars
 Corridor

Figure 9.18: Graph showing run time (on horizontal axis) and voxel ratio (on
vertical axis) of different methods and datasets, with only 40 initial camera poses.
You can compare with [Fig: 9.16] which shows the same thing, only with 34 225
initial camera poses. From the design of this metric, vox ratio of voxel method
will always be 1.

63

64

Chapter 10
Conclusion and discussion

We have developed and qualitatively compared multiple methods for both,
scene reconstruction and camera pose suggestion modules in the vision node
architecture [Sec: 5]. We have evaluated the importance of multiple camera
views on scene reconstruction stability [Sec: 8] and we have also done a
quantitative evaluation of camera pose suggestion methods [Sec: 9].

Each method has its strengths and weaknesses, or even types of scenarios
which it cannot handle. Voxel method has good results and takes into account
the entire volume of shadow, not just its projected cross-section, but on the
other hand does not take into account distance between camera and observed
objects. Shadow method does take this distance into account, but has no
information about depth or “penetration” of shadows. As it turns out during
the quantitative evaluation, this does not seem to be that big of a deal, when
ShadowD6 is used (opposed to D0 or D3). Shadow method is more than two
times faster than the voxel method at the cost of only 1.5% vox ratio loss, as
[Table: 9.5] shows.

Neither voxel nor Shadow method can deal with foreign object scenarios –
undetectable objects, such as human or robot hands, random coffee mug in
front of the camera, causing occlusion and shadows, without reconstructing
objects which are the causes of said shadows.

Mesh method solves this problem by directly utilizing depth image from
the cameras and constructing a global visibility mesh, which it then analyzes
the same way as the Shadow method. At its current state, the mesh method
is too slow for realtime applications (several seconds per frame, see [Table:
9.6]) and does not have a score on par with Voxel or ShadowD6 (8.9% vox
ratio loss, see [Table: 9.5], mainly because of artefacts caused by imprecise
depth sensor data, resulting in small false shadow areas [Fig: 7.10].

Each of camera suggestion methods accommodate for the physical con-
straints of the environment, by generating only valid camera poses. Valid in
this case means “within reach of the robot arm and not intersecting with a
possible structure (camera fixtures, light fixtures, ...) of the environment.”

65

Resources
10.1 Future work

During the development of this work we have identified several approaches to
continue and improve this work:. Improve mesh method speed. More specifically, explore different methods

or libraries for mesh construction, one of which is OpenCSG [23], a library
for rendering the result of boolean operations, from a specific camera
viewpoint, rather than calculating the mesh itself. This has the potential
to be much faster, when relatively low amount of renders (camposes to
evaluate) is required.. Develop a filter for mesh method, which would remove small false shadow
areas on the ground and walls of detected objects [Fig: 7.10]. We think
that this will improve the method’s voxel score dramatically, to be on
par with the ShadowD6 method.. Experiment with multithreaded rendering techniques, to improve speed of
Shadow and Mesh camera pose suggestion pose methods. Voxel method
would benefit slightly as well, because it uses rendered scene for simulated
visual servoing.. Assignment module, as was mentioned in chapter on Architecture. This
assignment module will be needed for the final production environment,
where it is important to not only what the current scene looks like, but
also what has changed since the previous one.. Implement scene reconstruction methods, which are currently at a con-
ceptual level only and possibly explore other methods (See [Sec: 6]).
Generic improvements to scene reconstruction such as Temporal filtering
[Sec: 6.4.1], Reasoning about empty spaces [Sec: 6.4.2], Reasoning about
support and stability [Sec: 6.4.3] and Proposal of disambiguation camera
views [Sec: 6.4.4].

66

Resources

Literature

[1] Yinlin Hu et al. Segmentation-driven 6D Object Pose Estimation.
2018. arXiv: 1812.02541 [cs.CV].

[2] Joel Vidal et al. “A Method for 6D Pose Estimation of Free-Form
Rigid Objects Using Point Pair Features on Range Data”. In: Sensors
18 (Aug. 2018), p. 2678. doi: 10.3390/s18082678.

[3] Jonathan Tremblay et al. Deep Object Pose Estimation for Semantic
Robotic Grasping of Household Objects. 2018. arXiv: 1809.10790
[cs.RO].

[4] Tomas Hodan et al. “Detection and fine 3D pose estimation of
texture-less objects in RGB-D images”. In: Sept. 2015, pp. 4421–
4428. doi: 10.1109/IROS.2015.7354005.

[5] R. Szeliski. “Scene reconstruction from multiple cameras”. In: Pro-
ceedings 2000 International Conference on Image Processing (Cat.
No.00CH37101). Vol. 1. 2000, 13–16 vol.1.

[6] Daeyun Shin, Charless C. Fowlkes, and Derek Hoiem. Pixels, voxels,
and views: A study of shape representations for single view 3D object
shape prediction. 2018. arXiv: 1804.06032 [cs.CV].

[7] Li Tao and Xuerong Xiao. “3D Scene Reconstruction from Multiple
Uncalibrated Views”. In: (2016).

[8] Andre Uckermann, Robert Haschke, and Helge Ritter. “Real-time
3D segmentation of cluttered scenes for robot grasping”. In: Nov.
2012, pp. 198–203. doi: 10.1109/HUMANOIDS.2012.6651520.

[9] Zhaoyin Jia et al. “3D-Based Reasoning with Blocks, Support, and
Stability”. In: June 2013, pp. 1–8. doi: 10.1109/CVPR.2013.8.

[10] G. García et al. “Guidance of Robot Arms using Depth Data
from RGB-D Camera”. In: vol. 2. July 2013. doi: 10 . 5220 /
0004481903150321.

67

https://arxiv.org/abs/1812.02541
https://doi.org/10.3390/s18082678
https://arxiv.org/abs/1809.10790
https://arxiv.org/abs/1809.10790
https://doi.org/10.1109/IROS.2015.7354005
https://arxiv.org/abs/1804.06032
https://doi.org/10.1109/HUMANOIDS.2012.6651520
https://doi.org/10.1109/CVPR.2013.8
https://doi.org/10.5220/0004481903150321
https://doi.org/10.5220/0004481903150321

Resources
[11] Georgios Passalis et al. “General Voxelization Algorithm with Scal-

able GPU Implementation”. In: Journal of Graphics, GPU, and
Game Tools 12 (Jan. 2007), pp. 61–71. doi: 10.1080/2151237X.
2007.10129233.

[12] R. Fischler and M. Bolles. “Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Auto-
mated Cartography”. In: Commun ACM 24 (Jan. 1981), pp. 619–
638.

[13] Sergio Garrido-Jurado et al. “Generation of fiducial marker dic-
tionaries using Mixed Integer Linear Programming”. In: Pattern
Recognition 51 (Oct. 2015). doi: 10.1016/j.patcog.2015.09.023.

[14] Francisco Romero-Ramirez, Rafael Muñoz-Salinas, and Rafael Medina-
Carnicer. “Speeded Up Detection of Squared Fiducial Markers”. In:
Image and Vision Computing 76 (June 2018). doi: 10.1016/j.
imavis.2018.05.004.

[15] Donald Meagher. Octree Encoding: A New Technique for the Rep-
resentation, Manipulation and Display of Arbitrary 3-D Objects by
Computer. Oct. 1980.

[16] Stanford Artificial Intelligence Laboratory et al. Robotic Operating
System. Version ROS Melodic Morenia. url: https://www.ros.
org.

[17] Intel Corporation. librealsense – Intel RealSense SDK. url: https:
//github.com/IntelRealSense/librealsense.

[18] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of
Software Tools (2000).

[19] Intel Corporation. The Computational Geometry Algorithms Library.
url: https://www.cgal.org/.

[20] Alec Jacobson, Daniele Panozzo, et al. Simple C++ geometry pro-
cessing library. url: https://github.com/libigl/libigl.

[21] Kittware. The Visualization Toolkit (VTK). url: https://vtk.
org/.

[22] Markus Deserno. “How to generate equidistributed points on the
surface of a sphere”. In: (Sept. 2004).

[23] Florian Kirsch and Hasso-Plattner-Institute. The CSG rendering
library. url: http://opencsg.org/.

68

https://doi.org/10.1080/2151237X.2007.10129233
https://doi.org/10.1080/2151237X.2007.10129233
https://doi.org/10.1016/j.patcog.2015.09.023
https://doi.org/10.1016/j.imavis.2018.05.004
https://doi.org/10.1016/j.imavis.2018.05.004
https://www.ros.org
https://www.ros.org
https://github.com/IntelRealSense/librealsense
https://github.com/IntelRealSense/librealsense
https://www.cgal.org/
https://github.com/libigl/libigl
https://vtk.org/
https://vtk.org/
http://opencsg.org/

.. Resources

Code references

[Src: 1] Code repository. url: https://gitlab.ciirc.cvut.cz/imitrob/
imitrob_scene_representation/-/tree/BP-Thesis/src.

[Src: 2] crow_scene/src/modules/kb/LocalFakeKnowledgeBase.cpp. url: https:
//gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_representation/-
/blob/BP-Thesis/src/crow_scene/src/modules/kb/LocalFakeKnowledgeBase.
cpp.

[Src: 3] crow_scene/src/modules/kb/KnowledgeBase.h. url: https://gitlab.
ciirc . cvut . cz / imitrob / imitrob _ scene _ representation/ -
/blob/BP-Thesis/src/crow_scene/src/modules/kb/KnowledgeBase.
h.

[Src: 4] crow_scene/src/modules/kb/LocalFakeKnowledgeBase.cpp:131. url:
https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_
representation/ - /blob / BP - Thesis / src / crow _ scene / src /
modules/kb/LocalFakeKnowledgeBase.cpp#L131.

[Src: 5] crow_scene/src/modules/posesuggestion/shared/VisualServoing.cpp:186.
url: https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_
representation/ - /blob / BP - Thesis / src / crow _ scene / src /
modules/posesuggestion/shared/VisualServoing.cpp#L186.

[Src: 6] crow_scene/src/modules/posesuggestion/shared/VoxelConstruction.cpp:175.
url: https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_
representation/ - /blob / BP - Thesis / src / crow _ scene / src /
modules / posesuggestion / shared / VoxelConstruction . cpp #
L175.

[Src: 7] crow_vision_aruco/src/camera/CameraPreparation.cpp:129. url:
https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_
representation/-/blob/BP-Thesis/src/crow_vision_aruco/
src/camera/CameraPreparation.cpp#L129.

[Src: 8] crow_scene/src/modules/posesuggestion/mesh/MeshMethod.cpp:63.
url: https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_
representation/ - /blob / BP - Thesis / src / crow _ scene / src /
modules/posesuggestion/mesh/MeshMethod.cpp#L63.

[Src: 9] crow_scene/src/modules/posesuggestion/shared/VisualServoing.cpp:334.
url: https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_
representation/ - /blob / BP - Thesis / src / crow _ scene / src /
modules/posesuggestion/shared/VisualServoing.cpp#L334.

69

https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_representation/-/tree/BP-Thesis/src
https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_representation/-/tree/BP-Thesis/src
https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_representation/-/blob/BP-Thesis/src/crow_scene/src/modules/kb/LocalFakeKnowledgeBase.cpp
https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_representation/-/blob/BP-Thesis/src/crow_scene/src/modules/kb/LocalFakeKnowledgeBase.cpp
https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_representation/-/blob/BP-Thesis/src/crow_scene/src/modules/kb/LocalFakeKnowledgeBase.cpp
https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_representation/-/blob/BP-Thesis/src/crow_scene/src/modules/kb/LocalFakeKnowledgeBase.cpp
https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_representation/-/blob/BP-Thesis/src/crow_scene/src/modules/kb/KnowledgeBase.h
https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_representation/-/blob/BP-Thesis/src/crow_scene/src/modules/kb/KnowledgeBase.h
https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_representation/-/blob/BP-Thesis/src/crow_scene/src/modules/kb/KnowledgeBase.h
https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_representation/-/blob/BP-Thesis/src/crow_scene/src/modules/kb/KnowledgeBase.h
https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_representation/-/blob/BP-Thesis/src/crow_scene/src/modules/kb/LocalFakeKnowledgeBase.cpp#L131
https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_representation/-/blob/BP-Thesis/src/crow_scene/src/modules/kb/LocalFakeKnowledgeBase.cpp#L131
https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_representation/-/blob/BP-Thesis/src/crow_scene/src/modules/kb/LocalFakeKnowledgeBase.cpp#L131
https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_representation/-/blob/BP-Thesis/src/crow_scene/src/modules/posesuggestion/shared/VisualServoing.cpp#L186
https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_representation/-/blob/BP-Thesis/src/crow_scene/src/modules/posesuggestion/shared/VisualServoing.cpp#L186
https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_representation/-/blob/BP-Thesis/src/crow_scene/src/modules/posesuggestion/shared/VisualServoing.cpp#L186
https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_representation/-/blob/BP-Thesis/src/crow_scene/src/modules/posesuggestion/shared/VoxelConstruction.cpp#L175
https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_representation/-/blob/BP-Thesis/src/crow_scene/src/modules/posesuggestion/shared/VoxelConstruction.cpp#L175
https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_representation/-/blob/BP-Thesis/src/crow_scene/src/modules/posesuggestion/shared/VoxelConstruction.cpp#L175
https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_representation/-/blob/BP-Thesis/src/crow_scene/src/modules/posesuggestion/shared/VoxelConstruction.cpp#L175
https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_representation/-/blob/BP-Thesis/src/crow_vision_aruco/src/camera/CameraPreparation.cpp#L129
https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_representation/-/blob/BP-Thesis/src/crow_vision_aruco/src/camera/CameraPreparation.cpp#L129
https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_representation/-/blob/BP-Thesis/src/crow_vision_aruco/src/camera/CameraPreparation.cpp#L129
https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_representation/-/blob/BP-Thesis/src/crow_scene/src/modules/posesuggestion/mesh/MeshMethod.cpp#L63
https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_representation/-/blob/BP-Thesis/src/crow_scene/src/modules/posesuggestion/mesh/MeshMethod.cpp#L63
https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_representation/-/blob/BP-Thesis/src/crow_scene/src/modules/posesuggestion/mesh/MeshMethod.cpp#L63
https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_representation/-/blob/BP-Thesis/src/crow_scene/src/modules/posesuggestion/shared/VisualServoing.cpp#L334
https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_representation/-/blob/BP-Thesis/src/crow_scene/src/modules/posesuggestion/shared/VisualServoing.cpp#L334
https://gitlab.ciirc.cvut.cz/imitrob/imitrob_scene_representation/-/blob/BP-Thesis/src/crow_scene/src/modules/posesuggestion/shared/VisualServoing.cpp#L334

	Glossary
	Introduction
	Use case scenario
	Description of the goal
	Evaluation and the results

	Related work
	Object detection and pose estimation
	Scene and object reconstruction
	Reasoning

	Methods and algorithms
	Voxelization
	PnP
	ArUco Markers
	Octree data structure
	SVD

	Experimental setup
	Datasets and collection
	Wall
	Corridor
	ForeignObjects
	TwoPillars
	Castle

	Implementation

	Architecture
	Modules
	Detection module
	Scene reconstruction module
	Assignment module
	Camera pose suggestion module

	Knowledgebase

	Scene reconstruction methods
	6DoF estimation method using SVD
	Voting method
	Multiview solvePnP
	Possible extensions and future work
	Temporal filtering
	Reasoning about empty spaces
	Reasoning about support and stability
	Propose disambiguation camera views

	Camera pose optimization methods
	Light sources method
	Sum of voxel volumes method
	Generate candidate camera poses
	Scene voxelization
	Find shadow voxels
	AntiAlias shadow voxels
	Score each camera pose
	Discussion about the method

	Render and count shadow pixels method
	Render voxelized scene
	Count shadow pixels
	Discussion about the method

	Shadow mesh method
	Construct visibility mesh
	Combine visibility meshes
	Add reconstructed objects
	Render colored work area mesh
	Count shadow pixels
	Discussion about the method

	Simulated visual servoing
	Generate candidate camera poses
	Find the shadow bounds
	Repeat iteration
	Chose the best pose
	Discussion about the method

	Experimental results – Scene reconstruction
	Experimental results – Camera pose suggestion
	Evaluation metric
	Visualization guide
	Different datasets
	Wall dataset with only side camera enabled
	Two Pillars
	Corridor

	Summary and evaluation of experimental results
	Iterative visual servoing
	Special cases
	Comparison of methods
	Evaluation vs Production environment

	Conclusion and discussion
	Future work

	Resources
	Literature
	Code references

