
ORIGINAL ARTICLE

Improved dynamic cutting force model with complex coefficients
at orthogonal turning

Jiri Drobilek1 & Milos Polacek1 & Pavel Bach1
& Miroslav Janota1

Received: 27 August 2018 /Accepted: 9 April 2019 /Published online: 26 April 2019
# Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
Self-excited vibration (chatter) is determined by the relation between the vibrating system and the cutting process. In current
theories, the dynamic cutting force model in a form suggested by Tlusty and Polacek in the 1950s is still used. However, this
model oversimplifies the dynamic cutting process by trying to express all processes using a single cutting force coefficient.
Measurement results presented in this article clearly show that such simplification of the cutting process is unacceptable. This
work follows upon the original measurement method by Tlusty and Polacek using controlled tool vibration. The method was
intended to research the cutting process dynamics. However, the original Tlusty and Polacek method ignored the impact of the
length of the workpiece surface wave. The original method is innovatively developed by taking into account the impact of the
chatter frequency. The new method allows to better understand the processes occurring during dynamic cutting. As opposed to
the original method, current advanced measurement equipment allows for more precise examination of the cutting process in
dependence on the chatter frequency. The article shows that results obtained by the new method can be utilized for modeling the
cutting force with greater precision in order to better predict the cutting process stability.
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1 Introduction

Depending on the parameters of the mechanical structures of
the machine and of the cutting process, turning can either be
chatter-free or the tool can start vibrating during cutting even
without any external excitation force. This process is known
as self-excited vibration or chatter. The boundary between the
two conditions is called the stability limit. The stability limit
can be visualized as a borderline dividing the cutting

conditions in two groups. One group includes conditions un-
der which machining will always be chatter-free, while the
other group includes conditions for unstable cutting. The chip
width b is considered to be a significant parameter defining the
stability limit in practical terms. In practice, it is often represent-
ed in dependence on selected parameters, such as cutting speed,
chatter frequency, or other technological parameters relevant for
the particular case (workpiece material, tool parameters, etc.).
Such representation is known as the stability lobe diagram.

Unstable cutting conditions may induce massive chatter
which poses a risk of not only bad quality of the machined
surface but also tool or even machine damage. Self-excited
vibration can arise in dependence on the resilience of the
machine-tool-workpiece system, on the dependence of the
resulting interaction force between the tool and the workpiece
on the system chatter, and on technological parameters of
turning. By this, we mean the impact of the force(s) between
the tool and the workpiece on the magnitude, direction, and
phase of the excited chatter, considering also the retroaction
between such force and the system chatter.

Research into suppressing self-excited vibration dates
back to the 1950s. With regard to the level of compu-
tational and experimental technology available at that
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time, research of self-excited vibration had to be simpli-
fied significantly; focus was given to improve parame-
ters of mechanical vibrating systems and to optimize the
parameters of the cutting process.

As a general rule, stability of the cutting process depends
on the mechanical structure dynamics and on the dynamic
cutting process. A dynamic process in this context means a
process variable in time.

One aspect cannot be prioritized over the other when de-
fining the conditions of chatter-free machining.

The mechanical structure of the machine consists of differ-
ent elements. Some can be represented as a mass, other as a
spring or a damper. The dynamic behavior of the system is
described using transfer functions. In practice, the frequency
transfer function is the most widely used, describing chatter
induced by the force interacting between the tool and the
workpiece. The direction of the chatter and the direction of
the acting force are considered.

However, dynamic behavior of a complex mechanical
structure cannot be described merely on the basis of measured
transfer functions in the directions of the coordinate system
axes, which is often the general practice. The directions of
individual modal shapes also need to be taken into account.
These directions and the direction of the acting force deter-
mine the directional factor. The directional factor indicates the
contribution of different modal shapes to the overall displace-
ment in a specific direction, see Fig. 1. If a dynamic cutting
force is applied in a certain direction, then, its orthogonal
projections into the directions of each modal shape will cause
a displacement in that direction. Depending on the dynamic
properties of the different shapes, the displacement will be of a
certain size. The sum of these displacement projections in the
direction of the normal Ywill be decisive for the occurrence of
an unstable cutting process.

For a more detailed explanation of the above, see [1] or [2].
These publications provide a very clear overview of the cur-
rent status of chatter research.

The dynamic properties of a mechanical structure are de-
termined by its stiffness, natural frequency, and damping of
the different modal shapes. Directional factors, together with
other modal shape parameters, express the contribution of
each modal shape to the occurrence of chatter.

The directional factor influences stability in all types of
machining. The impact of this particular parameter can be
seen, e.g., in milling or drilling, the reason being that these
technologies involve a rotating dynamic cutting force. If the
decisive factor of stability is a rigid vibrating system (i.e., the
machine-supporting structure), the stability of the cutting pro-
cess may increase or decrease depending on the angle between
the cutting force and the different modal shapes.

At a low cutting speed and a specific chip width b, the
rotating tool will smoothly pass between stable and unstable
cutting and the waviness will appear only in particular areas of
the workpiece surface.

This article will further presume that today’s methods of
identifying the dynamic behavior of machine structures are
very advanced and that there can be no doubts about their
reliability and accuracy for the purposes of determining the
stability limit.

The content of this article focuses on the cutting process,
namely, on the cutting process dynamic force arising between
the tool and the workpiece due to vibrations.

Until the 1950s, research of self-excited vibration
concentrated on identifying its causes in terms of tech-
nology. In the 1950s, the professional public recognized
two principles explaining and describing cutting process
instability. The principles are position feedback and re-
generation [3]. Position feedback was found to be the
cause of self-excited vibration. Position feedback
showed that the vibrating system has its role as much
as the acting cutting force. Further in this article, we
will concentrate solely on the regenerative principle.

According to the regenerative principle, apart from the tool
vibration force there is also the wave cutting force. The tool
cuts waves created during the previous revolution or—in the
case of milling—during the preceding cutting-edge passage.

The waves have their amplitude and wavelength deter-
mined by the chatter and cutting speed. Waves that are being
cut show a phase shift by angle ψ against the tool chatter due
to the ratio between the frequency of the chatter and the fre-
quency of rotations (i.e., the cutting speed), Fig. 2 A). If the
phase shift ψ equals zero (the ratio between the chatter and
rotation frequencies is an integral number, Fig. 2 B), no un-
stable cut may occur according to the regenerative principle.

A general principle applies for self-excited vibration
that the mechanical structure and the dynamic cutting
process form a closed system. For an unstable cut to
occur, the system must be able to set a non-zero phase
shift between the tool vibration and the resulting dynamic
cutting force. For regenerative chatter, it is the phase shift ψFig. 1 Directional orientation
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which is set by changing the ratio between the frequencies of
the chatter and of the turning rotations.

The phase shift is associated with a certain frequency of
tool vibration and of turning rotations. There is a different
phase shift corresponding to each frequency, but for the given
system, such frequency is set that gives rise to chatter with the
minimum chip width b. It is mainly the regenerative principle
that is used to define the stability limit because the established
dynamic force model extremely simplifies the description of
the dynamic cutting process. It allows to determine the influ-
ence of the vibrating system on the stability limit even for
systems with a single modal shape. The regenerative principle
started to be used in practice in machine tool design in order to
increase their resistance to chatter.

In the late 1960s, a cooperative research of several interna-
tional research labs took place under the umbrella of CIRP,
whose aim was to describe with more precision the equations
then used for defining the stability limit and to establish a
methodology for measuring the dynamic cutting force analog-
ically to measure the dynamic behavior of a mechanical struc-
ture. Using specific measurement and evaluation methods,
dynamic cutting force coefficients were established for tan-
gential and normal directions, Fig. 1. These were complex
coefficients, i.e., they contained information about the ampli-
tude ratio and about the phase shift between the relevant force
component and the tool vibrations in the direction of the nor-
mal Y, similar to the values of the complex transfer function of
a mechanical structure.

In spite of the effort to maintain uniform measurement
conditions across all the labs, the results from individual lab-
oratories showed considerable dispersion of values [4].

Numerous other authors also attempted research in the field
([5–10]), but due to demanding requirements on hardware and
time needed for the experiment, they sought a practicable way
of simplifying and accelerating the acquisition of data.
However, the simplifications only resulted in larger or lesser

inexplicable deviations from the measurement results obtain-
ed by the cooperative research. The majority of authors con-
centrated mainly on identifying the complex coefficients with-
out investigating their further use for calculation of the stabil-
ity limit.

The term “complex” may appear somewhat unclear, but it
can be easily explained.

Let us admit that the dynamic force F is not only directly
proportional to chatter amplitude Y, Fig. 3 A), but that there is
also a time shift between the amplitude and the force, Fig. 3
B). In reality, the dynamic cutting force is directly proportion-
al to the cross-section of the cut layer. For the sake of simplic-
ity, let us presume that the cut width b is constant and there-
fore, the dynamic force depends only on the amplitude Y. If
therefore the movement of the tool Y varies periodically in
time, the force F will also vary with the same period, but the
peak of each value will occur at different moments due to time
delay. The existing time delay can be expressed with the use of
chatter frequency as the phase of the force F against the am-
plitude Y. Using a complex number, we can thus express both
the magnitude of force and the considered phase at the same
time. The magnitude of the force (its amplitude) is defined by
the cutting resistance, while the phase is determined, e.g., by
the shift between the waves and the tool chatter or by time
difference due to the properties of the material whose structure
goes through different states during machining.

The expression “complex” can thus be understood as
encompassing both amplitude and phase-shifted. However,
the considered time delay can be analyzed also directly in
the domain of time. Semi-discretization methods can be ap-
plied when looking for a solution [11]. In principle, these
methods consider time delays with various dependencies.
Complex dynamic coefficients are marginally discussed also
in one of the sub-chapters [2].

The current dynamic cutting force model is based on two
basic dynamic forces: the force from the tool vibration (inner

Fig. 3 Complex cutting force

Fig. 2 Regenerative dynamic cutting force
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modulation Fi) and the force from the wave cutting (outer
modulation Fo). There is a phase shift between these forces
corresponding to the ratio between the frequency of chatter
and the frequency of rotations (phase ψ). For the sake of sim-
plification, both these forces are often expressed as a single
expression. This however obscures their original meaning.

The theory further contemplates that there is also process
damping in the cutting process, which causes the stability limit
to increase with decreasing cutting speed. The notion of “pro-
cess damping” includes the damping force generated by the
cutting process, which thus prevents the tool from chatter. The
physical principle of the emergence of this force is based on
the idea of a contact between the tool edge and the undulated
surface of the workpiece [12]. This theory has been further
expanded [13] with a force occurring due to the forcing of the
rounded tool edge into the wave foot. When the radius on the
cutting edge is larger than the curving at the wave foot, the
material will hinder the tool movement due to lack of space,
which limits the tool’s maximum depth of cut. Process
damping is also influenced by the tool’s wear. With growing
wear, the cutting edge becomes flatter, significantly reducing
the tool’s capacity to cut into the material and increasing the
stability limit. Latest research focuses mainly on identifying
the process damping forces. An elegant and simple method of
identifying process damping is presented in [14]. This method
requires no expensive measuring device to measure damping.
Damping is measured based on the maximum and minimum
depths of cut.

Papers [13, 15, 16], can also be mentioned, identify process
damping using different methods.

Article [13] describes identification of the process damping
force using controlled tool vibrations. During cutting, the turn-
ing tool was made to vibrate at a constant frequency with the
use of a piezoelectric actuator. The frequency of the chatter
against the workpiece rotation was chosen in such a way so as
to ensure that a zero wave phase ψ is achieved against the
chatter. Therefore, only the process damping force should be
acting in the cut. In reality though, both the force from the tool
vibration and the force from the wave cutting persist. The two
forces should mutually offset each other, since they are iden-
tical and in phase opposition. However, it cannot be confirmed
with certainty that this is the case. Unless the forces are iden-
tical, their residual difference will influence the magnitude of
the measured process damping.

The process damping in [13] is characterized by the process
damping coefficient Cpd (N/m) which was determined for the
measured wavelength range at a constant cutting speed.
However, the paper does not consider a possibility that also
the other dynamic cutting forces might be dependent on chat-
ter frequency. This presumption could be very easily verified
using the designed experiment.

In [15], self-excited vibration was used to identify process
damping. chatter was induced on a workpiece, clamped in

overhang, of a specific shape during turning. The dynamic
cutting force and workpiece chatter were measured under
these conditions. This case provides the most faithful
simulation of the conditions under which self-excited vibra-
tion occurs. The measured data were plotted in the complex
plane and interpolated with a circle. The process damping
coefficient was determined from the coordinates of the center
of the circle. The evaluation method is very similar to the
VUOSO method (Research Institute for Machine Tools and
Machining in Prague) [4]. However, the biggest challenge to
the application of this method is the chatter itself. First of all, it
is necessary to find conditions under which chatter occurs. In
addition, it is necessary to make sure that the tool does not
jump out of the cut. Even when self-excited vibration arises, it
must not only be observed repeatedly under the same condi-
tions but it also needs to be maintained for a length of time
required to make the measurements. The range of the tested
frequencies is very limited, and it is determined by the dynam-
ics of the tested workpiece. For a different range of frequen-
cies, a new workpiece must be used and the entire process of
finding the unstable cutting conditions has to be repeated
again. In [15], the assumption is made that the frequency of
self-excited vibration changes continuously with increasing
stiffness of the vibrating system. Changing the frequency of
self-excited vibration at a constant cutting speed changes the
phase between the force and the vibration amplitude. This
phase change is necessary for plotting the data on the complex
plane. However, it is important to bear in mind that a regen-
erative effect cannot be achieved through a continuous change
in frequency, as considered in the theory of self-excited vibra-
tions. It is also necessary to draw attention to the results men-
tioned in [15]. These results clearly show that the force gen-
erated by tool vibrations and the force generated by cutting of
the waves are not the same. If that were the case, the presented
measured circles (and their interpolations) would be located
very close to the imaginary axis or they would touch this axis.
It is evident from the presented figures that the forces are not
identical.

Article [16] describes the identification of process damping
by means of a pulse from a modal hammer, similar to the
previously used method [8]. The technological conditions of
machining were chosen just below the stability limit, i.e., as
close as possible to the real conditions under which chatter
occurs. The excitation pulse from an impact hammer induces
dynamic forces in the cut associated with tool vibrations. The
disadvantage of this method is that the measured data can only
be obtained during a very short time interval. The
measurement time is determined by the time for which the
vibration lasts. If the measured force signal is evaluated
within one revolution only, the measured dynamic cutting
force does not contain the wave cutting force because there
was not enough time for the cutting tool to cut the waves from
the surface of the workpiece during the subsequent revolution.
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Under these conditions, it is possible to identify the directly
acting process damping force. However, the short
measurement times and repeatability of the excitation pulses
significantly affect the accuracy of the obtained results.

In some cases, a significant reduction in the stability limit
may also occur within a certain cutting speed range [17].

Some authors assume [13, 18] that this drop is caused by
the build-up of a machined material on the tip of the cutting
tool. Under certain cutting conditions, the cut material adheres
to the cutting edge of the tool and modifies its geometry. The
new geometry creates more cutting resistance, resulting in a
decrease in the stability limit. This phenomenon has not yet
been taken into account in determining the stability limit.

However, the research of self-excited vibration also in-
cludes approaches and methods by which chatter can be
suppressed. Therefore, these methods do not attempt to
determine the cause of the problem, but they can be used to
effectively suppress its effects. For an overview of the
methods using this approach, see e.g., [19].

The currently used calculation of stable cutting conditions
assumes that only one dynamic cutting force acts in the cut. As
it turns out, when refining the accuracy of the calculation of
the stability limit for real cases, it is necessary to express with
greater precision not only the vibrating system but also the
acting cutting forces. These forces need to be expressed de-
pending on technology conditions. Practical experience shows
that the machine’s resistance to chatter is affected by the work-
piece material, by the shape of the tool, and by the cutting
conditions, none of which have been taken into account in
the calculations until now. Many different experiments have
been made, especially in the field of technology, where the
occurrence of self-excited vibrations was assessed depending
on various technological parameters. However, if dynamic
behavior of the mechanical structure is not taken into account
at the same time, it is impossible to express the influence of
these individual parameters in the mathematical formulation
of the stability limit calculation. The current technological
knowledge is to a certain extent dependent on the vibrating
system of the machine on which the tests were performed.

In view of the above, it should be recognized that a
more accurate calculation of the stability limit can be
achieved by introducing one or more additional forces
(see e.g., process damping). If there are several forces
acting in the cut, this can be evidenced by a measurable
phase shift of the force components in two orthogonal
directions. Each of these directions will include projec-
tions of the partial forces, and if these forces have dif-
ferent directions and are phase-shifted relative to each
other, then the sums of these projections will show dif-
ferent phase shifts. However, phase delays cannot be
observed under static conditions. It is necessary that
the forces be measured under conditions under which
they occur, i.e., during tool vibration.

2 Stability limit computation

The cutting process stability limit can be called a
“steady state” when the amplitude of the undesirable
vibrations of the tool remains constant. Since the move-
ment of the tool is periodic over time, it can be
expressed using complex numbers instead of goniomet-
ric functions.

In this case, complex numbers can make numerical opera-
tions with the considered phase shifts considerably easier.
Unless indicated otherwise, the “^” symbol will be used in
the text below to denote a complex number.

Â̂ tð Þ ¼ A⋅ejβ⋅ejω⋅t ¼ re Â̂
� �þ j im Â̂

� � ð1Þ

The generally accepted formula expressing the dynamic
component of the cutting force according to the regenerative
principle is as follows:

F̂̂ ¼ KC⋅b⋅ Ŷ ô−Ŷ̂
� � ð2Þ

where

F̂ is the dynamic cutting force (N);
Ŷ 0 ¼ Ŷ ⋅e−jψ is the workpiece surface waviness in the

normal direction (m);
Ŷ ¼ Y ⋅ejωt is the tool vibration in the normal direction

(m);
KC is the static cutting resistance in the normal

direction (N/m2);
b is the width of the removed layer (cut width)

(m);
and ω is the angular frequency of tool vibrations

(rad/s).

The expression ψ shows the phase shift of tool vibration
relative to workpiece surface waviness, and its value is deter-
mined by the rotation speed equation.

60⋅ω
2π⋅n

¼ N þ ψ
2π

ð3Þ

where

N is the number of whole waves
on workpiece surface (−);

and n is the rotation speed (rpm).

Alternatively, also, the cutting speed vc (m/min) can be
used in the rotation speed equation.

30⋅ω⋅D
vc

¼ N þ ψ
2π

ð4Þ

where D is the workpiece diameter (m).
Thus, the dynamic cutting force model consists of two

forces which are dependent only on tool vibration in the
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normal direction and on the cutting resistance KC, which is
identical for both forces. The force containing the phase ψ is a
dynamic force generated by the cutting of the waves, and it is a
force causing further vibrations.

The sign convention used in Eq. (2) is governed by the
direction of the normal to the machined surface where the
normal is oriented outwards from the workpiece. A positive
surface waviness increases the dynamic cutting force, while a
positive tool deflection decreases it.

Equations (2) and (3), or (4), can be applied to machining
using a single edge tool. In the case of multi-edged tools (e.g.,
milling cutters), the equations can be easily modified by in-
troducing the appropriate number of cutting edges. Eq. (2)
applies provided that the cutting resistance KC does not de-
pend on the wavelength of the vibration. It should be noted
that the phase ψ is determined from Eq. (3), or (4), simply by
changing the wavelength. By using the dynamic cutting force
(2) and complex transfer functions of the mechanical structure
φ̂o ωð Þ, the known equation for the stability limit can be de-
rived. The “o” in the equation indicates the orientation of the
transfer function in the direction of the normal.

b ¼ −1
2⋅KC⋅re φ̂̂oð ÞNEG

ð5Þ

The stability limit in this case is determined by the cutting
resistance KC and by negative values of the real component
φ̂o. The transfer function φ̂o includes all considered modal
shapes including their orientation, and it also expresses the
orientation of the dynamic cutting force, see Fig. 1.

However, Eq. (2) is just the most simplified approx-
imation of what really happens in the cut. In the early
days of chatter research, only one resulting dynamic
cutting force was measured and one real dynamic
coefficient was determined K. This coefficient has
been replaced in practice by static cutting resistance
KC for easier understanding. After CIRP initiated work
on its research task, it was necessary to decide how to
measure the dynamic coefficient properly. Prof. Peters
[20] recommended that CIRP use a measurement
methodology developed at VUOSO, which was based
on controlled induced vibrations of the cutting tool.
Using this methodology, the dynamic cutting force
could be divided into two components, see Eq. (6),
and each of these components examined separately.

F̂̂ ¼ F̂̂i þ F̂̂o ð6Þ

The first term of the right-hand side of the equation de-
scribes the force occurring as a result of tool vibration (re-

ferred to as inner modulation, F̂i ¼ b⋅K̂i⋅Ŷ i ). The second
term expresses the wave cutting force (referred to as outer

modulation, F̂o ¼ b⋅K̂o⋅Ŷ o ). Both force components are in-
dependent of each other and can occur separately. Equation

(6) describes a circle in a complex plane and the coefficients

K̂i and K̂o can be determined from its geometric parameters.
However, the scope and accuracy of the measurements con-
ducted by CIRP were limited by the technical equipment
available at that time. Only a limited number of data points
could be obtained by measurements, and experimental identi-
fication of the entire dynamic force circle was thus impossible.

The coefficients K̂i and K̂o were determined for both the nor-
mal and the tangential directions from the interpolation circle
used to interpolate these few data points. These coefficients
were complex numbers, i.e., they comprised a real and an
imaginary component, and were assumed to be independent
of the wavelength of the vibration.

3 Dynamic cutting coefficient

Equation (2) can be used to express the cutting resistance in
dependence on the frequency of vibrations as (7). This is the
simplest expression of the dynamic cutting force coefficient.
Due to the phase ψ, it becomes a complex expression and it
can be represented in the complex plane as a circle, see Fig. 4
A). The circle passes through the origin of the complex plane
and its center lies on the real axis.

F̂̂

b⋅Ŷ̂
¼ KC⋅ e−jψ−1

� � ð7Þ

In the case of unstable cutting, forces on the face and the
back of the tool are formed as a result of plunging of the tool
into the material. However, when waves are cut, a force arises
due to other reasons and it can be therefore assumed that the
coefficient KC may not be the same for both forces.

For the case of a force described by two mutually different
coefficients, and let us assume for the sake of simplicity only
the real coefficients Ki and Ko in Eq. (8), the cutting force in
the complex plane will again be represented by a circle cen-
tered on the real axis, but this time, the circle will no longer
pass through the origin, Fig. 4 B).

F̂̂

b⋅Ŷ̂
¼ Ko⋅e−jψ−Ki ð8Þ

If the two coefficients are complex numbers, see the coef-

ficients K̂i and K̂o from CIRP research, the circle can lie any-
where in the complex plane and, moreover, it will be rotated

due to the phase of the complex coefficient K̂o, Fig. 4 C).
Therefore, for a certain ψ, the relevant point of Eq. (7) lies

on a helix rather than on a circle, see Fig. 5 A). The circle
becomes only one of the projections of the helix to the relevant
plane. In fact, by continuously changing the frequency of the
vibrations, the number of waves changes continuously from
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one value to another. This property is not taken into account in
the theory using a circle. The other projections of the helix
show the real and imaginary components as a function of
vibration frequency. An example of one helix thread for a
particular number of waves is shown, see Figs. 6 and 7. The
centers of the circles, or rather the center lines of the individual
threads, lie on a single line that passes through the coordinate
[−KC, j0], i.e., the negative real axis. The thread starting and
ending points (originally a point on a circle) for ψ = 0 and ψ =
2π also lie on one straight line. The projection of this line is a
point at the origin of the complex plane. Equation (7) should
be valid at high cutting speeds where the process damping
effect is negligible.

At low cutting speeds, the effect of process damping be-
comes stronger. It has been confirmed [12] that process

damping depends on the wavelength, i.e., the ratio of vibration
frequency to cutting speed, or revolution speed.

This needs to be taken into account and the equation for
dynamic cutting resistance needs to be extended with the con-
tribution of process damping, e.g., to [13].

F̂̂

b⋅Ŷ̂
¼ KC ⋅ e−jψ−1

� �
− j

Cpd⋅ω
vc

ð9Þ

where

Cpd is the process damping coefficient (N/m);
and vc is the cutting speed (m/s).

There exists a hypothesis that the process damping force is
due to the contact between the tool flank and the undulated
surface. In order for this contact to occur, the slope of the wave
must be greater than clearance angle of the tool. The slope of

Fig. 5 Helix of dynamic cutting coefficient

Fig. 4 Circles of different cutting
coefficients

Fig. 6 Real component of standard model
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the wave is determined by the velocity of vibration. If the
amplitude of the vibrations changes periodically, the velocity
of vibration becomes phase-shifted by 90° due to the deriva-
tive. Therefore, the contribution of process damping in Eq. (9)
is an imaginary component.

As can be seen from Eq. (9), the contribution of process
damping only affects the imaginary component of cutting re-
sistance. Thus, the helix will sink or rise in the direction of the
imaginary axis exactly according to the value of the process
damping coefficient, Fig. 5 B). In this case, the respective
helix projection no longer forms a circle because the helix
starting and ending points for ψ = 0 and ψ = 2π do not have
the same position. The comparison of one helix thread is
shown in Fig. 8. The course of the real component coincides
with that of the real component (7) and the course of the
imaginary component varies according to the value of the ratio
Cpd/vc. The center line of the helix expresses directly the de-
pendence of process damping on the vibration frequency for a
particular cutting speed.

In general, where the coefficients are complex and, more-
over, dependent on the frequency of the vibration, the helix
can have any shape, see Fig. 9.

Assuming that the existing research confirmed the exis-
tence of the above forces during dynamic cutting and these
forces have been also mathematically formulated, they can be
confirmed experimentally.

The aim of our research is therefore to measure the dynam-
ic cutting forces acting in the cut similarly as was done in the
1960s, but the method used this time to identify the forces will
be substantially improved. This article presents a method that
makes it possible to find out what forces act in the cut. The
method is based on using the identified helix to determine the
dependence of the existing cutting forces on the cutting speed
vc (m/s), but mainly also on the vibration frequency ω (rad/s).

4 Experiment

To measure the dynamic cutting force, an experimental device
was designed to simulate the conditions of an unstable cutting
process, Fig. 10. Similarly as in the 1960s, the principle of the
experiment is based on a controlled induced vibration of the
tool during cutting. Quite obviously, when identification of
the cutting forces is performed only on the stability limit
where the system vibrates at around a single frequency, the
effect of that frequency on the cutting force may not manifest
at all and this solution thus yields only limited results. Process
damping is thus dependent on both the frequency and the
cutting speed.

The experiment was conceived as face turning on a tubular
workpiece, i.e., simulation of purely orthogonal machining,
Fig. 11.

Fig. 9 Helix with complex coefficients
Fig. 8 Effect of process damping on standard model

Fig. 7 Imaginary component of standard model
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The basis of the measuring device is a free-of-play flexible
platform (parallelogram), where thin planchets act as the elas-
tic members. The excitation is provided by the Data Physics
V55 electrodynamic shaker. A test tool holder is attached to
the moving part of the platform by means of three Kistler
9027C force sensors, Fig. 12.

A turning tool with a replaceable cutting insert was chosen
as a test tool. This type of tool was chosen with regard to its
most widespread use in chip machining technologies in both

single-piece and bulk production. The currently used cutting
inserts have in most cases a modified face geometry for better
chip formation. A triangular insert with a single chip breaker
was selected as a test insert. The triangular shape was chosen
to comply as much as possible with the orthogonal machining
conditions for the selected type of workpiece (Fig. 13).

In order to eliminate a measurement error caused by the
dynamic properties of the measuring device, the device was
calibrated by tapping with a modal hammer (Figs. 14 and 15).

The TPMR 110304E-46, T9325, insert manufactured by
PRAMETwas used for the tests. The insert was clamped into
a modified holder with clamping surfaces matching those of
the holder type recommended by the manufacturer for the
selected type of insert.

The semifinished product for the test sample was a steel rod
ø 60 mm, CSN 412050, hot-drawn (CSN EN C45.0). The test
samples were thin-walled tubes. The outer diameter of the
tube was 45.5 mm, the wall thickness was 1 mm, and the
length was 25 mm. The bar stock was pre-machined to form
a tube with an allowance, and the final shape of the sample

Fig. 10 Measuring device

Fig. 12 Sensors on testing tool

Fig. 13 Geometry of testing tool
Fig. 11 Principle of test
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was finished on a test machine to eliminate the effect of runout
of the test workpiece. Tests were performed on a DMGMORI
machine, type NEF 600.

During measurement, 11 measurement channels were re-
corded synchronously. Each of the force sensors measured
three component forces (N) (FX1, FY1, FZ1, FX2, FY2, FZ2,
FX3, FY3, FZ3); tool holder acceleration (Acc) (m/s2) was mea-
sured using a uniaxial accelerometer, and a force sensor was
attached between the shaker and the workpiece for measure-
ment of the reference force Fref (N) applied by the shaker to
the measuring device. A measuring apparatus consisting of
two Brüel & Kjaer analyzers, type Pulse 3560C, was used
for data recording.

Themeasurement itself was carried out at a constant cutting
speed. Spindle speed was not measured. It was assumed that
the natural frequencies of the spindle and the drive were
higher than the first resonance of the gauging fixture. The
range of tested wavelengths at the face of the test sample
was limited by the first natural frequency of the gauging fix-
ture, which was about 200 Hz.

In addition, the measured force signal contained a parasitic
component of the inertial force that had to be compensated.
Spectral lines corresponding to the vibration frequency were
selected from the frequency spectrum of the measured signals.
The ratios of the respective components and their standardi-
zation can be used to obtain points of the individual threads of
a complex helix. The vibration frequency was determined for
the constant cutting speed vc.

5 Evaluation of experiment

When refining the stability limit calculation for real cases, it is
necessary to express with sufficient accuracy not only the
vibrating system but also the acting cutting forces. These
forces need to be expressed depending on the technological
conditions and vibrations of the system. Practical experience
shows that the material of the workpiece, the shape of the tool,
and the cutting conditions, which were not included in the
previous calculations, influence the formation of vibrations.
Many different experiments have been made, especially in the
field of technology, where the occurrence of self-excited vi-
brations was assessed depending on various technological pa-
rameters. However, if dynamic behavior of the mechanical
structure is not taken into account at the same time, it is im-
possible to express the influence of these individual parame-
ters in the mathematical formulation of the stability limit cal-
culation. The current technological findings depend to a cer-
tain extent on the vibrating system of the machine on which
the experiments were performed.

Based on a measured helix, our research is trying to deter-
mine dependence of the dynamic cutting force on both the
cutting speed vc and vibration frequency ω.

The measured data showed a similar trend over the entire
range of testing conditions. The center lines of the individual
threads of the helix were not aligned. Endpoint discontinuity

Fig. 15 Measurement device FRF in Y direction

Fig. 14 Structural parameters testing

Fig. 16 Dynamic force Fy in complex plane, vc = 30 m/min, N = 5
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for ψ = 0 and ψ = 2π was identified in all measured threads in
the direction of both the real and the imaginary axes. An
example of measured data is provided in Figs. 16 and 17
and the frequency dependence pattern in Figs. 18, 19, 20,
and 21. Figure 18 clearly shows that the real component of
the dynamic cutting force does not consist of the periodic
component only and that its imaginary component, see
Fig. 19, is not linearly dependent on frequency, as described
by (9).

For illustration, Figs. 16 and 17 represent circular interpo-
lation of the measured points using the least squares method.
This interpolation is not entirely accurate as the measured
projection of the thread shows a slight rotation relative to this
interpolation.

The measured force signals in the Y and Z directions in-
clude components of all forces acting in the cut. From the
measured frequency dependencies in the Y direction, it can
be concluded that there is at least one other force acting in
the cut that has been unknown to us so far. In contrast, the
force components in the Z direction are only very little affect-
ed by frequency change.

Judging by the decrease in the amplitude of the periodic
waveform in the Y direction, a newly discovered wave cutting
force arises which has a direction of the normal to the ma-

chined surface and counteracts force F̂o. Given the manner in
which this force manifests itself, there is an idea that this force
depends on the slope of the wave being cut. This would mean
that the waves on the workpiece surface do not copy the vi-
brating motion but have a different shape.

However, it is not possible to determine this force or forces
directly from the signal. In order to determine these forces,
measurements must be taken under certain technological con-
ditions that will influence the effect of the force. E.g., the
effect of process damping forces can be influenced by the
clearance or slope of wave on workpiece surface and the effect
of tool wear forces can be increased or eliminated by using a
tool with defined wear.

For calculation purposes, the measured data can be approx-
imated by a suitable empirical model. There are two functions
visible in the measured projections. A periodic function and a
function having a rising and decreasing trend. For the purpose
of calculating stability limits, we need to replace local mea-
sured points with a continuous waveform. It is necessary to

Fig. 20 Real component of total dynamic force Fz vc = 30 m/min

Fig. 17 Dynamic force Fz in complex plane, vc = 30 m/min, N = 5

Fig. 18 Real component of total dynamic force Fy for vc = 30 m/min

Fig. 19 Imaginary component of total dynamic force Fy for vc = 30 m/
min
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introduce an expression that accurately describes the mea-
sured behavior. Several experiments showed that the proposed
empirical Eqs. (10) and (11) suited best. They very accurately
capture the measurements depending on frequency and, in
addition, they show that there is also another force in the cut
that has a certain direction and behaves in a certain way, see
Figs. 18 and 19. A helix was chosen for approximation of the
measured data. The basis of the newmodel is Eq. (9) modified
to respect amplitude damping of periodic behavior and non-
linear increase and decrease in the dynamic cutting force. A
second-order approximation was chosen to describe the center
line of the helix. The model also includes a measured static
offset. Eq. (10) is used to describe the real dynamic force
components, while Eq. (11) is used to describe the imaginary
components.

re K̂̂y;z
� � ¼ D0þ
D1−

60

2π⋅vc
⋅D2⋅ω

� �
⋅ cos −ψð Þ−1½ �þ

60

2π⋅vc
⋅D3⋅ωþ 60

2π⋅vc

� �2

⋅D4⋅ω2

ð10Þ

im K̂̂y;z
� � ¼ D5þ

D6−
60

2π⋅vc
⋅D7⋅ω

� �
⋅sin −ψð Þþ

60

2π⋅vc
⋅D8⋅ωþ 60

2π⋅vc

� �2

⋅D9⋅ω2

ð11Þ

where
D0, D1, D2, D3, D4, D5, D6, D6, D8, and D9 are the mea-

sured dynamic cutting resistance coefficients.
Table 1 shows the resulting approximation values of the

proposed model for the tested frequency and cutting speed
ranges.

Equations (10) and (11) replace the cutting process with
two acting dynamic forces in the Y and Z directions. So, we

know the direction of these forces and we can determine the
stability limit for them.

However, if for calculation purposes we replace all the
forces acting in the cut with just two resultant forces, we will
lose the idea of the role that each of the individual forces plays
in the cutting process. From a technological point of view, it is
more advantageous to include the individual forces acting in
the cut in the stability limit calculation. Each of the forces is
dependent to a certain extent and has its own direction. Thus,
each force will include a certain oriented compliance φ̂ and
the currently applicable methodology can be used to deter-
mine the stability limit.

Apart from the limit chip width b, the calculation also
shows the vibrating frequency of the cutting process and the
phase shift manifested by waves against the vibrations.

The experiments performed provide very good results for
further processing. The task of further research will be to find
ways of how to improve the new method to determine the
behavior of individual dynamic forces, i.e., to determine indi-
vidual dynamic coefficients, directions of individual dynamic
cutting forces, and their dependence on technological condi-
tions, cutting speed, and frequency.

The method can also be used to identify the size and direc-
tion of process damping. The following Figs. 22 and 23 show
the waveforms of the real and imaginary components of the
measured process damping in the Yand Z directions identified
from the helix. The measured waveforms confirm the expect-
ed behavior of this force. At constant cutting speed, the force
increases with the rising frequency and is in phase opposition
to vibration. However, at 40 m/min, the real force component
in the Y direction changed its character significantly. The
causes are unknown for the time being. Their clarification will
be one of the goals of further research.

The empirical model described by Eqs. (10) and (11) is
directly applicable to stability limit calculation. The coeffi-

cients K̂y and K̂z depend on the cutting speed and vibration
frequency. When calculating the stability limit, it is necessary
to consider the appropriate coefficient value for each cutting
speed and frequency. If the dynamic coefficients include di-
rectional orientation, the stability limit can be determined sim-
ilarly as in (5) from

1 ¼ b⋅ φ̂̂y ωð Þ⋅K̂̂y ωð Þ þ φ̂̂z ωð Þ⋅K̂̂z ωð Þ
� 	

ð12Þ

where

φ̂y ωð Þ ¼ Gy ωð Þ þ jHy ωð Þ is the transfer function in the
normal direction relative to the
machined surface (m/N);

φ̂z ωð Þ ¼ Gz ωð Þ þ jHz ωð Þ is the transfer function in the
tangential direction relative to
the machined surface (m/N);

Fig. 21 Imaginary component of total dynamic force Fz vc = 30 m/min
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K̂y ωð Þ ¼ Ay ωð Þ þ jBy ωð Þ is the dynamic coefficient of
the cutting forces in the normal
direction (now complex)
(N/m2);

K̂z ωð Þ ¼ Az ωð Þ þ jBz ωð Þ is the dynamic coefficient of
the cutting forces in the

tangential direction (now
complex) (N/m2).

The limit chip width of cut b is already complex, i.e.,
it has a real component (13) and an imaginary compo-
nent (14). To determine the stability limit, it is neces-
sary to find such frequencies ω where the imaginary

Table 1 Model parameters

Vc Direction REAL
[m/min]

D0 (N/m
2) D1 (N/m

2) D2 (N/m) D3 (N/m) D4 (N)

20 Y 3.855E+
08

1.085E+06 − 4.558E+
05

6.815E+03 1.263E+07

Z 1.251E+
09

− 9.418E+
04

7.081E+04 − 5.104E+
02

− 7.798E+
07

30 Y 3.495E+
08

5.452E+05 − 4.305E+
06

3.231E+04 1.464E+08

Z 1.102E+
09

3.599E+05 − 2.807E+
05

9.886E+02 − 8.625E+
07

40 Y 5.102E+
08

1.175E+06 5.357E+07 − 2.462E+
05

− 2.099E+
09

Z 1.307E+
09

7.473E+05 4.683E+06 − 1.959E+
04

− 3.181E+
08

Vc Direction IMAG
(m/min)

D5 (N/m
2) D6 (N/m

2) D7 (N/m) D8 (N/m) D9 (N)

20 Y 3.933E+
08

1.151E+06 2.431E+06 − 1.519E+
04

− 7.046E+
07

Z 1.363E+
09

5.890E+05 1.266E+06 − 4.528E+
03

− 6.941E+
06

30 Y 3.295E+
08

4.543E+05 9.654E+06 − 5.172E+
04

− 3.800E+
08

Z 1.120E+
09

4.430E+05 8.052E+04 − 2.590E+
03

6.093E+07

40 Y 4.177E+
08

4.065E+05 1.673E+07 − 1.083E+
05

− 5.200E+
08

Z 1.261E+
09

5.396E+05 − 3.314E+
05

− 3.229E+
03

8.084E+07

Fig. 22 Real and imaginary component in Y direction Fig. 23 Real and imaginary component in Z direction
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component b is 0 and it is necessary to select only
those frequencies for which b is a positive non-zero
number. For a specific cutting speed, we get a set of
frequencies ω and their respective limit widths b. As the
limit width blim for a specific cutting speed, we choose
the lowest of the values.

re bð Þ ¼
Ay⋅Gy−By⋅Hyþ

Az⋅Gz−Bz⋅Hz

Ay⋅Gy−By⋅Hyþ
Az⋅Gz−Bz⋅Hz

� �2
þ

Ay⋅Hy−By⋅Gyþ
Az⋅Hz−Bz⋅Gz

� �2

ð13Þ

im bð Þ ¼ −

Ay⋅Hy−By⋅Gyþ
Az⋅Hz−Bz⋅Gz

Ay⋅Gy−By⋅Hyþ
Az⋅Gz−Bz⋅Hz

� �2
þ

Ay⋅Hy−By⋅Gyþ
Az⋅Hz−Bz⋅Gz

� �2

ð14Þ

It should be noted that Eqs. (10) and (11) are also a
ψ function. However, the ψ, function is also a ω fre-
quency function, see Eq. (3). Within the considered fre-
quency range, the ψ function takes values in the 〈0, 2π〉
range only. This property is caused by the behavior of
the N parameter. Since we have obtained only a limited
number of values for the time being, it makes no sense
to present the calculated stability limit as it would only
cover a very narrow range of cutting speeds.

The results of the performed experiments clearly
show that it is impossible to identify the behavior of
dynamic forces from static tests and to use the static
coefficient KC to calculate the stability limit. With re-
gard to the measured frequency dependence of the cut-
ting forces, it can also be confirmed that the forces
cannot be even identified at the stability limit where
the system vibrates at around a single frequency given
by the characteristics of the vibrating system.

To clearly identify the new force, additional measure-
ments will have to be made under different technologi-
cal conditions. The measured results clearly show the
importance of application of complex coefficients capa-
ble of a very simple description of the mutual phase
relations between tool vibration and dynamic cutting
forces. When summarizing the results obtained so far,
we must admit that such a type of research brings along
many new challenges. On the other hand, as we still
have a very limited idea of what is actually happening
in the cut, this approach opens up new possibilities for
us to explore the dynamic cutting process.

6 Conclusion and future work

The experiment proved that the dynamic cutting force de-
pends not only on cutting speed but also on vibration
frequency.

The experiment suggests that in addition to the forces F̂i

and F̂o, there are process damping forces and a force (or
forces) dependent on wave cutting acting in the cut. The
new methodology used to process the measured results
showed that a helix, instead of the circle used so far, can be
used to describe the force-frequency behavior.

By comparing the results at speeds of 20–40 m/min, it can
be said that the force in the tangential direction (Z direction) is
roughly the same for all speeds and very little dependent on
vibration frequency and cutting speed. Cutting speed and fre-
quency mostly affect the force in the normal direction (Y
direction).

From the identified center lines of the measured helices, it
is possible to directly obtain the behavior of the force called
process damping. By comparing the waveforms of the real
and imaginary components at speeds of 20–40 m/min, it can
be assumed that the mechanics of cutting and thus the
resulting cutting forces change considerably at 40 m/min.
The largest deviations are in the real process damping compo-
nent for the speed of 40 m/min.

This force has a Y-normal direction and is dependent on
frequency and cutting speed. This force arises in cutting waves

and counteracts the already known force F̂o. The force direc-
tion can be deduced from the decrease in the amplitude of
periodic behavior with frequency. This force may be related
to the slope of the cut waves or the formation of chips.
Description of chip formation mechanics during vibration is
a task requiring expertise especially in the field of technology.

This article introduces an improved method of controlled
cutting tool vibration, which, unlike the original method, also
considers the effect of frequency on the dynamic cutting pro-
cess. The controlled cutting tool vibration method is the most
appropriate way of how to reliably identify and track dynamic
forces acting in a cut.

Future research will in the first phase include additional
measurements to refine the conclusions obtained. It will be
necessary to establish why the waveform for the speed of
40 m/min is so much different. The research will then focus
on identifying the conditions for the emergence and existence
of the newly discovered force, including formulation of its
mathematical description. The aim of further research should
be to investigate dynamic cutting forces for a greater range of
technological conditions, materials, and cutting tools.
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