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Abstract
This thesis aims to develop an inven-
tory monitoring system using LilyGO T-
Journal camera board, Firebase, and Py-
Torch framework. A modified T-Journal
board is used to capture images and send
them to Firebase. These images are pro-
cessed in a Python program using convo-
lutional neural networks (CNN) and the
results are stored back to Firebase. These
results are then visualized in a mobile app
which is also used to label images for CNN
training.

Keywords: Python, PyTorch,
convolutional neural networks, embedded
systems, Arduino, Firebase, monitoring

Supervisor: Ing. Michal Janoöek, Ph.D.

Abstrakt
Cílem této práce je, pomocí v˝vojové
desky LilyGO T-Journal, Firebase a fra-
meworku PyTorch, vytvo�it systém pro
kontrolu stavu zásob. Upravená deska T-
Journal zaznamenává a nahrává fotky do
Firebase. Tyto fotky jsou poté zpracovány
pomocí Python skriptu a konvolu�ních
neuronov˝ch sítí (CNN). V˝sledky zpra-
cování jsou nahrávány zp�t do Firebase
a následn� vizualizovány v mobilní apli-
kaci, která zárove� slouûí pro "labelování"
obrázk� pro trénink CNN.

Klí�ová slova: Python, PyTorch,
konvolu�ní neuronové sít�, vestavné
systémy, Arduino, Firebase, monitorování

P�eklad názvu: Systém pro kontrolu
stavu zásob
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Chapter 1
Introduction

An inventory monitoring system is any system tracking the current state or
level of stock. It is widely used for any planning or reporting activities. In the
past, all the inventory monitoring was usually done in person. A responsible
employee would manually count all the products and insert the numbers into
some reporting software. This process can be very time consuming and prone
to errors.

Naturally, many tools have tried to fully or at least partially automate this
process for multiple reasons. Some of them are:. to save costs on human resources,. to decrease the amount of flawed data,. to prevent unnecessary manufacturing shutdowns due to missing compo-

nents,. to prevent theft.

1.1 Outline

This thesis aims to develop a�ordable, compact, and easy to deploy solution
for remote stock monitoring. It is divided into two parts. The main part is
the software. This part is further divided into the main program, the program
for hardware (firmware), the machine learning algorithm, and the mobile app
used for labeling data for training and reviewing the outputs. The second
part is the hardware part where the hardware used in this project is described
together with all the alterations made.

1.1.1 Comparison to the state-of-the-art

This section provides a summary of currently used technologies, it points out
di�erent use cases and advantages or disadvantages to the given solution.. Conventional solutions

This subsection specifies the technologies that do not use machine learning
algorithms.
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1. Introduction .....................................
. Smart solutions

This subsection summarizes the technologies that use machine learning.

1.1.2 Hardware

First, the LilyGO T-Journal is introduced and the technical specifications
are provided. Second, the changes to the hardware as part of consumption
optimization are described.

1.1.3 Software

This section contains an explanation of di�erent applications written for this
project, it also tries to visualize the connections between these applications
and the high-level workflow of the whole functionality.. Architecture

This chapter contains all the high-level work diagrams and graphs. It
should improve the understanding of the relations between the di�erent
programs.. Camera board program
This section contains information about the firmware for the hardware
device used to capture images. It also explains how to correctly set up
such a device..Main program
This section summarizes the functionality of the main program which is
the backbone of the whole project..Mobile application
The android mobile application developed for this project is described.. Image processing
This section is about the program that interacts with the machine learning
modules and datasets, however, the machine learning itself is described
in section Machine Learning.. Firebase [6]
Even though Firebase is not software developed during this project, it is
essential to the functionality and therefore a quick overview is provided
for better understanding.

1.1.4 Machine Learning

The technology and the framework used in this thesis are described. Further
the process of finetuning and the final architecture are discussed.

2



Chapter 2
Objectives

This thesis aims to develop a simple, quickly deployable, and cheap solution
for remote stock monitoring. The aim is to develop both, the software and
the hardware, specifically the camera device, which should be able to, once
installed, capture and transmit an image to remote storage. This device
should ideally be powered from battery and should be able to function for
several months (strongly dependent on the frequency of capturing and battery
capacity). The software part should implement three functionalities, namely
semi-attended stock level evaluation, data visualization, and a program
connecting these two functions (back-end). Semi-attended meaning that
the results should still be reviewed by a human. Generally, the machine
learning component should be used as an automated out-of-stock notification
rather than a bulletproof solution, as this thesis does not strive to design a
state-of-the-art machine learning algorithm, but rather a handy combination
of several useful technologies.
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Chapter 3
Comparison to the state-of-the-art

This section describes some of the related projects. Since inventory monitoring
is a very broad topic, only a handful of projects were selected, even though
some of them may not be considered state-of-the-art, they were included to
demonstrate di�erent approaches/technologies and di�erent applications.

Generally, we can divide the demonstrated projects into two groups. The
first group uses sensors to measure some physical quantity such as weight,
length, pressure, etc., this group will further be referred to as the conventional
solutions. The second group makes use of computer vision and machine
learning, therefore we will refer to it as smart solutions.

3.1 Conventional Solutions

In general, these solutions work well for smaller-scale projects. Typically, they
require installation of some specialized storing container and each product
has a dedicated sensor, which is monitoring just the particular product.

Figure 3.1: Example of
a conventional solution -
MasterShelf [13]

.MasterShelf [13]
A specialized shelf is installed in a cooler. The system estimates the
amount of drinks in a cooler. The evaluation is based on the linear dis-
placement of sensors placed on springs pushing against the bottles/cans.

5



3. Comparison to the state-of-the-art ...........................
. StockVue [23]

Each product is stored in a box that is placed on a scale. The stock
amount is derived from the weight of the stored product. The man-
ufacturer claims that you’ll get 1 piece per 1000 piece accuracy. The
downside is that you have to install special containers and scale for each
product you want to monitor.

3.2 Smart Solutions

Unlike conventional solutions, smart solutions usually do not require instal-
lation of specialized hardware other than cameras, which are often already
installed and used for other purposes such as security.

Figure 3.2: Example of
a smart solution - Pana-
sonic out-of-stock detec-
tion [17]

. Panasonic out-of-stock detection [17]
A series of IP cameras sends data to the remote evaluation system. Just
like in this thesis only binary monitoring is supported (in stock/out of
stock)..Multiple camera system for inventory tracking [27]
The core of this system is a self-driven processing unit/robot equipped
with multiple cameras. The robot maneuvres between the storage shelves
and creates a “realogram” - a virtual map of the current stock. The unit
also processes all the inputs and transmit the data to remote storage..Machine vision technology for shelf inventory management [9]
Systematically placed cameras monitor di�erent products and using edge
detection the stock amount is determined. This implementation targets
consumer stores such as supermarkets or drug stores.

6



Chapter 4
Proposed solution

The solution introduced in this thesis needs to be designed for simple instal-
lation and use.

To satisfy the need for easy installation, we avoid using complex hardware
devices like most of the conventional solutions. However, a little trade-o� is
made, which is the installation of one camera per product. It is to simplify the
evaluation process, by eliminating the need to distinguish di�erent products.

The ease of use is achieved by focusing all the user interaction into one
location, the mobile app. A user uses this app to manually evaluate the state
of a product and to review the current states of di�erent products. User
evaluated data is eventually used to train a convolutional neural network
(CNN) classifier, which should partly reduce or potentially fully replace the
need for user evaluation. As stated above, the solution is designed to run one
camera per product, which also means one CNN classifier per product.

The actual image processing and CNN training should run on a designated
server. To connect the server to all the other components Firebase is used
as it is relatively easy to access its APIs from servers/PCs, mobiles, and
embedded devices.

The solution is visualized in figure 4.1

7



4. Proposed solution...................................

Figure 4.1: Proposed solution

8



Chapter 5
Hardware

This section provides details of the hardware used for this project, it breaks
down the main components and also describes the changes that were made
to the original board.

5.1 Overview

The hardware consists of a LilyGO T-Journal board. It uses an ESP32
microcontroller with an integrated Wi-Fi chip and a camera sensor. After
initial testing, a couple of changes had to be made to optimize the power
consumption.

5.2 Requirements

The main concern for the board is its power consumption, ideally, the board
should be able to run o� a standard 3.7 V Li-ion battery for months (depending
on the capacity and frequency of image capturing). Another requirement is
Wi-Fi with a medium-long range (10 m ≠ 100 m), this is somewhat conflicting
with the previous requirement because Wi-Fi can have considerably high
power consumption. However, since the device will spend the majority of
time in a deep sleep mode, we care more about idle consumption rather than
the working consumption. Lastly, the board needs to be able to capture
images and convert them to any standard image format.

5.3 LilyGo T-Journal

Upon some investigation, the LilyGo T-Journal from a Chinese manufacturer
Lily-GO appeared to be the best option. It is equipped with ESP32, OV2640
with .jpg compression, integrated Wi-Fi with extended range, Bluetooth
Low Energy, and a small OLED display. It supports micro-USB charging and
programming and comes with battery outlets straight out of the factory.

9



5. Hardware ......................................
Technical specifications

Chipset ESPRESSIF-ESP32-PCIO-D4 240MHz
Xtensa R• single-/dual-core 32-bit LX6
microprocessor

FLASH QSPI flash/SRAM, up to 4 x 16 MB
SRAM 520 KB SRAM
Display 0.91 SSD1306
USB to TTL CP2104
Camera OV2640 - 2Megapixel
On-board clock 40MHz crystal oscillator
Working voltage 2.3V-3.6V
Working current about 160mA
Size 64.57mm*23.98mm
Power supply USB 5V/1A

Wi-Fi Description
Standard FCC/CE/TELEC/KCC/SRRC/NCC
Frequency range 2.4GHz 2.5GHz(2400M 2483.5M)
Transmit power 22dBm
Communication distance up to 300m

Table 5.1: LilyGo T-Journal technical specifications [11]

Figure 5.1: LilyGo T-Journal schema [11]
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....................................... 5.4. ESP32

5.4 ESP32

“ESP32 is a series of low-cost, low-power system on a chip microcontroller
with integrated Wi-Fi and dual-mode Bluetooth.”[26] It is programmable
using standard Arduino development frameworks which makes developing
the code much simpler. Also according to the manufacturer, the chip in deep
sleep only drains less than 100 µA.

5.5 OV2640

It is the world’s smallest 2MP camera chip. It has high sensitivity for-low light
operations which is suitable for installation in darker places like warehouses.
The standby consumption is approx. 600 µA and it supports image resolution
of up to UXGA (1600x1200). We opted for Fish-eye lenses, however, it also
comes with standard lenses.

5.6 Consumption optimization

After a couple of test runs and initial measurements, it is obvious that the
power consumption is too high to meet the criteria and run o� battery for
months. The board, as it comes from the factory, is not optimized for low
power consumption as most of the peripheries are always on and can not be
powered down programmatically.

Figure 5.2: Initial consumption without Wi-Fi

Figure 5.2 and Figure 5.3 depict the initial power consumption. The graphs
show that the power consumption is approx. 20 mA in the idle state and
the mean consumption in the active state is in the range 120 mA ≠ 180 mA.

11



5. Hardware ......................................

Figure 5.3: Initial consumption with Wi-Fi

There is also a di�erence between a board that can connect to Wi-Fi and a
board that fails to do so. When a board is connected to Wi-Fi the power
draw is generally higher and pulsates.

The first step of the optimization was to identify the components that can
either be completely removed or at least powered down when not in use.

The components that can be completely removed are:. The red LED turns out to be connected directly to the source and
therefore is on, whenever the board is powered.. The OLED display is not required for this project.

The second step was to identify the main power consumers in the idle state.
These are:. One of the candidates was the UART circuit. We were unsure whether the

circuit enters suspend mode in which the supply current is 100 µA≠200 µA
or instead the UART stays active and draws 17 mA ≠ 20 mA. It turned
out that the circuit actually enters the suspend mode and therefore is
not an issue.. The biggest consumer turned out to be the camera chip. The reason
being the PWDN pin that has a pull-down resistor (Figure 5.4), this means
that the camera is always on and cannot be turned o�. We need it
the other way around, the camera should always be o�, except when in
use. The solution is to replace the pull-down with a pull-up and make a
connection to a GPIO pin, then whenever the camera is initialized, the
GPIO is set to low, which turns the camera on and when the board enters
deep sleep, the camera is powered down again.

12



...............................5.6. Consumption optimization

Figure 5.4: Changes to PWDN pin [11]

.We also managed to save some µA by disconnecting the battery connec-
tion built into the board. Initially, we wanted to use the built-in battery
connector, but this source of powering turned out to be very ine�ective
and therefore will be replaced with a custom battery control device.

Figure 5.5: Final consumption with Wi-Fi

13



5. Hardware ......................................
These changes caused the idle current to drop to around 4 mA extending

the expected battery life to up to 5 times. The resulting power consumption
can be seen in Figure 5.5. The expected battery lifespan rises from less than
a month to around 3 months for 10 Ah battery. The expected lifespan is
derived from 5.1.

days = capacitybattery

consumptionday

= capacitybattery

Iworking · tworking + Iidle · tidle

(5.1)

Power consumption comparison
Initial Final

Period 3600s
Duty cycle 0.42% (15s)
Working current (approx.) 150mA 150mA
Idle current (approx.) 20mA 4mA
Average current 20.546mA 4.6132mA
Expected battery span - 10Ah 20 days 90 days

Table 5.2: Initial and Final consumption 1 image/hr

5.7 Battery

To demonstrate the ability to run o� a battery, the battery circuit which
is shown in 5.6 was built. It allows us to power the board using D-sub 9
connector and to charge the battery from micro-USB.

Figure 5.6: Battery connection schema

14



Chapter 6
Software

This part describes the structure and basic functioning of the di�erent software
parts developed for this project. The approach and architecture chosen for the
project would not be sustainable for large scale deployments, however, since
this project is generally intended to run on-premise and not as SaaS (Software
as a Service) many of the challenges of large scale distributed systems could
be omitted.

6.1 Overview

The software part can be divided into 2 sections - Architecture and Code,
where the Code section can further be divided into 5 subsections, one being
the code for the camera board, which handles capturing, compression, and
uploading of an image to Firebase. Second, is the image processing module
that takes care of training CNN models and later evaluates the images using
these models. The third component is the main program that implements
general logic, normalizes, and generally handles data in Firebase, it also
interacts with the CNN models and updates the information about products
monitored. The next part is the mobile app which is used for two purposes -
labeling training images and reviewing and managing the evaluated images.
Lastly, an overview of Firebase is provided as it is the core of data handling
and storing for this application.

6.2 Architecture

As briefly mentioned in this section’s summary, the architecture was designed
for on-premise, small-medium size deployments. More concretely, the maxi-
mum expected number of devices is medium-high tens of monitored products
(recording devices) and low tens of responsible users. A couple of entities are
mentioned throughout this project, these entities are:. User

A user in our case is an instance of Firebase Auth User and is also the
abstraction of an end-user/consumer of this service. A user is the one
responsible for providing all the manual inputs that might be required

15



6. Software.......................................
during the runtime - such as labeling training data, confirming/declining
generated outputs. A user is also the one using the outputs of this service
such as images captured and the status predicted.. Camera (Device)
Camera or Device is the representation of a physical device capturing
images. It is tightly connected with the actual product it is monitoring
as this service runs as one camera per product. Due to this fact, there
is no separate “product” class defined within this project and all the
information regarding a product should be stored under related camera
documents. The relation between a camera and a user is many-to-many,
a user can be responsible for multiple devices, but also a device can have
multiple responsible users.. Record
A record is a simple class used to hold data related to a captured image
and to upload the data to Firebase. One instance corresponds to one
image. The relation between a record and a camera is many-to-one, a
record can only have one source device however any device produces
many records.

The following diagram describes the classes defined in this project and the
relations between them.

Figure 6.1: Classes and their relations

16



..................................... 6.2. Architecture

This is a distributed system and all the data transport is done via Firebase,
therefore none of the applications are directly communicating with each other.
Figure 6.2 visualizes the virtual communication channels and the data that is
being passed through them.

Figure 6.2: Communication between Firebase and di�erent applications..1. In - Camera device uploads images encoded in Base64, together with a
timestamp and device id. This information is stored as plain text in the
Realtime Database...2. Out - Backend retrieves the items from Realtime Database and represents
them as Records (Figure 6.1)..3. In - Records and updated Cameras are uploaded to Cloud Firestore.
Out - Latest labeled Records are retrieved to update Cameras...4. In - Images converted from Base64 to .jpg files and uploaded to Storage.
Out - These images are retrieved for later model training...5. In - Updated Records and updated Cameras are uploaded to Cloud
Firestore.
Out - Records are downloaded for labeling, Cameras are downloaded for
review...6. Out - Images are downloaded for labeling.

17



6. Software.......................................
6.3 Firebase

Firebase [6] is a state-of-the-art cloud-based platform that enables us to build
powerful and easily scalable infrastructure for app, web, and other software
development projects. It o�ers various services, however, this project only
uses those related to data storage.

One of the most powerful features of Firebase is the APIs accessible virtually
from any platform.

This project uses the following three services:. Realtime Database
NoSQL cloud-based database which stores data as JSON objects. It is used
to store images encoded in Base64 captured by the camera boards.. Cloud Firestore
Like Realtime Database this is a NoSQL database, unlike the Realtime
Database, the data is stored in objects called Documents that can be
grouped into collections. Generally, Firestore allows more advanced
operations and is used to store Records.. Storage
Storage allows us to store file objects and therefore it is where all the
actual .jpg images are stored. All the Records refer to the respective
files in the Storage.

18



................................ 6.4. Camera board program

6.4 Camera board program

The purpose of the camera board is to, in given intervals, capture an image of
the monitored product and upload it to the Firebase together with a timestamp
and device id. The camera board (described in detail in Hardware section)
is equipped with ESP32 microcontroller which can be easily programmed
with Arduino-IDE or any similar framework for embedded development. The
program itself is based on [12] and [7] and uses multiple 3rd party libraries,
mostly to interact with the camera chip, Firebase Realtime Database, and to
connect to Wi-Fi.

6.4.1 Setup

Several variables defined at the top of the source code need to be set up
properly to be able to run the code successfully. These values are:.DEVICE_ID - unique id of the camera used to identify the product

monitored.WIFI_SSID - SSID of the Wi-Fi the device is expected to connect to.WIFI_PASSWORD - password of the Wi-Fi the device is expected to
use. PACKET_SIZE_LIMIT - the maximum size of one packet sent (in bytes,
default 4000)1. FIREBASE_HOST - URL of the Firebase project. FIREBASE_AUTH - Firebase API token. BASE_PATH - Firebase root document name. TARGET_RESOLUTION - intended image resolution FRAMESIZE_,
where can be replaced with any of the following VGA, CIF, QVGA,
HQVGA, QQVGA, UXGA, SXGA, XGA, SVGA.MINS_TO_SLEEP - how many minutes to wait between two captures2

6.4.2 Workflow

As any standard Arduino project, the code is composed of two functions,
void setup() (called when the device is woken up) and void loop() (runs
the main body of the code).

1
there seems to be some limitation to the maximum size of a JSON object in one of the

libraries used to upload the image to Firebase and it causes issues when uploading higher

quality images
2
� = tstartup2 ≠ tstartup1
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Figure 6.3: Camera board workflow
diagram

Normally, we would use the setup
to initialize all the peripheries - ini-
tialize camera, connect to Wi-Fi,
open serial port, and then run the
code in the void loop() function.
However, since one of the intentions
is to be able to run the device on bat-
teries, the consumption needs to be
minimized and the board is put into
deep sleep mode whenever not in use.
When the device is brought back to
life it reruns the setup and since we
only need to capture one image at a
time we moved all the logic into the
void setup() and void loop() is
never used. The program first ini-
tializes all the peripheries, namely
connects to the serial port, connects
to Wi-fi, and initializes the camera.
Second, an image is captured, the im-
age is first compressed into .jpg and
consequently encoded into Base64
and URL escaped. Encoded data
are then sent to the Firebase Real-
time Database where a new node is
appended to the BASE_PATH doc-
ument. Each node has the structure
from 6.1

Listing 6.1: Realtime Database node
node_id

|--data
| |--image_data_0
| |--image_data_1
| | ...
| |--image_data_N
|--device_id
|--timestamp
|--image_meta

Once the image is transferred,
the board enters deep sleep mode
and is brought back to life after
MINS_TO_SLEEP minutes elapsed
since the last awakening.
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6.5 Main Program

The main program is a python application that implements all the logic of
the back-end and should run on a dedicated hardware (server station, PC). It
uses both common ways of parallelism, multithreading, and multiprocessing.
Multithreading was introduced to e�ectively communicate with Firebase, one
thread manages all the incoming tra�c whereas the second thread uploads
the updated data back to Firebase. Multiprocessing was added to improve
the performance of image processing and training tasks as working with CNN
can be quite computationally expensive.

The main program repetitively checks for new images uploaded into the
Realtime Database from any camera boards. It then downloads those Base64
encoded images and converts them back into original .jpg image files. Once
the images are converted, the main program uploads them to Firebase Storage
and creates new records referring to these images. A record is an instance of
a Record class.

As declared, these records are used to store additional information such
as time captured, source device, and the status of the monitored product,
meaning whether the product is in stock or out of stock. There are two ways
to obtain status:..1. If a model of CNN is already trained for the product. The main program

creates an evaluation task in the incoming queue and the status is
evaluated by a pre-trained CNN model...2. If a model of CNN is not trained yet, the record is updated with the
“Needs labeling” flag and the record is loaded straight into the outcoming
queue. Later the image is shown in the mobile app to be labeled by a
responsible user. Once a su�cient amount of training images have been
labeled the main program creates a training task in the incoming queue
and the image processing client trains a new model. Next time a record
is created for the same product the main program will perform 1).

6.5.1 Setup

All settings are located in settings.py file distributed with the main module.
The following values need to be properly configured:. CONFIG {

apiKey - Firebase API key
authDomain - Firebase project URL
databaseURL - Realtime Database URL
storageBucket - Firebase Storage bucket
}. FIREBASE_PASSWORD - Firebase user password. FIREBASE_EMAIL - Firebase user email
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. GOOGLE_APPLICATION_CREDENTIALS - location of google cloud

credentials. DEFAULT_IMAGE_PATH - Firebase root document name. DEFAULT_IMAGE_EXTENSION - default image extension. DEFAULT_COLLECTION - default collection in Firebase Storage. SAFETY_TIMECAP_MINS - do not download records from Realtime
Database more recent than this time. LOG_DESTINATION - root folder for logging.MAIN_LOG_FILE - location of log file. SLEEP_SECONDS - sleep for n seconds if queue empty (threads and
workers). ACTIVE_DATA_DIRECTORY - root directory for datasets and models. ACTIVE_DATASETS_DIRECTORY - directory for datasets. ACTIVE_MODELS_DIRECTORY - directory for models.MODEL_NAME - default model naming. DATASET_NAME - default dataset naming. ITERS - number of training epochs. BATCHSIZE - training batchsize. LEARNING_RATE - CNN model learning rate (SGD).MOMENTUM - CNN model momentum (SGD)

6.5.2 Workflow

The main program uses a class called FirebaseClient to interact with Firebase.
It is located in firebase_client.py

On startup, each thread creates an instance of this class. While being
created the FirebaseClient sets up a connection with all three services this
project uses - Realtime Database, Firestore, and Firebase Storage, it also
authenticates against the server (authentication then needs to be periodically
refreshed).

As mentioned, the main program functions as a back-end and implements
all the logic of the project. It processes and keeps track of incoming images
from cameras, it evaluates these images and then generates outputs based on
the results. The task of the main program is both I/O bound (communication
with Firebase) and CPU bound (image processing), therefore the program
uses both, multithreading and multiprocessing. On startup, two threads and
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a pool of workers (additional processes) are created. While each thread has a
unique purpose, all the workers are equal and therefore a user can pick an
arbitrary number of workers. The only limitation is the number of logical
cores - one worker per core.

The program uses two queues, namely in_Q and out_Q. Their purpose is
to share data between processes/workers and the threads. These queues are
populated with Tasks.

6.5.3 Task

Tasks are items fed to the queues. A Task is a simple class used to distinguish
between an evaluation job and a training job. It contains these members:
type of task - evaluate/train, timestamp_in, and timestamp_out and list of
Records used for the task or a device id. This class was introduced for two
reasons:. To avoid queue members polymorphism. This way all the members are

of the same type, therefore they have the same methods implemented.. Audit reasons. Thanks to the timestamp in/out properties we can trace
back the tasks in logs and easily establish the processing time.

6.5.4 IN Thread

The main job of this thread is to handle incoming Records and feed them
as Tasks into in_Q. It also adds the Tasks straight to out_Q in case no CNN
model exists for the device.

Loop..1. All new images from all the boards are downloaded and converted from
Base64 into a temporary .jpg file...2. These images alongside device ids and timestamps are passed into Record
constructor and a new record is created for each retrieved image...3. Images are uploaded to Firebase Storage...4. The main program now loops thru all the images/records and performs
the following steps:..a. Checks whether the device has an existing model...b. Based on the result from a). True —> Task is created and is passed to in_Q. False —> Record is updated with manual labeling flag and the

updated Task is added to out_Q. Subsequently, the program
checks whether a new model can be trained based on a rule
of thumb (amount of labeled images) and accordingly makes a
new training Task and adds it to in_Q.
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Figure 6.4: Main application workflow
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6.5.5 Worker

A worker is a separate process that runs an infinite loop that performs the
following steps:..1. Get task from in_Q, if no item is found in the queue, the worker sleeps

for a while and tries again...2. Check the nature of the task. Evaluation - label the image (set state). Training - train a new CNN model..3. If the task is to evaluate an image the resulting task with updated status
is loaded into out_Q. The training task has no output as the result is
redundant, simply because the result will be retrieved next time the
existence of the given model is checked.

6.5.6 OUT Thread

This thread handles all the outgoing communication. Whenever a new task
is added to the out_Q, it uploads the related Record to the Firebase and
updates related Camera Document.

Loop..1. Tasks are retrieved from out_Q and the related Records are uploaded to
the Firestore...2. The camera documents are updated. Each camera has a unique doc-
ument in the Firestore, this document is designed to keep the latest
information about the device. Since the amount of Records generated
could potentially be very high, the idea is to refrain from accessing raw
Records data. Therefore we aggregate all the useful information into
these Camera documents and update them as the records come and go.

6.6 Image Processing

This section covers three modules essential for image processing. These
modules are:. dataset.py. networks.py. image_processing.py
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The dataset.py module contains a class which represents images dataset. It
also implements all the functionality regarding collecting the dataset from
Firebase and image preprocessing. The only preprocessing done in this
project is cropping, as the CNN expects input of a given size (480x480), and
transformation from RGB to normalized greyscale (0.0-1.0).

The networks.py contains the definition of CNN classifier and also the
method check_model_exists() which is essential for the main program -
based on the output from this method a new image is either passed on for
manual labeling or evaluated using CNN model.

The image_processing.py uses both of the previous modules and imple-
ments all the functions needed for the image evaluation and training of CNN
models. The framework and the techniques used to implement CNN are
described in detail in section Machine Learning.

The module contains 2 public functions:. process_image()
This function expects a Record as an input. First, it transforms the
captured image into the appropriate format - crop and greyscale conver-
sion. It then loads the related CNN model and runs the image through
the model. Once the result is retrieved it is used to update the Record
(Record.status) which is then returned.
Currently, 2 results can occur:. 0 = out of stock. 100 = in stock. train_CNN()
Upon being called, the function first downloads all the previously labeled
images by calling the method gather_test_train_datasets(). These
images are then transformed into the desirable format (crop and greyscale
transformation), divided into two locally saved datasets. test_dataset - generally smaller. train_dataset - generally larger

The method then loads these two newly generated datasets and initializes
a new instance of CNN model. It then performs training using these
datasets. Once the training is finished the trained model is saved to a
predefined location where it can be retrieved during future evaluation
requests.
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6.7 Mobile Application

The mobile application is not required of this thesis, however, it proved to be
to the optimal solution for labeling and reviewing the images. However, since
it is partly closed-source, it is discussed only briefly to demonstrate its use in
this project.

It is a “Tinder” like app running on Android devices. It consists of 3 main
activities (screens) - login, labeling activity, results activity.

(a) : Login activity (b) : Labeling activity (c) : Results activity

Figure 6.5: Screenshots of application activities

6.7.1 Login Activity

This activity is launched whenever the user has no valid session. All the
authentication is checked against the Firebase Authentication module.

A user is signed in upon successfully entering a valid e-mail x password
combination. A new user is always added by a central authority (system
admin) via Firebase Console.

Apart from e-mail and password, Firebase also stores information about
devices the user is responsible for, so that users can only see products they
are directly responsible for, it also stores the privilege levels - user can label
and review or review only.

6.7.2 Labeling Activity

This is the app’s main activity and also the launching activity. Whenever
the app is launched a valid user session is checked first. If the user is not
authenticated he/she is redirected to the Login Activity.

This is the activity where authorized users label images for training but
the results are also used to update the products’ status until a CNN model is
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trained. The images are visualized as floating cards with the product/device
IDs at the bottom. Users can either swipe right (In Stock) or left (Low). Once
the user votes, the Record is updated at Firestore and the main program
handles the rest (training, updating status). Once a user labels all unlabeled
images, the app shows just a blank screen. Ideally, the app should be checked
regularly and the screen should be kept blank.

6.7.3 Results Activity

This activity shows a list of all the monitored products that the signed-in
user is responsible for. One item of the list always contains the following:. Last captured image - this way even if the automated evaluation triggers

incorrect actions, the responsible user can override it.. Last captured image timestamp. Product/Device ID. Product status - this way a user is always able to see the generated
status and in case it is faulty, replace it
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Chapter 7
Machine Learning

This section presents di�erent approaches considered for image evaluation,
it also provides a brief description of convolutional neural networks (CNNs),
it’s training, finetuning of its architecture and the PyTorch library used for
final implementation.

7.1 Discussion

First, it should be reviewed what the actual purpose of machine learning will
be. this project does not strive to create a bulletproof solution, that will
always return an accurate estimate of the amount of stock. The main power
of this project is the almost-realtime remote access to information that would
otherwise require physical presence. The machine learning algorithm is rather
a supporting technology that further simplifies the inventory monitoring
process. It is expected to run in supervised mode meaning that the user
should still validate the outputs and only once the functioning has been
thoroughly tested can we consider switching the model to fully autonomous
mode. To simplify the need process of supervision, the mobile app was
designed to minimize the time required to validate and review the outputs,
so that the human validation can be done easily and quickly.

Second, the deployment environment should be specified. One of the main
intentions was to create a technology that is easily implemented by an unskilled
person, can be applied to any situation and any product/material. The goal
of simple deployment and training outweighs the accuracy a more complicated
model could bring. The accuracy is not crucial for proper functioning, because
even if the machine learning performs poorly for any reason, the application
can still be successfully used to monitor stock level remotely.

Generally speaking, for applications where an exact amount of stock is
expected, this tool is not the right choice as it only makes a binary decision,
on the other hand, if the monitoring task is only full vs. empty choice, this
tool performs quite well on virtually any material/product.

The technology eventually used is a convolutional neural network classifier,
with two categories full (ok) / empty (not ok).
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7.2 Considered Approaches

Convolutional neural networks are likely one of the most booming machine
learning algorithms of the last decade and were intuitively the go-to technology,
however, other approaches were considered before opting for CNN classifier.. Edge detection/Object detection[18]

Naturally, edge detection was one of the technologies considered for this
project. This technology would be the go-to if the intention was not
binary but exact level detection, for example, to count boxes on a shelf
or to estimate the amount of sand in a pile by rotating its 2D silhouette.
However, edge detection would require a lot of customization for each
application and therefore contradicts one of the requirements stated
above - easy deployment by an unskilled person.. SVM classifier[14]
This algorithm was considered for its simplicity and could replace CNN.
The main reason it was not eventually used is the fact that even though
only a binary classification is currently required, more classes could be
added in the future (e.g. 10 classes of di�erent percentage range 0-10,
10-20...) and SVM does not natively support more than 2 classes.. CNN classifier[18]
As mentioned, CNNs are the latest trend in computer vision, it allows
an arbitrary number of recognized classes and there is a vast selection of
various frameworks with huge communities and many resources - papers,
projects, implementations. The only drawback could be the training
costs, however, we do not expect to train huge models (small-medium
sized datasets of high tens, low hundreds), and therefore it is not an
issue. Also, this technology was tested at the beginning of the work and
the positive results supported the choice.

7.3 Neural Networks

[5] A neural network is an iterative machine learning algorithm that in some
abstraction tries to imitate the functionality of a human brain. One of the
huge advantages of this technology is that it requires minimal input data
preprocessing or other human interaction.

A convolutional neural network is a subclass of neural networks, it consists
of multiple layers which are interconnected, these layers can be - convolutional
layer, pooling layer, linear layer, etc. The number of layers is referred to
as depth. It is most commonly used for image processing tasks, such as
classification, object detection but also images generation or image quality
upscaling. A convolutional neural network process the image as volumes,
receiving the inputs as combinations of adjacent pixels. These combinations
are calculated using a convolution mask (matrix). Determining the optimal
values of these matrices’ members (weights) is called training of CNN.
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7.4 PyTorch

PyTorch[18] is one of the main Deep Learning frameworks together with
TensorFlow, Keras, or Ca�e. One of the biggest advantages of this framework
is the support of CUDA, graphic card computation, which can speed up the
learning process by a factor as high as 50 times.

The building block of this library is a Tensor, which is essentially a multidi-
mensional array (matrix) and just like matrix it supports matrix operations
such as multiplication or adding.

Another core functionality of the framework is the Autograd package. “The
autograd package provides automatic di�erentiation for all operations on
Tensors. It is a define-by-run framework, which means that your backprop
is defined by how your code is run, and that every single iteration can be
di�erent.”[18]

7.5 Training the Convolutional Neural Network

The model expects two input datasets, one for training, one for testing. The
training dataset is used for the iterative updating of the weights and the
test dataset is used to evaluate the model’s performance on general data.
Using two datasets prevents overfitting - model that performs very well on
the training data but very poorly on any general data it has not seen before.

A specific module dataset.py implements the Dataset class that is used
to represent these datasets. It also implements methods to gather images
from Firebase and transform these images into the expected format.

The process of training consists of repetitively iterating through the col-
lected images and retrospectively updating the weights of the model, based on
the received and the intended outputs. The relation between the received and
the intended outputs brings us to another essential concept of CNN, which
is the loss function. It is used to determine how “far” away is the received
output from the intended one. This knowledge is then used to update the
weights so that the next iteration yields better results.

Thanks to the PyTorch framework the backpropagation process is very
simple and done almost automatically. The only thing a user has to define is
a loss function and the chosen strategy of updating weights. Cross-Entropy
loss and Stochastic Gradient Descend were chosen for this project since they
come predefined with the framework and initial testing proved the selection
to be working.

Listing 7.1: CNN training implementation
def trainCNN(self, DS, TST_DS,

ITERS, BATCHSIZE,
lr=LEARNING_RATE,
mom=MOMENTUM):

criterion = nn.CrossEntropyLoss()
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optimizer = optim.SGD(self.parameters(),

lr=lr, momentum=mom)

for i in range(ITERS):
# get batch from dataset
inputs, labels, categories = DS.get_batch(BATCHSIZE)

# map human readable labels to int series
labels = [self.mapper[label] for label in labels]

optimizer.zero_grad()

inputs = torch.from_numpy(inputs)
labels = torch.from_numpy(np.array(labels))

# forward + backward + optimize

outputs = self(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()

if i % 20 == 0:
loss_tst = self.testCNN(TST_DS, BATCHSIZE//2)
if loss_tst < 0.2:

return True
return False

7.6 Finetuning and Final Architecture

As there is not such a thing as the correct way to design a CNN classifier,
the designing and finetuning of a classifier is strongly test-driven. It requires
multiple train and test runs until a well-behaving CNN is created. However,
the results are also very data sensitive. The more generalized the dataset is,
the better the CNN tends to perform. Apart from the structure of the network
a couple of parameters also a�ects the training. These are the momentum
and the learning rate used to optimize SGD.

The CNN used for this project is one of the simpler ones, it uses several
convolutional layers with max-pool layers inserted in between and then 3 fully
connected layers. Relu is used as the activation function for all the layers.
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Results

The final solution looks as depicted in figure 8.1:

Figure 8.1: Device with battery

To test the solution, a simple "warehouse" like environment was setup. Just
like in warehouse, the camera is supposed to be fixed to a certain location,
therefore neither the surrounding surface nor the location of the camera
changes too much. To imitate this, the camera was fixed to a stand and a
white cardboard was used as a background (viz. figure 8.2).
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Figure 8.2: Camera setup for testing

The task was to test if a Coca-Cola can is present or missing. For training
the CNN we gathered 21 unique images and trained a model. To improve
the model performance we shifted around the lighting and the position of
the can during image capturing. This should create a less environment-
dependent solution. The resulting model was able to distinguish the two
states OK/LOW for 10 consecutive times, each time with di�erent lighting
and state (present/missing). These results are visualized in figure 8.3 and
figure 8.4.

Unfortunately, due to time constraints, more testing could not be done.
However, throughout the development, the functionality has been tested
multiple times. Usually the task was to determine a volume on di�erent
liquids in a glass/bottle. If the amount of liquid dropped below a certain
level the CNN was able to set the status to out-of-stock (low).
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Figure 8.3: Demo for status OK

Figure 8.4: Demo for status LOW
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Chapter 9
Conclusion

This thesis’ objective was to get a working camera device, that captures and
transmits an image to remote storage. This image is then either manually
evaluated by an end-user in the mobile app or by a pretrained CNN classifier,
given enough images have been previously manually labeled.

The result of this thesis is the source code implementing all the back-end
functionalities, the android mobile app, and the physical device with firmware.

The core of all back-end functionality is the main.py module which makes
use of all the other modules developed for this project. It is a Python script
and uses both multiprocessing and multithreading to improve its performance.

The android mobile app is a simple mobile app that serves the purpose of
visualizing the data to an end-user and is also used for manual labeling of
the images.

Last is the physical device. It is a modified LilyGo T-Journal development
board. The modifications were carried out to lower power consumption and
improve battery life.

In conclusion, the objective of this thesis was met. A working solution of an
inventory monitoring system was created. A modified T-Journal development
board repetitively uploads images to Firebase, from where these images are
downloaded and processed in the main program. The main program either
evaluates the image using one of the pre-trained CNN classifiers or requests
manual labeling in the mobile app.

A couple of things can be improved, the device is still consuming consid-
erable amount of power, which could be lowered with further modifications
to the board. Image processing needs more testing to determine its optimal
working environment, potentially other image processing techniques can be
applied. The mobile application’s user-access settings, overall security and
the business logic of working with the outputs need to be developed before
deployment to production.
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CD content

. SmartInventory. java - java files. res - xml files and static files.main.py. settings.py. dataset.py. networks.py. task.py. firebase_client.py. record.py. utils.py. image_processing.py. requirements.txt
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