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Abstract

This thesis concerns planning for data collection missions with Unmanned Aerial
Vehicles (UAV). The data collection is one of the many use cases of UAVs where
the onboard sensors can produce various data such as thermal images in search and
rescue scenarios, visual images for surveillance, or LIDAR point clouds for inspection.
The task of the data collection planning is to find a plan that visits a predefined
set of target locations to retrieve the data. The data collection planning is essential
for all mentioned scenarios to achieve, with respect to a planning objective, efficient
deployment of UAVs in data collection missions. The goal of this thesis is to make
the data collection with UAVs feasible and more effective. Two planning objectives
of the data collection planning are used in the thesis: 1) minimization of the path
cost visiting all target locations, and 2) maximization of the collected data using
a predefined path cost. This thesis is a compilation of five journal publications
with contributions towards the data collection planning with UAVs and all focus on
unique aspects of such planning. The important aspect that influences the feasibility
of plans for the nonholonomic or dynamically constrained UAVs is the ability to visit
the target locations in planned order when traveling a certain speed. It is addressed
by employing the curvature-constrained Dubins vehicle for modeling the UAV in
data collection planning. This, however, requires to create a novel data collection
formulations for the Dubins vehicle model. We further show that at the cost of a
more complex optimization problem, the amount of collected data can be increased
by using a non-zero sensing range when collecting the data without the precise
visit of the target locations, e.g., for a long-range sensor attached to UAV. Both
data collection planning using Dubins vehicle and with non-zero sensing range are
formulated as an Integer Linear Program (ILP) that is solved optimally for certain
problem sizes. For the objective of minimizing the data collection plan cost, we
propose methods that can be used for a multi-vehicle variant of data collection with
Dubins vehicle model and non-zero sensing range. Finally, we extend the proposed
planning methods for environments with obstacles. Such environments represent
more realistic data collection scenarios, however, they require to solve a challenging
combination of the multi-goal routing problem with collision-free motion planning.
The proposed planning methods are mostly based on Variable Neighborhood Search,
Self-Organizing Map, and ILP formulations. All methods are evaluated in numerous
test instances from the literature and the feasibility of found plans is experimentally
verified with real UAVs.

Keywords Unmanned Aerial Vehicles - Data Collection Planning - Non-holonomic
Motion Planning - Traveling Salesman Problem - Orienteering Problem - Operational
Research - Motion Planning - Dubins Vehicle
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Abstrakt

Tato prace se zabyva planovanim misi sbéru dat bezpilotnimi vzdusnymi prostiedky
(Unmanned Aerial Vehicles — UAV). Sbér dat je jednim z mnoha vyuziti UAV,
pifi kterém mohou byt palubni sensory pouzity napfiklad zachrannymi slozkami
k patrani, dohledu nad zvolenou oblasti, nebo inspekci budov. Ukolem planovani
sbéru dat je nalezeni planu, ktery navstivi pfedem definovana cilovd mista. Planovani
misi je klicovym problémem efektivnitho vyuziti UAV vzhledem k océekdvanému
vysledku mise. Cilem této prace je umoznit efektivni nasazeni UAV s ohledem na
optimaliza¢ni kritéria: 1) minimalizace délky cesty navstiveni vSech definovanych
cilu a 2) maximalizace dat s omezenim délky cesty. Text disertacni prace je soubo-
rem péti ¢asopiseckych publikaci, které se zaméfuji na specifické aspekty planovani
sbéru dat UAV prostiedky. Dulezitym aspektem ovliviiujicim proveditelnost planu
neholonomnich nebo dynamicky omezenych UAV je schopnost navstivit cilovd mista
v naplanovaném pofadi pifi dodrzeni predepsané letové rychlosti. Tento aspekt je
feSen vyuzitim modelu Dubinsova vozidla s omezenym polomérem zataceni. Mo-
del Dubinsova vozidla vyzaduje nové formulace planovani pres vice cilu, které v
praci navrhujeme spoleéné s metodami feSeni a experimentalnim ovérenim. Daéle
ukazujeme, ze je mozné zlepsit kvalitu feSeni v podobé zvySeni nasbiranych dat ex-
plicitnim zahrnutim dosahu palubniho sensoru, a to za cenu zvySené komplexnosti
optimaliza¢ni dlohy. Varianty planovani s modelem Dubinsova vozidla i s uvazovanim
dosahu sensoru jsou formulovény celo¢iselnym linedrnim programovanim (Integer Li-
near Program — ILP) a feSeny optimdlné pro urcité velikosti problému. Pro optima-
liza¢ni kritérium minimalizace délky cesty jsou navrzeny metody planovani pro vice
prostiedkt s modelem Dubinsova vozidla a uvazovanim dosahu sensoru. Planovaci
metody jsou déale zobecnény pro prostiedi s piekdzkami, které pfedstavuji rea-
listictéjsi scénar nasazeni autonomnich UAV. V prostiedi s prekazkami je vSak nutné
fesit kombinaci bezkolizniho planovani pohybu s kombinatorickym planovanim pfes
vice cili. Navrzené metody planovani sbéru dat jsou zalozeny na algoritmech Varia-
ble Neighborhood Search, Self-Organizing Map a formulaci ILP. Metody jsou ovéreny
na testovacich scénéfich z literatury a proveditelnost planu je experimentalné otes-
tovana na realnych UAV.

Klicova slova Bezpilotni vzdusné prostiedky - Planovani robotického sbéru dat -
Neholonomni planovani pohybu - Problém obchodniho cestujiciho - Planovani cest
- Operac¢ni vyzkum - Pldnovani cest - Dubinsovo vozidlo
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CHAPTER 1. INTRODUCTION 1
Chapter 1
Introduction

Research on Unmanned Aerial Vehicles (UAVs) is one of the most rapidly developing
fields in mobile robotics. One of the reasons is that UAVs, often called drones, have become
more affordable due to their popularity among wider public and enthusiasts. Even the off-the-
shelf products are nowadays capable of semi-autonomous behavior such as collision avoidance,
navigation through the environment, or following a person. Such UAVs are used by security
and rescue forces during search and rescue missions, by filmmakers or photographers as suit-
able platforms for high altitude shots, and of course by the wider public mostly as high-tech
toys. However, the applications of the remotely controlled UAVs go beyond the mentioned
ones; the UAVs are mostly used as ideal platforms for carrying onboard cameras and other
sensors for remote sensing in various fields of application. These applications can be
categorized as data collection missions.

In robotics, scientists and engineers focus mainly on developing all kind of autonomous
behavior where the UAV does not require to be remotely controlled. Nevertheless, the most
targeted fields of application of the fully autonomous UAVs are the same as for the remotely
controlled, and thus the autonomous UAVs are often intended as an effective way for long-
range autonomous data collection. Especially the multirotor UAVs with Vertical Take-Off
and Landing (VTOL) are popular due to their ability to hover over a single location while
measuring desired phenomena. The fixed-wing UAVs, on the other hand, can provide longer
flight time and travel distance. Despite that, the VT'OLs have higher maneuverability and thus
easier reachability of desired target locations in environments with obstacles. However, one of
the most crucial aspects of deployment of the autonomous UAVs in data collection missions,
that highly influences its effectiveness and feasibility, is the mission and path planning.

This thesis focuses on data collection planning for UAVs. It is based on five core journal
publications f that share the common goal of allowing more effective deployments of
aerial vehicles in the data collection missions. Data collection planning throughout this thesis
is understood as a multi-goal path planning where multiple target locations are present in the
environment, and the UAV is required to visit them to, e.g., measure desired phenomena. One
of the most common objectives of the data collection planning is to plan the shortest possible
path over the target locations or to maximize the collected data with respect to limited flying
time due to a battery capacity. The data collection planning problem thus belongs to a class
of routing problems where the visit to multiple targets has to be optimized by, e.g.,
changing the sequence to visit the individual target locations or, for a multi-vehicle variant,
by assigning the target locations to a different vehicle. Figure shows an example of a data
collection plan for a UAV with the objective of maximization of the collected data using a
predefined path cost.

The planning of data collection missions for UAVs has multiple unique challenges that
influence plan feasibility and its quality. The five core publications that form this thesis address
the following challenges (1)—(5) that are also the research goals of this thesis.

(1) Feasibility of traveling with nonholonomic fixed-wing UAV or dynami-
cally constrained VITOL UAV between individual target locations is the first challenge
of this thesis. Ordinary data collection planning uses cost straight line paths between target
locations with sharp corners. Such paths can be feasible for holonomic ground robots, but they
are unfeasible for the UAVs traveling a certain speed. The feasibility aspect has been tackled
in the core publication and further elaborated in the remaining core publications by using
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Figure 1.1: Example of visual data collection with maximization of the collected reward (data)
from target locations using non-zero sensing range of employed onboard sensor and with
limited flight budget of UAV .

curvature-constrained Dubins vehicle to model the UAV. The routing with Dubins vehi-
cle, however, requires to determine not only the sequence of visits to the target locations but
also heading angles of the vehicle at each visited location. This adds additional complexity to
the multi-goal planning problems and represents a real challenge due to the strong influence
of the selection of the heading angles to the final solution length.

(2) Planning with respect to the limited time of flight is crucial for the flying
robots with current battery technology that restricts flight duration to several tens of minutes.
Therefore, the second challenge is the direct formulation of the data collection planning for
UAVs as a budget limited routing problem to address situations where only part of target
locations is reachable. The majority of the core publications 7, use a variant of
the Orienteering Problem (OP) to formulate the data collection for UAVs. The objective
of the OP is to maximize the collected reward (data) within a limited travel budget (flight
time). This is in contrast to the core publication with a variant of the Traveling Salesman
Problem (TSP) [25], where a path visiting all the given locations with minimal flight time as
the main cost is to be found. The TSP objective is, however, usable only for a cases where all
given locations are to be visited, and the cost of the plan is relatively smaller than the vehicle
budget. Therefore, the proposed planning methods mostly focus on the limited budget OP
formulation for UAVs.

(3) Data collection planning with non-zero sensing range can significantly im-
prove the efficiency of data collection and it is the third challenge of this thesis. The advantage
of aerial vehicles to collect the data from high altitudes also allows, in some cases, to gather
the data within, e.g., circular neighborhoods (sensing radius) around the target locations [2c|—
without visiting them precisely. This can improve the amount of collected data (solution
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quality) within the same period, for example, in a visual data collection with a wide field
of view cameras, for data collection with a long-range sensor, or in information gathering
from wireless sensor networks. The non-zero sensing range, however, requires to be directly
addressed in data collection planning formulation. Then, while solving the routing problem,
the particular data collection positions have to be found and optimized within the sensing
range of visited target locations.

(4) Finding optimal solutions for data collection with Dubins vehicle and
non-zero sensing range is the fourth challenge of this thesis. The data collection planning
with Dubins vehicle and also with non-zero sensing range can be formulated as an Integer
Linear Programming (ILP) problem for a given sampling of Dubins vehicle heading angle and
data collection positions within the sensing range of target locations. A recent ILP formulation
called Set Orienteering Problem (SOP) from the Operational Research field can be used

for the data collection planning, as shown in the core publication [3c].

(5) Data collection planning in environments with obstacles is the last consid-
ered challenge of this thesis. The core publication addresses the aspect of the planning
in environments with obstacles where the multi-goal routing problem of the OP has to be
solved simultaneously with the point-to-point collision-free motion planning . Such plan-
ning has to find collision-free paths mutually between all target locations, and the costs of such
collision-free paths have to be ideally as small as possible. Both demands are computation-
ally demanding. Therefore, the planning can not be addressed separately, by firstly finding
the collision-free paths and then using them for finding the multi-goal sequence, without
decreasing the solution quality. We show that the data collection planning in environments
with obstacles requires a single method that optimizes only the collision-free paths that are
concurrently used in the multi-goal route planning.

The presented work and thus, the application of the proposed data collection planning
methods, are motivated by three following robotic scenarios where the autonomous UAVs
can be effectively used. The scenarios mainly differ in a way how the target locations for a
specific scenario are defined or determined, and in individual scenario constraints. However,
they share the common multi-goal path planning part that has to be solved.

The first scenario can be called information gathering or simple data collection, and we
assume a priori knowledge of the target locations in the environment. Such a scenario consists
of UAVs equipped with an onboard sensor that is required to reach the target locations
and measure or collect the desired data such as images, weather-related data, or even
radiation measurements. Another example of deploying UAVs in information gathering is
Wireless Sensor Networks (WSN). In WSN, the sensory units are placed in the environment,
and the considered UAVs can be used for retrieving the measured data from the sensor units
by wireless communication with a limited range , . Hence, the objective of the planning
for the simple data collection is the maximization of the gathered information from the given
locations within predefined vehicle flight time. Minimizing the information gathering path can
be considered if all target locations can be feasibly visited within the given travel budget.

Surveillance is the second scenario where UAVs can be effectively deployed for data
collection missions . In surveillance, UAVs are required to monitor a given area or infras-
tructure persistently while traveling over target locations that have to be found for a specific
monitoring task. An example of surveillance applications can be flood monitoring using un-
manned aerial vehicles [32]. Security and rescue forces can use classical or thermal imaging
cameras onboard to assist in search and rescue after disasters like earthquakes, forest fires and
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floods f. Also, all inspection tasks belong to this scenario, such as inspection of power
lines , wind turbines , or power plants . The inspection tasks also usually share
the requirement to find the target locations prior to the data collection planning to inspect
the required structure. In path planning for surveillance missions, the objective is usually to
minimize the required time to survey/inspect a given area or infrastructure.

The last scenario that motivates this work is Coverage Path Planning (CPP) [38] where
the UAVs are requested to scan a given area entirely with an onboard sensor and either create
a map of the environment or store sensory data for post-processing. In the CPP, the target
locations can be placed in the environment uniformly, e.g., in a grid and the boustrophedon
back and forth path is usually sufficient for coverage of the area without directly consid-
ering the target locations placement. However, in the presence of no-fly-zones, the area has
to be decomposed into smaller parts and the multi-goal data collection planning can be used
to schedule the order of visiting the parts for the plow-like coverage . UAVs used in such
missions typically use onboard cameras to scan the area and consequent reconstruction of the
area can be used for example in archeology , . Similarly a UAV with LIDAR sensor
can be used for creating a terrain profile map [43]. The objective of the CPP is usually the
minimization of the coverage path cost.

The rest of this thesis is organized as follows. In the next chapter, we summarize the
state-of-the-art in data collection planning for aerial vehicles and highlight the contributions of
this thesis with respect to the related work. In Chapters[3H7} a short introduction of individual
core publications is followed by the manuscripts themselves. Chapter [§| discusses the achieved
results of the core publications related to the research goals of the thesis. The concluding
remarks and future work is summarized in Chapter [0
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Chapter 2
Contributions and related work

This chapter overviews the contributions of the author with the primary focus on the
five journal articles f that form the core of the thesis. However, we refer to the indi-
vidual core publications for a detailed state-of-the-art overview. We further outline the most
relevant related works together with other author’s contributions f related to the
thesis. The remainder of this chapter is divided into three sections based on the similarity of
the contributions of the individual core publications.

2.1 Budget limited data collection planning

One of the most crucial deployment limitations of today’s UAVs is the limited time of
flight, which is usually restricted to several tens of minutes. Therefore, we mainly focused our
research on formulations of the data collection planning that takes the limited budget into
account.

The most regular multi-goal routing problem, and thus formulation of the data collection
planning, in the literature is the Traveling Salesman Problem (TSP) , . In the TSP,
the objective is to minimize the cost to visit a given set of target locations. The solution
approaches for the TSP thus have to find a sequence in which the particular target locations
are visited using the most efficient path, which is known to be an NP-hard problem . The
TSP can be used for planning the UAV operations , however, it does not directly address
the limited time of flight of nowadays UAVs.

The Orienteering Problem (OP) [24] is a variant of the TSP with profits for vehicles
with a limited budget. The OP stands to find a path connecting a subset of target locations,
each with associated reward, such that the collected reward is maximized within a given travel
budget. The ordinary OP, with predefined starting and ending target locations, uses Euclidean
distances between target locations. Solving the OP thus requires to find the most rewarding
subset of the target locations to visit and, at the same time, to minimize the path visiting
the targets in the subset such that its length is within the prescribed budget. The OP is,
therefore, a combination of the well-known NP-hard Knapsack problem and the TSP.

The OP has many variants and has been tackled by many solution approaches . It
can be formulated as an Integer Linear Programming (ILP) problem and solved optimally
using Branch and Bound or Branch and Cut . However, heuristic approaches require
less computational time and can, in many cases, achieve optimal solutions. The heuristics
for the OP are based on evolutionary algorithm , greedy randomized adaptive search
procedure , or ant colony optimization and tabu search . Among others, the Variable
Neighborhood Search (VNS) approach becomes, due to its low computation time and
high solution quality, basis for our VNS-based methods for the OP variants being solved in
the core publications of this thesis. The VNS is metaheuristic by Mladenovi¢ and Hansen
for combinatorial optimization applicable to numerous problems . VNS uses predefined
neighborhood operators in an iterative pursuit of improving initial greedy solution inside
shaking and local search procedures. While the shaking randomly changes the incumbent
solution to get from possible local minimum, the local search tries to find, on such a randomly
created solution, a path with higher reward than the incumbent solution.

The ordinary OP uses straight line paths to connect the target locations and thus
Euclidean distances as precomputed costs. This is, however, unfeasible for the nonholonomic



CHAPTER 2. CONTRIBUTIONS AND RELATED WORK 6

fixed wing UAVs and also for dynamically constrained VTOL UAVs traveling a certain speed.
Therefore, in the first core publication [1d, we introduce a novel variant of the OP which
we call Dubins Orienteering Problem (DOP). The objective of the DOP is similar to the
ordinary OP; but it uses Dubins vehicle model with curvature constraint induced by a
limited turning radius. Using Dubins vehicle model ensures smoothness of the found paths
without sharp corners. The Dubins vehicle state is from SE(2), and thus heading angles of the
vehicle have to be found at visited target locations in order to connect the adjacent Dubins
maneuvers feasibly. The DOP can be considered to be even more challenging than the regular
OP due to the requirement to find appropriate heading angles simultaneously with the target
subset selection and the sequence to visit them. The selection of the heading angles highly
influences the solution length and thus limits solution feasibility due to the limited budget.
See the comparison of the solutions of the OP and DOP in Fig. The core publication [1¢]
introduces a VNS-based method for the DOP. We refer to Chapter [3| for more information
about the DOP and the VNS-based method for the DOP.

The amount of collected data (reward) can be significantly improved by exploiting non-
zero sensing range to save travel cost, i.e., by using neighborhood around target locations
where the data can be collected without visiting precise position of the target locations. The
Orienteering Problem with Neighborhoods (OPN) uses the non-zero sensing range and has
been firstly introduced in together with a Self-Organizing Map (SOM) based solution
approach. The OPN uses a circular neighborhood around each target location which in most
cases helps to increase the collected reward compared to the ordinary OP. However, the OPN
further requires to find appropriate positions of visit within the neighborhoods of the target
locations while solving the subset selection and sequencing of the targets. The variant of the
OPN for Dubins vehicle, called Dubins Orienteering Problem with Neighborhoods (DOPN),
has been initially introduced in along with the proposed VNS-based solution approach.
See the comparison of the OPN and DOPN with other mentioned OP variants in Fig.
The VNS for the DOPN is an extension of our previous work where the border of circular
neighborhood of each target is equidistantly sampled together with sampling of the heading
angles. The DOPN is also known as the Close Enough Orienteering Problem with Dubins
vehicle (CEDOP) and has been addressed using unsupervised learning of the SOM in [10a].
Nevertheless, the second core publication of this thesis significantly extends our previous
VNS-based approach for the DOPN by using continuous optimization of the samples .
Chapter [ presents in detail the developed VNS-based approach for the DOPN published in
the core publication .
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Figure 2.1: Example solutions of the OP, OPN, DOP, and DOPN with respective collected

rewards R .



CHAPTER 2. CONTRIBUTIONS AND RELATED WORK 7

The variants of the OP are useful for modeling robotic data collection planning. The
OP is mostly studied in the context of Operational Research, as it belongs to a class of routing
problems with profits together with, e.g., Traveling Salesman Problems with Profits . One
of the recently proposed routing problems with profits is the Set Orienteering Problem [26],
which has been introduced together with Mixed-Integer Linear Programming (MILP) formu-
lation and a matheuristic solution algorithm. The SOP is a variant of the OP where customers
(nodes) are grouped in clusters (sets), and each set is associated with a reward that is collected
by visiting at least one node in the respective sets. The objective of the SOP is to maximize
the collected reward by visiting the sets. In the core publication , we propose a novel ILP
formulation for the SOP and propose a VNS-based method for the SOP (VNS-SOP). We
show that the sampling-based approaches to the OPN and DOP can be formulated as the
SOP, where the neighborhood or heading angle samples server as the nodes of the SOP. The
original OPN and DOP targets then represent the clusters of the SOP that consists of the
sample nodes. The proposed ILP formulation is shown to perform significantly faster than
the original MILP formulation. The developed VNS-SOP is generalization of our previous
VNS approaches for the DOP and DOPN . See Fig. with example solutions of the
ordinary SOP instance 11berlin52 and instances of the OPN and the DOP solved as the SOP.
We refer to Chapter [5| for more details about the proposed method published in .

® b ®

. ; T
® '
Proﬂt })roﬁt profit

0 5 10 15 20 0 10 20 30 10 50 0 10 20 30 10 50
11berlin52 OPN Set 2 DOP Set 2

Figure 2.2: Example solutions of the SOP on selected dataset instances from containing
ordinary SOP dataset 11berlin52 and dataset for OPN and DOP formulated as the SOP.

The data collection planning with limited budget can also be done using different mo-
tion primitives discretization than the Dubins vehicle model. Examples of such approaches
are the Hermite Orienteering Problem and OP for Dubins airplane model . The
Hermite OP uses the Hermite splines to connect the target locations and can directly ad-
dress planning for non-constant speed vehicles. However, a velocity profile of the vehicle has
to be found for each individual spline. Extension of the DOP to 3D is the Dubins Airplane
Orienteering Problem (DA-OP) [12a]. The DA-OP has also been addressed using the VNS-
based approach similar to the one in ; however, it uses time-optimal paths for the Dubins
airplane as the motion primitives between the target locations. Several other OP formu-
lation variants have been further used in the context of data collection planning for UAVs. A
multi-vehicle variant of the OP called the Team Orienteering Problem (TOP) has been
proposed for opportunistic surveillance with UAVs. An optimal multilevel graph search tech-
nique is proposed for solving the TOP for only small problem instances with Dubins vehicle
model of UAV, however, with fixed heading angles at each target location. The TOP for
Dubins vehicle is firstly fully addressed in |13a] using Greedy Randomized Adaptive Search
Procedure (GRASP). Furthermore, the proposed problem formulation called the Dubins Team
Orienteering Problem with Neighborhoods (DTOPN) allows to use non-zero sensing range and
collect the reward from close vicinity of given target locations. Finally, the Correlated Orien-
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teering Problem (COP) has been proposed for persistent monitoring tasks with UAV and
solved using Mixed Integer Quadratic Programming (MIQP). The MIQP formulation uses
correlation weights that describe a portion of reward collected from neighboring targets while
visiting a particular target. The COP thus model data collection scenarios where visiting
some target also provides partial information of other neighboring target locations such as in
weather-related data collection.

2.2 Surveillance and spatial coverage with team of aerial ve-
hicles

The surveillance and spatial coverage planning is the main topic of the core publica-
tion and also of other co-authored and related articles , . The usual objective
of the surveillance and spatial coverage is to minimize the cost of data collection path, i.e.,
the formulations are variants of the TSP. The main reason is that the surveillance missions
typically assume the ability to visit all target locations within the limited budget, and the
coverage path planning requires to visit all target locations to scan the given area entirely.
Furthermore, the surveillance scenarios can require repeated usage of the same plan, e.g., for
monitoring of border around restricted area, which makes finding the shortest path even more
desirable. The motivation for the three listed articles is the Challenge 3 of 2017 Mohamed Bin
Zayed International Robotics Challenge (MBZIRC) held in Abu Dhabi. The Challenge
3 featured a set of colored ferromagnetic objects that had to be found in the arena and col-
lected by a team of three UAVs. Initial scanning of the arena at a high altitude provides only
estimated positions of the objects with a possibly high number of false positive detections.
Therefore, a fast flight at lower altitude over the detections is performed to verify the locations
and to identify the rewards of the objects. See the initial scanning of the arena in the MBZIRC
Challenge 3 in Fig. [2.3] The core publication focuses on planning such fast flights for the
team of three UAVs and formulates the problem as a variant of multi-vehicle TSP. Therefore,

we further overview the most relevant TSP variants related to the data collection planning
with UAVs.

—— UAVIpartl ---
rders  —— UAV 2 part 1
UAV 3 part 1

0
)

(a) Scanning trajectories used in MBZIRC Challenge 3. (b) UAV onboard Object detection.

Figure 2.3: MBZIRC Challenge 3 mapping of colored objects in competition arena .

The ordinary Euclidean TSP (ETSP), also denoted as the TSP, uses Euclidean distances
between target locations and can be formulated as ILP problem and solved optimally using,
for example, Concorde solver . For a fast solution of the TSP, a large number of heuristic
approaches can be found in the literature, where one of the best performing and widely
used is the Lin—Kernighan heuristic , . However, the ETSP uses straight line segments
with sharp turns between target locations and therefore is unfeasible for nonholonomic or
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dynamically constrained UAVs.

Similarly to the limited budget data collection planning formulated as the DOP, the
TSP can be formulated for Dubins vehicle [23]. The TSP for the Dubins vehicle (DTSP) [65],
apart from determining the order in which the given target locations are visited, also re-
quires determining the heading angles of Dubins vehicle at each target location. The DTSP
can be addressed by various approaches where one of the simplest is the Alternating Algo-
rithm (AA) [66]. The AA is a decoupled approach, where a solution of the ETSP is found
first without considering the curvature constraint. Afterward, the tour for Dubins vehicle is
constructed such that straight lines connect the even edges of the ETSP solution (thus deter-
mining headings in all target locations), and the shortest Dubins maneuvers connect the odd
edges. The DTSP can also be solved optimally, however, only with respect to a given sampling
of heading angles of Dubins vehicle at target locations. Using a finite discrete set of possible
heading angles, the DTSP becomes the Generalized Asymmetric TSP (GATSP) that can
be further transformed to the Asymmetric TSP (ATSP) using Noon-Bean transformation [6§].
The ATSP instance is afterward solvable as a regular TSP instance using heuristics or
optimally using, e.g., the Concorde solver . Other existing approaches to the DTSP include
unsupervised learning methods based on the evolution of SOM and evolutionary Memetic
algorithm [70].

In surveillance and information gathering scenarios, the solution path can be further
improved /shortened by considering non-zero sensing range . In Dubins Traveling Salesman
Problem with Neighborhoods (DTSPN) the target locations are considered as visited if the
found path has a waypoint within distance 0 from the respective target locations . The
DTSPN can be considered more computationally challenging than the DTSP as it additionally
requires to determine the position within the neighborhood of each target location to be visited
by the data collection path. Solving the DTSPN can be, similarly to the DTSP, addressed by
the sampling-based approach , where both neighborhood positions and heading angles are
sampled. The generated GATSP instance can be afterward solved either using heuristics or
optimally. Alternatively, the DTSPN can be solved using the LIO algorithm proposed in ,
by using genetic algorithms , with evolutionary techniques or similar to the DTSP by
using the decoupled AA approach with ETSP solution [66].

The multi-vehicle extension of the ordinary TSP is the Multiple Traveling Salesman
Problem (m-TSP) [76]. In the minsum variant, the objective is to minimize the summed length
of all vehicle paths. This variant can, however, lead to a deformed solution with only one vehicle
visiting the entire set of target locations without employing all vehicles. The minmaz m-TSP
variant minimizes the length of the longest tour among all vehicles which leads to utilizing
all vehicles equally. Both minmaz and minsum m-TSP variants can be solved using
exact algorithms. In the case of minsum using ILP formulation with transformation to
single vehicle TSP. The mTSP has also been addressed using Ant Colony Optimization [80],
with genetic algorithms and neural networks . Among other soft-computing techniques
and heuristics, the VNS has also been proposed for the m-TSP in [83].

The multi-robot variant of the DTSPN is denoted as m-DTSPN and has been proposed
by Macharet et al. in together with the memetic algorithm. The multi-robot TSP for
Dubins vehicle has been proposed later by the same authors in . Using both extensions for
Dubins vehicle and for non-zero sensing range simultaneously has been proposed in along
with an evolutionary algorithm to solve the m-DTSPN. However, the multi-robot variant of
the TSP for Dubins vehicle can also be addressed with m-TSP approaches using the sampling
of Dubins vehicle heading angle and optionally of the neighborhood positions , similarly
to the DTSP(N).
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The core publication addresses the fast trajectory planning for verifying the objects
in Challenge 3 of MBZIRC 2017 as the minmax variant of the m-DTSPN. The proposed
method is based on unsupervised learning framework using growing SOM . Furthermore,
the SOM-based flexible framework is shown for planning trajectories using Bézier curve model
of the UAV which can better exploit the maximal velocities and accelerations of the UAVs.
However, the main contribution in of the author of this thesis is the proposed VNS-based
method for planning the m-DTSPN. The method generalizes the VNS-based solver for m-TSP
in for Dubins vehicle and also for non-zero sensing range. See Fig. With solutions of the
m-DTSP planned with the proposed VINS-based solver for verifying detected objects locations
and rewards. We refer to Chapter |§| for detailed information about the core publication [4c].

~

Q‘““_ UMV ey e

Figure 2.4: Solution of the Multiple Dubins Traveling Salesman Problem obtained by the
VNS-based method .

2.3 Data collection planning in environments with obstacles

This section overviews the contribution and related work of the last core publication [5¢f.
In , we address the data collection planning in environments with obstacles for a limited
budget UAV. We propose a novel OP variant which we call the Physical Orienteering Prob-
lem (POP). The POP stands to determine a collision-free path in environments with obstacles,
and at the same time to maximize the collected reward from the target locations using a lim-
ited budget. The problem thus combines collision-free point-to-point motion planning
between individual target locations together with the combinatorial optimization of the OP.
We further describe the most relevant motion planning approaches and methods that combine
routing problems with motion planning.

The task of point-to-point motion planning is to find a motion between two points in
an environment while avoiding obstacles. It can be described by a notion of configuration
space where the goal is to find a path between two configurations of a robot such that all
configurations in the path do not collide with obstacles. One way to address this problem, espe-
cially convenient for high-dimensional configuration spaces, is to use sampling-based methods.
Sampling-based methods create random samples in the free part of the configuration space
without obstacles and then, using the graph search and collision detection methods, find a path
between desired terminal configurations using graph of sampled configurations. Among others,
the Rapidly-exploring Random Tree (RRT) and the Probabilistic Roadmaps (PRM) [88]
are fundamental. The RRT method uses a tree graph representation of samples rooted in
the starting configuration, and continuously and randomly expands the tree until the goal
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configuration is reached with sufficient precision. The PRM method initially creates a rather
large number of samples that are further tried to be connected into k-degree roadmap using
k nearest neighbors of each sample and collision detection. The collision-free paths are then
found in the tree graph or in the roadmap using a graph search algorithm. However, for the
multi-goal routing problems such as the TSP and OP, we need the shortest paths possible
to minimize the multi-goal path or to maximize collected reward from targets using limited
path cost. The minimality of collision-free path is addressed by the asymptotically optimal
Rapidly-exploring Random Tree (RRT*) and Probabilistic Roadmaps (PRM*) methods [89).

The combination of the TSP routing with collision-free motion planning has been studied
in the context of video games as the Physical TSP (PTSP) [90]. The PTSP can be addressed
as a decoupled problem where we first find the collision-free roadmap, and then the TSP so-
lution can be found using, e.g., Concorde solver . The creation of a collision-free roadmap
for multi-goal planning has been proposed using Space-Filling Forest (SFF) method or
using multi-tree Transition-based RRT (TRRT) [91]. Further works that combine the rout-
ing with motion planning have been studied for Autonomous Underwater Vehicles (AUV)
planning f. The most similar problem to the proposed POP is the Prize Collection
Traveling Salesman Problem (PC-TSP) used in for modeling data collection planning
for AUV. The method proposed for the PC-TSP uses an initial PRM navigation roadmap
between target locations that is further used to steer the growth of a motion tree (a variant of
the RRT) towards the solution of the PC-TSP found on the roadmap. The only known variant
of the OP that considers environments with obstacles is the multi-vehicle Team Orienteering
Problem presented in . The method in [59] uses an occupancy grid-based approach for
collision-free planning; however, it is capable of solving only small problem instances with
fixed heading angles of Dubins vehicle.

The proposed method for the POP in the core publication combines the asymptot-
ically optimal PRM* method for collision-free motion planning with the VNS-based method
for the combinatorial OP part. The POP is introduced as the OP in configuration space and
thus can be generalized for various configuration spaces such as the presented Dubins ve-
hicle or 3D building environment. The proposed VNS-PRM* method uses an initial PRM*
roadmap that is continuously expanded at every VNS iterations. The VNS part explores the
combinatorial solution space of the POP on the current roadmap and tries to maximize the
collected reward from the target locations. Furthermore, the VNS part selects the most re-
warding solutions, with even a little over-budget cost, that are then more intensively sampled
when expanding the PRM* roadmap. See the example solutions of the POP found using the
proposed VNS-PRM* method in Fig. We refer to Chapter [7| which is devoted to the core
publication [5¢].

o4

Figure 2.5: Example solutions of the POP on (a),(b) potholes and (c),(d) dense scenarios for
(a),(c) Euclidean and (b),(d) Dubins vehicles .
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Chapter 3
Dubins Orienteering Problem

In this chapter, we present the first core publication called the Dubins Orienteering
Problem (DOP) published in the IEEE Robotics and Automation Letters in 2017.

|Ic] R. Pénicka, J. Faigl, P. Vana, and M. Saska, “Dubins orienteering problem,”
IEEFE Robotics and Automation Letters, vol. 2, no. 2, pp. 1210-1217, 2017

In the publication, we present a novel extension of the Orienteering Problem. The regular
OP has the objective to maximize the collected reward from the given target locations, each
with associated reward, while the tour starts and ends at the desired locations and is limited by
a given budget. In the introduced DOP, the target locations are considered to be connected
using the Dubins maneuvers instead of straight line paths as in the regular OP. The
Dubins maneuvers are feasible and more appropriate for the considered Unmanned Aerial
Vehicle than the straight line paths with sharp corners at the target locations used in the OP.
The non-holonomic fixed-wing UAVs require to use, e.g., the curvature constrained Dubins
vehicle. For the vertical take-off and landing multi-rotor UAVs, the curvature constrained
motion is also useful when considering constant velocity movement or vehicle with limited
velocity and acceleration in a plane.

The proposed solution for the DOP is based on the Variable Neighborhood Search
(VNS) [54]. Contrary to the OP with optimization of the subset of visited targets and their
sequence, the DOP additionally requires to find the appropriate heading angles of Dubins
vehicle at the target locations, which significantly influences the path length and thus its
feasibility due to the budget constraint. The proposed VNS-based method for the DOP uses
an equidistant sampling of heading angle at each target location to address the continuous
optimization of finding appropriate heading angles. The method iteratively uses a combination
of shaking procedure, to get an incumbent solution from possible local optimum, and local
search procedure to possibly improve the so far best-found solution. Both procedures use
predefined operators that change the subset selection and the order of target locations in the
solution vector. The appropriate heading angle samples are found using graph search for the
shortest path in a given solution vector.

The computational results show the feasibility of the proposed approach both in sim-
ulations and in a real experiment with hexarotor UAV. The method is verified on existing
datasets from literature for various turning radii of Dubins vehicle. We overview the com-
putational requirements and solution quality for different sampling density of heading angle
showing that 12 heading samples are sufficient for high-quality solutions while the compu-
tational requirements keep increasing with the number of samples. The used VNS operators
are compared with more complex operators that, however, only increase computational re-
quirements without improvement of solution quality. The VNS method for the DOP is finally
compared with a straightforward combination of approaches for ordinary OP and DTSP.
The decoupled solution uses a subset selection by solving the OP and then determines the
appropriate heading angles by solving sampling based DTSP on the subset. The proposed
VNS-based method is shown to produce higher quality solutions for most dataset instances
than the decoupled approach.

The contribution on the publication of the author of this thesis is 55 %, including the im-
plementation of the proposed method and writing the manuscript. The co-authors contributed
by giving the initial impulse for this research, valuable feedback, and help with evaluations of
the proposed method.
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Dubins Orienteering Problem

Robert Pénicka, Jan Faigl, Petr Vaia, and Martin Saska

Abstract—In this paper, we address the Orienteering Problem
(OP) for curvature constrained vehicle. For a given set of target
locations, each with associated reward, the OP stands to find
a tour from a prescribed starting location to a given ending
location such that it maximizes collected rewards while the
tour length is within a given travel budget constraint. The
addressed generalization of the Euclidean OP is called the Dubins
Orienteering Problem (DOP) in which the reward collecting tour
has to satisfy the limited turning radius of the Dubins vehicle. The
DOP consists not only of selecting the most valuable targets and
determination of the optimal sequence to visit them, but it also
involves the determination of the vehicle’s heading angle at each
target location. The proposed solution is based on the Variable
neighborhood search technique, and its feasibility is supported
by an empirical evaluation in existing OP benchmarks. Moreover,
an experimental verification in a real practical scenario further
demonstrates the necessity of the proposed direct solution of the
Dubins Orienteering Problem.

Index Terms—Motion and Path Planning, Nonholonomic Mo-
tion Planning, Aerial Systems: Applications

I. INTRODUCTION

N this paper, we study a generalization of the Orienteering

Problem (OP) [1] for curvature-constrained vehicles. The
problem is called the Dubins Orienteering Problem (DOP),
and its objective is to maximize the total collected rewards
by visiting a subset of the given target locations by Dubins
vehicle [2] while the length of the collecting tour does not
exceed a given travel budget. The proposed generalization of
the existing OP with Euclidean distance [3], further denoted
as the Euclidean OP (EOP), is motivated by data collection
scenarios with Unmanned Aerial Vehicles (UAVs) that can be
modeled as the non-holonomic Dubins vehicle [4].

The Orienteering Problem can be considered as a variant
of the Traveling Salesman Problem (TSP). In contrast to the
TSP, in which the goal is to minimize the tour length to visit
all the targets, the OP objective is to maximize the total sum
of the collected rewards while the reward collecting tour does
not exceed the specified travel budget. Thus, the OP is more
suitable formulation for cases where visiting all the targets is
unfeasible with the given travel budget.

In the EOP, the distance between the target locations cor-
responds to the length of the straight line segment connecting
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Fig. 1. Solutions of the Dubins Orienteering Problem on Set 64 for the
budget Trmae = 50 and different turning radii p. For p = 0, the problem
becomes the ordinary EOP with the sum of the collected rewards R = 900
(on left), while for p = 1.3 the problem has to be directly solved as the DOP
to satisfy Tmaz and the collected reward is R = 714 (on right). In both cases,
the constructed path lengths are maximally 0.2 bellow the allowed Trnaz-

them and the objective is to select a maximal reward subset
of target locations for which the length of the path visiting
them is shorter or equal to the predefined maximal total path
length.

Although the objective in the DOP is similar to the EOP,
i.e., to maximize the collected reward within the given travel
budget, the final reward collecting path has to satisfy the lim-
ited curvature constraint, as shown in Fig. 1, and thus the final
path consists of a sequence of optimal Dubins maneuvers [2]
connecting the selected target locations. Therefore, a solution
of the DOP requires determining particular heading angles at
the target locations to minimize the length of Dubins maneu-
vers between the targets. Regarding computational complexity,
the DOP can be considered as more challenging than the
EOP as changing only one heading angle or target location
in the reward collecting path usually enforces the change of
all heading angles of nearby connected target locations.

A variant of the TSP with Dubins maneuvers [5] is known as
the Dubins Traveling Salesman Problem (DTSP) [6]. Contrary
to the DTSP which aims to minimize the total travel cost,
the DOP allows to address the limited travel budget, and
thus respects a practical deployment of UAVs with limited
operational time. Therefore, we propose to directly solve the
DOP, and our proposed solution is based on the Variable
Neighborhood Search (VNS) metaheuristic for combinatorial
optimization [7], which has been deployed to the OP in [8].

The paper is organized as follows. An overview of related
work on the EOP and DTSP is presented in the next section.
In Section III, the proposed DOP is formally introduced.
Section IV presents the proposed direct solution of the DOP.
Evaluation results together with the report on the method
experimental deployment in a real-scale outdoor scenario are
presented in Section V. Section VI concludes the paper.

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.
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II. RELATED WORK

The introduced Dubins Orienteering Problem (DOP) builds
on the existing approaches for the Euclidean Orienteering
Problem (EOP) [3] and Dubins Traveling Salesman Prob-
lem (DTSP) [9]. Therefore an overview of the existing ap-
proaches is presented in this section. Both the EOP [10] and
DTSP [6] can be used for planning UAV missions; however,
the EOP produces unfeasible paths for the Dubins vehicle, and
the DTSP does not respect the travel budget.

The Euclidean OP has been studied since 1984 when Tsili-
girides proposed two heuristics [11]. The first S-algorithm uses
Monte Carlo method for picking the best solution from a large
number of randomly generated paths with probabilities based
on the reward per additional distance to the target location.
The second D-algorithm uses a method for vehicle-scheduling
with one depot by Wren and Holiday [12]. Tsiligirides further
proposed a route-improvement algorithm that improves an
initial route by using target insertion, target exchange, and
2-Opt operations [11].

A Four-Phase heuristic for the OP [1] uses insertion, im-
provement, and deletion phases to iteratively improve the path.
In the insertion phase, new target locations are introduced
to the path while using additional reward per distance and
relaxed budget constraint. The second phase is based on 2-
Opt and 3-Opt improvement operations. The deletion phase
removes a target location with the minimal reward per distance
and continues to the first phase with decreased relaxation of
the travel budget. The fourth phase is the maximal insertion,
and it follows after the iteration of previous three phases is
terminated.

Chao et al. (1996) proposed a fast and effective heuristic for
the OP in [13]. The heuristic considers only the target locations
inside an ellipse with the foci in origin and ending locations
with the major axis length equal to the travel budget. Using the
most distant target locations from foci, a number of paths are
generated during initialization with a greedy algorithm. The
highest reward path path,,, is then improved by the Two-point
exchange, i.e., by one-point move and 2-Opt operations, that
systematically exchanges the target locations between path,,
and set of alternative paths path,,., formed from unused target
locations.

The Variable Neighborhood Search (VNS) metaheuristic [7]
has been used to solve OP by Sevkli et al. (2006) [8]. This
VNS-based method utilizes a predefined neighborhood struc-
ture, namely target insert/exchange and path insert/exchange
operations. Using these four structures, the VNS algorithm
iteratively performs shake and local search procedures. During
the shake procedure, the currently best achieved solution is
randomly changed to escape from a local minimum. In the
local search procedure, the changed solution is searched within
a smaller neighborhood structure to obtain a possibly better
solution than the current best one.

Regarding the DTSP, the most relevant methods are the
sampling based approaches [9], [14], [15] that allow a com-
binatorial optimization by using a discrete set of possible
headings at the target locations. The DTSP stands to determine
the minimum length path to visit all the target locations

and satisfies the minimum curvature constraint of Dubins
vehicle. The sampling based methods use a uniform sampling
of the vehicle heading angle at each target location. The
problem is then considered as the Generalized Asymmetric
TSP that is further transformed and solved as the Asymmetric
TSP (ATSP) [16], e.g., using Lin-Kernighan algorithm [17].

The closest existing problem formulation to the proposed
DOP is the OP for kinodynamic vehicles outlined in [18].
Their solution of the Stochastic TSP and OP for kinodynamic
vehicle is based on dividing the configuration space into cells
with an equal volume, and merging the cells with no or
few target locations into larger ones. In the TSP, the vehicle
traverses each cell and collects the target locations inside by
making small deviations from a fixed path that goes through all
cells. For the OP, the vehicle selects a TSP sub-path with the
highest reward. Even though the algorithm provides a possible
approach to the DOP, it is useful mainly for the stochastic ver-
sion of the OP where the target locations are randomly placed.
In such a case, the algorithm provides an approximation of
the optimal trajectory with a high probability. Moreover, the
algorithm does not directly maximize the collected reward as
the herein proposed method; it rather selects a part of the TSP
path with the maximal reward and length below or equal to
the budget.

The proposed solution of the introduced Dubins Orienteer-
ing Problem (DOP) is based on the VNS technique already
deployed for the Euclidean OP in [8], which is actually one
of the best performing methods for the EOP. The developed
algorithm for the DOP is therefore compared with existing
approaches for the EOP proposed by Chao et al. [13], Four-
phase heuristic [1], and the original VNS-based method [8].
This comparison is done for the existing datasets by Tsili-
girides [11] and two problem instances by Chao et al. [13].
Further experimental evaluation is performed for a practical
scenario with a real UAV, see Section V.

III. PROBLEM STATEMENT

The motivation for the proposed Dubins Orienteering Prob-
lem (DOP) is in data collection scenarios for multirotor
Unmanned Aerial Vehicles (UAVs) with limited operational
time, where each of the target location requested to be visited
has assigned a particular reward value, and the vehicle needs
to follow a curvature-constrained path. The proposed solution
can be however applied to any Dubins vehicle such as the fixed
wings UAVs [19] or even the Ackermann vehicles. Hence, the
objective is to find a data collection path for the Dubins vehicle
that maximizes the sum of the collected rewards R such
that the path length does not exceed the specified maximal
travel budget T),4.. The existing Euclidean OP [3] cannot
be directly used in such scenarios as it produces unfeasible
paths for the considered Dubins vehicle model and thus, it may
lead to miss some of the target locations or violation of the
budget constraint. The proposed DOP is a generalization of the
Euclidean OP, and therefore, the EOP is formally introduced in
the next section followed by its generalization for the Dubins
vehicle in Section III-B.

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.
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A. Euclidean Orienteering Problem (EOP)

Having a set of target locations S = {si1,...,s,}, the
Orienteering Problem seeks to find a maximal reward subset
Sk C S and a path visiting Si, such that its length is limited
by the given 7},,,,. The origin and ending locations are given
and denoted as s; and s,,. The subset selection in the problem,
which determines the collected reward, is similar to the NP-
hard Knapsack problem. The problem is also related to the NP-
hard Traveling Salesman Problem (TSP) in finding a minimal-
length path on Sj.

Each considered target location s; is defined by its position
denoted as s; € R? (for simplicity and better readability) and
its reward r;. We assume that the reward of the origin and
ending locations are zero r; = r, = 0 and strictly positive
for all other locations, i.e., r; > 0 for 1 < ¢ < n. The EOP
includes determination of & target locations defining the subset
Sk and a sequence to their visits that can be described as a
permutation ¥ = (01,...,0%), where 1 < 0; < n, 0; # 0
for i # j and 01 = 1, o, = n. For the Euclidean distance
Le(50,,50,) between two locations s,, and s, the EOP can
be formulated as the optimization problem:

k

maximize R = E To,
£,S),5 P

k

subject to Z Le(So;1550;) < Tinag
i=2

6]

oy =10, =n.

B. Dubins Orienteering Problem (DOP)

The Dubins Orienteering Problem (DOP) is a generalization
of the OP for the Dubins vehicle model to determine a feasible
path over selected target locations Si. The state of the Dubins
vehicle ¢ = (x,y,6) consists of its position in plane (z,y) €
R? and its heading 6 € S!, i.e,, ¢ € SE(2). One of the
specifics of this non-holonomic vehicle model is the minimal
turning radius p that influences the length of the shortest path
between two states. The kinematic model of Dubins vehicle
with a constant forward velocity v and a control input u can
be described as:

i cos
g= |y |=v| sinb | ue[-11]. )
0 u

P

In [2], Dubins proved that for the model (2) the short-
est path between two states consists only of straight line
arc (S-segment) and arcs with the curvature p (turning
left denoted as L-segment or right as the R-segment)
and the optimal path is one of six possible maneuvers
{LSL,LSR,RSL,RSR,LRL,RLR} that are further de-
noted as Dubins maneuvers. For any two states ¢; and g;
the Dubins maneuver together with its length L£4(g;,¢g;) can
be determined analytically [2]; however, regarding the studied
DOP, we need to determine the particular headings ¢; and ¢; of
the vehicle at corresponding locations s; and s;, respectively.

Hence, each target location s; is considered as the state
¢i = (si,0;) in the DOP and in addition to the determination

http://dx.doi.org/10.1109/LRA.2017.2666261

of the subset S, of the k locations and the permutation
¥ = (o1,...,0k), the DOP intends to find the corresponding
heading angles © = (0,,,...,0,,). The Dubins Orienteering
Problem for the model (2) can be then formulated as the
optimization problem:

k

maximize R = E Ty
k,Sk,%,0 p

i

k 3
subject to Z Li(do;_1>90;) < Trax
i=2

oy =10,=n.

In contrast to the Euclidean OP, the introduced DOP consid-
ers the Dubins vehicle model, and the path is constructed using
the Dubins maneuvers between the adjacent target locations
(states). Notice that the optimization problem (3) is not only
over all possible subsets and respective permutations of the
target locations (k, Sk, X), but also over all possible heading
angles © at the target locations. This makes the problem
computationally challenging as the already NP-hard EOP is
extended to optimize over heading angles.

IV. PROPOSED APPROACH FOR THE DOP

The proposed algorithm to solve the introduced Dubins Ori-
enteering Problem (DOP) is based on the Variable Neighbor-
hood Search (VNS) [7], which has been already deployed to
the EOP in [8]. In contrast to the EOP, the DOP has to consider
the heading angle at the target locations, which requires a
new formulation of the solution search method. Therefore a
brief overview of the VNS and the used approach for dealing
with heading angles is provided prior detail description of the
proposed VNS-based solution for the DOP.

The VNS is a metaheuristic proposed by Hansen and
Mladenovic [7] for combinatorial optimization. The method
operates on an initially defined Neighborhood structures
N(ly,...,lmaz), where | denotes the maximal distance be-
tween two solutions in the neighborhood. In the OP, the
distance [ is the number of different target locations inside
the solution vector (go,,--.,4s, ). A set Nj(x) contains all
solutions in / distant neighborhood of the solution x. Particular
Neighborhood structure is then expressed by an operation that
changes the given solution within the desired distance.

Two main procedures are used in the VNS to search the
solution space starting from an initial solution. In the shaking
procedure, the incumbent solution x is randomly moved to
different solution z’ within the neighborhood. This is used
to get farther from the current best solution which may be
only a local minimum. Afterward, the local search procedure
systematically searches for the best solution in the neighbor-
hood of the solution 2’. The solution from the local search
becomes a new incumbent solution if it improves the current
best solution. The procedures continue until stopping criterion
is met, which is either a number of iterations, CPU time or
maximal time between improvements.

For solving the DOP, we used the Randomized Variable
Neighborhood Search (RVNS) variant of the VNS [7]. The
RVNS algorithm uses a randomized local search procedure
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instead of the systematic approach used in the regular VNS. o Path Move uses a randomly selected path (¢o,, . - -, qo; ).

The randomized variant of the local search tries, during
a predefined number of iterations, to randomly change the
solution 7’ inside the Neighborhood structure to improve the
solution by collecting more rewards. As it is shown for the
EOP with the VNS [8], the RVNS is faster than the regular
VNS and generates solutions that achieve the same rewards.

In the VNS, the Dubins Orienteering Problem is represented
by a solution vector (¢o, ;.. ., qoys Goyyys - - - » 4oy, )» Where the
first k target locations (¢, --.,qs,) are within the budget
constraint limit Z?:z La(Go; 1,90;) < Timazs 01 = 1 and
o, = n. The remaining vector (¢s,, ,,- -, ) consists of all
other target locations that are above the budget.

o Ga Gy G G
0, 0. 8, 0, 6,
0, 0, 8, 0, 0,
Om Om Om O Om

Fig. 2. Search graph of the DOP with m uniformly sampled heading angles
at each target location q5,, 0 < 4 < m. For a particular selected sequence of
the target locations (go, - - ., go,, ) @ graph search over all heading values is
performed to obtain headings providing the minimal path length.

Each state g,, consists of the location s,; and particular
heading 6,, that is selected from uniformly sampled angles
from the interval 6 € (0,27) into m samples (61, ..., 0.,).

The main difference of the proposed VNS-based DOP
algorithm, compared to the existing variant for the EOP [8],
is the determination of particular heading 6,, at each target
location. For a given number of samples m and a sequence
of targets, the algorithm finds the shortest path by trying
all possible combinations of sampled headings. The utilized
search graph of the VNS DOP for a sequence of target
locations (¢o, ;- - - , 4, ) is visualized in Fig. 2. A graph search
is used to determine particular sequence of heading samples
that produces path with the minimal length. A dynamic
programming technique is utilized to store distances from the
origin ¢,, and ending ¢, locations to simplify further target
location insertion/deletion.

In the proposed VNS method for the DOP, we utilize only
a subset of reachable locations S, such that ¢; € S, <
(['d(qlv%) + l:d(in%L)) < Thae for any combination of
sampled heading angles (6:,0;,0,). This selects all target
locations that are reachable by the Dubins vehicle within the
travel budget.

The initial solution x required for the VNS technique is
generated using a greedy algorithm. For an initial zero reward
Dubins path from ¢; to g,, we iteratively add a new target
location from S, that minimizes additional distance per target
reward as long as the length of the whole path is below T},,4.

After an initial path P is found, the proposed VNS-based
algorithm uses the following neighborhood structures in shak-
ing and local search procedures to obtain solutions with higher
rewards. The randomized shaking uses the structures:

where 1 < 7 < j < n, from the solution vector
(Goys---+40,), and moves it to a randomly selected
position o, < % or o, > j. For the purpose of the VNS,
this operation represents neighborhood [ = 1 despite the
fact that the number of different target locations is usually
larger than one.

« Path Exchange also uses a randomly selected path
(¢o;5--++qs;) from the solution vector, but exchange
the path with a second random non-overlapping path
(¢oys-+++s,). The path exchange operation represents
the neighborhood [ = 2.

The local search procedure employs different and much
closer neighborhoods. Unlike the shaking, the local search
procedure uses an iterative search in the particular neighbor-
hood such that it tries numerous operations on the same solu-
tion. For the RVNS, the local search tries random operations
for a number of times that is equal to the square of the number
of the target locations. This ensures that the neighborhood of
solution 2’ from shaking is searched more deeply for local
optima than in the shaking procedure. The procedure uses the
following neighborhood structures.

« One Point Move corresponds to the [ = 1 neighborhood
in which only one randomly selected target is moved to
a different position within the solution vector.

o One Point Exchange is a farther neighborhood [ = 2
and it uses two randomly selected distinct targets from
the solution vector and exchanges their positions.

In all four presented neighborhood structures, the operations
also search through all sampled heading angles as described
above, to minimize the solution path length for a particular
sequence of the target locations.

The proposed VNS-based algorithm for the DOP is sum-
marized in Algorithm 1. For brevity, the rewards collected by
apath P = P(k, S, %,0) is R(P) = Y& ry., 0; € %, and
the path length is £4(P) = Zf:Q La(Go; 1590, )-

i=

Algorithm 1: Variable Neighborhood Search for the DOP

Input : S - set of target locations
Input : 7),,, — maximal allowed budget
Input : m — number of heading values for each target

Output: P — found data collecting path

Sr < getReachableLocations(.S)
P «+ createlnitialPath(S,, Tynaz)
while stopping condition is not met do
[+ 1
while [ <4, do
P’ + shake(P, 1)
P" < localSearch(P’, 1)
if Lo(P") < Tyaw and R(P") > R(P) then
P« P
I+ 1
else
| 1+1+1

// greedy

(R e 7 T I I SR

-
R = S

The VNS-based DOP algorithm uses only two neighbor-
hood structures for both shaking and local search, which
means that the maximal neighborhood distance is l,,,q: = 2.

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



CHAPTER 3. DUBINS ORIENTEERING PROBLEM

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
http://dx.doi.org/10.1109/LRA.2017.2666261

The final version of record is available at

PENICKA et al.: DUBINS ORIENTEERING PROBLEM

17

An extension of the neighborhood structures to [, > 2 R from the all 10 runs for the particular problem and budget.

is possible by concurrently moving more than two target
locations in the local search.

Evaluation results of the proposed DOP method are pre-
sented in the next section together with the comparison to the
existing algorithms for the EOP. Besides, results from the real
practical experiments with UAV are presented as well.

V. RESULTS

The proposed method for the Dubins Orienteering Prob-
lem (DOP) has been evaluated on five existing datasets from
the literature [20] and also in real data collection scenario
with Unmanned Aerial Vehicle (UAV). Using the existing
datasets, the proposed VNS-based method is compared with
existing Euclidean Orienteering Problem (EOP) approaches as
to the best of our knowledge there is no existing solution
for the introduced DOP. The maximal achieved rewards for
particular non-zero turning radii are presented alongside to
show the influence of increasing turning radius on the collected
reward. Furthermore, the real experiment with hexarotor UAV
is presented. The results show practical applicability of the
introduced DOP and the proposed VNS-based method for
robotic data collection planning.

A. Results on datasets and existing EOP approaches

A comparison of the proposed DOP method with solu-
tions for the EOP, namely with the heuristic proposed by
Chao et al. [13], 4-phase heuristic by Ramesh et al. [1],
and VNS-based algorithm by Sevkli et al. [8] has been
performed. Abbreviation of the methods and used existing
benchmarks are in Table I. Results for the proposed method
are presented for multiple representative turning radii p €
{0,0.3,0.5,0.7,0.9,1.1,1.3}, where p = 0 is a solution of
the EOP.

TABLE I
ABBREVIATION RELATED WITH THE RESULTS

Set 1, Set 2, Set 3 Test instances created by Tsiligirides [11].
Set 64, Set 66 Test instances proposed by Chao [13].

4Phase Four-Phase heuristic for EOP by Ramesh et al. [1].
Chao Fast and effective heuristic by Chao et al. [13].
VNS 'VNS-based algorithm by Sevkli et al. [8].

VNS DOP Proposed Dubins Orienteering VNS method.

The utilized VNS is a stochastic procedure, and therefore,
each scenario has been solved 10 times for each budget T},,4.
The results were computed using a single core of Intel i7
3.4GHz CPU. A single sample of the heading angle m = 1
has been used for the DOP problems with p = 0 as the
heading angle does not influence the distance between the
target locations. For p > 0, equidistant sampling of the
heading angle into m = 16 values has been utilized. The
stopping criterion is the maximal number of 10 000 iterations
with the maximal 3 000 iterations without improvement.

Results for Tsiligirides datasets Set 1, Set 2, Set 3 are
presented in Tables II, III and IV, respectively. Tables V and
VI show results for Chao datasets Set 64 and Set 66. The
presented results are the maximal achieved collected rewards

RESULTS COMPARISON FOR SET 1

TABLE II

Tmax Chao 4Phase

Proposed VNS-based DOP

p=0.0 p=03 p=0.5 p=0.7 p=0.9 p=1.1 p=13

5 10 10 10 10 10 0 0 0 0
10 15 15 15 15 15 15 15 15 15
15 45 45 45 45 45 45 45 40 35
20 65 65 65 65 60 60 60 60 50
25 90 90 90 90 85 85 85 85 75
30 110 110 110 110 110 105 105 105 95
35 135 135 135 135 135 130 130 120 120
40 155 150 155 155 155 150 145 140 140
46 175 175 175 175 175 170 170 165 160
50 190 180 190 185 185 185 175 175 165
55 205 205 205 200 200 195 195 185 185
60 225 225 220 220 220 215 215 205 205
65 240 240 240 240 235 235 235 225 220
70 260 260 260 260 255 250 250 240 235
73 265 265 265 265 265 260 260 250 240
75 270 275 270 270 265 265 260 255 245
80 280 280 280 280 275 275 270 265 255
85 285 285 285 285 285 280 275 270 265

TABLE III
RESULTS COMPARISON FOR SET 2
Proposed VNS-based DOP
Tmax Chao dPhase = o S 07 =09 p=1.1 p=l3
15 120 120 120 120 120 115 115 115 95
20 200 200 200 190 190 180 175 165 135
23 210 210 210 205 200 200 200 200 160
25 230 230 230 230 220 220 205 200 165
27 230 230 230 230 230 230 230 220 180
30 265 260 265 260 255 255 240 230 225
32 300 300 300 290 290 275 275 260 240
35 320 320 310 320 315 310 300 285 285
38 360 385 360 350 345 340 330 325 310
40 395 395 395 385 375 375 365 355 335
45 450 450 450 440 440 420 410 395 370
TABLE 1V
RESULTS COMPARISON FOR SET 3
Proposed VNS-based DOP
Tmax Chao dPhase = o S =07 =09 p=1.1 p=13

15 170 170 170 170 160 160 160 150 140
20 200 200 200 190 190 180 180 180 180
25 260 260 260 260 260 260 250 250 230
30 320 320 320 320 320 320 320 310 300
35 390 390 390 380 380 360 380 380 360
40 430 430 430 430 420 420 420 420 400
45 470 470 470 470 460 450 450 450 440
50 520 520 520 520 510 510 470 500 490
55 550 550 550 550 540 540 530 530 520
60 580 580 580 580 570 560 560 560 550
65 610 610 610 610 600 590 590 590 580
70 640 640 640 640 630 610 610 600 610
75 670 670 670 670 650 650 640 630 630
80 710 710 700 700 690 680 680 670 670
85 740 740 740 730 730 700 700 710 710
90 770 770 770 760 760 740 750 710 730
95 790 790 790 790 780 780 770 760 750

100 800 800 800 800 790 790 790 780 770
105 800 800 800 800 800 800 800 800 790
110 800 800 800 800 800 800 800 800 800
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TABLE V
RESULTS COMPARISON FOR SET 64
Proposed VNS-based DOP
p=0.0 p=0.3 p=0.5 p=0.7 p=0.9 p=1.1 p=1.3
15 9 96 96 96 9% 9% 96 96 96
20 294 294 294 294 294 294 252 252 252
25 390 390 390 390 384 366 360 300 300
30 474 474 474 468 468 468 468 408 390
35 570 576 576 570 570 564 546 498 492
40 714 714 714 696 696 690 672 582 582
45 816 816 816 798 792 780 756 642 636
50 900 900 900 888 882 876 834 708 714
55 984 984 984 978 960 960 924 804 786

Tmax Chao VNS

60 1044 1062 1062 1044 1026 1026 1008 834 834

65 1116 1116 1116 1098 1098 1098 1080 918 900

70 1176 1188 1188 1170 1170 1134 1134 990 960

75 1224 1236 1236 1230 1206 1194 1194 1038 1014

80 1272 1272 1272 1272 1260 1254 1224 1074 1080
TABLE VI

RESULTS COMPARISON FOR SET 66
Proposed VNS-based DOP

p=0.0 p=0.3 p=0.5 p=0.7 p=0.9 p=1.1 p=1.3

5 10 10 10 10 10 10 0 0 0

10 40 40 40 40 40 40 40 40 40
15 120 120 120 100 100 100 100 95 95
20 195 205 205 205 200 195 195 195 170
25 290 290 280 290 280 280 280 275 260
30 400 400 400 400 380 370 370 370 370
35 460 465 465 465 465 460 455 450 445
40 575 575 575 570 570 570 545 540 535
45 650 650 650 645 650 650 645 640 640
50 730 730 730 725 725 710 710 695 690
55 825 825 825 825 825 800 820 795 790
60 915 915 915 895 895 895 890 890 860
65 980 980 980 980 930 925 950 945 945
70 1070 1070 1070 1065 1030 1070 1070 1070 1035
75 1140 1140 1140 1140 1120 1110 1080 1085 1090
80 1215 1215 1215 1195 1190 1170 1175 1165 1155
85 1270 1270 1270 1270 1245 1260 1245 1235 1200
90 1340 1340 1340 1320 1320 1305 1295 1295 1295
95 1380 1395 1395 1395 1390 1370 1370 1360 1320
100 1435 1465 1465 1445 1445 1435 1420 1420 1390
105 1510 1520 1520 1495 1505 1495 1485 1470 1445
110 1550 1560 1550 1550 1550 1545 1545 1530 1505
115 1595 1595 1590 1580 1580 1580 1575 1555 1550
120 1635 1635 1625 1625 1625 1610 1600 1595 1575
125 1655 1670 1670 1655 1655 1645 1640 1640 1620
130 1680 1680 1680 1680 1675 1675 1670 1670 1655

Presented results show that the proposed VNS-based DOP
algorithm provides competitive results to the existing EOP
approaches for the turning radius p = 0. Nevertheless in
some test instances for p = 0 the DOP does not provide the
best known results due to the fact that the most rewarded
solutions are in terms of number of different nodes very far
from the previously found result with a slightly lower budget.
However, the proposed algorithm solves the DOP, which is not
possible by existing methods for the EOP. For increasing p, the
collected reward decreases for almost all problem instances.
This indicates that increasing turning radius results in longer
paths, and thus solutions provided by the EOP approaches
would violate the budget constraint for Dubins vehicle. The
computational time to find the maximal achieved rewards and
the number of iterations needed to obtain the solutions of EOP
and DOP using the proposed VNS-based algorithm are shown
in Fig. 3.

Tmax Chao VNS
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Fig. 3. Computational time and number of iterations for the EOP (DOP with
p = 0), on the left, and the DOP with p = 0.7, on the right.
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Fig. 4. A comparison of the proposed DOP algorithm with the subset selection
by the EOP and finding the path as a solution of the DTSP. The same
parameters m = 16 and p = 1.3 are used in both cases. Two strategies are
considered for the EOP+DTSP approach. The results on the left are obtained
for an iterative decrease of the budget for the EOP such that the solution of
the DTSP meets the original travel budget. For the results on the right, the
length of the path obtained by the EOP+DTSP is considered as a new travel
budget in the proposed DOP algorithm.

A further comparison of the proposed direct solution of
the DOP with existing approaches for the EOP is based on
a straightforward combination of solving the EOP and Dubins
Traveling Salesman Problem (DTSP). This naive approach is
based on finding the subset of target locations Si, with the
highest collected reward, by solving the EOP. The sampling-
based solution of the DTSP [9] is then used to find the data
collecting path for the subset Sj with respect to the sampling
of the heading angle m. The results are shown in Fig. 4,
where the plot on the left shows that by using a smaller budget
for the EOP and afterward the found Sj in the DTSP leads
(in most cases) to lower rewards than a direct solution of
the DOP. On the other hand, the right plot in Fig. 4 shows
that in most cases (especially for lower budgets) the rewards
collected by the solution of the DOP is higher. These results
support suitability of the proposed algorithm for the introduced
Dubins Orienteering Problem. Hence, it is not beneficial to
solve the DOP by a separate selection of the target locations,
e.g., by solving the EOP, and consecutive path planning for
the Dubins vehicle. Solving the EOP may provide equally
rewarded paths with multiple different subsets of the target
locations. However, some of the subsets can be connectable
in the consequent DTSP respecting the budget constraint, but
some may not.

The proposed VNS DOP algorithm uses m sampled head-
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Fig. 5. Sums of collected rewards R and computational time for different
heading sample rate m with p = 1.2 .

ing values at each target location. A particular number m
influences the path length and higher number of samples may
almost always produce shorter paths and thus, a high reward
collected for a given travel budget 7,,,4,. An influence of m on
the sum of the collected rewards R and the computational time
on m for the selected problems is shown in Fig. 5. The results
show that R tends to increase until m = 12. This is caused
by the fact that the main objective of the DOP optimization
is the sum of collected rewards R and the path length is not
important as far as it is shorter than 7},,45.
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Fig. 6. Computational time and collected rewards of the proposed VNS-based
DOP algorithm for increasing value of the maximal neighborhood distance
Imag for particular problems.

The proposed VNS-based DOP uses the maximal neighbor-
hood distance [,,4, = 2 but the value can be increased by
concurrently moving l,,,, > 2 target locations in the local
search procedure. Fig. 6 with the computational times and
collected reward for different [,,,, shows that the solution
convergence is slower for increased l,,,, because a single
iteration lasts longer and the randomized RVNS algorithm
does not benefit from the enlarged neighborhood distance.

B. Real experiments

The proposed method has been experimentally evaluated in
the real data collection scenario with a hexarotor UAV. ! The
UAV is requested to visually inspect as many high rewarded
target locations as possible during the length-limited flight.
The considered scenario consists of 20 target locations, where
a particular colored object with marked reward is located. The
objects are placed in the area of approximately 100x50 m
large. Fig. 7 shows the colored target object with the used
hexarotor UAV, originally developed for multi-robot applica-
tions [21]. The considered travel budget is 7},,4, = 150 m for

'We refer to http://mrs.felk.cvut.cz/icral 7dop for more information about
the experiment.
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Fig. 7. Hexarotor UAV during the visual data collection of the colored target
object with displayed reward.

which the UAV has to visit the locations of the objects and
maximize the collected reward.

Although the hexarotor UAV can drive through a path from
the Euclidean OP, in certain cases, it is then required to
decelerate during the sharp turns. Therefore, the hexarotor
UAV modeled as the Dubins vehicle with a smooth path over
the target locations allow using constant speed trajectories.
Moreover, the Dubins model respects the real constraints of the
UAV such as the maximal speed and acceleration. This allows
to the used onboard trajectory controller [22] to precisely
navigate through the trajectory without missing the target
location which can happen for the path produced by solving
the related EOP.

The crucial parameter of the Dubins vehicle is the minimal
turning radius p that is computed from the desired constant ve-
locity v, and the maximal acceleration of the UAV a,,4,. The
equation of circular motion with constant speed p = v2/amax
is used to get the radius, which produces the maximal allowed
acceleration during the circular parts of the path. The constant
velocity v, = 4 m.s”! and the maximal allowed acceleration
@maz = 2.6 m.s? has been used and the considered turning
radius p is p = 6.15 m.

Paths found by the proposed DOP algorithm for the turning
radius p = 0 and p = 6.15 m are shown in Fig. 8. A solution
is found within a second using the same parameters as in
Section V-A. The particular rewards of the found solutions are
R =171 and R = 65, for p = 0 and p = 6.15 m respectively,
with total path lenghts of 149.0 m and 148.4 m. Although
the solution for p = 0 provides a higher reward, the path is
not feasible for the constant speed motion, and the onboard
controller has to violate the planned path. This causes cutting
of sharp turns to fulfill the schedule of the plan as it is shown
for the “EOP path traveled by UAV” curve in Fig. 8.
On the other hand, a solution of the DOP with R = 65 respects
the maximal acceleration with the desired constant speed of the
vehicle and all target objects have been successfully captured.

VI. CONCLUSIONS

This paper introduces a generalization of the Orienteering
Problem to the Dubins vehicle that is called the Dubins
Orienteering Problem (DOP). We propose a novel Variable
Neighborhood Search (VNS) based method for solving this
challenging problem. A sampling based approach is used
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to search for an appropriate sequence of heading angles at
the target locations. The presented results indicate that for
zero turning radius, the proposed DOP solver is competitive
to existing methods for the Euclidean OP. Results for non-
zero turning radius show that the collected reward decreases
with the increasing radius. Moreover, the presented results
demonstrate that a solution of the DOP as a combination of
the Euclidean OP and consecutive Dubins Traveling Salesman
Problem is not plausible. We also show that the sampling
based approach to heading angles is viable as the prime
objective of the DOP is to maximize the collected reward
and a higher number of samples does not necessarily increase
the quality of solution (the collected reward). Finally, results
from the real deployment of the proposed approach further
demonstrate a necessity of the proposed direct solution of the
Dubins Orienteering Problem. For future work, we intend to
investigate the OP for other more complex maneuvers such
as splines, and to extend the DOP for possible data collection
within proximity of the target locations.
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Chapter 4

Data Collection Planning with Non-zero Sensing Dis-
tance for a Budget and Curvature Constrained Un-
manned Aerial Vehicle

This chapter presents the second core publication with VNS-based method for the
Dubins Orienteering Problem with Neighborhoods (DOPN) published in the Autonomous
Robots journal.

2¢] R. Pénicka, J. Faigl, M. Saska, and P. Véna, “Data collection planning with non-
zero sensing distance for a budget and curvature constrained unmanned aerial
vehicle,” Autonomous Robots, vol. 43, no. 8, pp. 1937 —1956, 2019

The manuscript introduces an extended version of a solution approach for the DOPN
initially proposed in a conference paper . The DOPN is a generalization of the DOP where
each target location has a disk-shaped neighborhood , where the data can be collected
without visiting a precise position of the targets. The generalization can be motivated by,
e.g., data collection from Wireless Sensor Network where the measured data can be retrieved
from the sensors placed in the environment by the UAV using wireless communication [29].
Another motivation scenario is data collection with UAV equipped with a long-range sensor,
e.g., a wide field-of-view camera that does not require to visit the target locations precisely
and thus can save the travel cost, which in turn allows to increase the amount of collected
data.

In the conference paper , the initial solution of the DOPN is proposed by a straight-
forward extension of the VNS for the DOP. The considered circular neighborhoods are equidis-
tantly sampled on their border, and the DOPN is solved similarly to the DOP in with
both heading and neighborhood statically sampled. In the related core publication , the
continuous optimization of finding positions within the neighborhoods and vehicle heading
angles is significantly improved. The proposed VNS-based method uses the same shaking and
local search procedures as for the DOP in ; however, it uses a low-dense initial equidistant
sampling. Additionally, new VNS operators are proposed to perform local continuous opti-
mization of both the heading angle and neighborhood position samples to shorten the current
solution. The continuous optimization operators are based on the LIO technique. The
Waypoint Shake operator performed in the shaking procedure randomizes the heading angles
and neighborhood positions, while in the local search, the Waypoint Improvement operator
performs the LIO. Such optimized heading and neighborhood samples are iteratively added
to the initially low-dense graph of samples, which is then used by the combinatorial VNS
operators.

The computational results on existing datasets show significant improvement of the
solution quality compared to the static high-dense sampling of the neighborhood and head-
ing angles in . Furthermore, the computational time required to achieve a certain solu-
tion quality is decreased when the continuous optimization operators are used. The proposed
method is also shown to produce better solutions for tested instances than the SOM-based
approach . Finally, the proposed method is experimentally verified in a visual data col-
lection scenario. A real hexarotor UAV with a high-resolution wide field of view camera was
employed in an outdoor environment to visually inspect targets in predefined positions.

The contribution of the author of this thesis on the manuscript is 65 %, with co-authors
giving feedback to improve the method and the manuscript.



CHAPTER 4. DATA COLLECTION PLANNING FOR DISTANCE AND CURVATURE

CONSTRAINED UAV

This is a post-peer-review, pre-copyedit version of an article published in Autonomous Robots.
The final authenticated version is available online at: http://dx.doi.org/10.1007/s10514-019-09844-5

Data Collection Planning with Non-zero Sensing Distance for a
Budget and Curvature Constrained Unmanned Aerial Vehicle

Robert Pénicka - Jan Faigl - Martin Saska - Petr Vana

Received: 24 June 2018 / Accepted: 15 February 2019

Abstract Data collection missions are one of the
many effective use cases of Unmanned Aerial Vehi-
cles (UAVSs), where the UAV is required to visit a pre-
defined set of target locations to retrieve data. How-
ever, the flight time of a real UAV is time constrained,
and therefore only a limited number of target locations
can typically be visited within the mission. In this pa-
per, we address the data collection planning problem
called the Dubins Orienteering Problem with Neigh-
borhoods (DOPN), which sets out to determine the se-
quence of visits to the most rewarding subset of tar-
get locations, each with an associated reward, within
a given travel budget. The objective of the DOPN is
thus to maximize the sum of the rewards collected from
the visited target locations using a budget constrained
path between predefined starting and ending locations.
The variant of the Orienteering Problem (OP) ad-
dressed here uses curvature-constrained Dubins vehi-
cle model for planning the data collection missions for
UAV. Moreover, in the DOPN, it is also assumed that
the data, and thus the reward, may be collected from a
close neighborhood sensing distance around the target
locations, e.g., taking a snapshot by an onboard cam-
era with a wide field of view, or using a sensor with
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a long range. We propose a novel approach based on
the Variable Neighborhood Search (VNS) metaheuris-
tic for the DOPN, in which combinatorial optimization
of the sequence for visiting the target locations is simul-
taneously addressed with continuous optimization for
finding Dubins vehicle waypoints inside the neighbor-
hoods of the visited targets. The proposed VNS-based
DOPN algorithm is evaluated in numerous benchmark
instances, and the results show that it significantly out-
performs the existing methods in both solution quality
and computational time. The practical deployability of
the proposed approach is experimentally verified in a
data collection scenario with a real hexarotor UAV.

Keywords Unmanned Aerial Vehicles - Non-
holonomic Motion Planning - Data Collection
Planning - Orienteering Problem

1 INTRODUCTION

Unmanned Aerial Vehicles (UAV) are effective systems
for long-range data collection (Ergezer and Leblebi-
cioglu 2014) or for information gathering scenar-
ios (Nguyen et al. 2016), where a UAV has to gather
data from specified locations in the environment. Such
a scenario consists of a UAV equipped with an onboard
sensor that is required to reach particular target lo-
cations and measure or collect the desired data. For
example, in a Wireless Sensor Network (WSN), the
sensors are placed in the environment, and the UAV
can be used for retrieving the measured data from the
sensor units by wireless communication with a limited
range (Jawhar et al. 2014; Wang et al. 2015). Hence, the
objective of data collection planning can be to minimize
the required time to retrieve the requested data (i.e., to
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minimize the length of the data collection path) or/and
to maximize the information collected by a single path.

Data collection planning can be formulated
as a variant of the Traveling Salesman Prob-
lem (TSP) (Oberlin et al. 2010), where a path visit-
ing all the given locations with minimal length is to
be found. However, the required visits to all locations
may not be possible with the budget limitation of a real
vehicle (limited flight time).

Nowadays, the typical flight time of a small UAV
is limited to tens of minutes, and the time is further
decreased if the UAV is equipped with an additional
payload, e.g., onboard sensors. Therefore, the Orien-
teering Problem (OP) (Tsiligirides 1984) formulation
seems to be more suitable for data collection planning
with a limited travel budget. Rather than minimizing
the path length as in the TSP, the OP set out to find a
path maximizing the sum of the rewards collected from
a selected subset of target locations that can be reached
using the given travel budget.

In this work, we consider that the data collect-
ing vehicle with a budget constraint has to follow a
curvature-constrained path, and thus we model the
UAV as Dubins vehicle (Dubins 1957). Dubins vehicle
can be used for modeling car-like robots (Tokekar et al.
2014), fixed-wing aerial vehicles (Lugo-Céardenas et al.
2014) or Vertical Take-Off and Landing (VTOL) multi-
rotor UAVs traversing the planned path at a constant
speed (Pénicka et al. 2017a).

For Dubins vehicle, the TSP becomes the Du-
bins Traveling Salesman Problem (DTSP) (Savla et al.
2005), where it is required to find not only the optimal
sequence for the visits to all target locations, but also
optimal heading angles of the vehicle at the locations, as
they greatly influence the final path length. Since each
heading angle can be arbitrarily selected from 0 to 2,
the problem becomes computationally demanding due
to the required non-linear continuous optimization of
the additional dimension of the heading angles.

For a limited travel budget and Dubins vehicle, the
OP becomes the Dubins Orienteering Problem (DOP),
which was introduced and solved by a Variable Neigh-
borhood Search (VNS) based approach in (Pénicka
et al. 2017a). In the DOP, it is required to search
over all possible heading angles at the target locations
to find the most rewarding curvature-constrained path
within the limited budget. Note that both the OP and
the DOP are NP-hard similarly to the TSP and the
DTSP (Le Ny et al. 2007).

In data collection planning, the solution quality,
i.e., the path length in the (D)TSP or the sum of the
rewards collected in the (D)OP, can be increased by
introducing a non-zero sensing distance in which the

Fig. 1: A snapshot of the workspace for experimental
verification of the proposed Dubins Orienteering Prob-
lem with Neighborhoods taken by a UAV flying 100
m above the ground. The solution of the DOPN used
in the real experiment with a hexarotor UAV is calcu-
lated using the proposed Variable Neighborhood Search
method with target neighborhood radius § = 4m and
budget constraint T;,q,; = 150 m.

data can be collected from the particular target lo-
cations. An extension of the DTSP for the non-zero
sensing distance is called the Dubins Traveling Sales-
man Problem with Neighborhoods (DTSPN) (Ober-
meyer 2009; Isaacs et al. 2011; Véia and Faigl 2015). In
this paper, we consider a similar extension of the DOP
to the Dubins Orienteering Problem with Neighbor-
hoods (DOPN), initially introduced in (Pénicka et al.
2017b). Although exploiting the neighborhood in most
cases increases the quality of the solutions (regard-
ing the collected rewards), solving the DOPN is more
challenging due to the additional determination of the
most suitable waypoint locations to retrieve the re-
wards within the neighborhood of target locations. The
DOPN thus includes both a combinatorial part and a
continuous optimization part. Determining the subset
of target locations and determining the sequence for vis-
iting them are the combinatorial parts of the DOPN.
The continuous optimization part involves determin-
ing the waypoint locations within the neighborhood
of the target locations and the determining the way-
point heading angles of Dubins vehicle at the selected
waypoint locations. An illustration of the DOPN solu-
tion from the experimental verification of the proposed
method with a hexarotor UAV is shown in Fig. 1.

The novel method for the DOPN is based on
the Variable Neighborhood Search (VNS) metaheuris-
tic (Mladenovié¢ and Hansen 1997). It consists of both
combinatorial and continuous optimization operators to
solve the DOPN. Initially, low-density equidistant sam-
pling of both the waypoint heading angles and the way-
point locations within the neighborhoods is considered,
in order to create waypoint graph for the combinato-
rial optimization to maximize the sum of the collected
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rewards. The particular waypoint samples of the solu-
tions for a given sequence of visited target locations
are selected such that the path length is minimized.
An initial greedy solution is then found by adding tar-
get locations that maximize the reward per tour pro-
longation, while the maximally allowed budget is still
fulfilled. The VNS method afterward uses a set of neigh-
borhood operators to randomly change and locally im-
prove the best found solution. The proposed VNS con-
sists of the combinatorial optimization operators ex-
tended from the VNS-based solution to the original OP
in (Sevkli and Sevilgen 2006) and also utilized for solv-
ing the DOP in (Pénicka et al. 2017a). However, the
herein VNS-based DOPN solver contains novel continu-
ous optimization operators to minimize the path length
over the selected sequence of target locations by opti-
mizing both the heading angles and the waypoint loca-
tions within the neighborhoods of the target locations.
The proposed operators shorten the solution found on
the low-density sampled waypoint graph, and update
the locally optimized values to the graph for combi-
natorial optimization. The path length is optimized to
allow addition of previously unvisited target locations
while satisfying the budget constraint.

A preliminary version of this work appears
in (Pénicka et al. 2017b), where the DOPN is ad-
dressed by a purely sampling-based approach. This
paper is considered to make the following contribu-
tions. The method introduced here significantly im-
proves the solution quality and decreases the over-
all required computational time, which allows onboard
online planning and anytime behavior. The proposed
method combines combinatorial optimization and con-
tinuous optimization in a single VNS-based framework,
which outperforms the previous purely combinatorial
sampling-based solution (Pénicka et al. 2017b) and also
the competitive Self-Organizing Map (SOM) based so-
lution (Faigl and Péni¢ka 2017). The initial low-density
waypoint sampling allows us to obtain high quality ini-
tial solutions (= 90% of the best-known rewards) within
a few seconds, and due to the continuous optimization
of the waypoints, the solution quality is improved above
the so far best-known solutions created by dense way-
point sampling with required initialization in tens of
minutes. The performance and quality improvements
are mainly caused by the proposed tight coupling be-
tween combinatorial optimizations and continuous opti-
mization in a single algorithm, which is also considered
as one of the main contributions of our work. Further-
more, the designed VNS-based algorithm minimizes the
path length in addition to the main OP objective of
maximizing the sum of the collected rewards, which can
be useful when all target locations can be feasibly col-

lected within the defined budget. Last but not least, the
experimental verification in the data collection scenario
demonstrates the practical usefulness of the addressed
problem and the proposed method.

The remainder of this paper is organized as follows.
An overview of related work is presented in the next
section. A formal definition of the DOPN is introduced
in Section 3, and the novel VNS-based approach is pro-
posed in Section 4. Section 5 shows the computational
results and the experimental verification in a real data
collection scenario. The conclusion and future work are
outlined in Section 6.

2 Related Work

The Dubins Orienteering Problem with Neighborhoods
belongs to a wider class of orienteering problems (Gu-
nawan et al. 2016), where the objective is to find a lim-
ited length path between a starting location and an end-
ing location which maximizes the sum of the rewards
collected from a subset of the specified target locations.
Therefore, this section presents an overview of existing
approaches for the Orienteering Problem and relevant
variants for UAVs. The DOPN is also related to the
Traveling Salesman Problem (TSP) and its variants in-
volving Dubins vehicle and neighborhoods; therefore a
brief overview of relevant solutions of the TSP is pro-
vided in this section.

The Euclidean version of the OP, further denoted
as the EOP, was introduced by Tsiligirides (Tsiligiri-
des 1984) in 1984, together with the deterministic D-
algorithm and stochastic S-algorithm approaches for
the EOP. The S-algorithm is based on the Monte-
Carlo method, which creates multiple feasible paths
and selects the best solution according to the reward.
The D-algorithm is based on the method for the ve-
hicle routing problem (Wren and Holliday 1972). Fur-
thermore, Tsiligirides created three OP benchmark in-
stances (Vansteenwegen 2018), further denoted as Set 1,
Set 2 and Set 3, with up to 33 target locations.

Since the first deterministic and stochastic algo-
rithms for the OP, a large number of solutions for
the EOP and other variants of the OP have been pro-
posed (Vansteenwegen et al. 2011; Gunawan et al. 2016)
with results that outperform the first solutions. The OP
can be solved optimally using the Branch and Bound
algorithm (Ramesh et al. 1992) or by the Branch and
Cut (Fischetti et al. 1998) algorithm; however, the op-
timal solution of the EOP requires significant computa-
tional resources, and the solutions are provided in sev-
eral minutes or hours for instances with tens of target
locations.
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For the Dubins Orienteering Problem or its variant
with neighborhoods, additional waypoint sampling is
required for each target location. Hence it is optimally
solvable only for a given, rather low, sampling den-
sity with reasonable computational resources. There-
fore, numerous heuristic solutions for the EOP, such as
the approaches in (Ramesh and Brown 1991; Chao et al.
1996a; Schilde et al. 2009; Sevkli and Sevilgen 2006),
have been proposed, with results that can achieve a so-
lution close to the optimal one within a fraction of the
computational time required for the optimal solution.
The Fast and Effective heuristic for the EOP by Chao
et al. (Chao et al. 1996a) considers only target locations
reachable within the prescribed budget (i.e., target lo-
cations inside the respective ellipse around the pre-
scribed starting and ending locations). This reduces the
number of target locations in solutions with low bud-
gets. The heuristic by Chao et al. uses a set of operators
consisting of two-point exchange and one-point move-
ment together with the 2-Opt operation to find high-
quality EOP solutions. Furthermore, two symmetrical
benchmark sets were created in (Chao et al. 1996a), the
diamond shaped Set 64 and the square shaped Set 66
with up to 66 target locations.

The OP has also been proposed for path and data
collection planning for UAVs. A variant of the OP,
called the Correlated Orienteering Problem (COP) (Yu
et al. 2016), introduced for persistent monitoring and
data collection tasks with UAVs, proposed a variant of
the OP where the rewards of target locations are corre-
lated on the basis of their mutual distances. The COP is
motivated by the correlation in sensory measurements
of neighboring target locations, and its solution can
be found optimally using mixed integer quadratic pro-
gramming for a small number of target locations. A ver-
sion of the COP involving Dubins vehicle has been pro-
posed recently by Tsiogkas and Lane (2018).

Thakur et al. (2013) proposed a variant of the Team
Orienteering Problem (TOP) (the multi-vehicle variant
of the OP proposed by Chao et al. (1996b)) for Dubins
vehicle in environments with obstacles. However, the
definition of the problem proposed in (Thakur et al.
2013) consists of a given set of waypoints for Dubins
vehicle and does not consider an arbitrary heading an-
gle at the target locations or the non-zero sensing dis-
tance, as in the DOPN. An optimal multilevel graph
search technique is proposed for optimizing the TOP
on a given set of Dubins vehicle waypoints for up to
15 target locations. The multi-robot variant of the OP
is also proposed in (Jorgensen et al. 2018) for so-called
Team Surviving Orienteers (TSO), where the budget
is replaced by the constraining probabilities that each
robot survives to its destination.

The proposed DOPN method is based on the Vari-
able Neighborhood Search (VNS) (Mladenovi¢ and
Hansen 1997) metaheuristic by Hansen and Mladen-
ovi¢ for combinatorial optimization applicable to nu-
merous problems (Hansen and Mladenovi¢ 2001). The
VNS employs predefined neighborhood operators used
for iterative improvement of the initial solution inside
the shaking and local search procedures. The first VNS-
based approach to the EOP (Sevkli and Sevilgen 2006)
uses neighborhood structures that motivate the com-
binatorial optimization part of the proposed solution
of the DOPN. The VNS-based method for the EOP
randomly changes the current best solution by either
path move operator or path exchange operator in the
shaking procedure to get from the possible local maxi-
mum. Then, the method tries to improve the randomly
changed path by multiple one point moves or exchanges
in the local search procedure in order to find a more re-
warded path than the incumbent solution.

In our previous work (Pénicka et al. 2017a), the
DOP was introduced together with the VNS-based
method to solve it. The method uses similar neighbor-
hood structures as the VNS method for the EOP (Sevkli
and Sevilgen 2006). However, to tackle the continu-
ous optimization problem of finding a suitable path
for curvature-constrained Dubins vehicle, equidistant
sampling of the heading angle at the target locations
was proposed. The VNS-based method then searches
for the most rewarding path, together with the appro-
priate sequence of sampled heading angles to fit the
path length within the budget constraint. The DOPN
and its heuristic VNS-based solution was introduced
in (Pénicka et al. 2017b) with a straightforward exten-
sion of the pure sampling-based approach by additional
sampling of visit positions in the circular neighborhood
of each target location. In this paper, the solution of the
DOPN is further improved by a combination of com-
binatorial optimization of the DOPN with continuous
optimization of the waypoint samples in a single VNS-
based algorithm. Furthermore, the deployment of the
proposed method is shown in an experimental verifica-
tion with a hexarotor UAV.

The first approach addressing the generalization
of the OP to the Euclidean variant of the Orienteer-
ing Problem with Neighborhoods (OPN) was proposed
in (Best et al. 2016), and was further improved in (Faigl
et al. 2016). The multi-robot variant of the OPN for
active perception has been studied in (Best et al.
2018). The approach is based on unsupervised learn-
ing of the Self-Organizing Map (SOM) for the Prize-
Collecting Traveling Salesman Problem with Neighbor-
hoods (PC-TSPN) (Faigl and Hollinger 2014), i.e., a
variant of the TSP that combines maximization of the
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rewards (prizes) and minimization of the path length.
The approach has been further extended to variants
with multiple vehicles in the OP (Faigl 2017) and also
multi-vehicle PC-TSPN (Faigl and Hollinger 2018). The
SOM has also been applied to the DTSP and DT-
SPN in (Faigl and Vana 2017). Recently, the SOM-
based approach has been adopted for solving the Close
Enough Dubins Orienteering Problem (CEDOP) (Faigl
and Pénicka 2017), which is the DOPN with name
emphasized usage of disk-shaped neighborhoods. The
VNS-based solution of the DOPN proposed here signif-
icantly outperforms the SOM-based approach for CE-
DOP, both in the maximal achievable solution quality
and also regarding computational time.

The proposed DOPN is also related to existing ap-
proaches to the DTSP (Cohen et al. 2017) and the
DTSPN (Vana and Faigl 2015). The most relevant
approaches are sampling-based variants of the DTSP,
where the heading angles at the target locations are
sampled, and the problem is transformed to the Asym-
metric TSP (ATSP) (Noon and Bean 1993), which
can be solved optimally for the specified sampling. A
similar approach can be used for the DTSPN (Ober-
meyer et al. 2010), where both the heading angles and
the positions within the neighborhood are sampled.
The problem is then transformed into the Generalized
TSP (GTSP) and further to the ATSP, which can be
solved, e.g., by the LKH solver (Helsgaun 2000). The so-
lutions of sampling based methods, however, can be fur-
ther improved by employing the Dubins Touring Prob-
lem (DTP) (Faigl et al. 2017), which sets out to find the
optimal heading angles of Dubins vehicle for a given
sequence of target locations in order to minimize the
path length in the DTSP. For the DTSPN, the DTP
can be further extended to the Dubins Touring Regions
Problem (DTRP), recently addressed as the General-
ized Dubins Interval Problem (Véiia and Faigl 2018),
where both the heading angles of Dubins vehicle and the
visit position inside the neighborhoods of target loca-
tions are optimized for a given sequence of target loca-
tions. The proposed VNS-based solution of the DOPN
uses the adopted version of the Local Iterative Opti-
mization (LIO) procedure (Véna and Faigl 2015) (orig-
inally designed for the DTRP) in continuous optimiza-
tion VNS operators. It iteratively optimizes individual
heading angles and neighborhood positions at each tar-
get location to minimize the required path length. The
related DTSPN and its DTRP subproblem, however,
does not contain subset selection with maximization of
the collected rewards, and the budget constraint, as in
the DOPN, which is formally introduced in the next
section.

3 Problem Statement

In this section, we formally define the DOPN. The
problem studied here consists of two main optimization
parts. The first part is the combinatorial optimization
part of the OP, which sets out to maximize the sum of
the collected rewards by selecting a subset of the tar-
get locations such that the path length visiting them is
within the specified travel budget. The second part is
the continuous optimization of the DTRP which, for a
given sequence of target locations themselves, sets out
to find appropriate waypoint heading angles of Dubins
vehicle and also the waypoint locations themselves in
the neighborhoods of the selected target locations. Both
parts have to be addressed at the same time, as the
OP subset selection influences the continuous DTRP
optimization, which on the other hand influences the
path length constrained by the combinatorial OP. The
addressed DOPN is therefore incrementally formulated
from the OP and the DTRP in the following subsec-
tions.

3.1 Orienteering Problem (OP)

The OP assumes a given set of target locations to
be visited S = {s1, -+, sn}, where each target loca-
tion s; = (t;,r;) consists of its position in the plane
t; € R? and the associated reward r;. The reward of
all target locations is expected to be strictly positive
r; € Rsg, with the exception of the predefined starting
location s; and ending location s,, with zero rewards
ry = r, = 0. Furthermore, the problem is constrained
by the given maximal allowed travel budget Ti,qz, i-€.,
the path length of the vehicle is limited by this value.

The objective of the OP is to maximize the sum of
the collected rewards R = Zne s, Ti by selecting a sub-
set of k target locations S C S. However, the length
of the tour to visit all the locations of subset Sy, is con-
strained by Tqz, and therefore, the path length has to
be taken into account during the selection of Si. The
path can be described as a sequence of target location
indexes X, in which the path visits the selected target
locations Xy, = (o1, ,01), with 1 < 0; < n, 0; # 0
for i # j, 85, € Sk where h € (1,...,k) and 01 = 1,
o = n. Using the predefined starting and ending loca-
tions in the permutation (o7 = 1, o, = n), the solution
of the OP is determined by searching over all possible
values of k, Sk, and Y. In the ordinary OP (Gunawan
et al. 2016), the Euclidean distance L.(so,,so,) is used
as the travel cost between two target locations s,, and
S5, Having these preliminaries, the OP can be formu-
lated as the optimization problem:
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Problem 1 (Orienteering Problem (OP))

k
maximizey g, », R = g To,
i=1

subject to

k
Z ‘Ce(tmf1 ) to’,-,) < Tmaz
=2

oy, =10r=n.

3.2 Dubins Touring Regions Problem (DTRP)

In the DTRP, Dubins vehicle model is utilized to plan
a curvature-constrained data collection path. Dubins
(1957) showed that the shortest path between two con-
figurations of Dubins vehicle can be found by a closed-
form expression, and the path is one of six possible
maneuvers of CSC or CCC type, where ‘C’ stands for
turning right or left and ‘S’ means going straight. A
configuration of Dubins vehicle ¢ = (p, )T = (z,y,0)T
can be described by its position p = (x,y) in the plane,
i.e., p € R? and the vehicle heading angle 6, 6 € S!.
The kinematic model of Dubins vehicle shown in (2)
uses a constant forward velocity v. and a control input
u, which steers the vehicle. The minimal turning radius
p of Dubins vehicle is assumed to be constant.

T T cos 0
q:{p.}: g | = v [sind | uel[-1,1] (2)
0 f w
P

In multi-goal path planning with curvature-
constrained Dubins vehicle formulated as the DTSP or
the DOP and their variants with neighborhoods, the
important issue of the continuity of heading angles has
to be solved. The analytical solution of optimal Dubins
maneuvers (Dubins 1957) provides the shortest path
between two target locations with known heading an-
gles. However, the heading angles have to be appro-
priately found to connect multiple Dubins maneuvers
into a path of minimal length over multiple target loca-
tions with a priori unknown heading angles. For a given
sequence of waypoint locations, the problem of deter-
mining the optimal heading values is called the Dubins
Touring Problem (DTP) (Faigl et al. 2017). For the
purposes of the OP, we can consider a variant of the
DTP in which the target locations in S}, are visited in
the sequence defined by X = (o1, -+, o) with speci-
fied starting and ending locations o7 = 1 and o} = n,
respectively. The problem is then to find a vector of the
waypoint heading angles Oy, = (6,,,- - ,0,,) that con-
nects Dubins maneuvers at the target locations. The
solution of the DTP minimizes the sum of the length

of Dubins maneuvers, where L4(¢s;,¢s;) denotes the
length of the shortest Dubins maneuver (Dubins 1957)
between configurations ¢,, and ¢o, .

The DTRP additionally requires to find the way-
point locations within a disk-shaped neighborhood of
each target location. The non-zero sensing distance in
the DTRP is denoted as the neighborhood radius §
defining a J-radius disk centered at the respective tar-
get location. The same neighborhood radius is used
for all the target locations in the given sequence X,
with the exception of the starting s; and ending sy lo-
cations, which are assumed to have a zero neighbor-
hood radius due to the vehicle taking off and land-
ing at these locations. The DTRP extends the DTP
to a variant where an additional vector of the waypoint
locations Py, = (psy,- - ;Do) has to be found. Each
Do, € R? defines the location within the § neighbor-
hood of the target location s,, = (ts,,75,) € Sk such
that ||ps;,te; || < 6 for i € (2,k — 1) and ||ps,,ts]| =0
for i = 1, k. The DTRP sets out to minimize the length
L(Ok, Py) of the Dubins tour over the given sequence
of targets X, by optimizing both the vector of the way-
point heading angles @}, and the vector of the waypoint
locations Py that are inside the neighborhoods of the

particular selected targets. This type of continuous op-
timization problem is complex, as any change of, e.g.,
heading angle 0, at a single target location, influences
not only the optimal location p,, of the same waypoint,
but also other adjacent waypoint heading angles and lo-
cations. The same applies to changes in the waypoint
locations P,.. The DTRP can be summarized as the fol-
lowing optimization problem.

Problem 2 (Dubins Touring Regions Problem
(DTRP))

n

minimizee, p, L(Ok, P) = La(do,_+0o,)
i=2
subject to
Goi = Poi+00,)s Doy € Pr, 05, € O, i € (LK), (3)
[Poisto | <6, i€ (2,k—1),
P> torll =0, [[Poy s tor | = 0,
or=1,0=n.

3.3 Dubins Orienteering Problem with Neighborhoods

The DOPN combines combinatorial OP reward maxi-
mization with continuous path length minimization of
the DTRP. However, both optimization problems com-
bined in the DOPN have to be addressed simultane-
ously, due to their mutual influence. The DOPN can
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be therefore expressed in a single optimization formu-
lation:

Problem 3 (Dubins Orienteering Problem with
Neighborhoods (DOPN))

k
maximizey s, p,., 5,0, B = Zrm
i=1
subject to
k
Z ['d(%lf1 ) qtn) < Thaz » (4)
i=2

qg1 = (p01700'1)’ po’z e Pk;, 001 E @kh 7' E (17k) b)
IPo to | <0, i€ (2,k—=1),

Py, torll = 05 [IPoy tor | =0,
or=1,0,=n.

4 Proposed Approach for the DOPN

The proposed approach for the DOPN is a novel vari-
ant of the Variable Neighborhood Search (VNS) meta-
heuristic, which combines combinatorial optimization
and continuous optimization. The preliminary VNS-
based method for the DOPN proposed in (Pénicka et al.
2017b) is purely sampling-based combinatorial opti-
mization, which requires significantly longer computa-
tional times and achieves lower quality solutions. In this
paper, we propose the VNS-based method, which ad-
ditionally contains continuous optimization to improve
the solution quality and to reduce the computational
burden. The method proposed here uses low-density ini-
tial sampling for solving the DTRP subproblem (sam-
pling the waypoint heading angles and the waypoint
locations); however, it also employs continuous opti-
mization of the waypoints. This kind of waypoint opti-
mization can shorten the actual tour to cover the same
subset of target locations, and thus it potentially al-
lows visits to additional as yet unvisited target loca-
tions, without violating the travel budget constraint.
Optimized waypoints that shorten the actual path are
therefore added to the initial sampled waypoints to be
used further for OP optimization.

The proposed method for the DOPN is based on
the VNS metaheuristic (Mladenovi¢ and Hansen 1997),
which has been introduced for combinatorial optimiza-
tion in various problems (Hansen and Mladenovié¢ 2001)
and its principles are also applicable for continuous op-
timization (Mladenovié et al. 2008). VNS uses shake
and local search procedures to iteratively improve the
best achieved incumbent solution. Both procedures use
the [,,q4: predefined operators in the context of the
VNS described as neighborhood structures N;,I =

1,..., ez, where, in each VNS iteration, the neigh-
borhood N is gradually increased when no better solu-
tion is found. The shake procedure uses the incumbent
solution and randomly changes it using one of its oper-
ators to get from possible local optima. The randomly
changed incumbent solution is then used by the local
search procedure in an attempt to increase the quality
of the solution above the incumbent solution.

The VNS-based algorithm for the DOPN uses
equidistant initial sampling of the waypoints in the J-
radius neighborhood disk centered at the respective tar-
get locations s,, € S. Each waypoint consists of the
waypoint location p,, on the circumference of the neigh-
borhood circle and also the heading angle of Dubins ve-
hicle 6,, at the waypoint location. The initial sampling
uses o equidistantly placed waypoint locations along the
circumference of the d-radius circle. Each such waypoint
location is described throughout the VNS-based algo-
rithm by its directional angle (0,27) from the respec-
tive target location. This allows the waypoint location
to be described by only one parameter and, like the
description by two parameters (z,y), does not restrict
solutions of the DOPN. Zero neighborhood radius is
used for both the starting locations and the ending lo-
cation specified by the DOPN, as the exact start and
end position of the vehicle is considered, and therefore
the o = 1 location sample is used. The heading an-
gle is similarly sampled into m values from the inter-
val (0, 2m) for each of the o waypoint location samples.
The sampling approach requires (o - m) samples per
target location, which is sufficient for the initial solu-
tion of the DOPN (Pénicka et al. 2017b). However, a
high sampling rate, which is needed for finding high-
quality solutions, is very computationally demanding,
and most of the waypoint samples are never used in the
improvements to the solution. Therefore, we propose
to use low-density sampling of the waypoints from the
initialization, together with the online addition of the
optimized waypoints, which shorten the current paths,
to the set of initial waypoint samples. DOPN paths are
then created on the optimized waypoint samples where
the appropriate waypoints, i.e., vectors O and Py, are
selected for the target sequence X using the shortest
path in the graph of samples between the starting and
ending target locations.

The neighborhood operators used for combinatorial
optimization inside the VNS algorithm for the DOPN,
namely Path Move, Path Exchange, One Point
Move, and One Point Exchange, were introduced
for the Euclidean OP in (Sevkli and Sevilgen 2006). The
modified version of the same operators was also used in
the initial solution of the purely sampling-based DOPN
in (Pénicka et al. 2017b). The novel VNS shake proce-
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dure for the DOPN consists of the following | = 1,...,3
neighborhood operators: Path Move and Path Ex-
change, which are further described in detail in Sec-
tion 4.1, and Waypoint Shake, which is described in
Section 4.3. The particular ! for the individual opera-
tors of the shake procedure are:

— Waypoint Shake (I = 1);
— Path Move (I = 2);
— Path Exchange (I = 3).

The local search procedure consists of three operators,
One Point Move and One Point Exchange, which
are discussed in Section 4.2, and Waypoint Improve-
ment, which is described in Section 4.3. The particular
[ for the individual operators of the local search proce-
dure are:

— Waypoint Improvement (I = 1);
— One Point Move (I = 2);
— One Point Exchange (I = 3).

The proposed continuous optimization of the way-
points is performed by a combination of the Waypoint
Shake operator in the shake procedure and the Way-
point Improvement operator in the local search proce-
dure. The operators randomly change the waypoint of
the current solution of the DOPN, and then improve the
waypoints by iterative usage of local improvements. The
continuous optimization operators (I = 1) are priori-
tized in order to shorten any newly found solution (see
Algorithm 1) and thus to allow the combinatorial oper-
ators (I = 2,3) to add previously unvisited target loca-
tions within the same budget. Local optimization of the
waypoint is also performed during the local search One
Point Move and One Point Exchange operators, when
a new unvisited target location is added to the path.
The improvement ratio cm, defines the minimal col-
lected reward Rjpp = QimpRinit when the newly-added
target location is optimized for its waypoint samples.
Value R;,;; denotes the sum of the rewards collected
by the initial greedy solution of the DOPN. This im-
mediate shrinking of the path allows more unvisited
target locations to be added within the same travel
budget, and at the same time, improvement ratio v,
ensures that only waypoints of promising paths are im-
proved. Ratio oy, thus represents a tradeoff between
exploration and exploitation. While low i,y attempts
waypoint improvement for all new target location ad-
ditions made by the local search, a high value of
(up to the point where @y Rinit is equal to the cur-
rent maximal reward) tends to exploit (improve) only
the best found solution. Having high o, can thus lead
to an even better solution being missed by not continu-
ously optimizing the waypoints of promising solutions.

On the other hand, optimizing the waypoints of low-
quality solutions is more computationally demanding,
mainly due to the large number of additional waypoint
samples that are never used in further solutions. The
influence of ratio ;y,, is shown in Section 5.1.

The internal representation of the DOPN solution
in the designed VNS-based method consists of the vec-
tor ¥ = (Soy,-++s8a4_13S04k41s- -+ 150, ), Where the first
k — 2 elements are the selected target locations of set
Sk, together with the starting s,, = s; and ending
Se,, = Sp, target locations ordered according to Xj. The
rest of the vector elements are the unvisited target lo-
cations (sq,,,,...,50,). Any solution of the DOPN is
describable only by v on existing waypoint samples, as
the appropriate waypoints O, and Py at the target lo-
cations are selected from the samples waypoint graph
in such a way that the path over Y is minimal. Dur-
ing combinatorial optimization by the operators Path
Move, Path Exchange, One Point Move, and One Point
Exchange, the whole solution vector v is used, such that
the same operators can change the order of the visited
target locations, and new unvisited targets can also be
introduced to the solution path.

The proposed VNS-based method for the DOPN is
summarized in Algorithm 1. The method starts with
the getReachableLocations procedure, which filters out
all target locations unreachable within the budget to
reduce the number of target locations considered to be
visited by the travel budget T,,... The reachable set
of target locations S, then contains s; € S, such that
Le(s1,8:) + Le(8i,81) — 20 < Tipaz. Note that the Eu-
clidean distance with subtracted neighborhood radius is
used as the lower bound on the required distance to the
target location. This can add some unreachable target
locations for Dubins vehicle; however, it does not re-
quire to determine the waypoint location and the head-
ing angle that visits the neighborhood of the target lo-
cation.

Using the set of reachable target locations S,., the
initial solution is created by a method denoted as cre-
atelnitialPath. This method greedily adds target loca-
tions into the initial path between the starting location
and the ending location with respect to the additional
reward per length increase of the data collection path.
The initial solution then consists of all such added tar-
get locations that fit within the budget constraint T},
Afterward, the VNS uses the neighborhood operators
in the shake and local search procedures, which are de-
scribed in detail in the following subsections, to improve
the incumbent solution P, either by increasing the sum
of the collected rewards or by shrinking the length of
the equally rewarded solution. The termination condi-
tion for the proposed method can be the number of per-
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Algorithm 1: VNS method for the DOPN

Input :.S — Set of the target locations

Input : T),4. — Maximal allowed travel budget

Input : o — Initial number of position waypoints for
each target

Input :m — Initial number of heading values for
each waypoints

Input : ajmp — Local waypoint improvement ratio

Input : ;e — Maximal neighborhood number

Output: P — Found data collecting path defined by
k, Sk, Xk, O, and Py
1 S, < getReachableLocations(S, Th,qz)
2 P <« createlnitialPath(S,,Trmaq)
3 while Stopping condition is not met do

// greedy

a4 l+1

5 while | <4, do

6 P’ + shake(P, 1)

7 P’ localSearch(P’, l, &imp)
8 if Ed(PH) < Trmaz and

9 [R(P") > R(P) or [R(P") == R(P) and

L4(P") < L4(P)]] then

10 P+ P

11 I+ 1

12 else

13 | 1+1+1

formed iterations, or the number of iterations without
any improvement, or the elapsed computational time,
or a targeted sum of collected rewards. For brevity, the
solution DOPN path (defined by k, Sk, Xk, O, and
Py) is denoted P, and the sum of the rewards collected
by the vehicle traveling along path P is denoted R(P)
and its length is denoted as L4(P).

4.1 Combinatorial shake Operators

The combinatorial part of the shake procedure consists
of two operators, Path Move and Path Exchange.
Both operators are intended to randomly change the
currently best achieved incumbent solution to escape
from possible local optima. Changes are made to the
underlying sequence Yj and subset selection Sj by
random reordering of the solution vector v, which in-
ternally represents the DOPN solution. Corresponding
waypoints of the target locations for the reordered so-
lution are selected from the existing graph of waypoint
samples to minimize the overall length of the solution.
A DOPN solution is selected from the first k — 2 target
locations in vector v that fit within the budget con-
straint between the starting location and the ending
location.

Operator Path Move (I = 2), illustrated in Fig. 2a,
randomly selects a part of the existing solution and
moves it into a different randomly selected place within
the solution vector. The operator is implemented by
selecting three random indexes inside the solution
vector, e.g., i1 € (2,n — 1), ia € (i1 + 1,n — 1),

(a) Path Move

(b) Path Exchange

Fig. 2: Path Move and Path Exchange operators
with a random change of the initial incumbent solu-
tion of the DOPN (dashed black) into a shorter solu-
tion (green) by changing the sequence of target loca-
tions and selecting the optimal waypoint samples. The
combinatorial shake operators are shown with waypoint
sampling, which consists of 0 = 4 number of neighbor-
hood position samples and m = 4 heading samples of
Dubins vehicle in each position sample.

i3 < 11 Or i3 > 19, and 413 # k. The DOPN
solution vector v = (Sgp,...,85,) of the initial in-
cumbent solution is then changed, e.g., for the case
of i3 > iz, INt0 ¥ = (Sgy,- -y S04, 1 80ip41s--
Soiy e+ 380i,180i, 410+ +» S, ). Note that the operator
can change not only the used part of the solution, the
part until index k& — 1 that fits within T},,, between the
starting and ending locations, but it can also change the
order of the unused target locations. The same property
applies to all the other operators for combinatorial op-
timization.

The Path Exchange operator (I = 3) randomly se-
lects two non-overlapping parts of the existing solution
and switches their position inside the solution. Such a
random exchange can be realized by selecting four fea-
sible random indexes i1 € (2,n—1), iy € (i1 +1,n—1),
i3 € <i2+1, n—l}, and iy € <i3+1, n— 1> with iy 4 # k.
The initial solution v = (S4y, ..., Ss, ) is then modified
by the operator into v = (s4,, . .

'7‘90'1;37

-73@1,1750’13’ .. -75m47
Soiyq1rc e ,S5,). An ex-

ample of the operator is shown in Fig. 2b.

asu'qjs_usdll 3 ~75¢712780'i4+17 s

4.2 Combinatorial local search Operators

The local search operators for combinatorial optimiza-
tion of the DOPN are One Point Move and One
Point Exchange. The proposed method for the DOPN
is based on the Randomized Variable Neighborhood
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Search (RVNS), a variant of the VNS where the local
search procedure is randomized. In the ordinary VNS,
the local search uses a systematic local search in the
solution space; however, in the proposed RVNS-based
variant, the solution space is searched by numerous ran-
dom operations. In both combinatorial local search op-
erators, each random operator is tested for a number
of times equal to the square of the number of reachable
target locations. Every such random operation that in-
creases the quality of the solution, i.e., increases the
sum of the collected reward or decreases the path length
for the same reward, is applied, and the operators con-
tinue with testing other random changes. Using local
search randomized optimization, the solution created
in the shake procedure is deeply searched for local op-
tima in pursuit of a solution that improves the current
best incumbent solution. Both the One Point Move op-
erator and the One Point Exchange operator use the
graph of the existing waypoint samples, and for any
testing sequence Xy, represented by solution vector v,
they select the waypoint samples that minimize the to-
tal path length.

For solutions with promising rewards (i.e., with the
sum of the rewards equal to or higher than R, =
QimpRinit, where Rn; is the reward of the initial
greedy solution created by createlnitialPath), the op-
erators also perform local optimization of the waypoint
samples. When a new target location s,, is added into
the existing solution with a reward equal to or higher
than Rjpp, the currently selected waypoint heading
sample 6, and the waypoint location sample inside the
target neighborhood p,, are optimized by a hill climb-
ing method, similar to the method used in Waypoint
Improvement, introduced in Section 4.3 for decreasing
the length of the data collection path. Additionally, the
waypoint samples of the adjacent target locations (in
the current solution) are optimized, and if the path
length after adding the new target location meets the
budget constraint the solution is modified, and the op-
timized samples are inserted into the global graph of
the waypoint samples. In this manner, the local search
operators can fit more target locations within the same
budget Tqz, even with low initial sampling density de-
termined by o and m.

The One Point Move operator (I = 2) shown in
Fig. 3a randomly selects one target location within so-
lution vector v and moves it into a different randomly
chosen position inside v. By selecting two random in-
dexes i1 and io, 41 # io, 11 # k, io # k, without loss
of generality i; < ig, inside v = (S4p,...,55,) , the
solution of a single move operation is v = (Sgy,--.,
o4 _15S0i 41r - ,80,). If such a
move operation improves the quality of the solution,

y80iy-1150i, 5505,

(a) One Point Move

(b) One Point Exchange

Fig. 3: Local search operators One Point Move and
One Point Exchange with waypoint sampling o = 4
and m = 4. The combinatorial optimization operators
randomly move one target location within the solution
in the case of One Point Move or randomly exchange
two target locations in the solution sequence by the One
Point Exchange operator.

the change is applied, and further random One Point
Move operations are tested.

The One Point Exchange operator (I = 3) illus-
trated in Fig. 3b is similar to the first [ = 2 operator;
however, instead of moving one target location within
the solution v, the operator exchanges two randomly se-
lected target locations. The operator can be realized by
selecting two random indexes i1 and io, i1 # i, i1 # k,
io # k, within the existing solution v = (s4,,..., 54, )
and by exchanging the target location with the selected
(Sogs - -
S0i,r80i,41 1 50,)- Like the One Point Move oper-
ator, the One Point Exchange operator tests numer-
ous such operations and applies those that improve the
quality of the solution.

indexes v = <9 80i, 219580, 80i, 4150+ 5 S0y 1>

4.3 Continuous Optimization Operators for the DOPN

This section presents two novel operators used for con-
tinuous optimization of the underlying DTRP to min-
imize the required path length for visiting a selected
sequence of target locations. Minimization of the path
length is motivated by the idea of fitting additional tar-
get locations that slightly violate the budget constraint
Tnaz; however, the path length can fulfill 7)., after
optimizing the waypoint samples. Two proposed oper-
ators: Waypoint Shake inside the shake procedure,
and Waypoint Improvement in the local search, are
used within the proposed VNS algorithm as the first
Neighborhood operators | = 1.
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4. Sy, (end) 4 _ A4Sy, (end) ences not more than two adjacent Dubins maneuvers,
+ ok ¢ which makes the optimization very fast. However, the
+\, + 3 variables are mutually affected, and the local optimiza-
+ N+ + \\' + tions of a single variable are therefore repeated several
+ ¥+ 4\ :}7 St + $ot + :}' st times. This method has been adopted from the LIO
+ + sk 4 + -is- + + oo + 'g'5+ procedure (Vana and Faigl 2015), originally designed
Nt 4 et 4+
4 + Yo 4 _g_ +\_f_z+ N for the DTSPN.
+ %+ Faat ok Ty
Fal Pt + D e shdas
'\ T+ Y + 5 Results
¥, (s s, (start)

(a) Waypoint Shake (b) Waypoint Improvement

Fig. 4: Waypoint Shake and Waypoint Improve-
ment with o = 4 samples of waypoint locations and
m = 4 samples of heading angles at each waypoint lo-
cation. Waypoint Shake randomly changes the current
waypoint samples used in the incumbent solution. Way-
point Improvement optimizes the waypoint samples to
minimize the length of the solution.

The Waypoint Shake operator randomly changes
the waypoints currently used by the incumbent solution
within the interval (0,2m) for the heading angle and
within the é-radius circle for the waypoint location in-
side the target neighborhoods. Note that the waypoint
location on the d-radius circle can also be described by
the angle within the interval (0,27), and it can there-
fore be changed and optimized in a similar way as the
heading angle. The operation corresponds to a random
change of vectors @) and P that describe a solution
of the DTRP, and similarly to the other shake opera-
tors it is intended to get the solution from possible local
optima. Waypoint Shake is illustrated in Fig. 4a.

The Waypoint Improvement operator is a pro-
cedure which utilizes continuous local optimization of
both the waypoint locations and the corresponding
heading angles to improve the solution produced by
Waypoint Shake. This continuous optimization enables
solutions to be found closer to the optimum because the
configurations are no longer selected from a discrete set
of initial samples. This problem is formalized as the
DTRP, as introduced in Section 3.2.

Although the sequence of visits to the targets is
given, the DTRP remains challenging due to 2k + 2
continuous variables, where k is the number of cur-
rently selected targets to be visited. One variable de-
fines the location of the waypoint on the boundary of
the respective target neighborhood, and the other vari-
able defines the waypoint heading angle. The DTRP
is addressed by dividing the problem into smaller opti-
mization sub-problems, where each variable is treated
separately. The modification of a single variable influ-

The proposed VNS-based solution to the DOPN has
been evaluated on benchmark datasets for the regular
OP from the literature, and has also been verified ex-
perimentally in a data collection scenario with a real
UAV. The computational results on the OP datasets
show that the proposed solution of the DOPN increases
the so far best achieved collected rewards (Pénicka
et al. 2017b) in numerous benchmark instances. The
proposed approach also outperforms the only other ex-
isting solution of the DOPN, which is based on the
Self-Organizing Map (SOM) (Faigl and Pénicka 2017).
Moreover, in comparison to the preliminary purely
sampling-based approach (Pénicka et al. 2017b), the
computational time is significantly decreased by the
continuous optimization and solutions with ~ 90% of
the maximally collected rewards are found within sev-
eral seconds. The experimental verification with the
hexarotor UAV shows the benefit of using the neigh-
borhood distance ¢ in a data collection scenario with a
wide field of view camera.

5.1 Computational Results

The VNS-based DOPN method has been evaluated
on two existing benchmark® groups for the ordinary
OP (Vansteenwegen 2018). The first group consists of
Set 3, created by Tsiligirides (1984) with up to 34
randomly placed target locations and with various in-
stances for different budget constraints T,4,. The sec-
ond group consists of two larger sets, Set 64, with
a diamond-shaped structured placement, and Set 66,
with a square-shaped structured placement, with up to
66 target locations proposed by Chao et al. (1996a).
Example solutions of the DOPN for all benchmark sets
used here are presented in Fig. 5, showing the benefits
of using a non-zero neighborhood radius for maximizing
the collected reward.

The computational times reported in this section
have been achieved using a single core of the Intel i7

1 Available
cib/op/#0P

online https://www.mech.kuleuven.be/en/
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Fig. 5: Solutions of the DOPN for Set 3, Set 64, and
Set 66, using Tynq = 50, 55, and 60, respectively. All
solutions are shown for the turning radius p = 1.0 and
the neighborhood distance § = 0 (i.e., a solution of
the DOP) on the left and 6 = 0.5 on the right. The
indicated sum of the collected rewards R is shown to
increase in all three instances, in comparison with the
rewards of § = 0, with the VNS-base solution of the
DOPN for § = 0.5.

3.4GHz CPU and C++ implementation of the proposed
algorithm. The VNS is a stochastic method, and thus
each benchmark instance has been solved 10 times to
obtain meaningful statistical results. The initial way-
point sampling of the possible vehicle headings and the
waypoint locations are o = 8 and m = 8. For instances
with the zero neighborhood radius § = 0, only 0o = 1
has been used, and for the zero turning radius of Du-
bins vehicle p = 0, the algorithm automatically uses
m = 1 samples for the heading angle at the target loca-
tions. The local waypoint improvement ratio o, used
for defining the minimal collected reward in which the

local search combinatorial operators start the local op-
timization of the waypoints during the target location
addition has been set to mp = 0.95. The termina-
tion criterion used in the computation of the presented
results is a combination of the maximum of 10000 it-
erations together with the maximal number of 5000
iterations without any improvement.

Table 1: Maximal Collected Rewards for Set 3

6=0 6=0.5 0=1
Tmax

p=0 p=0.5 p=1 p=0 p=0.5 p=1 p=0 p=0.5 p=1

15 170 160 160 180 180 180 210 210 *200
20 200 190 180 250 240 230 300 290 *290
25 260 260 250 320 320 310 370 370 360
30 320 320 320 380 370 370 450 450 450
35 390 380 380 450 450 440 510 500 *490
40 430 430 *420 500 500 480 570 570 *550
45 470 460 *460 550 550 *540 600 600 *590
50 *520 520 *510 580 570 *570 630 630 *620
55 550 550 530 620 620 600 670 670 *660
60 580 580 560 650 650 630 710 710 *700
65 610 600 590 680 670 *660 750 740 *730
70 640 630 *620 720 710 *700 790 780 *760
75 670 660 *650 750 740 730 800 800 *790
80 710 690 680 790 780 *760 800 800 800
85 740 730 *710 800 800 *790 800 800 800
90 770 760 740 800 800 800 800 800 800
95 790 780 770 800 800 800 800 800 800
100 800 800 790 800 800 800 800 800 800
105 800 800 800 800 800 800 800 800 800
110 800 800 800 800 800 800 800 800 800

Table 2: Maximal

Collected Rewards for Set 64

6=0 6=0.5 6=1
Trmax

p=0 p=0.5 p=1 p=0 p=0.5 p=1 p=0 p=0.5 p=1
15 96 96 96 204 204 204 *312 312 *306
20 294 294 252 432 426 *384 576 570 *552
25 390 384 342 564 558 *510 744 738 *714
30 474 468 420 714 696 *630 *954 948 *936
35 576 570 516 894 852 *774 *1170 1146 *1128
40 714 696 624 1068 1026 *900 *1296 1272 *1242
45 816 792 708 1164 1134 *990 1344 1344 1326
50 900 882 *798 1248 1212 *1026 1344 1344 *1344
55 984 972 894 1320 1296 *1116 1344 1344 1344
60 1062 1044 954 1344 1344 1188 1344 1344 1344
65 1116 1098 1020 1344 1344 *1236 1344 1344 1344
70 1188 1170 1092 1344 1344 *1290 1344 1344 1344
75 1236 1218 1134 1344 1344 *1308 1344 1344 1344
80 1284 1266 *1176 1344 1344 *1344 1344 1344 1344

One of the most important factors that shows the
performance of the OP solver, or the DOPN solver in
our case, is the maximally achievable sum of the col-
lected rewards. The maximal rewards for various bud-
get constraints T}, and for the neighborhood distance
§ € {0,0.5,1.0} and turning radii p € {0,0.5,1.0} are
shown in the tables. In particular, the results for Set 3,
Set 64, and Set 66 are presented in Table 1, Table 2,
and Table 3, respectively. Due to the computational
requirements for computing all the instances for vari-
ous ¢ and p, the results for Tables 1-3 have been ob-
tained with a grid of Xeon CPUs running at 2.2 GHz to
3.4 GHz. The solutions with an improved maximal col-
lected reward with respect to the previously best found
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Table 3: Maximal Collected Rewards for Set 66

6=0 6=0.5 6=1
Trax
p=0 p=0.5 p=1 p=0 p=0.5 p=1 p=0 p=0.5 p=1
5 10 10 0 20 15 0 35 25 0

10 40 40 40 70 70 55 105 100 90

15 120 100 *100 160 160 *160 *225 220 *205
20 *205 200 195 265 265 *260 *385 370 *360
25 280 280 275 400 380 *375 540 540 540
30 400 380 370 *500 495 *475 685 685 *655
35 *465 465 455 605 595 *590 870 845 835
40 575 570 *545 735 710 *680 985 965 *960
45 650 650 *645 840 815 *775 1135 1100 *1130
50 730 710 710 920 920 *865 1275 1240 *1235
55 825 825 820 *1050 1015 *950 1390 1370 *1380
60 915 895 890 1165 1120 *1055 1555 1500 *1485
65 980 950 955 1265 1205 *1155 1620 1605 *1590
70 1070 1050 1070 1360 1315 *1260 1680 1650 *1620
75 1140 1090 1120 1450 1410 *1325 1680 1680 *1680
80 1215 1185 1175 1535 1490 *1375 1680 1680 *1680
85 1270 1255 *1240 1605 1570 *1410 1680 1680 1680
90 1340 1310 1295 1635 1620 *1500 1680 1680 1680
95 1395 1390 1365 1680 1665 *1565 1680 1680 1680
100 1465 1445 1420 1680 1680 *1605 1680 1680 1680
105 1520 1505 *1480 1680 1680 *1670 1680 1680 1680
110 1550 1550 1535 1680 1680 *1680 1680 1680 1680
115 1595 1580 1565 1680 1680 *1680 1680 1680 1680
120 1625 1625 1610 1680 1680 1680 1680 1680 1680
125 1670 1655 1640 1680 1680 1680 1680 1680 1680
130 1680 1680 1670 1680 1680 1680 1680 1680 1680

solutions provided by the purely sampling VNS-based
solution of the DOPN (Pénicka et al. 2017a) without
continuous optimization are displayed in bold font. In
all cases, the maximal collected rewards are the same
as, or better than, the previously best found solutions.

The instances with significantly better rewards us-
ing significance level a = 0.05 are denoted by ‘*’ based
on a t-test comparison between the proposed method
and the purely sampling VNS-based solution. As is
shown in Tables 1-3, the maximal collected reward is
improved mainly for non-zero neighborhood distances §
and turning radii p. This is caused by the fact that the
improvements are mainly due to the continuous opti-
mization, which is only effective when at least § > 0 or
p > 0. Furthermore, the longer § and p are, the greater
their influence on the path length (continuously opti-
mized in the proposed approach), and thus on the max-
imally achievable reward. Increasing the turning radius
enlarges the limited path length and thus decreases the
collected reward. Larger neighborhood radius, on the
other hand, can increase the collected reward due to
the distance savings. Both effects can be observed in
Tables 1-3 by comparing p = 0 and p = 1 for the
turning radius, and 6 = 0 and § = 1 for the neigh-
borhood radius. The results for p = 0.5 do not con-
tain any improvement, as this particular turning radius
has no previously known best found solutions (Pénicka
et al. 2017a). Furthermore, the maximal reward cannot
be improved for a large number of instances where the
created path visits all possible target locations. This is
mainly noticeable for § > 0 and higher budgets T},q4z,

where from a certain budget the maximally collected
reward does not increase. Significantly better results
(based on the t-test comparison) are in most cases in
the same instances where the maximal collected re-
ward is improved. However, for several maximal reward
improvements, the newly found maximal reward tends
to be an outlier, and the reward is not systematically
higher. On the other hand, several instances have signif-
icantly better rewards without improving the maximal
score. This is caused by the closeness of the average re-
ward of the proposed method to the known maximum,
together with a small standard deviation in comparison
with the purely sampling VNS-based solution. We refer
to an enlarged variants? of Tables 1-3, which contain
the average rewards and the standard deviations of all
instances.

The continuous optimization of the waypoint sam-
ples is one of the main improvements of the proposed
DOPN algorithm in comparison to the previous algo-
rithm proposed in (Pénicka et al. 2017b). Waypoint op-
timization is used in two main parts of the proposed
VNS-based algorithm. The first part is used in the
combinatorial local search operators One Point Move
and One Point Exchange while testing an additional
target insertion into a solution with the minimal re-
ward of Rimp = QimpRinit- The waypoint samples of
the inserted and adjacent target locations are locally
optimized to shrink the length of the solution below
Tinaz- The second waypoint optimization is through the
Waypoint Shake and Waypoint Improvement operators,
which randomly change the waypoint samples and opti-
mize the randomly changed waypoints to minimize the
length of the incumbent solution. Fig. 6 shows a com-
parison of the solution quality as the average sum and
as the maximal sum of the collected rewards over the
computational time. The solution obtained for ‘High
sampling DOPN’ uses 0 = 12 and m = 12 samples and
the ‘Low waypoint sampling’ solution uses o = 4 and
m = 4 samples. Both use only combinatorial optimiza-
tion with sampled waypoints, as proposed in (Pénicka
et al. 2017b). The reward improvement for the solutions
denoted as ‘Local optimization local search’ uses local
waypoint improvement during the combinatorial local
search operators, together with low initial waypoint
sampling. The solution denoted as ‘With Waypoint Im-
provement’ shows the reward improvement with way-
point optimization employed both in local waypoint
improvement during combinatorial local search and by
using the Waypoint Shake and Waypoint Improvement
operators. Low waypoint sampling o = 4 and m = 4 is
also used for the solution with both waypoint optimiza-
tions.

2 https://archive.org/download/vns-dopn/results.pdf
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Fig. 6: Comparison of the average sum and the max-
imal sum of the collected rewards over time for high
o=m = 12 and low 0 = m = 4 dense initial sampling
of the DOPN without and with waypoint optimization.
The solution denoted as ‘Local optimization in local
search’ uses waypoint optimization only in the combi-
natorial local search operators and the ‘With Waypoint
Improvement’ solution uses additionally the Waypoint
Shake and Waypoint Improvement operators. The algo-
rithm performance is shown for Set 64 with T}, = 50,
p = 1.0 and § = 0.5. The upper plot shows the reward
progress over one hour of maximal computational time,
while the lower plot shows a detail of the initial 180
seconds of computation.

The comparison shows that waypoint continuous
optimization increases the maximal achieved sum of the
collected rewards within the maximal one hour of com-
putational time, which was used in these tests as an ad-
ditional stopping criterion. The maximum sum of the
achieved reward is (similarly to the results in Table 1-3)
considered as one of the most important aspects of the
OP solver that shows the limiting extreme-most per-
formance of the proposed method. The initial solution
for low-density sampling together with waypoint opti-
mization (denoted as ‘With Waypoint Improvement’)
provides solutions with more than 90% of the best so-
lutions within a few seconds only. The initial solution
for a high sampling solution, however, takes approxi-
mately two minutes to compute, and in that time its
maximally achieved reward is outperformed by the ini-
tially low sampling solution with both waypoint opti-
mizations. The high sampling approach has a bigger
average reward than the proposed method shortly after
initialization (between time 125s and 149s) due to the
quality of the initial solution, which influences the aver-
age. However, the high sampling approach is limited by
static samples, which also limit the maximally achiev-

able reward during the computation and also result in a
lower average reward than that of the proposed method
after 167 s of calculation.

The local optimization in local search is highly influ-
enced by the selection of the improvement ratio cmyp,
which determines how rewarded (compared to the re-
ward of initial solution) a solution has to be in order to
perform the local waypoint optimization of newly added
target locations. Fig. 7 shows a comparison of the se-
lected values of aj;mp, with the average and maximal sum
of the collected rewards over the computational time.

11

0 1000 1500 2
Time [s]

Fig. 7: Comparison of the average and maximal
sum of the collected rewards for improvement ratio
Qimp € {0.8,0.9,0.95,1.0,1.05,1.1} over the computa-
tional time for Set 64, on the left, with T4, = 55,
p = 0.5, § = 0.5 and for Set 66, on the right, with
Trmaz = 60, p=0.5, § = 0.5.

0 3000 350

The comparison shows that higher o, €
{1.05,1.1} tends to optimize only the current incum-
bent solution which is demonstrated by the faster initial
growth of the average rewards. In the same time, how-
ever, the higher a;,,, prohibits continuously optimizing
enough promising solutions in order to find even bet-
ter than the currently best found solution, which is re-
flected in the fact that it cannot find the best known so-
lutions. On the other hand, the lower ay,, € {0.8,0.9}
slows down the computation of local search operators
(by performing waypoint optimization on more non-
promising solutions), which results in both lower av-
erage rewards and lower maximal rewards. Maximal re-
wards are achieved by either a;mp € {0.95,1.0} based
on the dataset instance being solved.

To the best of our knowledge, the only other ex-
isting algorithm for solving the DOPN is the SOM-
based approach for the so-called Close Enough Orien-
teering Problem, which is in fact the DOPN emphasiz-
ing the usage of circular neighborhoods. A comparison
of the proposed VNS-based and SOM-based algorithms
for various neighborhood radii is presented in Fig. 8
for 20 runs of VNS per instance, and for 80 runs in
the case of the SOM-based algorithm. The results show
that for all tested neighborhood distances, the proposed
method produces solutions with similar or significantly
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better results than the SOM-based algorithm (Faigl and
Pénicka 2017).
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Fig. 8: Comparison of the proposed VNS-based solution
and the SOM-based solution (Faigl and Pénicka 2017)
of DOPN for selected neighborhood distances. The col-
lected rewards are shown for Dubins vehicle with turn-
ing radius p = 0.5 for all Set 3, Set 64, and Set 66.

The performance of the proposed algorithm is sig-
nificantly influenced by the initial waypoint sampling
density defined by the number of Dubins vehicle head-
ing samples m at each of the o waypoint location sam-
ples. Waypoint sampling mainly influences the compu-
tational time and the maximally achievable sum of the
collected rewards. Using high sampling density such as
0 =12 and m = 12 requires much more computational
time in the local search One Point Move and One Point
Exchange operators for selecting the samples with the
shortest path for a given sequence of target locations.
However, with high sampling density, the quality of the
solution as the sum of the collected rewards is higher
than for low-density sampling. For the newly proposed
VNS-based solution of the DOPN with optimization of
the waypoint samples, it is possible to achieve the same
solution quality with low initial sampling through opti-
mization of the samples. The initial sampling therefore
mainly influences the evolution of the solution quality,
i.e., the maximal sum and the average sum of the col-
lected rewards, over the computational time, as shown
in Fig. 9.

The comparison of the initial waypoint sampling
shows that both for very low sampling o = m =1
and for very high sampling o = m = 16, the av-
erage and maximal collected rewards are below other
medium sampling densities. The highest maximal and
average rewards are collected with waypoint sampling
o = m = 8, with similar results for o = m = 4. How-
ever, the computational time required for creating the
initial solution with o = m = 8 is approximately 17s,
while for a lower sampling density o = m = 4, it is
within 1.5s.

Fig. 9 also shows the computational requirements of
the proposed VNS-based solution for the DOPN, and
can be used for a comparison of the computational time
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Fig. 9: Comparison of different initial waypoint sam-
pling densities for Set 66 with 7}, = 60, p = 0.5, and
60 = 0.5. In the upper plot, the average and maximal
collected rewards are shown over one hour of the maxi-
mal computational time. The lower plot shows a detail
of the average and maximal rewards within the initial
360 seconds of computation.

for achieving a certain sum of collected rewards. The
SOM-based solution (Faigl and Pénicka 2017) requires,
for Set 66, Ty = 60, 6 = 0.5 and p = 0.5, an average
computational time of 33.8 s with the maximal achieved
rewards R = 955 and average R = 880. For the same
configuration of the problem, Fig. 9 shows that in 33.8 s
the average sum of the collected rewards is 970 for o =
m = 8, 985 for o = m = 4, and 997 for o = m = 2. The
maximal collected rewards at the same time are 1045
for o = m = 8, 1040 for o = m = 4, and 1050 for o =
m = 2. The proposed VNS-based solution outperforms
the state-of-the-art algorithm not only in the maximally
achievable sum of collected rewards but also regarding
the computational time required for achieving a certain
sum of collected rewards. This is very important for a
real deployment of the method, as it is demonstrated
in the following section.

5.2 Experimental Verification

The proposed method was experimentally verified in
a visual data collection scenario with a real hexarotor
UAV in an outdoor environment. Although the Ver-
tical Take-Off and Landing (VTOL) UAV does not
necessarily have to be modeled as Dubins vehicle, the
model is convenient for the VTOL UAV when travers-
ing a curvature-constrained path at a constant speed.
Constant speed flights of the VTOL can be beneficial
for visual data collection missions, where additional vi-
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sual information during flights between target location
neighborhoods can be further used, and constant speed
improves the quality of the images that are taken. From
the selected constant speed v. and the maximal accel-
eration a,,q; of the UAV, the minimal turning radius
of Dubins vehicle can be computed using the equation
of circular motion with constant speed p = v2/amaqe.
Note that for the VTOL (not so much for the fixed-wing
UAV), the solution quality can be improved by allowing
acceleration to the maximal speed during straight line
segments of Dubins maneuvers. This, however, is only
a technical consideration, which does not require any
change to the proposed algorithm. Considering these
accelerated Dubins maneuvers would only require the
time of flight cost instead of length cost, and would
change the length-budget constraint to a time-budget
constraint. We therefore consider for experimental ver-
ification the DOPN as defined in Problem 3 with stan-
dard Dubins maneuvers for VTOL, which also provides
a better comparison of the results. We refer to Pénicka
et al. (2017a) for a comparison of an experimental de-
ployment of the DOP and the ordinary OP with a
straight line trajectory and sharp turns. The advan-
tage of using Dubins vehicle model for fast and reliable
visits to multiple locations to be scanned by the on-
board camera was also demonstrated by our team in
the third challenge of the Mohamed Bin Zayed Inter-
national Robotics Challenge (MBZIRC) competition,
which also motivated the research presented here. The
effectiveness of fast flying using Dubins vehicle model
(e.g., demonstrated in the MBZIRC challenge in the so-
lution of the DTSP) resulted in the best performance
among all 143 competing teams.

The used hexarotor UAV was designed for the
MBZIRC competition® and was built on the DJI hex-
acopter F550 frame with E310 DJI motors and with
the PixHawk Autopilot low-level flight controller (Meier
et al. 2012). The low-level localization of the Pix-
Hawk Autopilot is realized as a combination of the
standard GPS with a compass and with the ac-
celerometers and gyroscopes at the lowest level. To
increase the localization precision, the system uses
PRECIS-BX305 (Tersus-GNSS 2018) RTK GPS with
centimeter accuracy and also the TeraRanger One laser
rangefinder for measuring the distance from the ground.
The onboard Intel NUC-i7 mini PC provides enough re-
sources for calculating the plan for the addressed data
collection scenario formulated as the DOPN. In addi-
tion, the onboard computer realizes the Model Predic-
tive Control (MPC) trajectory controller (Baca et al.
2016) for trajectory tracking, UAV localization estima-

3 See http://mrs.felk.cvut.cz/mbzirc for examples of
the experimental deployment of the system.

tion, and sensor fusion. For a visual information gather-
ing task, a high-resolution wide field of view Mobius Ac-
tionCam camera was used. The hardware components
are summarized in Fig. 10.
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Fig. 10: Hardware components of the hexarotor UAV for
experimental verification of the data collection scenario
formulated as the Dubins Orienteering Problem with
Neighborhoods.

The results from the experimental verification of the
proposed DOPN method in a realistic data collection
scenario using the onboard camera are shown in Fig. 11.
During the experiment, constant vehicle speed v. =
4ms?' was used together with maximal acceleration
Amae = 2.6 ms™2, which resulted in p = 6.15m turning
radius of Dubins vehicle. The scenario for the exper-
imental verification consists of 19 target locations, in-
cluding the starting and ending locations, with the bud-
get constraint set to T4, = 150 m. The planned trajec-
tories for the various neighborhood radii § = {0, 3,6} m
together with the real flown trajectories of the UAV are
depicted in Fig. 11.

The real trajectories deviate slightly from the
planned trajectory due to the strong wind conditions
and the tightly set maximal acceleration of the vehicle.
However, the presented camera images show the tar-
get markers placed throughout the experimental area,
which were taken at the respective waypoints of the
targets, and thus the mission was successfully fulfilled.

The sum of the collected rewards for the increas-
ing neighborhood radii shows the main benefits of us-
ing the VNS-based solver for the DOPN with non-zero
turning radii, where the collected reward increases with
each incrementation of the neighborhood distance. The
onboard camera images in Fig. 11 show that the high
neighborhood radius of 6 m, with a high collected re-
ward, is usable for a visual data collection scenario of
this kind. The complete set of radii used during the ex-
perimental verification, together with the correspond-
ing sum of the collected rewards and the path lengths,
is shown in Table 4.
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Fig. 11: Snapshots from the experimental verification of the proposed VNS-based algorithm for the DOPN in a
data collection scenario with various neighborhood distances . We refer to https://youtu.be/zPXZahW33-w for
supporting video material from the experimental verification of the method.

Table 4: Collected reward and path length from the real
experiment for various neighborhood radius ¢

§ [m] o 1 2 3 4 5 6 7T

Reward R 65 67 71 7 79 85 87 88
Length [m] 148.0 143.3 146.9 148.0 148.6 147.9 139.0 143.7

6 CONCLUSIONS

In this paper, we introduce a novel approach for
curvature-constrained data collection planning with
UAVs that is formulated as the Dubins Orienteering
Problem with Neighborhoods (DOPN). The DOPN sets
out to find a path for Dubins vehicle that maximizes
the sum of the collected rewards by visiting a subset
of the given target locations with prescribed starting
and ending locations and a constrained travel budget.
The DOPN uses a predefined circular neighborhood at
each target location, motivated by remote data collec-
tion from the target locations to save the required travel
cost, and thus to increase the sum of the collected re-
wards within the same budget constraint.

The proposed Variable Neighborhood Search-based
method uses a set of neighborhood operators that per-
form a combinatorial optimization to maximize the sum

of the collected rewards by selecting a subset of tar-
get locations to be visited, and also by determining the
sequence of the visits. The proposed method employs
initial low-density waypoint sampling consisting of sam-
pling both Dubins vehicle headings and waypoint loca-
tions within the neighborhood of each target location,
to quickly determine an initial data collection path by a
greedy maximization of reward per tour prolongation.
The continuous optimization employed in the proposed
VNS neighborhood operators is used for the optimiz-
ing the initial waypoint samples to minimize the length
of the Dubins path visiting the neighborhoods of the
selected target locations. The proposed waypoint opti-
mization increases the sum of the collected rewards by
adding unvisited target locations within the prescribed
budget constraint.

The computational results show that the proposed
VNS-based algorithm is a viable method for solving the
DOPN. The continuous optimization employed in the
novel approach significantly improves the required com-
putational time, and also improves the best-known solu-
tions in several benchmark instances. The method also
outperforms the only other existing SOM-based DOPN
approach in both solution quality and computational
time. Finally, the experimental verification of the pro-
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posed method with a real hexarotor UAV demonstrates
the deployment of the proposed solution of the DOPN
in a data collection scenario with an onboard camera.
The solutions found for the experimental deployment
also show the benefits of using a non-zero neighborhood
distance on the sum of the collected rewards.

For our future work, we intend to extend the pro-
posed approach to a variant of multi-UAV data collec-
tion scenarios and to employ more complex maneuvers,
such as cubic splines, which are suitable for the non-
constant forward velocity of the VI'OL UAV, e.g., as
in Faigl and Véna (2018) for solving TSP-like scenar-
ios.
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Chapter 5

Variable Neighborhood Search for the Set Orienteer-
ing Problem and its application to other Orienteering
Problem variants

The third core publication of this thesis is the manuscript published in the European
Journal of Operational Research concerning the Set Orienteering Problem (SOP).

[3c) R. Pénicka, J. Faigl, and M. Saska, “Variable neighborhood search for the set
orienteering problem and its application to other orienteering problem variants,”
European Journal of Operational Research, vol. 276, no. 3, pp. 816 —825, 2019

The paper introduces the VNS-based method for the SOP [26]. The SOP is a recently
proposed generalization of the OP where the target locations (also denoted as customers or
nodes) are grouped in clusters, and the profit associated with each cluster is collected by
visiting at least one node in the cluster. The objective of the SOP is to maximize the collected
reward clusters for a limited budget path, together with the determination of individual nodes
to be visited within the clusters.

For the data collection planning for aerial vehicles, the SOP can be seen as a discrete
generalization of all the studied variants of the OP. In the sampling-based approaches to the
(D)OP(N), the sampled heading angles or the neighborhood positions of a single target are
the nodes of one cluster. For the SOP, the selection of a single heading and neighborhood
position sample in (D)OP(N) is sufficient to collect the reward from the target (cluster).

In the paper, we introduce a novel ILP formulation for the SOP to find the optimal
solution for small and medium-sized problems. Besides, the proposed VINS-based method
for the SOP is a generalized variant of the algorithm for DOP and DOPN [2¢]. We
employ similar shaking and local search procedures; however, we further extend the local
search procedure by two main aspects. The procedure uses a dynamic programming technique
to store the shortest paths from the starting and ending clusters to each vertex in the current
solution. Furthermore, a fast-to-find lower bound solution (in length) is used to filter out
over-budget solutions. Therefore, the one cluster modifications of the current solution done in
the local search procedure can be evaluated faster.

The computational results of the introduced ILP formulation show significantly better
computational times in the CPLEX solver than the existing formulation . The VNS-
SOP method also performs faster than the existing matheuristic based on tabu search for
the SOP . Furthermore, the VNS-SOP is able to improve solutions of several large SOP
instances over the best-known solutions. Finally, we show the application of the SOP on
sampling-based DOP and OPN. For most instances both the DOP and OPN are, for a given
sampling, solved optimally using the introduced ILP formulation in the CPLEX. The proposed
VNS-SOP is shown to produce optimal solutions of the DOP and OPN when compared with
the ILP solutions.

The author of this thesis contributed 70 % on this core publication. The co-authors
contributed by giving valuable feedback about the method and the manuscript.
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Variable Neighborhood Search for the Set Orienteering Problem and its application
to other Orienteering Problem variants

Robert Pénicka*, Jan Faigl, Martin Saska

Czech Technical University, Faculty of Electrical Engineering,
Technicka 2, 166 27, Prague, Czech Republic

Abstract

This paper addresses the recently proposed generalization of the Orienteering Problem (OP), referred to
as the Set Orienteering Problem (SOP). The OP stands to find a tour over a subset of customers, each with an
associated profit, such that the profit collected from the visited customers is maximized and the tour length is
within the given limited budget. In the SOP, the customers are grouped in clusters, and the profit associated
with each cluster is collected by visiting at least one of the customers in the respective cluster. Similarly to
the OP, the SOP limits the tour cost by a given budget constraint, and therefore, only a subset of clusters
can usually be served. We propose to employ the Variable Neighborhood Search (VNS) metaheuristic for
solving the SOP. In addition, a novel Integer Linear Programming (ILP) formulation of the SOP is proposed
to find the optimal solution for small and medium-sized problems. Furthermore, we show other OP variants
that can be addressed as the SOP, i.e., the Orienteering Problem with Neighborhoods (OPN) and the Dubins
Orienteering Problem (DOP). While the OPN extends the OP by collecting a profit within the neighborhood
radius of each customer, the DOP uses airplane-like smooth trajectories to connect individual customers. The
presented computational results indicate the feasibility of the proposed VNS algorithm and ILP formulation,
by improving the solutions of several existing SOP benchmark instances and requiring significantly lower
computational time than the existing approaches.

Keywords: Routing, Orienteering Problem, Variable Neighborhood Search

1. INTRODUCTION starting and ending depot locations. The OP thus
combines two well-known combinatorial optimization
problems, the Knapsack Problem (KP) and the Trav-
eling Salesman Problem (TSP). While the Knapsack
part of the problem addresses the maximization of the
collected profit by selecting the subset of customers
to be visited within the budget, the TSP part finds
the sequence to visit selected customers and minimize
the tour length in order to fit it within the budget.
The OP has multiple variants and generalizations,
as it is shown in surveys by Vansteenwegen et al.
(2011) and Gunawan et al. (2016). Among others, the
recently introduced SOP proposed by Archetti et al.
(2018) is a generalization of the OP where the cus-
tomers are grouped in clusters. The profit is associ-
ated with the individual clusters, and it is collected by
visiting at least one customer in the respective clus-
ter. The SOP has been introduced together with a

The Set Orienteering Problem (SOP) belongs to
a large class of routing problems with profits, where
the objective is to find a tour that maximizes the col-
lected profit for a given budget, or minimizes the tour
length while ensuring at least a predefined profit, or
the objective function combines profit maximization
with tour length minimization (Feillet et al., 2005).

One of the well-studied routing problems with
profits is the Orienteering Problem (OP), which was
introduced into operational research by Tsiligirides
(1984). The OP stands to find a tour with a lim-
ited length that maximizes the profit collected from
a visited subset of the given nodes using predefined
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Mixed-Integer Programming (MIP) formulation and
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a matheuristic solution algorithm.

Like the OP, the SOP is a combination of the
Knapsack problem and the Generalized Traveling Sales-
man Problem (GTSP), studied in Laporte & Nobert
(1983). In the GTSP, the customers are grouped in
clusters as in the SOP, and the objective is to mini-
mize the tour length for visiting at least one customer
in each cluster. Therefore, the GTSP is an extension
of the TSP in the same way as the SOP extends the
OP.

The profit collection from clusters in the OP has
been previously addressed by the Clustered Orien-
teering Problem (COP) in Angelelli et al. (2014).
However, in the COP, all customers within the re-
spective cluster have to be visited to collect the profit.
The problem is solved by means of branch-and-cut
and tabu search algorithms.

The Correlated Orienteering Problem (CorOP) by
Yu et al. (2016) is also related to the SOP. In the
CorOP, the profit collected from customers contains
a part of the profit of neighboring customers based
on the mutual spatial correlation between the vis-
ited customers and the neighboring customers. The
CorOP thus creates spatially correlated clusters of
the customers, where the profit consists of the indi-
vidual visited customers together with the distance-
weighted profit of the neighboring customers. There-
fore, the CorOP can be seen as a hybrid combination
of the COP and the SOP, as the profit gained from
visiting individual customers consists of the portion of
the otherwise unvisited neighboring customer’s profit.
However, the profit can be increased by visiting more
customers within the cluster. The therein presented
the exact solution of the CorOP is based on the Mixed-
Integer Quadratic Programming Yu et al. (2016).

The applications of the SOP, originally introduced
by Archetti et al. (2018), are in mass distribution,
where the carrier chooses to serve only one customer
within a cluster of customers that are afterward served
by internal distribution within the cluster. However,
applications of the SOP far exceed the application
originally outlined. In fact, the SOP can be used for
any applications of the GTSP, discussed in Laporte
et al. (1996), where the salesman has a limited bud-
get, and cluster profits can be used for prioritization.
The travel guide problem is an example of such an
application, where the guide aims to maximize the
profit from visiting attractions in a limited time, but
only one attraction of each kind (cluster) would bring
the profit.

Similarly, the SOP can be used for a generaliza-
tion of the traveling salesman with profit-rated cus-
tomers and a limited budget, where multiple modes
of transport are allowed, but with constrained trans-
port changes. Fach cluster then consists of multi-
ple departure modes of transport from the individual
customer, and the objective is to maximize the profit
while using the most suitable transport option to fit
within the time budget.

The SOP can also be applied to several other
variants of the OP. The Orienteering Problem with
Neighborhoods (OPN) is a generalization of the OP,
introduced in Faigl et al. (2016), where the profit from
each customer can be collected anywhere within the
circular neighborhood of the customer location. The
OPN can be addressed, like the SOP, by creating clus-
ters of position samples on a circle around the orig-
inal customer’s locations (see Section 4.1). An ap-
plication example of the OPN is in sensory network
information retrieval, where standalone sensor units
displaced throughout the environment can wirelessly
communicate within a close distance radius, as dis-
cussed in Li et al. (2009). To maximize the profit
from information collected within a given time, the
data collecting vehicle can save travel costs by re-
trieving the measured information without visiting
the precise position of the sensors.

The Dubins Orienteering Problem (DOP), pro-
posed in Pénicka et al. (2017a), can be used for plan-
ning package delivery by dropping from an airplane.
The DOP addresses the generalization of the OP for
the Dubins vehicle model, introduced by Dubins (1957),
where the modeled airplane cannot feasibly travel the
tour created by the Euclidean OP with sharp turns
between the target locations. The Dubins vehicle has
to travel between the locations using a curvature-
constrained path with a minimum turning radius. By
sampling the heading angle of the Dubins vehicle at
the target locations, the DOP can be addressed as
the SOP presented here (see Section 4.1).

The contributions of this paper are as follows. We
introduce a novel ILP formulation of the SOP to find
the optimal solution of small to medium-sized prob-
lems within less computational time than the existing
MIP formulation. The definition of the SOP extends
the existing definition by allowing different starting
and ending depot clusters, both of which can have
multiple nodes. We propose an algorithm for the SOP
based on the Variable Neighborhood Search (VNS)
metaheuristic, and we show that its computational
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times are about one order of magnitude shorter for
small and medium-sized problems than the existing
tabu search solution. The best-known solutions of
several benchmark instances are improved by the pro-
posed VNS algorithm for the SOP further denoted
as VNS-SOP. Furthermore, we employed the studied
SOP in a solution of other OP variants, such as the
DOP and the OPN, both newly addressed as the sam-
pling based SOP that is solved optimally. For reuse
by the community and to accelerate research on SOP-
related problems, both the ILP-based and VNS-SOP
algorithms for the SOP are published as open-source
software, together with benchmark datasets for com-
parison.

The remainder of this paper is organized as fol-
lows. The description and the formulation of the
problem are presented in the next section. The VNS-
SOP algorithm is introduced in Section 3. The com-
putational results are presented in Section 4, and final
conclusions are outlined in Section 5.

2. Problem description and formulation

The Set Orienteering Problem is a generalization
of the OP where customers are grouped in clusters,
and the objective is to find a tour with a predefined
starting cluster and ending cluster, a restricted bud-
get, and such that the tour maximizes the profit col-
lected from the visited clusters. A cluster is visited
when at least one customer belonging to the cluster
has been visited. The herein presented SOP formula-
tion builds upon the existing formulation by Archetti
et al. (2018) that is extended by considering possibly
two different starting and ending clusters, both with
the possibility of having multiple nodes instead of a
single depot cluster with one node, as in the original
formulation.

The SOP can be defined on a directed graph G =
(V, A) with a set of vertices V' = {vg,...,vn} and
a set of arcs A = {a;;}. For each pair of vertices
v;, V5, there exists an arc a;; with cost ¢;;. The ver-
tices are clustered into disjoint sets so,..., Sy, with
S ={s0,...,8n}, siNs;j=0fori#j,0<1i,j<n,
and each vertex v, ., is associated with exactly
one set in S. All sets s;—g,.., have the associated
profit pi—o,... » for visiting at least one vertex within
the set. The starting set sop and the ending set s,
are for simplicity the first and the last sets, respec-
tively, both associated with zero profit (pg = p, = 0).
The objective is to find a tour that maximizes the

collected profit P such that its cost does not exceed
the given budget Tihax. Assuming that the triangle
inequality holds for the arc costs, an optimal tour
always includes one vertex per visited cluster (see
Archetti et al. (2018)).

For instances with a common depot, as in the
original SOP formulation Archetti et al. (2018), an
additional copy of such a depot can be used as the
ending set. Furthermore, the proposed formulation
allows multiple vertices in both starting set (|so| > 1)
and ending set (|s,| > 1).

Any solution of the SOP can be described by a
permutation Yj of set indexes, according to which
the tour visits the individual sets Xy = (o1,...,0%)
with0 < 0y <n,o0; #ojfori# jando; =0, 03, = n.
Beside determining the permutation of the sets, the
SOP also requires the vertices in the respective visited
clusters to be found. The vertices are represented by
their respective indexes Iy = (m1,...,7), 0 < m; <
m and vy, € s, for i € (1,...,k). Using the above
notation, the SOP can be defined as follows:

k
maximize P = E Do
g,k : '
i=1
k
St Y Crm < T (1)
i=2
Ur, € So;, Vi=1,...k,

o1=0,0,=n.

The SOP can also be formulated as an Integer Lin-
ear Program. Unlike the MIP proposed by Archetti
et al. (2018) for the SOP, the proposed formulation
does not contain the binary variables of the vertices,
and requires only two variable types. Furthermore,
the proposed model uses subtour elimination con-
straints (SECs) like the COP formulation (see An-
gelelli et al. (2014)), instead of the connectivity cuts
of the previous MIP formulation.

The decision variables used in the proposed ILP
are:

e y;: binary variable equal to 1 if at least one
customer is visited in the set s; and 0 otherwise;

e z;;: binary variable equal to 1 if arc a;; is tra-
versed and 0 otherwise.
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The proposed ILP formulation of the SOP is:

mazrimaize Z DiYi, (2)
S, €S
s.t. Z cijscq;j S Tmaxa (3)
a;;€EA
Z Tij = Z zj; Vsq € S\ {s0,sn} , Yu; € s¢,
v; €V \{sq} v; €EV\{sq}
(4)
Z Z Tij = Yq Vsq € S\ {s0}, (5)
v, €V\{sq} Vi€3sq
Z Z Zji = Yq Vsq € S\ {sn}, (6)

Vg EV\{sq} vj€Sq

B SFTERD S

YU C S\ {so,$n}, Vss € U,

vl v el s€U\ {51}

(7)
Yo=1Lyn=1, (8)
yq €{0,1}, s4€ 5, z;; €{0,1}, a;; €A (9)

The objective function (2) calls for the maximiza-
tion of the collected profit. The budget constraint (3)
limits the total length of the arcs that are used. Con-
straints (4) ensure that each vertex, except for those
in the starting and ending clusters, has the same num-
ber of entering and leaving arcs. Each visited cluster,
except for the starting cluster, must have an entering
arc. This is ensured by constraints (5). Similarly,
constraints (6) ensure that one leaving arc must be
selected for all visited clusters different from s,,. Con-
straints (7) are the SECs. Constraints (8) ensure that
both the starting cluster and the ending cluster are
visited. Finally, constraints (9) define the domains of
the variables.

Both (1) and (2)-(9) aim at finding a permutation
of a subset of the clusters and the vertices to visit in-
side the selected clusters at the same time. However,
for the VNS-SOP algorithm, the problem can be par-
tially separated into: (i) selection of the clusters to
visit; (ii) determination of the order of visits to the
selected clusters; and (iii) selection of the vertices to
visit in the chosen clusters. For a given permutation
of clusters X, the solution of (i) and (ii), the sub-
problem (iii) of selecting individual vertices IT;, within
clusters can be addressed as finding the shortest path
in a graph of the visited clusters, see Fig. 1a.

3. Variable neighborhood search algorithm for
the SOP

The designed heuristic solution of the Set Orien-
teering Problem is based on the Variable Neighbor-
hood Search metaheuristic proposed by Mladenovié
& Hansen (1997) for combinatorial optimization. The
metaheuristic uses a greedy initial solution that min-
imizes the distance per additional profit gained by
visiting a new, previously not visited cluster. After-
ward, the VNS tries to improve the currently best in-
cumbent solution by a set of predefined neighborhood
operators. The VNS metaheuristic was introduced
for the OP by Sevkli & Sevilgen (2006), and similar
neighborhood operators have been further used for
initial solutions of the DOP in Pénicka et al. (2017a)
and the OPN in Pénicka et al. (2017b).

In both the SOP initialization procedure and the
VNS-SOP algorithm itself, the solution of the SOP
is represented only by a sequence of clusters 3. For
a given sequence X with k clusters, the resulting
path can be found using a shortest path search in a
search graph that is visualized in Fig. la as a path
connecting the starting cluster s,, = so with the end-
ing cluster s,, = s,. The graph contains only the
arcs between adjacent clusters of X, and therefore,
the shortest path contains exactly one vertex in each
cluster of ¥;, and defines the vertices used for a given
sequence. The shortest path is found by a dynamic
programming breadth-first search storing the short-
est path from the starting cluster s, to all vertices in
54, iteratively for [ = 2,..., k by using already-stored
shortest paths to vertices in the preceding cluster and
the corresponding arcs connecting adjacent clusters.
The shortest path over X, is then defined as the short-
est path found among the vertices of ending cluster
54,- The proposed algorithm therefore operates with
the sequence of clusters and internally calculates the
vertices Il within the visited clusters such that the
overall path length is minimized.

The proposed VNS algorithm for the SOP, includ-
ing the greedy initialization, consists largely of simple
cluster sequence modifications, where a single cluster
is added, moved or removed from an existing cluster
sequence Y. In the case of the cluster addition, the
evaluation of the resulting path length requires only
to calculate the connection from the previous to the
following cluster in the sequence. However, the short-
est path from the starting cluster to each vertex in
the preceding cluster and also the shortest path from
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Figure 1: Graph of cluster sequence X in (a) and the cluster addition lower bound in (b).

each vertex in the subsequent cluster to the ending
cluster has to be known. Therefore, we propose to
employ dynamic programming technique to store the
shortest paths for each vertex (in the current cluster
sequence Y) from the starting and ending clusters
to quickly evaluate the simple modifications without
searching the shortest path in the whole graph.

The proposed VNS algorithm is further time op-
timized by using fast denial of the simple sequence
modifications that produce solutions with over-budget
length. For a typical SOP near-optimal solution, the
total path length is close to the budget limit Ty, ax,
and almost all modifications, such as cluster addition
or movement, produce an over-budget solution. To
quickly determine such cases, the lower bound dis-
tance between each cluster pair, i.e., the minimal-
length arc between the cluster pair, is found and
stored before the initial solution of the SOP is cre-
ated. Then, e.g., for adding the cluster s3 between
the clusters s; and sy, as shown in Fig. 1b, the lower
bound is first tested to be within the budget while
using the minimal-length arcs from s5 to s3 and from
s3 to s4. The lower bound path further consists of the
shortest paths to cluster ss from the starting cluster
and the shortest path to the ending cluster from sy,
both found as the shortest distance stored by the dy-
namic programming technique for an incumbent so-
lution among the vertices in s; and s4, respectively.
The proposed lower bound can be unfeasible, as it
might use different vertices in the cluster being added,
the previous and following clusters. However, the fea-
sible solution cannot be shorter, and finding the lower
bound is of low complexity, e.g., O(|s5|+ |s4]). Thus,
simple cluster operations can be found to produce
over-budget solutions without searching the vertices
to be used in the previous s;, the newly added ss,

and the following cluster s4 in the cluster sequence
of the feasible solution with the complexity of, e.g.,
O([ss]]s3] + |ss||sal)-

Since both the proposed ILP-based and VNS-SOP
solution algorithms for the SOP employ the greedy
construction of the initial solution, the procedure is
described first, followed by the introduction of the
VNS metaheuristic for the SOP.

3.1. Initial solution construction procedure

The proposed construction procedure of the ini-
tial solution uses a greedy approach that minimizes
the additional length of the path per additional profit.
The initially empty sequence of clusters 3o contains
only the predefined starting and ending clusters, and
the path uses the shortest arc between these depot
clusters. Then, in each step of the construction pro-
cedure, a non-visited cluster s} and a position j* for
1 < j* < k within the current sequence ¥, is found,

using the rule
L(X — L=
argmin ( kH) ( k).
igzk,i62k+1,1<‘j<k+l,0’j:i Di

ko ek
Siaj -

(10)

The selection rule (10) uses the difference of the
lengths £(Xy) and £(Xg41) of the shortest paths over
the cluster sequences ¥, and ¥y 1, respectively. This
requires an evaluation of multiple simple addition op-

erations, and therefore, the cluster distance lower bounds

and the dynamic programming technique with stor-
ing of the shortest distance to the terminating clus-
ters are used. The initialization procedure terminates
as soon as the budget limit does not allow any other
non-visited cluster to be added.
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3.2. Variable Neighborhood Search algorithm

The Variable Neighborhood Search algorithm con-
sists of two main procedures, the shake procedure
and the local search procedure, which iteratively try
to improve the best found incumbent solution. The
shake procedure uses random changes of the incum-
bent solution to get away from a possible local max-
imum. The local search procedure then extensively
searches around the randomly created solution to find
a possibly better solution than the actual incumbent.
The VNS thus optimizes the incumbent solution us-
ing a combination of the shake and local search proce-
dures with the predefined operators in variably large
solution space neighborhoods.

In order to uniquely represent any solution of the

SOP inside the VNS, the solution is represented by a
vector U = (Soys -+ S0y Sopyys- - -5 Say) Of all clus-
ters, including the not visited clusters, with the ex-
ception of the depot clusters s, and ss,. Only the
first k — 2 clusters (Sgy, .. ., Sq,_, ) are feasibly visited
between the starting cluster s,, = sp and the ending
cluster s, = s, within the Tpax budget limit form-
ing the solution sequence Y. The individual visited
vertices Il in the respective visited clusters X; are
always calculated using the breadth-first search for
the shortest path over ¥ in the graph Fig. 1la. The
number of visited clusters in the solution vector u is
maximized, i.e., we select the largest k possible for
the given u and Tpax such that the ending cluster
= s, is reached within the budget.
VNS-SOP algorithm is summarized in Alg. 1. It
starts with the construction of the initial solution and
then tries to improve the solution until the stopping
criteria are met. A combination of the maximal com-
putational time together with the limited number of
iterations and the number of iterations without im-
provement is used as the stopping rule. In each it-
eration, the shake procedure is applied, followed by
the local search procedure varying the neighborhood
operators based on the variable [ (with 1 < I <
lmaz = 2). When the profit P(u”) of the solution
u” found by the local search exceeds the profit of
the incumbent solution P(u), and its length £(u") is
within the budget, the incumbent solution is changed
to the newly-found solution. The algorithm applies
all neighborhood operators during a single iteration
and thus increases the size of the examined solution
space neighborhood.

Sop,

Algorithm 1: Variable
Search for the SOP

Input : S - customer sets, Tmax - maximal allowed
budget
Output: u - solution path

Neighborhood

1 u < createlnitialSolution(S, Tmax)
2 while stopping conditions not met do
3 l+1

4 while [ <l do

5 u’ < shake(u, 1)

6 u’" <+ local search(u’, 1)

7 if L(u") < Tmax and P(u") > P(u) then
8 uu”

9 l+1
10 else

11 L l+1+1

Shake procedure

The shake procedure of the employed VNS ran-
domly changes the actual incumbent solution to get
away from the possible local maximum. It consists of
two random operators that modify the solution vec-
tor u. By changing u, the operators can change the
order of traversing the clusters defining ¥; and can
also add some previously not visited clusters g;, ¢ > k
to ¥. The Path move operator and the Path ex-
change operator move or exchange large parts of the
solution vector u, and thus create a new solution '
away from the original incumbent. A detail descrip-
tion of the operators follows, and an example of the
operators is shown in Fig. 2.

e The Path move (I = 1) operator randomly selects
a part of the solution vector w and moves it to
a randomly selected position. This can be done
by selecting three random positions inside u, e.g.,
1<ip <ig<13<n, 1.3 75 k, and moving the
sequence of clusters So;i1 < J < g further in u
after the cluster Soriy - Alternatively, with the same
probability as moving the cluster sequence further
in u, a cluster sequence So;y02 < J < g is moved
before s, -

e The Path exchange (I = 2) operator exchanges

two randomly selected non-overlapping parts of the
Similarly to the path move, the
path exchange can be implemented using four ran-
domly selected positions within u, e.g., 1 < i1 <
ig < i3 < g < m, 11,4 # k. Afterwards, the clus-
ter sequence sy;,11 < J < dg is exchanged with the
sequence Sy, , 13 < h <y,

solution vector.
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Figure 2: Examples of the shake operators that (a) move the clusters (s4, sg) after ss; and (b) an exchange of (sg) with (s1, s5).

Local search procedure

The VNS local search procedure is used for an ex-
tensive search around the randomly created solution
vector v’ produced by the shake procedure. A close
neighborhood of the solution v’ is searched using the
operators One cluster move and One cluster ex-
change to find a better solution.

The implemented local search procedure originates
from the randomized variant of the VNS (RVNS) in
which the local search operators are applied randomly
to the solution vector instead of being applied ac-
cording to deterministic rules as in the regular VNS.
Both operators test simple modifications of the solu-
tion vector «’, where only one (One cluster move) or
two (One cluster exchange) clusters are moved within
w'. Each operator tries n?
tions, and only those not worsening the quality of
the solution are applied to u’ before examining fur-
ther modifications. Each operator thus implements a
hill climbing paradigm guaranteeing that no decrease
occurs in the solution quality.

The two local search operators examine numerous
cluster sequence modifications to improve the solu-
tion. By employing the dynamic programming tech-
nique, with storing the shortest paths inside the so-
lution o/, the evaluation of n? such modifications is
significantly speeded up. Furthermore, each modifi-
cation of this type is examined in advance to check
whether its lower bound does not produce a solution
with an over-budget length. The local search opera-
tors illustrated in Fig. 3 are as follows:

such random modifica-

e The One cluster move (I = 1) operator repeat-
edly tries modifications where one random cluster
within the solution vector is moved into a differ-
ent randomly selected position. The modification
can be realized by selecting two random positions
1 <4 < iy < n, 412 # k, within the solution

vector u'. Afterwards, one cluster is moved either
So,, after sq, —or ss, before sq, with the equal
probability. Only modifications not decreasing the
solution quality are applied to u’ before examining
further modifications.

e The One cluster exchange (I = 2) is similar
to the previous local search operator; however, in-
stead of moving one cluster, it exchanges two ran-
domly selected distinct clusters within the solution
vector. Using two random indexes 1 < i1 < i9 < n,
i1,2 # k, a single modification of this operator is
made by exchanging clusters s;; and s;, in «’. The
operator examines n? such exchange modifications
and always applies only those that do not decrease
the solution quality.

4. Computational tests

The proposed VNS-SOP algorithm and the novel
ILP formulation have been evaluated on the existing
SOP benchmark instances. Furthermore, the meth-
ods are tested on the instances of the OP with Neigh-
borhoods (OPN) and the Dubins OP (DOP) addressed
as a sampling-based SOP.

Both VNS-SOP and the ILP-based solution algo-
rithms are implemented in C++, and the computa-
tional experiments have been performed on a stan-
dard PC equipped with an Intel Core i7, clocked at
3.40 GHz, and 16GB of RAM, by using a single core
for each run. The ILP formulation (2)-(9) proposed
to find the optimal solution of the SOP is solved by
means of CPLEX 12.6.1. The subtour elimination
constraints (7) are dynamically added to the formula-
tion when found to be violated. The greedy construc-
tion procedure used for VNS-SOP is also used for cre-
ating an initial feasible solution for the CPLEX solver
when addressing the ILP formulation (2)-(9). The
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Figure 3: Example of cluster sequence modifications made by the local search operator.

maximal computational time for the CPLEX solver
has been set to 9 hours.

The stopping condition of VNS-SOP is a combi-
nation of the following three criteria: a) the max-
imum of 2000 iterations, b) 1000 iterations without
an improvement, and ¢) the maximum computational
time of 20 minutes. Each problem instance has been
solved 20 times to obtain valid statistical results of
VNS-SOP.

In the following section, we describe the bench-
mark datasets that are used. Then, we present the
computational results obtained by applying VNS-SOP
and by solving the ILP formulation (2)-(9) by means
of the CPLEX solver on the GTSP dataset instances
used for the SOP in Archetti et al. (2018). Finally,
the computational results of the OPN and the DOP
are presented, both addressed as a sampling-based
SOP.

4.1. Test instances

The evaluated benchmark instances can be cat-
egorized into three types. The first is based on the

dataset created for the GTSP by Fischetti et al. (1997).

The other two datasets are based on the benchmark
instances created by Tsiligirides (1984) for the OP
that are used to generate test instances for the OPN
and DOP with a predefined number of samples form-
ing the clusters for the SOP from the original OP
nodes. The OP datasets for the OPN and DOP are
100x scaled and use the rounded up distances be-
tween nodes instead of the exact Euclidean distances.
The benchmark datasets are available online together
with the implementations of the proposed methods!.

'https://github.com/ctu-mrs/vns-sop

GTSP dataset

The GTSP dataset has been previously used for
evaluating the performance of the matheuristic based
on tabu search for the SOP (MASOP) proposed in
Archetti et al. (2018), and it is therefore used for
comparison with the SOP solvers proposed here. To
modify the GTSP dataset for the SOP with a single
depot, the authors of MASOP removed the first node
in each dataset instance from its original GTSP clus-
ter and added the node to a new depot cluster sg. The
budget limit Tax for individual instances is gener-
ated using the w ratio of the GTSP*, the best known
cost of the GTSP solution taken from Fischetti et al.
(1997) 2. Two types of cluster profit p, € {gy, 85}
are considered in the dataset. The first, g;, uses the
cluster profit p; = |s;| equal to the number of nodes
in the respective cluster. The second type, gy, uses
the pseudo-random profit of each node j, with the
exception of the depot node j = 0 with py = 0, equal
to 1 + (71415)mod(100) with the consequent cluster
profit summed from its respective nodes3. As we con-
sider predefined starting and ending clusters in our
SOP formulation, the original single depot cluster is
duplicated and is used as both a starting cluster and
an ending cluster.

*In Archetti et al. (2018), the solutions with w = 1 are
expected to collect all clusters within the dataset instance.
However, this is not feasible due to the newly created depot
cluster, which necessarily adds a travel cost compared to the
GTSP* solution. Furthermore, the SOP dataset uses rounded
up 'CEIL_2D’ edge costs, which is reasonable for the budget
limited SOP, but it further increases the length of the shortest
cycle over all clusters. The original GTSP dataset uses round-
ing to the nearest integer value 'EUC_2D’.

3The originally proposed g, rule for the SOP in Archetti
et al. (2018) and previously also used for the COP in Angelelli
et al. (2014) uses the profit formula 1+ (71415 + 73)mod(100).
However, the dataset and its results presented for the SOP
match with the formula 1+ (71415)mod(100).
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OPN dataset

The second benchmark instances use the Set 2
dataset with 21 nodes originally proposed by Tsiligiri-
des (1984) for the OP. In the OPN proposed by Faigl
et al. (2016), the profit of individual nodes can be
collected within a circular neighborhood of each node
with predefined neighborhood radius §. The solution
can be addressed using a sampling-based approach,
where for each original node (except the starting and
ending nodes) in the dataset, a cluster with o,, equidis-
tantly sampled nodes is created on the d-radius circle.
For all nonterminating original OP nodes with the po-
sition v; = (z;,¥:),% € (2,...,n — 1), the newly cre-
ated clusters s; have o, sampled neighborhood nodes
with the positions (z;;,y:5),i € (2,...,n—1),j €
(0,...0n — 1). The positions of the neighborhood
nodes are determined as:

(@i, yig) = (wi,yi) + 6 (COS (20j:> St (25:)) '
(11)

The neighborhood radius used for generating the
dataset is § = 50. Both terminating clusters contain
only the original nodes. The created SOP dataset for
the OPN thus consists of 21 clusters with 2 + 190,
nodes. The dataset does not contain overlapping clus-
ters although the original OPN can have overlapping
d-radius circles. The SOP dataset for the OPN is
approximation of the original instances where more
samples o0, better approximates the instances at the
cost of the increased number of nodes.

DOP dataset

The second shown variant of the OP solvable as
the SOP is the DOP introduced in Pénicka et al.
(2017a). In the DOP, the airplane-like vehicle is ap-
proximated by the Dubins vehicle model proposed
in Dubins (1957). A solution of the OP contains
straight line segments between nodes with sharp turns,
which are not feasible for the Dubins vehicle. In the
DOP, the aerial vehicle has to turn with a given turn-
ing radius p. Dubins showed that for a curvature-
constrained vehicle of this type, the optimal length
maneuver between two locations with initial and final
heading angles is one of the six possible Dubins ma-
neuvers which satisfy the triangular inequality. The
Dubins vehicle state ¢ = (x,y, 8) can be described by
its position in the plane (z,y) € R? and its heading
angle @ € S, i.e., its state ¢ belongs to the special Eu-
clidean group g € SE(2). To solve the DOP, we have
to consider the heading angle at each node to connect

the consecutive Dubins maneuvers between nodes fea-
sibly, and thus the selection of the heading angles is
a part of the optimization due to their influence to
the length of the respective Dubins maneuvers. Simi-
larly to the OPN dataset, a sampling-based approach
with heading angles at the given nodes can approx-
imate the original DOP by creating clusters of the
SOP. For all original nodes v;, i € (1,...,n), the cre-
ated clusters s; contain op nodes with equidistantly
sampled heading angle 6; ; for j € (0,...0, —1). The
individual nodes g; ; representing the Dubins vehicle
states are

25
Qi = (i Yig: i) = <xzyz > :
Oh

The minimal turning radius used in the created
dataset is p = 50. The dataset for the DOP consists
of asymmetric SOP instances, as the Dubins maneu-
ver has a different length when the initial and final
vehicle states of the maneuver are exchanged.

An example of the found solutions of the SOP on
the GTSP, OPN and DOP test instances is shown
in Fig. 4. Figure 4a shows the solution on the GTSP
11berlin52 dataset for w = 0.6 and py = g;. Figure 4b
and 4c are example solutions of the OPN and DOP
both with Tiax = 3000 on the Set 2 dataset, using
op, = 8,6 = 50 in the case of the OPN and o, = 8,p =
50 for the DOP.

(12)

4.2. Computational results on the GTSP dataset

The proposed ILP formulation and VNS-SOP have
been evaluated on the GTSP dataset instances, and
have been compared with the existing MIP formula-
tion and the matheuristic based on tabu search (MA-
SOP), both proposed by Archetti et al. (2018).

The results shown in Table 1 concern small in-
stances with up to 76 nodes and 16 clusters. Both
cluster profit types p, € {g,8,} are considered to-
gether with various w ratios of the GTSP* solution
and the corresponding budget limit Ty,,x. For each
method are reported the collected profit P and the
computational time T in seconds. The collected profit
of VNS-SOP has been identical in all runs, and the
reported computational time is the average from 20
runs.

Table 1 shows that solving to optimality the ILP
formulation (2)-(9) requires significantly less compu-
tational time than solving the MIP formulation pro-
posed in Archetti et al. (2018). Furthermore, the
computational times of VNS-SOP are about one or-
der of magnitude lower than those of MASOP, while
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Figure 4: Example solutions of the SOP on selected dataset instances.

Table 1: Comparison with exisitng methods on small GTSP dataset instances.

. MIP MASOP ILP VNS-SOP

instance Pe W  Tmax P T P T P T P T

11berlin52 g 0.4 1616 37 47.07 37 1.75 37 1.08 37 0.11
11berlin52 g, 04 1616 1829 65.96 1829 1.70 1829 1.18 1829 0.11
11berlin52 g; 0.6 2424 43 777.88 43 240 43 4.24 43 0.16
11berlin52 g, 0.6 2424 2190 1532.91 2190 2.64 2190 1.34 2190 0.15
11berlin52 g; 0.8 3232 47 2648.04 47 717 47 4.63 47 0.19
11berlin52 g, 0.8 3232 2384  3833.50 2384 6.61 2384 7.67 2384 0.19
11eil51 g 04 69 24 39.72 24 1.85 24 2.54 24 0.09
11eil51 g 04 69 1279 40.13 1279 197 1279 2.81 1279 0.09
11eil51 g 0.6 104 39 34.64 39 5.13 39 1.67 39 0.14
11eil51 g, 0.6 104 1911 204.65 1911 4.74 1911 3.01 1911 0.14
11eil51 g 08 139 43 1586.67 43 2.30 43 16.51 43 0.18
11eil51 g 0.8 139 2114 1520.67 2114 1.93 2114  40.32 2114 0.20
14st70 g, 04 126 33 9666.29 33 443 33 16.65 33 0.14
14st70 g, 04 126 1672 4396.77 1672 4.35 1672 28.50 1672 0.15
14st70 g, 08 252 65  18227.23 65 8.80 65  959.59 65 0.31
14st70 g, 08 252 3355 30851.18 3355 7.89 3355 228.84 3355 (.33
16€il76 g 04 83 40 4987.09 40  3.88 40 86.18 40 0.19
16€il76 g 04 83 2223 4939.08 2223 4.73 2223 37.55 2223  0.20
16€il76 g 0.6 125 59  29565.85 59 240 59 64.31 59 0.31
16€il76 g, 0.6 125 3119 21127.41 3119 6.28 3119 108.75 3119 0.32

the solution value is optimal for all the runs. We re-
call that in Archetti et al. (2018) the MIP formulation
was solved by means of CPLEX 12.6 and the experi-
ments were carried on a standard PC equipped with
Intel Core i7 clocked at 2.80 GHz. Thus, the com-
putational time improvement obtained can be only
partially justified by the newer version of the CPLEX
solver and the better PC used to perform our exper-
iments. The significantly lower computational times
suggest that solving the ILP formulation (2)-(9) and
computing solutions by VNS-SOP are both them-
selves less computationally demanding. The ILP model
(2)-(9) has fewer variables (no vertex variables) than
the MIP formulation. Furthermore, the different SECs
are added only when found to be violated, which can
save the insertion of all SECs (especially when the
lower bound is set to the CPLEX solver using the
greedy initial feasible solution).

The results shown in Table 2 compare the per-
formance of the proposed algorithms against that of
MASOP for the budget ratio w = 1 on large in-
stances with up to 1084 nodes. The large instances
cannot be solved optimally using the ILP formula-

10

tion within the given computational time, except four
cases. For both profit types, the table shows the so-
lution value P and the computational time T for the
solution computed by MASOP. The computational
results of VNS-SOP are reported with the maximal
P and the average P4 solution values, and also with
the average computational time T. The results com-
puted by the CPLEX solver when addressing the ILP
formulation (2)-(9) are shown with the maximally
achieved solution values during the optimization and
with the percentage gap (or the computational time
in seconds for the four optimal solutions found). The
profits computed by VNS-SOP appear in bold or un-
derlined when found to be larger or smaller, respec-
tively, than those computed by MASOP.

Regarding the results presented in Table 2, VNS-
SOP requires less computational time than MASOP
for almost all instances with up to 654 nodes. VNS-
SOP does not find the best known result for two
instances with g; profit and for six instances with
gy. For both profit types, the unachieved best solu-
tions occur for the largest instances with 493 nodes
and more, where also the computational time is the
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Table 2: Comparison on large GTSP dataset instances of the SOP with w = 1.

&1 &2

instance MASOP VNS-SOP ILP MASOP VNS-SOP ILP

P T P Pavg T P T /gap P T P Pavg T P T /gap
16pr76 74 8.6 74 74.0 0.6 74 1.4% 3765 10.6 3765 3765.0 0.6 3765  26567.7
20kroA100 96 10.5 96 96.0 0.8 96 5.1% 4868 11.5 4868 4868.0 0.8 4868 2.9%
20kroB100 98 13.4 98 98.0 0.8 98 1.0% 4916 10.7 4916 4916.0 0.9 4916 1.9%
20kroC100 97 10.8 97 96.1 0.9 97 2.1% 4882 11.2 4882 4869.2 1.1 4882 2.6%
20kroD100 96 10.3 96 96.0 1.0 96 3.1% 4838 8.9 4838 4838.0 1.1 4838 3.5%
20kroE100 96 9.1 96 96.0 0.9 96 15536.1 4887 9.9 4887 4887.0 1.1 4887  18938.5
20rat99 93 7.6 93 92.9 1.2 85 15.3% 4721 8.1 4721 4721.0 1.0 4483 11.7%
20rd100 97 10.4 97 97.0 1.3 97 2.1% 4929 9.6 4929 4929.0 1.3 4929 1.6%
21eil101 97 8.8 98 97.8 1.2 98 1.0% 4953 20.1 4993 4957.0 1.1 4948 2.1%
211in105 102 8.1 102 102.0 1.1 102 2.0% 5157 8.4 5157 5157.0 1.1 5101 2.5%
22pr107 101 8.6 101 101.0 0.6 101 5.0% 5109 8.3 5109 5105.4 0.7 5104 51%
25prl124 121 11.3 121 121.0 1.3 114 7.9% 6173 11.9 6173 6170.2 1.5 6159 1.2%
26bier127 125 16.0 125 125.0 1.8 125 0.8% 6314 16.2 6314 6314.0 1.8 6314 4967.7
26¢h130 127 10.2 127 126.7 1.9 126 2.4% 6412 9.7 6412 6382.3 2.2 6412 1.4%
28prl136 134 10.2 134 134.0 2.1 134 0.7% 6841 12.2 6841 6831.4 1.8 6808 0.6%
29prl144 141 17.4 141 141.0 1.7 139 2.9% 7195 22.0 7195 7157.3 1.6 7137 1.5%
30ch150 144 9.6 147 146.7 2.1 134 11.2% 7315 12.3 7394 7378.2 1.9 6750 11.6%
30kroA150 145 11.3 145 144.7 2.2 140 6.4% 7361 13.8 7361 7356.6 2.3 7145 5.4%
30kroB150 148 15.2 148 148.0 2.5 148 0.7% 7445 15.1 7445 7445.0 2.6 7355 2.4%
31prl52 147 18.2 147 145.6 1.7 137 10.2% 7422 17.8 7422 7355.6 1.9 6545 17.0%
32ul59 157 15.5 157 155.1 2.2 143 10.5% 7991 22.9 8011 7965.2 2.8 7666 4.8%
39rat195 189 13.0 189 188.9 5.2 164 18.3% 9558 11.0 9558 9546.3 4.7 8438 16.9%
40d198 196 36.8 196 195.2 5.7 171 15.2% 9934 25.7 9938 9926.3 6.7 8628 15.9%
40kroa200 198 22.8 198 198.0 3.7 189 5.3% 10010 24.5 10010 9976.0 3.6 9577 5.0%
40krob200 198 19.9 198 198.0 5.0 192 3.6% 9990 28.6 9990 9982.7 5.8 9869 1.9%
45ts225 221 34.7 221 220.8 7.3 185 21.1% 11187 26.2 11225 11158.4 7.8 9767 15.8%
45tsp225 219 16.7 220 219.1 6.1 186 20.4% 11103 16.4 11124 11063.9 7.1 9615 17.6%
46pr226 224 26.9 224 224.0 3.6 222 1.4% 11368 26.4 11368 11358.1 4.6 11222 1.4%
53gil262 258 27.2 258 254.2 8.3 215 21.4% 13050 25.9 13050 13003.6 7.8 10957 20.4%
53pr264 262 34.0 262 262.0 7.1 230 14.8% 13277 36.9 13277  13277.0 7.4 13277 0.2%
56a280 273 33.5 273 270.8 104 212 81.6% 13971 37.0 13971  13834.9 9.9 11996 18.2%
60pr299 296 31.3 296 295.0 12.0 270 10.4% 15005 36.8 15005  14974.4 12.1 12138 24.5%
641in318 315 43.4 316 313.8 10.6 295 7.5% 16013 77.3 16013  15948.0 11.2 15170 5.7%
80rd400 397 76.7 398 394.3 28.2 342 16.7% 20055 48.1 20140 19942.2 29.4 17617 14.4%
841417 415  103.5 415 414.4 18.0 399 4.8% 21030 114.7 21030  20956.0 18.1 19766 6.5%
88pr439 437  158.0 437 432.4 33.9 415 5.5% 22110 132.8 22110 22032.2 33.1 21058 5.3%
89pchb442 440 129.5 440 438.2 38.6 361 22.2% 22300 95.0 22300 22116.3 36.2 19456 14.7%
99d493 490  120.8 490 487.1 67.3 462 6.5% 24827 153.1 24840 24708.3 66.3 23545 5.6%
115rat575 562 91.2 563 555.0 76.5 459 25.1% 28497 65.9 28361  28043.5 75.6 23192 25.2%
115u574 571  204.5 571 569.9 80.3 509 12.6% 28888  212.7 28888  28866.5 72.2 26118 10.9%
131p654 652  356.0 652 650.6 45.9 640 2.0% 32991  360.1 32950 32894.9 44.2 32450 1.7%
132d657 649  126.1 649 642.1 108.9 551 19.1% 32974 1559 33022 32901.6 100.3 29198 13.7%
145u724 716 99.6 717 708.6 176.6 564 28.2% 36288 116.7 36316 35964.8 171. 29195 25.1%
157rat783 767  279.2 760 750.4  225.7 618 26.5% 38953 145.5 38487 37999.8 233.1 31279 26.3%
201pr1002 994  304.9 994 981.8 480.4 877 14.1% 50453  992.7 50172  49760.9 534.7 45314 11.6%
212u1060 1057 873.5 1057 1056.3 679.9 950 11.5% 53450  798.5 53437 53391.8 641.8 48151 11.2%
217vm1084 1078 489.5 1070 1059.7 832.0 942 15.0% 54642  655.5 54363  53744.2  733.7 48955 11.8%

same as, or larger than, the time required by MA-
SOP. However, VNS-SOP improved the best known
solutions for seven g; instances and 10 instances with
profit type g,. The high VNS-SOP computational
time for the largest instances is most probably caused
by the graph search used for finding the optimal se-
lection of the cluster nodes for the particular cluster
sequence that is being examined for possible improve-
ment. In the case of a large number of clusters in a
sequence, as for the largest SOP instances with w = 1,
the maintenance of the graph with the shortest path
from the starting cluster and the ending cluster to
each vertex of the current solution requires a signifi-
cant amount of time in each VNS-SOP iteration. The
four ILP optimal solutions that were found show that
for w = 1, the paths do not visit all the clusters in the
dataset instance, and VNS-SOP finds solutions with
the same optimal value.

A comparison of the results shown in Tables 1
and 2 shows that VNS-SOP robustly finds high qual-
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ity solutions, and in most cases significantly faster
than MASOP. For several instances, VNS-SOP does
not find the best known solution, but it improves
the solution of a larger number of dataset instances.
Furthermore, solving the ILP formulation (2)-(9) by
means of the CPLEX solver requires a fraction of the
computational time needed to solve the MIP formu-
lation in Archetti et al. (2018).

4.3. Application of the SOP to other OP variants

VNS-SOP and the ILP formulation (2)-(9) are
further tested when used to solve the OPN and the
DOP. Both problems can be addressed as the SOP
by sampling either the neighborhood positions in the
OPN or the heading angles in the DOP. In both cases,
the resulting problem is an approximation of the orig-
inal one, i.e., its solution space is a subset of the solu-
tion space associated with the corresponding original
problem. A similar VNS-based algorithm has previ-
ously been used by the authors for solving the DOP in
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Table 3: Computational results of the OPN solved as the SOP.

on = onp =8 on =12

Tmax ILP VNS-SOP ILP VNS-SOP ILP VNS-SOP

P T/gap P T P T/gap P T P T/gap P T
1500 180 3.3 180 0.2 180 96.8 180 0.4 180 1710.5 180 0.7
2000 230 86 230 03 230 63.5 230 0.6 230 242.9 230 1.0
2300 230 109 230 0.4 240 1798.1 240 0.8 240 14971.0 240 1.2
2500 260 39.5 260 0.4 260 6462.2 260 0.8 260 10.7% 260 1.2
2700 280 99.6 280 0.5 290 12165.4 290 0.8 270 16.3% 290 1.3
3000 320 432.4 320 0.4 320 7.0% 340 1.0 320 15.6% 340 1.5
3200 360 261.3 360 0.5 370 2.7% 370 0.9 360 25.0% 370 1.4
3500 410 708.3 410 0.6 410 9.8% 430 1.0 390 15.4% 430 1.5
3800 450 35.0 450 0.4 450 4314.8 450 0.9 430 4.7% 450 1.6
4000 450 6.9 450 0.4 450 6.2 450 1.0 450 8.3 450 1.6
4500 450 0.2 450 0.5 450 321.7 450 1.1 450 284.8 450 1.8

Table 4: Computational results of the DOP solved as the SOP.
Op = 4 Op = 8 Op = 12

Tmax ILP VNS-SOP ILP VNS-SOP ILP VNS-SOP

P T P T P T P T P T P T
1500 115 2.97 115 0.21 120 8.18 120 0.39 120 20.62 120 0.62
2000 175 1.62 175 0.26 190 6.14 190 0.50 190 14.34 190 0.88
2300 190 1.96 190 0.31 200 9.14 200 0.61 200 17.76 200 1.00
2500 205 2.76 205 0.45 220 8.45 220 0.70 220 13.23 220 1.12
2700 215  3.14 215 0.39 230 5.67 230 0.70 230 17.25 230 1.18
3000 240  9.05 240  0.48 255 12.15 255  0.87 255 33.35 255 1.48
3200 265 4.11 265 0.50 280 12.06 280 0.90 290 51.76 290 1.31
3500 295 5.55 295 0.41 315 18.57 315 0.74 315 30.02 310 1.26
3800 330 9.17 330 047 345 23.15 345 1.10 345 46.18 345 1.91
4000 360 3.75 360 0.54 375 14.71 375 1.08 375 50.30 375 1.74
4500 415 3.54 415 0.59 430 14.29 430 0.93 440 21.31 440 1.85

Pénicka et al. (2017a); however, it was not addressed
as the SOP studied here, nor solved using the ILP.

Orienteering Problem with Neighborhoods

The performance of the proposed methods is tested
for the OPN dataset instances derived from the Tsili-
girides (1984) Set 2 (see Section 4.1-OPN dataset).
The results are shown in Table 3 for various bud-
get limit Tax and number of neighborhood samples
on € {4,8,12}. The different values of o, lead to
instances with 78, 154, and 228 nodes, respectively.
The maximal collected profit P and the average com-
putational times T are reported for both VNS-SOP
and the solutions found by the CPLEX solver when
addressing the ILP formulation. For the instances
with a medium budget and a large number of sam-
ples, the optimal solutions of the ILP formulation are
not found within the given computational time, and
the optimization gap is reported instead.

VNS-SOP finds the same optimal solutions in all
cases where the optimal solution of the ILP formu-
lation is found. In other cases, VNS-SOP achieves
either the same results as, or better results than, the
solutions found when addressing the ILP. The max-
imal computational time of VNS-SOP is 1.8s, while
the optimal solution of the ILP formulation is found
within maximally 14971.0s. The selected numbers of
samples o, demonstrate how the solution quality im-
proves when the OPN is better approximated using
more samples.
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Dubins Orienteering Problem

The DOP solved as a sampling-based SOP is eval-
uated on instances also derived from the Tsiligirides
(1984) Set 2 (see Section 4.1-DOP dataset). For the
DOP, the heading angles of the airplane-like Dubins
vehicle are sampled into oy, € {4, 8,12} values, creat-
ing datasets with 84, 168, and 252 nodes, respectively.
Such SOP instances have starting and ending clus-
ters with op nodes and the heading angles in these
clusters have to be found during optimization. Ta-
ble 4 reports on the achieved results of the solution
methods for various budget limit Tp,.x and number
of heading samples oy,.

According to the presented results, the optimal
solution is found by the CPLEX solver when ad-
dressing the ILP formulation for all the tested in-
stances with the maximally required computational
time 51.76s. VNS-SOP finds solutions that are op-
timal in all instances with the exception of one case
with Tpax = 3500,0, = 12. The maximal compu-
tational time of VNS-SOP is 1.91s. Similarly to the
OPN, the DOP is better approximated using more
samples oy, as can be seen for o, = 4 and o, = 12.
We can also observe that the optimal solution when
addressing the ILP formulation is found much faster
in the case of the asymmetric DOP than for the OPN.
The branch-and-cut algorithm used by the CPLEX
solver thus performs better for the DOP with a large
difference in the lengths of the Dubins maneuvers be-
tween samples of the heading angle connecting the
same clusters.
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The results in both Table 3 and Table 4 show that
the SOP can be successfully used for solving the sam-
pled OPN and DOP. VNS-SOP can find high-quality
solutions within 1.91 seconds for problems with up
to 252 nodes. Furthermore, the solution of the ILP
formulation, found with very low computational time
in the case of the DOP, indicates that VNS-SOP can
achieve the optimal solution of the sampled DOP and
OPN for almost all evaluated instances.

5. CONCLUSIONS

In this paper, we introduce a Variable Neighbor-
hood Search (VNS) metaheuristic and a novel Inte-
ger Linear Programming (ILP) formulation for the
Set Orienteering Problem (SOP). The SOP is a gen-
eralization of the OP where customers are grouped
in clusters, and the objective is to find a tour with a
predefined starting cluster and ending cluster, a re-
stricted budget, and such that the tour maximizes the
profit collected from clusters with at least one visited
customer. The VNS algorithm for the SOP (VNS-
SOP) robustly provides high-quality solutions and
improves the solution of several benchmark instances.
The computational times of finding the SOP solution
using both the novel ILP formulation and VNS-SOP
are significantly lower than those of the existing ap-
proaches, especially in low to medium-size test in-
stances. Furthermore, we show other variants of the
Orienteering Problem that can be addressed as the
SOP using a sampling-based approach. The Orien-
teering Problem with Neighborhoods, with profit col-
lection within the neighborhood radius of each cus-
tomer, and the Dubins Orienteering Problem for an
airplane-like vehicle constrained by the minimum turn-
ing radius, can both be addressed as the studied SOP.
The implementation of VNS-SOP and of the ILP for-
mulation in the CPLEX solver are published as open-
source software together with the dataset instances
that have been used.
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Chapter 6

Unsupervised learning-based flexible framework for
surveillance planning with aerial vehicles

The fourth core publication of this thesis is the manuscript named Unsupervised learning-
based flexible framework for surveillance planning with aerial vehicles published in the
Journal of Field Robotics.

J. Faigl, P. Vana, R. Pénicka, and M. Saska, “Unsupervised learning-based
flexible framework for surveillance planning with aerial vehicles,” Journal of Field
Robotics, vol. 36, no. 1, pp. 270-301, 2019

The article is motivated by our participation in the Mohamed Bin Zayed International
Robotics Challenge 2017 competition, specifically by the Challenge 3. In this challenge, a
team of three unmanned aerial vehicles is requested to search, pick up, and deliver colored
objects placed in a given arena. One of the crucial tasks in the challenge was to localize the
objects in the arena. This was addressed by a quick scan of the arena from a high altitude,
which provided a large number of object detections with possible false positives. Therefore,
an additional flight of all UAVs at a low altitude over the object detentions was planned to
verify the detections and identify the rewards associated with the objects. The multi-robot
planning over the object detections is the main topic of this core publication.

The problem of finding the shortest path over the object detections is formulated as a
multi-vehicle variant of the DTSPN. In the targeted minmaz variant of the m-DTSPN, the
objective is to minimize the longest path for m robots while all target locations are visited
in their neighborhoods by at least one of the robots modeled as Dubins vehicle. The main
approach proposed in the article for the m-DTSPN is based on the unsupervised learning
framework using the growing SOM. However, the flexible framework is further shown for a
more complex Bézier curve model of the UAVs that can exploit the maximal velocity and
acceleration of the vehicle rather than the Dubins vehicle. Finally, the Bézier curve model
allows generalizing the approach to 3D.

Nevertheless, the author of this thesis contributed mainly to the development of the
Variable Neighborhood Search method newly introduced for the m-DTSPN alongside the
SOM-based approach. The VNS for the m-DTSPN uses a fast initialization procedure that
greedily assigns targets to particular UAVs based on a competitive rule that minimizes devi-
ation from average path length. The shaking and local search procedures of the VNS method
have, similarly to the variants for the (D)OP(N) and SOP, a set of operators that are sequen-
tially tried. In the case of the VNS for the minmaz m-DTSPN, the operators of local search
mainly focus on shortening the longest tour by moving its assigned targets to a different tour.

The computational results show that the SOM-based approach can find high-quality
solutions in the shortest time. However, the proposed VNS approach has the shortest average
solution lengths. In particular instances, the VNS-based solver outperforms the SOM solver,
and even the proposed initialization method of the VNS achieves high-quality solutions.

The contribution of the author of this thesis on the publication is 20 % as the third
author. The author contributed mainly by Section 5 about the VNS-based method for the
m-DTSPN and by helping with the real experiments in Section 7.3.1.
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Abstract

The herein studied problem is motivated by practical needs of our participation in the
Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2017 in which a
team of unmanned aerial vehicles (UAVSs) is requested to collect objects in the given
area as quickly as possible and score according to the rewards associated with the
objects. The mission time is limited, and the most time-consuming operation is the
collection of the objects themselves. Therefore, we address the problem to quickly
identify the most valuable objects as surveillance planning with curvature-
constrained trajectories. The problem is formulated as a multivehicle variant of the
Dubins traveling salesman problem with neighborhoods (DTSPN). Based on the
evaluation of existing approaches to the DTSPN, we propose to use unsupervised
learning to find satisfiable solutions with low computational requirements. Moreover,
the flexibility of unsupervised learning allows considering trajectory parametrization
that better fits the motion constraints of the utilized hexacopters that are not limited
by the minimal turning radius as the Dubins vehicle. We propose to use Bézier curves
to exploit the maximal vehicle velocity and acceleration limits. Besides, we further
generalize the proposed approach to 3D surveillance planning. We report on
evaluation results of the developed algorithms and experimental verification of
the planned trajectories using the real UAVs utilized in our participation in
MBZIRC 2017.

KEYWORDS
aerial robotics, computing architectures, planning

group of up to three UAVs is requested to verify the objects and
identify the reward associated with them to prefer collecting the

The surveillance planning problem studied in this paper is motivated
by practical needs of our participation in the Mohamed Bin Zayed
International Robotics Challenge (MBZIRC) 2017 (MBZIRC, 2017,
Saska, 2017). In particular, in our effort towards the Challenge 3,
where a team of unmanned aerial vehicles (UAVs) is requested to
search and collect objects of interest located in a specified arena.
Placement of the objects is not known a priori, and therefore, a quick
scan of the whole area is performed at a high altitude to provide a
rough estimation of the possible object locations with particular
preference of false positives rather than false negatives. Then, a

most rewarding objects for achieving a high total score (see Figure 1
with snapshots from our preparation experiments). The particular
problem addressed in this paper is the trajectory planning to identify
the objects of interest that is considered as the surveillance planning
with known target locations provided from the first overview scans
of the area.

The time for the whole mission is limited, and the most time-
consuming part is the pickup and delivery of the objects; hence, the
UAVs have to quickly visit the expected locations of the objects and
confirm the object location and its reward or reject false positive

270 | © 2018 Wiley Periodicals, Inc.

wileyonlinelibrary.com/journal/rob
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FIGURE 1 A snapshot of three UAVs following the planned trajectories in a validation of the objects of interest (left) and detail of the used object of
interest (right) in the preparation phase towards the Challenge 3. UAV: unmanned aerial vehicle [Color figure can be viewed at wileyonlinelibrary.com]

estimates. Hence, it is desirable to spend as little time as possible in
this verification part of the mission. Moreover, regarding the size of
the arena, which is in tens of meters, and velocity of the UAVs that
fly up to 5 ms1, it is preferable to do not spend too much time by
planning the trajectories for objects identification as the UAV can
travel a significant distance in any additional second spent in
planning. Therefore, it has been requested to develop a surveillance
planning algorithm with low computational requirements while still
be able to provide solutions of satisfiable quality. Thus, our initial
intention was to provide a cost-efficient solution in less than 1s
using a single core of a conventional computer with a central
processing unit (CPU) of the iCore7 class running at the frequency
around 3.4 GHz, that is, computational resources available at our
UAVs (Spurny et al., 2018).

Surveillance planning as finding a cost-efficient trajectory to visit
a set of locations can be addressed as a solution of the traveling
salesman problem (TSP) which is a well-studied problem of combina-
torial optimization, for which several computationally efficient
heuristic algorithms have been developed (Applegate, Bixby, Chvatal,
& Cook, 2007; Helsgaun, 2000). Regarding trajectory planning for a
team of vehicles, such that the total time required to validate all
possible object locations is minimized, it is necessary to consider the
m-TSP approaches that directly minimize the longest tour length, i.e.,
the minmax variant of the m-TSP (Bektas, 2006). Notice, the problem
where the sum of the lengths (minsum) of all tours is minimized can
be addressed by a transformation of the m-TSP to the single vehicle
TSP using (Bellmore & Hong, 1974); however, such solutions are of
poor quality as they can contain degenerative solutions with zero
tour lengths for particular vehicles. Therefore, it is necessary to
address the minmax m-TSP directly.

Moreover, when planning trajectories for UAVs, it is suitable to
provide smooth trajectories even for our hexacopter UAVs utilized in
MBZIRC 2017 because the low-level trajectory following controller
can more precisely navigate the vehicle along the planned path
(Baca, Loianno, & Saska, 2016). An example of the trajectory
following performance is shown in Figure 2. Therefore, a curvature-
constrained path is desirable to enable fast motion with the maximal
forward velocity and precise trajectory following rather than paths
with sharp turns that can be found as a solution of the regular
Euclidean TSP (ETSP).

A suitable kinematic model widely used for the UAVs is the
Dubins vehicle for which the curvature-constrained TSP becomes the
Dubins TSP (DTSP; Savla, Frazzoli, & Bullo, 2005) and we further call
the multivehicle problem for m vehicles as the m-DTSP. In addition, it
is sufficient to visit proximity of the expected object location to
capture the object by a camera sensor with a particular field of view,
and thus, it is sufficient to reach the object location at the specific
sensing range § to reliably detect the object of interest. Hence, the
problem can be formulated as the DTSP with Neighborhoods
(DTSPN; Isaacs, Klein, & Hespanha, 2011; Obermeyer, 2009; Oberlin,
Rathinam, & Darbha, 2010) and its multivehicle variant is denoted
the m-DTSPN (Macharet, Neto, da Camara Neto, & Campos, 2013).

For the Dubins vehicle model with the minimal turning radius
p, the forward velocity is assumed to be constant, and thus the
required time to complete the surveillance mission is proportional
to the longest tour. Besides, we can consider smaller p which
requires lower velocity in turning parts of the path, but the vehicle
can accelerate and then decelerate on straight line segments to
achieve the required velocity in turns. The vehicle can eventually
finish the mission sooner than for a high but a constant forward
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FIGURE 2 An example of the planned paths and their real
execution by the used model predictive control-based controller for
trajectory following (Baca et al., 2016) [Color figure can be viewed at
wileyonlinelibrary.com]
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velocity and longer p. In general, smooth trajectories can be
parametrized, for example, by B-splines (Neubauer & Muiller,
2015) or Bézier curves (Yang & Sukkarieh, 2010), and the
trajectory curvature can be then utilized with the maximal vehicle
velocity and acceleration to determine velocity profile along
the trajectory from which the travel time estimation (TTE) can
be computed. Thus, the herein addressed problem is to determine
m trajectories to visit the given set of n object locations such that
the longest time to travel the particular trajectory is minimized,
and it is allowed to visit the location in § distance, that is, the
problem is formulated as a variant of the m-DTSP for § = 0 and as
the m-DTSPN for § > 0.

1.1 | Focus of the proposed approaches
and contributions

The motivation and practical needs of the surveillance planning
deployed in the robotic competition steered our effort towards a
suitable solution of the m-DTSPN instances arising from MBZIRC
2017. Therefore, we focused on the development of surveillance
planning framework that is capable of providing a feasible solution
for a typical scenario of MBZIRC 2017 with up to three vehicles and
around 20 object locations relatively sparsely placed in the arena
around 80 mx 60 m large. In addition, the required computational
time of the planning should be significantly shorter than the time to
travel across the arena, and at best, it should be around 1s, and it
should not exceed 60 s. Thus, heuristic algorithms providing solutions
of satisfiable quality are preferred than a computationally demanding
optimal solution of the DTSP, which is known to be NP-hard (Le Ny,
Feron, & Frazzoli, 2012).

Due to these requirements, the studied and proposed approaches
have been evaluated in the scenario called mbzirc22 with 22 targets with
additional up to three starting locations, one for each of three UAVSs, to
obtain a realistic estimation of the real performance in MBZIRC 2017
(Figure 3). Although efficient solutions for such a relatively small problem
may not scale well with the number of vehicles or the number of targets,
the practical deployment, and real experimental verification provide

FIGURE 3 Motivational scenario called mbzirc22 on top of the
test field site (about 80 mx 60 m large) used for real experiments
[Color figure can be viewed at wileyonlinelibrary.com]

realistic validation of the real and time-critical deployment as it is the
participation in a robotics competition.

Regarding the particular approaches to the m-DTSP(N), we
consider a purely combinatorial optimization approaches already
proposed in the literature to address the m-DTSPN and minmax
variant of the m-TSP. We also consider our previous effort towards
surveillance planning with UAVs based on unsupervised learning of
the self-organizing map (SOM) first deployed in a solution of the DTSP
in (Faigl & Vana, 2016) and later generalized for the m-DTSPN in
(Faigl & Vatia, 2017). Following the sampling-based approaches of the
continuous optimization problem of Dubins planning (Oberlin et al.,
2010; Obermeyer, Oberlin & Darbha, 2012), the variable neighbor-
hood search (VNS) metaheuristic (Soylu, 2015) is also considered for a
direct solution of the minmax m-DTSP and its generalization to the
m-DTSPN. Besides, an evolutionary-based memetic algorithm (Zhang,
Chen, Xin, & Peng, 2014) has been selected for a comparison with the
proposed solutions. The promising results and very low computa-
tional requirements of the SOM-based solution motivate us to
further generalize the unsupervised learning for 3D surveillance
planning using Bézier curves (Jolly, Sreerama Kumar, & Vijayakumar,
2009; Yang & Sukkarieh, 2010) and computation of the velocity
profile along the planned trajectory using the vehicle velocity and
acceleration limits.

Even though the presented work is built on the previous
approaches published in the literature, that is, the VNS for the
m-TSP (Soylu, 2015) and SOM-based unsupervised learning for the
m-DTSPN (Faigl & Vaia, 2017), they have been further developed to
address the m-DTSPN by the VNS-based approach and the
SOM-based approach has been generalized to 3D surveillance
planning. Therefore, we consider the main contributions of the paper

with respect to the existing approaches as follows:

e Deployment of the VNS-based m-TSP solver in the m-DTSPN.

e Fast and efficient initialization for the VNS-based optimization in
the m-DTSPN.

e Comprehensive evaluation of the proposed VNS-based solver and
the existing memetic and SOM-based approaches in the mbzirc22
scenarios of the m-DTSPN with varying number of vehicles.

e Experimental verification of the found trajectories using real UAVs
utilized in MBZIRC 2017.

e Generalization of the SOM-based solver to 3D surveillance
planning.

e Verification of the feasibility of the found 3D trajectories using real
aerial vehicles.

e Since the developed unsupervised learning-based solver allows a
straightforward extension from the Dubins vehicle model to a
Bézier curve or any similar model (e.g., Dubins-Helix model; Wang,
Wang, Tan, Zhou, & Wei, 2015b), while the main principles are the
same, we consider the proposed planner as a suitable flexible
framework for surveillance planning with aerial vehicles.

e Unsupervised learning framework for surveillance planning ad-
dressing the m-DTSPN but also the multivehicle planning problem

where it is requested to quickly find surveillance trajectories
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considering the maximal vehicle velocities and acceleration limits
that better fit the real motion capabilities of multirotor UAVs than
Dubins vehicle describing curvature-constrained trajectories sui-

table for fixed-wing vehicles.

The paper is organized as follows. An overview of the related work
is presented in the next section. A formal definition of the addressed
problems with a brief overview of the Dubins vehicle model is
presented in Section 3. Necessary background on the related Dubins
touring problem (DTP; Faigl, Vana, Saska, Baca, & Spurny, 2017) and 3D
smooth trajectory parametrization based on Bézier curve is described
in Section 4. The proposed VNS-based m-DTSPN solver is introduced
in Section 5 and the generalized SOM-based planner to the 3D
surveillance planning is presented in Section 6. Reports on empirical
evaluation and experimental deployment are presented in Section 7.

Conclusion is dedicated to Section 8.

2 | RELATED WORK

Surveillance planning for an aerial vehicle is usually closely related to
the curvature-constrained path planning for which the fundamental
work is Dubins (1957) where the problem of the optimal planning for
a vehicle with the minimal turning radius p is studied. In 1957, Dubins
showed that the optimal path connecting two states g;, g € SE(2)
(representing the vehicle configurations as two points in the special
Euclidean group SE(2)) is one of six possible maneuvers that consist
of a straight line segment and a part of a circle with the radius p.
Although a closed-form expression of the optimal path for the Dubins
vehicle between two states exists, it is not sufficient to directly solve
surveillance planning where a vehicle is requested to collect
information from the given set of target locations. It is due to the
initially unknown optimal sequence of visits to the targets, and also
the particular headings at the target locations are not known.
Therefore, it is necessary to determine both the sequence and the
headings, which can be formulated as the DTSP.

The DTSP can be considered as an extension of the regular TSP
for the Dubins vehicle, and thus the path connecting the particular
locations are the Dubins maneuvers respecting the minimal turning
radius p. Similarly to the regular TSP, also the DTSP stands to
determine the optimal sequence of visits to the targets, which is a
discrete combinatorial problem. However, the DTSP also includes a
continuous optimization part in finding the optimal heading of the
vehicle at each target location. Each particular heading value can
be selected from the interval [0, 2r1) and every change of a single
heading may significantly change the Dubins tour connecting
the locations. Therefore, the DTSP can be considered as a more
challenging problem than a discrete optimization of the regular TSP,
although both problems are NP-hard (Le Ny et al., 2012) as the DTSP
becomes the regular ETSP for p = 0.

Moreover, in the DTSPN, it is also required to determine the
most suitable waypoint locations from which information about the
targets is collected such that the waypoint is at a distance equal or
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shorter than the given sensing range & (Isaacs & Hespanha, 2013).
Hence, the DTSPN contains two continuous optimization parts in
addition to the determination of the sequence of visits to the targets.
The first continuous part is the determination of the optimal heading
at the waypoints and the second is the determination of the waypoint
locations themselves. Therefore, finding optimal solutions of the
DTSP or the DTSPN is computationally challenging and approxima-
tion algorithms (Ny, Feron, & Frazzoli, 2012; Oberlin et al., 2010; Yu,
2015), heuristics (Isaiah & Shima, 2015; Savla et al., 2005; Vaia &
Faigl, 2015), and evolutionary (Yu & Hung, 2012) approaches have
been proposed.

The existing approaches to the DTSP and DTSPN can be
categorized into four main classes. The first class represents decoupled
approaches where the sequence of the visits to the targets is
determined independently on the determination of the headings. The
second class is sampling-based methods where a finite discrete set of
possible heading values and/or waypoint locations are sampled, and the
problem is then transformed into a discrete optimization problem, for
example, the ATSP, that can be solved by existing optimal solvers such
as Concorde (Applegate, Bixby, Chvatal, & Cook, 2003) or heuristic
algorithms such as the Lin-Kernighan-Helsgaun (LKH) algorithm
(Helsgaun, 2000). The third class of approaches is evolutionary methods
that can provide high-quality solutions but are usually computationally
very demanding. Finally, the fourth class is the recently proposed
unsupervised learning which combines a solution of the sequencing part
of the problem with the online sampling of the suitable heading values
(Faigl & Vana, 2016) and for the DTSPN also the waypoint locations
(Faigl & Vana, 2017). Selected approaches of the particular classes are
briefly described in the rest of this section to support our selection of
the considered methods in our effort towards a suitable solution for a
practical deployment motivated by MBZIRC 2017.

One of the simplest approaches, that is also computationally very
efficient, is the decoupled approach called the alternating algorithm
(AA) proposed by (Savla et al., 2005). The sequence of visits to the
targets is determined by a solution of the ETSP without considering
the curvature-constrained path. After that, headings at the waypoints
are established in such a way that even edges are connected by
straight line segments which prescribe all the headings, and thus odd
edges are connected by the optimal Dubins maneuvers that can be
computed analytically (Dubins, 1957). The AA has been improved by
a randomized adaptive search in (Macharet, Neto, da Camara Neto, &
Campos, 2011) and by considering a distance between two
consecutive waypoints in the sequence (Macharet & Campos,
2014). Because only two consecutive waypoints in the sequence
are considered in these approaches, determination of the headings is
computationally very efficient, and for n targets, the computational
complexity can be bounded by O(n).

Following the idea of the AA, a receding horizon technique has
been utilized in the look-ahead approach proposed in Ma &
Castanon (2006), where the heading at the next waypoint in the
sequence is determined according to the three waypoint locations
and heading at the previous waypoint. The reported results are

better than for the AA which is also reported in Isaiah and Shima
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(2015), where a combination of the k-look-ahead technique is
accompanied by a local improvement based on the 2-Opt heuristic
(Croes, 1958). However, the authors do not report on the required
computational times.

Another promising decoupled approach called the local iterative
optimization (LIO) algorithm has been proposed in Vatia and Faigl (2015)
to address the computationally challenging DTSPN. In particular, the
proposed approach is focused on problem instances where a distance of
the waypoints in the sequence is longer than 4p, that is, the so-called D,
instances of the DTSP(N). The initial sequence of the visits to the targets
is determined as a solution of the ETSP for target locations in their
respective neighborhoods. Then, the problem is addressed as a
continuous optimization of two variables for each target. The first
variable is the waypoint heading, and the second variable is for the
waypoint location which is considered as a single variable denoting its
position on the boundary of the target’s neighborhood. Both variables
are then iteratively optimized until the solution is not improving.
According to the reported results, the LIO algorithm provides almost
about 10% better solutions than the AA while the computational
requirements are still around tens or hundreds of milliseconds using a
single core of a conventional CPU. LIO has been proposed for the Dy
instances, but it can also be utilized for solving any instance of the DTSP
and DTSPN; however, the quality of found solutions depends on the
sequence determined as the ETSP, which can be inadequate for dense
and mutually close target locations.

The problem of determining the optimal headings at the
waypoints for a given sequence of visits to the targets is called the
DTP in Faigl et al. (2017), and it has been addressed by several
approaches. An optimal solution of the D, instances of the DTP has
been proposed in Goaoc, Kim, and Lazard (2013). The solution is
based on solving a family of n-dimensional convex optimization
subproblems, where n is the number of waypoints in the sequence.
The number of subproblems can be bounded by 22'-2, which
regarding the computational complexity of the whole algorithm is
relatively high in comparison with simple heuristics such as the AA
(Savla et al., 2005) or LIO (Vana & Faigl, 2015). Notice, a solution of
the DTSP with a given sequence of visits to the targets can be easily
found as a solution of the DTP for a discrete set of possible heading
values at each waypoint (see Figure 4a and a description of the
forward search procedure in Section 4.1).

A very important result on the tight lower bound of the DTP has
been proposed in Manyam and Rathinam (2015) which has been
further evaluated in (Manyam, Rathinam, and Casbeer (2016), but
unfortunately without reporting the computational requirements.
The computation of the tight lower bound is based on the solution of
the so-called the Dubins interval problem (DIP) introduced in Manyam,
Rathinam, Casbeer and Garcia (2015). DIP is a variant of the Dubins
planning between two waypoints, that is, locations with the
prescribed headings. In DIP, the heading at the waypoint is not a
single value but an interval. Thus, for the interval of the full range 2,
the solution of DIP is a straight line segment connecting the
locations. The tight lower bound (Manyam & Rathinam, 2015) has

been utilized to guide sampling of the possible heading intervals and
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FIGURE 4 A solution of the Dubins traveling salesman problem
for a given sequence of the targets (the green disks) with the total
number of samples N, final path length £, and lower bound L. The
found solution is the blue curve, and the red curve is its lower bound
determined as a solution of the Dubins interval problem with the cost
Ly (Manyam & Rathinam, 2015). The uniform sampling utilizes 32
heading values per each target. The required computational time is
denoted t. (a) Uniform sampling— N = 224, £ = 19.8, £y = 138,

t = 128 ms, (b) Guided sampling (Faigl et al., 2017)-N = 128,

L =144, £y =142,t = 76 ms [Color figure can be viewed at
wileyonlinelibrary.com]

the heading values themselves in Faigl et al., (2017), where the
authors show improved results over a uniform sampling of the
heading (see Figure 4 for an example of the DTSP solution based on
the DTP and DIP).

Transformation (or also sampling-based) methods represent the
second class of the approaches to the DTSP(N). Similarly to the
aforementioned discretization of the headings in the DTP, these
methods consider a finite set of discrete heading values at each
waypoint location or a set of possible locations in the case of the
DTSPN. Then, the optimal Dubins maneuvers between all possible
pairs of the waypoint locations are computed to build a complete
graph representing the original problem, which can be solved by
combinatorial graph-based solvers.

One of the first sampling-based and resolution complete
approaches to the DTSPN has been proposed in Obermeyer, Oberlin,
and Darbha (2010). In this approach, the DTSPN is transformed into
the generalized TSP (GTSP) where the targets with their neighbor-
hoods are represented by mutually exclusive finite sets of nodes. The
GTSP is then transformed into the asymmetric TSP (ATSP) because
the optimal Dubins maneuvers between two states depend on the
path direction. Such a transformed problem is solved by the LKH
algorithm (Helsgaun, 2000). Even though the LKH algorithm is one of
the most powerful heuristics for the TSP, due to the samples and
transformation, the final problem has many nodes. The reported
computational times for problems with 20 targets and 1,500 random
samples are several hundreds of seconds (Obermeyer et al., 2010),

which is reported to be faster than the genetic algorithm for the
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DTSPN proposed by the same authors in Obermeyer (2009), but still
far from our needs and expectations.

A comparison of the DTSPN approaches is provided in Macharet,
Neto, da Camara Neto, and Campos (2012) where significant
improvement of the solution quality is reported for evolutionary
techniques. A memetic algorithm for the DTSPN with the disk-shaped
neighborhoods and relaxed terminal heading is proposed in Zhang
et al., (2014). The superior solution quality is reported for the
memetic algorithm in the DTSPN instances with 10 targets. The
reported computational times are 8.3 s for 10 targets and 45.5s for
problems with 17 targets. A genetic algorithm for the DTSPN with
polygonal goals has been proposed in Obermeyer (2009) but the real
computational requirements are not reported. However, the same
authors report that their sampling-based approach proposed in
Obermeyer et al. (2010) requiring hundreds of seconds is faster than
the genetic algorithm (Obermeyer, 2009).

The recently proposed unsupervised learning method for the
DTSP (Faigl & Vana, 2016) is based on an evolution of the
growing SOM for the TSP (Faigl, 2018). The input layer of the two-
layered neural network servers for presenting the input signals which
are the target locations. The neurons’ weights represent locations in
the input space, and the output layer is an array of nodes
representing the waypoints. Since the output layer is one-dimen-
sional and the nodes are organized in an array, it forms a ring of
neurons that directly represents a TSP tour. In Faigl & Vana (2016), a
possible heading value at the target is determined in the selection of
the best matching neuron to the target location presented to the
network. Besides, additional heading values are associated with the
winner neuron which is adapted towards the presented target, that
is, its weights are moved towards the target location in the input
space. The adaptation of the network is performed in learning epochs
in which all targets are presented to the network. The weight of the
adaptation is decreased after each epoch according to a cooling
schedule, and the network is stabilized in hundreds of epochs.
However, a solution of the DTSP is determined as a solution of the
DTP represented by the winner neurons of the current epoch, where
the ring of nodes prescribes the sequence of visits to the targets and
the particular headings are the associated headings to the neurons.
Thus, a solution is available after each learning epoch, and the final
solution is found as the best-found solution among all the learning
epochs. The reported results are better than the solutions provided
by the memetic algorithm (Zhang et al., 2014) with the computational
time restricted to 100s while the SOM needs less than 30s for
problems with up to 100 targets.

The SOM-based algorithm (Faigl & Vata, 2016) has been
significantly improved in (Faigl & Vata, 2017), where the reported
required computational time for scenarios (motivated by MBZIRC
2017) with 22 targets is found in less than 600 ms, while the
solutions are better than those provided by the memetic algorithm
(Zhang et al., 2014) with the computational time restricted to 10s.
Moreover, the SOM-based approach has been generalized for the
DTSPN, where the particular waypoint locations are determined

during the winner selection together with the expected heading at

the waypoint. In addition, the m-DTSPN is addressed by creating an
individual neural network for each vehicle, and during the winner
selection, neurons from the network which represents a shorter tour
are preferred to address the minmax variant of the m-TSP (Somhom,
Modares, & Enkawa, 1999).

Regarding approaches for the m-DTSPN, they are similar to the
m-TSP in many ways (Bektas, 2006; Oberlin et al., 2010), especially
the transformation/sampling-based solvers, but only a few ap-
proaches directly address the challenges of the minmax variant of
the m-DTSPN. One of them is the memetic algorithm (Zhang et al.,
2014), which has been compared with the additional direct approach
based on SOM in Faigl & Vatia (2017). Another evolutionary based
approach to the minmax variant of the m-DTSPN has been proposed
in Macharet et al. (2013), but the authors do not report on the
computational requirements, which also hold for the improved
version presented in Macharet, Monteiro, Mateus, & Campos (2016).

Having a transformed problem with a graph representation,
graph-based m-TSP approaches may be considered. The minmax
variant of the m-TSP has been addressed by Franga, Gendreau,
Laporte, and Miuller (1995) where exact algorithms are proposed. In
Kulich, Faigl, KIéma, and Kubalik (2004), the authors compare genetic
algorithm, ant colony optimization, and SOM-based solver in m-TSP
scenarios arising from rescue missions, where the superior results
are provided by SOM. In addition to the soft-computing techniques, a
general metaheuristic called the VNS proposed by (Hansen &
Mladenovié¢, 2001) has been applied to the minmax m-TSP in
(Soylu, 2015).

Regarding the presented overview of the existing methods for
the DTSPN and more specifically to the m-DTSPN. We consider the
memetic algorithm (Zhang et al., 2014) and SOM-based approach
(Faigl & Vana, 2017) as the most promising because the memetic
algorithm is capable of providing a high-quality solution, and thus it
may represent a suitable reference approach. On the other hand, the
SOM-based approach has the computational requirements lower
than the desired 1s while it also provides better solutions than the
simple heuristics AA and LIO (Faigl & Vana, 2016). Besides, solutions
of the m-DTSPN are reported for both the memetic and SOM-based
algorithms and both approaches are any-time as they provide the
first solution very quickly, which is also desirable property for a
practical deployment under real-time constraints.

In addition, we also included sampling-based approach in our
evaluation to cover purely combinatorial optimization approaches
which work on some finite discrete set of possible heading values and
waypoint locations. In this case, we consider the VNS method (Soylu,
2015) as a particularly interesting method. First, it directly addresses
the minmax m-TSP, and it improves the initial solution if more
computational time is available. Besides, the VNS metaheuristic has
been recently successfully deployed in a solution of the closely
related problem of the surveillance planning called the Dubins
orienteering problem (DOP; Pénicka, Faigl, Vana, & Saska, 2017a)
which has been further generalized to the DOP with neighborhoods
in Pé&nicka, Faigl, Vaia, and Saska (2017b). Therefore, we consider
VNS as a promising method for the sampling-based approach to the
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herein addressed m-DTSPN. However, an initial solution of the m-
DTSPN is needed for the VNS-based optimization which is addressed
by a newly proposed procedure described in Section 5.

In addition to the Dubins vehicle model, which is a suitable model
for rotary vehicles because it provides smooth trajectories with a
constant speed, we are interested also in other types of trajectory
parametrization because the motion of the rotary UAV is limited
mainly by the maximum speed and acceleration, and the minimal
turning radius is not defined. Various types of curves such as splines
(Lepeti¢, Klancar, Skrjanc, Matko, & Potocnik, 2003), polynomial
functions (Papadopoulos, Papadimitriou, & Poulakakis, 2005), and
Bézier curves (Jolly et al., 2009) can be utilized for continuous and
smooth path generation (Wang, Wang, & Tan, 2015a) for which the
final trajectory with the velocity profile is computed according to the
maximum possible velocity and acceleration of the vehicle. Moreover,
we are also interested in the generalization of the surveillance
planning with curvature-constrained paths from the 2D environment
representation to 3D. An extension of the Dubins vehicle for the 3D
is possible using Dubins-Helix method (Wang et al., 2015b) or using
the so-called Dubins Airplane model proposed in Chitsaz and LaValle
(2007, December) to address the bounded curvature and also limited
pitch angle of real UAVs, especially fixed-wing vehicles. The Dubins
Airplane model has been used for solving the 3D-DTSPN (Vatia,
Slama, & Faigl, 2018) with fixed-wing vehicle. However, hexacopters
are used in our motivational problem, and therefore, we consider
Bézier curves (Yang & Sukkarieh, 2010) that can describe trajectories
of arbitrary curvature and are specified only by four control points.
Thus, trajectory parametrization based on Bézier curves is selected
as a suitable generalization of the proposed surveillance planning
framework to directly find smooth trajectories for a team of UAVs in
2D but also in 3D scenarios.

The SOM-based approach (Faigl & Vatia, 2017) has been selected
as a suitable optimization framework for the generalized surveillance
planning with Bézier curves because of two main reasons. The first
reason is related to the expected increased computational require-
ments related to the optimization of Bézier curves that is more
demanding than the analytical solution of Dubins maneuvers, and
regarding the reported results, SOM is computationally efficient.
Besides, the unsupervised learning principles used in SOM are
flexible to relatively straightforwardly utilize different parametriza-
tion of the curves. Therefore, the proposed unsupervised learning
based 3D surveillance planning framework for the m-DTSPN is
presented in Section 6.

A summary and evolution of the existing approaches together
with the herein proposed methods for solving variants of the DTSP is
presented in Table 1 with an indication of their particular properties
and capabilities. Besides, we further distinguish if the approach
performs continuous trajectory optimization, which may further
improve the solution. The transformation methods perform sampling,
and thus, they transform the problem to the combinatorial optimiza-
tion. On the other hand, the decoupled approaches first determine
the sequence of visits and then generate the requested trajectories

where the recent approaches employ continuous optimization of the

headings and possibly also the locations of the waypoints. The
unsupervised learning is similar to the decoupled approaches in the
trajectory optimization. However, the continuous trajectory optimi-
zation is performed during the solution of the sequencing part that is
the main difference to decoupled and transformation approaches and
makes it similar to evolutionary methods, but the convergence of the
learning is much faster than finding satisfiable solutions by, for

example, memetic algorithms.

3 | PROBLEM STATEMENT

The studied surveillance planning problem is motivated by the
MBZIRC 2017 competition where it is needed to identify possible
objects of interest as quickly as possible by three aerial vehicles. The
problem is considered as surveillance planning where a team of m
vehicles is requested to take a camera snapshot of the objects using
nonzero sensing range § to save the travel cost. Moreover, due to the
used model predictive control (MPC) trajectory following (Baca et al.,
2016), the surveillance trajectories have to fit the vehicle motion
constraints to allowing fast and precise motion of the vehicle along
the trajectory. Thus, the problem is to determine a sequence of visits
to the object locations for each vehicle together with the
corresponding trajectories connecting the waypoints from which
objects are captured such that all the objects are identified as quickly
as possible, and the vehicles return to their initial locations. The
expected computational requirements for the surveillance planning
and the specific setup of the MBZIRC 2017 deployment allow to
relax the collision avoidance in the planning part, and it is addressed
by the reactive collision avoidance implemented in the used MPC-
based trajectory following controller (Baca, Hert, Loianno, Saska, &
Kumar, 2018; Spurny et al., 2018). Therefore, an explicit finding of
collision-free trajectories is not considered in the following problem
formulations.

First, the problem is formulated as the m-DTSPN in which m
curvature-constrained paths (one path for each vehicle) for the
Dubins vehicle with the minimal turning radius p are found such that
each of the given n target locations is visited by at least one of the
planned path in the distance not exceeding the sensing range § and
the length of the longest path is minimized. In addition to p, the
utilized Dubins vehicle model (Dubins, 1957) assumes the constant
forward velocity v and the state g of the Dubins vehicle is described
as a triplet g = (x, y, 6), where p = (x, y) is the vehicle position in the
plane p € RZ and 6 is the vehicle heading at p and 8 € S!, that is,
q € SE(2). The motion of the vehicle is described as

X cos 6
yl=v|sin6| Ju =1, (1)
] u-pt

where u is the control input.

The team of UAVs consists of m identical vehicles with the same p
allowing the constant, maximal, and safe forward velocity while the
error of the trajectory following is acceptable to capture the object of
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interest at the target location from the determined waypoint location
within the & sensing range from the target location. In fact, the real
field of view of the utilized camera is wider than § used for planning
such that the used MPC-based controller (Baca et al., 2016) follows
the trajectory with the error less than the difference of the real field
of view and &, and thus, it is assured that the object of interest can be
identified from the snapshot taken at the particular waypoint
location.

Each vehicle (denoted r) starts at its individual initial location
pl € R2 (further denoted as depot) and the requested path for the rth
vehicle terminates at the same location pj, that is, we are searching
for m closed trajectories. The trajectories consist of a sequence of
Dubins maneuvers connecting the determined waypoints. Thus, two
consecutive waypoints in the sequence g; and g1 both from SE(2)
are connected by one of the six Dubins maneuvers respecting the
kinematic constraints of the Dubins vehicle (1).

In the DTSPN with a single vehicle, the goal is to find the shortest
trajectory to take a snapshot of all n objects of interest ¢ = {ox,...,0n}.
For simplicity and readability, we consider o; be the target location of
the object i, that is, o; € R2. Since it is allowed to collect information
about o; within § distance, we need to determine for each o; a
waypoint location p; such that|(p;, 0;)| < 8. Besides, for each waypoint
location p;, we need to determine the heading 6; and for the all
waypoints, we search for a sequence T = (oy,...,0p) of the waypoints
g = (p;, 6;) such that the sum of the lengths of the Dubins maneuvers
connecting the waypoints in the sequence X is minimal.

Problem 1 (DTSPN)

minimizepoy £(Q, 0) = 3i_; L{do;_1» o) + L(doy Ao

subject to Q = Aoy Ga)s do; = (Pojs 657), Aoy € SE(2),
P = (poy,-sDan)s Po; € B2 and |(pg;, 0)| < & for oj € O
0 = (84y,-64), 086, < 2m,

T =(0,.0), 1<g<snandg#gforizj,

’

dsg € SE(2), Yo_o and P(qo) = pq is the vehicle depot,
2

where L(g;, gj) is the length of the shortest Dubins maneuver
between g; and g; computed analytically according to Dubins (1957)
and P(q) = p is a projection of the waypoint g = (p, ) to R?, that is,
p € R2. Notice, we may further distinguish a single depot location py
or a depot with a neighborhood defined by the sensing range § as for
other target locations. Since the practical, motivational deployment is
for specified initial locations of the vehicles, we focus on depots
without the neighborhoods, and § > O for depots is further discussed
in the description of the particular methods and empirical evaluation.

For the m-DTSPN, it is requested to find m trajectories {Q?,...,Q™}
satisfying the limited curvature of the Dubins vehicles (1), one for
each of m vehicles, such that the length of the longest trajectory is
minimal, that is, the minmax variant of the m-DTSPN. An individual
trajectory for the rth vehicle can be considered as a solution Q" of the

DTSPN formulated as Problem 1 for a subset of objects of interest

0" C O that are covered along the trajectory Q" with the length
£(Q", 0"). Besides, the initial location of the vehicle is prescribed by
pg. Since a solution of the DTSPN is a closed and continuous
trajectory, it is sufficient that pj is a part of Dubins tour; however, for
this special waypoint location, the sensing range is individually set to
zero. Thus, the m-DTSPN can be formulated as a problem to
determine a subset of n" locations O" for each vehicler,1<r<m
such that all objects O are covered, and the length of the longest

trajectory is minimal.

Problem 2 (m-DTSPN)

maxreq,...mL(Q", O"Ulpg})

Q" is a solution of Problem 3.1 for the

minimizer,on for ref, .., m}
subject to

subset O" and pj

O = |JO" and for each o € O thereis
r=1

q € UL, Q" suchthat [(P(q), 0)| < 6.
(3)

In addition to the Dubins vehicle model (1), the addressed
surveillance planning is also considered for a general 3D trajectory
satisfying constraints of the utilized hexacopters, that is, the maximal
velocity and acceleration. Such a problem formulation is formally
identical to Problem 2 except Q" which needs to be substituted by
the parametrization of the trajectory 2" and the length of the
trajectory £(Q", 0") needs to be replaced by the TTE of the
trajectory 7(2", O"). For simplicity and w.l.o.g., we assume that each
object of interest is covered from some point x on the determined
trajectories 2%, ...,2" and x can be x € RZ or x € R3 in the case of
the 3D trajectory.

Problem 3 (Surveillance Planning with a 3D Smooth Trajectory)

minimize ;7o for reft,..mp ~ MaX,cqr, . m7 (27, O")

m
O = |JO" andforeach o € O thereis
r=1

subject to

m
g € J 2" suchthat |[(P(q), 0)| < 8.
r=1

(4)

4 | BACKGROUND

4.1 | Dubins touring problem

An important part of the sampling-based approaches for the DTSP is a
solution of the DTP (Faigl et al., 2017). The DTP stands to determine the
optimal heading values for a given sequence of the waypoint locations,
and it can be formally defined as follows. Let the given sequence of n
waypoint locations be P = (py,...,py) and it is requested the vehicle
returns to the initial location because of the context of solving the
DTSP. The problem is to find the particular heading value at each target
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location, that is, the headings T = (64, ...,6,) such that the optimal Dubins
maneuvers (Dubins, 1957) connecting the targets in the sequence form
a Dubins tour with the minimal length. Thus, the cost function is
piecewise continuous, and the DTP is a continuous optimization

problem.
Problem 4 (DTP)

. . . -1
minimizer £(T, P) = 2. L(a, di41) + L(dn a0,

subjecttoq = (p;, 6), pic P, 6T, 0<6<2m,i=1,.,n,
(5

where L(qg;, ) is the length of the shortest Dubins maneuver
between ¢g; and ¢ which can be computed by a closed-form
expression (Dubins, 1957).

411 | Sampling-based solution of the DTP

Having a discrete finite set of possible heading values per each
target location in the sequence P, for example, h heading values for
each target, we can construct a graph where nodes represent
particular vehicle states and edges represents an optimal
Dubins maneuver connecting the states. For a sequence of n
targets, the graph has n layers and each layer has up to h nodes
(Figure 5).

Then, the optimal solution of the DTP for the given discretization
of the headings can be found by a forward search of the graph. Since
we need a closed tour, the graph has to be searched for h initial/
termination headings, and thus, the overall time complexity of the
search procedure can be bounded by O(nh3).

4.2 | Three-dimensional smooth trajectory based
on Bézier curve

The utilized parametrization of the 3D smooth trajectory is based
on the cubic Bézier curve, that is, defined by four control points.

P1 D2 P3 Pn
) ) ) )
0! 01 9! 05
. Y ) [ ]
A<V y><TVor | | o2
.1/ 2 .3 n
XN | e
NN ||

for all combinations

FIGURE 5 A search graph where each layer corresponds to one
target location p; € P with particular heading values ©; = {62, ...6".
Two neighboring layers are fully connected by the oriented edges
representing the optimal Dubins maneuver between the states
[Color figure can be viewed at wileyonlinelibrary.com]

WILEY—-2

The first two control points define the end locations and direction
of the curve directly, and two additional points define
the departure and terminal tangents. Therefore, Bézier curves
can be easily connected into a smooth path from multiple
segments. A general Bézier curve of the dth degree can be

parametrized by

X(r) =

i

B;Jd',*(‘[), O=sts1, (6)

IM=

where B; stands for the control points and J,;(7) is the Bézier polygon
of the dth degree which prescribes weights for the control points B;
(Bézier, 1973). Since the Bézier polygon is given by

Joj = (‘i’)m — ), @)

the parametrization of the utilized cubic Bézier curve in the

expanded form can be expressed as
X(r) = Bo(1 — 7)° + 3By7(1 — 7)? + 3B,r2(1 — 7) + B33, ()

Notice, the Bézier curve can be used for a path parametrization in
2D and 3D, the only difference is in the dimension of the control
points, that is, B; € R? and B; € R3, respectively.

4.3 | Travel time estimation

Having a parametrization of the trajectory as a sequence of Bézier
curves described by (8), the travel time of the vehicle along
the trajectory can be computed from the velocity profile for the
trajectory. The maximal velocity and acceleration of the utilized
vehicles are limited individually for the horizontal movements by
the maximal speed vi,ori, and the maximal acceleration aheriz. Similarly,
the maximal speed v+ and the maximal acceleration aye¢ limit the
vertical movements. Regarding these limitations, the vehicle velocity
along the given path is adjusted to minimize the travel time of the
trajectory, which is further referred as the TTE. The maximal
achievable velocity is determined concerning the path curvature
and the acceleration limits as follows.

The profile for the vertical velocity is directly computed from
the altitude differences along the curve, and thus the first and
second derivatives along the z axis are utilized, and the vertical
velocity is limited by Vet and dyert. In the horizontal plane, two
different acceleration components are affecting the vehicle
simultaneously. The first one is the tangent acceleration ata,
which is responsible for the speed changes. The second compo-
nent is the radial acceleration a;,q which is caused by the path
curvature, but it does not directly influence the vehicle velocity.
The tangent and radial accelerations are always perpendicular,
and their combined value cannot exceed dnei; Which can be
expressed as

2 2 2
Gtan + Gfad < Ghoriz- (9)
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The radial acceleration a4 in the horizontal plane is given by

Orad = v2 Kh, (10)

where x;, stands for the horizontal curvature of the trajectory, for

example, computed as

. X'y — y'x"|

(X2 + y2)*/2" )

Notice that for Bézier curves, the curvature has a closed-form
expression. From the curvature, the maximal possible velocity Vo of

the vehicle along the trajectory can be computed from

Voos = min(vhoriZy \“m ] (12)
\ xn

The maximal possible tangent acceleration ayy, is then defined by

2 _ 2 4 .2
Orad = Ohoriz — Vposkh . (13)

atzan = af%oriz -
The right side of (13) is always positive because of (12). Based on
these preliminaries, the velocity profile, and thus the TTE can be
numerically determined in the following six steps.

Sample the parametrized path into a finite set of uniformly
sampled points and compute the horizontal curvature of the
trajectory (11) at each sample using the first and second

derivatives expressed from (8).

Set the initial and final vehicle velocity to zero.

Determine derivatives along the z axis and limit the vertical

velocity according to the vyert and dyert.

Compute Ve for every sampled point of the trajectory (12).

Iterate over the samples forward and limit the vehicle velocity

and acceleration by the maximum possible tangent acceleration

Algorithm 1: VNS-based solver for the m-DTSPN

(13), that is, adjust the travel time between the respective
samples.

o |terate over the samples backward and limit the vehicle velocity
and acceleration by the maximum possible tangent acceleration

(13), similarly as in the previous step.

5 | VNS FOR THE m-DTSPN
The proposed VNS-based solution of the m-DTSPN is based on the
existing deployment of the VNS metaheuristic to the m-TSP (Soylu,
2015). The expected locations of the objects of interest O are
considered as target locations in the m-DTSPN and the extension
towards the minimal turning radius o of the Dubins vehicle model and
nonzero sensing range & is based on sampling possible heading values
and waypoint locations. In particular, s locations are uniformly sampled
for the neighborhood of each target o € O on the circle with the radius §
centered at 0. Then, h possible heading values are uniformly sampled for
each such a sampled location. Besides, an individual starting location for
each vehicle is considered, which better corresponds with the practical
deployment in the surveillance planning contrary to a common depot
utilized in (Soylu, 2015). Therefore, a modified initialization of the VNS-
based solver is proposed to support the individual starting locations.
The VNS metaheuristic consists of two main procedures: The
shake and local search. The shake procedure is used to get the
currently best incumbent solution x from possible local optima by
changing it randomly to a solution x’ within the neighborhoods
{Ny,...Nkad- On the other hand, the local search procedure
searches fully specific neighborhoods of a solution x’ using lnayx
predefined operators to find a possibly better incumbent solution,
which in the addressed minmax variant of the m-DTSPN, is the one
with a smaller the longest tour. The utilized procedures are
detailed below, and a summary of the VNS-based solver for the m-
DTSPN is in Algorithm 1.

Input : O — A given set of objects of interest
m

Input : (phy--.,py") — The requested initial locations (depots) for the m vehicles

Parameter : p — The minimal turning radius

Parameter : § — The sensing range

Parameter : h — The number of heading samples

Parameter : s — The number of samples of the waypoint locations
Parameter : [,,,, — The number of local search neighborhood operators
Parameter : k... — The number of shaking neighborhoods

Output {Q'..., Q™} — The found Dubins tours for the m vehicles

rx

m

1 O + sampleWaypoints(O, (py, - .., pT"), s, h, d, p,m)

2 x <+ initialization(0’)

3 while m > 1 and stopping condition is not met do

4 k+«1

5 while k < ke, do

6 2’ « shake(z, k, 0')

7 2" + localSearch(z’, lmaz, O')

8 if max £(Q") < max £(Q") then
Qrex Qrea’’

9 z "

10 k1

11 else

12 | kek+1

13 return x
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FIGURE 6 A search graph utilized in the proposed variable neighborhood search-based approach to the m-DTSPN with an example of the
found solution. (a) A search graph with h heading samples per each neighborhood sample p{,...,pﬁ for each target location o;. In this case, a fixed
initial vehicle location (depot) py is considered without the neighborhood. (b) An example of a solution of the DTSPN with disk-shaped
neighborhood (yellow) around each target location o; with uniform sampling of s = 6 waypoint locations (red) inside the neighborhood and

h = 6 heading samples at each possible waypoint location visualized as blue segments. DTSPN: Dubins traveling salesman problem with

neighborhoods [Color figure can be viewed at wileyonlinelibrary.com]

The VNS-based solution to the m-DTSPN uses static sampling.
Therefore, all possible Dubins maneuvers are precomputed, and all
the lengths are stored in a distance matrix to reduce the
computational burden during the VNS optimization. Thus, a solution
of a single vehicle for the prescribed visits to the targets can be
determined in a similar way as finding a Dubins tour in the DTP, just
instead of h possible states per each target, sh states are considered
(see the extended search graph in Figure 6).

Besides, a dynamic programming technique is utilized for storing the
particular distances from the tour start in the forward direction and also
from the tour end in the backward direction. For each target location o;
and the corresponding sample of the waypoint location p,f and sample of
the heading value 6/ in the current solution, the shortest distances from
the starting samples (i.e, all samples corresponding to the starting
target location) and from the ending samples together with the
respective sequence of the particular samples are stored. Then, the
evaluation of the resulting path length for a simple target location
removal or addition require significantly less computational time
because all paths are precomputed and stored. Only the calculation of
the shortest connection from the previous and to the following target
location samples in the target location sequence is required without the
need to find the shortest path in the whole search graph shown in
Figure 6a. However, after each change to the sequence, the stored
shortest paths to particular samples have to be updated. Notice, the
first waypoint is the same as the final waypoint because the tours are
closed in the m-DTSPN. Therefore, also the particular heading values
and the waypoint locations (for depots with neighborhood) must be the
same for both of these waypoints. When computing the shortest tour
over a given sequence of sampled waypoints (as shown in Figure 6b),
the shortest tour has to be evaluated for each sampled heading value at
the depot to keep the tour closed and minimal. In the case of the depot

with the neighborhood, it has to be also evaluated for every possible
waypoint location and the heading, which is naturally more demanding.

A tour in the VNS optimization represents a sequence of the
targets for which the most suitable heading and waypoint location is
determined from the sampled values. Therefore, a tour for the rth

vehicle is denoted Q" and it is a sequence of waypoints

Q = (ab, af,-at,, a), (14)

where qg is the waypoint corresponding to the requested initial and
terminal location of the rth vehicle (i.e., the depot p}) and n, is the
number of objects of interest visited by the rth vehicle except q4. The
waypoints g;, for u > O are alternated during the VNS optimization
(while qg are fixed), but each g/, in all tours always corresponds to a
unique object of interest o € O and all objects are visited by the
tours, that is, n = Z:"zln,. For better readability, we consider the
subscript u of g, as an index of the particular object and its waypoint

in the respective sequence of the waypoints Q".

The most time-consuming part of the initialization is the computation
of all Dubins maneuvers between all possible waypoints in the
sampleWaypoints() function, which are saved for further usage in the
VNS optimization. Regarding the particular numbers for the considered
mbzirc22 scenario with 22 targets locations and up tom = 3 vehicles, we
consider s = 6 and h = 12 which gives up to 1,620 waypoints. For such a
small number of waypoints, the initialization is fast, and it is done in tens
of milliseconds using conventional computational resources; however, the
precomputation becomes quickly computationally more demanding with
increasing n and the number of samples (see empirical evaluation in
Section 7).
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FIGURE 7 Tours for all m = 3 vehicles created by the proposed Initialization procedure of the variable neighborhood search based m-
DTSPN (a) Initial small tours each with one target location. (b) Final solution created by the Initialization procedure. DTSPN: Dubins traveling
salesman problem with neighborhoods [Color figure can be viewed at wileyonlinelibrary.com]

5.1 | Initialization procedure

The initialization heuristic utilized in the VNS-based algorithm for the
m-TSP in Soylu (2015) is based on the competitive rule initially
proposed to address the minmax variant of the m-TSP by SOM in
Somhom et al. (1999) to favor shorter tours and rather do not extend
the longest one. The initialization starts with sorting all the target
locations o; € O according to its minimal distance di,;, to any of the m
starting locations using the Euclidean distance. Then, a small tour for
each vehicle 1 < r < m is created by adding one waypoint location
such that the Dubins tour connecting the initial location of the
rth vehicle with the added location has the minimal tour length
(Figure 7a). Thus, each Q" has the form Q" = (qp, a1, 9p) and it
represents a Dubins tour consisting of two Dubins maneuvers from
a5 to g} and from g} to qf with the lengths £(q, g}) and £L(a}, ab),
respectively. The length of the Dubins tour represented by Q" is
further denoted £(Q') for brevity.

After the creation of the first tours, particular waypoints for all
not assigned objects are sequentially inserted to the tours in the
order defined by the increasing distance di;, of the target location to
the initial location. The respective waypoint q(o;) (together with its
heading and location) is selected during the determination of the
most suitable tour r* and the particular position j* in the tour using
the competitive rule

v j* = argmin (L(q}, q(0) + L(alo), a11)) # " (m, 1), (15)

1s<rsm,1sjsny
where q(o;) represents the most suitable location from up to s
samples around o; with the best heading of the h heading samples.
The term W(m, r) represents the competitive weight introduced
in Somhom et al. (1999) to address the minmax variant of the m-TSP.

It is computed as

L£(QN) + L,

W(m,r)=1+ —
Lavg

, (16)

where L1, is the average length of the Dubins tours Q1,..,Q™

£(Q"). (17)

Mz

m
Lavg =

3|~

r=1

An example of the solution created by the proposed Initialization
procedure is shown in Figure 7b.

5.2 | Shake procedure

The shake procedure is utilized to get the currently best incumbent
solution x from possible local optima by using up to k.x consecutive
simple one point moves. Each such a single move starts with a
random selection of two distinct tours i,j € {1,...,r},i #j and one
target location in each tour u € Q, v € QJ, where u and v are the
position indexes of the particular selected target locations in the ith
and jth tours, respectively. Then, the corresponding object associated
with g, is moved from Q to Q/ where it is placed after the vth
position, such that the tours after the operation become
Q' = (@b,4l,_1, Gy 10ah) and Q) = (ah,...al, G}, al,4-08). By using
the one-point move operation for k = 1,...,knax times, the shake
procedure creates a random solution x” within N¢ neighborhood of
the original solution (see Figure 8). The particular number of the
performed operations for the results presented in this paper
is Kmax = 5.

5.3 | Local search procedure

The local search procedure uses a randomly created solution
produced by the shake procedure and systematically tries to find a
better solution. The used variant of the procedure is called
the sequential local search, which indicates the fact that all the
neighborhood operators are tested in a sequence according to
the value | of the six operators defined below (i.e., Inax = 6). Once
the solution quality is improved, the local search is started again to
optimize the improved solution. Notice that the ordering of the
operators in the local search procedure can significantly influence
the final solution quality. To improve the efficiency of the VNS
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(a)

FIGURE 8 An example of the shake procedure sequence with k = 1...3 random moves for m = 2 vehicles. (a) Incumbent solution x. (b) First
random move k = 1. (c) Second random move k = 2. (d) Third random move k = 3 [Color figure can be viewed at wileyonlinelibrary.com]

search, only operators that can decrease the length of the longest
tour are considered. The local search operators (Soylu, 2015)
adopted for the m-DTSP(N) are as follows:

One-point move (I = 1) operator uses the smallest neighborhood
possible to move only a single target location to a different tour.
Or-opt2 move (I =2) operator moves two adjacent target
locations to a different tour.

Two-point move (| = 3) operator exchanges two points (target
locations).

Or-opt3 move (I =4) operator moves three adjacent target
locations to a different tour.

Three-point move (I = 5) operator exchanges two adjacent target
locations from the longest tour with one target location in a

different tour.
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e 2-Opt move (Il = 6) operator (Croes, 1958) selects two target

locations in a tour and swaps the subtour between the targets
which tries to improve all individual tours separately. The
operator is repeatedly performed until it improves the tour
length. Notice, the original idea of this heuristic is to remove
unnecessary self-crosses in a solution of the ETSP.

6 | UNSUPERVISED LEARNING FOR
m-DTSPN AND 3D BEZIER CURVE-BASED
MULTIVEHICLE SURVEILLANCE
PLANNING

A solution of the m-DTSPN based on unsupervised learning has

been introduced in Faigl and Vana (2017), and therefore, an

. @

i+1

Y

FIGURE 9 A structure of the SOM for the TSP and visualization of the ring evolution during the learning. The green disks are the target
locations to be visited by the tour, and blue disks represent the neuron weights in the input space R2. The connections between the input and
output layers represent that the best matching neuron is computed using its distance to the input signal (location). For the DTSP (Faigl & Vana,
2017), each neuron is in addition to the neuron weights (locations) as a point in R? also associated with the particular target (or waypoint)

location and with h heading values, and thus a solution of the DTSP can be determined from the ring of neurons after each learning epoch by
solving the related DTP, for example, using the forward search method described in Section 4.1. (a) A structure of SOM for the TSP, (b) Epoch
12, (c) Epoch 28, (d) Epoch 42, and (e) A DTSP solution. DTSP: Dubins traveling salesman problem; SOM: self-organizing map; TSP: traveling
salesman problem [Color figure can be viewed at wileyonlinelibrary.com]
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overview of the method is presented in this section to provide the
necessary details for the proposed generalization to trajectory
planning using Bézier curves. The unsupervised learning frame-
work is based on the growing SOM for the TSPN proposed in Faigl
(2018) which differs from a regular SOM, that is, usually a 2D
lattice (Kohonen, Schroeder, & Huang, 2001) in the organization of
the output layer and incremental adding new neurons to the
network. In general, SOM for the TSP is a two-layered neural
network in which the input layer serves for presenting the target
locations O and the output layer is organized into an array of
neurons (Angéniol, Vaubois, & Texier, 1988; Fort, 1988), which
defines a sequence of visits to the targets. The neuron weights are
in the same space as the input signals (target locations) and the
connected neuron weights form a ring in the input space R?, and
thus represent a closed path in R? (see Figure 9a, i.e., the weights
are considered as the neuron locations). SOM can be represented
as a sequence of neurons .#" = (v1,..,vv), Wwhere M is usually more
than two times the number of target locations (Somhom, Modares,
& Enkawa, 1997).

The unsupervised learning of the network is realized by an
iterative procedure in which all the target locations are presented
to the network and for each such a presented location o € O, the
best matching neuron is selected in the winner selection
procedure, that is, the neuron with the closest weights to o.
Then, the winner neuron is adapted towards the presented input
together with the neighboring neurons to the winner neuron with
decreasing power of the adaptation defined by the neighboring
function. In a single learning epoch, all targets are presented to
the network, and a solution of the TSP can be retrieved after each
epoch by traversing the ring, that is, the tour is constructed from
the targets associated with their winner neurons into a sequence
of targets defined by the position of the winner neurons in the
ring. During the adaptation, the winner neurons are getting closer
to the targets, and the network is stabilized in tens or hundreds of
epochs because of cooling schedule of the power of the
adaptation. An evolution of SOM in solving an instance of the
TSP is shown in Figure 9. For the DTSP, the neurons are
associated not only with a location in R? but also with up to h
heading values (Faigl & Vana, 2016). Therefore, a solution of the
DTSP can be determined after each learning epoch by a solution
of the DTP with the sequence of visits to the targets defined by
the order of the winner neurons in the SOM output layer (ring),
for example, using the feed-forward search method presented in
Section 4.1.

In addition to the headings associated with the neurons,
the main part of the unsupervised learning for the DTSPN is the
winner selection in which expected heading of the vehicle at the
waypoint location is determined together with the waypoint

location itself. The idea of the winner selection is visualized

FIGURE 10 A selection of the winner neuron for the presented
location o in unsupervised learning for the Dubins traveling
salesman problem with neighborhoods. The current ring of
neurons represents the Dubins path showed as the black curve
connecting the blue neurons. The closest point p, of the Dubins
path to o is used as the neuron weights for the winner neuron. The
point o, corresponds to the alternate target location towards
which the network is adapted because o can be covered within §
sensing range from the target location. The shortest possible path
connecting Vprey and vnext through the point o using the vehicle
heading 6, is in red [Color figure can be viewed at
wileyonlinelibrary.com]

in Figure 10. The range of the neighboring neurons that are
adapted together with the winner neuron is restricted by the
Neurons Vyrey and vpext such that the expected length of the
Dubins path (see the red curve in Figure 10) to visit the target

location o is minimized:
-Lg = -E(‘Vprew (0, 6)) + L((0, 6), Vnext), (18)

where 6 is one of the h heading values associated with the winner
neuron. Nevertheless, the search for vyrey and vpney: is limited to the
range 0.2M around the winner, where M is the current number of
neurons in the ring, as in other SOM-based TSP solvers, for
example, Somhom et al. (1997). The neurons adapted with the
winner neuron v* are in the range of vyey and Ve for which a
value of the neighbouring function (19) is above a threshold, i.e.,
empirically set to 10~5. The neighbouring function is defined for
the active neuron in a similar way as in a regular SOM for the TSP
(Cochrane & Beasley, 2003; Somhom et al., 1997):

2

e .2 forneuronsaround v* in the range defined by vyrey
flo,d) =

and Vyext )
0 otherwise,

(19)

where o is the learning gain and d is a distance of the neuron from

v* in the number of neurons in the ring.
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Algorithm 2: Unsupervised learning algorithm for solving the DTSPN

Input : O - A given set of objects of interest
Input : p; - The requested initial location (depot) of the vehicle

Output : Q - Determined Dubins path covering O

> Initialization:

1. For n target locations O, create a ring ./~ with one neuron with the weights set to the starting location p;.

2. Set the learning gain G = 10, the learning rate u = 0.6, the gain decreasing rate « = 0.1, and the epoch counter i = 1.

> Learning Epoch:

3. For each target o in the randomized set o € IT(OJ{pd})

(a) Winner selection: Determine the point p, together with the expected heading 6, and waypoint location o, as in Figure 10. Create a new neuron

with the weights p, and add it as a new winner v* to the ring.

(b) Adapt v* and its neighbouring neurons (defined by vprey and vhext(18)) to o, using the neighbouring function (19). The weights of each adapted

neuron v are set to a new location v' = v + uf (o, d)(0, — v).

> Update:

4. Ring regeneration: Remove all nonwinner neurons. Use the sequence of the winner neurons defined by the ring together with the headings and
waypoint locations associated with the neurons to solve the DTSPN as a solution Q; of the related DTP using the sampling-based algorithm

described in Section 4.1 with the length £(Q;, O).

5. Update learning parameters: c = o(1 —ia), i =i + 1.

6. Termination condition: If i 2 inay Or winner neurons are negligibly close to the waypoint locations (e.g., less than 10~3) Stop the adaptation. Otherwise go

to Step 3.
> Final Tour Construction:

7. Improve the solution Q using 2-Opt heuristic (Croes, 1958).

8. Return the final trajectory as a solution of the DTP found by the guided sampling with up to 1,024 samples or the approximation factor 1.01 by the

algorithm (Faigl et al.,, 2017).

The schema of the unsupervised learning is depicted in Algorithm 6.
Due to the nonmonotonicity of the length of the Dubins maneuvers,
the ring may contain unnecessary loops and crossings, and there-
fore, the simple 2-Opt heuristic (Croes, 1958) is used to improve the
solution similarly as in other SOM-based TSP solvers (Ahmad & Kim,
2015). The 2-Opt heuristic is computationally inexpensive proce-
dure O(n3) which can improve the solution about few percentage
points. In addition, the final trajectory is determined by the high-
quality DTP solver (Faigl et al., 2017) which utilizes a tight lower
bound (Manyam & Rathinam, 2015) to stop the refinement of the
heading samples when the maximal number of samples 1,024 is
reached or when the ratio of the trajectory length to the lower
bound solution is less than 1.01. Notice, the sensing range § can be
easily individualized for each particular object of interest by a
simple usage of the particular range in the winner selection.
Besides, in the case of the fixed starting location, the range can be
set to zero and the target location o is directly used as the alternate
target location o, similarly to the solution of the DTSP (Faigl & Vatia,
2016, 2017).

Based on the empirical evaluation, the parameters of the learning
u = 0.6, = 0.1, and the initial value of o = 10 can be considered as
fixed and they have been selected as a trade-off between the
computational requirements and quality of the found solutions,
although they can be further tuned for specific scenarios. Thus, the
only parameters of the learning procedure are the number of
additional heading values h per each neuron and the maximal number
of learning epochs im.x. Regarding the results presented in Faigl and
Vana (2017), values h > 3 only increase the computational burden
and do not significantly improve the solution quality, therefore h = 3
is used for all the results presented in this paper. The network is
usually stabilized in around 130 learning epochs, and thus the
maximal number of learning epochs imay is set to imax = 150. A further
discussion of the network convergence can be found in Faigl and
Hollinger (2018). Nevertheless, a solution is available after each
learning epoch using the waypoint locations associated with the
winner neurons.

The computational complexity of a single learning epoch depends
on the number of targets n presented to the network and the number
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FIGURE 11 Evolution of SOM solving the mbzirc22 m-DTSPN scenario with n = 22 target locations that are shown as small black disks.

The sensing range § = 2 m is visualized by yellow disks around the target locations. The shown Dubins paths connect the neuron locations using
the determined headings. The minimal turning radius of the Dubins vehicle is p = 5 m, and the initial locations of the vehicles are highlighted by
the red disks. A solution is available after each learning epoch using the waypoints associated with neurons (not shown), and the network
converges (the neuron locations match their waypoint locations) in 118 learning epochs. The final solution is then improved by a solution of the
related DTP. (a) Epoch 1, (b) Epoch 25, (c) Epoch 50, (d) Epoch 75, (e) Epoch 118 - SOM solution, (f) final tours. DTP: Dubins touring problem;
DTSPN: Dubins traveling salesman problem with neighborhoods; SOM: self-organizing map [Color figure can be viewed at

wileyonlinelibrary.com]

of neurons M in the ring, which does not exceed 2n because of the
ring regeneration (Faigl & Vana, 2017), and thus it can be bounded by
0O(n?). The number of learning epochs is constant (inax = 150), and
thus the computational complexity depends on the 2-Opt improve-
ment that can be bounded by O(n3) and a solution of the DTP (Faigl
et al, 2017), which depends on the iterative forward search
procedure described in Section 4.1 with O(nh3). For a fixed h = 3,
the total computational complexity can be bounded by O (n®) because
of 2-Opt. Nevertheless, the real required computational time for the
mbzirc22 scenario is in hundreds of milliseconds as it is reported in
Section 7, which perfectly fits our expectation about the computa-
tional requirements.

6.1 | Learning for a team of vehicles

The described learning procedure for a single vehicle can be
straightforwardly applied to a team of vehicles by creating an
individual ring of neurons for each vehicle as N" = (v{,..,v,(,,,), where
M’ is the number of the neurons in the rth ring. The application
follows existing extension of the SOM-based solution for the TSP to
the minmax variant of the m-TSP (Faigl, 2016; Somhom et al., 1999)
where a winner neuron is preferably selected from the ring which

represents the shortest tour, which is motivated to minimize the
1999). In the winner neuron
determination, the distance |(p,, 0)| of the point p, on the Dubins
tour represented by the current ring N" and the target location o is
weighted according to the difference of the length £(N") of the
Dubins tour represented by N" and the average length of the tours
represented by the rings. The winner neuron v* is selected from the
ring r for which the respective point |(p,, 0)| used as the weights of v*
has the minimal weighted distance:

longest tour (Somhom et al.,

r= argminW(m, r)|(p}, o), (20)
re{l,...,m}

where ‘W(m, r) is the competitive weight (16) with the trajectory
length £(Q") computed as the length of the trajectory represented by
the ring N, that is, £L(N") is used instead of £(Q") in (16) and (17).
A straightforward usage of the learning procedure depicted in
Algorithm 6 in multirobot planning would provide a set of m
independent patrolling routes. Therefore, in the case the initial
locations of the vehicles are prescribed by the depots p,},...,p,’}', each
ring N'" is individually adapted towards pj; without the competition
among the rings prior a regular adaptation of the rings to the targets
O without the depots, which ensures each ring will be connected with
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the respective initial location pj. Moreover, for such a case it is
suitable to consider the initial location without the neighborhood,
and thus, for the depots, § = O is considered in the selection of
winner neurons and adaptions. An example of the SOM evolution is
visualized in Figure 11.

The computational complexity of the unsupervised learning in
solving the m-DTSPN does not significantly increase because the
learning depends on the number of neurons that are distributed into
the particular rings. Therefore, the complexity grows only with the
additional m locations that are the individual depots of the vehicles.
Hence, the computational complexity can be bounded by O((n + m)3)
which for m < n can be bounded by O(n3), and thus it is independent
on the number of vehicles (see Best, Faigl, and Fitch (2018) for a

detail discussion.

6.2 | Surveillance planning with Bézier curves

The SOM-based solution of the m-DTSPN can be easily generalized
to a different parametrization of the trajectory. Even though the
Dubins vehicle is used in the above-described procedure, the
unsupervised learning does not rely on the Dubins vehicle model.
In fact, the Dubins maneuvers can be substituted by any curve
parametrization, and in this study, we consider Bézier curves briefly
introduced in Section 4.2. Since Bézier curve can be used for the
parametrization of the 3D path, we do not use the kinematic model
of the Dubins vehicle (1). Instead of that, we consider the
hexacopters can generally follow any 3D path, and therefore, we
consider the position of the UAVs along the 3D path described as a
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point p = (x, v, z) € R3. The velocity v is defined by the turning angle
6 and the climb/dive angle of the trajectory ¢ at the position p

cosf cosy
=v|sinfcosy |.

siny

X
v=ly (21)
4

Notice, here, we do not model the orientation of the vehicle;
however, the parameters of the Bézier curves are adjusted during the
unsupervised learning to provide fast execution of the determined
path by a real vehicle. Finally, a trajectory of the final solution is
constructed from the determined Bézier curves with respect to the
vehicle motion constraints using the computation of the velocity
profile and the TTE described in Section 4.2.

There are two main parts of the learning procedure where
additional computations related to Bézier curves have to be
included: (a) The winner selection and adaptation, and (b) the
determination of the trajectory represented by the ring instead of
a solution of the DTP with heading values sampled during the
learning. In the winner selection, the point p, is determined in a
similar way as for the DTSPN, just a sequence of the Bézier curves,
each defined by four control points, (8) is utilized. However, it is
requested that the final trajectory is smooth and continuous, and
therefore, the following conditions have to be satisfied after the
adaptation of neurons to satisfy this requirement.

Let 8/ and B/ be two consecutive Bézier curves (ie, j =i+ 1)
with the control points (B), B, By, B;) and (B}, B], B}, BJ), respectively.
The last control point Bi3 of B/ and the first control point B{) need to
be identical to keep the trajectory continuous

aitude fm]

Altinude [m]

Ab

Altitade [m]
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FIGURE 12 An evolution of the proposed SOM-based 3D surveillance planning using Bézier curves in solving 3D instance of the mbzirc22 scenario
with target locations at different altitudes. The target locations are visualized as small disks surrounded by a spherical neighborhood for sensing range
8 = 2 m. The altitude of the targets and paths is indicated by the color (from a low altitude in the blue color to the highest altitude in the red). (a) Epoch
1, (b) Epoch 25, (c) Epoch 50, (d) Epoch 75, (e) Epoch 77 - SOM solution, and (f) final tours. SOM: self-organizing map [Color figure can be viewed at

wileyonlinelibrary.com]
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Bj = B)). (22)

Besides, the tangents of the Bézier curve have to point to the same
direction to support traveling of the vehicle along the final trajectory.
The tangents can be defined as

(=B —B) (=B —B) 23

with the length of the particular tangent vector

lo= el 1= ehl. (24)
This requirement can be satisfied by the condition ensuring the

smooth trajectory

e, =1 6, (25)

The waypoint locations and headings are not sufficient to
define a Bézier curve represented by two neighboring neurons,
which is further called maneuver. Therefore, each neuron is
associated with the tangent vectors for the unique characteriza-
tion of the maneuver. Each Bézier maneuver is defined by two
tangent vectors separately, and thus a continuity of the velocity is
ensured by (25). Hence, each neuron v; is associated with the
heading angle g, pitch angle ¢, and the lengths of the tangent
vectors I; and [[. The tangent vectors for the two maneuvers, for
which v; is incident with, can be expressed as

\'

i i v
it =1 =,
vl

tL:I;Fﬁ. (26)

Notice that the tangent vector ¢! corresponds with the Bézier
curve B;_; which terminates at v;. Conversely, t’; defines the initial
part of B;, and thus the indexes of these two tangent vectors that are
related to the same neuron differ.

In addition to the constraints on the consecutive Bézier
curves, a local optimization of the trajectory is performed after
the ring regeneration because the neurons that are not winners
are removed from the ring at the end of each learning epoch. For
the multivehicle planning, each ring is treated independently as an
optimization problem of minimizing the TTE along the trajectory
as follows.

The whole trajectory is described by the sequence of the
neurons N, where each neuron v; € N represents the particular
parameters of the Bézier curve. A single change of one neuron
influences the two incident Bézier curves, and it can also influence
the velocity profile of the whole trajectory. However, based on
our empirical observations, the changes are mostly local, and
therefore, the optimization of the whole trajectory is performed
locally and the values of 6;, ¢, associated with v; are numerically
optimized with respect to the velocity profile of the trajectory
defined by the three consecutive neurons in the ring v;_4, v, and
vi+1. Notice, the ring is closed, and therefore, the subscripts of the
neurons are closed to the modulo of the number of neurons in the

ring. An example of the evolution of the proposed SOM-based
solution for the 3D surveillance planning with Bézier curves is

visualized in Figure 12.

Beside these local optimizations, we used the idea of LIO
(Varta & Faigl, 2015), and the individual local optimizations of all
neurons in the ring are performed in multiple iterations of the
whole ring. In particular, three iterations of the whole ring are
performed, and each neuron is locally optimized in each iteration.
The local numerical optimization uses a step 0.5% of the variable
range, and thus, the step for 6 and ¢ is 0.017. On the other hand,
the 2-Opt heuristics (Line 7 in the unsupervised learning
Algorithm 6) is not utilized, because any change would require
optimization of the control points. The modified learning
procedure is summarized in Algorithm 6.2. Each Bézier curve is
defined by the control points associated with the neurons
including the locations of the neurons, and thus a feasible solution
is not available after each learning epoch unless the waypoints
associated with the neurons are used, and a new trajectory is
determined. However, it is one of the most computationally
demanding parts, especially for completely changed locations, and
therefore, we do not consider the learning procedure with Bézier
curves as the any-time algorithm. After the network convergence,
the velocity profile for the Bézier curve is calculated numerically
using 200 uniformly distributed samples for the range 7 € [0, 1]
according to (8). The real computational requirements are

reported in Section 7.

7 | RESULTS

An empirical evaluation of the proposed VNS-based and SOM-based
solvers for the m-DTSPN consists of four main parts. First, the
algorithms’ performance is studied in the mbzirc22® scenario
because of our motivation for the addressed problem. After that,
the proposed generalization of the SOM-based solver for surveil-
lance planning using Bézier curves is studied in 2D problems first,
and we compare trajectories consisting of Dubins maneuvers with
Bézier curves in the second part of the evaluation. Then, the
proposed unsupervised learning based 3D surveillance planning
with Bézier curves is studied in 3D scenarios. Finally, a brief
evaluation of the algorithms’ performance in larger problems is
presented in the fourth part of the herein reported results to
provide an overview of the expected performance of the evaluated
algorithms in different scenarios.

In addition to the proposed algorithms, the memetic algorithm
(Zhang et al., 2014) is included in the evaluation as it demonstrates

1The mbzirc22 scenario contains 22 objects of interest positioned at the target locations (in
meters): (27.5, 47.0), (10.0, 36.5), (51.5, 41.5), (32.0, 37.5), (67.0, 16.0), (44.0, 49.0), (44.0,
16.5), (49.5, 18.0), (60.5, 20.5), (39.5, 34.5), (78.0, 16.5), (67.0, 37.0), (76.5, 1.5), (28.5, 33.0),
(22.5,11.5), (57.0, 31.0), (47.0, 33.0), (4.0, 17.5), (36.0, 12.0), (57.0, 43.0), (22.5, 36.5), (11.0,
42.0). The scenario is visualized in Figure 3 where the initial locations (depots) of the
vehicles are (10,1) for the first vehicle, (40,1) for the second vehicle, and (70,1) for the third
vehicle.
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Algorithm 3: Unsupervised learning algorithm for surveillance planning with Bézier curves

Input : O - A given set of objects of interest

Input : p; - The requested initial location (depot) of the vehicle

Output : X, 7 - Determined surveillance trajectory that covers O and the computed TTE (using velocity profile)

> Initialization:

1. For n target locations O, create a ring N with n neurons with the weights set such that the connected weights form a closed path around the center

of the target locations.

2. Set the learning gain G = 10, the learning rate u = 0.6, the gain decreasing rate « = 0.1, and the epoch counter i = 1.

> Learning Epoch:

3. For each target o in the randomized set o € IT(OJ{pd})

(a) Winner selection: Determine the point p, and waypoint location o, similarly as in Figure 10 but p, is the closest point of the sequence of Bézier

curves to the location of 0. The particular Bézier curve on which p, is located is constructed from the respective two consecutive neurons and
the associated control points, that is, the tangents (directions) of the curves (Section 4.2). Create a new neuron v* with the weights according
to p, (for the location) and the tangents according to the Bézier curves to split it into two parts, and add v* to the ring.

(b) Adapt v* and its neighbouring neurons to o, using the neighbouring function (19) but with the neighborhood defined as 0.2M, where M is the

current number of neurons in the ring. The weights of each adapted neuron v are set to a new location v' = v + uf (o, d)(0, — v), that is, only
the control points corresponding to the neuron location are modified and the tangents remain the same.

> Update:

4. Ring regeneration: Remove all nonwinner neurons. Use the sequence of the winner neurons defined by the ring together with the control points and
waypoint locations associated with the neurons to optimize the sequence of Bézier curves using LIO (Vana & Faigl, 2015).

5. Update learning parameters: o = o(1 —ia),i =i + 1.

6. Termination condition: If i > inax Or winner neurons are negligibly close to the waypoint locations (e.g., less than 10-3) Stop the adaptation. Otherwise go

to Step 3.

> Final Tour Construction:

7. Return the final trajectory as a sequence of Bézier curves for which the velocity profile is determined using the procedure described in Section 4.2.

high-quality solution in Faigl and Vaia (2017), although it is
computational demanding. Regarding the motivation, the compu-
tational time for the VNS and memetic solvers has been limited to
1, 5, 10, and 60 s, because of our initial intention to have a solution
in less than 1s. The SOM provides a solution of the addressed
problem in less than 1s, and therefore, the computational time is
not explicitly limited, but the maximal number of the learning
epochs is set to imax = 150. The particular values of VNS solver
parameters and also learning parameters of the SOM are used as
they are reported in Section 5 and Section 6, respectively. The
parameters of the Memetic algorithm are selected as in
(Faigl & Vatia, 2017 according to the recommendation of (Zhang
et al,, 2014, i.e., the population size is set to 20n, where n is the
number of target locations of the solved problem.

All the evaluated algorithms are randomized; therefore 20
trials are computed for every problem instance by each of the
evaluated algorithms, and the reported performance indicators
are computed as the average values accompanied by the standard
deviations and the best-found solution from the solved trials. The

indicators of the solution quality are computed as the length of

the longest Dubins tour among the tours for the vehicles in the
team. Besides, the TTE is used in the case of Bézier curve and
velocity profiles computed for the Dubins tours. In addition to
average values of the length of the longest tour L, and its
standard deviation Lgq, the quality of the best solution among the
trials is reported as Lpest.

The computational requirements are measured as the real
required computational time. All the algorithms have been
implemented in C++, and they use the same implementation for
computing Dubins maneuvers and solution of the related DTP. All
implementations are compiled by the same compiler Clang 4.0 and
executed within the identical computational environment using a
single core of the iCore7 processor running at 4 GHz. Therefore,
all the reported computational times represent realistic require-
ments and can be directly compared.

The particular evaluated algorithms and their variants with
the restricted computational time are denoted: Memetic 1s,
Memetic 5s, Memetic 10s, Memetic 60s, VNS 1s, VNS 55, VNS
10s, VNS 60s, SOM (Dubins), and SOM (Bézier). The problems

being solved are parametrized by the number of vehicles



CHAPTER 6. UNSUPERVISED LEARNING-BASED FLEXIBLE FRAMEWORK FOR

SURVEILLANCE PLANNING WITH AERIAL VEHICLES 76
290 WI LEY FAIGL ET AL
TABLE 2 Average and best found solutions of the m—DTSP mbzirc22 scenarios
m=1 m=2 m=3
Method Lpest Lave Lsta Lpest Lave Lsta Lpest Lave Lsta
Memetic 1s 402.8 451.8 20.1 2584 2921 16.6 194.1 227.3 131
Memetic 5s 318.5 343.3 17.4 194.4 222.1 19.0 139.6 163.2 15.9
Memetic 10s 310.7 330.3 10.9 180.4 206.1 16.2 134.3 159.2 12.3
Memetic 60's 306.4 323.6 28.7 170.7 193.2 13.6 131.0 145.1 6.7
VNS 1s 318.6 318.6 0.0 173.7 173.7 0.0 130.5 133.8 1.5
VNS 55 318.6 318.6 0.0 173.7 173.7 0.0 130.5 133.2 0.9
VNS 10s 318.6 318.6 0.0 173.7 173.7 0.0 130.0 1323 1.6
VNS 60s 318.6 318.6 0.0 173.7 173.7 0.0 130.0 130.6 0.8
SOM 311.2 326.8 10.6 170.5 195.5 14.5 136.3 156.1 13.0

Note. DTSP: Dubins traveling salesman problem; SOM: self-organizing map.

m e {1, 2, 3}, the sensing range & limited to 0 <§<5 m, and
the minimal turning radius p, which has the default value p = 5 m.
For the comparison of the Dubins maneuvers with the
Bézier curves the value of p is selected from the set
pei{56,7,8,9, 10,11, 12,125} in meters and the velocity
profile is computed for Vuori; = 5 ms~1 and the maximal vehicle
acceleration dperi; = 2 ms™2, which are also used for velocity

profiles along the trajectories consisting of Bézier curves.

7.1 | Performance evaluation in m-DTSP

and m-DTSPN

The m-DTSP formulation represents the basic surveillance plan-
ning and the lengths found by the evaluated algorithms for m
vehicles are reported in Table 2, where the best results found
under less than 1s are highlighted in bold, while the shortest
solution regardless of the computational requirements are under-
lined. For a single vehicle, the SOM-based approach provides the
best solution in less than 250 ms, which is a bit more demanding
than the initialization part of the VNS (further denoted as the VNS
Init), see computational requirements depicted in Table 3. For the

TABLE 3 CPU time-SOM and initialization of the VNS in
m-DTSPN Scenarios

SOM-Tcpy (ms) VNS Init-Tcpy (ms)

Problem m=1 m=2 m=3 m=1 m=2 m=3
mbzirc22, 2242 1955 1739 94.5 50.5 39.9
§=00

mbzirc22, 165.9 1575 159.7 1,108.8 1,232.8 1,206.8
§=05

mbzirc22, 152.7 1511 1516 1,312.2 1,160.1 1,100.0
§=10

mbzirc22, 1344 1352 1420 1,978.8 1,085.9 983.7
§=20

Note. CPU: central processing unit; DTSP: Dubins traveling salesman
problem; SOM: self-organizing map.

relatively small problem mbzirc22 and m = 1, the VNS initializa-
tion is very fast, and a solution is provided in less than 100 ms.
Besides, the standard deviation for SOM is about 10m, and
therefore, the most suitable algorithms seem to be the SOM-
based planning framework and VNS-based optimization. However,
for a team of UAVs, the best solutions found in less than 1s are
provided by the proposed VNS solver, and they are found with
very low standard deviations because they are mostly based on
the initial solutions.

The memetic algorithm is capable of providing high-quality
solutions, but as it has been reported in other studies mentioned
in the related work, it is computationally demanding. Even though
only the single mbzirc22 scenario is evaluated, the results indicate
the VNS probably scales better with the number of vehicles than
the memetic algorithm. Contrarily, the solution improvement for
increasing computational time is more evident for the memetic
algorithm than for the VNS which is highly related to the
proposed initialization of the VNS. Therefore, the main observa-
tion from the results is that the proposed initialization procedure
(Section 5.1) performed prior the VNS optimization perfectly fits
the properties of the mbzirc22 scenario and our practical
deployment.

The performance of the algorithms in the m-DTSPN instances
with sensing range § = {0.0, 2.0} meters is depicted in Figure 13
and the best solutions found by the selected algorithms are
visualized in Figure 14. Most of the algorithms provide slightly
shorter solutions for increasing §; however, two and three
vehicles are more beneficial, and the longest tour is shortened
more significantly than for a longer §. Even though SOM provides
better results than the memetic 1s (as it is reported in Faigl and
Vaia, 2017), it can be noticed that the SOM-based approach
provides a bit worse results for § > 0 than for § = 0, which is
especially noticeable for m = 2. It is probably caused by marking
the neurons within the § distance from the target as the winner
without the adaptation as the neuron already covers the target.

Besides, it can be related to the nonmonotonicity of the length
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FIGURE 13 Average lengths of the longest path found by the evaluated algorithms in the mbzirc22 m-DTSPN scenario with the sensing
range § and m vehicles. The shown lengths are average values computed from 20 trials, and the standard deviations are shown as error bars,
and very low values are not visible. (a) m-DTSP, § = 0.0 m; (b) m-DTSPN, § = 2.0 m. DTSPN: Dubins traveling salesman problem with
neighborhoods; SOM: self-organizing map; VNS: variable neighborhood search [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 14 Selected best found solutions of the mbzirc22 m-DTSPN scenario § = 2 m and with one (left), two (middle), and three (right)
vehicles found by the evaluated algorithms with the computational time limited to 1s. (a) SOM (Dubins), Lpest = 287.5 m; (b) SOM (Dubins),
Lpest = 176.1 m; (c) SOM (Dubins), Lpest = 136.8 m; (d) memetic 1, Lyest = 398.2 m; (€) memetic 1s, Lpest = 266.1 m; (f) memetic 1,

Lpest = 202.4 m; (g) VNS 15, Lyest = 259.9 m; (h) VNS 15, Lpest = 163.0 m; (i) VNS 1s, Lpest = 114.4 m. DTSPN: Dubins traveling salesman
problem with neighborhoods; SOM: self-organizing map; VNS: variable neighborhood search [Color figure can be viewed at

wileyonlinelibrary.com]
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FIGURE 15 Planned and real executed trajectories by unmanned
aerial vehicles, results adopted from Faigl and Vaia (2017) [Color
figure can be viewed at wileyonlinelibrary.com]

of Dubins maneuvers as such behavior is not observed in Faigl and
Hollinger (2018) nor for Bézier curves (Figure 15). However, this
phenomenon needs to be further investigated.

The required computational times of the SOM and the proposed
initialization procedure for the VNS are presented in Table 3. The
SOM-based solver scales well with increasing m and é. It is partially
because the network converges in less number of learning epochs,
but mostly because of saving the adaptation once a winner neuron is
in the neighborhood of the particular target location. Decreasing
computational requirements with m can be surprising, as algorithms
are usually more demanding for multirobot problems. However, the
SOM benefits from the spatial allocation of the neurons and the total
number of neurons is almost the same as for the single robot
instances. Therefore, a selection of Vprey and vyext in the minimization
of (18) is quicker because fewer neurons are in the ring and the most
time-consuming operation is the computation of Dubins maneuvers.
Notice, in SOM, Dubins maneuvers are computed on demand, and
none of the precomputed distances are utilized because sampling of
the heading and waypoint locations is performed online during the
learning.

The SOM is far the fastest solver from the evaluated algorithms,
especially for the m-DTSPN instances where the VNS initialization
suffers from the sampled waypoint locations (s = 6) which make the
construction of the initial tours demanding. For nonzero sensing
range §, the initialization takes more than 1, and therefore, VNS 1s
does not satisfy the limit on the computational time. Also, less time is
available for the VNS optimization for the higher limit of the
computational time because of the demanding initialization. Besides,
the optimization itself is also demanding because of the evaluation of
the possible waypoint locations, and thus only a few iterations are
performed, and the solution is not improving within the given time
limit up to 60s.

The memetic algorithm provides worse results than SOM for 1s
limit, but it is capable of improving the solution if more computa-

tional time is available. However, it starts with a relatively poor

solution, and even in 60 s, the solution is improved to be only close to
the solution provided by the VNS solver.

Based on the reported results, it can be summarized that the
proposed SOM-based approach for the m-DTSPN can be preferred
whenever the computational requirements matters. It is a far way the
fastest approach providing solutions in hundreds of milliseconds, and
thus it perfectly fits real-time requirements. On the other hand, if the
computational requirements are not limited, the proposed VNS-
based approach is capable of providing best solutions. However, in
the case of exploiting nonzero sensing range &, depending on the
selected number of samples of possible waypoint locations and
heading values, the VNS-based algorithm can be quickly computa-

tionally demanding.

7.1.1 | Real deployment

Verification that the planned paths are feasible for the real vehicles
has been performed in real experiments with three vehicles, and
thus the setup of the experiment corresponds to the evaluated
mbzirc22 scenario with m = 3. Since the mutual trajectory collisions
are not explicitly addressed in the m-DTSPN formulation, a solution
without mutually crossing trajectories is selected from the found
trajectories. It is not a big issue for the mbzirc22 instances because
the initial locations of the vehicles support splitting the field that is
approximately 60 mx 80 m large (Figure 3). Besides, in our early
results on the SOM-based planner (Faigl & Vatia, 2017), we further
consider initial positions of the vehicles not only with different
coordinates along the x axis but also along the y axis (see the small
red disks denoting depots in Figure 17). In addition, the SOM-based
solver tends to find mutually noncrossing paths because of SOM
property to preserve the topology of the input space (Faigl, 2016).
The mutually noncrossing tours are not guaranteed, and this can be
further addressed by adjusting velocity profiles which is out of the
scope of the herein presented approach. Nevertheless, empirical
results provide sufficient solutions that have been deployed in the
field testing.

A snapshot of the planned and real trajectories is visualized in
Figure 17. The UAVs have been operating at the altitude of 7 m with
the trajectory following provided by the MPC (B4ca et al., 2016). The
real-time kinematic global positioning system (GPS) with precision
less than 2cm has been utilized for controlling the UAVs and
recording the real trajectories. The particular value of sensing range
according to the camera field of view is 4 m, but § has been set to
8 = 2 m for the trajectory planning because of noise and imperfec-
tions in the trajectory following, which can be observed in the
recorded real trajectories. Even though the trajectory following is not
perfect, a sufficient vicinity of the object of interest has been
achieved. Besides, the real deployment of the proposed Dubins-based
planning approach has been thoroughly validated during participa-
tion of the CTU team in MBZIRC 2017 (MBZIRC, 2017). Thus, a
further step in the proposed approach for surveillance planning with
UAVs is the utilization of Bézier curves as the trajectory parame-

trization.
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FIGURE 16 Average values of the TTE along the planned trajectories for the Dubins vehicle with different minimal turning radius p. The
SOM-based framework allows usage of the Dubins vehicle model denoted as the SOM (Dubins) and Bézier curves denoted as the SOM (Bézier).
(a) A constant forward velocity;(b) acceleration/deceleration up to Vi, SOM: self-organizing map; TTE: travel time estimation; VNS: variable
neighborhood search [Color figure can be viewed at wileyonlinelibrary.com]

7.2 | Surveillance planning with Dubins maneuvers
and Bézier curves

The proposed extension of the unsupervised learning to the
utilization of Bézier curves is compared with the Dubins vehicle
model utilized in the SOM, memetic, and VNS algorithms in a single
vehicle scenario. The planning with Bézier curves directly optimizes
the TTE using the velocity profiles computed according to the
algorithm presented in Section 4.2. On the other hand, the Dubins
vehicle model assumes a constant forward velocity v, and therefore,
the TTE can be computed from the path length and v. However, the
velocity depends on the allowed radial acceleration when the vehicle
follows the circular path with the minimal turning radius p. We
consider the maximal allowed horizontal acceleration dneri; = 2 ms=2
for which the forward velocity is computed as v = /oGhoriz. Hence,
the vehicle can travel at the maximal horizontal velocity
Vhoriz = 5 ms™1 along Dubins maneuvers with p = 12.5m, which
may provide longer paths. Shorter paths can be determined for
shorter p, but the vehicle needs to travel with a lower velocity.
Therefore, we consider 5.0 < p <125 and determine the most

suitable p for the mbzirc22 instance of the DTSP regarding the TTE.
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In addition to such a simple computation of the TTE along the
Dubins path with a constant forward velocity, we determine a faster
trajectory considering the motion of the hexacopter is limited by the
maximal acceleration and not by the minimal turning radius.
Therefore, the hexacopter can accelerate on the straight segments
of the Dubins path, and a lower velocity v, can be computed for the
turning segments according to the maximal allowed horizontal

acceleration aperi; as

. Ohori

Viurn = mm(Vhoriz: hor|2)y (27)
Kh

where xj, is the horizontal curvature (11) of the trajectory. For the

turning radius p, (27) can be expressed as
Veurn = MiN(Vhoriz, ahorizp)~ (28)

The average values of the TTE for different p are depicted in Figure 16,
where the simple computation of the TTE based on constant forward
velocity is denoted (Dubins), and the results for the acceleration on
straight segments are denoted (Dubins + acc). Notice that for the VNS,
only the initialization part is performed because of m = 1.
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FIGURE 17 Average values of the TTE (left) and required computational times (right) for the proposed SOM-based surveillance planning
with Bézier curves. SOM: self-organizing map; TTE: travel time estimation [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 18 Selected found solutions for the proposed SOM-based surveillance planning with Bézier curves for a single vehicle (m = 1) and
various sensing ranges. (a) §=1m, TTE =77s.(b) § =2m, TTE =70.8s. (c) 6 =3 m, TTE = 69.6 s. TTE: travel time estimation [Color figure can be
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The fastest trajectories are provided by the SOM-based
planning with Bézier curves. The results further indicate that for
the considered mbzirc22 scenario, the fastest Dubins paths are
provided by the proposed initialization of the VNS-based algorithm
with p = 7 m, for which the TTE is a bit shorter (85.5s) than the
found trajectory consisting of Bézier curves with TTE = 86.6s.
However, suitability of the particular value of p depends on the
configuration of the target locations as it is indicated by shorter p
and trajectories determined by the other solvers with the
acceleration of the vehicle on the straight line segments. Therefore,
Bézier curves seem to be a more suitable option than the Dubins
vehicle model. Here, it is worth noting that the proposed SOM-
based planning with Bézier curves converges better than with the
Dubins maneuvers with nonmonotonicity of the maneuver length,
which can also be the reason for better solutions found by the
unsupervised learning than the simple heuristic used in the
VNS Init.

The surveillance planning with Bézier curves is further
evaluated in instances of the mbzirc22 scenario with increasing
sensing range § and m vehicles. The average value of the TTE
together with the real required computational times are depicted in
Figure 15. Also, in this case, adding more vehicles to the team
decreases TTE more significantly than increasing &8, but an
improvement for a longer sensing range is noticeable (Figure 18).
The computational requirements of the unsupervised learning are
almost about two orders of magnitude higher than using the Dubins
vehicle model. It is mainly because Dubins maneuvers are
determined analytically while a numerical optimization is utilized
for the optimization of Bézier curves. Nevertheless, solutions are
provided in less than 15s using the conventional computational
resources.

Real experimental verification is not performed for the 2D Bézier
curves and velocity profiles of the Dubins tours because of the
utilized MPC-based controller (Baca et al., 2016) which guarantees
the trajectories are finished at the desired time. Therefore, Bézier
curves are further evaluated in the 3D surveillance scenarios in the

next section.

7.3 | Performance evaluation in 3D surveillance
scenarios

The usage of Bézier curves provides a great advantage in a direct
deployment of the proposed unsupervised learning based planning in
3D surveillance scenarios. The testing scenario mbzirc22 has been
extended to 3D by adding altitudes to the particular target locations.
It can be expected that a high variance in the target altitudes would
need a longer trajectory than the 2D scenario. Therefore, we
consider two scenarios with different ranges of the altitude changes
to study limits of the maximum horizontal velocity Vi, and the
maximal vertical velocity as w.rt. For low altitude changes in the
range of 5 and 10 m, the vehicle mostly needs to travel horizontally,
and thus it is expected the vehicle velocity will be saturated at vjori»
more frequently than for high altitude changes of the target locations
in the range of 5 and 20 m, where the vehicle needs to change the
altitude, and thus, it is limited by wert. The considered horizontal
limits are the same as for the 2D planning, that is, Vpori; = 5 ms~! and
Ghoriz = 2 Ms~2. The vertical limits correspond to the capabilities of
the used real UAVs and are set to Vyert = 1 ms™! and dyert = 1 ms™2.

An example of the 3D surveillance scenarios with low and high
altitude changes in the target locations created from the mbzirc22
scenario is depicted in Figure 19 together with the horizontal
position and altitude along the trajectories and the corresponding
velocity profiles. As expected, increasing altitude changes increases
the time needed to travel along the trajectory, and therefore, we

validated the trajectories in a real experimental deployment.

7.3.1 | Experimental validation
of the 3D surveillance planning

Feasibility of 3D trajectories planned by the proposed SOM-based
framework with Bézier curves has been validated in a real experiment
with three vehicles and modified mbzirc22 scenario with the target
locations at different altitudes. The same hardware and GPS-based
localization as in the validation of the Dubins tours have been utilized.
A snapshot from the field experiment is depicted in Figure 20.



CHAPTER 6. UNSUPERVISED LEARNING-BASED FLEXIBLE FRAMEWORK FOR
SURVEILLANCE PLANNING WITH AERIAL VEHICLES 81

FAIGL . 295
Sk WILEY—-2

25

20

15
4]
k]
2

102

5

0

0 N . . . 0 . . . .
0 20 40 60 80 0 20 40 60 20
X [m] X [m]
{b} — Horizontal position in x-axis —— Honzondal position in y-axis Altiiwde

L
0

2

(=]

Horizontal position [m]
&

[} (1]
(1] 20 40 1] B0 1M} 120 140 (1] 20 40 (1] 8l 100 120 140
Time [s] Time [s]

(C] Max. velocity (curvature) — Velocity — Acceleration

4] [ B

3

ition [nl-'-. |

s

=
[}
=

TN

W
I =
(1] 0 2
1} 20 40 (1] 80 106} 120 140 40 t':ll i 1 120 140
Time [s] lime |nJ

Horizontal velocity [m/fs]
B

Heorizontal velocity [m/s]

5
5

(=]
(=]
a

\-"crliu:ll velocity [mis]
\"g i l|| velocity [mys]
Ventical acceleration [m/fs”]

I LBETAT T [}

20 40 el 80 100 120 140 m B0 100 120 I-H]
Time [s] Time [s]

FIGURE 19 An example of the 3D surveillance problems with low (left) and high (right) altitude changes in the target locations of the
mbzirc22 scenario and solutions found by the proposed SOM-based algorithm with Bézier curves (top), particular positions of the vehicles along
the found paths (middle), and velocity and acceleration profiles (bottom). (a) Three-dimensional surveillance scenarios with low (left) and high
(right) altitude changes and found solutions. (b) A position of the vehicle along the trajectories. (c) Velocity and acceleration profiles for vehicles
traveling along the determined trajectories. SOM: self-organizing map [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 20 Planned and real trajectories executed
simultaneously on three hexacopters. The target locations of the
mbzirc22 scenario are depicted as small black spheres each
surrounded by its spherical neighborhood § = 2 m. The three
additional initial locations of the vehicles are positioned at the
altitude of 5m, and they are visualized as small red spheres. The
planed trajectories are shown by blue curves, and the trajectories
from two experimental trials are visualized by curves with the color
based on the altitude (from blue to red for increasing altitude) [Color
figure can be viewed at wileyonlinelibrary.com]

The evaluated scenario with the sensing range § = 2 m together
with the planned and real trajectories of the vehicles from two trials
are depicted in Figure 21 with the corresponding planned and real
velocity profiles presented in Figure 22. Also in this real deployment,
the MPC-based trajectory following controller (Bac¢a et al., 2016) has
been utilized, and all the planned trajectories have been found
feasible. Besides, all the target locations have been visited within the
requested distance, which is §+2m because of the identified
behavior of the MPC controller as in the previous case. The vehicles

FIGURE 21 A snapshot of the three unmanned aerial vehicles
deployed in the experimental verification of following the planned 3D
trajectories [Color figure can be viewed at wileyonlinelibrary.com]

reached their velocity limits in both direction, that is, Vhoriz and wert,
which is indicated in Figure 22.

7.4 | Performance evaluation in complex instances

In this part of the presented results, we report on an overview of the
performance of the evaluated algorithms in instances that are beyond
the motivational mbzirc22 scenario with the aim to show particular
properties that may not be directly visible from the previous results.
First, we focus on the proposed initialization of the VNS algorithm,
which seems to be fast and powerful in the m-DTSP instances but it
becomes quite demanding in m-DTSPN with § > O as it is shown in
Table 3. Moreover, it is even more demanding in the instances where
the initial vehicle position is not a single waypoint location, but it is
considered with the same neighborhood § as the other target locations.
The required computational times for the mbzirc22 scenario with § = 2
m and m vehicles is depicted in Table 4. SOM-based solvers are not
influenced by & > 0O, but the VNS initialization is several times more
demanding when the neighborhood is considered for the initial
locations of the vehicles, that is, §; = 8, and thus, the solution is not
provided in less than the desired 1s.

An additional evaluation is focused on the solution of large
problems since the mbzirc22 scenario is relatively small. Therefore,
the solvers have been deployed in two random instances with 50 and
100 relatively dense target locations. In this case, the minimal turning
radius for the Dubins vehicle is set to p =1 m, but all other
parameters are the same as in Section 7.2.

The average values of the TTE using acceleration/deceleration for
the Dubins maneuvers are shown in Figure 23, and selected solutions
are depicted in Figure 24 for n = 50 and in Figure 25 for n = 100
target locations. The results indicate that the fastest trajectories are
provided by the SOM solver with Bézier curves.

The memetic algorithm is not competitive with the proposed
SOM nor the VNS algorithm. Notice, for large instances, the
initialization of the VNS can be more demanding, and thus more
than the dedicated computational time can be spent on the creation
of the first feasible solution (Figure 26).

Regarding the computational requirements, the best trade-off
between the solution quality and computational time is provided by the
VNS-based solver or more precisely by the initialization procedure
proposed in Section 5.1. For the larger problem with n = 100, the VNS
initialization takes about 15 s while SOM with Dubins maneuvers takes
only about three seconds for m = 1. However, for more vehicles, the
VNS initialization is less demanding, and it is competitive to the SOM
with the Dubins vehicle model. The heuristic initialization of the VNS
works faster with more vehicles because the evaluation of all possible
insertions is faster for tours with fewer targets.

7.5 | Discussion

Based on the presented results, the SOM-based algorithm scales
better in the problems with nonzero sensing range, but for the
m-DTSP, the superior results are provided by the proposed heuristic
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FIGURE 22 Planned and real horizontal (top) and vertical (bottom) velocity profiles from two experimental trials for each of the vehicle.

Each column corresponds to one vehicle according to Figure 21 (from left to right) [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 4 Influence of vehicle initial locations with neighborhood in mbzirc22 and § = 2.0 m
Depot SOM (Bézier)-Tcpy (s) SOM (Dubins)-Tcpy (s) VNS Init-Tepy (s)
84 (m) m=1 m=2 m=3 m=1 m=2 m=3 m=1 m=2 m=3
54=0 8.5 8.7 8.9 0.1 0.1 0.1 2.0 1.1 1.0
Sg=2 8.3 9.3 8.9 0.2 0.2 0.1 5.3 6.2 5.5

Note. SOM: self-organizing map.

W SOM (Bézier) O VNS 1 s (Dubins + acc)
I SOM (Dubins + acc) B VNS 60 s (Dubins + acc)
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FIGURE 23 Average values of the TTE for large problems with n target locations. (a) m-DTSP instance with n = 50; (b) m-DTSP instance
with n = 100. DTSP: Dubins traveling salesman problem; SOM: self-organizing map; TTE: travel time estimation; VNS: variable neighborhood
search [Color figure can be viewed at wileyonlinelibrary.com]
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initialization used for the initial construction of a feasible solution
prior a further improvement by the VNS optimization. A great benefit
of the SOM solver is its flexibility to utilize Bézier curves that allow

for exploiting motion capabilities of the used hexacopters which are
not limited by a minimal turning radius p as the Dubins vehicle.
Comparing parametrization of the requested surveillance trajectories
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using Dubins vehicle model and the proposed sequence of Bézier
curves, the main advantage of Dubins maneuvers is the closed-form
solution for two waypoints with prescribed headings, which leads to
lower computational requirements. On the other hand, the Bézier
curves better fit the real limitations of the multirotor vehicles that
are not limited by minimal turning radius, but by the maximal vehicle
velocity and acceleration limits.

In small scenarios such as mbzirc22, it can be possible to find the
best performing radius p for which Dubins maneuvers provide similar
TTE as the Bézier curves, but only if velocity profiles are determined
with the allowed acceleration/deceleration up to Vyei,. For larger
instances, it may not be beneficial because of computational
requirements for solving the m-DTSPN for several values of p would
be similar or higher than a solution using the Bézier curves. Finally,
the main advantage of the Bézier curves is a direct generalization of
the surveillance planning to the 3D, which is not directly possible for
the Dubins vehicle. The Dubins Airplane model (Chitsaz & LaValle,
2007, December) can be used for 3D trajectory planning; however,
shorter and faster trajectories will be found using the proposed
Bézier curves for multirotor vehicles that do not need to use the
additional spiral to gain the requested altitude, as these vehicles can
directly flight almost in any direction. Therefore, if the configuration
of the planning problem is known in advance and enough time to
compute several solutions is available, which is not the case of the
robotic competition, it can be suitable to consider the Dubins vehicle
model. In other cases and especially 3D planning with § > O, the
proposed SOM-based unsupervised learning framework with Bézier
curves is a suitable choice.

The reported evaluation results are only for problem instances
with up to three vehicles because of our motivation arising from
the MBZIRC 2017 competition, where we deployed only three
vehicles. All the proposed and evaluated algorithms for m-DTSPN
including the SOM-based method for surveillance planning with
Bézier curves can solve problems with a higher number of vehicles;
however, we do not consider such scenarios because of the scope
of this paper and challenging experimental verification, for
example, with 10 vehicles, that needs significantly larger and
more demanding experimental setup. Regarding scalability of the
used SOM-based unsupervised learning, it is worth mentioning
that it can be considered as independent on the number of vehicles
if the number of target locations n is significantly higher than the
number of vehicles m, that is, n > m (see the analysis in Best
et al. (2018)).

For multirobot deployment, an important part of the surveillance
planning is collision avoidance. In the presented approach, we do not
include the collision avoidance explicitly in the planning part because
it is addressed in MPC-based controller used in the trajectory
following which is considered to be out of the scope of this paper.
The reactive collision avoidance based on the MPC predictions uses a
slight alteration of the desired trajectory altitude if the MPC
predictions contain collisions between the vehicles. The used MPC-
based collision avoidance is partially described in Spurny et al. (2018)

and it is presented in Baca et al. (2018). Besides, the found solutions
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and especially those found by the proposed unsupervised learning
are such that the found trajectories are mutually noncrossing, and
thus collision-free (see a discussion on that in Faigl (2016). Although
noncrossing trajectories are not guaranteed; such solutions are found
with a high probability in the considered scenarios also because of
the selection of the vehicle depots that have to respect safety zones
around each vehicle.

Regarding future work related to the proposed solvers, there are
several open questions in addition to the explicit consideration of
collision-free trajectories. One of them is that the proposed VNS
initialization exhibits surprisingly good results and since it seems the
VNS optimization scales poorly with increasing computational time,
such an initial solution can be fed to the memetic algorithm for
further improvement. For large instances with tens, hundreds, and
more target locations, the unsupervised learning with Bézier curves
seems to scale better than the VNS, and there are two ways how
the computation can be further speeded up. The first is to improve
the local optimization. The second is to exploit parallelization of the
unsupervised learning of SOM, which has been already reported in
the literature including SOM for the TSP.

The promising results of the Dubins vehicle model with various p
accompanied with the computation of the velocity profile for
hexacopters provide a source of motivation for generalization of
the proposed approaches to consider multiple radii simultaneously
during the optimization. In addition, a further generalization of the
Dubins vehicle model used in the proposed solvers towards the 3D
Airplane model or Dubins-Helix model is also a possible subject for

the future work.

8 | CONCLUSION

In this paper, we address surveillance planning problem motivated
by our participation in the robotic competition MBZIRC 2017.
Because of the motivation, we aim to quickly find a solution to the
planning problem with satisfiable quality, and thus we focus on the
heuristic solution rather than optimal algorithms. The problem is
first tackled as a variant of the m-DTSPN with the Dubins vehicle
model for satisfying curvature-constrained trajectories that fit
properties of the utilized trajectory follower. The m-DTSPN has
been addressed by the proposed VNS-based and SOM-based
algorithms that are significantly less demanding than the existing
memetic algorithm, and both proposed algorithms provide better
solutions in less computational time. However, Dubins vehicle
model is suitable for vehicles with the limited turning radius, i.e.,
not necessarily the case of the used hexacopters whose motion is
constrained by the maximal velocity and acceleration limits.
Enabled by the flexibility of the used unsupervised learning, we
propose to consider a more general trajectory parametrization
based on Bézier curves, which enable to better exploit motion
capabilities of the used vehicles. Moreover, it also allows solving
3D surveillance planning missions and finding 3D smooth trajec-
tories for a team of our hexacopters. The solutions found by the
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proposed algorithms have been numerically evaluated in several
realistic problem instances. Besides, the solutions have also been
experimentally verified by a real multirobotic system, where all the
provided trajectories have been found feasible, and they fit the
properties of the utilized trajectory following controller of the used
hexacopters.
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Chapter 7

Physical Orienteering Problem for Unmanned Aerial
Vehicle Data Collection Planning in Environments
with Obstacles

The last core publication of this thesis is the article published in the IEEE Robotics
and Automation Letters concerning Physical Orienteering Problem (POP).

[5c) R. Pénicka, J. Faigl, and M. Saska, “Physical orienteering problem for un-
manned aerial vehicle data collection planning in environments with obstacles,”
IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 3005-3012, 2019

The POP is an extension of the OP with the ordinary maximization of the collected
reward within a limited budget; however, for environments with obstacles. The problem thus
combines the collision-free motion planning in configuration space with the OP routing
over multiple target locations. The task of collision-free motion planning is to find feasible
paths between individual pairs of target locations in the environment with obstacles. The
POP objective is then to select a subset of the target locations and a sequence to visit them
within the prescribed budget using the collision-free motion plans found so-far. However, the
cost of so-far found motion plans highly influence the final solution quality through the limited
budget. Therefore, the routing (subset and sequence selection) and motion planning have to
be addressed simultaneously. The POP can be understood as the OP in configuration space.

The proposed method for the POP combines the VNS-based method with asymptoti-
cally optimal sampling-based Probabilistic Roadmap (PRM*) method in a tightly coupled
algorithm denoted as the VNS-PRM*. The VNS part for the routing uses similar shaking and
local search procedures as presented for the first three core publications f. However,
the local search procedure is additionally used to search the combinatorial routing part of the
POP for high-quality and possibly over-budget solutions that can be shortened. The collision-
free motion plans in such identified solutions can be then shortened by additional PRM*
sampling between individual target locations. The PRM* part of the algorithm uses initially
a low-dense sampled roadmap. The roadmap is then continuously expanded in every iteration
of the VNS-PRM* based on the local search combinatorial search. The sampling strategy
prefers expansion for shortening solutions with small budget overshoot and with high reward,
possibly better than the so-far best found. Such expansion can shorten the motion plans be-
tween the targets in the roadmap and thus allows the VNS combination part to find higher
rewarded solutions using the same budget limit.

The proposed VNS-PRM* method is compared with the optimal solution of the POP
for point robot in the 2D environment found as a combination of the ILP solution of the OP
on visibility graph roadmap. The VNS-PRM* is shown to find the optimal solutions for the
majority of the tested instances. The comparison with the existing method for the PCTSP
shows that the VNS-PRM* significantly outperforms the method for the tested Dubins vehicle
model. The method is finally shown when employed in a 3D environment and also in a real
outdoor experiment with hexarotor UAV with a non-point robot model.

The author’s contribution on this article is 70 %, including writing the manuscript and
implementing the method. The co-authors contributed by giving valuable feedback.
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Physical Orienteering Problem for Unmanned
Aerial Vehicle Data Collection Planning in
Environments with Obstacles

Robert Pénicka, Jan Faigl, and Martin Saska

Abstract—This paper concerns a variant of the Orienteering
Problem (OP) that arises from multi-goal data collection sce-
narios where a robot with a limited travel budget is requested
to visit given target locations in an environment with obstacles.
We call the introduced OP variant the Physical Orienteering
Problem (POP). The POP sets out to determine a feasible,
collision-free, path that maximizes collected reward from a subset
of the target locations and does not exceed the given travel budget.
The problem combines motion planning and combinatorial opti-
mization to visit multiple target locations. The proposed solution
to the POP is based on the Variable Neighborhood Search (VNS)
method combined with the asymptotically optimal sampling-
based Probabilistic Roadmap (PRM*) method. The VNS-PRM*
uses initial low-dense roadmap that is continuously expanded
during the VNS-based POP optimization to shorten paths of
the promising solutions, and thus allows maximizing the sum
of the collected rewards. The computational results support the
feasibility of the proposed approach by a fast determination
of high-quality solutions. Moreover, an experimental verifica-
tion demonstrates the applicability of the proposed VNS-PRM*
approach for data collection planning for an unmanned aerial
vehicle in an urban-like environment with obstacles.

Index Terms—Motion and Path Planning; Aerial Systems:
Applications

I. INTRODUCTION

N this paper, we study a generalization of the Orienteer-

ing Problem (OP) [1] to address robotic route planning
problems in environments with obstacles and with an arbitrary
motion model of the used vehicle. The introduced problem is
called the Physical Orienteering Problem (POP), and it can
be considered as the OP explicitly deployed in the configu-
ration space [2] where both the obstacles and vehicle motion
constraints can be addressed. The OP belongs to multi-goal
routing problems with profits where each target location has
associated reward, and the problem sets out to maximize the
sum of collected rewards without exceeding the specified travel
budget. The POP stands, for the given initial and terminal
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Fig. 1. Experimental verification of the proposed VNS-PRM* solution of the
introduced Physical Orienteering Problem (POP) in outdoor data collection
scenario with obstacles. We refer to https://youtu.be/xUXYEt4Gnvk for the
video from the experimental verification.

locations, to select a subset of the locations and a sequence
to visit them together with the determination of cost-efficient
and collision-free paths between the individual locations to
maximize the sum of collected rewards by saving vehicle
travels to fit the budget. Hence, the route and path planning
needs to be addressed in a single optimization problem to find
a high-quality solution of the POP.

The motivation for the introduced problem is in data
collection missions with Unmanned Aerial Vehicles (UAVs)
in indoor and urban-like environments where multiple target
locations need to be visited for collecting the requested data.
Such a mission can be, e.g., to collect desired measurements
at the particular locations of interest using UAV equipped with
an onboard camera. Another example can be found in wireless
sensor networks [3] where a UAV can be used to collect data
from the sensors placed in the environment.

The flight time of today’s UAVs is usually limited and
visiting all target locations can be unfeasible, and therefore,
each location can be assigned with a reward to prioritize the
most important locations. The existing Euclidean OP [4] or
its extension for Dubins vehicle [5] can be used to find the
data collection plan. However, in a realistic robotic scenario,
the operational environment can contain obstacles and motion
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constraints of the utilized vehicles can be more complicated
than the Dubins vehicle. Therefore, the POP is introduced to
allow deploying budget-limited UAVs in realistic data collec-
tion missions in environments with obstacles, see a snapshot
of the experimental deployment in Fig. 1.

The proposed solution of the introduced POP is denoted
VNS-PRM* because it is based on the Variable Neigh-
borhood Search (VNS) [6] metaheuristic tightly coupled
with the asymptotically optimal sampling-based Probabilistic
Roadmaps method (PRM*) [7]. The VNS-based combinatorial
optimization searches for the rewarding subset of the target
locations and order to visit them such that the interconnecting
paths are further shortened by the PRM*. The PRM* is
employed to create an initial low-dense roadmap of collision-
free paths between the target locations. The initial roadmap is
then incrementally expanded during the iterative optimization
of the OP to improve paths of promising OP solutions. In
this way, the VNS-PRM* simultaneously searches both the
OP solution and configuration spaces.

The rest of the paper is organized as follows. An overview
of related work is summarized in the next section. Section III
formally introduces the POP and the proposed VNS-PRM*
is described in Section IV. Evaluation results are reported in
Section V and concluding remarks are outlined in Section VI.

II. RELATED WORK

The addressed POP combines motion planning and the OP,
and thus we briefly overview the relevant sampling-based
planning approaches, the most related OP methods, and also
existing approaches combining routing with motion planning.

The Rapidly-Exploring Random Trees (RRT) [8] and the
Probabilistic Roadmaps (PRM) [9] can be considered as the
most fundamental approaches with many modifications and
variants [2]. Regarding the addressed POP, the RRT* and
PRM* [7] are considered as the most relevant approaches,
albeit other methods with path optimality criteria can be
utilized [10]. The introduced POP is a multi-goal planning
problem which requires a multi-query search, and thus the
PRM* is a suitable technique for the proposed solution.

The OP belongs to routing problems with profits, and
it has been introduced by Tsiligirides [4] in 1984. Since
then, numerous algorithmic solutions have been proposed [1]
together with a wide range of formulation variants [11]. The
OP can be defined as an Integer Linear Programming (ILP)
problem [1] and solved by Branch-and-Bound [12] or Branch-
and-Cut [13] algorithms. Existing heuristics, e.g., particle
swarm optimization [14] or ant colony optimization [15],
provide solutions of similar quality but within a fraction of
time required for finding the optimal solution. In particular,
the VNS-based [16] solution of the OP performs as one of the
best considering the computational time and solution quality,
and therefore, the proposed solution builds on the VNS-based
optimization operators.

The POP is also related to variants of the OP where the
travel cost is not a length of the straight lines connecting
the locations as in the regular Euclidean OP. The Dubins
Orienteering Problem (DOP) [5] is an extension for Dubins

vehicle [17] that requires to optimize the heading angle of
the vehicle to find the most rewarding paths. The proposed
VNS-PRM* significantly extends the VNS-based method for
the DOP [5] by considering the OP in the configuration
space with obstacles addressed by tightly coupled PRM* with
online roadmap expansion. Besides, the DOP has been used
for UAVs in wildfire observation planning [18] and further
extended to the DOP with Neighborhoods (DOPN) addressed
by the VNS [19] and unsupervised learning [20]. To the best
of the authors’ knowledge, the only OP variant considering
the environments with obstacles is the approach presented
in [21]. The method is based on a low level A* search in
a grid of Dubins maneuvers to get around obstacles, which
limits its application to instances without narrow passages and
predefined heading angles. On the other hand, the proposed
VNS-PRM* employs sampling-based motion planning that
can be used to find collision-free paths also in the 3D with
various vehicle motion constraints.

The motion planning combined with routing has been
mostly studied in the context of the Traveling Salesman
Problem (TSP) where the Physical TSP (PTSP) [22] com-
bines TSP with real-time motion planning in video games.
In robotics, a multi-tree Transition-based RRT [23] has been
proposed for creating a collision-free roadmap for arbitrary
routing problem. Several existing approaches combining the
routing problems with motion planning have been introduced
for scenarios with Autonomous Underwater Vehicles (AUV),
e.g., planning mine countermeasures missions based on the
PTSP [24], the Clustered TSP [25] and high-level mission
planning [26] combined with motion planning.

The most similar existing problem to the POP is a variant
of the Prize Collection Traveling Salesman Problem (PC-TSP)
for AUV [27] that uses sampling-based methods for finding
collision-free PC-TSP plans. The approach uses initially cre-
ated PRM navigation roadmap for guiding a sampling-based
motion tree considering the vehicle dynamics. A separate PC-
TSP solver is used to prioritize the expansion of the motion
tree along PC-TSP solutions found on the static navigation
roadmap. Contrarily, the proposed VNS-PRM* uses tightly
coupled asymptotically optimal PRM*, where vehicle dynam-
ics is considered by different motion primitives, with the VNS-
based OP solver within a single optimization algorithm that
deals with narrow passages better than the decoupled approach
of [27], as shown in Section V.

III. PROBLEM STATEMENT

The proposed Physical Orienteering Problem (POP) com-
bines collision-free path planning with the combinatorial rout-
ing of the Orienteering Problem in a single optimization
problem. Therefore, we outline the path planning first; then
the POP is introduced as an extension of the regular OP with
path planning to determine the most rewarding path that does
not exceed the given travel budget Tp,x.

Having the world W = R? or W = R? with the obstacles
O ={04,...,0,,} C W, the point-to-point path planning
problem is to determine a collision free-path for a robot
A C W between two locations in VW such that the path
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avoids O. The problem can be formulated using the notion of
the configuration space C [2], which consists of all possible
robot configurations g € C. Let A(q) C W denotes geometry
of the robot at a configuration g. The robot can move in the
free space Cyree = C\ Cops, Where Cops = {q € C|A(q)NO #
(@} C C is a set of configurations where the robot .A(q) collides
with O. A solution of the point-to-point path planing between
initial g; € Cfree and goal qg € Cjree configurations is a
path 7 : [0,1] — Cypee with 7(0) = ¢; and 7(1) = qg,
respectively. The cost to travel the path 7 can be expressed as
a cost function ¢(7) — Rx¢. In this work, w.l.o.g. we consider
the cost to be the length of the path, i.e., ¢(7) = fol |7(t)|dt.
In addition to have a feasible path 7 that avoids obstacles
T € Cyree, we are searching for the optimal path 7% such
that ¢(7*) = min{c(7)|7 is feasible} to find a solution of the
introduced POP. Moreover, a single point-to-point collision-
free optimal path planning is only a part of the POP, as we
need to address finding a path over multiple target locations
that can be arbitrarily ordered as in the solution of the OP.
The OP belongs to a class of routing problems with
profits where each of all n predefined target locations S =
{s1,.--,8n}, $i € W have associated reward r; > 0 for
i € {1,...,n}. The OP stands to maximize the sum of the
collected rewards R by visiting a subset S; C S such that
the path to visit S; does not exceed the given limited travel
budget Tp.x. The initial and terminal locations of the path
are prescribed and for simplicity they are denoted s; and s,
respectively, both with the zero reward ro = 7, = 0. The
OP is an optimization problem to find the subset S; of [
target locations together with a sequence to visit the target
locations in S; within Tyax. The sequence can be expressed as
a permutation of the target location indexes ¥ = (o71,...,0;)
with 1 < 0; < n, 0; #0; fori # j, 01 =1 and 0y = n,
because of the prescribed initial and terminal locations. The
locations in the sequence have to be connected by a collision-
free path not exceeding Tpa, and thus we need to combine
routing and path planning for a solution of the introduced POP.
In the POP, the target locations s; € W of the OP
correspond to the target configurations Q = {q1,...,qn}, ¢ €
Cfree, such that s; € A(g;) for all 1 < i < n. A solution
of the POP is a sequence X of the configurations Q; C @
that maximizes R using collision-free paths with the sum of
the cost satisfying Tnax. We propose to combine the solution
of the combinatorial OP with path planning to determine
paths 7; connecting locations S; in the sequence X such
that the individual paths are feasibly connected at the target
configurations 7;(0) = ¢,, and 7;(1) = ¢,,,, for1 <7 <[-1.
Besides, the total path length is limited by the travel budget
Zi;:ll ¢(7;) < Tmax- The POP can be understood as the OP in
C and can be summarized in a single optimization problem (1).
l

maximize R = To,
LQuLE,T ‘
i=1
-1
s.t. Z (i) < Tiax, (1)
i=1

or=10,=mn,7; € Cfree’

TZ(O) = qU!, Tz(l) = q0L+1’ i = 117 1

The POP objective is to maximize the sum of the collected
rewards R by visiting the target configurations ();. However,
the budget limit Ty, requires to evaluate the cost of the
path to visit @);, and thus it requires to find the appropriate
sequence Y of the configurations together with collision-
free paths connecting the configurations in the sequence.
Finding the collision-free paths is a challenging problem and
determining all possible paths connecting all the locations S
is computationally very demanding. Moreover, optimal paths
should be determined to ensure Tp,x while visiting as many
highly rewarding locations as possible, which is even more
computationally demanding. On the other hand, it is likely
that a subset (); contains only a small portion of @), and
thus determining all paths is not necessary. Therefore, we
propose to address the introduced POP by a combination of the
asymptotically optimal motion planner PRM* with the VNS-
based solution of the routing part of the POP to continuously
improve the PRM* roadmap using the combinatorial solutions
to expand the roadmap only in parts of C that can contribute
to the solution of the POP.

IV. PROPOSED VNS-PRM* METHOD FOR THE POP

The proposed approach to solve the POP combines asymp-
totically optimal sampling-based PRM* [7] with the com-
binatorial metaheuristic VNS [6] to solve the OP on the
incrementally constructed roadmap. The POP is addressed by
a single VNS-based algorithm with an online improvement
of the roadmap using PRM* to support finding collision-
free trajectories in the configuration space to visit multiple
target configurations. The selection of the target locations
and sequence to visit them to maximize the sum of the
collected rewards is thus optimized together with the paths
connecting the selected target locations. The proposed VNS-
PRM* combines both feedbacks from (i) the PRM* for finding
the OP solution (i.e., the selection and sequence of targets) on
the improving roadmap; (ii) the search space of the OP to
guide the PRM* sampling of Cyce.

A. PRM* for the Physical Orienteering Problem

The PRM* is a multi-query asymptotically optimal motion
planning algorithm that firstly randomly samples configura-
tions in Cy. and creates a graph G = (V, E) (further denoted
as the roadmap) by connecting %k neighboring samples with a
collision-free path. Contrary to the ordinary PRM with a fixed
k, in the employed k-nearest PRM*, the value of k increases
with the number of vertices m in G as k(m) = kpras log(m)
where kppar > kg = €(1+1/d) and d is the dimension
of C [7]. Hence, the VNS-PRM* uses a low-dense initial
roadmap consisting of m;,;; random configurations and the
target configurations @. Dijkstra’s algorithm is then used to
interconnect the target configurations using shortest paths in
G between all configurations g;,q; € ) with the respective
lengths ¢; ; = ¢(7),7(0) = ¢;, 7(1) = g;.

The maximization of the collected rewards needs minimal
path lengths c; ; to visit valuable target configurations within
Tmax. High-quality paths require a large number of samples
Minit, Where most of the samples would not be used for
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the paths of the final solution of the POP. Therefore, the
roadmap is continuously expanded during the VNS-based
optimization with the focused sampling on the paths between
promising target configurations, i.e., configurations that are in
highly rewarded POP solutions found so far. The roadmap
initialization and expansion are summarized in Alg. 1.

Algorithm 1: PRM* Initialization and Expansion
In/Out: G(V, E) - existing roadmap, Q - target configurations,
P =A{pi,jtij=1,.., n — sampling density
Input : M = {m; ; } number of samples to add between q;, q;

1 View < 05 Enew < 0
2 if q1 gn not connectable in G then // roadmap initialization
3 V+0;E«~0
4 View = Q U {UniformSample Cyrree}1,...,m 54
else // roadmap expansion
foreach pair i,j € (1,...,n),i1 # j do
Vinew < Vaew U {EllipsoidSample(q;, g5, Ci,j)}l_____mi
Pi,j 4 pi,j + mi ;j/EllipsoidVolume(gi, ;, ci )

¥

9 foreach v € V,, ¢ do

10 U < kNearest((V U Vyew, E), v, K(|V| 4+ |Vaewl|)) \ v
11 foreach v € U do

2 \» if CollisionFree(v, ) then

13

L Enew + Enew U {(v,u)}
WV~ VUView:; E< EUE,cu

During the roadmap expansion, new random configurations
View are sampled in the hyperellipsoids (Line 7, Alg. 1) corre-
sponding to all target configurations pairs. The hyperellipsoids
are defined by their foci in the respective target configurations
¢; and ¢;, and by the major axis length equal to the actual
shortest path length c;; between the corresponding target
configurations. An individual hyperellipsoid between g; and g;
is equidistantly sampled for m; ; times [28]. The value of m; ;
thus defines a priority in which particular path is optimized,
and it is updated at each iteration of the VNS-based solution of
the POP. The sampling densities of particular ellipsoids p; ; are
stored and further used to prioritize sampling of low-density
sampled ellipsoids.

B. VNS-based method for the POP

The VNS is based on the two main procedures called shake
and local search to iteratively improve a single incumbent
solution. The shake procedure performs a random change of
the currently best-found solution v to leave a possible local
optimum. The local search optimizes a randomly changed so-
lution v’ using a set of neighborhoods (described as operators)
to increase the quality of the incumbent solution.

In the VNS for the POP, a solution is represented as a
vector v = (qoys--- 540y - - -+ 4o, ) Of all target configurations
Q. where the first [ items (g, . . . , ¢, ) represent a path within
Tmax and the remaining part of v gathers the unvisited target
configurations. The initial and terminal configurations are pre-
scribed, and thus ¢,, is always ¢; and g, is g,,. The operators
of the shake and local search procedures change the order of
target configurations in v to maximize the sum of the collected
rewards R(v) = R(v(l,Q;, X)) = Zi’:l 7, while keeping the
path length £(v) = L(v(1,Q1,%)) = Y42} €or 00y, within
Tmax by moving g¢,, inside v. Thus, the operators change not
only the sequence ¥ but also the subset of the visited target
configurations (Q;. The path of a solution v is found as the

shortest path in the roadmap over the sequence of targets
(q017' : '7(101)'

The proposed VNS-PRM* is summarized in Alg. 2. The
algorithm starts with PRM*initialSampling() that uniformly
samples Cfree using m;n; random configurations. Adding
Minst Samples is repeated until the initial ¢; and terminal g,
configurations are connectable by a path with ¢y, < Tpax or
until the maximal computational time is reached. The lengths
c;,; are determined as the shortest paths between all pairs of
the target configurations (Line 2). A greedy procedure is used
to create initial incumbent solution v (Line 3) by inserting
target configurations between ¢; and ¢; (for ¢; = ¢,,) according
to the minimal path prolongation per target reward. The VNS-
PRM* then iteratively improves the incumbent solution during
which the roadmap expansions are performed to minimize
lengths of promising solutions. The algorithm terminates if
one of the stopping condition occurs: the maximal number of
iterations, or the number of iterations without improvement,
or the maximal computational time.

Algorithm 2: VNS-PRM* for the POP

: Q — target configurations, Tmax — budget, m;n:¢ — VNS-PRM*
initial number of samples, M), — number of expanding samples
Output: v — Found data collecting path

Input

1 G <+ PRM*initialSampling(m;ni¢)

2 updateRoadmapDistances c; ;Vi,j € (1,...,n),i # j

3 v < createlnitialPath(Q, Tpayx) // greedy initial solution
4 while Stopping condition is not met do

5 p+1:;8B+0
6
7
8
9

// Bi; =0 for all i,j € (1,...,n),i #j
while p < pipa. do

v’ < shake(v, p)

v"" + localSearch(v’, p)

if £(v"") < Toax and
10 [R(v") > R(v) or [R(v"") = R(v) and L(v"") < L(v)]]

then

11 ‘ ve v ipe1
12 else
13 L pep+1
14 M <—calculateSampling(B, P, mezp)
15 G < PRM*roadmapExpansion(G, M)
16 ¢;,j + updateRoadmapDistances(G,Q) for Vi, j € (1,...,n)

In each VNS-PRM* iteration, the operators of shake and
local search procedures try to increase the sum of the col-
lected rewards. The reward contribution B = {f; ;}Vi,j €
(1,...,n),i # j of each target configuration pair is stored for
further focused roadmap expansion. After performing all p,q4
neighborhood operators, the number of additional samples per
each target pair, M = {m,;} forall i,j € (1,...,n),i # j,
is calculated (Alg. 2 Line 14) and the roadmap is expanded
(Line 15) together with the update of the shortest paths
between all target configurations c¢; ; (Line 16). The number
of additional samples M is based on the reward contributions
B and sampling densities P = {p; ;} used in the proposed
sampling strategy.

1) Shake: The shake procedure creates a new solution v’
to get the incumbent solution v from possible local optima. Its
two operators (pmqe = 2) tries to randomly select a part of v
and alter its position within the vector, but always keep ¢, and
adjust the terminal configuration g,, to maximize [ but ensure
L(v) < Tiax. The first Path move operator (p = 1) randomly
selects a part of v and moves it to a different position. The
Path exchange operator (p = 2) selects two random non-
overlapping parts of v and exchanges their positions. Thus, v’
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can have changed both the subset (); and sequence ¥ to visit
the configurations in Q.

2) Local search: The local search procedure tries to
optimize solution v” (initialized by v’) by a sequence of
simple one target operations. The employed Randomized
VNS (RVNS) variant of the VNS uses randomized local search
operators where each operator examines |Q|? simple changes
of the solution vector v”. Each change is applied to v only
if it improves the new solution w, i.e., R(w) > R(v") or
decreases the path length £(w) < L(v"") for the same reward.
The One target move operator (p = 1) examines changes
where a randomly selected target is moved to a different place
within the solution vector. The One target exchange operator
(p = 2) examines changes where two randomly selected
targets are exchanged. The procedure is summarized in Alg. 3.

Algorithm 3: Local Search Procedure
Input

: @ — target configurations, Tpax — budget, p — actual neighborhood
number, v’ — actual solution
Output: v/ — created solution, 13 — target pairs rewards

1 ’U” < ’U’

2 for |Q|? do

3 if p = 1 then
4 L Wy — v

// One target move

" with one randomly moved target

5 else // (p=2) One target exchange
| wy < v" with one randomly exchanged target

7 B <—updateTargetPairRewards(53, w,,)

8 w 4 w, maximize [ such that We, is within Tpax

9 if R(w) > R(v") or [R(w) = R(v"") and L(w) < L(v"")] then

10 L v +«w

The local search operators firstly create a possibly unfea-
sible solution w, without adjusted position of ¢, within
wy, and thus L(wy,) ﬁ Thax- It is because the paths con-
necting the configurations in w, can be shortened by a
roadmap expansion. Therefore, w, is used for updating B
in updateTargetPairRewards() where the reward of each
target pair contributing to w,, is stored for the prioritization of
the promising solutions in the sampling strategy of roadmap
expansion. In this way, promising solutions are stored during
the search over the POP combinatorial solution space to guide
the expansion of the roadmap.

3) Sampling strategy: The sampling strategy of the
roadmap expansion uses equidistant sampling within the ellip-
soid (Alg. 1) based on the solution space search done by the
randomized local search procedure. The update of the reward
contribution B in updateTargetPairRewards() is performed
for all consecutive pairs of the target configurations g;, g; in
the solution w,,. The reward of each pair j3; ; is considered to
be increased by Ag(w,) computed from the average reward
per a single target in w,, using the solution reward R(w,),
multiplied by a relative budget overshoot of the solution length

L(w,,) determined as
R(wu) (1 _ £(wu) - Tmax) ) (2)
Tonax - Tmax

A -
5(wy) I—1
The ratio r, is introduced to allow tuning of the overshoot.
The pair reward f3; ; is then updated by

0 for L(ﬂ)u) > 76 Tmax
Bi,j +=19 Ap(wy) for L{wy) < roTmax, R(wu) < R(v).  (3)
10A8 (wy) for L(wy) < 76Tmax, R(wy) > R(v)

In (3), we further distinguish solutions w,, satisfying 7, Tmax
with the higher reward R(v) than the current best solution for
which the increase of (3; ; is 10x higher to focus sampling
of the roadmap. The roadmap expansion thus depends on the
rewards B to focus sampling on the promising sequence of
configurations. Besides, the sampling strategy is also designed
to depend on its densities P = {p; ;} to avoid adding samples
to already densely sampled ellipsoids. Thus, the sampling
priority m; ; of each configuration pair (g;, ¢;) is proportional
to the reward §; ; and inversely proportional to the sampling
density p; ;. This leads to disabling sampling of almost straight
line paths with high density.

Bi,j m'i,;
- sJ L »J
TRk kS~ = Tl

The number of samples m; ; added to the ellipsoid correspond-
ing to the path between ¢; and ¢; is determined using (4),
where M., is the number of samples intended to be added
to the roadmap during each roadmap expansion.

V. RESULTS

The proposed VNS-PRM* for the introduced POP is eval-
uated in three simulation scenarios and verified in realistic
field deployment. First, the feasibility of the approach is
verified for instances with a point robot ¢ = (z,y) € R? and
compared to the optimal solution found by the Integer Linear
Programming (ILP) using visibility graph for the shortest paths
between the target locations. Besides, the proposed online
roadmap expansion is compared with the usage of a single
static high-density roadmap. The VNS-PRM* is then applied
to the POP with the curvature-constrained Dubins vehicle,
q = (x,y,0) € SE(2) and compared with our implementation
of [27]. Finally, the method is used for ¢ = (z,y,2) € R3
environment and further verified in a small real outdoor
experiment with a hexarotor UAV.

Two different environments denoted potholes and dense
with 17 and 52 target locations, respectively, and with the
dimension of 2000x2000 map units are used for the evalua-
tions. The initial roadmap is constructed with m;y,;; = 1000
uniformly sampled configurations. The number of samples in
the roadmap expansion is 1., = 50 and the budget overshoot
ratio 7, is empirically set to r, = 1.2. The optimization
is terminated after the maximal number of 1000 iterations,
50 iterations without improvement, or after one hour of the
computational time. The proposed method' is implemented in
C++, and all the reported results are achieved using a single
core of the Intel Xenon processors cluster (2.2GHz-3.3GHz).
An example of solutions found by the proposed VNS-PRM*
for ¢ € R? are depicted in Fig. 2.

The first evaluation scenario is focused on the comparison of
the proposed method with the optimal solutions for ¢ € R? that
has been found using ILP OP formulation [1] in CPLEX 12.6.1
that is denoted ILP-VIS. The VNS-based solution without the
PRM* is denoted VNS-VIS and both the ILP-VIS and VNS-
VIS use path lengths determined from the visibility graph. The

Method implementation, benchmark instances and obtained solutions are
available at https://github.com/ctu-mrs/vns-prm-pop
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utilize precomputed visibility graph (not counted in their
computational times), and therefore, the high computational
requirements of VNS-PRM* are not surprising. The main ad-
vantage of the VNS-PRM* is in the applicability for different
motion model, e.g., Dubins vehicle, and extendibility for more
complex robot shapes. The reported results for the VNS-VIS
and VNS-PRM* indicate that the inability to find the optimal
solutions using VNS-PRM* is caused by the VNS part of the
method as the optimal solution is not found using the shortest
paths in the VNS-VIS. Nevertheless, based on the reported
results, we consider the proposed approach feasible, and we
further report on the impact of the proposed sampling strategy.

The online sampling strategy with the preference of sam-
pling between target configurations of the promising solutions
found by the VNS is compared with a solution found on
a roadmap created only by the initial sampling, but with a
high number of samples m;,;;. The evaluation is performed
for the potholes environment and the results are reported
in Table II, where VNS-Static_Roadmap denotes the variant
with only initial sampling that has been considered with
Mingt € {1 x10%,3 x 10*,6 x 10*,1 x 10°,1.5 x 10° }
uniform samples in Cyf... without the online expansion. In
addition to the maximal sum of the collected rewards R,, from
fifty trials and the corresponding average computational time T’
in seconds, the average time of the last solution improvement
of the VNS-PRM¥* is reported in the column 7.

. . . . TABLE II
achieved result.s from fifty trials of all' considered instances and ONLINE SAMPLING STRATEGY VS. INITIAL SAMPLING ONLY
bquet constr'funts Tmax are reported in Table I, where R,,.,, and VNS-PRM* VNS-Static_Roadmap with mms; samples
R is the maximal and average collected reward, respectively,  Tpax " " " 5 =
. C . . . 10 3 x10% 6x10 10° 1.5 x 107
o is the standard deviation, £, is the ratio of the average
. . . Rn T'Ti Ry T Rmm T Rm T Rn T Rm T
path length with respect to the particular Tpax, and 7' is the 1500 48 4 1 48 34 48 92 48 153 48 223 48 361
average computational time (in seconds). The best solutions 2500 91 4 1 89 42 89 83 89 155 91 259 91 419
hiehlichted in bold 3500 143 9 4 125 43 132 78 132 177 127 299 143 521
are highlighted in bold. 4500 168 13 5 168 39 168 115 168 219 168 369 168 569
TABLE I 5500 214 17 6 204 41 204 95 214 222 214 395 214 721
2 6500 245 25 8 245 47 245 123 245 204 245 478 237 916
RESULTS ON THE POP INSTANCES WITH VISIBILITY GRAPH FOR g € R 7500 270 24 9 270 45 270 120 270 292 270 515 270 818
8500 292 21 6 292 52 292 122 292 260 292 511 292 836
Pr. Ty, _LPVIS VNS-VIS VNS-PRM* 9500 299 19 7 299 40 299 119 299 252 299 519 299 1056
m 1T Rm T Rm R+to Ly T
1500 48 001 48 0.07 48 48.0+ 0.0 0.87 4.0 The average computational time of the VNS-PRM* solution
5 %gg ﬁé §:Ez %gé §:i}; }‘2:;; lg?éz (8):3 §j§§ §:§ is similar to the initial sampling with m;,;; = 10%, but
S X .17 161.6+ 7.9 0. 13. i ion i
S 5300 214 005 214 019 204 20401 83 0907 174 the time of the last solut19n 1mprovement T; is mgfuﬁca.ntly
S 6500 247 0.09 247 021 245 23584+ 8.0 097  24.6 lower. Therefore, the relatively high number of 50 iterations
7500 270 0.07 270 0.18 270 266.5+ 4.7 0.97 244 ith . hich h h L.
8500 292 006 292 020 292 292.0+ 0.0 0.94 215 without improvement, which however causes the termination
9500 299 002 299 0.9 299 29864 1.7 093 186 in a majority of cases, can be decreased without affect-
2000 121 1.22 121 1.06 121 117.84& 2.7 0.96 31.9 i i i i i -
1000 284 000 284 143 284 2745t £4 008 718 ing ‘the solution .quahty.. The computational time of VNS
s 6000 406 371 406 1.70 406 397.9+ 7.0 0.99 2103 Static_Roadmap is dominated by the roadmap construction
g 8000 522 2.08 514 1.88 498 4850+ 9.2 0.98 264.0 . . .
< }(2)888 gi(l) 18(9)8 %g %g% g(l); gg§%i%(7)2 883 gggg and finding the shortest paths between all target pairs using
12000 827 075 803 220 791 74501328 099 19311 Dljkstra s algorithm. The computational requirements of VNS
16000 892 1.10 883 2.00 881 826.8+£22.0 0.99 1884.0 itself using already known shortest paths can be seen for
18000 922 4.11 922 197 922 891.1+£16.8 0.99 2187.9

Although the ILP-VIS provides optimal solutions, the ap-
proach is usable only with the point robot and configuration
space where the visibility graph can be used to determine
the shortest collision-free paths. The heuristic VNS-VIS pro-
vides competitive results to the optimal solutions, but most
importantly, the proposed VNS-PRM* provides the optimal
solutions in most of the cases, except the dense environment
which contains many obstacles. The ILP-VIS and VNS-VIS

VNS-VIS approach in Table I. The VNS-PRM* finds the best
solutions in all instances while the computationally demanding
high number of initial samples does not provide the best solu-
tion for all considered Tp,«. The average number of samples
needed to find solutions using VNS-PRM* in Table II is 6678.
Furthermore, the VNS-PRM* is an anytime algorithm which
starts with a relatively small number of samples to quickly find
a feasible solution that is then continuously improved if more
computational time is available, which is shown in Fig. 3.
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Fig. 3. Evolution of the average and maximal sum of the collected rewards
for the potholes scenario and selected budgets Tmax.

The proposed VNS-PRM* has been further examined for
curvature-constrained planning with Dubins vehicle, configu-
ration space SE(2), and compared with our implementation
of [27] for the POP. In SE(2), the optimal Dubins maneuvers
are used as the distance between every two configurations.
Because of Dubins vehicle, each target location is considered
as 12 configurations with equidistantly spread heading angle
0 to allow each target location to be visited using a different
vehicle heading. Only a single such sample is, however,
allowed to collect the reward associated with the particular
target location which transforms the problem into an instance
of the Set Orienteering Problem [29]. The implementation
of [27] for Dubins vehicle and the POP (denoted as the
PRM-MT) uses the navigation PRM roadmap in R? with
1000 samples to guide the expansion of the motion tree in
SE(2). Since [27] does not address the POP, the following
modifications have been made: an ILP OP solver is used
instead of the PC-TSP solver, a solution has to reach proximity
of the terminal location, the solution length is used instead of
the execution time, and the sum of the rewards of unvisited
target locations is used instead of the PC-TSP penalty. The
results for solved instances with the turning radius of p = 60
are reported in Table III.

TABLE III
RESULTS ON THE POP INSTANCES WITH DUBINS VEHICLE — g € SE(2)
*®
Pr. Ty PRM-MT VNS-PRM
Rm Rto Ly Ty Rm R+o Ly T;
1500 48 35.6£11.0 0.87 3 48 48.0+ 0.0 0.89 5
. 2500 89 70.5+11.0 091 21 89 89.0+£ 0.0 0.94 6
S 3500 118 94.6£15.7 094 145 127 122.7+ 43 093 56
S 4500 153 107.8427.4 090 263 168 161.8+ 7.7 0.98 109
s 5500 179 109.4£26.9 0.79 363 204 190.3+13.3 0.96 124
6500 221 120.1+£35.0 0.74 370 242 226.0+10.8 0.97 165
7500 234 88.5+41.5 0.61 407 263 257.1+ 59 095 221
8500 167 9244329 0.54 545 292 281.3+11.2 0.97 103
9500 219 91.7+£43.1 0.52 552 299 2952+ 3.5 094 67
2000 80 67.6£ 9.5 090 219 108 107.8+t 14 0.90 95
4000 154 7494264 0.54 2514 237 22524+ 4.8 096 560
v 6000 110 66.9+14.6 0.30 2513 360 339.5+10.5 0.98 812
£ 8000 144 3434324 0.13 2522 472 429.0+11.7 0.98 1065
= 10000 130  9.7421.7 0.03 3042 564 510.9+17.0 0.99 1363
12000 52 2.8£10.2 0.01 3144 646 596.7+21.2 0.98 1827
14000 121  8.1+£23.1 0.02 2815 719 670.7+£20.9 0.99 2356
16000 84  3.5+13.9 0.01 2510 806 742.3+£23.9 0.99 2136
18000 55 8.9+16.2 0.02 2879 839 798.8+22.8 0.98 2488

Regarding the reported results, the VNS-PRM* outperforms
the PRM-MT in both the maximal achieved rewards R,,, and
the average rewards R with smaller . The average ratio of the
used budget £, for the PRM-MT indicates that the method is
unable to exploit the available travel budget. This is caused by
uniform sampling of PRM-MT along the navigation roadmap
without considering the ability of the motion tree to reach
these random samples. This can be improved by generating

samples according to the progress of the motion tree [30].
The average time of the last solution improvement 7; of the
VNS-PRM* is also lower than for the PRM-MT in most of the
cases. Low values of the collected rewards in dense scenarios
suggest that the PRM-MT [27] struggles with narrow passages
and the guidance along solutions found in static roadmaps
becomes less effective for longer Tyax With the possibility to
visit more targets.

The VNS-PRM* is further verified in 3D scenario denoted
as building that is 20x30x 6 large and has seven rooms in each
of the two floors, see Fig. 4. One target location is in each
room with the reward in the range 5-30, thus 14 targets in the
total. The upper floor is accessible only by tight windows and
the robot is modeled as a cylindrical object with 0.7 diameter
and 0.5 height with the configuration ¢ € R3.

side view
traveled distance from start
0 5 I 15 20 2 a0 0 20,010 60 s
e

target configurations reward

100 120

° °

- top view

Fig. 4. Example solution of the POP in the building environment for Tmax =
140 with the collected reward R = 230 and solution length of 136.3.

The computational results for the building scenario are
depicted in Table IV, where T;,;; denotes the average time
to find initial solution with the average reward R;,;; and ¢ is
the average number of the VNS-PRM* iterations.

TABLE IV
RESULTS ON THE POP INSTANCES FOR ¢ € R3
Pr.  Tma VNS-PRM*
Rinit  Bm Rto Lr i@ Tipg T

60 48 60 292+145 092 71 06 6.7
80 305 100 768+ 85 095 97 0.5 145
® 100 454 120 101.4£20.3 0.94 108 0.6 235
S 120 526 150 132.1£139 096 140 0.6 455
= 140  73.0 175 163.2£11.0 096 143 0.6 529
= 160 81.1 205 179.4+285 095 137 0.6 47.6
180 872 215 2037+ 79 096 150 0.6 68.0
200 920 225 2157+ 74 096 155 0.6 70.5
220 100.1 230 2247+ 43 095 147 0.7 67.1

Table IV shows that the VNS-PRM* finds an initial solution
within one second with the average solution quality of 35.3%
of the best-found solution. The number of iterations ¢ indi-
cates that the algorithm terminates after the maximum of 50
iterations without improvement. Furthermore, the comparison
of computational times for ¢ € R?, SE(2), and R® show the
increased computational requirements of planning in SE(2),
which is caused by the nearest neighborhood search of the
PRM* where k-d trees are not effective in SE(2).
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Finally, the VNS-PRM* has been experimentally verified
in a small data collection mission with a hexarotor UAV. The
scenario consists of three walls and four cylindrical obstacles
representing the indoor- or urban-like environment, see Fig. 1
with the visualization of the results. The environment was
about 9x 10 m large with ten target locations, including initial
and terminal locations, with the constant altitude, and thus
the VNS-PRM* search space is R2. The UAV is modeled
as a cylindrical object with 1.4m diameter and 0.5 m height
which corresponds to 1.75x enlargement of the real physical
dimension of the UAV to compensate possible localization
inaccuracies. The considered travel budget limit was set to
Tmax = 25m and the solution found onboard of the UAV
before flight by the VNS-PRM* within 7" = 8.4s is 24.11m
long with the collected reward R = 75. The model predictive
trajectory tracking [31] was used to precisely follow the
trajectory and visit all six planned target locations.

VI. CONCLUSIONS

A novel generalization of the Orienteering Problem (OP)
for robotic data collection scenarios is introduced in this
paper. The problem is called Physical Orienteering Problem
(POP), and it is suitable for cases where collision-free paths
in environment with obstacles are required together with the
maximization of collected rewards from the given target loca-
tions using the limited travel budget. The proposed solution of
newly introduced POP is based on the Variable Neighborhood
Search (VNS) metaheuristic for the OP that is combined
with the asymptotically optimal motion planner PRM*. The
proposed VNS-PRM* starts with a low-dense roadmap that is
continuously expanded during the VNS-based route optimiza-
tion by selecting the most promising solutions for shortening
the collision-free paths and thus allowing to maximize the col-
lected rewards. The presented results show that the proposed
VNS-PRM* is a feasible and vital method and it can provide
optimal solutions when compared on 2D instances with a point
robot. Furthermore, the proposed roadmap expansion strategy
demonstrates computational benefits in comparison to a very
dense initial roadmap. The main benefit of the approach rests
in the generalization of the OP for more complex configuration
spaces demonstrated in a solution of the POP in R? and with
Dubins vehicle in SE(2).
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Chapter 8
Results and Discussion

In this chapter, we summarize the contributions of the presented articles as a whole
with respect to the initially presented research challenges of the data collection planning for
UAVs and this thesis. We further suggest future research objectives for particular challenges.

(1) Feasibility of traveling with nonholonomic fixed-wing UAV or dynami-
cally constrained VTOL UAYV has been addressed in all core publications. In general, the
selection of motion primitive highly influence the quality of the final path, i.e., the length of
a path, its time of flight, or the amount of collected data within limited budget. However,
the more complex motion primitives such as Dubins airplane model , Bézier curves
or Hermite curves increase computational requirements of the planning. Therefore, all
the core publications f mainly use a rather simple Dubins vehicle model, which creates
feasible plans for UAVs traveling a certain speed.

The main challenge of using curvature constrained Dubins vehicle is in the necessity
of determining the heading angle of the vehicle for each visited target location to feasibly
connect adjacent Dubins maneuvers. In the first core publication , the heading angles at
the target locations are equidistantly sampled, and the particular heading angle samples for
a given sequence of targets are selected such that the path length is minimized. The pure
combinatorial optimization of the SOP presented in the core publication [3c| is also based
on the sampling-based approach for selecting the heading angles. In , we use a notion of
planning in configuration space. However, for Dubins vehicle, we consider 12 configurations
with the equidistantly spread heading angle at each target location. The SOM-based solution
presented in uses an informed sampling-based algorithm for the DTP to find the
appropriate heading angles for a given sequence of targets. The advantage of using is the
tight lower-bound that can guide the informed sampling of heading angles close to the optimal
values for a given sequence. However, for the combinatorial route optimization of the target
sequence and target subset selection, the heading samples have to be initially present in order
to find some good route where the heading angles can be optimized. The sampling has to
be high-dense to obtain solutions with high quality, which, on the other hand, significantly
increases computational requirements as shown in . On the other hand, for a final solution,
only a fraction of such samples is ever used.

Therefore, in a low-dense initial sampling of heading samples is used together with
local optimization of headings of high-quality solutions. Such optimized headings are then
iteratively inserted into the graph of all samples and further used while exploring the com-
binatorial part of the data collection routing problem. The results presented in [2¢] suggest
that for the OP variants, the low-dense initial sampling with further heading optimization
increases solution quality and decreases computational time compared to the high-dense sam-
pling approaches.

For future work, we would like to employ the DTP solver for the solution of the OP
variants such as for the one in [2d].

(2) Planning with respect to the limited time of flight has been addressed in
all core publication with the exception of . We employ the OP and its novel variants to
formulate the data collection planning with maximization of the collected reward within a
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limited budget. In [Ic], we propose the DOP that generalizes the OP for Dubins vehicle,
however, it requires to find the heading angles of the vehicle in each visited target location.
We propose the VNS-based method for solving the DOP. The empirical results show that
the DOP formulation is necessary and can not be replaced by a straightforward combination
of the ordinary OP and the Dubins TSP. The main reason is the fact that the selection of
heading angles highly influences the solution length, which is limited by a given budget of the
DOP.

We further propose other variants of the OP for data collection with UAV. In [9a]
and in the core publication [2c|, we generalize the DOP for non-zero sensing range, which
we call Dubins Orienteering Problem with Neighborhoods (DOPN). While in [9a], the VNS-
based solution is a straightforward extension of the VNS approach for the DOP with
additional neighborhood sampling, in , we propose a novel VNS operators for heading
angle and neighborhood visit position optimization. In , we unify both the sampling-
based DOP and DOPN as a variant of the Set Orienteering Problem (SOP) and propose
a modified VNS-based approach and ILP formulation. Finally, we propose a variant of the
OP for environments with obstacles called the Physical Orienteering Problem (POP), which
can be understood as OP explicitly deployed in the configuration space . The proposed
VNS-PRM* method combines the combinatorial optimization of the VNS for the OP part
with asymptotically optimal Probabilistic Roadmaps for collision-free motion planning. In
all mentioned OP variants, the limited budget has to be directly considered in the planning
method in order to get feasible plans, as shown for the DOP in .

In future work, we would like to focus on online replanning of OP solutions for, e.g.,
partially known environments with static and moving obstacles.

(3) Data collection planning with non-zero sensing range increases the solution
quality in most cases. The ordinary OP can be generalized to the OPN . The proposed
SOM-based planner is shown to provide higher collected rewards for larger sensing ranges
using the same budget. For Dubins vehicle, the DOP can be generalized to the DOPN ,
. Similarly to the OPN, the usage of non-zero sensing range in the DOPN increases the
collected reward, as shown for the VNS-based planners in , and SOM-based planner
in [10a). For the data collection planning formulation of the multi-vehicle Dubins TSP with
Neighborhoods (m-DTSPN) in , the solution quality for larger sensing ranges also increases,
and shorter paths are found using both the VNS-based and SOM-based planners. However, the
computational complexity for non-zero sensing range formulations increases due to additional
search for locations of visits within the neighborhoods of the target locations.

The VNS based planners for the DOPN in |9a] and for the m-DTSPN in |4c] use a static
equidistant sampling of neighborhood positions around each target. The SOM-based planners
for the OPN [8a], DOPN and m-DTSPN [4c], use adaptation of the SOM neurons to
find the locations of visits within the neighborhoods. When compared for the DOPN, the best
performing approach is the VNS-based method presented in that uses a low-dense initial
sampling of the neighborhood positions that are then iteratively optimized and inserted to
the graph of all samples. The approach in thus uses the same technique for Dubins vehicle
heading samples and the samples of neighborhood positions.

The future work might consider recent approaches for solving Generalized Dubins In-
terval Problem to find near-optimal values of Dubins vehicle headings and neighborhood
positions for a given sequence of samples.
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(4) Finding optimal solutions for data collection with Dubins vehicle and
non-zero sensing range has been addressed in core publication [3¢]. We show that both
the OPN and the DOP can be solved as a recent variant of the OP from operational research
called the Set Orienteering Problem (SOP) [26]. In the SOP, the nodes are grouped in clusters
and each cluster has assigned reward. The objective of the SOP is to maximize the collected
reward by visiting at least one node in selected clusters using a limited budget path. In
the core publication , the SOP is addressed using the VNS-based approach and shown
to outperform the existing heuristic. We also propose a novel ILP formulation of the SOP
that can be solved significantly faster than the existing one. Most importantly, we show
that the OPN and the DOP can be formulated as the SOP where the original (D)OP(N)
target locations become clusters of the SOP, and the individual heading angle samples or
neighborhood position samples become nodes of the respective clusters. The DOPN, however
not shown in [3¢], can be similarly formulated as the SOP. Therefore, the data collection with
Dubins vehicle and non-zero sensing range can be solved optimally for a given sampling of
the problems, using the ILP formulation of the SOP.

For future work, we intend to investigate finding optimal solutions regardless of the
sampling, e.g., by combining solutions of the Generalized Dubins Interval Problem with
the ILP formulation of the SOP.

(5) Data collection planning in environments with obstacles is particularly chal-
lenging due to the necessity of combining multi-goal routing with collision-free planning. The
approach proposed in the last core publication combines the VNS-based method for the
routing part with asymptotically optimal sampling-based Probabilistic Roadmap (PRM*) [89)
method for collision-free point-to-point planning. We call the novel variant of the OP in con-
figuration space as the Physical Orienteering Problem (POP) and the proposed method as
the VNS-PRM*.

The challenging part of combining the two problems in the POP is solved in the VNS-
PRM* such that the PRM* creates an initial low-dense roadmap for starting the combinatorial
optimization of the POP using the VNS. Afterward, the roadmap is iteratively expanded
in every VNS iteration in order to shorten selected collision-free paths in order to further
maximize collected reward within the same budget. The selection of the paths for shortening
is made during the combinatorial local search of the VNS with the preference of solutions
with a length close to the budget and with reward close to the best-found solution. Therefore,
only the promising solutions are selected for shortening, and the roadmap is expanded in
hyperellipsoids of individual collision-free paths between targets in such solutions. This way,
the roadmap is only expanded in promising parts, while the VNS combinatorial optimization
part simultaneously uses the roadmap when trying to maximize the sum of the collected
rewards.

In future work, we would like to address the approximation factor and optimality of the
OP in configuration space.
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Chapter 9
Conclusion

This thesis addressed the topic of data collection planning for Unmanned Aerial Vehi-
cles (UAV). In data collection missions, UAVs are typically required to visit a set of target
locations in order to collect desired data. The data collection planning for UAVs was formu-
lated either as a problem of minimizing the path visiting all target locations or maximizing the
collected data with a restricted budget. The thesis is based on five core publications, where
challenges related to the data collection planning for UAVs are tackled. We proposed several
data collection planning methods mostly based on the Variable Neighborhood Search (VNS),
unsupervised learning of the Self-Organizing Map (SOM), and also based on a solution of
the Integer Linear Programming (ILP) problem formulations. We proposed to use Dubins
vehicle to model UAV in data collection planning with limited time of flight and address
the novel problem using the VNS-based method. Further, we extended the method for cases
with non-zero sensing range where the efficiency of data collection can be increased by using,
for example, long-range sensors. Both data collection with Dubins vehicle model and non-zero
sensing range were formulated as an ILP problem and solved optimally for a given sampling of
Dubins vehicle heading angles and sensing positions. We also addressed the multi-robot vari-
ant of the data collection with Dubins vehicle and non-zero sensing range using the VNS-based
and SOM-based methods. Finally, we proposed a novel formulation of the data collection plan-
ning for a limited budget vehicle and environments with obstacles, that is solved by a tightly
coupled combination of VNS and asymptotically optimal sampling-based motion planner.
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