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Abstract

This thesis concerns planning for data collection missions with Unmanned Aerial
Vehicles (UAV). The data collection is one of the many use cases of UAVs where
the onboard sensors can produce various data such as thermal images in search and
rescue scenarios, visual images for surveillance, or LiDAR point clouds for inspection.
The task of the data collection planning is to find a plan that visits a predefined
set of target locations to retrieve the data. The data collection planning is essential
for all mentioned scenarios to achieve, with respect to a planning objective, efficient
deployment of UAVs in data collection missions. The goal of this thesis is to make
the data collection with UAVs feasible and more effective. Two planning objectives
of the data collection planning are used in the thesis: 1) minimization of the path
cost visiting all target locations, and 2) maximization of the collected data using
a predefined path cost. This thesis is a compilation of five journal publications
with contributions towards the data collection planning with UAVs and all focus on
unique aspects of such planning. The important aspect that influences the feasibility
of plans for the nonholonomic or dynamically constrained UAVs is the ability to visit
the target locations in planned order when traveling a certain speed. It is addressed
by employing the curvature-constrained Dubins vehicle for modeling the UAV in
data collection planning. This, however, requires to create a novel data collection
formulations for the Dubins vehicle model. We further show that at the cost of a
more complex optimization problem, the amount of collected data can be increased
by using a non-zero sensing range when collecting the data without the precise
visit of the target locations, e.g., for a long-range sensor attached to UAV. Both
data collection planning using Dubins vehicle and with non-zero sensing range are
formulated as an Integer Linear Program (ILP) that is solved optimally for certain
problem sizes. For the objective of minimizing the data collection plan cost, we
propose methods that can be used for a multi-vehicle variant of data collection with
Dubins vehicle model and non-zero sensing range. Finally, we extend the proposed
planning methods for environments with obstacles. Such environments represent
more realistic data collection scenarios, however, they require to solve a challenging
combination of the multi-goal routing problem with collision-free motion planning.
The proposed planning methods are mostly based on Variable Neighborhood Search,
Self-Organizing Map, and ILP formulations. All methods are evaluated in numerous
test instances from the literature and the feasibility of found plans is experimentally
verified with real UAVs.

Keywords Unmanned Aerial Vehicles · Data Collection Planning · Non-holonomic
Motion Planning · Traveling Salesman Problem · Orienteering Problem · Operational
Research · Motion Planning · Dubins Vehicle



Abstrakt

Tato práce se zabývá plánováńım miśı sběru dat bezpilotńımi vzdušnými prostředky
(Unmanned Aerial Vehicles – UAV). Sběr dat je jedńım z mnoha využit́ı UAV,
při kterém mohou být palubńı sensory použity např́ıklad záchrannými složkami
k pátráńı, dohledu nad zvolenou oblast́ı, nebo inspekci budov. Úkolem plánováńı
sběru dat je nalezeńı plánu, který navšt́ıv́ı předem definovaná ćılová mı́sta. Plánováńı
miśı je kĺıčovým problémem efektivńıho využit́ı UAV vzhledem k očekávanému
výsledku mise. Ćılem této práce je umožnit efektivńı nasazeńı UAV s ohledem na
optimalizačńı kritéria: 1) minimalizace délky cesty navšt́ıveńı všech definovaných
ćıl̊u a 2) maximalizace dat s omezeńım délky cesty. Text disertačńı práce je soubo-
rem pěti časopiseckých publikaćı, které se zaměřuj́ı na specifické aspekty plánováńı
sběru dat UAV prostředky. Důležitým aspektem ovlivňuj́ıćım proveditelnost plánu
neholonomńıch nebo dynamicky omezených UAV je schopnost navšt́ıvit ćılová mı́sta
v naplánovaném pořad́ı při dodržeńı předepsané letové rychlosti. Tento aspekt je
řešen využit́ım modelu Dubinsova vozidla s omezeným poloměrem zatáčeńı. Mo-
del Dubinsova vozidla vyžaduje nové formulace plánováńı přes v́ıce ćıl̊u, které v
práci navrhujeme společně s metodami řešeńı a experimentálńım ověřeńım. Dále
ukazujeme, že je možné zlepšit kvalitu řešeńı v podobě zvýšeńı nasb́ıraných dat ex-
plicitńım zahrnut́ım dosahu palubńıho sensoru, a to za cenu zvýšené komplexnosti
optimalizačńı úlohy. Varianty plánováńı s modelem Dubinsova vozidla i s uvažováńım
dosahu sensoru jsou formulovány celoč́ıselným lineárńım programováńım (Integer Li-
near Program – ILP) a řešeny optimálně pro určité velikosti problémů. Pro optima-
lizačńı kritérium minimalizace délky cesty jsou navrženy metody plánováńı pro v́ıce
prostředk̊u s modelem Dubinsova vozidla a uvažováńım dosahu sensoru. Plánovaćı
metody jsou dále zobecněny pro prostřed́ı s překážkami, které představuj́ı rea-
lističtěǰśı scénář nasazeńı autonomńıch UAV. V prostřed́ı s překážkami je však nutné
řešit kombinaci bezkolizńıho plánováńı pohybu s kombinatorickým plánováńım přes
v́ıce ćıl̊u. Navržené metody plánováńı sběru dat jsou založeny na algoritmech Varia-
ble Neighborhood Search, Self-Organizing Map a formulaci ILP. Metody jsou ověřeny
na testovaćıch scénář́ıch z literatury a proveditelnost plán̊u je experimentálně otes-
tována na reálných UAV.

Kĺıčová slova Bezpilotńı vzdušné prostředky · Plánováńı robotického sběru dat ·
Neholonomńı plánováńı pohybu · Problém obchodńıho cestuj́ıćıho · Plánováńı cest
· Operačńı výzkum · Plánováńı cest · Dubinsovo vozidlo

v



CONTENTS vi

Contents

1 Introduction 1

2 Contributions and related work 5
2.1 Budget limited data collection planning . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Surveillance and spatial coverage with team of aerial vehicles . . . . . . . . . . 8
2.3 Data collection planning in environments with obstacles . . . . . . . . . . . . . 10

3 Dubins Orienteering Problem 12

4 Data Collection Planning for Distance and Curvature constrained UAV 21

5 VNS for the Set Orienteering Problem and its application to other OP
variants 41

6 Unsupervised learning-based flexible framework for surveillance planning
with aerial vehicles 55

7 Physical Orienteering Problem for UAV Data Collection Planning in En-
vironments with Obstacles 88

8 Results and Discussion 97

9 Conclusion 100

Bibliography 101

A Publications of the author 108
A.1 Thesis-related publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

A.1.1 Thesis core journal publications . . . . . . . . . . . . . . . . . . . . . . . 108
A.1.2 Other thesis-related publications . . . . . . . . . . . . . . . . . . . . . . 109

A.2 Unrelated publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



Abbreviations vii

Abbreviations

AA Alternating Algorithm
ATSP Asymmetric Traveling Salesman Problem
CEDOP Close Enough Dubins Orienteering Problem
COP* Clustered Orienteering Problem
COP\CorOP Correlated Orienteering Problem
DIP Dubins interval problem
DOP Dubins Orienteering Problem
DOPN Dubins Orienteering Problem with Neighborhoods
DTP Dubins Touring Problem
DTRP Dubins Touring Regions Problem
DTSP Dubins Traveling Salesman Problem
DTSPN Dubins Orienteering Problem with Neighborhoods
EOP Euclidean Orienteering Problem
ETSP Euclidean Traveling Salesman Problem
GTSP Generalized Traveling Salesman Problem
ILP Integer Linear Programming
KP Knapsack Problem
LIO Local Iterative Optimization
LKH Lin-Kernighan-Helsgaun algorithm
MBZIRC Mohamed Bin Zayed International Robotics Challenge
MILP Mixed-Integer Linear Programming
MIP Mixed-Integer Programming
MPC Model Predictive Control
OP Orienteering Problem
OPN Orienteering Problem with Neighborhoods
PC-TSPN Prize-Collecting Traveling Salesman Problem with Neighborhoods
POP Physical Orienteering Problem
PRM Probabilistic Roadmap method
PTSP Physical Traveling Salesman Problem
RRT Rapidly-Exploring Random Trees
RVNS Randomized Variable Neighborhood Search
SEC Subtour Elimination Constraints
SOM Self-Organizing Map
SOP Set Orienteering Problem
TOP Team Orienteering Problem
TSP Traveling Salesman Problem
TTE Travel Time Estimation
UAV Unmanned Aerial Vehicle
VNS Variable Neighborhood Search
VTOL Vertical Take-Off and Landing
WSN Wireless Sensor Network



CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Research on Unmanned Aerial Vehicles (UAVs) is one of the most rapidly developing
fields in mobile robotics. One of the reasons is that UAVs, often called drones, have become
more affordable due to their popularity among wider public and enthusiasts. Even the off-the-
shelf products are nowadays capable of semi-autonomous behavior such as collision avoidance,
navigation through the environment, or following a person. Such UAVs are used by security
and rescue forces during search and rescue missions, by filmmakers or photographers as suit-
able platforms for high altitude shots, and of course by the wider public mostly as high-tech
toys. However, the applications of the remotely controlled UAVs go beyond the mentioned
ones; the UAVs are mostly used as ideal platforms for carrying onboard cameras and other
sensors for remote sensing [20] in various fields of application. These applications can be
categorized as data collection missions.

In robotics, scientists and engineers focus mainly on developing all kind of autonomous
behavior where the UAV does not require to be remotely controlled. Nevertheless, the most
targeted fields of application of the fully autonomous UAVs are the same as for the remotely
controlled, and thus the autonomous UAVs are often intended as an effective way for long-
range autonomous data collection. Especially the multirotor UAVs with Vertical Take-Off
and Landing (VTOL) are popular due to their ability to hover over a single location while
measuring desired phenomena. The fixed-wing UAVs, on the other hand, can provide longer
flight time and travel distance. Despite that, the VTOLs have higher maneuverability and thus
easier reachability of desired target locations in environments with obstacles. However, one of
the most crucial aspects of deployment of the autonomous UAVs in data collection missions,
that highly influences its effectiveness and feasibility, is the mission and path planning.

This thesis focuses on data collection planning for UAVs. It is based on five core journal
publications [1c]–[5c] that share the common goal of allowing more effective deployments of
aerial vehicles in the data collection missions. Data collection planning throughout this thesis
is understood as a multi-goal path planning where multiple target locations are present in the
environment, and the UAV is required to visit them to, e.g., measure desired phenomena. One
of the most common objectives of the data collection planning is to plan the shortest possible
path over the target locations or to maximize the collected data with respect to limited flying
time due to a battery capacity. The data collection planning problem thus belongs to a class
of routing problems [21] where the visit to multiple targets has to be optimized [22] by, e.g.,
changing the sequence to visit the individual target locations or, for a multi-vehicle variant,
by assigning the target locations to a different vehicle. Figure 1.1 shows an example of a data
collection plan for a UAV with the objective of maximization of the collected data using a
predefined path cost.

The planning of data collection missions for UAVs has multiple unique challenges that
influence plan feasibility and its quality. The five core publications that form this thesis address
the following challenges (1)–(5) that are also the research goals of this thesis.

(1) Feasibility of traveling with nonholonomic fixed-wing UAV or dynami-
cally constrained VTOL UAV between individual target locations is the first challenge
of this thesis. Ordinary data collection planning uses cost straight line paths between target
locations with sharp corners. Such paths can be feasible for holonomic ground robots, but they
are unfeasible for the UAVs traveling a certain speed. The feasibility aspect has been tackled
in the core publication [1c] and further elaborated in the remaining core publications by using
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Figure 1.1: Example of visual data collection with maximization of the collected reward (data)
from target locations using non-zero sensing range of employed onboard sensor and with
limited flight budget of UAV [2c].

curvature-constrained Dubins vehicle [23] to model the UAV. The routing with Dubins vehi-
cle, however, requires to determine not only the sequence of visits to the target locations but
also heading angles of the vehicle at each visited location. This adds additional complexity to
the multi-goal planning problems and represents a real challenge due to the strong influence
of the selection of the heading angles to the final solution length.

(2) Planning with respect to the limited time of flight is crucial for the flying
robots with current battery technology that restricts flight duration to several tens of minutes.
Therefore, the second challenge is the direct formulation of the data collection planning for
UAVs as a budget limited routing problem to address situations where only part of target
locations is reachable. The majority of the core publications [1c]–[3c], [5c] use a variant of
the Orienteering Problem (OP) [24] to formulate the data collection for UAVs. The objective
of the OP is to maximize the collected reward (data) within a limited travel budget (flight
time). This is in contrast to the core publication [4c] with a variant of the Traveling Salesman
Problem (TSP) [25], where a path visiting all the given locations with minimal flight time as
the main cost is to be found. The TSP objective is, however, usable only for a cases where all
given locations are to be visited, and the cost of the plan is relatively smaller than the vehicle
budget. Therefore, the proposed planning methods mostly focus on the limited budget OP
formulation for UAVs.

(3) Data collection planning with non-zero sensing range can significantly im-
prove the efficiency of data collection and it is the third challenge of this thesis. The advantage
of aerial vehicles to collect the data from high altitudes also allows, in some cases, to gather
the data within, e.g., circular neighborhoods (sensing radius) around the target locations [2c]–
[4c] without visiting them precisely. This can improve the amount of collected data (solution
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quality) within the same period, for example, in a visual data collection with a wide field
of view cameras, for data collection with a long-range sensor, or in information gathering
from wireless sensor networks. The non-zero sensing range, however, requires to be directly
addressed in data collection planning formulation. Then, while solving the routing problem,
the particular data collection positions have to be found and optimized within the sensing
range of visited target locations.

(4) Finding optimal solutions for data collection with Dubins vehicle and
non-zero sensing range is the fourth challenge of this thesis. The data collection planning
with Dubins vehicle and also with non-zero sensing range can be formulated as an Integer
Linear Programming (ILP) problem for a given sampling of Dubins vehicle heading angle and
data collection positions within the sensing range of target locations. A recent ILP formulation
called Set Orienteering Problem (SOP) [26] from the Operational Research field can be used
for the data collection planning, as shown in the core publication [3c].

(5) Data collection planning in environments with obstacles is the last consid-
ered challenge of this thesis. The core publication [5c] addresses the aspect of the planning
in environments with obstacles where the multi-goal routing problem of the OP has to be
solved simultaneously with the point-to-point collision-free motion planning [27]. Such plan-
ning has to find collision-free paths mutually between all target locations, and the costs of such
collision-free paths have to be ideally as small as possible. Both demands are computation-
ally demanding. Therefore, the planning can not be addressed separately, by firstly finding
the collision-free paths and then using them for finding the multi-goal sequence, without
decreasing the solution quality. We show that the data collection planning in environments
with obstacles requires a single method that optimizes only the collision-free paths that are
concurrently used in the multi-goal route planning.

The presented work and thus, the application of the proposed data collection planning
methods, are motivated by three following robotic scenarios where the autonomous UAVs
can be effectively used. The scenarios mainly differ in a way how the target locations for a
specific scenario are defined or determined, and in individual scenario constraints. However,
they share the common multi-goal path planning part that has to be solved.

The first scenario can be called information gathering or simple data collection, and we
assume a priori knowledge of the target locations in the environment. Such a scenario consists
of UAVs equipped with an onboard sensor that is required to reach the target locations
and measure or collect the desired data [28] such as images, weather-related data, or even
radiation measurements. Another example of deploying UAVs in information gathering is
Wireless Sensor Networks (WSN). In WSN, the sensory units are placed in the environment,
and the considered UAVs can be used for retrieving the measured data from the sensor units
by wireless communication with a limited range [29], [30]. Hence, the objective of the planning
for the simple data collection is the maximization of the gathered information from the given
locations within predefined vehicle flight time. Minimizing the information gathering path can
be considered if all target locations can be feasibly visited within the given travel budget.

Surveillance is the second scenario where UAVs can be effectively deployed for data
collection missions [31]. In surveillance, UAVs are required to monitor a given area or infras-
tructure persistently while traveling over target locations that have to be found for a specific
monitoring task. An example of surveillance applications can be flood monitoring using un-
manned aerial vehicles [32]. Security and rescue forces can use classical or thermal imaging
cameras onboard to assist in search and rescue after disasters like earthquakes, forest fires and
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floods [32]–[34]. Also, all inspection tasks belong to this scenario, such as inspection of power
lines [35], wind turbines [36], or power plants [37]. The inspection tasks also usually share
the requirement to find the target locations prior to the data collection planning to inspect
the required structure. In path planning for surveillance missions, the objective is usually to
minimize the required time to survey/inspect a given area or infrastructure.

The last scenario that motivates this work is Coverage Path Planning (CPP) [38] where
the UAVs are requested to scan a given area entirely with an onboard sensor and either create
a map of the environment or store sensory data for post-processing. In the CPP, the target
locations can be placed in the environment uniformly, e.g., in a grid and the boustrophedon
back and forth path [39] is usually sufficient for coverage of the area without directly consid-
ering the target locations placement. However, in the presence of no-fly-zones, the area has
to be decomposed into smaller parts and the multi-goal data collection planning can be used
to schedule the order of visiting the parts for the plow-like coverage [40]. UAVs used in such
missions typically use onboard cameras to scan the area and consequent reconstruction of the
area can be used for example in archeology [41], [42]. Similarly a UAV with LIDAR sensor
can be used for creating a terrain profile map [43]. The objective of the CPP is usually the
minimization of the coverage path cost.

The rest of this thesis is organized as follows. In the next chapter, we summarize the
state-of-the-art in data collection planning for aerial vehicles and highlight the contributions of
this thesis with respect to the related work. In Chapters 3–7, a short introduction of individual
core publications is followed by the manuscripts themselves. Chapter 8 discusses the achieved
results of the core publications related to the research goals of the thesis. The concluding
remarks and future work is summarized in Chapter 9.
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Chapter 2

Contributions and related work

This chapter overviews the contributions of the author with the primary focus on the
five journal articles [1c]–[5c] that form the core of the thesis. However, we refer to the indi-
vidual core publications for a detailed state-of-the-art overview. We further outline the most
relevant related works together with other author’s contributions [6a]–[19a] related to the
thesis. The remainder of this chapter is divided into three sections based on the similarity of
the contributions of the individual core publications.

2.1 Budget limited data collection planning

One of the most crucial deployment limitations of today’s UAVs is the limited time of
flight, which is usually restricted to several tens of minutes. Therefore, we mainly focused our
research on formulations of the data collection planning that takes the limited budget into
account.

The most regular multi-goal routing problem, and thus formulation of the data collection
planning, in the literature is the Traveling Salesman Problem (TSP) [25], [44]. In the TSP,
the objective is to minimize the cost to visit a given set of target locations. The solution
approaches for the TSP thus have to find a sequence in which the particular target locations
are visited using the most efficient path, which is known to be an NP-hard problem [45]. The
TSP can be used for planning the UAV operations [22], however, it does not directly address
the limited time of flight of nowadays UAVs.

The Orienteering Problem (OP) [24] is a variant of the TSP with profits for vehicles
with a limited budget. The OP stands to find a path connecting a subset of target locations,
each with associated reward, such that the collected reward is maximized within a given travel
budget. The ordinary OP, with predefined starting and ending target locations, uses Euclidean
distances between target locations. Solving the OP thus requires to find the most rewarding
subset of the target locations to visit and, at the same time, to minimize the path visiting
the targets in the subset such that its length is within the prescribed budget. The OP is,
therefore, a combination of the well-known NP-hard Knapsack problem and the TSP.

The OP has many variants and has been tackled by many solution approaches [46]. It
can be formulated as an Integer Linear Programming (ILP) problem [47] and solved optimally
using Branch and Bound [48] or Branch and Cut [49]. However, heuristic approaches require
less computational time and can, in many cases, achieve optimal solutions. The heuristics
for the OP are based on evolutionary algorithm [50], greedy randomized adaptive search
procedure [51], or ant colony optimization and tabu search [52]. Among others, the Variable
Neighborhood Search (VNS) approach [53] becomes, due to its low computation time and
high solution quality, basis for our VNS-based methods for the OP variants being solved in
the core publications of this thesis. The VNS [54] is metaheuristic by Mladenović and Hansen
for combinatorial optimization applicable to numerous problems [55]. VNS uses predefined
neighborhood operators in an iterative pursuit of improving initial greedy solution inside
shaking and local search procedures. While the shaking randomly changes the incumbent
solution to get from possible local minimum, the local search tries to find, on such a randomly
created solution, a path with higher reward than the incumbent solution.

The ordinary OP uses straight line paths to connect the target locations and thus
Euclidean distances as precomputed costs. This is, however, unfeasible for the nonholonomic
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fixed wing UAVs and also for dynamically constrained VTOL UAVs traveling a certain speed.
Therefore, in the first core publication [1c], we introduce a novel variant of the OP which
we call Dubins Orienteering Problem (DOP). The objective of the DOP is similar to the
ordinary OP, but it uses Dubins vehicle model [23] with curvature constraint induced by a
limited turning radius. Using Dubins vehicle model ensures smoothness of the found paths
without sharp corners. The Dubins vehicle state is from SE(2), and thus heading angles of the
vehicle have to be found at visited target locations in order to connect the adjacent Dubins
maneuvers feasibly. The DOP can be considered to be even more challenging than the regular
OP due to the requirement to find appropriate heading angles simultaneously with the target
subset selection and the sequence to visit them. The selection of the heading angles highly
influences the solution length and thus limits solution feasibility due to the limited budget.
See the comparison of the solutions of the OP and DOP in Fig. 2.1. The core publication [1c]
introduces a VNS-based method for the DOP. We refer to Chapter 3 for more information
about the DOP and the VNS-based method for the DOP.

The amount of collected data (reward) can be significantly improved by exploiting non-
zero sensing range to save travel cost, i.e., by using neighborhood around target locations
where the data can be collected without visiting precise position of the target locations. The
Orienteering Problem with Neighborhoods (OPN) uses the non-zero sensing range and has
been firstly introduced in [8a] together with a Self-Organizing Map (SOM) based solution
approach. The OPN uses a circular neighborhood around each target location which in most
cases helps to increase the collected reward compared to the ordinary OP. However, the OPN
further requires to find appropriate positions of visit within the neighborhoods of the target
locations while solving the subset selection and sequencing of the targets. The variant of the
OPN for Dubins vehicle, called Dubins Orienteering Problem with Neighborhoods (DOPN),
has been initially introduced in [9a] along with the proposed VNS-based solution approach.
See the comparison of the OPN and DOPN with other mentioned OP variants in Fig. 2.1.
The VNS for the DOPN is an extension of our previous work [1c] where the border of circular
neighborhood of each target is equidistantly sampled together with sampling of the heading
angles. The DOPN is also known as the Close Enough Orienteering Problem with Dubins
vehicle (CEDOP) and has been addressed using unsupervised learning of the SOM in [10a].
Nevertheless, the second core publication of this thesis [2c] significantly extends our previous
VNS-based approach [9a] for the DOPN by using continuous optimization of the samples [56].
Chapter 4 presents in detail the developed VNS-based approach for the DOPN published in
the core publication [2c].

EOP - R=915 EOPN - R=1135 DOP - R=865 DOPN - R=935

target reward
0 5 10 15 20 25 30 35

Figure 2.1: Example solutions of the OP, OPN, DOP, and DOPN with respective collected
rewards R [2c].
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The variants of the OP are useful for modeling robotic data collection planning. The
OP is mostly studied in the context of Operational Research, as it belongs to a class of routing
problems with profits together with, e.g., Traveling Salesman Problems with Profits [57]. One
of the recently proposed routing problems with profits is the Set Orienteering Problem [26],
which has been introduced together with Mixed-Integer Linear Programming (MILP) formu-
lation and a matheuristic solution algorithm. The SOP is a variant of the OP where customers
(nodes) are grouped in clusters (sets), and each set is associated with a reward that is collected
by visiting at least one node in the respective sets. The objective of the SOP is to maximize
the collected reward by visiting the sets. In the core publication [3c], we propose a novel ILP
formulation for the SOP and propose a VNS-based method for the SOP (VNS-SOP). We
show that the sampling-based approaches to the OPN and DOP can be formulated as the
SOP, where the neighborhood or heading angle samples server as the nodes of the SOP. The
original OPN and DOP targets then represent the clusters of the SOP that consists of the
sample nodes. The proposed ILP formulation is shown to perform significantly faster than
the original MILP formulation. The developed VNS-SOP is generalization of our previous
VNS approaches for the DOP [1c] and DOPN [2c]. See Fig. 2.2 with example solutions of the
ordinary SOP instance 11berlin52 and instances of the OPN and the DOP solved as the SOP.
We refer to Chapter 5 for more details about the proposed method published in [3c].

11berlin52 OPN Set 2 DOP Set 2

Figure 2.2: Example solutions of the SOP on selected dataset instances from [3c] containing
ordinary SOP dataset 11berlin52 and dataset for OPN and DOP formulated as the SOP.

The data collection planning with limited budget can also be done using different mo-
tion primitives discretization than the Dubins vehicle model. Examples of such approaches
are the Hermite Orienteering Problem [11a] and OP for Dubins airplane model [12a]. The
Hermite OP uses the Hermite splines to connect the target locations and can directly ad-
dress planning for non-constant speed vehicles. However, a velocity profile of the vehicle has
to be found for each individual spline. Extension of the DOP to 3D is the Dubins Airplane
Orienteering Problem (DA-OP) [12a]. The DA-OP has also been addressed using the VNS-
based approach similar to the one in [1c]; however, it uses time-optimal paths for the Dubins
airplane [58] as the motion primitives between the target locations. Several other OP formu-
lation variants have been further used in the context of data collection planning for UAVs. A
multi-vehicle variant of the OP called the Team Orienteering Problem (TOP) [59] has been
proposed for opportunistic surveillance with UAVs. An optimal multilevel graph search tech-
nique is proposed for solving the TOP for only small problem instances with Dubins vehicle
model of UAV, however, with fixed heading angles at each target location. The TOP for
Dubins vehicle is firstly fully addressed in [13a] using Greedy Randomized Adaptive Search
Procedure (GRASP). Furthermore, the proposed problem formulation called the Dubins Team
Orienteering Problem with Neighborhoods (DTOPN) allows to use non-zero sensing range and
collect the reward from close vicinity of given target locations. Finally, the Correlated Orien-
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teering Problem (COP) [60] has been proposed for persistent monitoring tasks with UAV and
solved using Mixed Integer Quadratic Programming (MIQP). The MIQP formulation uses
correlation weights that describe a portion of reward collected from neighboring targets while
visiting a particular target. The COP thus model data collection scenarios where visiting
some target also provides partial information of other neighboring target locations such as in
weather-related data collection.

2.2 Surveillance and spatial coverage with team of aerial ve-
hicles

The surveillance and spatial coverage planning is the main topic of the core publica-
tion [4c] and also of other co-authored and related articles [6a], [7a]. The usual objective
of the surveillance and spatial coverage is to minimize the cost of data collection path, i.e.,
the formulations are variants of the TSP. The main reason is that the surveillance missions
typically assume the ability to visit all target locations within the limited budget, and the
coverage path planning requires to visit all target locations to scan the given area entirely.
Furthermore, the surveillance scenarios can require repeated usage of the same plan, e.g., for
monitoring of border around restricted area, which makes finding the shortest path even more
desirable. The motivation for the three listed articles is the Challenge 3 of 2017 Mohamed Bin
Zayed International Robotics Challenge (MBZIRC) [61] held in Abu Dhabi. The Challenge
3 featured a set of colored ferromagnetic objects that had to be found in the arena and col-
lected by a team of three UAVs. Initial scanning of the arena at a high altitude provides only
estimated positions of the objects with a possibly high number of false positive detections.
Therefore, a fast flight at lower altitude over the detections is performed to verify the locations
and to identify the rewards of the objects. See the initial scanning of the arena in the MBZIRC
Challenge 3 in Fig. 2.3. The core publication [4c] focuses on planning such fast flights for the
team of three UAVs and formulates the problem as a variant of multi-vehicle TSP. Therefore,
we further overview the most relevant TSP variants related to the data collection planning
with UAVs.
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(a) Scanning trajectories used in MBZIRC Challenge 3. (b) UAV onboard Object detection.

Figure 2.3: MBZIRC Challenge 3 mapping of colored objects in competition arena [6a].

The ordinary Euclidean TSP (ETSP), also denoted as the TSP, uses Euclidean distances
between target locations and can be formulated as ILP problem and solved optimally using,
for example, Concorde solver [62]. For a fast solution of the TSP, a large number of heuristic
approaches [44] can be found in the literature, where one of the best performing and widely
used is the Lin–Kernighan heuristic [63], [64]. However, the ETSP uses straight line segments
with sharp turns between target locations and therefore is unfeasible for nonholonomic or
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dynamically constrained UAVs.

Similarly to the limited budget data collection planning formulated as the DOP, the
TSP can be formulated for Dubins vehicle [23]. The TSP for the Dubins vehicle (DTSP) [65],
apart from determining the order in which the given target locations are visited, also re-
quires determining the heading angles of Dubins vehicle at each target location. The DTSP
can be addressed by various approaches where one of the simplest is the Alternating Algo-
rithm (AA) [66]. The AA is a decoupled approach, where a solution of the ETSP is found
first without considering the curvature constraint. Afterward, the tour for Dubins vehicle is
constructed such that straight lines connect the even edges of the ETSP solution (thus deter-
mining headings in all target locations), and the shortest Dubins maneuvers connect the odd
edges. The DTSP can also be solved optimally, however, only with respect to a given sampling
of heading angles of Dubins vehicle at target locations. Using a finite discrete set of possible
heading angles, the DTSP becomes the Generalized Asymmetric TSP (GATSP) [67] that can
be further transformed to the Asymmetric TSP (ATSP) using Noon-Bean transformation [68].
The ATSP instance is afterward solvable as a regular TSP instance using heuristics [63] or
optimally using, e.g., the Concorde solver [62]. Other existing approaches to the DTSP include
unsupervised learning methods based on the evolution of SOM [69] and evolutionary Memetic
algorithm [70].

In surveillance and information gathering scenarios, the solution path can be further
improved/shortened by considering non-zero sensing range [71]. In Dubins Traveling Salesman
Problem with Neighborhoods (DTSPN) the target locations are considered as visited if the
found path has a waypoint within distance δ from the respective target locations [72]. The
DTSPN can be considered more computationally challenging than the DTSP as it additionally
requires to determine the position within the neighborhood of each target location to be visited
by the data collection path. Solving the DTSPN can be, similarly to the DTSP, addressed by
the sampling-based approach [73], where both neighborhood positions and heading angles are
sampled. The generated GATSP instance can be afterward solved either using heuristics or
optimally. Alternatively, the DTSPN can be solved using the LIO algorithm proposed in [56],
by using genetic algorithms [74], with evolutionary techniques [75] or similar to the DTSP by
using the decoupled AA approach with ETSP solution [66].

The multi-vehicle extension of the ordinary TSP is the Multiple Traveling Salesman
Problem (m-TSP) [76]. In the minsum variant, the objective is to minimize the summed length
of all vehicle paths. This variant can, however, lead to a deformed solution with only one vehicle
visiting the entire set of target locations without employing all vehicles. The minmax m-TSP
variant minimizes the length of the longest tour among all vehicles which leads to utilizing
all vehicles equally. Both minmax [77] and minsum [78] m-TSP variants can be solved using
exact algorithms. In the case of minsum using ILP formulation with transformation [79] to
single vehicle TSP. The mTSP has also been addressed using Ant Colony Optimization [80],
with genetic algorithms [81] and neural networks [82]. Among other soft-computing techniques
and heuristics, the VNS has also been proposed for the m-TSP in [83].

The multi-robot variant of the DTSPN is denoted as m-DTSPN and has been proposed
by Macharet et al. in [84] together with the memetic algorithm. The multi-robot TSP for
Dubins vehicle has been proposed later by the same authors in [85]. Using both extensions for
Dubins vehicle and for non-zero sensing range simultaneously has been proposed in [70] along
with an evolutionary algorithm to solve the m-DTSPN. However, the multi-robot variant of
the TSP for Dubins vehicle can also be addressed with m-TSP approaches using the sampling
of Dubins vehicle heading angle and optionally of the neighborhood positions [25], similarly
to the DTSP(N).
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The core publication [4c] addresses the fast trajectory planning for verifying the objects
in Challenge 3 of MBZIRC 2017 as the minmax variant of the m-DTSPN. The proposed
method is based on unsupervised learning framework using growing SOM [86]. Furthermore,
the SOM-based flexible framework is shown for planning trajectories using Bézier curve model
of the UAV which can better exploit the maximal velocities and accelerations of the UAVs.
However, the main contribution in [4c] of the author of this thesis is the proposed VNS-based
method for planning the m-DTSPN. The method generalizes the VNS-based solver for m-TSP
in [83] for Dubins vehicle and also for non-zero sensing range. See Fig. 2.4 with solutions of the
m-DTSP planned with the proposed VNS-based solver for verifying detected objects locations
and rewards. We refer to Chapter 6 for detailed information about the core publication [4c].

Figure 2.4: Solution of the Multiple Dubins Traveling Salesman Problem obtained by the
VNS-based method [4c].

2.3 Data collection planning in environments with obstacles

This section overviews the contribution and related work of the last core publication [5c].
In [5c], we address the data collection planning in environments with obstacles for a limited
budget UAV. We propose a novel OP variant which we call the Physical Orienteering Prob-
lem (POP). The POP stands to determine a collision-free path in environments with obstacles,
and at the same time to maximize the collected reward from the target locations using a lim-
ited budget. The problem thus combines collision-free point-to-point motion planning [27]
between individual target locations together with the combinatorial optimization of the OP.
We further describe the most relevant motion planning approaches and methods that combine
routing problems with motion planning.

The task of point-to-point motion planning is to find a motion between two points in
an environment while avoiding obstacles. It can be described by a notion of configuration
space [27] where the goal is to find a path between two configurations of a robot such that all
configurations in the path do not collide with obstacles. One way to address this problem, espe-
cially convenient for high-dimensional configuration spaces, is to use sampling-based methods.
Sampling-based methods create random samples in the free part of the configuration space
without obstacles and then, using the graph search and collision detection methods, find a path
between desired terminal configurations using graph of sampled configurations. Among others,
the Rapidly-exploring Random Tree (RRT) [87] and the Probabilistic Roadmaps (PRM) [88]
are fundamental. The RRT method uses a tree graph representation of samples rooted in
the starting configuration, and continuously and randomly expands the tree until the goal
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configuration is reached with sufficient precision. The PRM method initially creates a rather
large number of samples that are further tried to be connected into k-degree roadmap using
k nearest neighbors of each sample and collision detection. The collision-free paths are then
found in the tree graph or in the roadmap using a graph search algorithm. However, for the
multi-goal routing problems such as the TSP and OP, we need the shortest paths possible
to minimize the multi-goal path or to maximize collected reward from targets using limited
path cost. The minimality of collision-free path is addressed by the asymptotically optimal
Rapidly-exploring Random Tree (RRT*) and Probabilistic Roadmaps (PRM*) methods [89].

The combination of the TSP routing with collision-free motion planning has been studied
in the context of video games as the Physical TSP (PTSP) [90]. The PTSP can be addressed
as a decoupled problem where we first find the collision-free roadmap, and then the TSP so-
lution can be found using, e.g., Concorde solver [62]. The creation of a collision-free roadmap
for multi-goal planning has been proposed using Space-Filling Forest (SFF) [14a] method or
using multi-tree Transition-based RRT (TRRT) [91]. Further works that combine the rout-
ing with motion planning have been studied for Autonomous Underwater Vehicles (AUV)
planning [92]–[94]. The most similar problem to the proposed POP is the Prize Collection
Traveling Salesman Problem (PC-TSP) used in [95] for modeling data collection planning
for AUV. The method proposed for the PC-TSP uses an initial PRM navigation roadmap
between target locations that is further used to steer the growth of a motion tree (a variant of
the RRT) towards the solution of the PC-TSP found on the roadmap. The only known variant
of the OP that considers environments with obstacles is the multi-vehicle Team Orienteering
Problem presented in [59]. The method in [59] uses an occupancy grid-based approach for
collision-free planning; however, it is capable of solving only small problem instances with
fixed heading angles of Dubins vehicle.

The proposed method for the POP in the core publication [5c] combines the asymptot-
ically optimal PRM* method for collision-free motion planning with the VNS-based method
for the combinatorial OP part. The POP is introduced as the OP in configuration space and
thus can be generalized for various configuration spaces such as the presented Dubins ve-
hicle or 3D building environment. The proposed VNS-PRM* method uses an initial PRM*
roadmap that is continuously expanded at every VNS iterations. The VNS part explores the
combinatorial solution space of the POP on the current roadmap and tries to maximize the
collected reward from the target locations. Furthermore, the VNS part selects the most re-
warding solutions, with even a little over-budget cost, that are then more intensively sampled
when expanding the PRM* roadmap. See the example solutions of the POP found using the
proposed VNS-PRM* method in Fig. 2.5. We refer to Chapter 7 which is devoted to the core
publication [5c].

(a) (b) (c) (d)

Figure 2.5: Example solutions of the POP on (a),(b) potholes and (c),(d) dense scenarios for
(a),(c) Euclidean and (b),(d) Dubins vehicles [5c].
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Chapter 3

Dubins Orienteering Problem

In this chapter, we present the first core publication called the Dubins Orienteering
Problem (DOP) [1c] published in the IEEE Robotics and Automation Letters in 2017.

[1c] R. Pěnička, J. Faigl, P. Váňa, and M. Saska, “Dubins orienteering problem,”
IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 1210–1217, 2017

In the publication, we present a novel extension of the Orienteering Problem. The regular
OP has the objective to maximize the collected reward from the given target locations, each
with associated reward, while the tour starts and ends at the desired locations and is limited by
a given budget. In the introduced DOP, the target locations are considered to be connected
using the Dubins maneuvers [23] instead of straight line paths as in the regular OP. The
Dubins maneuvers are feasible and more appropriate for the considered Unmanned Aerial
Vehicle than the straight line paths with sharp corners at the target locations used in the OP.
The non-holonomic fixed-wing UAVs require to use, e.g., the curvature constrained Dubins
vehicle. For the vertical take-off and landing multi-rotor UAVs, the curvature constrained
motion is also useful when considering constant velocity movement or vehicle with limited
velocity and acceleration in a plane.

The proposed solution for the DOP is based on the Variable Neighborhood Search
(VNS) [54]. Contrary to the OP with optimization of the subset of visited targets and their
sequence, the DOP additionally requires to find the appropriate heading angles of Dubins
vehicle at the target locations, which significantly influences the path length and thus its
feasibility due to the budget constraint. The proposed VNS-based method for the DOP uses
an equidistant sampling of heading angle at each target location to address the continuous
optimization of finding appropriate heading angles. The method iteratively uses a combination
of shaking procedure, to get an incumbent solution from possible local optimum, and local
search procedure to possibly improve the so far best-found solution. Both procedures use
predefined operators that change the subset selection and the order of target locations in the
solution vector. The appropriate heading angle samples are found using graph search for the
shortest path in a given solution vector.

The computational results show the feasibility of the proposed approach both in sim-
ulations and in a real experiment with hexarotor UAV. The method is verified on existing
datasets from literature [96] for various turning radii of Dubins vehicle. We overview the com-
putational requirements and solution quality for different sampling density of heading angle
showing that 12 heading samples are sufficient for high-quality solutions while the compu-
tational requirements keep increasing with the number of samples. The used VNS operators
are compared with more complex operators that, however, only increase computational re-
quirements without improvement of solution quality. The VNS method for the DOP is finally
compared with a straightforward combination of approaches for ordinary OP and DTSP.
The decoupled solution uses a subset selection by solving the OP and then determines the
appropriate heading angles by solving sampling based DTSP on the subset. The proposed
VNS-based method is shown to produce higher quality solutions for most dataset instances
than the decoupled approach.

The contribution on the publication of the author of this thesis is 55 %, including the im-
plementation of the proposed method and writing the manuscript. The co-authors contributed
by giving the initial impulse for this research, valuable feedback, and help with evaluations of
the proposed method.
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Dubins Orienteering Problem
Robert Pěnička, Jan Faigl, Petr Váňa, and Martin Saska

Abstract—In this paper, we address the Orienteering Problem
(OP) for curvature constrained vehicle. For a given set of target
locations, each with associated reward, the OP stands to find
a tour from a prescribed starting location to a given ending
location such that it maximizes collected rewards while the
tour length is within a given travel budget constraint. The
addressed generalization of the Euclidean OP is called the Dubins
Orienteering Problem (DOP) in which the reward collecting tour
has to satisfy the limited turning radius of the Dubins vehicle. The
DOP consists not only of selecting the most valuable targets and
determination of the optimal sequence to visit them, but it also
involves the determination of the vehicle’s heading angle at each
target location. The proposed solution is based on the Variable
neighborhood search technique, and its feasibility is supported
by an empirical evaluation in existing OP benchmarks. Moreover,
an experimental verification in a real practical scenario further
demonstrates the necessity of the proposed direct solution of the
Dubins Orienteering Problem.

Index Terms—Motion and Path Planning, Nonholonomic Mo-
tion Planning, Aerial Systems: Applications

I. INTRODUCTION

IN this paper, we study a generalization of the Orienteering
Problem (OP) [1] for curvature-constrained vehicles. The

problem is called the Dubins Orienteering Problem (DOP),
and its objective is to maximize the total collected rewards
by visiting a subset of the given target locations by Dubins
vehicle [2] while the length of the collecting tour does not
exceed a given travel budget. The proposed generalization of
the existing OP with Euclidean distance [3], further denoted
as the Euclidean OP (EOP), is motivated by data collection
scenarios with Unmanned Aerial Vehicles (UAVs) that can be
modeled as the non-holonomic Dubins vehicle [4].

The Orienteering Problem can be considered as a variant
of the Traveling Salesman Problem (TSP). In contrast to the
TSP, in which the goal is to minimize the tour length to visit
all the targets, the OP objective is to maximize the total sum
of the collected rewards while the reward collecting tour does
not exceed the specified travel budget. Thus, the OP is more
suitable formulation for cases where visiting all the targets is
unfeasible with the given travel budget.

In the EOP, the distance between the target locations cor-
responds to the length of the straight line segment connecting
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Fig. 1. Solutions of the Dubins Orienteering Problem on Set 64 for the
budget Tmax = 50 and different turning radii ρ. For ρ = 0, the problem
becomes the ordinary EOP with the sum of the collected rewards R = 900
(on left), while for ρ = 1.3 the problem has to be directly solved as the DOP
to satisfy Tmax and the collected reward is R = 714 (on right). In both cases,
the constructed path lengths are maximally 0.2 bellow the allowed Tmax.

them and the objective is to select a maximal reward subset
of target locations for which the length of the path visiting
them is shorter or equal to the predefined maximal total path
length.

Although the objective in the DOP is similar to the EOP,
i.e., to maximize the collected reward within the given travel
budget, the final reward collecting path has to satisfy the lim-
ited curvature constraint, as shown in Fig. 1, and thus the final
path consists of a sequence of optimal Dubins maneuvers [2]
connecting the selected target locations. Therefore, a solution
of the DOP requires determining particular heading angles at
the target locations to minimize the length of Dubins maneu-
vers between the targets. Regarding computational complexity,
the DOP can be considered as more challenging than the
EOP as changing only one heading angle or target location
in the reward collecting path usually enforces the change of
all heading angles of nearby connected target locations.

A variant of the TSP with Dubins maneuvers [5] is known as
the Dubins Traveling Salesman Problem (DTSP) [6]. Contrary
to the DTSP which aims to minimize the total travel cost,
the DOP allows to address the limited travel budget, and
thus respects a practical deployment of UAVs with limited
operational time. Therefore, we propose to directly solve the
DOP, and our proposed solution is based on the Variable
Neighborhood Search (VNS) metaheuristic for combinatorial
optimization [7], which has been deployed to the OP in [8].

The paper is organized as follows. An overview of related
work on the EOP and DTSP is presented in the next section.
In Section III, the proposed DOP is formally introduced.
Section IV presents the proposed direct solution of the DOP.
Evaluation results together with the report on the method
experimental deployment in a real-scale outdoor scenario are
presented in Section V. Section VI concludes the paper.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
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II. RELATED WORK

The introduced Dubins Orienteering Problem (DOP) builds
on the existing approaches for the Euclidean Orienteering
Problem (EOP) [3] and Dubins Traveling Salesman Prob-
lem (DTSP) [9]. Therefore an overview of the existing ap-
proaches is presented in this section. Both the EOP [10] and
DTSP [6] can be used for planning UAV missions; however,
the EOP produces unfeasible paths for the Dubins vehicle, and
the DTSP does not respect the travel budget.

The Euclidean OP has been studied since 1984 when Tsili-
girides proposed two heuristics [11]. The first S-algorithm uses
Monte Carlo method for picking the best solution from a large
number of randomly generated paths with probabilities based
on the reward per additional distance to the target location.
The second D-algorithm uses a method for vehicle-scheduling
with one depot by Wren and Holiday [12]. Tsiligirides further
proposed a route-improvement algorithm that improves an
initial route by using target insertion, target exchange, and
2-Opt operations [11].

A Four-Phase heuristic for the OP [1] uses insertion, im-
provement, and deletion phases to iteratively improve the path.
In the insertion phase, new target locations are introduced
to the path while using additional reward per distance and
relaxed budget constraint. The second phase is based on 2-
Opt and 3-Opt improvement operations. The deletion phase
removes a target location with the minimal reward per distance
and continues to the first phase with decreased relaxation of
the travel budget. The fourth phase is the maximal insertion,
and it follows after the iteration of previous three phases is
terminated.

Chao et al. (1996) proposed a fast and effective heuristic for
the OP in [13]. The heuristic considers only the target locations
inside an ellipse with the foci in origin and ending locations
with the major axis length equal to the travel budget. Using the
most distant target locations from foci, a number of paths are
generated during initialization with a greedy algorithm. The
highest reward path pathop is then improved by the Two-point
exchange, i.e., by one-point move and 2-Opt operations, that
systematically exchanges the target locations between pathop
and set of alternative paths pathnop formed from unused target
locations.

The Variable Neighborhood Search (VNS) metaheuristic [7]
has been used to solve OP by Sevkli et al. (2006) [8]. This
VNS-based method utilizes a predefined neighborhood struc-
ture, namely target insert/exchange and path insert/exchange
operations. Using these four structures, the VNS algorithm
iteratively performs shake and local search procedures. During
the shake procedure, the currently best achieved solution is
randomly changed to escape from a local minimum. In the
local search procedure, the changed solution is searched within
a smaller neighborhood structure to obtain a possibly better
solution than the current best one.

Regarding the DTSP, the most relevant methods are the
sampling based approaches [9], [14], [15] that allow a com-
binatorial optimization by using a discrete set of possible
headings at the target locations. The DTSP stands to determine
the minimum length path to visit all the target locations

and satisfies the minimum curvature constraint of Dubins
vehicle. The sampling based methods use a uniform sampling
of the vehicle heading angle at each target location. The
problem is then considered as the Generalized Asymmetric
TSP that is further transformed and solved as the Asymmetric
TSP (ATSP) [16], e.g., using Lin-Kernighan algorithm [17].

The closest existing problem formulation to the proposed
DOP is the OP for kinodynamic vehicles outlined in [18].
Their solution of the Stochastic TSP and OP for kinodynamic
vehicle is based on dividing the configuration space into cells
with an equal volume, and merging the cells with no or
few target locations into larger ones. In the TSP, the vehicle
traverses each cell and collects the target locations inside by
making small deviations from a fixed path that goes through all
cells. For the OP, the vehicle selects a TSP sub-path with the
highest reward. Even though the algorithm provides a possible
approach to the DOP, it is useful mainly for the stochastic ver-
sion of the OP where the target locations are randomly placed.
In such a case, the algorithm provides an approximation of
the optimal trajectory with a high probability. Moreover, the
algorithm does not directly maximize the collected reward as
the herein proposed method; it rather selects a part of the TSP
path with the maximal reward and length below or equal to
the budget.

The proposed solution of the introduced Dubins Orienteer-
ing Problem (DOP) is based on the VNS technique already
deployed for the Euclidean OP in [8], which is actually one
of the best performing methods for the EOP. The developed
algorithm for the DOP is therefore compared with existing
approaches for the EOP proposed by Chao et al. [13], Four-
phase heuristic [1], and the original VNS-based method [8].
This comparison is done for the existing datasets by Tsili-
girides [11] and two problem instances by Chao et al. [13].
Further experimental evaluation is performed for a practical
scenario with a real UAV, see Section V.

III. PROBLEM STATEMENT

The motivation for the proposed Dubins Orienteering Prob-
lem (DOP) is in data collection scenarios for multirotor
Unmanned Aerial Vehicles (UAVs) with limited operational
time, where each of the target location requested to be visited
has assigned a particular reward value, and the vehicle needs
to follow a curvature-constrained path. The proposed solution
can be however applied to any Dubins vehicle such as the fixed
wings UAVs [19] or even the Ackermann vehicles. Hence, the
objective is to find a data collection path for the Dubins vehicle
that maximizes the sum of the collected rewards R such
that the path length does not exceed the specified maximal
travel budget Tmax. The existing Euclidean OP [3] cannot
be directly used in such scenarios as it produces unfeasible
paths for the considered Dubins vehicle model and thus, it may
lead to miss some of the target locations or violation of the
budget constraint. The proposed DOP is a generalization of the
Euclidean OP, and therefore, the EOP is formally introduced in
the next section followed by its generalization for the Dubins
vehicle in Section III-B.
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A. Euclidean Orienteering Problem (EOP)

Having a set of target locations S = {s1, . . . , sn}, the
Orienteering Problem seeks to find a maximal reward subset
Sk ⊆ S and a path visiting Sk such that its length is limited
by the given Tmax. The origin and ending locations are given
and denoted as s1 and sn. The subset selection in the problem,
which determines the collected reward, is similar to the NP-
hard Knapsack problem. The problem is also related to the NP-
hard Traveling Salesman Problem (TSP) in finding a minimal-
length path on Sk.

Each considered target location si is defined by its position
denoted as si ∈ R2 (for simplicity and better readability) and
its reward ri. We assume that the reward of the origin and
ending locations are zero r1 = rn = 0 and strictly positive
for all other locations, i.e., ri > 0 for 1 < i < n. The EOP
includes determination of k target locations defining the subset
Sk and a sequence to their visits that can be described as a
permutation Σ = (σ1, . . . , σk), where 1 ≤ σi ≤ n, σi 6= σj
for i 6= j and σ1 = 1, σk = n. For the Euclidean distance
Le(sσi , sσj ) between two locations sσi and sσj , the EOP can
be formulated as the optimization problem:

maximize
k,Sk,Σ

R =
k∑
i=1

rσi

subject to
k∑
i=2

Le(sσi−1 , sσi) ≤ Tmax

σ1 = 1, σk = n .

(1)

B. Dubins Orienteering Problem (DOP)

The Dubins Orienteering Problem (DOP) is a generalization
of the OP for the Dubins vehicle model to determine a feasible
path over selected target locations Sk. The state of the Dubins
vehicle q = (x, y, θ) consists of its position in plane (x, y) ∈
R2 and its heading θ ∈ S1, i.e., q ∈ SE(2). One of the
specifics of this non-holonomic vehicle model is the minimal
turning radius ρ that influences the length of the shortest path
between two states. The kinematic model of Dubins vehicle
with a constant forward velocity v and a control input u can
be described as:

q̇ =

 ẋ
ẏ

θ̇

 = v

 cos θ
sin θ
u
ρ

 , u ∈ [−1, 1] . (2)

In [2], Dubins proved that for the model (2) the short-
est path between two states consists only of straight line
arc (S-segment) and arcs with the curvature ρ (turning
left denoted as L-segment or right as the R-segment)
and the optimal path is one of six possible maneuvers
{LSL,LSR,RSL,RSR,LRL,RLR} that are further de-
noted as Dubins maneuvers. For any two states qi and qj
the Dubins maneuver together with its length Ld(qi, qj) can
be determined analytically [2]; however, regarding the studied
DOP, we need to determine the particular headings θi and θj of
the vehicle at corresponding locations si and sj , respectively.

Hence, each target location si is considered as the state
qi = (si, θi) in the DOP and in addition to the determination

of the subset Sk of the k locations and the permutation
Σ = (σ1, . . . , σk), the DOP intends to find the corresponding
heading angles Θ = (θσ1 , . . . , θσk

). The Dubins Orienteering
Problem for the model (2) can be then formulated as the
optimization problem:

maximize
k,Sk,Σ,Θ

R =

k∑
i=1

rσi

subject to
k∑
i=2

Ld(qσi−1 , qσi) ≤ Tmax

σ1 = 1, σk = n .

(3)

In contrast to the Euclidean OP, the introduced DOP consid-
ers the Dubins vehicle model, and the path is constructed using
the Dubins maneuvers between the adjacent target locations
(states). Notice that the optimization problem (3) is not only
over all possible subsets and respective permutations of the
target locations (k, Sk,Σ), but also over all possible heading
angles Θ at the target locations. This makes the problem
computationally challenging as the already NP-hard EOP is
extended to optimize over heading angles.

IV. PROPOSED APPROACH FOR THE DOP

The proposed algorithm to solve the introduced Dubins Ori-
enteering Problem (DOP) is based on the Variable Neighbor-
hood Search (VNS) [7], which has been already deployed to
the EOP in [8]. In contrast to the EOP, the DOP has to consider
the heading angle at the target locations, which requires a
new formulation of the solution search method. Therefore a
brief overview of the VNS and the used approach for dealing
with heading angles is provided prior detail description of the
proposed VNS-based solution for the DOP.

The VNS is a metaheuristic proposed by Hansen and
Mladenovic [7] for combinatorial optimization. The method
operates on an initially defined Neighborhood structures
N(l1, . . . , lmax), where l denotes the maximal distance be-
tween two solutions in the neighborhood. In the OP, the
distance l is the number of different target locations inside
the solution vector (qσ1

, . . . , qσn
). A set Nl(x) contains all

solutions in l distant neighborhood of the solution x. Particular
Neighborhood structure is then expressed by an operation that
changes the given solution within the desired distance.

Two main procedures are used in the VNS to search the
solution space starting from an initial solution. In the shaking
procedure, the incumbent solution x is randomly moved to
different solution x′ within the neighborhood. This is used
to get farther from the current best solution which may be
only a local minimum. Afterward, the local search procedure
systematically searches for the best solution in the neighbor-
hood of the solution x′. The solution from the local search
becomes a new incumbent solution if it improves the current
best solution. The procedures continue until stopping criterion
is met, which is either a number of iterations, CPU time or
maximal time between improvements.

For solving the DOP, we used the Randomized Variable
Neighborhood Search (RVNS) variant of the VNS [7]. The
RVNS algorithm uses a randomized local search procedure
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instead of the systematic approach used in the regular VNS.
The randomized variant of the local search tries, during
a predefined number of iterations, to randomly change the
solution x′ inside the Neighborhood structure to improve the
solution by collecting more rewards. As it is shown for the
EOP with the VNS [8], the RVNS is faster than the regular
VNS and generates solutions that achieve the same rewards.

In the VNS, the Dubins Orienteering Problem is represented
by a solution vector (qσ1

, . . . , qσk
, qσk+1

, . . . , qσn
), where the

first k target locations (qσ1 , . . . , qσk
) are within the budget

constraint limit
∑k
i=2 Ld(qσi−1

, qσi
) ≤ Tmax, σ1 = 1 and

σk = n. The remaining vector (qσk+1
, . . . , qσn

) consists of all
other target locations that are above the budget.

qσ1
qσn

θ1 θ1 θ1 θ1

θm θm θm θm

θ2 θ2θ2θ2

qσ3
qσ2

θ2

θ1

θm

qσn-1

Fig. 2. Search graph of the DOP with m uniformly sampled heading angles
at each target location qσi , 0 ≤ i ≤ n. For a particular selected sequence of
the target locations (qσ1 , . . . , qσn ) a graph search over all heading values is
performed to obtain headings providing the minimal path length.

Each state qσi consists of the location sσi and particular
heading θσi that is selected from uniformly sampled angles
from the interval θ ∈ 〈0, 2π) into m samples (θ1, . . . , θm).

The main difference of the proposed VNS-based DOP
algorithm, compared to the existing variant for the EOP [8],
is the determination of particular heading θσi

at each target
location. For a given number of samples m and a sequence
of targets, the algorithm finds the shortest path by trying
all possible combinations of sampled headings. The utilized
search graph of the VNS DOP for a sequence of target
locations (qσ1

, . . . , qσn
) is visualized in Fig. 2. A graph search

is used to determine particular sequence of heading samples
that produces path with the minimal length. A dynamic
programming technique is utilized to store distances from the
origin qσ1 and ending qσk

locations to simplify further target
location insertion/deletion.

In the proposed VNS method for the DOP, we utilize only
a subset of reachable locations Sr such that qi ∈ Sr ⇔
(Ld(q1, qi) + Ld(qi, qn)) ≤ Tmax for any combination of
sampled heading angles (θ1, θi, θn). This selects all target
locations that are reachable by the Dubins vehicle within the
travel budget.

The initial solution x required for the VNS technique is
generated using a greedy algorithm. For an initial zero reward
Dubins path from q1 to qn, we iteratively add a new target
location from Sr that minimizes additional distance per target
reward as long as the length of the whole path is below Tmax.

After an initial path P is found, the proposed VNS-based
algorithm uses the following neighborhood structures in shak-
ing and local search procedures to obtain solutions with higher
rewards. The randomized shaking uses the structures:

• Path Move uses a randomly selected path (qσi , . . . , qσj ),
where 1 < i < j < n, from the solution vector
(qσ1

, . . . , qσn
), and moves it to a randomly selected

position σo < i or σo > j. For the purpose of the VNS,
this operation represents neighborhood l = 1 despite the
fact that the number of different target locations is usually
larger than one.

• Path Exchange also uses a randomly selected path
(qσi

, . . . , qσj
) from the solution vector, but exchange

the path with a second random non-overlapping path
(qσo

, . . . , qσp
). The path exchange operation represents

the neighborhood l = 2.
The local search procedure employs different and much

closer neighborhoods. Unlike the shaking, the local search
procedure uses an iterative search in the particular neighbor-
hood such that it tries numerous operations on the same solu-
tion. For the RVNS, the local search tries random operations
for a number of times that is equal to the square of the number
of the target locations. This ensures that the neighborhood of
solution x′ from shaking is searched more deeply for local
optima than in the shaking procedure. The procedure uses the
following neighborhood structures.
• One Point Move corresponds to the l = 1 neighborhood

in which only one randomly selected target is moved to
a different position within the solution vector.

• One Point Exchange is a farther neighborhood l = 2
and it uses two randomly selected distinct targets from
the solution vector and exchanges their positions.

In all four presented neighborhood structures, the operations
also search through all sampled heading angles as described
above, to minimize the solution path length for a particular
sequence of the target locations.

The proposed VNS-based algorithm for the DOP is sum-
marized in Algorithm 1. For brevity, the rewards collected by
a path P = P (k, Sk,Σ,Θ) is R(P ) =

∑k
i=1 rσi

, σi ∈ Σ, and
the path length is Ld(P ) =

∑k
i=2 Ld(qσi−1

, qσi
).

Algorithm 1: Variable Neighborhood Search for the DOP
Input : S – set of target locations
Input : Tmax – maximal allowed budget
Input : m – number of heading values for each target
Output: P – found data collecting path

1 Sr ← getReachableLocations(S)
2 P ← createInitialPath(Sr ,Tmax) // greedy
3 while stopping condition is not met do
4 l← 1
5 while l ≤ lmax do
6 P ′ ← shake(P , l)
7 P ′′ ← localSearch(P ′, l)
8 if Ld(P ′′) ≤ Tmax and R(P ′′) > R(P ) then
9 P ← P ′′

10 l← 1
11 else
12 l← l + 1

The VNS-based DOP algorithm uses only two neighbor-
hood structures for both shaking and local search, which
means that the maximal neighborhood distance is lmax = 2.
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An extension of the neighborhood structures to lmax > 2
is possible by concurrently moving more than two target
locations in the local search.

Evaluation results of the proposed DOP method are pre-
sented in the next section together with the comparison to the
existing algorithms for the EOP. Besides, results from the real
practical experiments with UAV are presented as well.

V. RESULTS

The proposed method for the Dubins Orienteering Prob-
lem (DOP) has been evaluated on five existing datasets from
the literature [20] and also in real data collection scenario
with Unmanned Aerial Vehicle (UAV). Using the existing
datasets, the proposed VNS-based method is compared with
existing Euclidean Orienteering Problem (EOP) approaches as
to the best of our knowledge there is no existing solution
for the introduced DOP. The maximal achieved rewards for
particular non-zero turning radii are presented alongside to
show the influence of increasing turning radius on the collected
reward. Furthermore, the real experiment with hexarotor UAV
is presented. The results show practical applicability of the
introduced DOP and the proposed VNS-based method for
robotic data collection planning.

A. Results on datasets and existing EOP approaches

A comparison of the proposed DOP method with solu-
tions for the EOP, namely with the heuristic proposed by
Chao et al. [13], 4-phase heuristic by Ramesh et al. [1],
and VNS-based algorithm by Sevkli et al. [8] has been
performed. Abbreviation of the methods and used existing
benchmarks are in Table I. Results for the proposed method
are presented for multiple representative turning radii ρ ∈
{0, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3}, where ρ = 0 is a solution of
the EOP.

TABLE I
ABBREVIATION RELATED WITH THE RESULTS

Set 1, Set 2, Set 3 Test instances created by Tsiligirides [11].
Set 64, Set 66 Test instances proposed by Chao [13].
4Phase Four-Phase heuristic for EOP by Ramesh et al. [1].
Chao Fast and effective heuristic by Chao et al. [13].
VNS VNS-based algorithm by Sevkli et al. [8].
VNS DOP Proposed Dubins Orienteering VNS method.

The utilized VNS is a stochastic procedure, and therefore,
each scenario has been solved 10 times for each budget Tmax.
The results were computed using a single core of Intel i7
3.4GHz CPU. A single sample of the heading angle m = 1
has been used for the DOP problems with ρ = 0 as the
heading angle does not influence the distance between the
target locations. For ρ > 0, equidistant sampling of the
heading angle into m = 16 values has been utilized. The
stopping criterion is the maximal number of 10 000 iterations
with the maximal 3 000 iterations without improvement.

Results for Tsiligirides datasets Set 1, Set 2, Set 3 are
presented in Tables II, III and IV, respectively. Tables V and
VI show results for Chao datasets Set 64 and Set 66. The
presented results are the maximal achieved collected rewards

R from the all 10 runs for the particular problem and budget.

TABLE II
RESULTS COMPARISON FOR SET 1

Tmax Chao 4Phase
Proposed VNS-based DOP

ρ=0.0 ρ=0.3 ρ=0.5 ρ=0.7 ρ=0.9 ρ=1.1 ρ=1.3
5 10 10 10 10 10 0 0 0 0

10 15 15 15 15 15 15 15 15 15
15 45 45 45 45 45 45 45 40 35
20 65 65 65 65 60 60 60 60 50
25 90 90 90 90 85 85 85 85 75
30 110 110 110 110 110 105 105 105 95
35 135 135 135 135 135 130 130 120 120
40 155 150 155 155 155 150 145 140 140
46 175 175 175 175 175 170 170 165 160
50 190 180 190 185 185 185 175 175 165
55 205 205 205 200 200 195 195 185 185
60 225 225 220 220 220 215 215 205 205
65 240 240 240 240 235 235 235 225 220
70 260 260 260 260 255 250 250 240 235
73 265 265 265 265 265 260 260 250 240
75 270 275 270 270 265 265 260 255 245
80 280 280 280 280 275 275 270 265 255
85 285 285 285 285 285 280 275 270 265

TABLE III
RESULTS COMPARISON FOR SET 2

Tmax Chao 4Phase
Proposed VNS-based DOP

ρ=0.0 ρ=0.3 ρ=0.5 ρ=0.7 ρ=0.9 ρ=1.1 ρ=1.3
15 120 120 120 120 120 115 115 115 95
20 200 200 200 190 190 180 175 165 135
23 210 210 210 205 200 200 200 200 160
25 230 230 230 230 220 220 205 200 165
27 230 230 230 230 230 230 230 220 180
30 265 260 265 260 255 255 240 230 225
32 300 300 300 290 290 275 275 260 240
35 320 320 310 320 315 310 300 285 285
38 360 385 360 350 345 340 330 325 310
40 395 395 395 385 375 375 365 355 335
45 450 450 450 440 440 420 410 395 370

TABLE IV
RESULTS COMPARISON FOR SET 3

Tmax Chao 4Phase
Proposed VNS-based DOP

ρ=0.0 ρ=0.3 ρ=0.5 ρ=0.7 ρ=0.9 ρ=1.1 ρ=1.3
15 170 170 170 170 160 160 160 150 140
20 200 200 200 190 190 180 180 180 180
25 260 260 260 260 260 260 250 250 230
30 320 320 320 320 320 320 320 310 300
35 390 390 390 380 380 360 380 380 360
40 430 430 430 430 420 420 420 420 400
45 470 470 470 470 460 450 450 450 440
50 520 520 520 520 510 510 470 500 490
55 550 550 550 550 540 540 530 530 520
60 580 580 580 580 570 560 560 560 550
65 610 610 610 610 600 590 590 590 580
70 640 640 640 640 630 610 610 600 610
75 670 670 670 670 650 650 640 630 630
80 710 710 700 700 690 680 680 670 670
85 740 740 740 730 730 700 700 710 710
90 770 770 770 760 760 740 750 710 730
95 790 790 790 790 780 780 770 760 750

100 800 800 800 800 790 790 790 780 770
105 800 800 800 800 800 800 800 800 790
110 800 800 800 800 800 800 800 800 800
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TABLE V
RESULTS COMPARISON FOR SET 64

Tmax Chao VNS
Proposed VNS-based DOP

ρ=0.0 ρ=0.3 ρ=0.5 ρ=0.7 ρ=0.9 ρ=1.1 ρ=1.3
15 96 96 96 96 96 96 96 96 96
20 294 294 294 294 294 294 252 252 252
25 390 390 390 390 384 366 360 300 300
30 474 474 474 468 468 468 468 408 390
35 570 576 576 570 570 564 546 498 492
40 714 714 714 696 696 690 672 582 582
45 816 816 816 798 792 780 756 642 636
50 900 900 900 888 882 876 834 708 714
55 984 984 984 978 960 960 924 804 786
60 1044 1062 1062 1044 1026 1026 1008 834 834
65 1116 1116 1116 1098 1098 1098 1080 918 900
70 1176 1188 1188 1170 1170 1134 1134 990 960
75 1224 1236 1236 1230 1206 1194 1194 1038 1014
80 1272 1272 1272 1272 1260 1254 1224 1074 1080

TABLE VI
RESULTS COMPARISON FOR SET 66

Tmax Chao VNS
Proposed VNS-based DOP

ρ=0.0 ρ=0.3 ρ=0.5 ρ=0.7 ρ=0.9 ρ=1.1 ρ=1.3
5 10 10 10 10 10 10 0 0 0

10 40 40 40 40 40 40 40 40 40
15 120 120 120 100 100 100 100 95 95
20 195 205 205 205 200 195 195 195 170
25 290 290 280 290 280 280 280 275 260
30 400 400 400 400 380 370 370 370 370
35 460 465 465 465 465 460 455 450 445
40 575 575 575 570 570 570 545 540 535
45 650 650 650 645 650 650 645 640 640
50 730 730 730 725 725 710 710 695 690
55 825 825 825 825 825 800 820 795 790
60 915 915 915 895 895 895 890 890 860
65 980 980 980 980 930 925 950 945 945
70 1070 1070 1070 1065 1030 1070 1070 1070 1035
75 1140 1140 1140 1140 1120 1110 1080 1085 1090
80 1215 1215 1215 1195 1190 1170 1175 1165 1155
85 1270 1270 1270 1270 1245 1260 1245 1235 1200
90 1340 1340 1340 1320 1320 1305 1295 1295 1295
95 1380 1395 1395 1395 1390 1370 1370 1360 1320

100 1435 1465 1465 1445 1445 1435 1420 1420 1390
105 1510 1520 1520 1495 1505 1495 1485 1470 1445
110 1550 1560 1550 1550 1550 1545 1545 1530 1505
115 1595 1595 1590 1580 1580 1580 1575 1555 1550
120 1635 1635 1625 1625 1625 1610 1600 1595 1575
125 1655 1670 1670 1655 1655 1645 1640 1640 1620
130 1680 1680 1680 1680 1675 1675 1670 1670 1655

Presented results show that the proposed VNS-based DOP
algorithm provides competitive results to the existing EOP
approaches for the turning radius ρ = 0. Nevertheless in
some test instances for ρ = 0 the DOP does not provide the
best known results due to the fact that the most rewarded
solutions are in terms of number of different nodes very far
from the previously found result with a slightly lower budget.
However, the proposed algorithm solves the DOP, which is not
possible by existing methods for the EOP. For increasing ρ, the
collected reward decreases for almost all problem instances.
This indicates that increasing turning radius results in longer
paths, and thus solutions provided by the EOP approaches
would violate the budget constraint for Dubins vehicle. The
computational time to find the maximal achieved rewards and
the number of iterations needed to obtain the solutions of EOP
and DOP using the proposed VNS-based algorithm are shown
in Fig. 3.
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Fig. 3. Computational time and number of iterations for the EOP (DOP with
ρ = 0), on the left, and the DOP with ρ = 0.7, on the right.
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Fig. 4. A comparison of the proposed DOP algorithm with the subset selection
by the EOP and finding the path as a solution of the DTSP. The same
parameters m = 16 and ρ = 1.3 are used in both cases. Two strategies are
considered for the EOP+DTSP approach. The results on the left are obtained
for an iterative decrease of the budget for the EOP such that the solution of
the DTSP meets the original travel budget. For the results on the right, the
length of the path obtained by the EOP+DTSP is considered as a new travel
budget in the proposed DOP algorithm.

A further comparison of the proposed direct solution of
the DOP with existing approaches for the EOP is based on
a straightforward combination of solving the EOP and Dubins
Traveling Salesman Problem (DTSP). This naive approach is
based on finding the subset of target locations Sk, with the
highest collected reward, by solving the EOP. The sampling-
based solution of the DTSP [9] is then used to find the data
collecting path for the subset Sk with respect to the sampling
of the heading angle m. The results are shown in Fig. 4,
where the plot on the left shows that by using a smaller budget
for the EOP and afterward the found Sk in the DTSP leads
(in most cases) to lower rewards than a direct solution of
the DOP. On the other hand, the right plot in Fig. 4 shows
that in most cases (especially for lower budgets) the rewards
collected by the solution of the DOP is higher. These results
support suitability of the proposed algorithm for the introduced
Dubins Orienteering Problem. Hence, it is not beneficial to
solve the DOP by a separate selection of the target locations,
e.g., by solving the EOP, and consecutive path planning for
the Dubins vehicle. Solving the EOP may provide equally
rewarded paths with multiple different subsets of the target
locations. However, some of the subsets can be connectable
in the consequent DTSP respecting the budget constraint, but
some may not.

The proposed VNS DOP algorithm uses m sampled head-
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Fig. 5. Sums of collected rewards R and computational time for different
heading sample rate m with ρ = 1.2 .

ing values at each target location. A particular number m
influences the path length and higher number of samples may
almost always produce shorter paths and thus, a high reward
collected for a given travel budget Tmax. An influence of m on
the sum of the collected rewards R and the computational time
on m for the selected problems is shown in Fig. 5. The results
show that R tends to increase until m = 12. This is caused
by the fact that the main objective of the DOP optimization
is the sum of collected rewards R and the path length is not
important as far as it is shorter than Tmax.
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Fig. 6. Computational time and collected rewards of the proposed VNS-based
DOP algorithm for increasing value of the maximal neighborhood distance
lmax for particular problems.

The proposed VNS-based DOP uses the maximal neighbor-
hood distance lmax = 2 but the value can be increased by
concurrently moving lmax > 2 target locations in the local
search procedure. Fig. 6 with the computational times and
collected reward for different lmax shows that the solution
convergence is slower for increased lmax because a single
iteration lasts longer and the randomized RVNS algorithm
does not benefit from the enlarged neighborhood distance.

B. Real experiments

The proposed method has been experimentally evaluated in
the real data collection scenario with a hexarotor UAV. 1 The
UAV is requested to visually inspect as many high rewarded
target locations as possible during the length-limited flight.
The considered scenario consists of 20 target locations, where
a particular colored object with marked reward is located. The
objects are placed in the area of approximately 100×50 m
large. Fig. 7 shows the colored target object with the used
hexarotor UAV, originally developed for multi-robot applica-
tions [21]. The considered travel budget is Tmax = 150 m for

1We refer to http://mrs.felk.cvut.cz/icra17dop for more information about
the experiment.

Fig. 7. Hexarotor UAV during the visual data collection of the colored target
object with displayed reward.

which the UAV has to visit the locations of the objects and
maximize the collected reward.

Although the hexarotor UAV can drive through a path from
the Euclidean OP, in certain cases, it is then required to
decelerate during the sharp turns. Therefore, the hexarotor
UAV modeled as the Dubins vehicle with a smooth path over
the target locations allow using constant speed trajectories.
Moreover, the Dubins model respects the real constraints of the
UAV such as the maximal speed and acceleration. This allows
to the used onboard trajectory controller [22] to precisely
navigate through the trajectory without missing the target
location which can happen for the path produced by solving
the related EOP.

The crucial parameter of the Dubins vehicle is the minimal
turning radius ρ that is computed from the desired constant ve-
locity vc and the maximal acceleration of the UAV amax. The
equation of circular motion with constant speed ρ = v2

c/amax
is used to get the radius, which produces the maximal allowed
acceleration during the circular parts of the path. The constant
velocity vc = 4 m.s-1 and the maximal allowed acceleration
amax = 2.6 m.s-2 has been used and the considered turning
radius ρ is ρ = 6.15 m.

Paths found by the proposed DOP algorithm for the turning
radius ρ = 0 and ρ = 6.15 m are shown in Fig. 8. A solution
is found within a second using the same parameters as in
Section V-A. The particular rewards of the found solutions are
R = 71 and R = 65, for ρ = 0 and ρ = 6.15 m respectively,
with total path lenghts of 149.0 m and 148.4 m. Although
the solution for ρ = 0 provides a higher reward, the path is
not feasible for the constant speed motion, and the onboard
controller has to violate the planned path. This causes cutting
of sharp turns to fulfill the schedule of the plan as it is shown
for the “EOP path traveled by UAV” curve in Fig. 8.
On the other hand, a solution of the DOP with R = 65 respects
the maximal acceleration with the desired constant speed of the
vehicle and all target objects have been successfully captured.

VI. CONCLUSIONS

This paper introduces a generalization of the Orienteering
Problem to the Dubins vehicle that is called the Dubins
Orienteering Problem (DOP). We propose a novel Variable
Neighborhood Search (VNS) based method for solving this
challenging problem. A sampling based approach is used

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/LRA.2017.2666261

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

CHAPTER 3. DUBINS ORIENTEERING PROBLEM 19



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2017

Fig. 8. Plots of the UAV position for solutions of the data collection scenario as the DOP and EOP.

to search for an appropriate sequence of heading angles at
the target locations. The presented results indicate that for
zero turning radius, the proposed DOP solver is competitive
to existing methods for the Euclidean OP. Results for non-
zero turning radius show that the collected reward decreases
with the increasing radius. Moreover, the presented results
demonstrate that a solution of the DOP as a combination of
the Euclidean OP and consecutive Dubins Traveling Salesman
Problem is not plausible. We also show that the sampling
based approach to heading angles is viable as the prime
objective of the DOP is to maximize the collected reward
and a higher number of samples does not necessarily increase
the quality of solution (the collected reward). Finally, results
from the real deployment of the proposed approach further
demonstrate a necessity of the proposed direct solution of the
Dubins Orienteering Problem. For future work, we intend to
investigate the OP for other more complex maneuvers such
as splines, and to extend the DOP for possible data collection
within proximity of the target locations.
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Chapter 4

Data Collection Planning with Non-zero Sensing Dis-

tance for a Budget and Curvature Constrained Un-

manned Aerial Vehicle

This chapter presents the second core publication [2c] with VNS-based method for the
Dubins Orienteering Problem with Neighborhoods (DOPN) published in the Autonomous
Robots journal.

[2c] R. Pěnička, J. Faigl, M. Saska, and P. Váňa, “Data collection planning with non-
zero sensing distance for a budget and curvature constrained unmanned aerial
vehicle,” Autonomous Robots, vol. 43, no. 8, pp. 1937 –1956, 2019

The manuscript introduces an extended version of a solution approach for the DOPN
initially proposed in a conference paper [9a]. The DOPN is a generalization of the DOP where
each target location has a disk-shaped neighborhood [8a], where the data can be collected
without visiting a precise position of the targets. The generalization can be motivated by,
e.g., data collection from Wireless Sensor Network where the measured data can be retrieved
from the sensors placed in the environment by the UAV using wireless communication [29].
Another motivation scenario is data collection with UAV equipped with a long-range sensor,
e.g., a wide field-of-view camera that does not require to visit the target locations precisely
and thus can save the travel cost, which in turn allows to increase the amount of collected
data.

In the conference paper [9a], the initial solution of the DOPN is proposed by a straight-
forward extension of the VNS for the DOP. The considered circular neighborhoods are equidis-
tantly sampled on their border, and the DOPN is solved similarly to the DOP in [1c] with
both heading and neighborhood statically sampled. In the related core publication [2c], the
continuous optimization of finding positions within the neighborhoods and vehicle heading
angles is significantly improved. The proposed VNS-based method uses the same shaking and
local search procedures as for the DOP in [1c]; however, it uses a low-dense initial equidistant
sampling. Additionally, new VNS operators are proposed to perform local continuous opti-
mization of both the heading angle and neighborhood position samples to shorten the current
solution. The continuous optimization operators are based on the LIO [56] technique. The
Waypoint Shake operator performed in the shaking procedure randomizes the heading angles
and neighborhood positions, while in the local search, the Waypoint Improvement operator
performs the LIO. Such optimized heading and neighborhood samples are iteratively added
to the initially low-dense graph of samples, which is then used by the combinatorial VNS
operators.

The computational results on existing datasets show significant improvement of the
solution quality compared to the static high-dense sampling of the neighborhood and head-
ing angles in [9a]. Furthermore, the computational time required to achieve a certain solu-
tion quality is decreased when the continuous optimization operators are used. The proposed
method is also shown to produce better solutions for tested instances than the SOM-based
approach [10a]. Finally, the proposed method is experimentally verified in a visual data col-
lection scenario. A real hexarotor UAV with a high-resolution wide field of view camera was
employed in an outdoor environment to visually inspect targets in predefined positions.

The contribution of the author of this thesis on the manuscript is 65 %, with co-authors
giving feedback to improve the method and the manuscript.
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Abstract Data collection missions are one of the

many effective use cases of Unmanned Aerial Vehi-

cles (UAVs), where the UAV is required to visit a pre-

defined set of target locations to retrieve data. How-

ever, the flight time of a real UAV is time constrained,

and therefore only a limited number of target locations

can typically be visited within the mission. In this pa-

per, we address the data collection planning problem

called the Dubins Orienteering Problem with Neigh-

borhoods (DOPN), which sets out to determine the se-

quence of visits to the most rewarding subset of tar-

get locations, each with an associated reward, within

a given travel budget. The objective of the DOPN is

thus to maximize the sum of the rewards collected from

the visited target locations using a budget constrained

path between predefined starting and ending locations.

The variant of the Orienteering Problem (OP) ad-

dressed here uses curvature-constrained Dubins vehi-

cle model for planning the data collection missions for

UAV. Moreover, in the DOPN, it is also assumed that

the data, and thus the reward, may be collected from a

close neighborhood sensing distance around the target

locations, e.g., taking a snapshot by an onboard cam-

era with a wide field of view, or using a sensor with
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a long range. We propose a novel approach based on

the Variable Neighborhood Search (VNS) metaheuris-

tic for the DOPN, in which combinatorial optimization

of the sequence for visiting the target locations is simul-

taneously addressed with continuous optimization for

finding Dubins vehicle waypoints inside the neighbor-

hoods of the visited targets. The proposed VNS-based

DOPN algorithm is evaluated in numerous benchmark

instances, and the results show that it significantly out-

performs the existing methods in both solution quality

and computational time. The practical deployability of

the proposed approach is experimentally verified in a

data collection scenario with a real hexarotor UAV.

Keywords Unmanned Aerial Vehicles · Non-

holonomic Motion Planning · Data Collection

Planning · Orienteering Problem

1 INTRODUCTION

Unmanned Aerial Vehicles (UAV) are effective systems

for long-range data collection (Ergezer and Leblebi-

cioğlu 2014) or for information gathering scenar-

ios (Nguyen et al. 2016), where a UAV has to gather

data from specified locations in the environment. Such

a scenario consists of a UAV equipped with an onboard

sensor that is required to reach particular target lo-

cations and measure or collect the desired data. For

example, in a Wireless Sensor Network (WSN), the

sensors are placed in the environment, and the UAV

can be used for retrieving the measured data from the

sensor units by wireless communication with a limited

range (Jawhar et al. 2014; Wang et al. 2015). Hence, the

objective of data collection planning can be to minimize

the required time to retrieve the requested data (i.e., to
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minimize the length of the data collection path) or/and

to maximize the information collected by a single path.

Data collection planning can be formulated

as a variant of the Traveling Salesman Prob-

lem (TSP) (Oberlin et al. 2010), where a path visit-

ing all the given locations with minimal length is to

be found. However, the required visits to all locations

may not be possible with the budget limitation of a real

vehicle (limited flight time).

Nowadays, the typical flight time of a small UAV

is limited to tens of minutes, and the time is further

decreased if the UAV is equipped with an additional

payload, e.g., onboard sensors. Therefore, the Orien-

teering Problem (OP) (Tsiligirides 1984) formulation

seems to be more suitable for data collection planning

with a limited travel budget. Rather than minimizing

the path length as in the TSP, the OP set out to find a

path maximizing the sum of the rewards collected from

a selected subset of target locations that can be reached

using the given travel budget.

In this work, we consider that the data collect-

ing vehicle with a budget constraint has to follow a

curvature-constrained path, and thus we model the

UAV as Dubins vehicle (Dubins 1957). Dubins vehicle

can be used for modeling car-like robots (Tokekar et al.

2014), fixed-wing aerial vehicles (Lugo-Cárdenas et al.

2014) or Vertical Take-Off and Landing (VTOL) multi-

rotor UAVs traversing the planned path at a constant

speed (Pěnička et al. 2017a).

For Dubins vehicle, the TSP becomes the Du-

bins Traveling Salesman Problem (DTSP) (Savla et al.

2005), where it is required to find not only the optimal

sequence for the visits to all target locations, but also

optimal heading angles of the vehicle at the locations, as

they greatly influence the final path length. Since each

heading angle can be arbitrarily selected from 0 to 2π,

the problem becomes computationally demanding due

to the required non-linear continuous optimization of

the additional dimension of the heading angles.

For a limited travel budget and Dubins vehicle, the

OP becomes the Dubins Orienteering Problem (DOP),

which was introduced and solved by a Variable Neigh-

borhood Search (VNS) based approach in (Pěnička

et al. 2017a). In the DOP, it is required to search

over all possible heading angles at the target locations

to find the most rewarding curvature-constrained path

within the limited budget. Note that both the OP and

the DOP are NP-hard similarly to the TSP and the

DTSP (Le Ny et al. 2007).

In data collection planning, the solution quality,

i.e., the path length in the (D)TSP or the sum of the

rewards collected in the (D)OP, can be increased by

introducing a non-zero sensing distance in which the

Fig. 1: A snapshot of the workspace for experimental

verification of the proposed Dubins Orienteering Prob-

lem with Neighborhoods taken by a UAV flying 100

m above the ground. The solution of the DOPN used

in the real experiment with a hexarotor UAV is calcu-

lated using the proposed Variable Neighborhood Search

method with target neighborhood radius δ = 4 m and

budget constraint Tmax = 150 m.

data can be collected from the particular target lo-

cations. An extension of the DTSP for the non-zero

sensing distance is called the Dubins Traveling Sales-

man Problem with Neighborhoods (DTSPN) (Ober-

meyer 2009; Isaacs et al. 2011; Váňa and Faigl 2015). In

this paper, we consider a similar extension of the DOP

to the Dubins Orienteering Problem with Neighbor-

hoods (DOPN), initially introduced in (Pěnička et al.

2017b). Although exploiting the neighborhood in most

cases increases the quality of the solutions (regard-

ing the collected rewards), solving the DOPN is more

challenging due to the additional determination of the

most suitable waypoint locations to retrieve the re-

wards within the neighborhood of target locations. The

DOPN thus includes both a combinatorial part and a

continuous optimization part. Determining the subset

of target locations and determining the sequence for vis-

iting them are the combinatorial parts of the DOPN.

The continuous optimization part involves determin-

ing the waypoint locations within the neighborhood

of the target locations and the determining the way-

point heading angles of Dubins vehicle at the selected

waypoint locations. An illustration of the DOPN solu-

tion from the experimental verification of the proposed

method with a hexarotor UAV is shown in Fig. 1.

The novel method for the DOPN is based on

the Variable Neighborhood Search (VNS) metaheuris-

tic (Mladenović and Hansen 1997). It consists of both

combinatorial and continuous optimization operators to

solve the DOPN. Initially, low-density equidistant sam-

pling of both the waypoint heading angles and the way-

point locations within the neighborhoods is considered,

in order to create waypoint graph for the combinato-

rial optimization to maximize the sum of the collected
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rewards. The particular waypoint samples of the solu-

tions for a given sequence of visited target locations

are selected such that the path length is minimized.

An initial greedy solution is then found by adding tar-

get locations that maximize the reward per tour pro-

longation, while the maximally allowed budget is still

fulfilled. The VNS method afterward uses a set of neigh-

borhood operators to randomly change and locally im-

prove the best found solution. The proposed VNS con-

sists of the combinatorial optimization operators ex-

tended from the VNS-based solution to the original OP

in (Sevkli and Sevilgen 2006) and also utilized for solv-

ing the DOP in (Pěnička et al. 2017a). However, the

herein VNS-based DOPN solver contains novel continu-

ous optimization operators to minimize the path length

over the selected sequence of target locations by opti-

mizing both the heading angles and the waypoint loca-

tions within the neighborhoods of the target locations.

The proposed operators shorten the solution found on

the low-density sampled waypoint graph, and update

the locally optimized values to the graph for combi-

natorial optimization. The path length is optimized to

allow addition of previously unvisited target locations

while satisfying the budget constraint.

A preliminary version of this work appears

in (Pěnička et al. 2017b), where the DOPN is ad-

dressed by a purely sampling-based approach. This

paper is considered to make the following contribu-

tions. The method introduced here significantly im-

proves the solution quality and decreases the over-

all required computational time, which allows onboard

online planning and anytime behavior. The proposed

method combines combinatorial optimization and con-

tinuous optimization in a single VNS-based framework,

which outperforms the previous purely combinatorial

sampling-based solution (Pěnička et al. 2017b) and also

the competitive Self-Organizing Map (SOM) based so-

lution (Faigl and Pěnička 2017). The initial low-density

waypoint sampling allows us to obtain high quality ini-

tial solutions (≈ 90% of the best-known rewards) within

a few seconds, and due to the continuous optimization

of the waypoints, the solution quality is improved above

the so far best-known solutions created by dense way-

point sampling with required initialization in tens of

minutes. The performance and quality improvements

are mainly caused by the proposed tight coupling be-

tween combinatorial optimizations and continuous opti-

mization in a single algorithm, which is also considered

as one of the main contributions of our work. Further-

more, the designed VNS-based algorithm minimizes the

path length in addition to the main OP objective of

maximizing the sum of the collected rewards, which can

be useful when all target locations can be feasibly col-

lected within the defined budget. Last but not least, the

experimental verification in the data collection scenario

demonstrates the practical usefulness of the addressed

problem and the proposed method.

The remainder of this paper is organized as follows.

An overview of related work is presented in the next

section. A formal definition of the DOPN is introduced

in Section 3, and the novel VNS-based approach is pro-

posed in Section 4. Section 5 shows the computational

results and the experimental verification in a real data

collection scenario. The conclusion and future work are

outlined in Section 6.

2 Related Work

The Dubins Orienteering Problem with Neighborhoods

belongs to a wider class of orienteering problems (Gu-

nawan et al. 2016), where the objective is to find a lim-

ited length path between a starting location and an end-

ing location which maximizes the sum of the rewards

collected from a subset of the specified target locations.

Therefore, this section presents an overview of existing

approaches for the Orienteering Problem and relevant

variants for UAVs. The DOPN is also related to the

Traveling Salesman Problem (TSP) and its variants in-

volving Dubins vehicle and neighborhoods; therefore a

brief overview of relevant solutions of the TSP is pro-

vided in this section.

The Euclidean version of the OP, further denoted

as the EOP, was introduced by Tsiligirides (Tsiligiri-

des 1984) in 1984, together with the deterministic D-

algorithm and stochastic S-algorithm approaches for

the EOP. The S-algorithm is based on the Monte-

Carlo method, which creates multiple feasible paths

and selects the best solution according to the reward.

The D-algorithm is based on the method for the ve-

hicle routing problem (Wren and Holliday 1972). Fur-

thermore, Tsiligirides created three OP benchmark in-

stances (Vansteenwegen 2018), further denoted as Set 1,

Set 2 and Set 3, with up to 33 target locations.

Since the first deterministic and stochastic algo-

rithms for the OP, a large number of solutions for

the EOP and other variants of the OP have been pro-

posed (Vansteenwegen et al. 2011; Gunawan et al. 2016)

with results that outperform the first solutions. The OP

can be solved optimally using the Branch and Bound

algorithm (Ramesh et al. 1992) or by the Branch and

Cut (Fischetti et al. 1998) algorithm; however, the op-

timal solution of the EOP requires significant computa-

tional resources, and the solutions are provided in sev-

eral minutes or hours for instances with tens of target

locations.
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For the Dubins Orienteering Problem or its variant

with neighborhoods, additional waypoint sampling is

required for each target location. Hence it is optimally

solvable only for a given, rather low, sampling den-

sity with reasonable computational resources. There-

fore, numerous heuristic solutions for the EOP, such as

the approaches in (Ramesh and Brown 1991; Chao et al.

1996a; Schilde et al. 2009; Sevkli and Sevilgen 2006),

have been proposed, with results that can achieve a so-

lution close to the optimal one within a fraction of the

computational time required for the optimal solution.

The Fast and Effective heuristic for the EOP by Chao

et al. (Chao et al. 1996a) considers only target locations

reachable within the prescribed budget (i.e., target lo-

cations inside the respective ellipse around the pre-

scribed starting and ending locations). This reduces the

number of target locations in solutions with low bud-

gets. The heuristic by Chao et al. uses a set of operators

consisting of two-point exchange and one-point move-

ment together with the 2-Opt operation to find high-

quality EOP solutions. Furthermore, two symmetrical

benchmark sets were created in (Chao et al. 1996a), the

diamond shaped Set 64 and the square shaped Set 66

with up to 66 target locations.

The OP has also been proposed for path and data

collection planning for UAVs. A variant of the OP,

called the Correlated Orienteering Problem (COP) (Yu

et al. 2016), introduced for persistent monitoring and

data collection tasks with UAVs, proposed a variant of

the OP where the rewards of target locations are corre-

lated on the basis of their mutual distances. The COP is

motivated by the correlation in sensory measurements

of neighboring target locations, and its solution can

be found optimally using mixed integer quadratic pro-

gramming for a small number of target locations. A ver-

sion of the COP involving Dubins vehicle has been pro-

posed recently by Tsiogkas and Lane (2018).

Thakur et al. (2013) proposed a variant of the Team

Orienteering Problem (TOP) (the multi-vehicle variant

of the OP proposed by Chao et al. (1996b)) for Dubins

vehicle in environments with obstacles. However, the

definition of the problem proposed in (Thakur et al.

2013) consists of a given set of waypoints for Dubins

vehicle and does not consider an arbitrary heading an-

gle at the target locations or the non-zero sensing dis-

tance, as in the DOPN. An optimal multilevel graph

search technique is proposed for optimizing the TOP

on a given set of Dubins vehicle waypoints for up to

15 target locations. The multi-robot variant of the OP

is also proposed in (Jorgensen et al. 2018) for so-called

Team Surviving Orienteers (TSO), where the budget

is replaced by the constraining probabilities that each

robot survives to its destination.

The proposed DOPN method is based on the Vari-

able Neighborhood Search (VNS) (Mladenović and

Hansen 1997) metaheuristic by Hansen and Mladen-

ović for combinatorial optimization applicable to nu-

merous problems (Hansen and Mladenović 2001). The

VNS employs predefined neighborhood operators used

for iterative improvement of the initial solution inside

the shaking and local search procedures. The first VNS-

based approach to the EOP (Sevkli and Sevilgen 2006)

uses neighborhood structures that motivate the com-

binatorial optimization part of the proposed solution

of the DOPN. The VNS-based method for the EOP

randomly changes the current best solution by either

path move operator or path exchange operator in the

shaking procedure to get from the possible local maxi-

mum. Then, the method tries to improve the randomly

changed path by multiple one point moves or exchanges

in the local search procedure in order to find a more re-

warded path than the incumbent solution.

In our previous work (Pěnička et al. 2017a), the

DOP was introduced together with the VNS-based

method to solve it. The method uses similar neighbor-

hood structures as the VNS method for the EOP (Sevkli

and Sevilgen 2006). However, to tackle the continu-

ous optimization problem of finding a suitable path

for curvature-constrained Dubins vehicle, equidistant

sampling of the heading angle at the target locations

was proposed. The VNS-based method then searches

for the most rewarding path, together with the appro-

priate sequence of sampled heading angles to fit the

path length within the budget constraint. The DOPN

and its heuristic VNS-based solution was introduced

in (Pěnička et al. 2017b) with a straightforward exten-

sion of the pure sampling-based approach by additional

sampling of visit positions in the circular neighborhood

of each target location. In this paper, the solution of the

DOPN is further improved by a combination of com-

binatorial optimization of the DOPN with continuous

optimization of the waypoint samples in a single VNS-

based algorithm. Furthermore, the deployment of the

proposed method is shown in an experimental verifica-

tion with a hexarotor UAV.

The first approach addressing the generalization

of the OP to the Euclidean variant of the Orienteer-

ing Problem with Neighborhoods (OPN) was proposed

in (Best et al. 2016), and was further improved in (Faigl

et al. 2016). The multi-robot variant of the OPN for

active perception has been studied in (Best et al.

2018). The approach is based on unsupervised learn-

ing of the Self-Organizing Map (SOM) for the Prize-

Collecting Traveling Salesman Problem with Neighbor-

hoods (PC-TSPN) (Faigl and Hollinger 2014), i.e., a

variant of the TSP that combines maximization of the
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rewards (prizes) and minimization of the path length.

The approach has been further extended to variants

with multiple vehicles in the OP (Faigl 2017) and also

multi-vehicle PC-TSPN (Faigl and Hollinger 2018). The

SOM has also been applied to the DTSP and DT-

SPN in (Faigl and Váňa 2017). Recently, the SOM-

based approach has been adopted for solving the Close

Enough Dubins Orienteering Problem (CEDOP) (Faigl

and Pěnička 2017), which is the DOPN with name

emphasized usage of disk-shaped neighborhoods. The

VNS-based solution of the DOPN proposed here signif-

icantly outperforms the SOM-based approach for CE-

DOP, both in the maximal achievable solution quality

and also regarding computational time.

The proposed DOPN is also related to existing ap-

proaches to the DTSP (Cohen et al. 2017) and the

DTSPN (Váňa and Faigl 2015). The most relevant

approaches are sampling-based variants of the DTSP,

where the heading angles at the target locations are

sampled, and the problem is transformed to the Asym-

metric TSP (ATSP) (Noon and Bean 1993), which

can be solved optimally for the specified sampling. A

similar approach can be used for the DTSPN (Ober-

meyer et al. 2010), where both the heading angles and

the positions within the neighborhood are sampled.

The problem is then transformed into the Generalized

TSP (GTSP) and further to the ATSP, which can be

solved, e.g., by the LKH solver (Helsgaun 2000). The so-

lutions of sampling based methods, however, can be fur-

ther improved by employing the Dubins Touring Prob-

lem (DTP) (Faigl et al. 2017), which sets out to find the

optimal heading angles of Dubins vehicle for a given

sequence of target locations in order to minimize the

path length in the DTSP. For the DTSPN, the DTP

can be further extended to the Dubins Touring Regions

Problem (DTRP), recently addressed as the General-

ized Dubins Interval Problem (Váňa and Faigl 2018),

where both the heading angles of Dubins vehicle and the

visit position inside the neighborhoods of target loca-

tions are optimized for a given sequence of target loca-

tions. The proposed VNS-based solution of the DOPN

uses the adopted version of the Local Iterative Opti-

mization (LIO) procedure (Váňa and Faigl 2015) (orig-

inally designed for the DTRP) in continuous optimiza-

tion VNS operators. It iteratively optimizes individual

heading angles and neighborhood positions at each tar-

get location to minimize the required path length. The

related DTSPN and its DTRP subproblem, however,

does not contain subset selection with maximization of

the collected rewards, and the budget constraint, as in

the DOPN, which is formally introduced in the next

section.

3 Problem Statement

In this section, we formally define the DOPN. The

problem studied here consists of two main optimization

parts. The first part is the combinatorial optimization

part of the OP, which sets out to maximize the sum of

the collected rewards by selecting a subset of the tar-

get locations such that the path length visiting them is

within the specified travel budget. The second part is

the continuous optimization of the DTRP which, for a

given sequence of target locations themselves, sets out

to find appropriate waypoint heading angles of Dubins

vehicle and also the waypoint locations themselves in

the neighborhoods of the selected target locations. Both

parts have to be addressed at the same time, as the

OP subset selection influences the continuous DTRP

optimization, which on the other hand influences the

path length constrained by the combinatorial OP. The

addressed DOPN is therefore incrementally formulated

from the OP and the DTRP in the following subsec-

tions.

3.1 Orienteering Problem (OP)

The OP assumes a given set of target locations to

be visited S = {s1, · · · , sn}, where each target loca-

tion si = (ti, ri) consists of its position in the plane

ti ∈ R2 and the associated reward ri. The reward of

all target locations is expected to be strictly positive

ri ∈ R>0, with the exception of the predefined starting

location s1 and ending location sn with zero rewards

r1 = rn = 0. Furthermore, the problem is constrained

by the given maximal allowed travel budget Tmax, i.e.,

the path length of the vehicle is limited by this value.

The objective of the OP is to maximize the sum of

the collected rewards R =
∑
ri∈Sk

ri by selecting a sub-

set of k target locations Sk ⊆ S. However, the length

of the tour to visit all the locations of subset Sk is con-

strained by Tmax, and therefore, the path length has to

be taken into account during the selection of Sk. The

path can be described as a sequence of target location

indexes Σk, in which the path visits the selected target

locations Σk = (σ1, · · · , σk), with 1 ≤ σi ≤ n, σi 6= σj
for i 6= j, sσh

∈ Sk where h ∈ (1, . . . , k) and σ1 = 1,

σk = n. Using the predefined starting and ending loca-

tions in the permutation (σ1 = 1, σk = n), the solution

of the OP is determined by searching over all possible

values of k, Sk, and Σk. In the ordinary OP (Gunawan

et al. 2016), the Euclidean distance Le(sσi , sσj ) is used

as the travel cost between two target locations sσi
and

sσj
. Having these preliminaries, the OP can be formu-

lated as the optimization problem:
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Problem 1 (Orienteering Problem (OP))

maximizek,Sk,Σk
R =

k∑

i=1

rσi

subject to

k∑

i=2

Le(tσi−1
, tσi

) ≤ Tmax

σ1 = 1, σk = n .

(1)

3.2 Dubins Touring Regions Problem (DTRP)

In the DTRP, Dubins vehicle model is utilized to plan

a curvature-constrained data collection path. Dubins

(1957) showed that the shortest path between two con-

figurations of Dubins vehicle can be found by a closed-

form expression, and the path is one of six possible

maneuvers of CSC or CCC type, where ‘C’ stands for

turning right or left and ‘S’ means going straight. A

configuration of Dubins vehicle q = (p, θ)T = (x, y, θ)T

can be described by its position p = (x, y) in the plane,

i.e., p ∈ R2, and the vehicle heading angle θ, θ ∈ S1.

The kinematic model of Dubins vehicle shown in (2)

uses a constant forward velocity vc and a control input

u, which steers the vehicle. The minimal turning radius

ρ of Dubins vehicle is assumed to be constant.

q̇ =

[
ṗT

θ̇

]
=



ẋ

ẏ

θ̇


 = vc




cos θ

sin θ
u
ρ


 , u ∈ [−1, 1] (2)

In multi-goal path planning with curvature-

constrained Dubins vehicle formulated as the DTSP or

the DOP and their variants with neighborhoods, the

important issue of the continuity of heading angles has

to be solved. The analytical solution of optimal Dubins

maneuvers (Dubins 1957) provides the shortest path

between two target locations with known heading an-

gles. However, the heading angles have to be appro-

priately found to connect multiple Dubins maneuvers

into a path of minimal length over multiple target loca-

tions with a priori unknown heading angles. For a given

sequence of waypoint locations, the problem of deter-

mining the optimal heading values is called the Dubins

Touring Problem (DTP) (Faigl et al. 2017). For the

purposes of the OP, we can consider a variant of the

DTP in which the target locations in Sk are visited in

the sequence defined by Σk = (σ1, · · · , σk) with speci-

fied starting and ending locations σ1 = 1 and σk = n,

respectively. The problem is then to find a vector of the

waypoint heading angles Θk = (θσ1
, · · · , θσk

) that con-

nects Dubins maneuvers at the target locations. The

solution of the DTP minimizes the sum of the length

of Dubins maneuvers, where Ld(qσi , qσj ) denotes the

length of the shortest Dubins maneuver (Dubins 1957)

between configurations qσi
and qσj

.

The DTRP additionally requires to find the way-

point locations within a disk-shaped neighborhood of

each target location. The non-zero sensing distance in

the DTRP is denoted as the neighborhood radius δ

defining a δ-radius disk centered at the respective tar-

get location. The same neighborhood radius is used

for all the target locations in the given sequence Σk,

with the exception of the starting s1 and ending sk lo-

cations, which are assumed to have a zero neighbor-

hood radius due to the vehicle taking off and land-

ing at these locations. The DTRP extends the DTP

to a variant where an additional vector of the waypoint

locations Pk = (pσ1
, · · · , pσk

) has to be found. Each

pσi ∈ R2 defines the location within the δ neighbor-

hood of the target location sσi
= (tσi

, rσi
) ∈ Sk such

that ‖pσi
, tσi
‖ ≤ δ for i ∈ (2, k − 1) and ‖pσi

, tσi
‖ = 0

for i = 1, k. The DTRP sets out to minimize the length

L(Θk, Pk) of the Dubins tour over the given sequence

of targets Σk by optimizing both the vector of the way-

point heading angles Θk and the vector of the waypoint

locations Pk that are inside the neighborhoods of the

particular selected targets. This type of continuous op-

timization problem is complex, as any change of, e.g.,

heading angle θσi at a single target location, influences

not only the optimal location pσi
of the same waypoint,

but also other adjacent waypoint heading angles and lo-

cations. The same applies to changes in the waypoint

locations Pk. The DTRP can be summarized as the fol-

lowing optimization problem.

Problem 2 (Dubins Touring Regions Problem

(DTRP))

minimizeΘk,Pk
L(Θk, Pk) =

n∑

i=2

Ld(qσi−1
, qσi

)

subject to

qσi = (pσi , θσi), pσi ∈ Pk, θσi ∈ Θk, i ∈ (1, k) ,

‖pσi , tσi‖ ≤ δ , i ∈ (2, k − 1) ,

‖pσ1 , tσ1‖ = 0 , ‖pσk
, tσk
‖ = 0 ,

σ1 = 1 , σk = n .

(3)

3.3 Dubins Orienteering Problem with Neighborhoods

The DOPN combines combinatorial OP reward maxi-

mization with continuous path length minimization of

the DTRP. However, both optimization problems com-

bined in the DOPN have to be addressed simultane-

ously, due to their mutual influence. The DOPN can
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be therefore expressed in a single optimization formu-

lation:

Problem 3 (Dubins Orienteering Problem with

Neighborhoods (DOPN))

maximizek,Sk,Pk,Σk,Θk
R =

k∑

i=1

rσi

subject to

k∑

i=2

Ld(qσi−1
, qσi

) ≤ Tmax ,

qσi = (pσi , θσi), pσi ∈ Pk, θσi ∈ Θk, i ∈ (1, k) ,

‖pσi , tσi‖ ≤ δ , i ∈ (2, k − 1) ,

‖pσ1 , tσ1‖ = 0 , ‖pσk
, tσk
‖ = 0 ,

σ1 = 1 , σk = n .

(4)

4 Proposed Approach for the DOPN

The proposed approach for the DOPN is a novel vari-

ant of the Variable Neighborhood Search (VNS) meta-

heuristic, which combines combinatorial optimization

and continuous optimization. The preliminary VNS-

based method for the DOPN proposed in (Pěnička et al.

2017b) is purely sampling-based combinatorial opti-

mization, which requires significantly longer computa-

tional times and achieves lower quality solutions. In this

paper, we propose the VNS-based method, which ad-

ditionally contains continuous optimization to improve

the solution quality and to reduce the computational

burden. The method proposed here uses low-density ini-

tial sampling for solving the DTRP subproblem (sam-

pling the waypoint heading angles and the waypoint

locations); however, it also employs continuous opti-

mization of the waypoints. This kind of waypoint opti-

mization can shorten the actual tour to cover the same

subset of target locations, and thus it potentially al-

lows visits to additional as yet unvisited target loca-

tions, without violating the travel budget constraint.

Optimized waypoints that shorten the actual path are

therefore added to the initial sampled waypoints to be

used further for OP optimization.

The proposed method for the DOPN is based on

the VNS metaheuristic (Mladenović and Hansen 1997),

which has been introduced for combinatorial optimiza-

tion in various problems (Hansen and Mladenović 2001)

and its principles are also applicable for continuous op-

timization (Mladenović et al. 2008). VNS uses shake

and local search procedures to iteratively improve the

best achieved incumbent solution. Both procedures use

the lmax predefined operators in the context of the

VNS described as neighborhood structures Nl, l =

1, . . . , lmax, where, in each VNS iteration, the neigh-

borhood Nl is gradually increased when no better solu-

tion is found. The shake procedure uses the incumbent

solution and randomly changes it using one of its oper-

ators to get from possible local optima. The randomly

changed incumbent solution is then used by the local

search procedure in an attempt to increase the quality

of the solution above the incumbent solution.

The VNS-based algorithm for the DOPN uses

equidistant initial sampling of the waypoints in the δ-

radius neighborhood disk centered at the respective tar-

get locations sσi
∈ S. Each waypoint consists of the

waypoint location pσi
on the circumference of the neigh-

borhood circle and also the heading angle of Dubins ve-

hicle θσi
at the waypoint location. The initial sampling

uses o equidistantly placed waypoint locations along the

circumference of the δ-radius circle. Each such waypoint

location is described throughout the VNS-based algo-

rithm by its directional angle 〈0, 2π) from the respec-

tive target location. This allows the waypoint location

to be described by only one parameter and, like the

description by two parameters (x, y), does not restrict

solutions of the DOPN. Zero neighborhood radius is

used for both the starting locations and the ending lo-

cation specified by the DOPN, as the exact start and

end position of the vehicle is considered, and therefore

the o = 1 location sample is used. The heading an-

gle is similarly sampled into m values from the inter-

val 〈0, 2π) for each of the o waypoint location samples.

The sampling approach requires (o · m) samples per

target location, which is sufficient for the initial solu-

tion of the DOPN (Pěnička et al. 2017b). However, a

high sampling rate, which is needed for finding high-

quality solutions, is very computationally demanding,

and most of the waypoint samples are never used in the

improvements to the solution. Therefore, we propose

to use low-density sampling of the waypoints from the

initialization, together with the online addition of the

optimized waypoints, which shorten the current paths,

to the set of initial waypoint samples. DOPN paths are

then created on the optimized waypoint samples where

the appropriate waypoints, i.e., vectors Θk and Pk, are

selected for the target sequence Σk using the shortest

path in the graph of samples between the starting and

ending target locations.

The neighborhood operators used for combinatorial

optimization inside the VNS algorithm for the DOPN,

namely Path Move, Path Exchange, One Point

Move, and One Point Exchange, were introduced

for the Euclidean OP in (Sevkli and Sevilgen 2006). The

modified version of the same operators was also used in

the initial solution of the purely sampling-based DOPN

in (Pěnička et al. 2017b). The novel VNS shake proce-
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dure for the DOPN consists of the following l = 1, . . . , 3

neighborhood operators: Path Move and Path Ex-

change, which are further described in detail in Sec-

tion 4.1, and Waypoint Shake, which is described in

Section 4.3. The particular l for the individual opera-

tors of the shake procedure are:

– Waypoint Shake (l = 1);

– Path Move (l = 2);

– Path Exchange (l = 3).

The local search procedure consists of three operators,

One Point Move and One Point Exchange, which

are discussed in Section 4.2, and Waypoint Improve-

ment, which is described in Section 4.3. The particular

l for the individual operators of the local search proce-

dure are:

– Waypoint Improvement (l = 1);

– One Point Move (l = 2);

– One Point Exchange (l = 3).

The proposed continuous optimization of the way-

points is performed by a combination of the Waypoint

Shake operator in the shake procedure and the Way-

point Improvement operator in the local search proce-

dure. The operators randomly change the waypoint of

the current solution of the DOPN, and then improve the

waypoints by iterative usage of local improvements. The

continuous optimization operators (l = 1) are priori-

tized in order to shorten any newly found solution (see

Algorithm 1) and thus to allow the combinatorial oper-

ators (l = 2, 3) to add previously unvisited target loca-

tions within the same budget. Local optimization of the

waypoint is also performed during the local search One

Point Move and One Point Exchange operators, when

a new unvisited target location is added to the path.

The improvement ratio αimp defines the minimal col-

lected reward Rimp = αimpRinit when the newly-added

target location is optimized for its waypoint samples.

Value Rinit denotes the sum of the rewards collected

by the initial greedy solution of the DOPN. This im-

mediate shrinking of the path allows more unvisited

target locations to be added within the same travel

budget, and at the same time, improvement ratio αimp
ensures that only waypoints of promising paths are im-

proved. Ratio αimp thus represents a tradeoff between

exploration and exploitation. While low αimp attempts

waypoint improvement for all new target location ad-

ditions made by the local search, a high value of αimp
(up to the point where αimpRinit is equal to the cur-

rent maximal reward) tends to exploit (improve) only

the best found solution. Having high αimp can thus lead

to an even better solution being missed by not continu-

ously optimizing the waypoints of promising solutions.

On the other hand, optimizing the waypoints of low-

quality solutions is more computationally demanding,

mainly due to the large number of additional waypoint

samples that are never used in further solutions. The

influence of ratio αimp is shown in Section 5.1.

The internal representation of the DOPN solution

in the designed VNS-based method consists of the vec-

tor v = (sσ2 , . . . , sσk−1
, sσk+1

, . . . , sσn), where the first

k − 2 elements are the selected target locations of set

Sk, together with the starting sσ1
= s1 and ending

sσk
= sn target locations ordered according to Σk. The

rest of the vector elements are the unvisited target lo-

cations (sσk+1
, . . . , sσn

). Any solution of the DOPN is

describable only by v on existing waypoint samples, as

the appropriate waypoints Θk and Pk at the target lo-

cations are selected from the samples waypoint graph

in such a way that the path over Σk is minimal. Dur-

ing combinatorial optimization by the operators Path

Move, Path Exchange, One Point Move, and One Point

Exchange, the whole solution vector v is used, such that

the same operators can change the order of the visited

target locations, and new unvisited targets can also be

introduced to the solution path.

The proposed VNS-based method for the DOPN is

summarized in Algorithm 1. The method starts with

the getReachableLocations procedure, which filters out

all target locations unreachable within the budget to

reduce the number of target locations considered to be

visited by the travel budget Tmax. The reachable set

of target locations Sr then contains si ∈ Sr such that

Le(s1, si) + Le(si, s1) − 2δ ≤ Tmax. Note that the Eu-

clidean distance with subtracted neighborhood radius is

used as the lower bound on the required distance to the

target location. This can add some unreachable target

locations for Dubins vehicle; however, it does not re-

quire to determine the waypoint location and the head-

ing angle that visits the neighborhood of the target lo-

cation.

Using the set of reachable target locations Sr, the

initial solution is created by a method denoted as cre-

ateInitialPath. This method greedily adds target loca-

tions into the initial path between the starting location

and the ending location with respect to the additional

reward per length increase of the data collection path.

The initial solution then consists of all such added tar-

get locations that fit within the budget constraint Tmax.

Afterward, the VNS uses the neighborhood operators

in the shake and local search procedures, which are de-

scribed in detail in the following subsections, to improve

the incumbent solution P , either by increasing the sum

of the collected rewards or by shrinking the length of

the equally rewarded solution. The termination condi-

tion for the proposed method can be the number of per-
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Algorithm 1: VNS method for the DOPN

Input : S – Set of the target locations
Input : Tmax – Maximal allowed travel budget
Input : o – Initial number of position waypoints for

each target
Input : m – Initial number of heading values for

each waypoints
Input : αimp – Local waypoint improvement ratio
Input : lmax – Maximal neighborhood number
Output: P – Found data collecting path defined by

k, Sk, Σk, Θk, and Pk

1 Sr ← getReachableLocations(S, Tmax)
2 P ← createInitialPath(Sr,Tmax) // greedy

3 while Stopping condition is not met do
4 l← 1
5 while l ≤ lmax do
6 P ′ ← shake(P , l)
7 P ′′ ← localSearch(P ′, l, αimp)
8 if Ld(P ′′) ≤ Tmax and
9 [R(P ′′) > R(P ) or [R(P ′′) == R(P ) and

Ld(P ′′) < Ld(P )]] then
10 P ← P ′′

11 l← 1

12 else
13 l← l + 1

formed iterations, or the number of iterations without

any improvement, or the elapsed computational time,

or a targeted sum of collected rewards. For brevity, the

solution DOPN path (defined by k, Sk, Σk, Θk, and

Pk) is denoted P , and the sum of the rewards collected

by the vehicle traveling along path P is denoted R(P )

and its length is denoted as Ld(P ).

4.1 Combinatorial shake Operators

The combinatorial part of the shake procedure consists

of two operators, Path Move and Path Exchange.

Both operators are intended to randomly change the

currently best achieved incumbent solution to escape

from possible local optima. Changes are made to the

underlying sequence Σk and subset selection Sk by

random reordering of the solution vector v, which in-

ternally represents the DOPN solution. Corresponding

waypoints of the target locations for the reordered so-

lution are selected from the existing graph of waypoint

samples to minimize the overall length of the solution.

A DOPN solution is selected from the first k− 2 target

locations in vector v that fit within the budget con-

straint between the starting location and the ending

location.

Operator Path Move (l = 2), illustrated in Fig. 2a,

randomly selects a part of the existing solution and

moves it into a different randomly selected place within

the solution vector. The operator is implemented by

selecting three random indexes inside the solution

vector, e.g., i1 ∈ 〈2, n − 1〉, i2 ∈ 〈i1 + 1, n − 1〉,
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Fig. 2: Path Move and Path Exchange operators

with a random change of the initial incumbent solu-

tion of the DOPN (dashed black) into a shorter solu-

tion (green) by changing the sequence of target loca-

tions and selecting the optimal waypoint samples. The

combinatorial shake operators are shown with waypoint

sampling, which consists of o = 4 number of neighbor-

hood position samples and m = 4 heading samples of

Dubins vehicle in each position sample.

i3 < i1 or i3 > i2, and i1...3 6= k. The DOPN

solution vector v = (sσ2
, . . . , sσn

) of the initial in-

cumbent solution is then changed, e.g., for the case

of i3 > i2, into v = (sσ2
, . . . , sσi1−1

, sσi2+1
, . . . , sσi3

,

sσi1
, . . . , sσi2

, sσi3+1
, . . . , sσn

). Note that the operator

can change not only the used part of the solution, the

part until index k−1 that fits within Tmax between the

starting and ending locations, but it can also change the

order of the unused target locations. The same property

applies to all the other operators for combinatorial op-

timization.

The Path Exchange operator (l = 3) randomly se-

lects two non-overlapping parts of the existing solution

and switches their position inside the solution. Such a

random exchange can be realized by selecting four fea-

sible random indexes i1 ∈ 〈2, n−1〉, i2 ∈ 〈i1 + 1, n−1〉,
i3 ∈ 〈i2+1, n−1〉, and i4 ∈ 〈i3+1, n−1〉 with i1...4 6= k.

The initial solution v = (sσ2
, . . . , sσn

) is then modified

by the operator into v = (sσ2 , . . . , sσi1−1 , sσi3
, . . . , sσi4

,

sσi2+1
, . . . , sσi3−1

, sσi1
, . . . , sσi2

, sσi4+1
, . . . , sσn

). An ex-

ample of the operator is shown in Fig. 2b.

4.2 Combinatorial local search Operators

The local search operators for combinatorial optimiza-

tion of the DOPN are One Point Move and One

Point Exchange. The proposed method for the DOPN

is based on the Randomized Variable Neighborhood
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Search (RVNS), a variant of the VNS where the local

search procedure is randomized. In the ordinary VNS,

the local search uses a systematic local search in the

solution space; however, in the proposed RVNS-based

variant, the solution space is searched by numerous ran-

dom operations. In both combinatorial local search op-

erators, each random operator is tested for a number

of times equal to the square of the number of reachable

target locations. Every such random operation that in-

creases the quality of the solution, i.e., increases the

sum of the collected reward or decreases the path length

for the same reward, is applied, and the operators con-

tinue with testing other random changes. Using local

search randomized optimization, the solution created

in the shake procedure is deeply searched for local op-

tima in pursuit of a solution that improves the current

best incumbent solution. Both the One Point Move op-

erator and the One Point Exchange operator use the

graph of the existing waypoint samples, and for any

testing sequence Σk, represented by solution vector v,

they select the waypoint samples that minimize the to-

tal path length.

For solutions with promising rewards (i.e., with the

sum of the rewards equal to or higher than Rimp =

αimpRinit, where Rinit is the reward of the initial

greedy solution created by createInitialPath), the op-

erators also perform local optimization of the waypoint

samples. When a new target location sσi
is added into

the existing solution with a reward equal to or higher

than Rimp, the currently selected waypoint heading

sample θσk
and the waypoint location sample inside the

target neighborhood pσi
are optimized by a hill climb-

ing method, similar to the method used in Waypoint

Improvement, introduced in Section 4.3 for decreasing

the length of the data collection path. Additionally, the

waypoint samples of the adjacent target locations (in

the current solution) are optimized, and if the path

length after adding the new target location meets the

budget constraint the solution is modified, and the op-

timized samples are inserted into the global graph of

the waypoint samples. In this manner, the local search

operators can fit more target locations within the same

budget Tmax, even with low initial sampling density de-

termined by o and m.

The One Point Move operator (l = 2) shown in

Fig. 3a randomly selects one target location within so-

lution vector v and moves it into a different randomly

chosen position inside v. By selecting two random in-

dexes i1 and i2, i1 6= i2, i1 6= k, i2 6= k, without loss

of generality i1 < i2, inside v = (sσ2
, . . . , sσn

) , the

solution of a single move operation is v = (sσ2
, . . . ,

sσi1−1 , sσi1+1 , . . . , sσi2−1 , sσi1
, sσi2

, . . . , sσn). If such a

move operation improves the quality of the solution,

s
1

 (start)

s
10

 (end)
s

2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

s
1

 (start)

s
10

 (end)
s

2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

S1 S6 S9 S2 S7 S4 S3 S10

(a) One Point Move
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(b) One Point Exchange

Fig. 3: Local search operators One Point Move and

One Point Exchange with waypoint sampling o = 4

and m = 4. The combinatorial optimization operators

randomly move one target location within the solution

in the case of One Point Move or randomly exchange

two target locations in the solution sequence by the One

Point Exchange operator.

the change is applied, and further random One Point

Move operations are tested.

The One Point Exchange operator (l = 3) illus-

trated in Fig. 3b is similar to the first l = 2 operator;

however, instead of moving one target location within

the solution v, the operator exchanges two randomly se-

lected target locations. The operator can be realized by

selecting two random indexes i1 and i2, i1 6= i2, i1 6= k,

i2 6= k, within the existing solution v = (sσ2
, . . . , sσn

)

and by exchanging the target location with the selected

indexes v = (sσ2 , . . . , sσi1−1 , sσi2
, sσi1+1 , . . . , sσi2−1 ,

sσi1
, sσi2+1

, . . . , sσn
). Like the One Point Move oper-

ator, the One Point Exchange operator tests numer-

ous such operations and applies those that improve the

quality of the solution.

4.3 Continuous Optimization Operators for the DOPN

This section presents two novel operators used for con-

tinuous optimization of the underlying DTRP to min-

imize the required path length for visiting a selected

sequence of target locations. Minimization of the path

length is motivated by the idea of fitting additional tar-

get locations that slightly violate the budget constraint

Tmax; however, the path length can fulfill Tmax after

optimizing the waypoint samples. Two proposed oper-

ators: Waypoint Shake inside the shake procedure,

and Waypoint Improvement in the local search, are

used within the proposed VNS algorithm as the first

Neighborhood operators l = 1.
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Fig. 4: Waypoint Shake and Waypoint Improve-

ment with o = 4 samples of waypoint locations and

m = 4 samples of heading angles at each waypoint lo-

cation. Waypoint Shake randomly changes the current

waypoint samples used in the incumbent solution. Way-

point Improvement optimizes the waypoint samples to

minimize the length of the solution.

The Waypoint Shake operator randomly changes

the waypoints currently used by the incumbent solution

within the interval 〈0, 2π) for the heading angle and

within the δ-radius circle for the waypoint location in-

side the target neighborhoods. Note that the waypoint

location on the δ-radius circle can also be described by

the angle within the interval 〈0, 2π), and it can there-

fore be changed and optimized in a similar way as the

heading angle. The operation corresponds to a random

change of vectors Θk and Pk that describe a solution

of the DTRP, and similarly to the other shake opera-

tors it is intended to get the solution from possible local

optima. Waypoint Shake is illustrated in Fig. 4a.

The Waypoint Improvement operator is a pro-

cedure which utilizes continuous local optimization of

both the waypoint locations and the corresponding

heading angles to improve the solution produced by

Waypoint Shake. This continuous optimization enables

solutions to be found closer to the optimum because the

configurations are no longer selected from a discrete set

of initial samples. This problem is formalized as the

DTRP, as introduced in Section 3.2.

Although the sequence of visits to the targets is

given, the DTRP remains challenging due to 2k + 2

continuous variables, where k is the number of cur-

rently selected targets to be visited. One variable de-

fines the location of the waypoint on the boundary of

the respective target neighborhood, and the other vari-

able defines the waypoint heading angle. The DTRP

is addressed by dividing the problem into smaller opti-

mization sub-problems, where each variable is treated

separately. The modification of a single variable influ-

ences not more than two adjacent Dubins maneuvers,

which makes the optimization very fast. However, the

variables are mutually affected, and the local optimiza-

tions of a single variable are therefore repeated several

times. This method has been adopted from the LIO

procedure (Váňa and Faigl 2015), originally designed

for the DTSPN.

5 Results

The proposed VNS-based solution to the DOPN has

been evaluated on benchmark datasets for the regular

OP from the literature, and has also been verified ex-

perimentally in a data collection scenario with a real

UAV. The computational results on the OP datasets

show that the proposed solution of the DOPN increases

the so far best achieved collected rewards (Pěnička

et al. 2017b) in numerous benchmark instances. The

proposed approach also outperforms the only other ex-

isting solution of the DOPN, which is based on the

Self-Organizing Map (SOM) (Faigl and Pěnička 2017).

Moreover, in comparison to the preliminary purely

sampling-based approach (Pěnička et al. 2017b), the

computational time is significantly decreased by the

continuous optimization and solutions with ≈ 90% of

the maximally collected rewards are found within sev-

eral seconds. The experimental verification with the

hexarotor UAV shows the benefit of using the neigh-

borhood distance δ in a data collection scenario with a

wide field of view camera.

5.1 Computational Results

The VNS-based DOPN method has been evaluated

on two existing benchmark1 groups for the ordinary

OP (Vansteenwegen 2018). The first group consists of

Set 3, created by Tsiligirides (1984) with up to 34

randomly placed target locations and with various in-

stances for different budget constraints Tmax. The sec-

ond group consists of two larger sets, Set 64, with

a diamond-shaped structured placement, and Set 66,

with a square-shaped structured placement, with up to

66 target locations proposed by Chao et al. (1996a).

Example solutions of the DOPN for all benchmark sets

used here are presented in Fig. 5, showing the benefits

of using a non-zero neighborhood radius for maximizing

the collected reward.

The computational times reported in this section

have been achieved using a single core of the Intel i7

1 Available online https://www.mech.kuleuven.be/en/

cib/op/#OP
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(a) Set 3, δ = 0, R = 510 (b) Set 3, δ = 0.5, R = 570

(c) Set 64, δ = 0, R = 894 (d) Set 64, δ = 0.5, R = 1116

(e) Set 66, δ = 0, R = 890 (f) Set 66, δ = 0.5, R = 1055

Fig. 5: Solutions of the DOPN for Set 3, Set 64, and

Set 66, using Tmax = 50, 55, and 60, respectively. All

solutions are shown for the turning radius ρ = 1.0 and

the neighborhood distance δ = 0 (i.e., a solution of

the DOP) on the left and δ = 0.5 on the right. The

indicated sum of the collected rewards R is shown to

increase in all three instances, in comparison with the

rewards of δ = 0, with the VNS-base solution of the

DOPN for δ = 0.5.

3.4GHz CPU and C++ implementation of the proposed

algorithm. The VNS is a stochastic method, and thus

each benchmark instance has been solved 10 times to

obtain meaningful statistical results. The initial way-

point sampling of the possible vehicle headings and the

waypoint locations are o = 8 and m = 8. For instances

with the zero neighborhood radius δ = 0, only o = 1

has been used, and for the zero turning radius of Du-

bins vehicle ρ = 0, the algorithm automatically uses

m = 1 samples for the heading angle at the target loca-

tions. The local waypoint improvement ratio αimp used

for defining the minimal collected reward in which the

local search combinatorial operators start the local op-

timization of the waypoints during the target location

addition has been set to αimp = 0.95. The termina-

tion criterion used in the computation of the presented

results is a combination of the maximum of 10 000 it-

erations together with the maximal number of 5 000

iterations without any improvement.

Table 1: Maximal Collected Rewards for Set 3

Tmax

δ=0 δ=0.5 δ=1

ρ=0 ρ=0.5 ρ=1 ρ=0 ρ=0.5 ρ=1 ρ=0 ρ=0.5 ρ=1

15 170 160 160 180 180 180 210 210 *200
20 200 190 180 250 240 230 300 290 *290
25 260 260 250 320 320 310 370 370 360
30 320 320 320 380 370 370 450 450 450
35 390 380 380 450 450 440 510 500 *490
40 430 430 *420 500 500 480 570 570 *550
45 470 460 *460 550 550 *540 600 600 *590
50 *520 520 *510 580 570 *570 630 630 *620
55 550 550 530 620 620 600 670 670 *660
60 580 580 560 650 650 630 710 710 *700
65 610 600 590 680 670 *660 750 740 *730
70 640 630 *620 720 710 *700 790 780 *760
75 670 660 *650 750 740 730 800 800 *790
80 710 690 680 790 780 *760 800 800 800
85 740 730 *710 800 800 *790 800 800 800
90 770 760 740 800 800 800 800 800 800
95 790 780 770 800 800 800 800 800 800

100 800 800 790 800 800 800 800 800 800
105 800 800 800 800 800 800 800 800 800
110 800 800 800 800 800 800 800 800 800

Table 2: Maximal Collected Rewards for Set 64

Tmax

δ=0 δ=0.5 δ=1

ρ=0 ρ=0.5 ρ=1 ρ=0 ρ=0.5 ρ=1 ρ=0 ρ=0.5 ρ=1

15 96 96 96 204 204 204 *312 312 *306
20 294 294 252 432 426 *384 576 570 *552
25 390 384 342 564 558 *510 744 738 *714
30 474 468 420 714 696 *630 *954 948 *936
35 576 570 516 894 852 *774 *1170 1146 *1128
40 714 696 624 1068 1026 *900 *1296 1272 *1242
45 816 792 708 1164 1134 *990 1344 1344 1326
50 900 882 *798 1248 1212 *1026 1344 1344 *1344
55 984 972 894 1320 1296 *1116 1344 1344 1344
60 1062 1044 954 1344 1344 1188 1344 1344 1344
65 1116 1098 1020 1344 1344 *1236 1344 1344 1344
70 1188 1170 1092 1344 1344 *1290 1344 1344 1344
75 1236 1218 1134 1344 1344 *1308 1344 1344 1344
80 1284 1266 *1176 1344 1344 *1344 1344 1344 1344

One of the most important factors that shows the

performance of the OP solver, or the DOPN solver in

our case, is the maximally achievable sum of the col-

lected rewards. The maximal rewards for various bud-

get constraints Tmax and for the neighborhood distance

δ ∈ {0, 0.5, 1.0} and turning radii ρ ∈ {0, 0.5, 1.0} are

shown in the tables. In particular, the results for Set 3,

Set 64, and Set 66 are presented in Table 1, Table 2,

and Table 3, respectively. Due to the computational

requirements for computing all the instances for vari-

ous δ and ρ, the results for Tables 1–3 have been ob-

tained with a grid of Xeon CPUs running at 2.2 GHz to

3.4 GHz. The solutions with an improved maximal col-

lected reward with respect to the previously best found
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Table 3: Maximal Collected Rewards for Set 66

Tmax

δ=0 δ=0.5 δ=1

ρ=0 ρ=0.5 ρ=1 ρ=0 ρ=0.5 ρ=1 ρ=0 ρ=0.5 ρ=1

5 10 10 0 20 15 0 35 25 0
10 40 40 40 70 70 55 105 100 90
15 120 100 *100 160 160 *160 *225 220 *205
20 *205 200 195 265 265 *260 *385 370 *360
25 280 280 275 400 380 *375 540 540 540
30 400 380 370 *500 495 *475 685 685 *655
35 *465 465 455 605 595 *590 870 845 835
40 575 570 *545 735 710 *680 985 965 *960
45 650 650 *645 840 815 *775 1135 1100 *1130
50 730 710 710 920 920 *865 1275 1240 *1235
55 825 825 820 *1050 1015 *950 1390 1370 *1380
60 915 895 890 1165 1120 *1055 1555 1500 *1485
65 980 950 955 1265 1205 *1155 1620 1605 *1590
70 1070 1050 1070 1360 1315 *1260 1680 1650 *1620
75 1140 1090 1120 1450 1410 *1325 1680 1680 *1680
80 1215 1185 1175 1535 1490 *1375 1680 1680 *1680
85 1270 1255 *1240 1605 1570 *1410 1680 1680 1680
90 1340 1310 1295 1635 1620 *1500 1680 1680 1680
95 1395 1390 1365 1680 1665 *1565 1680 1680 1680

100 1465 1445 1420 1680 1680 *1605 1680 1680 1680
105 1520 1505 *1480 1680 1680 *1670 1680 1680 1680
110 1550 1550 1535 1680 1680 *1680 1680 1680 1680
115 1595 1580 1565 1680 1680 *1680 1680 1680 1680
120 1625 1625 1610 1680 1680 1680 1680 1680 1680
125 1670 1655 1640 1680 1680 1680 1680 1680 1680
130 1680 1680 1670 1680 1680 1680 1680 1680 1680

solutions provided by the purely sampling VNS-based

solution of the DOPN (Pěnička et al. 2017a) without

continuous optimization are displayed in bold font. In

all cases, the maximal collected rewards are the same

as, or better than, the previously best found solutions.

The instances with significantly better rewards us-

ing significance level α = 0.05 are denoted by ‘*’ based

on a t-test comparison between the proposed method

and the purely sampling VNS-based solution. As is

shown in Tables 1–3, the maximal collected reward is

improved mainly for non-zero neighborhood distances δ

and turning radii ρ. This is caused by the fact that the

improvements are mainly due to the continuous opti-

mization, which is only effective when at least δ > 0 or

ρ > 0. Furthermore, the longer δ and ρ are, the greater

their influence on the path length (continuously opti-

mized in the proposed approach), and thus on the max-

imally achievable reward. Increasing the turning radius

enlarges the limited path length and thus decreases the

collected reward. Larger neighborhood radius, on the

other hand, can increase the collected reward due to

the distance savings. Both effects can be observed in

Tables 1–3 by comparing ρ = 0 and ρ = 1 for the

turning radius, and δ = 0 and δ = 1 for the neigh-

borhood radius. The results for ρ = 0.5 do not con-

tain any improvement, as this particular turning radius

has no previously known best found solutions (Pěnička

et al. 2017a). Furthermore, the maximal reward cannot

be improved for a large number of instances where the

created path visits all possible target locations. This is

mainly noticeable for δ > 0 and higher budgets Tmax,

where from a certain budget the maximally collected

reward does not increase. Significantly better results

(based on the t-test comparison) are in most cases in

the same instances where the maximal collected re-

ward is improved. However, for several maximal reward

improvements, the newly found maximal reward tends

to be an outlier, and the reward is not systematically

higher. On the other hand, several instances have signif-

icantly better rewards without improving the maximal

score. This is caused by the closeness of the average re-

ward of the proposed method to the known maximum,

together with a small standard deviation in comparison

with the purely sampling VNS-based solution. We refer

to an enlarged variants2 of Tables 1–3, which contain

the average rewards and the standard deviations of all

instances.

The continuous optimization of the waypoint sam-

ples is one of the main improvements of the proposed

DOPN algorithm in comparison to the previous algo-

rithm proposed in (Pěnička et al. 2017b). Waypoint op-

timization is used in two main parts of the proposed

VNS-based algorithm. The first part is used in the

combinatorial local search operators One Point Move

and One Point Exchange while testing an additional

target insertion into a solution with the minimal re-

ward of Rimp = αimpRinit. The waypoint samples of

the inserted and adjacent target locations are locally

optimized to shrink the length of the solution below

Tmax. The second waypoint optimization is through the

Waypoint Shake and Waypoint Improvement operators,

which randomly change the waypoint samples and opti-

mize the randomly changed waypoints to minimize the

length of the incumbent solution. Fig. 6 shows a com-

parison of the solution quality as the average sum and

as the maximal sum of the collected rewards over the

computational time. The solution obtained for ‘High

sampling DOPN’ uses o = 12 and m = 12 samples and

the ‘Low waypoint sampling’ solution uses o = 4 and

m = 4 samples. Both use only combinatorial optimiza-

tion with sampled waypoints, as proposed in (Pěnička

et al. 2017b). The reward improvement for the solutions

denoted as ‘Local optimization local search’ uses local

waypoint improvement during the combinatorial local

search operators, together with low initial waypoint

sampling. The solution denoted as ‘With Waypoint Im-

provement’ shows the reward improvement with way-

point optimization employed both in local waypoint

improvement during combinatorial local search and by

using the Waypoint Shake and Waypoint Improvement

operators. Low waypoint sampling o = 4 and m = 4 is

also used for the solution with both waypoint optimiza-

tions.

2 https://archive.org/download/vns-dopn/results.pdf
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Fig. 6: Comparison of the average sum and the max-

imal sum of the collected rewards over time for high

o = m = 12 and low o = m = 4 dense initial sampling

of the DOPN without and with waypoint optimization.

The solution denoted as ‘Local optimization in local

search’ uses waypoint optimization only in the combi-

natorial local search operators and the ‘With Waypoint

Improvement’ solution uses additionally the Waypoint

Shake and Waypoint Improvement operators. The algo-

rithm performance is shown for Set 64 with Tmax = 50,

ρ = 1.0 and δ = 0.5. The upper plot shows the reward

progress over one hour of maximal computational time,

while the lower plot shows a detail of the initial 180

seconds of computation.

The comparison shows that waypoint continuous

optimization increases the maximal achieved sum of the

collected rewards within the maximal one hour of com-

putational time, which was used in these tests as an ad-

ditional stopping criterion. The maximum sum of the

achieved reward is (similarly to the results in Table 1–3)

considered as one of the most important aspects of the

OP solver that shows the limiting extreme-most per-

formance of the proposed method. The initial solution

for low-density sampling together with waypoint opti-

mization (denoted as ‘With Waypoint Improvement’)

provides solutions with more than 90% of the best so-

lutions within a few seconds only. The initial solution

for a high sampling solution, however, takes approxi-

mately two minutes to compute, and in that time its

maximally achieved reward is outperformed by the ini-

tially low sampling solution with both waypoint opti-

mizations. The high sampling approach has a bigger

average reward than the proposed method shortly after

initialization (between time 125 s and 149 s) due to the

quality of the initial solution, which influences the aver-

age. However, the high sampling approach is limited by

static samples, which also limit the maximally achiev-

able reward during the computation and also result in a

lower average reward than that of the proposed method

after 167 s of calculation.

The local optimization in local search is highly influ-

enced by the selection of the improvement ratio αimp,

which determines how rewarded (compared to the re-

ward of initial solution) a solution has to be in order to

perform the local waypoint optimization of newly added

target locations. Fig. 7 shows a comparison of the se-

lected values of αimp with the average and maximal sum

of the collected rewards over the computational time.
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Fig. 7: Comparison of the average and maximal

sum of the collected rewards for improvement ratio

αimp ∈ {0.8, 0.9, 0.95, 1.0, 1.05, 1.1} over the computa-

tional time for Set 64, on the left, with Tmax = 55,

ρ = 0.5, δ = 0.5 and for Set 66, on the right, with

Tmax = 60, ρ = 0.5, δ = 0.5.

The comparison shows that higher αimp ∈
{1.05, 1.1} tends to optimize only the current incum-

bent solution which is demonstrated by the faster initial

growth of the average rewards. In the same time, how-

ever, the higher αimp prohibits continuously optimizing

enough promising solutions in order to find even bet-

ter than the currently best found solution, which is re-

flected in the fact that it cannot find the best known so-

lutions. On the other hand, the lower αimp ∈ {0.8, 0.9}
slows down the computation of local search operators

(by performing waypoint optimization on more non-

promising solutions), which results in both lower av-

erage rewards and lower maximal rewards. Maximal re-

wards are achieved by either αimp ∈ {0.95, 1.0} based

on the dataset instance being solved.

To the best of our knowledge, the only other ex-

isting algorithm for solving the DOPN is the SOM-

based approach for the so-called Close Enough Orien-

teering Problem, which is in fact the DOPN emphasiz-

ing the usage of circular neighborhoods. A comparison

of the proposed VNS-based and SOM-based algorithms

for various neighborhood radii is presented in Fig. 8

for 20 runs of VNS per instance, and for 80 runs in

the case of the SOM-based algorithm. The results show

that for all tested neighborhood distances, the proposed

method produces solutions with similar or significantly
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better results than the SOM-based algorithm (Faigl and

Pěnička 2017).
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Fig. 8: Comparison of the proposed VNS-based solution

and the SOM-based solution (Faigl and Pěnička 2017)

of DOPN for selected neighborhood distances. The col-

lected rewards are shown for Dubins vehicle with turn-

ing radius ρ = 0.5 for all Set 3, Set 64, and Set 66.

The performance of the proposed algorithm is sig-

nificantly influenced by the initial waypoint sampling

density defined by the number of Dubins vehicle head-

ing samples m at each of the o waypoint location sam-

ples. Waypoint sampling mainly influences the compu-

tational time and the maximally achievable sum of the

collected rewards. Using high sampling density such as

o = 12 and m = 12 requires much more computational

time in the local search One Point Move and One Point

Exchange operators for selecting the samples with the

shortest path for a given sequence of target locations.

However, with high sampling density, the quality of the

solution as the sum of the collected rewards is higher

than for low-density sampling. For the newly proposed

VNS-based solution of the DOPN with optimization of

the waypoint samples, it is possible to achieve the same

solution quality with low initial sampling through opti-

mization of the samples. The initial sampling therefore

mainly influences the evolution of the solution quality,

i.e., the maximal sum and the average sum of the col-

lected rewards, over the computational time, as shown

in Fig. 9.

The comparison of the initial waypoint sampling

shows that both for very low sampling o = m = 1

and for very high sampling o = m = 16, the av-

erage and maximal collected rewards are below other

medium sampling densities. The highest maximal and

average rewards are collected with waypoint sampling

o = m = 8, with similar results for o = m = 4. How-

ever, the computational time required for creating the

initial solution with o = m = 8 is approximately 17 s,

while for a lower sampling density o = m = 4, it is

within 1.5 s.

Fig. 9 also shows the computational requirements of

the proposed VNS-based solution for the DOPN, and

can be used for a comparison of the computational time
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Fig. 9: Comparison of different initial waypoint sam-

pling densities for Set 66 with Tmax = 60, ρ = 0.5, and

δ = 0.5. In the upper plot, the average and maximal

collected rewards are shown over one hour of the maxi-

mal computational time. The lower plot shows a detail

of the average and maximal rewards within the initial

360 seconds of computation.

for achieving a certain sum of collected rewards. The

SOM-based solution (Faigl and Pěnička 2017) requires,

for Set 66, Tmax = 60, δ = 0.5 and ρ = 0.5, an average

computational time of 33.8 s with the maximal achieved

rewards R = 955 and average R = 880. For the same

configuration of the problem, Fig. 9 shows that in 33.8 s

the average sum of the collected rewards is 970 for o =

m = 8, 985 for o = m = 4, and 997 for o = m = 2. The

maximal collected rewards at the same time are 1045

for o = m = 8, 1040 for o = m = 4, and 1050 for o =

m = 2. The proposed VNS-based solution outperforms

the state-of-the-art algorithm not only in the maximally

achievable sum of collected rewards but also regarding

the computational time required for achieving a certain

sum of collected rewards. This is very important for a

real deployment of the method, as it is demonstrated

in the following section.

5.2 Experimental Verification

The proposed method was experimentally verified in

a visual data collection scenario with a real hexarotor

UAV in an outdoor environment. Although the Ver-

tical Take-Off and Landing (VTOL) UAV does not

necessarily have to be modeled as Dubins vehicle, the

model is convenient for the VTOL UAV when travers-

ing a curvature-constrained path at a constant speed.

Constant speed flights of the VTOL can be beneficial

for visual data collection missions, where additional vi-

CHAPTER 4. DATA COLLECTION PLANNING FOR DISTANCE AND CURVATURE
CONSTRAINED UAV 36



16 Robert Pěnička et al.

sual information during flights between target location

neighborhoods can be further used, and constant speed

improves the quality of the images that are taken. From

the selected constant speed vc and the maximal accel-

eration amax of the UAV, the minimal turning radius

of Dubins vehicle can be computed using the equation

of circular motion with constant speed ρ = v2c/amax.

Note that for the VTOL (not so much for the fixed-wing

UAV), the solution quality can be improved by allowing

acceleration to the maximal speed during straight line

segments of Dubins maneuvers. This, however, is only

a technical consideration, which does not require any

change to the proposed algorithm. Considering these

accelerated Dubins maneuvers would only require the

time of flight cost instead of length cost, and would

change the length-budget constraint to a time-budget

constraint. We therefore consider for experimental ver-

ification the DOPN as defined in Problem 3 with stan-

dard Dubins maneuvers for VTOL, which also provides

a better comparison of the results. We refer to Pěnička

et al. (2017a) for a comparison of an experimental de-

ployment of the DOP and the ordinary OP with a

straight line trajectory and sharp turns. The advan-

tage of using Dubins vehicle model for fast and reliable

visits to multiple locations to be scanned by the on-

board camera was also demonstrated by our team in

the third challenge of the Mohamed Bin Zayed Inter-

national Robotics Challenge (MBZIRC) competition,

which also motivated the research presented here. The

effectiveness of fast flying using Dubins vehicle model

(e.g., demonstrated in the MBZIRC challenge in the so-

lution of the DTSP) resulted in the best performance

among all 143 competing teams.

The used hexarotor UAV was designed for the

MBZIRC competition3 and was built on the DJI hex-

acopter F550 frame with E310 DJI motors and with

the PixHawk Autopilot low-level flight controller (Meier

et al. 2012). The low-level localization of the Pix-

Hawk Autopilot is realized as a combination of the

standard GPS with a compass and with the ac-

celerometers and gyroscopes at the lowest level. To

increase the localization precision, the system uses

PRECIS-BX305 (Tersus-GNSS 2018) RTK GPS with

centimeter accuracy and also the TeraRanger One laser

rangefinder for measuring the distance from the ground.

The onboard Intel NUC-i7 mini PC provides enough re-

sources for calculating the plan for the addressed data

collection scenario formulated as the DOPN. In addi-

tion, the onboard computer realizes the Model Predic-

tive Control (MPC) trajectory controller (Báča et al.

2016) for trajectory tracking, UAV localization estima-

3 See http://mrs.felk.cvut.cz/mbzirc for examples of
the experimental deployment of the system.

tion, and sensor fusion. For a visual information gather-

ing task, a high-resolution wide field of view Mobius Ac-

tionCam camera was used. The hardware components

are summarized in Fig. 10.

Fig. 10: Hardware components of the hexarotor UAV for

experimental verification of the data collection scenario

formulated as the Dubins Orienteering Problem with

Neighborhoods.

The results from the experimental verification of the

proposed DOPN method in a realistic data collection

scenario using the onboard camera are shown in Fig. 11.

During the experiment, constant vehicle speed vc =

4 ms-1 was used together with maximal acceleration

amax = 2.6 ms-2, which resulted in ρ = 6.15 m turning

radius of Dubins vehicle. The scenario for the exper-

imental verification consists of 19 target locations, in-

cluding the starting and ending locations, with the bud-

get constraint set to Tmax = 150 m. The planned trajec-

tories for the various neighborhood radii δ = {0, 3, 6} m

together with the real flown trajectories of the UAV are

depicted in Fig. 11.

The real trajectories deviate slightly from the

planned trajectory due to the strong wind conditions

and the tightly set maximal acceleration of the vehicle.

However, the presented camera images show the tar-

get markers placed throughout the experimental area,

which were taken at the respective waypoints of the

targets, and thus the mission was successfully fulfilled.

The sum of the collected rewards for the increas-

ing neighborhood radii shows the main benefits of us-

ing the VNS-based solver for the DOPN with non-zero

turning radii, where the collected reward increases with

each incrementation of the neighborhood distance. The

onboard camera images in Fig. 11 show that the high

neighborhood radius of 6 m, with a high collected re-

ward, is usable for a visual data collection scenario of

this kind. The complete set of radii used during the ex-

perimental verification, together with the correspond-

ing sum of the collected rewards and the path lengths,

is shown in Table 4.
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δ = 6 m δ = 3 m δ = 0 m

Fig. 11: Snapshots from the experimental verification of the proposed VNS-based algorithm for the DOPN in a

data collection scenario with various neighborhood distances δ. We refer to https://youtu.be/zPXZahW33-w for

supporting video material from the experimental verification of the method.

Table 4: Collected reward and path length from the real

experiment for various neighborhood radius δ

δ [m] 0 1 2 3 4 5 6 7

Reward R 65 67 71 77 79 85 87 88
Length [m] 148.0 143.3 146.9 148.0 148.6 147.9 139.0 143.7

6 CONCLUSIONS

In this paper, we introduce a novel approach for

curvature-constrained data collection planning with

UAVs that is formulated as the Dubins Orienteering

Problem with Neighborhoods (DOPN). The DOPN sets

out to find a path for Dubins vehicle that maximizes

the sum of the collected rewards by visiting a subset

of the given target locations with prescribed starting

and ending locations and a constrained travel budget.

The DOPN uses a predefined circular neighborhood at

each target location, motivated by remote data collec-

tion from the target locations to save the required travel

cost, and thus to increase the sum of the collected re-

wards within the same budget constraint.

The proposed Variable Neighborhood Search-based

method uses a set of neighborhood operators that per-

form a combinatorial optimization to maximize the sum

of the collected rewards by selecting a subset of tar-

get locations to be visited, and also by determining the

sequence of the visits. The proposed method employs

initial low-density waypoint sampling consisting of sam-

pling both Dubins vehicle headings and waypoint loca-

tions within the neighborhood of each target location,

to quickly determine an initial data collection path by a

greedy maximization of reward per tour prolongation.

The continuous optimization employed in the proposed

VNS neighborhood operators is used for the optimiz-

ing the initial waypoint samples to minimize the length

of the Dubins path visiting the neighborhoods of the

selected target locations. The proposed waypoint opti-

mization increases the sum of the collected rewards by

adding unvisited target locations within the prescribed

budget constraint.

The computational results show that the proposed

VNS-based algorithm is a viable method for solving the

DOPN. The continuous optimization employed in the

novel approach significantly improves the required com-

putational time, and also improves the best-known solu-

tions in several benchmark instances. The method also

outperforms the only other existing SOM-based DOPN

approach in both solution quality and computational

time. Finally, the experimental verification of the pro-
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posed method with a real hexarotor UAV demonstrates

the deployment of the proposed solution of the DOPN

in a data collection scenario with an onboard camera.

The solutions found for the experimental deployment

also show the benefits of using a non-zero neighborhood

distance on the sum of the collected rewards.

For our future work, we intend to extend the pro-

posed approach to a variant of multi-UAV data collec-

tion scenarios and to employ more complex maneuvers,

such as cubic splines, which are suitable for the non-

constant forward velocity of the VTOL UAV, e.g., as

in Faigl and Váňa (2018) for solving TSP-like scenar-

ios.
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Chapter 5

Variable Neighborhood Search for the Set Orienteer-

ing Problem and its application to other Orienteering

Problem variants

The third core publication of this thesis is the manuscript [3c] published in the European
Journal of Operational Research concerning the Set Orienteering Problem (SOP).

[3c] R. Pěnička, J. Faigl, and M. Saska, “Variable neighborhood search for the set
orienteering problem and its application to other orienteering problem variants,”
European Journal of Operational Research, vol. 276, no. 3, pp. 816 –825, 2019

The paper introduces the VNS-based method for the SOP [26]. The SOP is a recently
proposed generalization of the OP where the target locations (also denoted as customers or
nodes) are grouped in clusters, and the profit associated with each cluster is collected by
visiting at least one node in the cluster. The objective of the SOP is to maximize the collected
reward clusters for a limited budget path, together with the determination of individual nodes
to be visited within the clusters.

For the data collection planning for aerial vehicles, the SOP can be seen as a discrete
generalization of all the studied variants of the OP. In the sampling-based approaches to the
(D)OP(N), the sampled heading angles or the neighborhood positions of a single target are
the nodes of one cluster. For the SOP, the selection of a single heading and neighborhood
position sample in (D)OP(N) is sufficient to collect the reward from the target (cluster).

In the paper, we introduce a novel ILP formulation for the SOP to find the optimal
solution for small and medium-sized problems. Besides, the proposed VNS-based method
for the SOP is a generalized variant of the algorithm for DOP [1c] and DOPN [2c]. We
employ similar shaking and local search procedures; however, we further extend the local
search procedure by two main aspects. The procedure uses a dynamic programming technique
to store the shortest paths from the starting and ending clusters to each vertex in the current
solution. Furthermore, a fast-to-find lower bound solution (in length) is used to filter out
over-budget solutions. Therefore, the one cluster modifications of the current solution done in
the local search procedure can be evaluated faster.

The computational results of the introduced ILP formulation show significantly better
computational times in the CPLEX solver than the existing formulation [26]. The VNS-
SOP method also performs faster than the existing matheuristic based on tabu search for
the SOP [26]. Furthermore, the VNS-SOP is able to improve solutions of several large SOP
instances over the best-known solutions. Finally, we show the application of the SOP on
sampling-based DOP and OPN. For most instances both the DOP and OPN are, for a given
sampling, solved optimally using the introduced ILP formulation in the CPLEX. The proposed
VNS-SOP is shown to produce optimal solutions of the DOP and OPN when compared with
the ILP solutions.

The author of this thesis contributed 70 % on this core publication. The co-authors
contributed by giving valuable feedback about the method and the manuscript.
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Abstract

This paper addresses the recently proposed generalization of the Orienteering Problem (OP), referred to
as the Set Orienteering Problem (SOP). The OP stands to find a tour over a subset of customers, each with an
associated profit, such that the profit collected from the visited customers is maximized and the tour length is
within the given limited budget. In the SOP, the customers are grouped in clusters, and the profit associated
with each cluster is collected by visiting at least one of the customers in the respective cluster. Similarly to
the OP, the SOP limits the tour cost by a given budget constraint, and therefore, only a subset of clusters
can usually be served. We propose to employ the Variable Neighborhood Search (VNS) metaheuristic for
solving the SOP. In addition, a novel Integer Linear Programming (ILP) formulation of the SOP is proposed
to find the optimal solution for small and medium-sized problems. Furthermore, we show other OP variants
that can be addressed as the SOP, i.e., the Orienteering Problem with Neighborhoods (OPN) and the Dubins
Orienteering Problem (DOP). While the OPN extends the OP by collecting a profit within the neighborhood
radius of each customer, the DOP uses airplane-like smooth trajectories to connect individual customers. The
presented computational results indicate the feasibility of the proposed VNS algorithm and ILP formulation,
by improving the solutions of several existing SOP benchmark instances and requiring significantly lower
computational time than the existing approaches.

Keywords: Routing, Orienteering Problem, Variable Neighborhood Search

1. INTRODUCTION

The Set Orienteering Problem (SOP) belongs to
a large class of routing problems with profits, where
the objective is to find a tour that maximizes the col-
lected profit for a given budget, or minimizes the tour
length while ensuring at least a predefined profit, or
the objective function combines profit maximization
with tour length minimization (Feillet et al., 2005).

One of the well-studied routing problems with
profits is the Orienteering Problem (OP), which was
introduced into operational research by Tsiligirides
(1984). The OP stands to find a tour with a lim-
ited length that maximizes the profit collected from
a visited subset of the given nodes using predefined
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starting and ending depot locations. The OP thus
combines two well-known combinatorial optimization
problems, the Knapsack Problem (KP) and the Trav-
eling Salesman Problem (TSP). While the Knapsack
part of the problem addresses the maximization of the
collected profit by selecting the subset of customers
to be visited within the budget, the TSP part finds
the sequence to visit selected customers and minimize
the tour length in order to fit it within the budget.

The OP has multiple variants and generalizations,
as it is shown in surveys by Vansteenwegen et al.
(2011) and Gunawan et al. (2016). Among others, the
recently introduced SOP proposed by Archetti et al.
(2018) is a generalization of the OP where the cus-
tomers are grouped in clusters. The profit is associ-
ated with the individual clusters, and it is collected by
visiting at least one customer in the respective clus-
ter. The SOP has been introduced together with a
Mixed-Integer Programming (MIP) formulation and
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a matheuristic solution algorithm.
Like the OP, the SOP is a combination of the

Knapsack problem and the Generalized Traveling Sales-
man Problem (GTSP), studied in Laporte & Nobert
(1983). In the GTSP, the customers are grouped in
clusters as in the SOP, and the objective is to mini-
mize the tour length for visiting at least one customer
in each cluster. Therefore, the GTSP is an extension
of the TSP in the same way as the SOP extends the
OP.

The profit collection from clusters in the OP has
been previously addressed by the Clustered Orien-
teering Problem (COP) in Angelelli et al. (2014).
However, in the COP, all customers within the re-
spective cluster have to be visited to collect the profit.
The problem is solved by means of branch-and-cut
and tabu search algorithms.

The Correlated Orienteering Problem (CorOP) by
Yu et al. (2016) is also related to the SOP. In the
CorOP, the profit collected from customers contains
a part of the profit of neighboring customers based
on the mutual spatial correlation between the vis-
ited customers and the neighboring customers. The
CorOP thus creates spatially correlated clusters of
the customers, where the profit consists of the indi-
vidual visited customers together with the distance-
weighted profit of the neighboring customers. There-
fore, the CorOP can be seen as a hybrid combination
of the COP and the SOP, as the profit gained from
visiting individual customers consists of the portion of
the otherwise unvisited neighboring customer’s profit.
However, the profit can be increased by visiting more
customers within the cluster. The therein presented
the exact solution of the CorOP is based on the Mixed-
Integer Quadratic Programming Yu et al. (2016).

The applications of the SOP, originally introduced
by Archetti et al. (2018), are in mass distribution,
where the carrier chooses to serve only one customer
within a cluster of customers that are afterward served
by internal distribution within the cluster. However,
applications of the SOP far exceed the application
originally outlined. In fact, the SOP can be used for
any applications of the GTSP, discussed in Laporte
et al. (1996), where the salesman has a limited bud-
get, and cluster profits can be used for prioritization.
The travel guide problem is an example of such an
application, where the guide aims to maximize the
profit from visiting attractions in a limited time, but
only one attraction of each kind (cluster) would bring
the profit.

Similarly, the SOP can be used for a generaliza-
tion of the traveling salesman with profit-rated cus-
tomers and a limited budget, where multiple modes
of transport are allowed, but with constrained trans-
port changes. Each cluster then consists of multi-
ple departure modes of transport from the individual
customer, and the objective is to maximize the profit
while using the most suitable transport option to fit
within the time budget.

The SOP can also be applied to several other
variants of the OP. The Orienteering Problem with
Neighborhoods (OPN) is a generalization of the OP,
introduced in Faigl et al. (2016), where the profit from
each customer can be collected anywhere within the
circular neighborhood of the customer location. The
OPN can be addressed, like the SOP, by creating clus-
ters of position samples on a circle around the orig-
inal customer’s locations (see Section 4.1). An ap-
plication example of the OPN is in sensory network
information retrieval, where standalone sensor units
displaced throughout the environment can wirelessly
communicate within a close distance radius, as dis-
cussed in Li et al. (2009). To maximize the profit
from information collected within a given time, the
data collecting vehicle can save travel costs by re-
trieving the measured information without visiting
the precise position of the sensors.

The Dubins Orienteering Problem (DOP), pro-
posed in Pěnička et al. (2017a), can be used for plan-
ning package delivery by dropping from an airplane.
The DOP addresses the generalization of the OP for
the Dubins vehicle model, introduced by Dubins (1957),
where the modeled airplane cannot feasibly travel the
tour created by the Euclidean OP with sharp turns
between the target locations. The Dubins vehicle has
to travel between the locations using a curvature-
constrained path with a minimum turning radius. By
sampling the heading angle of the Dubins vehicle at
the target locations, the DOP can be addressed as
the SOP presented here (see Section 4.1).

The contributions of this paper are as follows. We
introduce a novel ILP formulation of the SOP to find
the optimal solution of small to medium-sized prob-
lems within less computational time than the existing
MIP formulation. The definition of the SOP extends
the existing definition by allowing different starting
and ending depot clusters, both of which can have
multiple nodes. We propose an algorithm for the SOP
based on the Variable Neighborhood Search (VNS)
metaheuristic, and we show that its computational
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times are about one order of magnitude shorter for
small and medium-sized problems than the existing
tabu search solution. The best-known solutions of
several benchmark instances are improved by the pro-
posed VNS algorithm for the SOP further denoted
as VNS-SOP. Furthermore, we employed the studied
SOP in a solution of other OP variants, such as the
DOP and the OPN, both newly addressed as the sam-
pling based SOP that is solved optimally. For reuse
by the community and to accelerate research on SOP-
related problems, both the ILP-based and VNS-SOP
algorithms for the SOP are published as open-source
software, together with benchmark datasets for com-
parison.

The remainder of this paper is organized as fol-
lows. The description and the formulation of the
problem are presented in the next section. The VNS-
SOP algorithm is introduced in Section 3. The com-
putational results are presented in Section 4, and final
conclusions are outlined in Section 5.

2. Problem description and formulation

The Set Orienteering Problem is a generalization
of the OP where customers are grouped in clusters,
and the objective is to find a tour with a predefined
starting cluster and ending cluster, a restricted bud-
get, and such that the tour maximizes the profit col-
lected from the visited clusters. A cluster is visited
when at least one customer belonging to the cluster
has been visited. The herein presented SOP formula-
tion builds upon the existing formulation by Archetti
et al. (2018) that is extended by considering possibly
two different starting and ending clusters, both with
the possibility of having multiple nodes instead of a
single depot cluster with one node, as in the original
formulation.

The SOP can be defined on a directed graph G =
(V,A) with a set of vertices V = {v0, . . . , vm} and
a set of arcs A = {aij}. For each pair of vertices
vi, vj , there exists an arc aij with cost cij . The ver-
tices are clustered into disjoint sets s0, . . . , sn, with
S = {s0, . . . , sn}, si ∩ sj = ∅ for i 6= j, 0 ≤ i, j ≤ n,
and each vertex vi=0,...,m is associated with exactly
one set in S. All sets si=0,...,n have the associated
profit pi=0,...,n for visiting at least one vertex within
the set. The starting set s0 and the ending set sn
are for simplicity the first and the last sets, respec-
tively, both associated with zero profit (p0 = pn = 0).
The objective is to find a tour that maximizes the

collected profit P such that its cost does not exceed
the given budget Tmax. Assuming that the triangle
inequality holds for the arc costs, an optimal tour
always includes one vertex per visited cluster (see
Archetti et al. (2018)).

For instances with a common depot, as in the
original SOP formulation Archetti et al. (2018), an
additional copy of such a depot can be used as the
ending set. Furthermore, the proposed formulation
allows multiple vertices in both starting set (|s0| ≥ 1)
and ending set (|sn| ≥ 1).

Any solution of the SOP can be described by a
permutation Σk of set indexes, according to which
the tour visits the individual sets Σk = (σ1, . . . , σk)
with 0 ≤ σi ≤ n, σi 6= σj for i 6= j and σ1 = 0, σk = n.
Beside determining the permutation of the sets, the
SOP also requires the vertices in the respective visited
clusters to be found. The vertices are represented by
their respective indexes Πk = (π1, . . . , πk), 0 ≤ πi ≤
m and vπi ∈ sσi for i ∈ (1, . . . , k). Using the above
notation, the SOP can be defined as follows:

maximize
Σk,Πk,k

P =

k∑

i=1

pσi

s.t.

k∑

i=2

cπi−1,πi ≤ Tmax ,

vπi ∈ sσi ∀i = 1, . . . , k ,

σ1 = 0 , σk = n .

(1)

The SOP can also be formulated as an Integer Lin-
ear Program. Unlike the MIP proposed by Archetti
et al. (2018) for the SOP, the proposed formulation
does not contain the binary variables of the vertices,
and requires only two variable types. Furthermore,
the proposed model uses subtour elimination con-
straints (SECs) like the COP formulation (see An-
gelelli et al. (2014)), instead of the connectivity cuts
of the previous MIP formulation.

The decision variables used in the proposed ILP
are:

• yi: binary variable equal to 1 if at least one
customer is visited in the set si and 0 otherwise;

• xij : binary variable equal to 1 if arc aij is tra-
versed and 0 otherwise.
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The proposed ILP formulation of the SOP is:

maximize
∑

si∈S

piyi, (2)

s.t.
∑

aij∈A

cijxij ≤ Tmax, (3)

∑

vi∈V \{sq}
xij =

∑

vi∈V \{sq}
xji ∀sq ∈ S \ {s0, sn} , ∀vj ∈ sq,

(4)
∑

vi∈V \{sq}

∑

vj∈sq

xij = yq ∀sq ∈ S \ {s0}, (5)

∑

vi∈V \{sq}

∑

vj∈sq

xji = yq ∀sq ∈ S \ {sn}, (6)

∑

vi∈U

∑

vj∈U

xij ≤
∑

sq∈U\{st}
yq ∀U ⊂ S \ {s0, sn}, ∀st ∈ U ,

(7)

y0 = 1, yn = 1, (8)

yq ∈ {0, 1}, sq ∈ S, xij ∈ {0, 1}, aij ∈ A. (9)

The objective function (2) calls for the maximiza-
tion of the collected profit. The budget constraint (3)
limits the total length of the arcs that are used. Con-
straints (4) ensure that each vertex, except for those
in the starting and ending clusters, has the same num-
ber of entering and leaving arcs. Each visited cluster,
except for the starting cluster, must have an entering
arc. This is ensured by constraints (5). Similarly,
constraints (6) ensure that one leaving arc must be
selected for all visited clusters different from sn. Con-
straints (7) are the SECs. Constraints (8) ensure that
both the starting cluster and the ending cluster are
visited. Finally, constraints (9) define the domains of
the variables.

Both (1) and (2)-(9) aim at finding a permutation
of a subset of the clusters and the vertices to visit in-
side the selected clusters at the same time. However,
for the VNS-SOP algorithm, the problem can be par-
tially separated into: (i) selection of the clusters to
visit; (ii) determination of the order of visits to the
selected clusters; and (iii) selection of the vertices to
visit in the chosen clusters. For a given permutation
of clusters Σk, the solution of (i) and (ii), the sub-
problem (iii) of selecting individual vertices Πk within
clusters can be addressed as finding the shortest path
in a graph of the visited clusters, see Fig. 1a.

3. Variable neighborhood search algorithm for
the SOP

The designed heuristic solution of the Set Orien-
teering Problem is based on the Variable Neighbor-
hood Search metaheuristic proposed by Mladenović
& Hansen (1997) for combinatorial optimization. The
metaheuristic uses a greedy initial solution that min-
imizes the distance per additional profit gained by
visiting a new, previously not visited cluster. After-
ward, the VNS tries to improve the currently best in-
cumbent solution by a set of predefined neighborhood
operators. The VNS metaheuristic was introduced
for the OP by Sevkli & Sevilgen (2006), and similar
neighborhood operators have been further used for
initial solutions of the DOP in Pěnička et al. (2017a)
and the OPN in Pěnička et al. (2017b).

In both the SOP initialization procedure and the
VNS-SOP algorithm itself, the solution of the SOP
is represented only by a sequence of clusters Σk. For
a given sequence Σk with k clusters, the resulting
path can be found using a shortest path search in a
search graph that is visualized in Fig. 1a as a path
connecting the starting cluster sσ1 = s0 with the end-
ing cluster sσk = sn. The graph contains only the
arcs between adjacent clusters of Σk, and therefore,
the shortest path contains exactly one vertex in each
cluster of Σk and defines the vertices used for a given
sequence. The shortest path is found by a dynamic
programming breadth-first search storing the short-
est path from the starting cluster sσ1 to all vertices in
sσl iteratively for l = 2, . . . , k by using already-stored
shortest paths to vertices in the preceding cluster and
the corresponding arcs connecting adjacent clusters.
The shortest path over Σk is then defined as the short-
est path found among the vertices of ending cluster
sσk . The proposed algorithm therefore operates with
the sequence of clusters and internally calculates the
vertices Πk within the visited clusters such that the
overall path length is minimized.

The proposed VNS algorithm for the SOP, includ-
ing the greedy initialization, consists largely of simple
cluster sequence modifications, where a single cluster
is added, moved or removed from an existing cluster
sequence Σk. In the case of the cluster addition, the
evaluation of the resulting path length requires only
to calculate the connection from the previous to the
following cluster in the sequence. However, the short-
est path from the starting cluster to each vertex in
the preceding cluster and also the shortest path from
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(a) Σk with vertices {w1
σl , . . . , w

hσl
σl } ∈

sσl , ∀l ∈ (1, . . . , k).

(b) Example of the cluster addition lower
bound.

Figure 1: Graph of cluster sequence Σk in (a) and the cluster addition lower bound in (b).

each vertex in the subsequent cluster to the ending
cluster has to be known. Therefore, we propose to
employ dynamic programming technique to store the
shortest paths for each vertex (in the current cluster
sequence Σk) from the starting and ending clusters
to quickly evaluate the simple modifications without
searching the shortest path in the whole graph.

The proposed VNS algorithm is further time op-
timized by using fast denial of the simple sequence
modifications that produce solutions with over-budget
length. For a typical SOP near-optimal solution, the
total path length is close to the budget limit Tmax,
and almost all modifications, such as cluster addition
or movement, produce an over-budget solution. To
quickly determine such cases, the lower bound dis-
tance between each cluster pair, i.e., the minimal-
length arc between the cluster pair, is found and
stored before the initial solution of the SOP is cre-
ated. Then, e.g., for adding the cluster s3 between
the clusters s5 and s4, as shown in Fig. 1b, the lower
bound is first tested to be within the budget while
using the minimal-length arcs from s5 to s3 and from
s3 to s4. The lower bound path further consists of the
shortest paths to cluster s5 from the starting cluster
and the shortest path to the ending cluster from s4,
both found as the shortest distance stored by the dy-
namic programming technique for an incumbent so-
lution among the vertices in s5 and s4, respectively.
The proposed lower bound can be unfeasible, as it
might use different vertices in the cluster being added,
the previous and following clusters. However, the fea-
sible solution cannot be shorter, and finding the lower
bound is of low complexity, e.g., O(|s5|+ |s4|). Thus,
simple cluster operations can be found to produce
over-budget solutions without searching the vertices
to be used in the previous s5, the newly added s3,

and the following cluster s4 in the cluster sequence
of the feasible solution with the complexity of, e.g.,
O(|s5||s3|+ |s3||s4|).

Since both the proposed ILP-based and VNS-SOP
solution algorithms for the SOP employ the greedy
construction of the initial solution, the procedure is
described first, followed by the introduction of the
VNS metaheuristic for the SOP.

3.1. Initial solution construction procedure

The proposed construction procedure of the ini-
tial solution uses a greedy approach that minimizes
the additional length of the path per additional profit.
The initially empty sequence of clusters Σ2 contains
only the predefined starting and ending clusters, and
the path uses the shortest arc between these depot
clusters. Then, in each step of the construction pro-
cedure, a non-visited cluster s∗i and a position j∗ for
1 < j∗ < k within the current sequence Σk is found,
using the rule

s∗i , j
∗ = argmin

i 6∈Σk,i∈Σk+1,1<j<k+1,σj=i

L(Σk+1)− L(Σk)

pi
.

(10)
The selection rule (10) uses the difference of the

lengths L(Σk) and L(Σk+1) of the shortest paths over
the cluster sequences Σk and Σk+1, respectively. This
requires an evaluation of multiple simple addition op-
erations, and therefore, the cluster distance lower bounds
and the dynamic programming technique with stor-
ing of the shortest distance to the terminating clus-
ters are used. The initialization procedure terminates
as soon as the budget limit does not allow any other
non-visited cluster to be added.

5

CHAPTER 5. VNS FOR THE SET ORIENTEERING PROBLEM AND ITS
APPLICATION TO OTHER OP VARIANTS 46



This is the author’s accepted version of an article that has been published in European Journal of Operational Research.
The final version of paper is available at https://doi.org/10.1016/j.ejor.2019.01.047

3.2. Variable Neighborhood Search algorithm

The Variable Neighborhood Search algorithm con-
sists of two main procedures, the shake procedure
and the local search procedure, which iteratively try
to improve the best found incumbent solution. The
shake procedure uses random changes of the incum-
bent solution to get away from a possible local max-
imum. The local search procedure then extensively
searches around the randomly created solution to find
a possibly better solution than the actual incumbent.
The VNS thus optimizes the incumbent solution us-
ing a combination of the shake and local search proce-
dures with the predefined operators in variably large
solution space neighborhoods.

In order to uniquely represent any solution of the
SOP inside the VNS, the solution is represented by a
vector u = (sσ2 , . . . , sσk−1

, sσk+1
, . . . , sσn) of all clus-

ters, including the not visited clusters, with the ex-
ception of the depot clusters sσ1 and sσk . Only the
first k− 2 clusters (sσ2 , . . . , sσk−1

) are feasibly visited
between the starting cluster sσ1 = s0 and the ending
cluster sσk = sn within the Tmax budget limit form-
ing the solution sequence Σk. The individual visited
vertices Πk in the respective visited clusters Σk are
always calculated using the breadth-first search for
the shortest path over Σk in the graph Fig. 1a. The
number of visited clusters in the solution vector u is
maximized, i.e., we select the largest k possible for
the given u and Tmax such that the ending cluster
sσk = sn is reached within the budget.

VNS-SOP algorithm is summarized in Alg. 1. It
starts with the construction of the initial solution and
then tries to improve the solution until the stopping
criteria are met. A combination of the maximal com-
putational time together with the limited number of
iterations and the number of iterations without im-
provement is used as the stopping rule. In each it-
eration, the shake procedure is applied, followed by
the local search procedure varying the neighborhood
operators based on the variable l (with 1 ≤ l ≤
lmax = 2). When the profit P (u′′) of the solution
u′′ found by the local search exceeds the profit of
the incumbent solution P (u), and its length L(u′′) is
within the budget, the incumbent solution is changed
to the newly-found solution. The algorithm applies
all neighborhood operators during a single iteration
and thus increases the size of the examined solution
space neighborhood.

Algorithm 1: Variable Neighborhood
Search for the SOP
Input : S - customer sets, Tmax - maximal allowed

budget
Output: u - solution path

1 u← createInitialSolution(S,Tmax)
2 while stopping conditions not met do
3 l← 1
4 while l ≤ lmax do
5 u′ ← shake(u, l)
6 u′′ ← local search(u′, l)
7 if L(u′′) ≤ Tmax and P (u′′) > P (u) then
8 u← u′′

9 l← 1

10 else
11 l← l + 1

Shake procedure

The shake procedure of the employed VNS ran-
domly changes the actual incumbent solution to get
away from the possible local maximum. It consists of
two random operators that modify the solution vec-
tor u. By changing u, the operators can change the
order of traversing the clusters defining Σk and can
also add some previously not visited clusters σi, i > k
to Σk. The Path move operator and the Path ex-
change operator move or exchange large parts of the
solution vector u, and thus create a new solution u′

away from the original incumbent. A detail descrip-
tion of the operators follows, and an example of the
operators is shown in Fig. 2.

• The Path move (l = 1) operator randomly selects
a part of the solution vector u and moves it to
a randomly selected position. This can be done
by selecting three random positions inside u, e.g.,
1 < i1 < i2 < i3 ≤ n, i1...3 6= k, and moving the
sequence of clusters sσj , i1 ≤ j ≤ i2 further in u
after the cluster sσi3 . Alternatively, with the same
probability as moving the cluster sequence further
in u, a cluster sequence sσj , i2 ≤ j ≤ i3 is moved
before sσi1 .

• The Path exchange (l = 2) operator exchanges
two randomly selected non-overlapping parts of the
solution vector. Similarly to the path move, the
path exchange can be implemented using four ran-
domly selected positions within u, e.g., 1 < i1 <
i2 < i3 < i4 ≤ n, i1...4 6= k. Afterwards, the clus-
ter sequence sσj , i1 ≤ j ≤ i2 is exchanged with the
sequence sσh , i3 ≤ h ≤ i4.
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(a) Path move (b) Path exchange

Figure 2: Examples of the shake operators that (a) move the clusters (s4, s6) after s5; and (b) an exchange of (s6) with (s1, s5).

Local search procedure

The VNS local search procedure is used for an ex-
tensive search around the randomly created solution
vector u′ produced by the shake procedure. A close
neighborhood of the solution u′ is searched using the
operators One cluster move and One cluster ex-
change to find a better solution.

The implemented local search procedure originates
from the randomized variant of the VNS (RVNS) in
which the local search operators are applied randomly
to the solution vector instead of being applied ac-
cording to deterministic rules as in the regular VNS.
Both operators test simple modifications of the solu-
tion vector u′, where only one (One cluster move) or
two (One cluster exchange) clusters are moved within
u′. Each operator tries n2 such random modifica-
tions, and only those not worsening the quality of
the solution are applied to u′ before examining fur-
ther modifications. Each operator thus implements a
hill climbing paradigm guaranteeing that no decrease
occurs in the solution quality.

The two local search operators examine numerous
cluster sequence modifications to improve the solu-
tion. By employing the dynamic programming tech-
nique, with storing the shortest paths inside the so-
lution u′, the evaluation of n2 such modifications is
significantly speeded up. Furthermore, each modifi-
cation of this type is examined in advance to check
whether its lower bound does not produce a solution
with an over-budget length. The local search opera-
tors illustrated in Fig. 3 are as follows:

• The One cluster move (l = 1) operator repeat-
edly tries modifications where one random cluster
within the solution vector is moved into a differ-
ent randomly selected position. The modification
can be realized by selecting two random positions
1 < i1 < i2 ≤ n, i1,2 6= k, within the solution

vector u′. Afterwards, one cluster is moved either
sσi1 after sσi2 or sσi2 before sσi1 with the equal
probability. Only modifications not decreasing the
solution quality are applied to u′ before examining
further modifications.

• The One cluster exchange (l = 2) is similar
to the previous local search operator; however, in-
stead of moving one cluster, it exchanges two ran-
domly selected distinct clusters within the solution
vector. Using two random indexes 1 < i1 < i2 ≤ n,
i1,2 6= k, a single modification of this operator is
made by exchanging clusters si1 and si2 in u′. The
operator examines n2 such exchange modifications
and always applies only those that do not decrease
the solution quality.

4. Computational tests

The proposed VNS-SOP algorithm and the novel
ILP formulation have been evaluated on the existing
SOP benchmark instances. Furthermore, the meth-
ods are tested on the instances of the OP with Neigh-
borhoods (OPN) and the Dubins OP (DOP) addressed
as a sampling-based SOP.

Both VNS-SOP and the ILP-based solution algo-
rithms are implemented in C++, and the computa-
tional experiments have been performed on a stan-
dard PC equipped with an Intel Core i7, clocked at
3.40 GHz, and 16GB of RAM, by using a single core
for each run. The ILP formulation (2)-(9) proposed
to find the optimal solution of the SOP is solved by
means of CPLEX 12.6.1. The subtour elimination
constraints (7) are dynamically added to the formula-
tion when found to be violated. The greedy construc-
tion procedure used for VNS-SOP is also used for cre-
ating an initial feasible solution for the CPLEX solver
when addressing the ILP formulation (2)-(9). The
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(a) One cluster move (b) One cluster exchange

Figure 3: Example of cluster sequence modifications made by the local search operator.

maximal computational time for the CPLEX solver
has been set to 9 hours.

The stopping condition of VNS-SOP is a combi-
nation of the following three criteria: a) the max-
imum of 2000 iterations, b) 1000 iterations without
an improvement, and c) the maximum computational
time of 20 minutes. Each problem instance has been
solved 20 times to obtain valid statistical results of
VNS-SOP.

In the following section, we describe the bench-
mark datasets that are used. Then, we present the
computational results obtained by applying VNS-SOP
and by solving the ILP formulation (2)-(9) by means
of the CPLEX solver on the GTSP dataset instances
used for the SOP in Archetti et al. (2018). Finally,
the computational results of the OPN and the DOP
are presented, both addressed as a sampling-based
SOP.

4.1. Test instances

The evaluated benchmark instances can be cat-
egorized into three types. The first is based on the
dataset created for the GTSP by Fischetti et al. (1997).
The other two datasets are based on the benchmark
instances created by Tsiligirides (1984) for the OP
that are used to generate test instances for the OPN
and DOP with a predefined number of samples form-
ing the clusters for the SOP from the original OP
nodes. The OP datasets for the OPN and DOP are
100× scaled and use the rounded up distances be-
tween nodes instead of the exact Euclidean distances.
The benchmark datasets are available online together
with the implementations of the proposed methods1.

1https://github.com/ctu-mrs/vns-sop

GTSP dataset

The GTSP dataset has been previously used for
evaluating the performance of the matheuristic based
on tabu search for the SOP (MASOP) proposed in
Archetti et al. (2018), and it is therefore used for
comparison with the SOP solvers proposed here. To
modify the GTSP dataset for the SOP with a single
depot, the authors of MASOP removed the first node
in each dataset instance from its original GTSP clus-
ter and added the node to a new depot cluster s0. The
budget limit Tmax for individual instances is gener-
ated using the ω ratio of the GTSP*, the best known
cost of the GTSP solution taken from Fischetti et al.
(1997) 2. Two types of cluster profit pg ∈ {g1, g2}
are considered in the dataset. The first, g1, uses the
cluster profit pi = |si| equal to the number of nodes
in the respective cluster. The second type, g2, uses
the pseudo-random profit of each node j, with the
exception of the depot node j = 0 with p0 = 0, equal
to 1 + (7141j)mod(100) with the consequent cluster
profit summed from its respective nodes3. As we con-
sider predefined starting and ending clusters in our
SOP formulation, the original single depot cluster is
duplicated and is used as both a starting cluster and
an ending cluster.

2In Archetti et al. (2018), the solutions with ω = 1 are
expected to collect all clusters within the dataset instance.
However, this is not feasible due to the newly created depot
cluster, which necessarily adds a travel cost compared to the
GTSP* solution. Furthermore, the SOP dataset uses rounded
up ’CEIL 2D’ edge costs, which is reasonable for the budget
limited SOP, but it further increases the length of the shortest
cycle over all clusters. The original GTSP dataset uses round-
ing to the nearest integer value ’EUC 2D’.

3The originally proposed g2 rule for the SOP in Archetti
et al. (2018) and previously also used for the COP in Angelelli
et al. (2014) uses the profit formula 1 + (7141j + 73)mod(100).
However, the dataset and its results presented for the SOP
match with the formula 1 + (7141j)mod(100).
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OPN dataset

The second benchmark instances use the Set 2
dataset with 21 nodes originally proposed by Tsiligiri-
des (1984) for the OP. In the OPN proposed by Faigl
et al. (2016), the profit of individual nodes can be
collected within a circular neighborhood of each node
with predefined neighborhood radius δ. The solution
can be addressed using a sampling-based approach,
where for each original node (except the starting and
ending nodes) in the dataset, a cluster with on equidis-
tantly sampled nodes is created on the δ-radius circle.
For all nonterminating original OP nodes with the po-
sition vi = (xi, yi), i ∈ (2, . . . , n − 1), the newly cre-
ated clusters si have on sampled neighborhood nodes
with the positions (xi,j , yi,j), i ∈ (2, . . . , n − 1), j ∈
(0, . . . on − 1). The positions of the neighborhood
nodes are determined as:

(xi,j , yi,j) = (xi, yi) + δ

(
cos

(
2jπ

on

)
, sin

(
2jπ

on

))
.

(11)
The neighborhood radius used for generating the

dataset is δ = 50. Both terminating clusters contain
only the original nodes. The created SOP dataset for
the OPN thus consists of 21 clusters with 2 + 19on
nodes. The dataset does not contain overlapping clus-
ters although the original OPN can have overlapping
δ-radius circles. The SOP dataset for the OPN is
approximation of the original instances where more
samples on better approximates the instances at the
cost of the increased number of nodes.

DOP dataset

The second shown variant of the OP solvable as
the SOP is the DOP introduced in Pěnička et al.
(2017a). In the DOP, the airplane-like vehicle is ap-
proximated by the Dubins vehicle model proposed
in Dubins (1957). A solution of the OP contains
straight line segments between nodes with sharp turns,
which are not feasible for the Dubins vehicle. In the
DOP, the aerial vehicle has to turn with a given turn-
ing radius ρ. Dubins showed that for a curvature-
constrained vehicle of this type, the optimal length
maneuver between two locations with initial and final
heading angles is one of the six possible Dubins ma-
neuvers which satisfy the triangular inequality. The
Dubins vehicle state q = (x, y, θ) can be described by
its position in the plane (x, y) ∈ R2 and its heading
angle θ ∈ S1, i.e., its state q belongs to the special Eu-
clidean group q ∈ SE(2). To solve the DOP, we have
to consider the heading angle at each node to connect

the consecutive Dubins maneuvers between nodes fea-
sibly, and thus the selection of the heading angles is
a part of the optimization due to their influence to
the length of the respective Dubins maneuvers. Simi-
larly to the OPN dataset, a sampling-based approach
with heading angles at the given nodes can approx-
imate the original DOP by creating clusters of the
SOP. For all original nodes vi, i ∈ (1, . . . , n), the cre-
ated clusters si contain oh nodes with equidistantly
sampled heading angle θi,j for j ∈ (0, . . . oh− 1). The
individual nodes qi,j representing the Dubins vehicle
states are

qi,j = (xi,j , yi,j , θi,j) =

(
xi, yi,

2jπ

oh

)
. (12)

The minimal turning radius used in the created
dataset is ρ = 50. The dataset for the DOP consists
of asymmetric SOP instances, as the Dubins maneu-
ver has a different length when the initial and final
vehicle states of the maneuver are exchanged.

An example of the found solutions of the SOP on
the GTSP, OPN and DOP test instances is shown
in Fig. 4. Figure 4a shows the solution on the GTSP
11berlin52 dataset for ω = 0.6 and pg = g1. Figure 4b
and 4c are example solutions of the OPN and DOP
both with Tmax = 3000 on the Set 2 dataset, using
on = 8, δ = 50 in the case of the OPN and oh = 8, ρ =
50 for the DOP.

4.2. Computational results on the GTSP dataset

The proposed ILP formulation and VNS-SOP have
been evaluated on the GTSP dataset instances, and
have been compared with the existing MIP formula-
tion and the matheuristic based on tabu search (MA-
SOP), both proposed by Archetti et al. (2018).

The results shown in Table 1 concern small in-
stances with up to 76 nodes and 16 clusters. Both
cluster profit types pg ∈ {g1, g2} are considered to-
gether with various ω ratios of the GTSP* solution
and the corresponding budget limit Tmax. For each
method are reported the collected profit P and the
computational time T in seconds. The collected profit
of VNS-SOP has been identical in all runs, and the
reported computational time is the average from 20
runs.

Table 1 shows that solving to optimality the ILP
formulation (2)-(9) requires significantly less compu-
tational time than solving the MIP formulation pro-
posed in Archetti et al. (2018). Furthermore, the
computational times of VNS-SOP are about one or-
der of magnitude lower than those of MASOP, while
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(a) 11berlin52 (b) OPN Set 2 (c) DOP Set 2

Figure 4: Example solutions of the SOP on selected dataset instances.

Table 1: Comparison with exisitng methods on small GTSP dataset instances.

instance pg ω Tmax
MIP MASOP ILP VNS-SOP

P T P T P T P T
11berlin52 g1 0.4 1616 37 47.07 37 1.75 37 1.08 37 0.11
11berlin52 g2 0.4 1616 1829 65.96 1829 1.70 1829 1.18 1829 0.11
11berlin52 g1 0.6 2424 43 777.88 43 2.40 43 4.24 43 0.16
11berlin52 g2 0.6 2424 2190 1532.91 2190 2.64 2190 1.34 2190 0.15
11berlin52 g1 0.8 3232 47 2648.04 47 7.17 47 4.63 47 0.19
11berlin52 g2 0.8 3232 2384 3833.50 2384 6.61 2384 7.67 2384 0.19
11eil51 g1 0.4 69 24 39.72 24 1.85 24 2.54 24 0.09
11eil51 g2 0.4 69 1279 40.13 1279 1.97 1279 2.81 1279 0.09
11eil51 g1 0.6 104 39 34.64 39 5.13 39 1.67 39 0.14
11eil51 g2 0.6 104 1911 204.65 1911 4.74 1911 3.01 1911 0.14
11eil51 g1 0.8 139 43 1586.67 43 2.30 43 16.51 43 0.18
11eil51 g2 0.8 139 2114 1520.67 2114 1.93 2114 40.32 2114 0.20
14st70 g1 0.4 126 33 9666.29 33 4.43 33 16.65 33 0.14
14st70 g2 0.4 126 1672 4396.77 1672 4.35 1672 28.50 1672 0.15
14st70 g1 0.8 252 65 18227.23 65 8.80 65 959.59 65 0.31
14st70 g2 0.8 252 3355 30851.18 3355 7.89 3355 228.84 3355 0.33
16eil76 g1 0.4 83 40 4987.09 40 3.88 40 86.18 40 0.19
16eil76 g2 0.4 83 2223 4939.08 2223 4.73 2223 37.55 2223 0.20
16eil76 g1 0.6 125 59 29565.85 59 2.40 59 64.31 59 0.31
16eil76 g2 0.6 125 3119 21127.41 3119 6.28 3119 108.75 3119 0.32

the solution value is optimal for all the runs. We re-
call that in Archetti et al. (2018) the MIP formulation
was solved by means of CPLEX 12.6 and the experi-
ments were carried on a standard PC equipped with
Intel Core i7 clocked at 2.80 GHz. Thus, the com-
putational time improvement obtained can be only
partially justified by the newer version of the CPLEX
solver and the better PC used to perform our exper-
iments. The significantly lower computational times
suggest that solving the ILP formulation (2)-(9) and
computing solutions by VNS-SOP are both them-
selves less computationally demanding. The ILP model
(2)-(9) has fewer variables (no vertex variables) than
the MIP formulation. Furthermore, the different SECs
are added only when found to be violated, which can
save the insertion of all SECs (especially when the
lower bound is set to the CPLEX solver using the
greedy initial feasible solution).

The results shown in Table 2 compare the per-
formance of the proposed algorithms against that of
MASOP for the budget ratio ω = 1 on large in-
stances with up to 1084 nodes. The large instances
cannot be solved optimally using the ILP formula-

tion within the given computational time, except four
cases. For both profit types, the table shows the so-
lution value P and the computational time T for the
solution computed by MASOP. The computational
results of VNS-SOP are reported with the maximal
P and the average Pavg solution values, and also with
the average computational time T. The results com-
puted by the CPLEX solver when addressing the ILP
formulation (2)-(9) are shown with the maximally
achieved solution values during the optimization and
with the percentage gap (or the computational time
in seconds for the four optimal solutions found). The
profits computed by VNS-SOP appear in bold or un-
derlined when found to be larger or smaller, respec-
tively, than those computed by MASOP.

Regarding the results presented in Table 2, VNS-
SOP requires less computational time than MASOP
for almost all instances with up to 654 nodes. VNS-
SOP does not find the best known result for two
instances with g1 profit and for six instances with
g2. For both profit types, the unachieved best solu-
tions occur for the largest instances with 493 nodes
and more, where also the computational time is the
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Table 2: Comparison on large GTSP dataset instances of the SOP with ω = 1.

instance

g1 g2
MASOP VNS-SOP ILP MASOP VNS-SOP ILP
P T P Pavg T P T/gap P T P Pavg T P T/gap

16pr76 74 8.6 74 74.0 0.6 74 1.4% 3765 10.6 3765 3765.0 0.6 3765 26567.7
20kroA100 96 10.5 96 96.0 0.8 96 3.1% 4868 11.5 4868 4868.0 0.8 4868 2.9%
20kroB100 98 13.4 98 98.0 0.8 98 1.0% 4916 10.7 4916 4916.0 0.9 4916 1.9%
20kroC100 97 10.8 97 96.1 0.9 97 2.1% 4882 11.2 4882 4869.2 1.1 4882 2.6%
20kroD100 96 10.3 96 96.0 1.0 96 3.1% 4838 8.9 4838 4838.0 1.1 4838 3.5%
20kroE100 96 9.1 96 96.0 0.9 96 15536.1 4887 9.9 4887 4887.0 1.1 4887 18938.5
20rat99 93 7.6 93 92.9 1.2 85 15.3% 4721 8.1 4721 4721.0 1.0 4483 11.7%
20rd100 97 10.4 97 97.0 1.3 97 2.1% 4929 9.6 4929 4929.0 1.3 4929 1.6%
21eil101 97 8.8 98 97.8 1.2 98 1.0% 4953 20.1 4993 4957.0 1.1 4948 2.1%
21lin105 102 8.1 102 102.0 1.1 102 2.0% 5157 8.4 5157 5157.0 1.1 5101 2.5%
22pr107 101 8.6 101 101.0 0.6 101 5.0% 5109 8.3 5109 5105.4 0.7 5104 5.1%
25pr124 121 11.3 121 121.0 1.3 114 7.9% 6173 11.9 6173 6170.2 1.5 6159 1.2%
26bier127 125 16.0 125 125.0 1.8 125 0.8% 6314 16.2 6314 6314.0 1.8 6314 4967.7
26ch130 127 10.2 127 126.7 1.9 126 2.4% 6412 9.7 6412 6382.3 2.2 6412 1.4%
28pr136 134 10.2 134 134.0 2.1 134 0.7% 6841 12.2 6841 6831.4 1.8 6808 0.6%
29pr144 141 17.4 141 141.0 1.7 139 2.9% 7195 22.0 7195 7157.3 1.6 7137 1.5%
30ch150 144 9.6 147 146.7 2.1 134 11.2% 7315 12.3 7394 7378.2 1.9 6750 11.6%
30kroA150 145 11.3 145 144.7 2.2 140 6.4% 7361 13.8 7361 7356.6 2.3 7145 5.4%
30kroB150 148 15.2 148 148.0 2.5 148 0.7% 7445 15.1 7445 7445.0 2.6 7355 2.4%
31pr152 147 18.2 147 145.6 1.7 137 10.2% 7422 17.8 7422 7355.6 1.9 6545 17.0%
32u159 157 15.5 157 155.1 2.2 143 10.5% 7991 22.9 8011 7965.2 2.8 7666 4.8%
39rat195 189 13.0 189 188.9 5.2 164 18.3% 9558 11.0 9558 9546.3 4.7 8438 16.9%
40d198 196 36.8 196 195.2 5.7 171 15.2% 9934 25.7 9938 9926.3 6.7 8628 15.9%
40kroa200 198 22.8 198 198.0 3.7 189 5.3% 10010 24.5 10010 9976.0 3.6 9577 5.0%
40krob200 198 19.9 198 198.0 5.0 192 3.6% 9990 28.6 9990 9982.7 5.8 9869 1.9%
45ts225 221 34.7 221 220.8 7.3 185 21.1% 11187 26.2 11225 11158.4 7.8 9767 15.8%
45tsp225 219 16.7 220 219.1 6.1 186 20.4% 11103 16.4 11124 11063.9 7.1 9615 17.6%
46pr226 224 26.9 224 224.0 3.6 222 1.4% 11368 26.4 11368 11358.1 4.6 11222 1.4%
53gil262 258 27.2 258 254.2 8.3 215 21.4% 13050 25.9 13050 13003.6 7.8 10957 20.4%
53pr264 262 34.0 262 262.0 7.1 230 14.3% 13277 36.9 13277 13277.0 7.4 13277 0.2%
56a280 273 33.5 273 270.8 10.4 212 31.6% 13971 37.0 13971 13834.9 9.9 11996 18.2%
60pr299 296 31.3 296 295.0 12.0 270 10.4% 15005 36.8 15005 14974.4 12.1 12138 24.5%
64lin318 315 43.4 316 313.8 10.6 295 7.5% 16013 77.3 16013 15948.0 11.2 15170 5.7%
80rd400 397 76.7 398 394.3 28.2 342 16.7% 20055 48.1 20140 19942.2 29.4 17617 14.4%
84fl417 415 103.5 415 414.4 18.0 399 4.3% 21030 114.7 21030 20956.0 18.1 19766 6.5%
88pr439 437 158.0 437 432.4 33.9 415 5.5% 22110 132.8 22110 22032.2 33.1 21058 5.3%
89pcb442 440 129.5 440 438.2 38.6 361 22.2% 22300 95.0 22300 22116.3 36.2 19456 14.7%
99d493 490 120.8 490 487.1 67.3 462 6.5% 24827 153.1 24840 24708.3 66.3 23545 5.6%
115rat575 562 91.2 563 555.0 76.5 459 25.1% 28497 65.9 28361 28043.5 75.6 23192 25.2%
115u574 571 204.5 571 569.9 80.3 509 12.6% 28888 212.7 28888 28866.5 72.2 26118 10.9%
131p654 652 356.0 652 650.6 45.9 640 2.0% 32991 360.1 32950 32894.9 44.2 32450 1.7%
132d657 649 126.1 649 642.1 108.9 551 19.1% 32974 155.9 33022 32901.6 100.3 29198 13.7%
145u724 716 99.6 717 708.6 176.6 564 28.2% 36288 116.7 36316 35964.8 171.4 29195 25.1%
157rat783 767 279.2 760 750.4 225.7 618 26.5% 38953 145.5 38487 37999.8 233.1 31279 26.3%
201pr1002 994 304.9 994 981.8 480.4 877 14.1% 50453 992.7 50172 49760.9 534.7 45314 11.6%
212u1060 1057 873.5 1057 1056.3 679.9 950 11.5% 53450 798.5 53437 53391.8 641.8 48151 11.2%
217vm1084 1078 489.5 1070 1059.7 832.0 942 15.0% 54642 655.5 54363 53744.2 733.7 48955 11.8%

same as, or larger than, the time required by MA-
SOP. However, VNS-SOP improved the best known
solutions for seven g1 instances and 10 instances with
profit type g2. The high VNS-SOP computational
time for the largest instances is most probably caused
by the graph search used for finding the optimal se-
lection of the cluster nodes for the particular cluster
sequence that is being examined for possible improve-
ment. In the case of a large number of clusters in a
sequence, as for the largest SOP instances with ω = 1,
the maintenance of the graph with the shortest path
from the starting cluster and the ending cluster to
each vertex of the current solution requires a signifi-
cant amount of time in each VNS-SOP iteration. The
four ILP optimal solutions that were found show that
for ω = 1, the paths do not visit all the clusters in the
dataset instance, and VNS-SOP finds solutions with
the same optimal value.

A comparison of the results shown in Tables 1
and 2 shows that VNS-SOP robustly finds high qual-

ity solutions, and in most cases significantly faster
than MASOP. For several instances, VNS-SOP does
not find the best known solution, but it improves
the solution of a larger number of dataset instances.
Furthermore, solving the ILP formulation (2)-(9) by
means of the CPLEX solver requires a fraction of the
computational time needed to solve the MIP formu-
lation in Archetti et al. (2018).

4.3. Application of the SOP to other OP variants

VNS-SOP and the ILP formulation (2)-(9) are
further tested when used to solve the OPN and the
DOP. Both problems can be addressed as the SOP
by sampling either the neighborhood positions in the
OPN or the heading angles in the DOP. In both cases,
the resulting problem is an approximation of the orig-
inal one, i.e., its solution space is a subset of the solu-
tion space associated with the corresponding original
problem. A similar VNS-based algorithm has previ-
ously been used by the authors for solving the DOP in
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Table 3: Computational results of the OPN solved as the SOP.

Tmax

on = 4 on = 8 on = 12

ILP VNS-SOP ILP VNS-SOP ILP VNS-SOP

P T/gap P T P T/gap P T P T/gap P T
1500 180 3.3 180 0.2 180 96.8 180 0.4 180 1710.5 180 0.7
2000 230 8.6 230 0.3 230 63.5 230 0.6 230 242.9 230 1.0
2300 230 10.9 230 0.4 240 1798.1 240 0.8 240 14971.0 240 1.2
2500 260 39.5 260 0.4 260 6462.2 260 0.8 260 10.7% 260 1.2
2700 280 99.6 280 0.5 290 12165.4 290 0.8 270 16.3% 290 1.3
3000 320 432.4 320 0.4 320 7.0% 340 1.0 320 15.6% 340 1.5
3200 360 261.3 360 0.5 370 2.7% 370 0.9 360 25.0% 370 1.4
3500 410 708.3 410 0.6 410 9.8% 430 1.0 390 15.4% 430 1.5
3800 450 35.0 450 0.4 450 4314.8 450 0.9 430 4.7% 450 1.6
4000 450 6.9 450 0.4 450 6.2 450 1.0 450 8.3 450 1.6
4500 450 0.2 450 0.5 450 321.7 450 1.1 450 284.8 450 1.8

Table 4: Computational results of the DOP solved as the SOP.

Tmax

oh = 4 oh = 8 oh = 12

ILP VNS-SOP ILP VNS-SOP ILP VNS-SOP

P T P T P T P T P T P T
1500 115 2.97 115 0.21 120 8.18 120 0.39 120 20.62 120 0.62
2000 175 1.62 175 0.26 190 6.14 190 0.50 190 14.34 190 0.88
2300 190 1.96 190 0.31 200 9.14 200 0.61 200 17.76 200 1.00
2500 205 2.76 205 0.45 220 8.45 220 0.70 220 13.23 220 1.12
2700 215 3.14 215 0.39 230 5.67 230 0.70 230 17.25 230 1.18
3000 240 9.05 240 0.48 255 12.15 255 0.87 255 33.35 255 1.48
3200 265 4.11 265 0.50 280 12.06 280 0.90 290 51.76 290 1.31
3500 295 5.55 295 0.41 315 18.57 315 0.74 315 30.02 310 1.26
3800 330 9.17 330 0.47 345 23.15 345 1.10 345 46.18 345 1.91
4000 360 3.75 360 0.54 375 14.71 375 1.08 375 50.30 375 1.74
4500 415 3.54 415 0.59 430 14.29 430 0.93 440 21.31 440 1.85

Pěnička et al. (2017a); however, it was not addressed
as the SOP studied here, nor solved using the ILP.

Orienteering Problem with Neighborhoods

The performance of the proposed methods is tested
for the OPN dataset instances derived from the Tsili-
girides (1984) Set 2 (see Section 4.1-OPN dataset).
The results are shown in Table 3 for various bud-
get limit Tmax and number of neighborhood samples
on ∈ {4, 8, 12}. The different values of on lead to
instances with 78, 154, and 228 nodes, respectively.
The maximal collected profit P and the average com-
putational times T are reported for both VNS-SOP
and the solutions found by the CPLEX solver when
addressing the ILP formulation. For the instances
with a medium budget and a large number of sam-
ples, the optimal solutions of the ILP formulation are
not found within the given computational time, and
the optimization gap is reported instead.

VNS-SOP finds the same optimal solutions in all
cases where the optimal solution of the ILP formu-
lation is found. In other cases, VNS-SOP achieves
either the same results as, or better results than, the
solutions found when addressing the ILP. The max-
imal computational time of VNS-SOP is 1.8 s, while
the optimal solution of the ILP formulation is found
within maximally 14 971.0 s. The selected numbers of
samples on demonstrate how the solution quality im-
proves when the OPN is better approximated using
more samples.

Dubins Orienteering Problem

The DOP solved as a sampling-based SOP is eval-
uated on instances also derived from the Tsiligirides
(1984) Set 2 (see Section 4.1-DOP dataset). For the
DOP, the heading angles of the airplane-like Dubins
vehicle are sampled into oh ∈ {4, 8, 12} values, creat-
ing datasets with 84, 168, and 252 nodes, respectively.
Such SOP instances have starting and ending clus-
ters with oh nodes and the heading angles in these
clusters have to be found during optimization. Ta-
ble 4 reports on the achieved results of the solution
methods for various budget limit Tmax and number
of heading samples oh.

According to the presented results, the optimal
solution is found by the CPLEX solver when ad-
dressing the ILP formulation for all the tested in-
stances with the maximally required computational
time 51.76 s. VNS-SOP finds solutions that are op-
timal in all instances with the exception of one case
with Tmax = 3500, oh = 12. The maximal compu-
tational time of VNS-SOP is 1.91 s. Similarly to the
OPN, the DOP is better approximated using more
samples oh, as can be seen for oh = 4 and oh = 12.
We can also observe that the optimal solution when
addressing the ILP formulation is found much faster
in the case of the asymmetric DOP than for the OPN.
The branch-and-cut algorithm used by the CPLEX
solver thus performs better for the DOP with a large
difference in the lengths of the Dubins maneuvers be-
tween samples of the heading angle connecting the
same clusters.
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The results in both Table 3 and Table 4 show that
the SOP can be successfully used for solving the sam-
pled OPN and DOP. VNS-SOP can find high-quality
solutions within 1.91 seconds for problems with up
to 252 nodes. Furthermore, the solution of the ILP
formulation, found with very low computational time
in the case of the DOP, indicates that VNS-SOP can
achieve the optimal solution of the sampled DOP and
OPN for almost all evaluated instances.

5. CONCLUSIONS

In this paper, we introduce a Variable Neighbor-
hood Search (VNS) metaheuristic and a novel Inte-
ger Linear Programming (ILP) formulation for the
Set Orienteering Problem (SOP). The SOP is a gen-
eralization of the OP where customers are grouped
in clusters, and the objective is to find a tour with a
predefined starting cluster and ending cluster, a re-
stricted budget, and such that the tour maximizes the
profit collected from clusters with at least one visited
customer. The VNS algorithm for the SOP (VNS-
SOP) robustly provides high-quality solutions and
improves the solution of several benchmark instances.
The computational times of finding the SOP solution
using both the novel ILP formulation and VNS-SOP
are significantly lower than those of the existing ap-
proaches, especially in low to medium-size test in-
stances. Furthermore, we show other variants of the
Orienteering Problem that can be addressed as the
SOP using a sampling-based approach. The Orien-
teering Problem with Neighborhoods, with profit col-
lection within the neighborhood radius of each cus-
tomer, and the Dubins Orienteering Problem for an
airplane-like vehicle constrained by the minimum turn-
ing radius, can both be addressed as the studied SOP.
The implementation of VNS-SOP and of the ILP for-
mulation in the CPLEX solver are published as open-
source software together with the dataset instances
that have been used.
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Chapter 6

Unsupervised learning-based flexible framework for

surveillance planning with aerial vehicles

The fourth core publication of this thesis is the manuscript named Unsupervised learning-
based flexible framework for surveillance planning with aerial vehicles [4c] published in the
Journal of Field Robotics.

[4c] J. Faigl, P. Váňa, R. Pěnička, and M. Saska, “Unsupervised learning-based
flexible framework for surveillance planning with aerial vehicles,” Journal of Field
Robotics, vol. 36, no. 1, pp. 270–301, 2019

The article is motivated by our participation in the Mohamed Bin Zayed International
Robotics Challenge 2017 competition, specifically by the Challenge 3. In this challenge, a
team of three unmanned aerial vehicles is requested to search, pick up, and deliver colored
objects placed in a given arena. One of the crucial tasks in the challenge was to localize the
objects in the arena. This was addressed by a quick scan of the arena from a high altitude,
which provided a large number of object detections with possible false positives. Therefore,
an additional flight of all UAVs at a low altitude over the object detentions was planned to
verify the detections and identify the rewards associated with the objects. The multi-robot
planning over the object detections is the main topic of this core publication.

The problem of finding the shortest path over the object detections is formulated as a
multi-vehicle variant of the DTSPN. In the targeted minmax variant of the m-DTSPN, the
objective is to minimize the longest path for m robots while all target locations are visited
in their neighborhoods by at least one of the robots modeled as Dubins vehicle. The main
approach proposed in the article for the m-DTSPN is based on the unsupervised learning
framework using the growing SOM. However, the flexible framework is further shown for a
more complex Bézier curve model of the UAVs that can exploit the maximal velocity and
acceleration of the vehicle rather than the Dubins vehicle. Finally, the Bézier curve model
allows generalizing the approach to 3D.

Nevertheless, the author of this thesis contributed mainly to the development of the
Variable Neighborhood Search method newly introduced for the m-DTSPN alongside the
SOM-based approach. The VNS for the m-DTSPN uses a fast initialization procedure that
greedily assigns targets to particular UAVs based on a competitive rule that minimizes devi-
ation from average path length. The shaking and local search procedures of the VNS method
have, similarly to the variants for the (D)OP(N) and SOP, a set of operators that are sequen-
tially tried. In the case of the VNS for the minmax m-DTSPN, the operators of local search
mainly focus on shortening the longest tour by moving its assigned targets to a different tour.

The computational results show that the SOM-based approach can find high-quality
solutions in the shortest time. However, the proposed VNS approach has the shortest average
solution lengths. In particular instances, the VNS-based solver outperforms the SOM solver,
and even the proposed initialization method of the VNS achieves high-quality solutions.

The contribution of the author of this thesis on the publication is 20 % as the third
author. The author contributed mainly by Section 5 about the VNS-based method for the
m-DTSPN and by helping with the real experiments in Section 7.3.1.
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Abstract

The herein studied problem is motivated by practical needs of our participation in the

Mohamed Bin Zayed International Robotics Challenge (MBZIRC) 2017 in which a

team of unmanned aerial vehicles (UAVs) is requested to collect objects in the given

area as quickly as possible and score according to the rewards associated with the

objects. The mission time is limited, and the most time‐consuming operation is the

collection of the objects themselves. Therefore, we address the problem to quickly

identify the most valuable objects as surveillance planning with curvature‐
constrained trajectories. The problem is formulated as a multivehicle variant of the

Dubins traveling salesman problem with neighborhoods (DTSPN). Based on the

evaluation of existing approaches to the DTSPN, we propose to use unsupervised

learning to find satisfiable solutions with low computational requirements. Moreover,

the flexibility of unsupervised learning allows considering trajectory parametrization

that better fits the motion constraints of the utilized hexacopters that are not limited

by the minimal turning radius as the Dubins vehicle. We propose to use Bézier curves

to exploit the maximal vehicle velocity and acceleration limits. Besides, we further

generalize the proposed approach to 3D surveillance planning. We report on

evaluation results of the developed algorithms and experimental verification of

the planned trajectories using the real UAVs utilized in our participation in

MBZIRC 2017.

K E YWORD S

aerial robotics, computing architectures, planning

1 | INTRODUCTION

The surveillance planning problem studied in this paper is motivated

by practical needs of our participation in the Mohamed Bin Zayed

International Robotics Challenge (MBZIRC) 2017 (MBZIRC, 2017;

Saska, 2017). In particular, in our effort towards the Challenge 3,

where a team of unmanned aerial vehicles (UAVs) is requested to

search and collect objects of interest located in a specified arena.

Placement of the objects is not known a priori, and therefore, a quick

scan of the whole area is performed at a high altitude to provide a

rough estimation of the possible object locations with particular

preference of false positives rather than false negatives. Then, a

group of up to three UAVs is requested to verify the objects and

identify the reward associated with them to prefer collecting the

most rewarding objects for achieving a high total score (see Figure 1

with snapshots from our preparation experiments). The particular

problem addressed in this paper is the trajectory planning to identify

the objects of interest that is considered as the surveillance planning

with known target locations provided from the first overview scans

of the area.

The time for the whole mission is limited, and the most time‐
consuming part is the pickup and delivery of the objects; hence, the

UAVs have to quickly visit the expected locations of the objects and

confirm the object location and its reward or reject false positive

J Field Robotics. 2019;36:270–301.wileyonlinelibrary.com/journal/rob270 | © 2018 Wiley Periodicals, Inc.
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estimates. Hence, it is desirable to spend as little time as possible in

this verification part of the mission. Moreover, regarding the size of

the arena, which is in tens of meters, and velocity of the UAVs that

fly up to −5 ms 1, it is preferable to do not spend too much time by

planning the trajectories for objects identification as the UAV can

travel a significant distance in any additional second spent in

planning. Therefore, it has been requested to develop a surveillance

planning algorithm with low computational requirements while still

be able to provide solutions of satisfiable quality. Thus, our initial

intention was to provide a cost‐efficient solution in less than 1 s

using a single core of a conventional computer with a central

processing unit (CPU) of the iCore7 class running at the frequency

around 3.4 GHz, that is, computational resources available at our

UAVs (Spurný et al., 2018).

Surveillance planning as finding a cost‐efficient trajectory to visit

a set of locations can be addressed as a solution of the traveling

salesman problem (TSP) which is a well‐studied problem of combina-

torial optimization, for which several computationally efficient

heuristic algorithms have been developed (Applegate, Bixby, Chvátal,

& Cook, 2007; Helsgaun, 2000). Regarding trajectory planning for a

team of vehicles, such that the total time required to validate all

possible object locations is minimized, it is necessary to consider the

m‐TSP approaches that directly minimize the longest tour length, i.e.,

the minmax variant of the m‐TSP (Bektas, 2006). Notice, the problem

where the sum of the lengths (minsum) of all tours is minimized can

be addressed by a transformation of the m‐TSP to the single vehicle

TSP using (Bellmore & Hong, 1974); however, such solutions are of

poor quality as they can contain degenerative solutions with zero

tour lengths for particular vehicles. Therefore, it is necessary to

address the minmax m‐TSP directly.

Moreover, when planning trajectories for UAVs, it is suitable to

provide smooth trajectories even for our hexacopter UAVs utilized in

MBZIRC 2017 because the low‐level trajectory following controller

can more precisely navigate the vehicle along the planned path

(Báča, Loianno, & Saska, 2016). An example of the trajectory

following performance is shown in Figure 2. Therefore, a curvature‐
constrained path is desirable to enable fast motion with the maximal

forward velocity and precise trajectory following rather than paths

with sharp turns that can be found as a solution of the regular

Euclidean TSP (ETSP).

A suitable kinematic model widely used for the UAVs is the

Dubins vehicle for which the curvature‐constrained TSP becomes the

Dubins TSP (DTSP; Savla, Frazzoli, & Bullo, 2005) and we further call

the multivehicle problem for m vehicles as the m‐DTSP. In addition, it

is sufficient to visit proximity of the expected object location to

capture the object by a camera sensor with a particular field of view,

and thus, it is sufficient to reach the object location at the specific

sensing range δ to reliably detect the object of interest. Hence, the

problem can be formulated as the DTSP with Neighborhoods

(DTSPN; Isaacs, Klein, & Hespanha, 2011; Obermeyer, 2009; Oberlin,

Rathinam, & Darbha, 2010) and its multivehicle variant is denoted

the m‐DTSPN (Macharet, Neto, da Camara Neto, & Campos, 2013).

For the Dubins vehicle model with the minimal turning radius

ρ, the forward velocity is assumed to be constant, and thus the

required time to complete the surveillance mission is proportional

to the longest tour. Besides, we can consider smaller ρ which

requires lower velocity in turning parts of the path, but the vehicle

can accelerate and then decelerate on straight line segments to

achieve the required velocity in turns. The vehicle can eventually

finish the mission sooner than for a high but a constant forward

F IGURE 1 A snapshot of three UAVs following the planned trajectories in a validation of the objects of interest (left) and detail of the used object of
interest (right) in the preparation phase towards the Challenge 3. UAV: unmanned aerial vehicle [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 2 An example of the planned paths and their real

execution by the used model predictive control‐based controller for
trajectory following (Báča et al., 2016) [Color figure can be viewed at
wileyonlinelibrary.com]
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velocity and longer ρ. In general, smooth trajectories can be

parametrized, for example, by B‐splines (Neubauer & Müller,

2015) or Bézier curves (Yang & Sukkarieh, 2010), and the

trajectory curvature can be then utilized with the maximal vehicle

velocity and acceleration to determine velocity profile along

the trajectory from which the travel time estimation (TTE) can

be computed. Thus, the herein addressed problem is to determine

m trajectories to visit the given set of n object locations such that

the longest time to travel the particular trajectory is minimized,

and it is allowed to visit the location in δ distance, that is, the

problem is formulated as a variant of the m‐DTSP for δ = 0 and as

the m‐DTSPN for δ > 0.

1.1 | Focus of the proposed approaches
and contributions

The motivation and practical needs of the surveillance planning

deployed in the robotic competition steered our effort towards a

suitable solution of the m‐DTSPN instances arising from MBZIRC

2017. Therefore, we focused on the development of surveillance

planning framework that is capable of providing a feasible solution

for a typical scenario of MBZIRC 2017 with up to three vehicles and

around 20 object locations relatively sparsely placed in the arena

around 80m× 60m large. In addition, the required computational

time of the planning should be significantly shorter than the time to

travel across the arena, and at best, it should be around 1 s, and it

should not exceed 60 s. Thus, heuristic algorithms providing solutions

of satisfiable quality are preferred than a computationally demanding

optimal solution of the DTSP, which is known to be NP‐hard (Le Ny,

Feron, & Frazzoli, 2012).

Due to these requirements, the studied and proposed approaches

have been evaluated in the scenario calledmbzirc22with 22 targets with

additional up to three starting locations, one for each of three UAVs, to

obtain a realistic estimation of the real performance in MBZIRC 2017

(Figure 3). Although efficient solutions for such a relatively small problem

may not scale well with the number of vehicles or the number of targets,

the practical deployment, and real experimental verification provide

realistic validation of the real and time‐critical deployment as it is the

participation in a robotics competition.

Regarding the particular approaches to the m‐DTSP(N), we

consider a purely combinatorial optimization approaches already

proposed in the literature to address the m‐DTSPN and minmax

variant of the m‐TSP. We also consider our previous effort towards

surveillance planning with UAVs based on unsupervised learning of

the self‐organizing map (SOM) first deployed in a solution of the DTSP

in (Faigl & Váňa, 2016) and later generalized for the m‐DTSPN in

(Faigl & Váňa, 2017). Following the sampling‐based approaches of the

continuous optimization problem of Dubins planning (Oberlin et al.,

2010; Obermeyer, Oberlin & Darbha, 2012), the variable neighbor-

hood search (VNS) metaheuristic (Soylu, 2015) is also considered for a

direct solution of the minmax m‐DTSP and its generalization to the

m‐DTSPN. Besides, an evolutionary‐based memetic algorithm (Zhang,

Chen, Xin, & Peng, 2014) has been selected for a comparison with the

proposed solutions. The promising results and very low computa-

tional requirements of the SOM‐based solution motivate us to

further generalize the unsupervised learning for 3D surveillance

planning using Bézier curves (Jolly, Sreerama Kumar, & Vijayakumar,

2009; Yang & Sukkarieh, 2010) and computation of the velocity

profile along the planned trajectory using the vehicle velocity and

acceleration limits.

Even though the presented work is built on the previous

approaches published in the literature, that is, the VNS for the

m‐TSP (Soylu, 2015) and SOM‐based unsupervised learning for the

m‐DTSPN (Faigl & Váňa, 2017), they have been further developed to

address the m‐DTSPN by the VNS‐based approach and the

SOM‐based approach has been generalized to 3D surveillance

planning. Therefore, we consider the main contributions of the paper

with respect to the existing approaches as follows:

• Deployment of the VNS‐based m‐TSP solver in the m‐DTSPN.

• Fast and efficient initialization for the VNS‐based optimization in

the m‐DTSPN.

• Comprehensive evaluation of the proposed VNS‐based solver and

the existing memetic and SOM‐based approaches in the mbzirc22

scenarios of the m‐DTSPN with varying number of vehicles.

• Experimental verification of the found trajectories using real UAVs

utilized in MBZIRC 2017.

• Generalization of the SOM‐based solver to 3D surveillance

planning.

• Verification of the feasibility of the found 3D trajectories using real

aerial vehicles.

• Since the developed unsupervised learning‐based solver allows a

straightforward extension from the Dubins vehicle model to a

Bézier curve or any similar model (e.g., Dubins‐Helix model; Wang,

Wang, Tan, Zhou, & Wei, 2015b), while the main principles are the

same, we consider the proposed planner as a suitable flexible

framework for surveillance planning with aerial vehicles.

• Unsupervised learning framework for surveillance planning ad-

dressing the m‐DTSPN but also the multivehicle planning problem

where it is requested to quickly find surveillance trajectories

F IGURE 3 Motivational scenario called mbzirc22 on top of the
test field site (about 80m× 60m large) used for real experiments
[Color figure can be viewed at wileyonlinelibrary.com]
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considering the maximal vehicle velocities and acceleration limits

that better fit the real motion capabilities of multirotor UAVs than

Dubins vehicle describing curvature‐constrained trajectories sui-

table for fixed‐wing vehicles.

The paper is organized as follows. An overview of the related work

is presented in the next section. A formal definition of the addressed

problems with a brief overview of the Dubins vehicle model is

presented in Section 3. Necessary background on the related Dubins

touring problem (DTP; Faigl, Váňa, Saska, Báča, & Spurný, 2017) and 3D

smooth trajectory parametrization based on Bézier curve is described

in Section 4. The proposed VNS‐based m‐DTSPN solver is introduced

in Section 5 and the generalized SOM‐based planner to the 3D

surveillance planning is presented in Section 6. Reports on empirical

evaluation and experimental deployment are presented in Section 7.

Conclusion is dedicated to Section 8.

2 | RELATED WORK

Surveillance planning for an aerial vehicle is usually closely related to

the curvature‐constrained path planning for which the fundamental

work is Dubins (1957) where the problem of the optimal planning for

a vehicle with the minimal turning radius ρ is studied. In 1957, Dubins

showed that the optimal path connecting two states q q SE, (2)i j 
(representing the vehicle configurations as two points in the special

Euclidean group SE (2)) is one of six possible maneuvers that consist

of a straight line segment and a part of a circle with the radius ρ.
Although a closed‐form expression of the optimal path for the Dubins

vehicle between two states exists, it is not sufficient to directly solve

surveillance planning where a vehicle is requested to collect

information from the given set of target locations. It is due to the

initially unknown optimal sequence of visits to the targets, and also

the particular headings at the target locations are not known.

Therefore, it is necessary to determine both the sequence and the

headings, which can be formulated as the DTSP.

The DTSP can be considered as an extension of the regular TSP

for the Dubins vehicle, and thus the path connecting the particular

locations are the Dubins maneuvers respecting the minimal turning

radius ρ. Similarly to the regular TSP, also the DTSP stands to

determine the optimal sequence of visits to the targets, which is a

discrete combinatorial problem. However, the DTSP also includes a

continuous optimization part in finding the optimal heading of the

vehicle at each target location. Each particular heading value can

be selected from the interval π[0, 2 ) and every change of a single

heading may significantly change the Dubins tour connecting

the locations. Therefore, the DTSP can be considered as a more

challenging problem than a discrete optimization of the regular TSP,

although both problems are NP‐hard (Le Ny et al., 2012) as the DTSP

becomes the regular ETSP for ρ = 0.
Moreover, in the DTSPN, it is also required to determine the

most suitable waypoint locations from which information about the

targets is collected such that the waypoint is at a distance equal or

shorter than the given sensing range δ (Isaacs & Hespanha, 2013).

Hence, the DTSPN contains two continuous optimization parts in

addition to the determination of the sequence of visits to the targets.

The first continuous part is the determination of the optimal heading

at the waypoints and the second is the determination of the waypoint

locations themselves. Therefore, finding optimal solutions of the

DTSP or the DTSPN is computationally challenging and approxima-

tion algorithms (Ny, Feron, & Frazzoli, 2012; Oberlin et al., 2010; Yu,

2015), heuristics (Isaiah & Shima, 2015; Savla et al., 2005; Váňa &

Faigl, 2015), and evolutionary (Yu & Hung, 2012) approaches have

been proposed.

The existing approaches to the DTSP and DTSPN can be

categorized into four main classes. The first class represents decoupled

approaches where the sequence of the visits to the targets is

determined independently on the determination of the headings. The

second class is sampling‐based methods where a finite discrete set of

possible heading values and/or waypoint locations are sampled, and the

problem is then transformed into a discrete optimization problem, for

example, the ATSP, that can be solved by existing optimal solvers such

as Concorde (Applegate, Bixby, Chvátal, & Cook, 2003) or heuristic

algorithms such as the Lin-Kernighan-Helsgaun (LKH) algorithm

(Helsgaun, 2000). The third class of approaches is evolutionary methods

that can provide high‐quality solutions but are usually computationally

very demanding. Finally, the fourth class is the recently proposed

unsupervised learning which combines a solution of the sequencing part

of the problem with the online sampling of the suitable heading values

(Faigl & Váňa, 2016) and for the DTSPN also the waypoint locations

(Faigl & Váňa, 2017). Selected approaches of the particular classes are

briefly described in the rest of this section to support our selection of

the considered methods in our effort towards a suitable solution for a

practical deployment motivated by MBZIRC 2017.

One of the simplest approaches, that is also computationally very

efficient, is the decoupled approach called the alternating algorithm

(AA) proposed by (Savla et al., 2005). The sequence of visits to the

targets is determined by a solution of the ETSP without considering

the curvature‐constrained path. After that, headings at the waypoints

are established in such a way that even edges are connected by

straight line segments which prescribe all the headings, and thus odd

edges are connected by the optimal Dubins maneuvers that can be

computed analytically (Dubins, 1957). The AA has been improved by

a randomized adaptive search in (Macharet, Neto, da Camara Neto, &

Campos, 2011) and by considering a distance between two

consecutive waypoints in the sequence (Macharet & Campos,

2014). Because only two consecutive waypoints in the sequence

are considered in these approaches, determination of the headings is

computationally very efficient, and for n targets, the computational

complexity can be bounded by O n( ).
Following the idea of the AA, a receding horizon technique has

been utilized in the look‐ahead approach proposed in Ma &

Castanon (2006), where the heading at the next waypoint in the

sequence is determined according to the three waypoint locations

and heading at the previous waypoint. The reported results are

better than for the AA which is also reported in Isaiah and Shima
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(2015), where a combination of the k‐look‐ahead technique is

accompanied by a local improvement based on the 2‐Opt heuristic

(Croes, 1958). However, the authors do not report on the required

computational times.

Another promising decoupled approach called the local iterative

optimization (LIO) algorithm has been proposed in Váňa and Faigl (2015)

to address the computationally challenging DTSPN. In particular, the

proposed approach is focused on problem instances where a distance of

the waypoints in the sequence is longer than ρ4 , that is, the so‐calledD4
instances of the DTSP(N). The initial sequence of the visits to the targets

is determined as a solution of the ETSP for target locations in their

respective neighborhoods. Then, the problem is addressed as a

continuous optimization of two variables for each target. The first

variable is the waypoint heading, and the second variable is for the

waypoint location which is considered as a single variable denoting its

position on the boundary of the target’s neighborhood. Both variables

are then iteratively optimized until the solution is not improving.

According to the reported results, the LIO algorithm provides almost

about 10% better solutions than the AA while the computational

requirements are still around tens or hundreds of milliseconds using a

single core of a conventional CPU. LIO has been proposed for the D4
instances, but it can also be utilized for solving any instance of the DTSP

and DTSPN; however, the quality of found solutions depends on the

sequence determined as the ETSP, which can be inadequate for dense

and mutually close target locations.

The problem of determining the optimal headings at the

waypoints for a given sequence of visits to the targets is called the

DTP in Faigl et al. (2017), and it has been addressed by several

approaches. An optimal solution of the D4 instances of the DTP has

been proposed in Goaoc, Kim, and Lazard (2013). The solution is

based on solving a family of n‐dimensional convex optimization

subproblems, where n is the number of waypoints in the sequence.

The number of subproblems can be bounded by −2 n2 2, which

regarding the computational complexity of the whole algorithm is

relatively high in comparison with simple heuristics such as the AA

(Savla et al., 2005) or LIO (Váňa & Faigl, 2015). Notice, a solution of

the DTSP with a given sequence of visits to the targets can be easily

found as a solution of the DTP for a discrete set of possible heading

values at each waypoint (see Figure 4a and a description of the

forward search procedure in Section 4.1).

A very important result on the tight lower bound of the DTP has

been proposed in Manyam and Rathinam (2015) which has been

further evaluated in (Manyam, Rathinam, and Casbeer (2016), but

unfortunately without reporting the computational requirements.

The computation of the tight lower bound is based on the solution of

the so‐called the Dubins interval problem (DIP) introduced in Manyam,

Rathinam, Casbeer and Garcia (2015). DIP is a variant of the Dubins

planning between two waypoints, that is, locations with the

prescribed headings. In DIP, the heading at the waypoint is not a

single value but an interval. Thus, for the interval of the full range π2 ,

the solution of DIP is a straight line segment connecting the

locations. The tight lower bound (Manyam & Rathinam, 2015) has

been utilized to guide sampling of the possible heading intervals and

the heading values themselves in Faigl et al., (2017), where the

authors show improved results over a uniform sampling of the

heading (see Figure 4 for an example of the DTSP solution based on

the DTP and DIP).

Transformation (or also sampling‐based) methods represent the

second class of the approaches to the DTSP(N). Similarly to the

aforementioned discretization of the headings in the DTP, these

methods consider a finite set of discrete heading values at each

waypoint location or a set of possible locations in the case of the

DTSPN. Then, the optimal Dubins maneuvers between all possible

pairs of the waypoint locations are computed to build a complete

graph representing the original problem, which can be solved by

combinatorial graph‐based solvers.

One of the first sampling‐based and resolution complete

approaches to the DTSPN has been proposed in Obermeyer, Oberlin,

and Darbha (2010). In this approach, the DTSPN is transformed into

the generalized TSP (GTSP) where the targets with their neighbor-

hoods are represented by mutually exclusive finite sets of nodes. The

GTSP is then transformed into the asymmetric TSP (ATSP) because

the optimal Dubins maneuvers between two states depend on the

path direction. Such a transformed problem is solved by the LKH

algorithm (Helsgaun, 2000). Even though the LKH algorithm is one of

the most powerful heuristics for the TSP, due to the samples and

transformation, the final problem has many nodes. The reported

computational times for problems with 20 targets and 1,500 random

samples are several hundreds of seconds (Obermeyer et al., 2010),

which is reported to be faster than the genetic algorithm for the

(a) (b)

F IGURE 4 A solution of the Dubins traveling salesman problem
for a given sequence of the targets (the green disks) with the total

number of samples N, final path length � , and lower bound �U. The
found solution is the blue curve, and the red curve is its lower bound
determined as a solution of the Dubins interval problem with the cost

�U (Manyam & Rathinam, 2015). The uniform sampling utilizes 32
heading values per each target. The required computational time is
denoted t . (a) Uniform sampling— =N 224, � = 19.8, � = 13.8U ,

=t 128 ms, (b) Guided sampling (Faigl et al., 2017)– =N 128,
� = 14.4, � = 14.2U , =t 76 ms [Color figure can be viewed at
wileyonlinelibrary.com]
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DTSPN proposed by the same authors in Obermeyer (2009), but still

far from our needs and expectations.

A comparison of the DTSPN approaches is provided in Macharet,

Neto, da Camara Neto, and Campos (2012) where significant

improvement of the solution quality is reported for evolutionary

techniques. A memetic algorithm for the DTSPN with the disk‐shaped
neighborhoods and relaxed terminal heading is proposed in Zhang

et al., (2014). The superior solution quality is reported for the

memetic algorithm in the DTSPN instances with 10 targets. The

reported computational times are 8.3 s for 10 targets and 45.5 s for

problems with 17 targets. A genetic algorithm for the DTSPN with

polygonal goals has been proposed in Obermeyer (2009) but the real

computational requirements are not reported. However, the same

authors report that their sampling‐based approach proposed in

Obermeyer et al. (2010) requiring hundreds of seconds is faster than

the genetic algorithm (Obermeyer, 2009).

The recently proposed unsupervised learning method for the

DTSP (Faigl & Váňa, 2016) is based on an evolution of the

growing SOM for the TSP (Faigl, 2018). The input layer of the two‐
layered neural network servers for presenting the input signals which

are the target locations. The neurons’ weights represent locations in

the input space, and the output layer is an array of nodes

representing the waypoints. Since the output layer is one‐dimen-

sional and the nodes are organized in an array, it forms a ring of

neurons that directly represents a TSP tour. In Faigl & Váňa (2016), a

possible heading value at the target is determined in the selection of

the best matching neuron to the target location presented to the

network. Besides, additional heading values are associated with the

winner neuron which is adapted towards the presented target, that

is, its weights are moved towards the target location in the input

space. The adaptation of the network is performed in learning epochs

in which all targets are presented to the network. The weight of the

adaptation is decreased after each epoch according to a cooling

schedule, and the network is stabilized in hundreds of epochs.

However, a solution of the DTSP is determined as a solution of the

DTP represented by the winner neurons of the current epoch, where

the ring of nodes prescribes the sequence of visits to the targets and

the particular headings are the associated headings to the neurons.

Thus, a solution is available after each learning epoch, and the final

solution is found as the best‐found solution among all the learning

epochs. The reported results are better than the solutions provided

by the memetic algorithm (Zhang et al., 2014) with the computational

time restricted to 100 s while the SOM needs less than 30 s for

problems with up to 100 targets.

The SOM‐based algorithm (Faigl & Váňa, 2016) has been

significantly improved in (Faigl & Váňa, 2017), where the reported

required computational time for scenarios (motivated by MBZIRC

2017) with 22 targets is found in less than 600ms, while the

solutions are better than those provided by the memetic algorithm

(Zhang et al., 2014) with the computational time restricted to 10 s.

Moreover, the SOM‐based approach has been generalized for the

DTSPN, where the particular waypoint locations are determined

during the winner selection together with the expected heading at

the waypoint. In addition, the m‐DTSPN is addressed by creating an

individual neural network for each vehicle, and during the winner

selection, neurons from the network which represents a shorter tour

are preferred to address the minmax variant of the m‐TSP (Somhom,

Modares, & Enkawa, 1999).

Regarding approaches for the m‐DTSPN, they are similar to the

m‐TSP in many ways (Bektas, 2006; Oberlin et al., 2010), especially

the transformation/sampling‐based solvers, but only a few ap-

proaches directly address the challenges of the minmax variant of

the m‐DTSPN. One of them is the memetic algorithm (Zhang et al.,

2014), which has been compared with the additional direct approach

based on SOM in Faigl & Váňa (2017). Another evolutionary based

approach to the minmax variant of the m‐DTSPN has been proposed

in Macharet et al. (2013), but the authors do not report on the

computational requirements, which also hold for the improved

version presented in Macharet, Monteiro, Mateus, & Campos (2016).

Having a transformed problem with a graph representation,

graph‐based m‐TSP approaches may be considered. The minmax

variant of the m‐TSP has been addressed by França, Gendreau,

Laporte, and Müller (1995) where exact algorithms are proposed. In

Kulich, Faigl, Kléma, and Kubalík (2004), the authors compare genetic

algorithm, ant colony optimization, and SOM‐based solver in m‐TSP
scenarios arising from rescue missions, where the superior results

are provided by SOM. In addition to the soft‐computing techniques, a

general metaheuristic called the VNS proposed by (Hansen &

Mladenović, 2001) has been applied to the minmax m‐TSP in

(Soylu, 2015).

Regarding the presented overview of the existing methods for

the DTSPN and more specifically to the m‐DTSPN. We consider the

memetic algorithm (Zhang et al., 2014) and SOM‐based approach

(Faigl & Váňa, 2017) as the most promising because the memetic

algorithm is capable of providing a high‐quality solution, and thus it

may represent a suitable reference approach. On the other hand, the

SOM‐based approach has the computational requirements lower

than the desired 1 s while it also provides better solutions than the

simple heuristics AA and LIO (Faigl & Váňa, 2016). Besides, solutions

of the m‐DTSPN are reported for both the memetic and SOM‐based
algorithms and both approaches are any‐time as they provide the

first solution very quickly, which is also desirable property for a

practical deployment under real‐time constraints.

In addition, we also included sampling‐based approach in our

evaluation to cover purely combinatorial optimization approaches

which work on some finite discrete set of possible heading values and

waypoint locations. In this case, we consider the VNS method (Soylu,

2015) as a particularly interesting method. First, it directly addresses

the minmax m‐TSP, and it improves the initial solution if more

computational time is available. Besides, the VNS metaheuristic has

been recently successfully deployed in a solution of the closely

related problem of the surveillance planning called the Dubins

orienteering problem (DOP; Pěnička, Faigl, Váňa, & Saska, 2017a)

which has been further generalized to the DOP with neighborhoods

in Pěnička, Faigl, Váňa, and Saska (2017b). Therefore, we consider

VNS as a promising method for the sampling‐based approach to the
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herein addressed m‐DTSPN. However, an initial solution of the m‐
DTSPN is needed for the VNS‐based optimization which is addressed

by a newly proposed procedure described in Section 5.

In addition to the Dubins vehicle model, which is a suitable model

for rotary vehicles because it provides smooth trajectories with a

constant speed, we are interested also in other types of trajectory

parametrization because the motion of the rotary UAV is limited

mainly by the maximum speed and acceleration, and the minimal

turning radius is not defined. Various types of curves such as splines

(Lepetič, Klančar, Škrjanc, Matko, & Potočnik, 2003), polynomial

functions (Papadopoulos, Papadimitriou, & Poulakakis, 2005), and

Bézier curves (Jolly et al., 2009) can be utilized for continuous and

smooth path generation (Wang, Wang, & Tan, 2015a) for which the

final trajectory with the velocity profile is computed according to the

maximum possible velocity and acceleration of the vehicle. Moreover,

we are also interested in the generalization of the surveillance

planning with curvature‐constrained paths from the 2D environment

representation to 3D. An extension of the Dubins vehicle for the 3D

is possible using Dubins‐Helix method (Wang et al., 2015b) or using

the so‐called Dubins Airplane model proposed in Chitsaz and LaValle

(2007, December) to address the bounded curvature and also limited

pitch angle of real UAVs, especially fixed‐wing vehicles. The Dubins

Airplane model has been used for solving the 3D‐DTSPN (Váňa,

Sláma, & Faigl, 2018) with fixed‐wing vehicle. However, hexacopters

are used in our motivational problem, and therefore, we consider

Bézier curves (Yang & Sukkarieh, 2010) that can describe trajectories

of arbitrary curvature and are specified only by four control points.

Thus, trajectory parametrization based on Bézier curves is selected

as a suitable generalization of the proposed surveillance planning

framework to directly find smooth trajectories for a team of UAVs in

2D but also in 3D scenarios.

The SOM‐based approach (Faigl & Váňa, 2017) has been selected

as a suitable optimization framework for the generalized surveillance

planning with Bézier curves because of two main reasons. The first

reason is related to the expected increased computational require-

ments related to the optimization of Bézier curves that is more

demanding than the analytical solution of Dubins maneuvers, and

regarding the reported results, SOM is computationally efficient.

Besides, the unsupervised learning principles used in SOM are

flexible to relatively straightforwardly utilize different parametriza-

tion of the curves. Therefore, the proposed unsupervised learning

based 3D surveillance planning framework for the m‐DTSPN is

presented in Section 6.

A summary and evolution of the existing approaches together

with the herein proposed methods for solving variants of the DTSP is

presented in Table 1 with an indication of their particular properties

and capabilities. Besides, we further distinguish if the approach

performs continuous trajectory optimization, which may further

improve the solution. The transformation methods perform sampling,

and thus, they transform the problem to the combinatorial optimiza-

tion. On the other hand, the decoupled approaches first determine

the sequence of visits and then generate the requested trajectories

where the recent approaches employ continuous optimization of the

headings and possibly also the locations of the waypoints. The

unsupervised learning is similar to the decoupled approaches in the

trajectory optimization. However, the continuous trajectory optimi-

zation is performed during the solution of the sequencing part that is

the main difference to decoupled and transformation approaches and

makes it similar to evolutionary methods, but the convergence of the

learning is much faster than finding satisfiable solutions by, for

example, memetic algorithms.

3 | PROBLEM STATEMENT

The studied surveillance planning problem is motivated by the

MBZIRC 2017 competition where it is needed to identify possible

objects of interest as quickly as possible by three aerial vehicles. The

problem is considered as surveillance planning where a team of m
vehicles is requested to take a camera snapshot of the objects using

nonzero sensing range δ to save the travel cost. Moreover, due to the

used model predictive control (MPC) trajectory following (Báča et al.,

2016), the surveillance trajectories have to fit the vehicle motion

constraints to allowing fast and precise motion of the vehicle along

the trajectory. Thus, the problem is to determine a sequence of visits

to the object locations for each vehicle together with the

corresponding trajectories connecting the waypoints from which

objects are captured such that all the objects are identified as quickly

as possible, and the vehicles return to their initial locations. The

expected computational requirements for the surveillance planning

and the specific setup of the MBZIRC 2017 deployment allow to

relax the collision avoidance in the planning part, and it is addressed

by the reactive collision avoidance implemented in the used MPC‐
based trajectory following controller (Báča, Hert, Loianno, Saska, &

Kumar, 2018; Spurný et al., 2018). Therefore, an explicit finding of

collision‐free trajectories is not considered in the following problem

formulations.

First, the problem is formulated as the m‐DTSPN in which m
curvature‐constrained paths (one path for each vehicle) for the

Dubins vehicle with the minimal turning radius ρ are found such that

each of the given n target locations is visited by at least one of the

planned path in the distance not exceeding the sensing range δ and

the length of the longest path is minimized. In addition to ρ, the
utilized Dubins vehicle model (Dubins, 1957) assumes the constant

forward velocity v and the state q of the Dubins vehicle is described

as a triplet θ=q x y( , , ), where =p x y( , ) is the vehicle position in the

plane p 2  and θ is the vehicle heading at p and θ 1  , that is,

q SE (2) . The motion of the vehicle is described as

⋅
∣ ∣

θ

θ
θ

ρ
=

−

xy v u u˙̇
˙

cossin , ≤ 1,
1

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

(1)

where u is the control input.

The team of UAVs consists of m identical vehicles with the same ρ
allowing the constant, maximal, and safe forward velocity while the

error of the trajectory following is acceptable to capture the object of
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interest at the target location from the determined waypoint location

within the δ sensing range from the target location. In fact, the real

field of view of the utilized camera is wider than δ used for planning

such that the used MPC‐based controller (Báča et al., 2016) follows

the trajectory with the error less than the difference of the real field

of view and δ , and thus, it is assured that the object of interest can be

identified from the snapshot taken at the particular waypoint

location.

Each vehicle (denoted r) starts at its individual initial location

pdr 2  (further denoted as depot) and the requested path for the rth
vehicle terminates at the same location pdr , that is, we are searching

for m closed trajectories. The trajectories consist of a sequence of

Dubins maneuvers connecting the determined waypoints. Thus, two

consecutive waypoints in the sequence qi and +qi 1 both from SE (2)
are connected by one of the six Dubins maneuvers respecting the

kinematic constraints of the Dubins vehicle (1).

In the DTSPN with a single vehicle, the goal is to find the shortest

trajectory to take a snapshot of all n objects of interestO = …o o{ , , }n1 .

For simplicity and readability, we consider oi be the target location of

the object i , that is, oi 2  . Since it is allowed to collect information

about oi within δ distance, we need to determine for each oi a

waypoint location pi such that ∣ ∣ δp o( , ) ≤i i . Besides, for each waypoint

location pi , we need to determine the heading θi and for the all

waypoints, we search for a sequence σ σΣ = …( , , )n1 of the waypoints

θ=q p( , )i i i such that the sum of the lengths of the Dubins maneuvers

connecting the waypoints in the sequence Σ is minimal.

Problem 1 (DTSPN)

� � � �

�

�

∣ ∣

θ

δ
Θ θ θ θ

σ σ σ σ σ

= +
= … =

= …
= … <

Σ = …
=

Θ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ

σ σ σ

σ

Σ =

=

−Q q q q q
Q q q q p q SE
P p p p p o o

π
n i j

q SE q p

minimize ( , ) ∑ ( , ) ( , )
subject to ( , , ), ( , ), (2),

( , , ), and ( , ) ≤ for
( , , ), 0 ≤ 2 ,
( , , ), 1 ≤ ≤ and ≠ for ≠ ,

(2), ∑ and ( ) is the vehicle depot,

,

P in

i i

n i i j
d

, , 1

2

1
0 0 0

i i n
n i i i i
n i i
n i

1 0
1

1
1

0


  


(2)

where � q q( , )i j is the length of the shortest Dubins maneuver

between qi and qj computed analytically according to Dubins (1957)

and � =q p( ) is a projection of the waypoint θ=q p( , ) to 2 , that is,

p 2  . Notice, we may further distinguish a single depot location pd
or a depot with a neighborhood defined by the sensing range δ as for

other target locations. Since the practical, motivational deployment is

for specified initial locations of the vehicles, we focus on depots

without the neighborhoods, and δ > 0 for depots is further discussed

in the description of the particular methods and empirical evaluation.

For the m‐DTSPN, it is requested to find m trajectories …Q Q{ , , }m1
satisfying the limited curvature of the Dubins vehicles (1), one for

each of m vehicles, such that the length of the longest trajectory is

minimal, that is, the minmax variant of the m‐DTSPN. An individual

trajectory for the rth vehicle can be considered as a solution Qr of the
DTSPN formulated as Problem 1 for a subset of objects of interest

� �⊆r that are covered along the trajectory Qr with the length

� �Q( , )r r . Besides, the initial location of the vehicle is prescribed by

pdr . Since a solution of the DTSPN is a closed and continuous

trajectory, it is sufficient that pdr is a part of Dubins tour; however, for

this special waypoint location, the sensing range is individually set to

zero. Thus, the m‐DTSPN can be formulated as a problem to

determine a subset of nr locations � r for each vehicle r , r m1 ≤ ≤
such that all objects � are covered, and the length of the longest

trajectory is minimal.

Problem 2 (m‐DTSPN)

� �

�

� � �

�

� ⋃

⋃

⋃ ∣ ∣ δ
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… …

=

=

Q p
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q Q q o

minimize max ( , { })
subject to is a solution of Problem 3.1 for the 
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and for each there is

such that ( ( ), ) ≤ .

Q r m r m r r dr
r

r dr

r
m r

rm r

( , ) for {1, , } {1, , }

1
1

r r





 

(3)

In addition to the Dubins vehicle model (1), the addressed

surveillance planning is also considered for a general 3D trajectory

satisfying constraints of the utilized hexacopters, that is, the maximal

velocity and acceleration. Such a problem formulation is formally

identical to Problem 2 except Qr which needs to be substituted by

the parametrization of the trajectory X r and the length of the

trajectory � �Q( , )r r needs to be replaced by the TTE of the

trajectory X� �( , )r r . For simplicity and w.l.o.g., we assume that each

object of interest is covered from some point x on the determined

trajectories X X…, , r1 and x can be x 2  or x 3  in the case of

the 3D trajectory.

Problem 3 (Surveillance Planning with a 3D Smooth Trajectory)

X

X

X � �
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�

�
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minimize max ( , )
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r m r m r r

r
m r
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( , ) for {1, , } {1, , }

1

1
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(4)

4 | BACKGROUND

4.1 | Dubins touring problem

An important part of the sampling‐based approaches for the DTSP is a

solution of the DTP (Faigl et al., 2017). The DTP stands to determine the

optimal heading values for a given sequence of the waypoint locations,

and it can be formally defined as follows. Let the given sequence of n
waypoint locations be = …P p p( , , )n1 and it is requested the vehicle

returns to the initial location because of the context of solving the

DTSP. The problem is to find the particular heading value at each target
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location, that is, the headings θ θ= …T ( , , )n1 such that the optimal Dubins

maneuvers (Dubins, 1957) connecting the targets in the sequence form

a Dubins tour with the minimal length. Thus, the cost function is

piecewise continuous, and the DTP is a continuous optimization

problem.

Problem 4 (DTP)

� � �

θ θ θ

= +

= < = …
=
−

+∑T P q q q q
q p p P T π i n

minimize ( , ) ( , ) ( , ),
subject to ( , ), , , 0 ≤ 2 , 1, , ,

T i
n i i n

i i i i i i
1
1 1 1
 

(5)

where � q q( , )i j is the length of the shortest Dubins maneuver

between qi and qj which can be computed by a closed‐form
expression (Dubins, 1957).

4.1.1 | Sampling‐based solution of the DTP

Having a discrete finite set of possible heading values per each

target location in the sequence P , for example, h heading values for

each target, we can construct a graph where nodes represent

particular vehicle states and edges represents an optimal

Dubins maneuver connecting the states. For a sequence of n
targets, the graph has n layers and each layer has up to h nodes

(Figure 5).

Then, the optimal solution of the DTP for the given discretization

of the headings can be found by a forward search of the graph. Since

we need a closed tour, the graph has to be searched for h initial/

termination headings, and thus, the overall time complexity of the

search procedure can be bounded by O nh( )3 .

4.2 | Three‐dimensional smooth trajectory based
on Bézier curve

The utilized parametrization of the 3D smooth trajectory is based

on the cubic Bézier curve, that is, defined by four control points.

The first two control points define the end locations and direction

of the curve directly, and two additional points define

the departure and terminal tangents. Therefore, Bézier curves

can be easily connected into a smooth path from multiple

segments. A general Bézier curve of the dth degree can be

parametrized by

τ τ τ=
=
∑ JX B( ) ( ), 0 ≤ ≤ 1,
i

d
i d i0 , (6)

whereBi stands for the control points and τJ ( )d i, is the Bézier polygon

of the dth degree which prescribes weights for the control points Bi
(Bézier, 1973). Since the Bézier polygon is given by

τ τ= −J d
i (1 ) ,d i i i, ⎛

⎝⎜
⎞
⎠⎟ (7)

the parametrization of the utilized cubic Bézier curve in the

expanded form can be expressed as

τ τ τ τ τ τ τ= − + − + − +X B B B B( ) (1 ) 3 (1 ) 3 (1 ) .0 3 1 2 2 2 3 3 (8)

Notice, the Bézier curve can be used for a path parametrization in

2D and 3D, the only difference is in the dimension of the control

points, that is, Bi 2  and Bi 3  , respectively.

4.3 | Travel time estimation

Having a parametrization of the trajectory as a sequence of Bézier

curves described by (8), the travel time of the vehicle along

the trajectory can be computed from the velocity profile for the

trajectory. The maximal velocity and acceleration of the utilized

vehicles are limited individually for the horizontal movements by

the maximal speed vhoriz and the maximal acceleration ahoriz. Similarly,

the maximal speed vvert and the maximal acceleration avert limit the

vertical movements. Regarding these limitations, the vehicle velocity

along the given path is adjusted to minimize the travel time of the

trajectory, which is further referred as the TTE. The maximal

achievable velocity is determined concerning the path curvature

and the acceleration limits as follows.

The profile for the vertical velocity is directly computed from

the altitude differences along the curve, and thus the first and

second derivatives along the z axis are utilized, and the vertical

velocity is limited by vvert and avert. In the horizontal plane, two

different acceleration components are affecting the vehicle

simultaneously. The first one is the tangent acceleration atan
which is responsible for the speed changes. The second compo-

nent is the radial acceleration arad which is caused by the path

curvature, but it does not directly influence the vehicle velocity.

The tangent and radial accelerations are always perpendicular,

and their combined value cannot exceed ahoriz which can be

expressed as

+a a a≤ .tan2 rad2 horiz2 (9)

F IGURE 5 A search graph where each layer corresponds to one
target location p Pi  with particular heading values θ θΘ = …{ , }i i ih1 .
Two neighboring layers are fully connected by the oriented edges

representing the optimal Dubins maneuver between the states
[Color figure can be viewed at wileyonlinelibrary.com]
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The radial acceleration arad in the horizontal plane is given by

κ=a v ,hrad 2 (10)

where κh stands for the horizontal curvature of the trajectory, for

example, computed as

∣ ∣κ = ′ ′′ − ′ ′′
+′ ′

x y y x
x y( ) .h 2 2 3/2 (11)

Notice that for Bézier curves, the curvature has a closed‐form
expression. From the curvature, the maximal possible velocity vpos of
the vehicle along the trajectory can be computed from

κ
=v v amin , .hpos horiz horiz⎛

⎝⎜
⎞
⎠⎟ (12)

The maximal possible tangent acceleration atan is then defined by

κ= − = −a a a a v .htan2 horiz2 rad2 horiz2 pos4 2 (13)

The right side of (13) is always positive because of (12). Based on

these preliminaries, the velocity profile, and thus the TTE can be

numerically determined in the following six steps.

• Sample the parametrized path into a finite set of uniformly

sampled points and compute the horizontal curvature of the

trajectory (11) at each sample using the first and second

derivatives expressed from (8).

• Set the initial and final vehicle velocity to zero.

• Determine derivatives along the z axis and limit the vertical

velocity according to the vvert and avert.
• Compute vpos for every sampled point of the trajectory (12).

• Iterate over the samples forward and limit the vehicle velocity

and acceleration by the maximum possible tangent acceleration

(13), that is, adjust the travel time between the respective

samples.

• Iterate over the samples backward and limit the vehicle velocity

and acceleration by the maximum possible tangent acceleration

(13), similarly as in the previous step.

5 | VNS FOR THE m‐DTSPN
The proposed VNS‐based solution of the m‐DTSPN is based on the

existing deployment of the VNS metaheuristic to the m‐TSP (Soylu,

2015). The expected locations of the objects of interest � are

considered as target locations in the m‐DTSPN and the extension

towards the minimal turning radius ρ of the Dubins vehicle model and

nonzero sensing range δ is based on sampling possible heading values

and waypoint locations. In particular, s locations are uniformly sampled

for the neighborhood of each target �o  on the circle with the radius δ
centered at o. Then, h possible heading values are uniformly sampled for

each such a sampled location. Besides, an individual starting location for

each vehicle is considered, which better corresponds with the practical

deployment in the surveillance planning contrary to a common depot

utilized in (Soylu, 2015). Therefore, a modified initialization of the VNS‐
based solver is proposed to support the individual starting locations.

The VNS metaheuristic consists of two main procedures: The

shake and local search. The shake procedure is used to get the

currently best incumbent solution x from possible local optima by

changing it randomly to a solution ′x within the neighborhoods

…N N{ , , }k1 max . On the other hand, the local search procedure

searches fully specific neighborhoods of a solution ′x using lmax
predefined operators to find a possibly better incumbent solution,

which in the addressed minmax variant of the m‐DTSPN, is the one

with a smaller the longest tour. The utilized procedures are

detailed below, and a summary of the VNS‐based solver for the m‐
DTSPN is in Algorithm 1.

Algorithm 1: VNS‐based solver for the m-DTSPN
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(a) (b)

F IGURE 6 A search graph utilized in the proposed variable neighborhood search‐based approach to the m‐DTSPN with an example of the
found solution. (a) A search graph with h heading samples per each neighborhood sample …p p, ,i si1 for each target location oi . In this case, a fixed

initial vehicle location (depot) pd is considered without the neighborhood. (b) An example of a solution of the DTSPN with disk‐shaped
neighborhood (yellow) around each target location oi with uniform sampling of =s 6 waypoint locations (red) inside the neighborhood and

=h 6 heading samples at each possible waypoint location visualized as blue segments. DTSPN: Dubins traveling salesman problem with

neighborhoods [Color figure can be viewed at wileyonlinelibrary.com]

The VNS‐based solution to the m‐DTSPN uses static sampling.

Therefore, all possible Dubins maneuvers are precomputed, and all

the lengths are stored in a distance matrix to reduce the

computational burden during the VNS optimization. Thus, a solution

of a single vehicle for the prescribed visits to the targets can be

determined in a similar way as finding a Dubins tour in the DTP, just

instead of h possible states per each target, sh states are considered

(see the extended search graph in Figure 6).

Besides, a dynamic programming technique is utilized for storing the

particular distances from the tour start in the forward direction and also

from the tour end in the backward direction. For each target location oi
and the corresponding sample of the waypoint location pij and sample of

the heading value θik in the current solution, the shortest distances from

the starting samples (i.e., all samples corresponding to the starting

target location) and from the ending samples together with the

respective sequence of the particular samples are stored. Then, the

evaluation of the resulting path length for a simple target location

removal or addition require significantly less computational time

because all paths are precomputed and stored. Only the calculation of

the shortest connection from the previous and to the following target

location samples in the target location sequence is required without the

need to find the shortest path in the whole search graph shown in

Figure 6a. However, after each change to the sequence, the stored

shortest paths to particular samples have to be updated. Notice, the

first waypoint is the same as the final waypoint because the tours are

closed in the m‐DTSPN. Therefore, also the particular heading values

and the waypoint locations (for depots with neighborhood) must be the

same for both of these waypoints. When computing the shortest tour

over a given sequence of sampled waypoints (as shown in Figure 6b),

the shortest tour has to be evaluated for each sampled heading value at

the depot to keep the tour closed and minimal. In the case of the depot

with the neighborhood, it has to be also evaluated for every possible

waypoint location and the heading, which is naturally more demanding.

A tour in the VNS optimization represents a sequence of the

targets for which the most suitable heading and waypoint location is

determined from the sampled values. Therefore, a tour for the rth
vehicle is denoted Qr and it is a sequence of waypoints

= …( )Q q q q q, , , , ,r r r nr r0 1 0r (14)

where qr0 is the waypoint corresponding to the requested initial and

terminal location of the rth vehicle (i.e., the depot pdr ) and nr is the

number of objects of interest visited by the rth vehicle except qr0. The
waypoints qur for >u 0 are alternated during the VNS optimization

(while qr0 are fixed), but each qur in all tours always corresponds to a

unique object of interest �o  and all objects are visited by the

tours, that is, = =n n∑rm r1 . For better readability, we consider the

subscript u of qur as an index of the particular object and its waypoint

in the respective sequence of the waypoints Qr .
The most time‐consuming part of the initialization is the computation

of all Dubins maneuvers between all possible waypoints in the

sampleWaypoints() function, which are saved for further usage in the

VNS optimization. Regarding the particular numbers for the considered

mbzirc22 scenario with 22 targets locations and up to =m 3 vehicles, we

consider =s 6 and =h 12 which gives up to 1,620 waypoints. For such a

small number of waypoints, the initialization is fast, and it is done in tens

of milliseconds using conventional computational resources; however, the

precomputation becomes quickly computationally more demanding with

increasing n and the number of samples (see empirical evaluation in

Section 7).
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5.1 | Initialization procedure

The initialization heuristic utilized in the VNS‐based algorithm for the

m‐TSP in Soylu (2015) is based on the competitive rule initially

proposed to address the minmax variant of the m‐TSP by SOM in

Somhom et al. (1999) to favor shorter tours and rather do not extend

the longest one. The initialization starts with sorting all the target

locations �oi  according to its minimal distance dimin to any of the m
starting locations using the Euclidean distance. Then, a small tour for

each vehicle r m1 ≤ ≤ is created by adding one waypoint location

such that the Dubins tour connecting the initial location of the

rth vehicle with the added location has the minimal tour length

(Figure 7a). Thus, each Qr has the form =Q q q q( , , )r r r r0 1 0 and it

represents a Dubins tour consisting of two Dubins maneuvers from

qr0 to qr1 and from qr1 to qr0 with the lengths � q q( , )r r0 1 and � q q( , )r r1 0 ,

respectively. The length of the Dubins tour represented by Qr is

further denoted � Q( )r for brevity.

After the creation of the first tours, particular waypoints for all

not assigned objects are sequentially inserted to the tours in the

order defined by the increasing distance dimin of the target location to

the initial location. The respective waypoint q o( )i (together with its

heading and location) is selected during the determination of the

most suitable tour r* and the particular position j* in the tour using

the competitive rule

W� �= + +r j q q o q o q m r*, * arg min ( ( , ( )) ( ( ), )) ( , ),r m j n jr i i jr1≤ ≤ ,1≤ ≤ 1r
(15)

where q o( )i represents the most suitable location from up to s
samples around oi with the best heading of the h heading samples.

The term � m r( , ) represents the competitive weight introduced

in Somhom et al. (1999) to address the minmax variant of the m‐TSP.
It is computed as

�
� �

�
= +

+m r Q( , ) 1 ( ) ,r m
m avg
avg

(16)

where �
mavg is the average length of the Dubins tours …Q Q, , m1

� �=
=
∑m Q1 ( ).m
r

m ravg 1
(17)

An example of the solution created by the proposed Initialization

procedure is shown in Figure 7b.

5.2 | Shake procedure

The shake procedure is utilized to get the currently best incumbent

solution x from possible local optima by using up to kmax consecutive

simple one point moves. Each such a single move starts with a

random selection of two distinct tours …i j r i j, {1, , }, ≠ and one

target location in each tour u Q v Q,i j  , where u and v are the

position indexes of the particular selected target locations in the ith
and jth tours, respectively. Then, the corresponding object associated

with qui is moved from Qi to Qj where it is placed after the vth
position, such that the tours after the operation become

= … …− +Q q q q q( , , , , , )i i ui ui i0 1 1 0 and = … …+Q q q q q q( , , , , , , )j j vj ui vj j0 1 0 . By using

the one‐point move operation for = …k k1, , max times, the shake

procedure creates a random solution ′x within Nk neighborhood of

the original solution (see Figure 8). The particular number of the

performed operations for the results presented in this paper

is =k 5max .

5.3 | Local search procedure

The local search procedure uses a randomly created solution

produced by the shake procedure and systematically tries to find a

better solution. The used variant of the procedure is called

the sequential local search, which indicates the fact that all the

neighborhood operators are tested in a sequence according to

the value l of the six operators defined below (i.e., =l 6max ). Once

the solution quality is improved, the local search is started again to

optimize the improved solution. Notice that the ordering of the

operators in the local search procedure can significantly influence

the final solution quality. To improve the efficiency of the VNS

F IGURE 7 Tours for all =m 3 vehicles created by the proposed Initialization procedure of the variable neighborhood search based m‐
DTSPN (a) Initial small tours each with one target location. (b) Final solution created by the Initialization procedure. DTSPN: Dubins traveling
salesman problem with neighborhoods [Color figure can be viewed at wileyonlinelibrary.com]
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search, only operators that can decrease the length of the longest

tour are considered. The local search operators (Soylu, 2015)

adopted for the m‐DTSP(N) are as follows:

• One‐point move ( =l 1) operator uses the smallest neighborhood

possible to move only a single target location to a different tour.

• Or‐opt2 move ( =l 2) operator moves two adjacent target

locations to a different tour.

• Two‐point move ( =l 3) operator exchanges two points (target

locations).

• Or‐opt3 move ( =l 4) operator moves three adjacent target

locations to a different tour.

• Three‐point move ( =l 5) operator exchanges two adjacent target

locations from the longest tour with one target location in a

different tour.

• 2‐Opt move ( =l 6) operator (Croes, 1958) selects two target

locations in a tour and swaps the subtour between the targets

which tries to improve all individual tours separately. The

operator is repeatedly performed until it improves the tour

length. Notice, the original idea of this heuristic is to remove

unnecessary self‐crosses in a solution of the ETSP.

6 | UNSUPERVISED LEARNING FORm‐DTSPN AND 3D BÉZIER CURVE ‐BASED
MULTIVEHICLE SURVEILLANCE
PLANNING

A solution of the m‐DTSPN based on unsupervised learning has

been introduced in Faigl and Váňa (2017), and therefore, an

F IGURE 8 An example of the shake procedure sequence with = …k 1 3 random moves for =m 2 vehicles. (a) Incumbent solution x . (b) First
random move =k 1. (c) Second random move =k 2. (d) Third random move =k 3 [Color figure can be viewed at wileyonlinelibrary.com]

(b)(a) (c)

(e)(d)

F IGURE 9 A structure of the SOM for the TSP and visualization of the ring evolution during the learning. The green disks are the target

locations to be visited by the tour, and blue disks represent the neuron weights in the input space 2 . The connections between the input and
output layers represent that the best matching neuron is computed using its distance to the input signal (location). For the DTSP (Faigl & Váňa,
2017), each neuron is in addition to the neuron weights (locations) as a point in 2 also associated with the particular target (or waypoint)

location and with h heading values, and thus a solution of the DTSP can be determined from the ring of neurons after each learning epoch by
solving the related DTP, for example, using the forward search method described in Section 4.1. (a) A structure of SOM for the TSP, (b) Epoch
12, (c) Epoch 28, (d) Epoch 42, and (e) A DTSP solution. DTSP: Dubins traveling salesman problem; SOM: self‐organizing map; TSP: traveling

salesman problem [Color figure can be viewed at wileyonlinelibrary.com]
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overview of the method is presented in this section to provide the

necessary details for the proposed generalization to trajectory

planning using Bézier curves. The unsupervised learning frame-

work is based on the growing SOM for the TSPN proposed in Faigl

(2018) which differs from a regular SOM, that is, usually a 2D

lattice (Kohonen, Schroeder, & Huang, 2001) in the organization of

the output layer and incremental adding new neurons to the

network. In general, SOM for the TSP is a two‐layered neural

network in which the input layer serves for presenting the target

locations � and the output layer is organized into an array of

neurons (Angéniol, Vaubois, & Texier, 1988; Fort, 1988), which

defines a sequence of visits to the targets. The neuron weights are

in the same space as the input signals (target locations) and the

connected neuron weights form a ring in the input space 2 , and

thus represent a closed path in 2 (see Figure 9a, i.e., the weights

are considered as the neuron locations). SOM can be represented

as a sequence of neurons N ν ν= …( , , )M1 , where M is usually more

than two times the number of target locations (Somhom, Modares,

& Enkawa, 1997).

The unsupervised learning of the network is realized by an

iterative procedure in which all the target locations are presented

to the network and for each such a presented location �o  , the

best matching neuron is selected in the winner selection

procedure, that is, the neuron with the closest weights to o.
Then, the winner neuron is adapted towards the presented input

together with the neighboring neurons to the winner neuron with

decreasing power of the adaptation defined by the neighboring

function. In a single learning epoch, all targets are presented to

the network, and a solution of the TSP can be retrieved after each

epoch by traversing the ring, that is, the tour is constructed from

the targets associated with their winner neurons into a sequence

of targets defined by the position of the winner neurons in the

ring. During the adaptation, the winner neurons are getting closer

to the targets, and the network is stabilized in tens or hundreds of

epochs because of cooling schedule of the power of the

adaptation. An evolution of SOM in solving an instance of the

TSP is shown in Figure 9. For the DTSP, the neurons are

associated not only with a location in 2 but also with up to h
heading values (Faigl & Váňa, 2016). Therefore, a solution of the

DTSP can be determined after each learning epoch by a solution

of the DTP with the sequence of visits to the targets defined by

the order of the winner neurons in the SOM output layer (ring),

for example, using the feed‐forward search method presented in

Section 4.1.

In addition to the headings associated with the neurons,

the main part of the unsupervised learning for the DTSPN is the

winner selection in which expected heading of the vehicle at the

waypoint location is determined together with the waypoint

location itself. The idea of the winner selection is visualized

in Figure 10. The range of the neighboring neurons that are

adapted together with the winner neuron is restricted by the

neurons νprev and νnext such that the expected length of the

Dubins path (see the red curve in Figure 10) to visit the target

location o is minimized:

� � �ν θ θ ν= +o o( , ( , )) (( , ), ),g prev next (18)

where θ is one of the h heading values associated with the winner

neuron. Nevertheless, the search for νprev and νnext is limited to the

range M0.2 around the winner, where M is the current number of

neurons in the ring, as in other SOM‐based TSP solvers, for

example, Somhom et al. (1997). The neurons adapted with the

winner neuron ν* are in the range of νprev and νnext for which a

value of the neighbouring function (19) is above a threshold, i.e.,

empirically set to −10 5. The neighbouring function is defined for

the active neuron in a similar way as in a regular SOM for the TSP

(Cochrane & Beasley, 2003; Somhom et al., 1997):

σ
ν ν

ν=
σ

−

f d
e

( , )
for neurons around * in the range defined by

and
0 otherwise,

,prev
next

d2
2⎧

⎨
⎪⎪

⎩
⎪⎪

(19)

where σ is the learning gain and d is a distance of the neuron from

ν* in the number of neurons in the ring.

ν

prev

δ

o

p
o=(   ,    )

o
p pθν*

pop

ν

θ

next

F IGURE 10 A selection of the winner neuron for the presented

location o in unsupervised learning for the Dubins traveling
salesman problem with neighborhoods. The current ring of
neurons represents the Dubins path showed as the black curve

connecting the blue neurons. The closest point po of the Dubins
path to o is used as the neuron weights for the winner neuron. The
point op corresponds to the alternate target location towards

which the network is adapted because o can be covered within δ
sensing range from the target location. The shortest possible path
connecting νprev and νnext through the point o using the vehicle
heading θp is in red [Color figure can be viewed at

wileyonlinelibrary.com]
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The schema of the unsupervised learning is depicted in Algorithm 6.

Due to the nonmonotonicity of the length of the Dubins maneuvers,

the ring may contain unnecessary loops and crossings, and there-

fore, the simple 2‐Opt heuristic (Croes, 1958) is used to improve the

solution similarly as in other SOM‐based TSP solvers (Ahmad & Kim,

2015). The 2‐Opt heuristic is computationally inexpensive proce-

dure O n( )3 which can improve the solution about few percentage

points. In addition, the final trajectory is determined by the high‐
quality DTP solver (Faigl et al., 2017) which utilizes a tight lower

bound (Manyam & Rathinam, 2015) to stop the refinement of the

heading samples when the maximal number of samples 1,024 is

reached or when the ratio of the trajectory length to the lower

bound solution is less than 1.01. Notice, the sensing range δ can be

easily individualized for each particular object of interest by a

simple usage of the particular range in the winner selection.

Besides, in the case of the fixed starting location, the range can be

set to zero and the target location o is directly used as the alternate

target location op similarly to the solution of the DTSP (Faigl & Váňa,

2016, 2017).

Based on the empirical evaluation, the parameters of the learning

μ = 0.6, α = 0.1, and the initial value of σ = 10 can be considered as

fixed and they have been selected as a trade‐off between the

computational requirements and quality of the found solutions,

although they can be further tuned for specific scenarios. Thus, the

only parameters of the learning procedure are the number of

additional heading values h per each neuron and the maximal number

of learning epochs imax. Regarding the results presented in Faigl and

Váňa (2017), values >h 3 only increase the computational burden

and do not significantly improve the solution quality, therefore =h 3
is used for all the results presented in this paper. The network is

usually stabilized in around 130 learning epochs, and thus the

maximal number of learning epochs imax is set to =i 150max . A further

discussion of the network convergence can be found in Faigl and

Hollinger (2018). Nevertheless, a solution is available after each

learning epoch using the waypoint locations associated with the

winner neurons.

The computational complexity of a single learning epoch depends

on the number of targets n presented to the network and the number

Algorithm 2: Unsupervised learning algorithm for solving the DTSPN

Input : � – A given set of objects of interest

Input : pd – The requested initial location (depot) of the vehicle

Output : Q – Determined Dubins path covering �

⊳ Initialization:

1. For n target locations � , create a ring N with one neuron with the weights set to the starting location pd .

2. Set the learning gain =G 10, the learning rate μ = 0.6, the gain decreasing rate α = 0.1, and the epoch counter =i 1.
⊳ Learning Epoch:

3. For each target o in the randomized set �⋃Πo p( { })d

(a) Winner selection: Determine the point po together with the expected heading θp and waypoint location op as in Figure 10. Create a new neuron

with the weights po and add it as a new winner ν* to the ring.

(b) Adapt ν* and its neighbouring neurons (defined by νprev and νnext(18)) to op using the neighbouring function (19). The weights of each adapted

neuron ν are set to a new location ν ν μ σ ν′ = + −f d o( , )( )p .

⊳ Update:

4. Ring regeneration: Remove all nonwinner neurons. Use the sequence of the winner neurons defined by the ring together with the headings and

waypoint locations associated with the neurons to solve the DTSPN as a solution Qi of the related DTP using the sampling‐based algorithm

described in Section 4.1 with the length � �Q( , )i .

5. Update learning parameters: σ σ α= − i(1 ), = +i i 1.
6. Termination condition: If i i≥ max or winner neurons are negligibly close to the waypoint locations (e.g., less than −10 3) Stop the adaptation. Otherwise go

to Step 3.

⊳ Final Tour Construction:

7. Improve the solution Q using 2‐Opt heuristic (Croes, 1958).

8. Return the final trajectory as a solution of the DTP found by the guided sampling with up to 1,024 samples or the approximation factor 1.01 by the

algorithm (Faigl et al., 2017).
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of neurons M in the ring, which does not exceed n2 because of the

ring regeneration (Faigl & Váňa, 2017), and thus it can be bounded by

O n( )2 . The number of learning epochs is constant ( =i 150max ), and

thus the computational complexity depends on the 2‐Opt improve-

ment that can be bounded by O n( )3 and a solution of the DTP (Faigl

et al., 2017), which depends on the iterative forward search

procedure described in Section 4.1 with O nh( )3 . For a fixed =h 3,
the total computational complexity can be bounded by O n( )3 because

of 2‐Opt. Nevertheless, the real required computational time for the

mbzirc22 scenario is in hundreds of milliseconds as it is reported in

Section 7, which perfectly fits our expectation about the computa-

tional requirements.

6.1 | Learning for a team of vehicles

The described learning procedure for a single vehicle can be

straightforwardly applied to a team of vehicles by creating an

individual ring of neurons for each vehicle as � ν ν= …( , , )r r Mr1 r , where

Mr is the number of the neurons in the rth ring. The application

follows existing extension of the SOM‐based solution for the TSP to

the minmax variant of the m‐TSP (Faigl, 2016; Somhom et al., 1999)

where a winner neuron is preferably selected from the ring which

represents the shortest tour, which is motivated to minimize the

longest tour (Somhom et al., 1999). In the winner neuron

determination, the distance ∣ ∣p o( , )o of the point po on the Dubins

tour represented by the current ring � r and the target location o is

weighted according to the difference of the length � �( )r of the

Dubins tour represented by � r and the average length of the tours

represented by the rings. The winner neuron ν* is selected from the

ring r for which the respective point ∣ ∣p o( , )o used as the weights of ν*
has the minimal weighted distance:

� ∣ ∣=
…

r m r p oarg min ( , ) ( , ) ,r m or{1, , }
(20)

where � m r( , ) is the competitive weight (16) with the trajectory

length � Q( )r computed as the length of the trajectory represented by

the ring � r , that is, � �( )r is used instead of � Q( )r in (16) and (17).

A straightforward usage of the learning procedure depicted in

Algorithm 6 in multirobot planning would provide a set of m
independent patrolling routes. Therefore, in the case the initial

locations of the vehicles are prescribed by the depots …p p, ,d dm1 , each

ring � r is individually adapted towards pdr without the competition

among the rings prior a regular adaptation of the rings to the targets

� without the depots, which ensures each ring will be connected with

F IGURE 11 Evolution of SOM solving the mbzirc22 m‐DTSPN scenario with =n 22 target locations that are shown as small black disks.
The sensing range δ = 2 m is visualized by yellow disks around the target locations. The shown Dubins paths connect the neuron locations using

the determined headings. The minimal turning radius of the Dubins vehicle is ρ = 5 m, and the initial locations of the vehicles are highlighted by
the red disks. A solution is available after each learning epoch using the waypoints associated with neurons (not shown), and the network
converges (the neuron locations match their waypoint locations) in 118 learning epochs. The final solution is then improved by a solution of the
related DTP. (a) Epoch 1, (b) Epoch 25, (c) Epoch 50, (d) Epoch 75, (e) Epoch 118 – SOM solution, (f) final tours. DTP: Dubins touring problem;

DTSPN: Dubins traveling salesman problem with neighborhoods; SOM: self‐organizing map [Color figure can be viewed at
wileyonlinelibrary.com]
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the respective initial location pdr . Moreover, for such a case it is

suitable to consider the initial location without the neighborhood,

and thus, for the depots, δ = 0 is considered in the selection of

winner neurons and adaptions. An example of the SOM evolution is

visualized in Figure 11.

The computational complexity of the unsupervised learning in

solving the m‐DTSPN does not significantly increase because the

learning depends on the number of neurons that are distributed into

the particular rings. Therefore, the complexity grows only with the

additional m locations that are the individual depots of the vehicles.

Hence, the computational complexity can be bounded by +O n m(( ) )3
which for ≪m n can be bounded by O n( )3 , and thus it is independent

on the number of vehicles (see Best, Faigl, and Fitch (2018) for a

detail discussion.

6.2 | Surveillance planning with Bézier curves

The SOM‐based solution of the m‐DTSPN can be easily generalized

to a different parametrization of the trajectory. Even though the

Dubins vehicle is used in the above‐described procedure, the

unsupervised learning does not rely on the Dubins vehicle model.

In fact, the Dubins maneuvers can be substituted by any curve

parametrization, and in this study, we consider Bézier curves briefly

introduced in Section 4.2. Since Bézier curve can be used for the

parametrization of the 3D path, we do not use the kinematic model

of the Dubins vehicle (1). Instead of that, we consider the

hexacopters can generally follow any 3D path, and therefore, we

consider the position of the UAVs along the 3D path described as a

point =p x y z( , , ) 3  . The velocity v is defined by the turning angle

θ and the climb/dive angle of the trajectory ψ at the position p
θ ψ
θ ψ

ψ
= =

xy
z

vv ˙̇
˙

cos cos
sin cos

sin
.

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

(21)

Notice, here, we do not model the orientation of the vehicle;

however, the parameters of the Bézier curves are adjusted during the

unsupervised learning to provide fast execution of the determined

path by a real vehicle. Finally, a trajectory of the final solution is

constructed from the determined Bézier curves with respect to the

vehicle motion constraints using the computation of the velocity

profile and the TTE described in Section 4.2.

There are two main parts of the learning procedure where

additional computations related to Bézier curves have to be

included: (a) The winner selection and adaptation, and (b) the

determination of the trajectory represented by the ring instead of

a solution of the DTP with heading values sampled during the

learning. In the winner selection, the point po is determined in a

similar way as for the DTSPN, just a sequence of the Bézier curves,

each defined by four control points, (8) is utilized. However, it is

requested that the final trajectory is smooth and continuous, and

therefore, the following conditions have to be satisfied after the

adaptation of neurons to satisfy this requirement.

Let � i and � j be two consecutive Bézier curves (i.e., = +j i 1)
with the control points (Bi0,Bi1,Bi2,Bi3) and (B j0,B j1,B j2,B j3), respectively.
The last control point Bi3 of � i and the first control point B j0 need to

be identical to keep the trajectory continuous

F IGURE 12 An evolution of the proposed SOM‐based 3D surveillance planning using Bézier curves in solving 3D instance of thembzirc22 scenario
with target locations at different altitudes. The target locations are visualized as small disks surrounded by a spherical neighborhood for sensing range
δ = 2 m. The altitude of the targets and paths is indicated by the color (from a low altitude in the blue color to the highest altitude in the red). (a) Epoch
1, (b) Epoch 25, (c) Epoch 50, (d) Epoch 75, (e) Epoch 77 – SOM solution, and (f) final tours. SOM: self‐organizing map [Color figure can be viewed at
wileyonlinelibrary.com]
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=B B .i j3 0 (22)

Besides, the tangents of the Bézier curve have to point to the same

direction to support traveling of the vehicle along the final trajectory.

The tangents can be defined as

	 	= − = −B B B B,ai i i bi i i1 0 3 2 (23)

with the length of the particular tangent vector

	 	∣ ∣ ∣ ∣= =l l, .ai ai bi bi (24)

This requirement can be satisfied by the condition ensuring the

smooth trajectory

	 	=l l .aj bi bi aj (25)

The waypoint locations and headings are not sufficient to

define a Bézier curve represented by two neighboring neurons,

which is further called maneuver. Therefore, each neuron is

associated with the tangent vectors for the unique characteriza-

tion of the maneuver. Each Bézier maneuver is defined by two

tangent vectors separately, and thus a continuity of the velocity is

ensured by (25). Hence, each neuron νi is associated with the

heading angle θi , pitch angle ψi, and the lengths of the tangent

vectors lai and lbi . The tangent vectors for the two maneuvers, for

which νi is incident with, can be expressed as

	 	
∣ ∣ ∣ ∣

= =− l lv
v

v
v, .bi bi ai ai1 (26)

Notice that the tangent vector 	
−bi 1 corresponds with the Bézier

curve � −i 1 which terminates at νi . Conversely, 	 ai defines the initial

part of �i, and thus the indexes of these two tangent vectors that are

related to the same neuron differ.

In addition to the constraints on the consecutive Bézier

curves, a local optimization of the trajectory is performed after

the ring regeneration because the neurons that are not winners

are removed from the ring at the end of each learning epoch. For

the multivehicle planning, each ring is treated independently as an

optimization problem of minimizing the TTE along the trajectory

as follows.

The whole trajectory is described by the sequence of the

neurons � , where each neuron �νi  represents the particular

parameters of the Bézier curve. A single change of one neuron

influences the two incident Bézier curves, and it can also influence

the velocity profile of the whole trajectory. However, based on

our empirical observations, the changes are mostly local, and

therefore, the optimization of the whole trajectory is performed

locally and the values of θi , ψi associated with νi are numerically

optimized with respect to the velocity profile of the trajectory

defined by the three consecutive neurons in the ring ν −i 1, νi , and
ν +i 1. Notice, the ring is closed, and therefore, the subscripts of the

neurons are closed to the modulo of the number of neurons in the

ring. An example of the evolution of the proposed SOM‐based
solution for the 3D surveillance planning with Bézier curves is

visualized in Figure 12.

Beside these local optimizations, we used the idea of LIO

(Váňa & Faigl, 2015), and the individual local optimizations of all

neurons in the ring are performed in multiple iterations of the

whole ring. In particular, three iterations of the whole ring are

performed, and each neuron is locally optimized in each iteration.

The local numerical optimization uses a step 0.5% of the variable

range, and thus, the step for θ and ψ is π0.01 . On the other hand,

the 2‐Opt heuristics (Line 7 in the unsupervised learning

Algorithm 6) is not utilized, because any change would require

optimization of the control points. The modified learning

procedure is summarized in Algorithm 6.2. Each Bézier curve is

defined by the control points associated with the neurons

including the locations of the neurons, and thus a feasible solution

is not available after each learning epoch unless the waypoints

associated with the neurons are used, and a new trajectory is

determined. However, it is one of the most computationally

demanding parts, especially for completely changed locations, and

therefore, we do not consider the learning procedure with Bézier

curves as the any‐time algorithm. After the network convergence,

the velocity profile for the Bézier curve is calculated numerically

using 200 uniformly distributed samples for the range τ [0, 1]
according to (8). The real computational requirements are

reported in Section 7.

7 | RESULTS

An empirical evaluation of the proposed VNS‐based and SOM‐based
solvers for the m‐DTSPN consists of four main parts. First, the

algorithms’ performance is studied in the mbzirc221 scenario

because of our motivation for the addressed problem. After that,

the proposed generalization of the SOM‐based solver for surveil-

lance planning using Bézier curves is studied in 2D problems first,

and we compare trajectories consisting of Dubins maneuvers with

Bézier curves in the second part of the evaluation. Then, the

proposed unsupervised learning based 3D surveillance planning

with Bézier curves is studied in 3D scenarios. Finally, a brief

evaluation of the algorithms’ performance in larger problems is

presented in the fourth part of the herein reported results to

provide an overview of the expected performance of the evaluated

algorithms in different scenarios.

In addition to the proposed algorithms, the memetic algorithm

(Zhang et al., 2014) is included in the evaluation as it demonstrates

1The mbzirc22 scenario contains 22 objects of interest positioned at the target locations (in

meters): (27.5, 47.0), (10.0, 36.5), (51.5, 41.5), (32.0, 37.5), (67.0, 16.0), (44.0, 49.0), (44.0,

16.5), (49.5, 18.0), (60.5, 20.5), (39.5, 34.5), (78.0, 16.5), (67.0, 37.0), (76.5, 1.5), (28.5, 33.0),

(22.5, 11.5), (57.0, 31.0), (47.0, 33.0), (4.0, 17.5), (36.0, 12.0), (57.0, 43.0), (22.5, 36.5), (11.0,

42.0). The scenario is visualized in Figure 3 where the initial locations (depots) of the

vehicles are (10,1) for the first vehicle, (40,1) for the second vehicle, and (70,1) for the third

vehicle.
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high‐quality solution in Faigl and Váňa (2017), although it is

computational demanding. Regarding the motivation, the compu-

tational time for the VNS and memetic solvers has been limited to

1, 5, 10, and 60 s, because of our initial intention to have a solution

in less than 1 s. The SOM provides a solution of the addressed

problem in less than 1 s, and therefore, the computational time is

not explicitly limited, but the maximal number of the learning

epochs is set to =i 150max . The particular values of VNS solver

parameters and also learning parameters of the SOM are used as

they are reported in Section 5 and Section 6, respectively. The

parameters of the Memetic algorithm are selected as in

(Faigl & Váňa, 2017 according to the recommendation of (Zhang

et al., 2014, i.e., the population size is set to n20 , where n is the

number of target locations of the solved problem.

All the evaluated algorithms are randomized; therefore 20

trials are computed for every problem instance by each of the

evaluated algorithms, and the reported performance indicators

are computed as the average values accompanied by the standard

deviations and the best‐found solution from the solved trials. The

indicators of the solution quality are computed as the length of

the longest Dubins tour among the tours for the vehicles in the

team. Besides, the TTE is used in the case of Bézier curve and

velocity profiles computed for the Dubins tours. In addition to

average values of the length of the longest tour Lavg, and its

standard deviation Lstd, the quality of the best solution among the

trials is reported as L tbes .
The computational requirements are measured as the real

required computational time. All the algorithms have been

implemented in C++, and they use the same implementation for

computing Dubins maneuvers and solution of the related DTP. All

implementations are compiled by the same compiler Clang 4.0 and

executed within the identical computational environment using a

single core of the iCore7 processor running at 4 GHz. Therefore,

all the reported computational times represent realistic require-

ments and can be directly compared.

The particular evaluated algorithms and their variants with

the restricted computational time are denoted: Memetic 1 s,

Memetic 5 s, Memetic 10 s, Memetic 60 s, VNS 1 s, VNS 5 s, VNS

10 s, VNS 60 s, SOM (Dubins), and SOM (Bézier). The problems

being solved are parametrized by the number of vehicles

Algorithm 3: Unsupervised learning algorithm for surveillance planning with Bézier curves

Input : � – A given set of objects of interest

Input : pd – The requested initial location (depot) of the vehicle

Output : 
 �, – Determined surveillance trajectory that covers � and the computed TTE (using velocity profile)

⊳ Initialization:

1. For n target locations � , create a ring � with n neurons with the weights set such that the connected weights form a closed path around the center

of the target locations.

2. Set the learning gain =G 10, the learning rate μ = 0.6, the gain decreasing rate α = 0.1, and the epoch counter =i 1.
⊳ Learning Epoch:

3. For each target o in the randomized set �⋃Πo p( { })d

(a) Winner selection: Determine the point po and waypoint location op similarly as in Figure 10 but po is the closest point of the sequence of Bézier

curves to the location of o. The particular Bézier curve on which po is located is constructed from the respective two consecutive neurons and

the associated control points, that is, the tangents (directions) of the curves (Section 4.2). Create a new neuron ν* with the weights according

to po (for the location) and the tangents according to the Bézier curves to split it into two parts, and add ν* to the ring.

(b) Adapt ν* and its neighbouring neurons to op using the neighbouring function (19) but with the neighborhood defined as M0.2 , where M is the

current number of neurons in the ring. The weights of each adapted neuron ν are set to a new location ν ν μ σ ν′ = + −f d o( , )( )p , that is, only

the control points corresponding to the neuron location are modified and the tangents remain the same.

⊳ Update:

4. Ring regeneration: Remove all nonwinner neurons. Use the sequence of the winner neurons defined by the ring together with the control points and

waypoint locations associated with the neurons to optimize the sequence of Bézier curves using LIO (Váňa & Faigl, 2015).

5. Update learning parameters: σ σ α= − i(1 ), = +i i 1.
6. Termination condition: If i i≥ max or winner neurons are negligibly close to the waypoint locations (e.g., less than −10 3) Stop the adaptation. Otherwise go

to Step 3.

⊳ Final Tour Construction:

7. Return the final trajectory as a sequence of Bézier curves for which the velocity profile is determined using the procedure described in Section 4.2.
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m {1, 2, 3} , the sensing range δ limited to δ0 ≤ ≤ 5 m, and

the minimal turning radius ρ, which has the default value ρ = 5 m.

For the comparison of the Dubins maneuvers with the

Bézier curves the value of ρ is selected from the set

ρ {5, 6, 7, 8, 9, 10, 11, 12, 12.5} in meters and the velocity

profile is computed for = −v 5 mshoriz 1 and the maximal vehicle

acceleration = −a 2 mshoriz 2, which are also used for velocity

profiles along the trajectories consisting of Bézier curves.

7.1 | Performance evaluation in m‐DTSP
and m‐DTSPN
The m‐DTSP formulation represents the basic surveillance plan-

ning and the lengths found by the evaluated algorithms for m
vehicles are reported in Table 2, where the best results found

under less than 1 s are highlighted in bold, while the shortest

solution regardless of the computational requirements are under-

lined. For a single vehicle, the SOM‐based approach provides the

best solution in less than 250 ms, which is a bit more demanding

than the initialization part of the VNS (further denoted as the VNS

Init), see computational requirements depicted in Table 3. For the

relatively small problem mbzirc22 and =m 1, the VNS initializa-

tion is very fast, and a solution is provided in less than 100 ms.

Besides, the standard deviation for SOM is about 10 m, and

therefore, the most suitable algorithms seem to be the SOM‐
based planning framework and VNS‐based optimization. However,

for a team of UAVs, the best solutions found in less than 1 s are

provided by the proposed VNS solver, and they are found with

very low standard deviations because they are mostly based on

the initial solutions.

The memetic algorithm is capable of providing high‐quality
solutions, but as it has been reported in other studies mentioned

in the related work, it is computationally demanding. Even though

only the single mbzirc22 scenario is evaluated, the results indicate

the VNS probably scales better with the number of vehicles than

the memetic algorithm. Contrarily, the solution improvement for

increasing computational time is more evident for the memetic

algorithm than for the VNS which is highly related to the

proposed initialization of the VNS. Therefore, the main observa-

tion from the results is that the proposed initialization procedure

(Section 5.1) performed prior the VNS optimization perfectly fits

the properties of the mbzirc22 scenario and our practical

deployment.

The performance of the algorithms in the m‐DTSPN instances

with sensing range δ = {0.0, 2.0} meters is depicted in Figure 13

and the best solutions found by the selected algorithms are

visualized in Figure 14. Most of the algorithms provide slightly

shorter solutions for increasing δ ; however, two and three

vehicles are more beneficial, and the longest tour is shortened

more significantly than for a longer δ . Even though SOM provides

better results than the memetic 1 s (as it is reported in Faigl and

Váňa, 2017), it can be noticed that the SOM‐based approach

provides a bit worse results for δ > 0 than for δ = 0, which is

especially noticeable for =m 2. It is probably caused by marking

the neurons within the δ distance from the target as the winner

without the adaptation as the neuron already covers the target.

Besides, it can be related to the nonmonotonicity of the length

TABLE 2 Average and best found solutions of the −m DTSP mbzirc22 scenarios

m = 1 m = 2 m = 3

Method Lbest Lavg Lstd Lbest Lavg Lstd Lbest Lavg Lstd

Memetic 1 s 402.8 451.8 20.1 258.4 292.1 16.6 194.1 227.3 13.1

Memetic 5 s 318.5 343.3 17.4 194.4 222.1 19.0 139.6 163.2 15.9

Memetic 10 s 310.7 330.3 10.9 180.4 206.1 16.2 134.3 159.2 12.3

Memetic 60 s 306.4 323.6 28.7 170.7 193.2 13.6 131.0 145.1 6.7

VNS 1 s 318.6 318.6 0.0 173.7 173.7 0.0 130.5 133.8 1.5

VNS 5 s 318.6 318.6 0.0 173.7 173.7 0.0 130.5 133.2 0.9

VNS 10 s 318.6 318.6 0.0 173.7 173.7 0.0 130.0 132.3 1.6

VNS 60 s 318.6 318.6 0.0 173.7 173.7 0.0 130.0 130.6 0.8

SOM 311.2 326.8 10.6 170.5 195.5 14.5 136.3 156.1 13.0

Note. DTSP: Dubins traveling salesman problem; SOM: self‐organizing map.

TABLE 3 CPU time–SOM and initialization of the VNS inm‐DTSPN Scenarios

SOM–TCPU (ms) VNS Init–TCPU (ms)

Problem m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

mbzirc22,

δ = 0.0
224.2 195.5 173.9 94.5 50.5 39.9

mbzirc22,

δ = 0.5
165.9 157.5 159.7 1,108.8 1,232.8 1,206.8

mbzirc22,

δ = 1.0
152.7 151.1 151.6 1,312.2 1,160.1 1,100.0

mbzirc22,

δ = 2.0
134.4 135.2 142.0 1,978.8 1,085.9 983.7

Note. CPU: central processing unit; DTSP: Dubins traveling salesman

problem; SOM: self‐organizing map.
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(a) (b)

F IGURE 13 Average lengths of the longest path found by the evaluated algorithms in the mbzirc22 m‐DTSPN scenario with the sensing
range δ and m vehicles. The shown lengths are average values computed from 20 trials, and the standard deviations are shown as error bars,
and very low values are not visible. (a) m‐DTSP, δ = 0.0 m; (b) m‐DTSPN, δ = 2.0 m. DTSPN: Dubins traveling salesman problem with

neighborhoods; SOM: self‐organizing map; VNS: variable neighborhood search [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 14 Selected best found solutions of the mbzirc22 m‐DTSPN scenario δ = 2 m and with one (left), two (middle), and three (right)
vehicles found by the evaluated algorithms with the computational time limited to 1 s. (a) SOM (Dubins), =L 287.5best m; (b) SOM (Dubins),

=L 176.1best m; (c) SOM (Dubins), =L 136.8best m; (d) memetic 1 s, =L 398.2best m; (e) memetic 1 s, =L 266.1best m; (f) memetic 1 s,
=L 202.4best m; (g) VNS 1 s, =L 259.9best m; (h) VNS 1 s, =L 163.0best m; (i) VNS 1 s, =L 114.4best m. DTSPN: Dubins traveling salesman

problem with neighborhoods; SOM: self‐organizing map; VNS: variable neighborhood search [Color figure can be viewed at
wileyonlinelibrary.com]
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of Dubins maneuvers as such behavior is not observed in Faigl and

Hollinger (2018) nor for Bézier curves (Figure 15). However, this

phenomenon needs to be further investigated.

The required computational times of the SOM and the proposed

initialization procedure for the VNS are presented in Table 3. The

SOM‐based solver scales well with increasing m and δ . It is partially

because the network converges in less number of learning epochs,

but mostly because of saving the adaptation once a winner neuron is

in the neighborhood of the particular target location. Decreasing

computational requirements with m can be surprising, as algorithms

are usually more demanding for multirobot problems. However, the

SOM benefits from the spatial allocation of the neurons and the total

number of neurons is almost the same as for the single robot

instances. Therefore, a selection of νprev and νnext in the minimization

of (18) is quicker because fewer neurons are in the ring and the most

time‐consuming operation is the computation of Dubins maneuvers.

Notice, in SOM, Dubins maneuvers are computed on demand, and

none of the precomputed distances are utilized because sampling of

the heading and waypoint locations is performed online during the

learning.

The SOM is far the fastest solver from the evaluated algorithms,

especially for the m‐DTSPN instances where the VNS initialization

suffers from the sampled waypoint locations ( =s 6) which make the

construction of the initial tours demanding. For nonzero sensing

range δ , the initialization takes more than 1 s, and therefore, VNS 1 s

does not satisfy the limit on the computational time. Also, less time is

available for the VNS optimization for the higher limit of the

computational time because of the demanding initialization. Besides,

the optimization itself is also demanding because of the evaluation of

the possible waypoint locations, and thus only a few iterations are

performed, and the solution is not improving within the given time

limit up to 60 s.

The memetic algorithm provides worse results than SOM for 1 s

limit, but it is capable of improving the solution if more computa-

tional time is available. However, it starts with a relatively poor

solution, and even in 60 s, the solution is improved to be only close to

the solution provided by the VNS solver.

Based on the reported results, it can be summarized that the

proposed SOM‐based approach for the m‐DTSPN can be preferred

whenever the computational requirements matters. It is a far way the

fastest approach providing solutions in hundreds of milliseconds, and

thus it perfectly fits real‐time requirements. On the other hand, if the

computational requirements are not limited, the proposed VNS‐
based approach is capable of providing best solutions. However, in

the case of exploiting nonzero sensing range δ , depending on the

selected number of samples of possible waypoint locations and

heading values, the VNS‐based algorithm can be quickly computa-

tionally demanding.

7.1.1 | Real deployment

Verification that the planned paths are feasible for the real vehicles

has been performed in real experiments with three vehicles, and

thus the setup of the experiment corresponds to the evaluated

mbzirc22 scenario with =m 3. Since the mutual trajectory collisions

are not explicitly addressed in the m‐DTSPN formulation, a solution

without mutually crossing trajectories is selected from the found

trajectories. It is not a big issue for the mbzirc22 instances because

the initial locations of the vehicles support splitting the field that is

approximately 60 m× 80m large (Figure 3). Besides, in our early

results on the SOM‐based planner (Faigl & Váňa, 2017), we further

consider initial positions of the vehicles not only with different

coordinates along the x axis but also along the y axis (see the small

red disks denoting depots in Figure 17). In addition, the SOM‐based
solver tends to find mutually noncrossing paths because of SOM

property to preserve the topology of the input space (Faigl, 2016).

The mutually noncrossing tours are not guaranteed, and this can be

further addressed by adjusting velocity profiles which is out of the

scope of the herein presented approach. Nevertheless, empirical

results provide sufficient solutions that have been deployed in the

field testing.

A snapshot of the planned and real trajectories is visualized in

Figure 17. The UAVs have been operating at the altitude of 7m with

the trajectory following provided by the MPC (Báča et al., 2016). The

real‐time kinematic global positioning system (GPS) with precision

less than 2 cm has been utilized for controlling the UAVs and

recording the real trajectories. The particular value of sensing range

according to the camera field of view is 4 m, but δ has been set to

δ = 2 m for the trajectory planning because of noise and imperfec-

tions in the trajectory following, which can be observed in the

recorded real trajectories. Even though the trajectory following is not

perfect, a sufficient vicinity of the object of interest has been

achieved. Besides, the real deployment of the proposed Dubins‐based
planning approach has been thoroughly validated during participa-

tion of the CTU team in MBZIRC 2017 (MBZIRC, 2017). Thus, a

further step in the proposed approach for surveillance planning with

UAVs is the utilization of Bézier curves as the trajectory parame-

trization.

F IGURE 15 Planned and real executed trajectories by unmanned
aerial vehicles, results adopted from Faigl and Váňa (2017) [Color
figure can be viewed at wileyonlinelibrary.com]
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7.2 | Surveillance planning with Dubins maneuvers
and Bézier curves

The proposed extension of the unsupervised learning to the

utilization of Bézier curves is compared with the Dubins vehicle

model utilized in the SOM, memetic, and VNS algorithms in a single

vehicle scenario. The planning with Bézier curves directly optimizes

the TTE using the velocity profiles computed according to the

algorithm presented in Section 4.2. On the other hand, the Dubins

vehicle model assumes a constant forward velocity v , and therefore,

the TTE can be computed from the path length and v . However, the

velocity depends on the allowed radial acceleration when the vehicle

follows the circular path with the minimal turning radius ρ. We

consider the maximal allowed horizontal acceleration = −a 2 mshoriz 2
for which the forward velocity is computed as ρ=v ahoriz . Hence,

the vehicle can travel at the maximal horizontal velocity

= −v 5 mshoriz 1 along Dubins maneuvers with ρ = 12.5 m, which

may provide longer paths. Shorter paths can be determined for

shorter ρ, but the vehicle needs to travel with a lower velocity.

Therefore, we consider ρ5.0 ≤ ≤ 12.5 and determine the most

suitable ρ for the mbzirc22 instance of the DTSP regarding the TTE.

In addition to such a simple computation of the TTE along the

Dubins path with a constant forward velocity, we determine a faster

trajectory considering the motion of the hexacopter is limited by the

maximal acceleration and not by the minimal turning radius.

Therefore, the hexacopter can accelerate on the straight segments

of the Dubins path, and a lower velocity vturn can be computed for the

turning segments according to the maximal allowed horizontal

acceleration ahoriz as

κ
=v v amin( , ),hturn horiz horiz (27)

where κh is the horizontal curvature (11) of the trajectory. For the

turning radius ρ, (27) can be expressed as

ρ=v v amin( , ).turn horiz horiz (28)

The average values of the TTE for different ρ are depicted in Figure 16,

where the simple computation of the TTE based on constant forward

velocity is denoted (Dubins), and the results for the acceleration on

straight segments are denoted (Dubins + acc). Notice that for the VNS,

only the initialization part is performed because of =m 1.

(a) (b)

F IGURE 17 Average values of the TTE (left) and required computational times (right) for the proposed SOM‐based surveillance planning
with Bézier curves. SOM: self‐organizing map; TTE: travel time estimation [Color figure can be viewed at wileyonlinelibrary.com]

(a) (b)

F IGURE 16 Average values of the TTE along the planned trajectories for the Dubins vehicle with different minimal turning radius ρ. The
SOM‐based framework allows usage of the Dubins vehicle model denoted as the SOM (Dubins) and Bézier curves denoted as the SOM (Bézier).
(a) A constant forward velocity;(b) acceleration/deceleration up to vhoriz. SOM: self‐organizing map; TTE: travel time estimation; VNS: variable

neighborhood search [Color figure can be viewed at wileyonlinelibrary.com]
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The fastest trajectories are provided by the SOM‐based
planning with Bézier curves. The results further indicate that for

the considered mbzirc22 scenario, the fastest Dubins paths are

provided by the proposed initialization of the VNS‐based algorithm

with ρ = 7 m, for which the TTE is a bit shorter (85.5 s) than the

found trajectory consisting of Bézier curves with =TTE 86.6 s.

However, suitability of the particular value of ρ depends on the

configuration of the target locations as it is indicated by shorter ρ
and trajectories determined by the other solvers with the

acceleration of the vehicle on the straight line segments. Therefore,

Bézier curves seem to be a more suitable option than the Dubins

vehicle model. Here, it is worth noting that the proposed SOM‐
based planning with Bézier curves converges better than with the

Dubins maneuvers with nonmonotonicity of the maneuver length,

which can also be the reason for better solutions found by the

unsupervised learning than the simple heuristic used in the

VNS Init.

The surveillance planning with Bézier curves is further

evaluated in instances of the mbzirc22 scenario with increasing

sensing range δ and m vehicles. The average value of the TTE

together with the real required computational times are depicted in

Figure 15. Also, in this case, adding more vehicles to the team

decreases TTE more significantly than increasing δ , but an

improvement for a longer sensing range is noticeable (Figure 18).

The computational requirements of the unsupervised learning are

almost about two orders of magnitude higher than using the Dubins

vehicle model. It is mainly because Dubins maneuvers are

determined analytically while a numerical optimization is utilized

for the optimization of Bézier curves. Nevertheless, solutions are

provided in less than 15 s using the conventional computational

resources.

Real experimental verification is not performed for the 2D Bézier

curves and velocity profiles of the Dubins tours because of the

utilized MPC‐based controller (Báča et al., 2016) which guarantees

the trajectories are finished at the desired time. Therefore, Bézier

curves are further evaluated in the 3D surveillance scenarios in the

next section.

7.3 | Performance evaluation in 3D surveillance
scenarios

The usage of Bézier curves provides a great advantage in a direct

deployment of the proposed unsupervised learning based planning in

3D surveillance scenarios. The testing scenario mbzirc22 has been

extended to 3D by adding altitudes to the particular target locations.

It can be expected that a high variance in the target altitudes would

need a longer trajectory than the 2D scenario. Therefore, we

consider two scenarios with different ranges of the altitude changes

to study limits of the maximum horizontal velocity vhoriz and the

maximal vertical velocity as vvert. For low altitude changes in the

range of 5 and 10m, the vehicle mostly needs to travel horizontally,

and thus it is expected the vehicle velocity will be saturated at vhoriz
more frequently than for high altitude changes of the target locations

in the range of 5 and 20m, where the vehicle needs to change the

altitude, and thus, it is limited by vvert. The considered horizontal

limits are the same as for the 2D planning, that is, = −v 5 mshoriz 1 and

= −a 2 mshoriz 2. The vertical limits correspond to the capabilities of

the used real UAVs and are set to = −v 1 msvert 1 and = −a 1 msvert 2.
An example of the 3D surveillance scenarios with low and high

altitude changes in the target locations created from the mbzirc22

scenario is depicted in Figure 19 together with the horizontal

position and altitude along the trajectories and the corresponding

velocity profiles. As expected, increasing altitude changes increases

the time needed to travel along the trajectory, and therefore, we

validated the trajectories in a real experimental deployment.

7.3.1 | Experimental validation
of the 3D surveillance planning

Feasibility of 3D trajectories planned by the proposed SOM‐based
framework with Bézier curves has been validated in a real experiment

with three vehicles and modified mbzirc22 scenario with the target

locations at different altitudes. The same hardware and GPS‐based
localization as in the validation of the Dubins tours have been utilized.

A snapshot from the field experiment is depicted in Figure 20.

F IGURE 18 Selected found solutions for the proposed SOM‐based surveillance planning with Bézier curves for a single vehicle ( =m 1) and
various sensing ranges. (a) δ= 1m, TTE = 77 s. (b) δ = 2m, TTE = 70.8 s. (c) δ = 3m, TTE = 69.6 s. TTE: travel time estimation [Color figure can be
viewed at wileyonlinelibrary.com]
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F IGURE 19 An example of the 3D surveillance problems with low (left) and high (right) altitude changes in the target locations of the
mbzirc22 scenario and solutions found by the proposed SOM‐based algorithm with Bézier curves (top), particular positions of the vehicles along
the found paths (middle), and velocity and acceleration profiles (bottom). (a) Three‐dimensional surveillance scenarios with low (left) and high

(right) altitude changes and found solutions. (b) A position of the vehicle along the trajectories. (c) Velocity and acceleration profiles for vehicles
traveling along the determined trajectories. SOM: self‐organizing map [Color figure can be viewed at wileyonlinelibrary.com]
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The evaluated scenario with the sensing range δ = 2 m together

with the planned and real trajectories of the vehicles from two trials

are depicted in Figure 21 with the corresponding planned and real

velocity profiles presented in Figure 22. Also in this real deployment,

the MPC‐based trajectory following controller (Báča et al., 2016) has

been utilized, and all the planned trajectories have been found

feasible. Besides, all the target locations have been visited within the

requested distance, which is δ + 2m because of the identified

behavior of the MPC controller as in the previous case. The vehicles

reached their velocity limits in both direction, that is, vhoriz and vvert,
which is indicated in Figure 22.

7.4 | Performance evaluation in complex instances

In this part of the presented results, we report on an overview of the

performance of the evaluated algorithms in instances that are beyond

the motivational mbzirc22 scenario with the aim to show particular

properties that may not be directly visible from the previous results.

First, we focus on the proposed initialization of the VNS algorithm,

which seems to be fast and powerful in the m‐DTSP instances but it

becomes quite demanding in m‐DTSPN with δ > 0 as it is shown in

Table 3. Moreover, it is even more demanding in the instances where

the initial vehicle position is not a single waypoint location, but it is

considered with the same neighborhood δ as the other target locations.

The required computational times for the mbzirc22 scenario with δ = 2
m and m vehicles is depicted in Table 4. SOM‐based solvers are not

influenced by δ > 0, but the VNS initialization is several times more

demanding when the neighborhood is considered for the initial

locations of the vehicles, that is, δ δ=d , and thus, the solution is not

provided in less than the desired 1 s.

An additional evaluation is focused on the solution of large

problems since the mbzirc22 scenario is relatively small. Therefore,

the solvers have been deployed in two random instances with 50 and

100 relatively dense target locations. In this case, the minimal turning

radius for the Dubins vehicle is set to ρ = 1 m, but all other

parameters are the same as in Section 7.2.

The average values of the TTE using acceleration/deceleration for

the Dubins maneuvers are shown in Figure 23, and selected solutions

are depicted in Figure 24 for =n 50 and in Figure 25 for =n 100
target locations. The results indicate that the fastest trajectories are

provided by the SOM solver with Bézier curves.

The memetic algorithm is not competitive with the proposed

SOM nor the VNS algorithm. Notice, for large instances, the

initialization of the VNS can be more demanding, and thus more

than the dedicated computational time can be spent on the creation

of the first feasible solution (Figure 26).

Regarding the computational requirements, the best trade‐off
between the solution quality and computational time is provided by the

VNS‐based solver or more precisely by the initialization procedure

proposed in Section 5.1. For the larger problem with =n 100, the VNS

initialization takes about 15 s while SOMwith Dubins maneuvers takes

only about three seconds for =m 1. However, for more vehicles, the

VNS initialization is less demanding, and it is competitive to the SOM

with the Dubins vehicle model. The heuristic initialization of the VNS

works faster with more vehicles because the evaluation of all possible

insertions is faster for tours with fewer targets.

7.5 | Discussion

Based on the presented results, the SOM‐based algorithm scales

better in the problems with nonzero sensing range, but for the

m‐DTSP, the superior results are provided by the proposed heuristic

F IGURE 20 Planned and real trajectories executed
simultaneously on three hexacopters. The target locations of the
mbzirc22 scenario are depicted as small black spheres each

surrounded by its spherical neighborhood δ = 2 m. The three
additional initial locations of the vehicles are positioned at the
altitude of 5m, and they are visualized as small red spheres. The

planed trajectories are shown by blue curves, and the trajectories
from two experimental trials are visualized by curves with the color
based on the altitude (from blue to red for increasing altitude) [Color
figure can be viewed at wileyonlinelibrary.com]

F IGURE 21 A snapshot of the three unmanned aerial vehicles
deployed in the experimental verification of following the planned 3D
trajectories [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 22 Planned and real horizontal (top) and vertical (bottom) velocity profiles from two experimental trials for each of the vehicle.
Each column corresponds to one vehicle according to Figure 21 (from left to right) [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 4 Influence of vehicle initial locations with neighborhood in mbzirc22 and δ = 2.0 m

Depot SOM (Bézier)–TCPU (s) SOM (Dubins)–TCPU (s) VNS Init–TCPU (s)

δd (m) m = 1 m = 2 m = 3 m = 1 m = 2 m = 3 m = 1 m = 2 m = 3

δ = 0d 8.5 8.7 8.9 0.1 0.1 0.1 2.0 1.1 1.0

δ = 2d 8.3 9.3 8.9 0.2 0.2 0.1 5.3 6.2 5.5

Note. SOM: self‐organizing map.

m = 1 m = 2 m = 3

TT
E 

[s
]

0
20

40
60

80
10

0
12

0

SOM (Bézier)
SOM (Dubins + acc)
Memetic 60 s (Dubins + acc)

VNS 1 s (Dubins + acc)
VNS 60 s (Dubins + acc)

m = 1 m = 2 m = 3

TT
E 

[s
]

0
10

0
20

0
30

0
40

0
50

0

SOM (Bézier)
SOM (Dubins + acc)
Memetic 60 s (Dubins + acc)

VNS 1 s (Dubins + acc)
VNS 60 s (Dubins + acc)

(a) (b)

F IGURE 23 Average values of the TTE for large problems with n target locations. (a) m‐DTSP instance with =n 50; (b) m‐DTSP instance
with =n 100. DTSP: Dubins traveling salesman problem; SOM: self‐organizing map; TTE: travel time estimation; VNS: variable neighborhood

search [Color figure can be viewed at wileyonlinelibrary.com]
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initialization used for the initial construction of a feasible solution

prior a further improvement by the VNS optimization. A great benefit

of the SOM solver is its flexibility to utilize Bézier curves that allow

for exploiting motion capabilities of the used hexacopters which are

not limited by a minimal turning radius ρ as the Dubins vehicle.

Comparing parametrization of the requested surveillance trajectories

F IGURE 24 Selected found solutions for the problem with =n 50 target locations and one vehicle ( =m 1). (a) SOM (Bézier), =TTE 80.2 s;
(b) SOM (Dubins), =TTE 87.6 s; (c) VNS 60 s (Dubins), =TTE 89.3 s. SOM: self‐organizing map; TTE: travel time estimation; VNS: variable
neighborhood search [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 25 Selected best found solutions for the problem with =n 100 target locations and three vehicles ( =m 3). (a) SOM (Bézier),
=TTE 55.2 s; (b) SOM (Dubins), =TTE 72.3 s], (c) VNS 60 s (Dubins), =TTE 70.8 s. SOM: self‐organizing map; VNS: variable neighborhood

search [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 26 Average required computational time for large problems with n target locations. (a) m‐DTSP instance with =n 50; (b) m‐DTSP
instance with =n 100. DTSP: Dubins traveling salesman problem; SOM: self‐organizing map; VNS: variable neighborhood search [Color figure
can be viewed at wileyonlinelibrary.com]
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using Dubins vehicle model and the proposed sequence of Bézier

curves, the main advantage of Dubins maneuvers is the closed‐form
solution for two waypoints with prescribed headings, which leads to

lower computational requirements. On the other hand, the Bézier

curves better fit the real limitations of the multirotor vehicles that

are not limited by minimal turning radius, but by the maximal vehicle

velocity and acceleration limits.

In small scenarios such as mbzirc22, it can be possible to find the

best performing radius ρ for which Dubins maneuvers provide similar

TTE as the Bézier curves, but only if velocity profiles are determined

with the allowed acceleration/deceleration up to vhoriz. For larger

instances, it may not be beneficial because of computational

requirements for solving the m‐DTSPN for several values of ρ would

be similar or higher than a solution using the Bézier curves. Finally,

the main advantage of the Bézier curves is a direct generalization of

the surveillance planning to the 3D, which is not directly possible for

the Dubins vehicle. The Dubins Airplane model (Chitsaz & LaValle,

2007, December) can be used for 3D trajectory planning; however,

shorter and faster trajectories will be found using the proposed

Bézier curves for multirotor vehicles that do not need to use the

additional spiral to gain the requested altitude, as these vehicles can

directly flight almost in any direction. Therefore, if the configuration

of the planning problem is known in advance and enough time to

compute several solutions is available, which is not the case of the

robotic competition, it can be suitable to consider the Dubins vehicle

model. In other cases and especially 3D planning with δ > 0, the
proposed SOM‐based unsupervised learning framework with Bézier

curves is a suitable choice.

The reported evaluation results are only for problem instances

with up to three vehicles because of our motivation arising from

the MBZIRC 2017 competition, where we deployed only three

vehicles. All the proposed and evaluated algorithms for m‐DTSPN

including the SOM‐based method for surveillance planning with

Bézier curves can solve problems with a higher number of vehicles;

however, we do not consider such scenarios because of the scope

of this paper and challenging experimental verification, for

example, with 10 vehicles, that needs significantly larger and

more demanding experimental setup. Regarding scalability of the

used SOM‐based unsupervised learning, it is worth mentioning

that it can be considered as independent on the number of vehicles

if the number of target locations n is significantly higher than the

number of vehicles m, that is, ≫n m (see the analysis in Best

et al. (2018)).

For multirobot deployment, an important part of the surveillance

planning is collision avoidance. In the presented approach, we do not

include the collision avoidance explicitly in the planning part because

it is addressed in MPC‐based controller used in the trajectory

following which is considered to be out of the scope of this paper.

The reactive collision avoidance based on the MPC predictions uses a

slight alteration of the desired trajectory altitude if the MPC

predictions contain collisions between the vehicles. The used MPC‐
based collision avoidance is partially described in Spurný et al. (2018)

and it is presented in Báča et al. (2018). Besides, the found solutions

and especially those found by the proposed unsupervised learning

are such that the found trajectories are mutually noncrossing, and

thus collision‐free (see a discussion on that in Faigl (2016). Although

noncrossing trajectories are not guaranteed; such solutions are found

with a high probability in the considered scenarios also because of

the selection of the vehicle depots that have to respect safety zones

around each vehicle.

Regarding future work related to the proposed solvers, there are

several open questions in addition to the explicit consideration of

collision‐free trajectories. One of them is that the proposed VNS

initialization exhibits surprisingly good results and since it seems the

VNS optimization scales poorly with increasing computational time,

such an initial solution can be fed to the memetic algorithm for

further improvement. For large instances with tens, hundreds, and

more target locations, the unsupervised learning with Bézier curves

seems to scale better than the VNS, and there are two ways how

the computation can be further speeded up. The first is to improve

the local optimization. The second is to exploit parallelization of the

unsupervised learning of SOM, which has been already reported in

the literature including SOM for the TSP.

The promising results of the Dubins vehicle model with various ρ
accompanied with the computation of the velocity profile for

hexacopters provide a source of motivation for generalization of

the proposed approaches to consider multiple radii simultaneously

during the optimization. In addition, a further generalization of the

Dubins vehicle model used in the proposed solvers towards the 3D

Airplane model or Dubins‐Helix model is also a possible subject for

the future work.

8 | CONCLUSION

In this paper, we address surveillance planning problem motivated

by our participation in the robotic competition MBZIRC 2017.

Because of the motivation, we aim to quickly find a solution to the

planning problem with satisfiable quality, and thus we focus on the

heuristic solution rather than optimal algorithms. The problem is

first tackled as a variant of the m‐DTSPN with the Dubins vehicle

model for satisfying curvature‐constrained trajectories that fit

properties of the utilized trajectory follower. The m‐DTSPN has

been addressed by the proposed VNS‐based and SOM‐based
algorithms that are significantly less demanding than the existing

memetic algorithm, and both proposed algorithms provide better

solutions in less computational time. However, Dubins vehicle

model is suitable for vehicles with the limited turning radius, i.e.,

not necessarily the case of the used hexacopters whose motion is

constrained by the maximal velocity and acceleration limits.

Enabled by the flexibility of the used unsupervised learning, we

propose to consider a more general trajectory parametrization

based on Bézier curves, which enable to better exploit motion

capabilities of the used vehicles. Moreover, it also allows solving

3D surveillance planning missions and finding 3D smooth trajec-

tories for a team of our hexacopters. The solutions found by the
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proposed algorithms have been numerically evaluated in several

realistic problem instances. Besides, the solutions have also been

experimentally verified by a real multirobotic system, where all the

provided trajectories have been found feasible, and they fit the

properties of the utilized trajectory following controller of the used

hexacopters.
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Chapter 7

Physical Orienteering Problem for Unmanned Aerial

Vehicle Data Collection Planning in Environments

with Obstacles

The last core publication of this thesis is the article [5c] published in the IEEE Robotics
and Automation Letters concerning Physical Orienteering Problem (POP).

[5c] R. Pěnička, J. Faigl, and M. Saska, “Physical orienteering problem for un-
manned aerial vehicle data collection planning in environments with obstacles,”
IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 3005–3012, 2019

The POP is an extension of the OP with the ordinary maximization of the collected
reward within a limited budget; however, for environments with obstacles. The problem thus
combines the collision-free motion planning in configuration space [27] with the OP routing
over multiple target locations. The task of collision-free motion planning is to find feasible
paths between individual pairs of target locations in the environment with obstacles. The
POP objective is then to select a subset of the target locations and a sequence to visit them
within the prescribed budget using the collision-free motion plans found so-far. However, the
cost of so-far found motion plans highly influence the final solution quality through the limited
budget. Therefore, the routing (subset and sequence selection) and motion planning have to
be addressed simultaneously. The POP can be understood as the OP in configuration space.

The proposed method for the POP combines the VNS-based method with asymptoti-
cally optimal sampling-based Probabilistic Roadmap (PRM*) [89] method in a tightly coupled
algorithm denoted as the VNS-PRM*. The VNS part for the routing uses similar shaking and
local search procedures as presented for the first three core publications [1c]–[3c]. However,
the local search procedure is additionally used to search the combinatorial routing part of the
POP for high-quality and possibly over-budget solutions that can be shortened. The collision-
free motion plans in such identified solutions can be then shortened by additional PRM*
sampling between individual target locations. The PRM* part of the algorithm uses initially
a low-dense sampled roadmap. The roadmap is then continuously expanded in every iteration
of the VNS-PRM* based on the local search combinatorial search. The sampling strategy
prefers expansion for shortening solutions with small budget overshoot and with high reward,
possibly better than the so-far best found. Such expansion can shorten the motion plans be-
tween the targets in the roadmap and thus allows the VNS combination part to find higher
rewarded solutions using the same budget limit.

The proposed VNS-PRM* method is compared with the optimal solution of the POP
for point robot in the 2D environment found as a combination of the ILP solution of the OP
on visibility graph roadmap. The VNS-PRM* is shown to find the optimal solutions for the
majority of the tested instances. The comparison with the existing method for the PCTSP [95]
shows that the VNS-PRM* significantly outperforms the method for the tested Dubins vehicle
model. The method is finally shown when employed in a 3D environment and also in a real
outdoor experiment with hexarotor UAV with a non-point robot model.

The author’s contribution on this article is 70 %, including writing the manuscript and
implementing the method. The co-authors contributed by giving valuable feedback.
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Physical Orienteering Problem for Unmanned
Aerial Vehicle Data Collection Planning in

Environments with Obstacles
Robert Pěnička, Jan Faigl, and Martin Saska

Abstract—This paper concerns a variant of the Orienteering
Problem (OP) that arises from multi-goal data collection sce-
narios where a robot with a limited travel budget is requested
to visit given target locations in an environment with obstacles.
We call the introduced OP variant the Physical Orienteering
Problem (POP). The POP sets out to determine a feasible,
collision-free, path that maximizes collected reward from a subset
of the target locations and does not exceed the given travel budget.
The problem combines motion planning and combinatorial opti-
mization to visit multiple target locations. The proposed solution
to the POP is based on the Variable Neighborhood Search (VNS)
method combined with the asymptotically optimal sampling-
based Probabilistic Roadmap (PRM*) method. The VNS-PRM*
uses initial low-dense roadmap that is continuously expanded
during the VNS-based POP optimization to shorten paths of
the promising solutions, and thus allows maximizing the sum
of the collected rewards. The computational results support the
feasibility of the proposed approach by a fast determination
of high-quality solutions. Moreover, an experimental verifica-
tion demonstrates the applicability of the proposed VNS-PRM*
approach for data collection planning for an unmanned aerial
vehicle in an urban-like environment with obstacles.

Index Terms—Motion and Path Planning; Aerial Systems:
Applications

I. INTRODUCTION

IN this paper, we study a generalization of the Orienteer-
ing Problem (OP) [1] to address robotic route planning

problems in environments with obstacles and with an arbitrary
motion model of the used vehicle. The introduced problem is
called the Physical Orienteering Problem (POP), and it can
be considered as the OP explicitly deployed in the configu-
ration space [2] where both the obstacles and vehicle motion
constraints can be addressed. The OP belongs to multi-goal
routing problems with profits where each target location has
associated reward, and the problem sets out to maximize the
sum of collected rewards without exceeding the specified travel
budget. The POP stands, for the given initial and terminal
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June, 4, 2019.
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Fig. 1. Experimental verification of the proposed VNS-PRM* solution of the
introduced Physical Orienteering Problem (POP) in outdoor data collection
scenario with obstacles. We refer to https://youtu.be/xUXYEt4Gnvk for the
video from the experimental verification.

locations, to select a subset of the locations and a sequence
to visit them together with the determination of cost-efficient
and collision-free paths between the individual locations to
maximize the sum of collected rewards by saving vehicle
travels to fit the budget. Hence, the route and path planning
needs to be addressed in a single optimization problem to find
a high-quality solution of the POP.

The motivation for the introduced problem is in data
collection missions with Unmanned Aerial Vehicles (UAVs)
in indoor and urban-like environments where multiple target
locations need to be visited for collecting the requested data.
Such a mission can be, e.g., to collect desired measurements
at the particular locations of interest using UAV equipped with
an onboard camera. Another example can be found in wireless
sensor networks [3] where a UAV can be used to collect data
from the sensors placed in the environment.

The flight time of today’s UAVs is usually limited and
visiting all target locations can be unfeasible, and therefore,
each location can be assigned with a reward to prioritize the
most important locations. The existing Euclidean OP [4] or
its extension for Dubins vehicle [5] can be used to find the
data collection plan. However, in a realistic robotic scenario,
the operational environment can contain obstacles and motion

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/LRA.2019.2923949
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constraints of the utilized vehicles can be more complicated
than the Dubins vehicle. Therefore, the POP is introduced to
allow deploying budget-limited UAVs in realistic data collec-
tion missions in environments with obstacles, see a snapshot
of the experimental deployment in Fig. 1.

The proposed solution of the introduced POP is denoted
VNS-PRM* because it is based on the Variable Neigh-
borhood Search (VNS) [6] metaheuristic tightly coupled
with the asymptotically optimal sampling-based Probabilistic
Roadmaps method (PRM*) [7]. The VNS-based combinatorial
optimization searches for the rewarding subset of the target
locations and order to visit them such that the interconnecting
paths are further shortened by the PRM*. The PRM* is
employed to create an initial low-dense roadmap of collision-
free paths between the target locations. The initial roadmap is
then incrementally expanded during the iterative optimization
of the OP to improve paths of promising OP solutions. In
this way, the VNS-PRM* simultaneously searches both the
OP solution and configuration spaces.

The rest of the paper is organized as follows. An overview
of related work is summarized in the next section. Section III
formally introduces the POP and the proposed VNS-PRM*
is described in Section IV. Evaluation results are reported in
Section V and concluding remarks are outlined in Section VI.

II. RELATED WORK

The addressed POP combines motion planning and the OP,
and thus we briefly overview the relevant sampling-based
planning approaches, the most related OP methods, and also
existing approaches combining routing with motion planning.

The Rapidly-Exploring Random Trees (RRT) [8] and the
Probabilistic Roadmaps (PRM) [9] can be considered as the
most fundamental approaches with many modifications and
variants [2]. Regarding the addressed POP, the RRT* and
PRM* [7] are considered as the most relevant approaches,
albeit other methods with path optimality criteria can be
utilized [10]. The introduced POP is a multi-goal planning
problem which requires a multi-query search, and thus the
PRM* is a suitable technique for the proposed solution.

The OP belongs to routing problems with profits, and
it has been introduced by Tsiligirides [4] in 1984. Since
then, numerous algorithmic solutions have been proposed [1]
together with a wide range of formulation variants [11]. The
OP can be defined as an Integer Linear Programming (ILP)
problem [1] and solved by Branch-and-Bound [12] or Branch-
and-Cut [13] algorithms. Existing heuristics, e.g., particle
swarm optimization [14] or ant colony optimization [15],
provide solutions of similar quality but within a fraction of
time required for finding the optimal solution. In particular,
the VNS-based [16] solution of the OP performs as one of the
best considering the computational time and solution quality,
and therefore, the proposed solution builds on the VNS-based
optimization operators.

The POP is also related to variants of the OP where the
travel cost is not a length of the straight lines connecting
the locations as in the regular Euclidean OP. The Dubins
Orienteering Problem (DOP) [5] is an extension for Dubins

vehicle [17] that requires to optimize the heading angle of
the vehicle to find the most rewarding paths. The proposed
VNS-PRM* significantly extends the VNS-based method for
the DOP [5] by considering the OP in the configuration
space with obstacles addressed by tightly coupled PRM* with
online roadmap expansion. Besides, the DOP has been used
for UAVs in wildfire observation planning [18] and further
extended to the DOP with Neighborhoods (DOPN) addressed
by the VNS [19] and unsupervised learning [20]. To the best
of the authors’ knowledge, the only OP variant considering
the environments with obstacles is the approach presented
in [21]. The method is based on a low level A* search in
a grid of Dubins maneuvers to get around obstacles, which
limits its application to instances without narrow passages and
predefined heading angles. On the other hand, the proposed
VNS-PRM* employs sampling-based motion planning that
can be used to find collision-free paths also in the 3D with
various vehicle motion constraints.

The motion planning combined with routing has been
mostly studied in the context of the Traveling Salesman
Problem (TSP) where the Physical TSP (PTSP) [22] com-
bines TSP with real-time motion planning in video games.
In robotics, a multi-tree Transition-based RRT [23] has been
proposed for creating a collision-free roadmap for arbitrary
routing problem. Several existing approaches combining the
routing problems with motion planning have been introduced
for scenarios with Autonomous Underwater Vehicles (AUV),
e.g., planning mine countermeasures missions based on the
PTSP [24], the Clustered TSP [25] and high-level mission
planning [26] combined with motion planning.

The most similar existing problem to the POP is a variant
of the Prize Collection Traveling Salesman Problem (PC-TSP)
for AUV [27] that uses sampling-based methods for finding
collision-free PC-TSP plans. The approach uses initially cre-
ated PRM navigation roadmap for guiding a sampling-based
motion tree considering the vehicle dynamics. A separate PC-
TSP solver is used to prioritize the expansion of the motion
tree along PC-TSP solutions found on the static navigation
roadmap. Contrarily, the proposed VNS-PRM* uses tightly
coupled asymptotically optimal PRM*, where vehicle dynam-
ics is considered by different motion primitives, with the VNS-
based OP solver within a single optimization algorithm that
deals with narrow passages better than the decoupled approach
of [27], as shown in Section V.

III. PROBLEM STATEMENT

The proposed Physical Orienteering Problem (POP) com-
bines collision-free path planning with the combinatorial rout-
ing of the Orienteering Problem in a single optimization
problem. Therefore, we outline the path planning first; then
the POP is introduced as an extension of the regular OP with
path planning to determine the most rewarding path that does
not exceed the given travel budget Tmax.

Having the world W = R2 or W = R3 with the obstacles
O = {O1, . . . ,Om} ⊂ W , the point-to-point path planning
problem is to determine a collision free-path for a robot
A ⊂ W between two locations in W such that the path
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avoids O. The problem can be formulated using the notion of
the configuration space C [2], which consists of all possible
robot configurations q ∈ C. Let A(q) ⊂ W denotes geometry
of the robot at a configuration q. The robot can move in the
free space Cfree = C \Cobs, where Cobs = {q ∈ C|A(q)∩O 6=
∅} ⊆ C is a set of configurations where the robot A(q) collides
with O. A solution of the point-to-point path planing between
initial qI ∈ Cfree and goal qG ∈ Cfree configurations is a
path τ : [0, 1] → Cfree with τ(0) = qI and τ(1) = qG,
respectively. The cost to travel the path τ can be expressed as
a cost function c(τ)→ R≥0. In this work, w.l.o.g. we consider
the cost to be the length of the path, i.e., c(τ) =

∫ 1

0
|τ(t)|dt.

In addition to have a feasible path τ that avoids obstacles
τ ∈ Cfree, we are searching for the optimal path τ∗ such
that c(τ∗) = min{c(τ)|τ is feasible} to find a solution of the
introduced POP. Moreover, a single point-to-point collision-
free optimal path planning is only a part of the POP, as we
need to address finding a path over multiple target locations
that can be arbitrarily ordered as in the solution of the OP.

The OP belongs to a class of routing problems with
profits where each of all n predefined target locations S =
{s1, . . . , sn}, si ∈ W have associated reward ri ≥ 0 for
i ∈ {1, . . . , n}. The OP stands to maximize the sum of the
collected rewards R by visiting a subset Sl ⊆ S such that
the path to visit Sl does not exceed the given limited travel
budget Tmax. The initial and terminal locations of the path
are prescribed and for simplicity they are denoted s1 and sn,
respectively, both with the zero reward r0 = rn = 0. The
OP is an optimization problem to find the subset Sl of l
target locations together with a sequence to visit the target
locations in Sl within Tmax. The sequence can be expressed as
a permutation of the target location indexes Σ = (σ1, . . . , σl)
with 1 ≤ σi ≤ n, σi 6= σj for i 6= j, σ1 = 1 and σl = n,
because of the prescribed initial and terminal locations. The
locations in the sequence have to be connected by a collision-
free path not exceeding Tmax, and thus we need to combine
routing and path planning for a solution of the introduced POP.

In the POP, the target locations si ∈ W of the OP
correspond to the target configurations Q = {q1, . . . , qn}, qi ∈
Cfree, such that si ∈ A(qi) for all 1 ≤ i ≤ n. A solution
of the POP is a sequence Σ of the configurations Ql ⊆ Q
that maximizes R using collision-free paths with the sum of
the cost satisfying Tmax. We propose to combine the solution
of the combinatorial OP with path planning to determine
paths τi connecting locations Sl in the sequence Σ such
that the individual paths are feasibly connected at the target
configurations τi(0) = qσi and τi(1) = qσi+1 for 1 ≤ i ≤ l−1.
Besides, the total path length is limited by the travel budget∑l−1
i=1 c(τi) ≤ Tmax. The POP can be understood as the OP in

C and can be summarized in a single optimization problem (1).

maximize
l,Ql,Σ,τi

R =
l∑
i=1

rσi

s.t.
l−1∑
i=1

c(τi) ≤ Tmax,

σ1 = 1, σl = n, τi ∈ Cfree,
τi(0) = qσi , τi(1) = qσi+1

, i = 1 . . . l − 1

(1)

The POP objective is to maximize the sum of the collected
rewards R by visiting the target configurations Ql. However,
the budget limit Tmax requires to evaluate the cost of the
path to visit Ql, and thus it requires to find the appropriate
sequence Σ of the configurations together with collision-
free paths connecting the configurations in the sequence.
Finding the collision-free paths is a challenging problem and
determining all possible paths connecting all the locations S
is computationally very demanding. Moreover, optimal paths
should be determined to ensure Tmax while visiting as many
highly rewarding locations as possible, which is even more
computationally demanding. On the other hand, it is likely
that a subset Ql contains only a small portion of Q, and
thus determining all paths is not necessary. Therefore, we
propose to address the introduced POP by a combination of the
asymptotically optimal motion planner PRM* with the VNS-
based solution of the routing part of the POP to continuously
improve the PRM* roadmap using the combinatorial solutions
to expand the roadmap only in parts of C that can contribute
to the solution of the POP.

IV. PROPOSED VNS-PRM* METHOD FOR THE POP

The proposed approach to solve the POP combines asymp-
totically optimal sampling-based PRM* [7] with the com-
binatorial metaheuristic VNS [6] to solve the OP on the
incrementally constructed roadmap. The POP is addressed by
a single VNS-based algorithm with an online improvement
of the roadmap using PRM* to support finding collision-
free trajectories in the configuration space to visit multiple
target configurations. The selection of the target locations
and sequence to visit them to maximize the sum of the
collected rewards is thus optimized together with the paths
connecting the selected target locations. The proposed VNS-
PRM* combines both feedbacks from (i) the PRM* for finding
the OP solution (i.e., the selection and sequence of targets) on
the improving roadmap; (ii) the search space of the OP to
guide the PRM* sampling of Cfree.

A. PRM* for the Physical Orienteering Problem

The PRM* is a multi-query asymptotically optimal motion
planning algorithm that firstly randomly samples configura-
tions in Cfree and creates a graph G = (V,E) (further denoted
as the roadmap) by connecting k neighboring samples with a
collision-free path. Contrary to the ordinary PRM with a fixed
k, in the employed k-nearest PRM*, the value of k increases
with the number of vertices m in G as k(m) = kPRM log(m)
where kPRM > k∗PRM = e(1 + 1/d) and d is the dimension
of C [7]. Hence, the VNS-PRM* uses a low-dense initial
roadmap consisting of minit random configurations and the
target configurations Q. Dijkstra’s algorithm is then used to
interconnect the target configurations using shortest paths in
G between all configurations qi, qj ∈ Q with the respective
lengths ci,j = c(τ), τ(0) = qi, τ(1) = qj .

The maximization of the collected rewards needs minimal
path lengths ci,j to visit valuable target configurations within
Tmax. High-quality paths require a large number of samples
minit, where most of the samples would not be used for
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the paths of the final solution of the POP. Therefore, the
roadmap is continuously expanded during the VNS-based
optimization with the focused sampling on the paths between
promising target configurations, i.e., configurations that are in
highly rewarded POP solutions found so far. The roadmap
initialization and expansion are summarized in Alg. 1.

Algorithm 1: PRM* Initialization and Expansion
In/Out: G(V,E) – existing roadmap, Q – target configurations,

P = {ρi,j}i,j=1,...,n – sampling density
Input : M = {mi,j} number of samples to add between qi, qj

1 Vnew ← ∅ ; Enew ← ∅
2 if q1 qn not connectable in G then // roadmap initialization
3 V ← ∅ ; E ← ∅
4 Vnew ← Q ∪ {UniformSample Cfree}1,...,minit
5 else // roadmap expansion
6 foreach pair i, j ∈ (1, . . . , n), i 6= j do
7 Vnew ← Vnew ∪ {EllipsoidSample(qi, qj , ci,j)}1,...,mi,j
8 ρi,j ← ρi,j +mi,j/EllipsoidVolume(qi, qj , ci,j)

9 foreach v ∈ Vnew do
10 U ← kNearest((V ∪ Vnew, E), v, k(|V |+ |Vnew|)) \ v
11 foreach u ∈ U do
12 if CollisionFree(v, u) then
13 Enew ← Enew ∪ {(v, u)}

14 V ← V ∪ Vnew ; E ← E ∪ Enew

During the roadmap expansion, new random configurations
Vnew are sampled in the hyperellipsoids (Line 7, Alg. 1) corre-
sponding to all target configurations pairs. The hyperellipsoids
are defined by their foci in the respective target configurations
qi and qj , and by the major axis length equal to the actual
shortest path length ci,j between the corresponding target
configurations. An individual hyperellipsoid between qi and qj
is equidistantly sampled for mi,j times [28]. The value of mi,j

thus defines a priority in which particular path is optimized,
and it is updated at each iteration of the VNS-based solution of
the POP. The sampling densities of particular ellipsoids ρi,j are
stored and further used to prioritize sampling of low-density
sampled ellipsoids.

B. VNS-based method for the POP

The VNS is based on the two main procedures called shake
and local search to iteratively improve a single incumbent
solution. The shake procedure performs a random change of
the currently best-found solution v to leave a possible local
optimum. The local search optimizes a randomly changed so-
lution v′ using a set of neighborhoods (described as operators)
to increase the quality of the incumbent solution.

In the VNS for the POP, a solution is represented as a
vector v = (qσ1

, . . . , qσl , . . . , qσn) of all target configurations
Q, where the first l items (qσ1

, . . . , qσl) represent a path within
Tmax and the remaining part of v gathers the unvisited target
configurations. The initial and terminal configurations are pre-
scribed, and thus qσ1 is always q1 and qσl is qn. The operators
of the shake and local search procedures change the order of
target configurations in v to maximize the sum of the collected
rewards R(v) = R(v(l, Ql,Σ)) =

∑l
i=1 rσi while keeping the

path length L(v) = L(v(l, Ql,Σ)) =
∑l−1
i=1 cσi,σi+1 within

Tmax by moving qσl inside v. Thus, the operators change not
only the sequence Σ but also the subset of the visited target
configurations Ql. The path of a solution v is found as the

shortest path in the roadmap over the sequence of targets
(qσ1

, . . . , qσl).
The proposed VNS-PRM* is summarized in Alg. 2. The

algorithm starts with PRM*initialSampling() that uniformly
samples Cfree using minit random configurations. Adding
minit samples is repeated until the initial q1 and terminal qn
configurations are connectable by a path with c1,n ≤ Tmax or
until the maximal computational time is reached. The lengths
ci,j are determined as the shortest paths between all pairs of
the target configurations (Line 2). A greedy procedure is used
to create initial incumbent solution v (Line 3) by inserting
target configurations between q1 and ql (for ql = qn) according
to the minimal path prolongation per target reward. The VNS-
PRM* then iteratively improves the incumbent solution during
which the roadmap expansions are performed to minimize
lengths of promising solutions. The algorithm terminates if
one of the stopping condition occurs: the maximal number of
iterations, or the number of iterations without improvement,
or the maximal computational time.

Algorithm 2: VNS-PRM* for the POP
Input : Q – target configurations, Tmax – budget, minit – VNS-PRM*

initial number of samples, mexp – number of expanding samples
Output: v – Found data collecting path

1 G← PRM*initialSampling(minit)
2 updateRoadmapDistances ci,j∀i, j ∈ (1, . . . , n), i 6= j
3 v ← createInitialPath(Q,Tmax) // greedy initial solution
4 while Stopping condition is not met do
5 p← 1 ; B ← 0 // βi,j = 0 for all i, j ∈ (1, . . . , n), i 6= j
6 while p ≤ pmax do
7 v′ ← shake(v, p)
8 v′′ ← localSearch(v′, p)
9 if L(v′′) ≤ Tmax and

10 [R(v′′) > R(v) or [R(v′′) = R(v) and L(v′′) < L(v)]]
then

11 v ← v′′ ; p← 1
12 else
13 p← p+ 1

14 M ←calculateSampling(B,P,mexp)
15 G← PRM*roadmapExpansion(G,M)
16 ci,j ← updateRoadmapDistances(G,Q) for ∀i, j ∈ (1, . . . , n)

In each VNS-PRM* iteration, the operators of shake and
local search procedures try to increase the sum of the col-
lected rewards. The reward contribution B = {βi,j}∀i, j ∈
(1, . . . , n), i 6= j of each target configuration pair is stored for
further focused roadmap expansion. After performing all pmax
neighborhood operators, the number of additional samples per
each target pair, M = {mi,j} for all i, j ∈ (1, . . . , n), i 6= j,
is calculated (Alg. 2 Line 14) and the roadmap is expanded
(Line 15) together with the update of the shortest paths
between all target configurations ci,j (Line 16). The number
of additional samples M is based on the reward contributions
B and sampling densities P = {ρi,j} used in the proposed
sampling strategy.

1) Shake: The shake procedure creates a new solution v′

to get the incumbent solution v from possible local optima. Its
two operators (pmax = 2) tries to randomly select a part of v
and alter its position within the vector, but always keep qσ1

and
adjust the terminal configuration qσl to maximize l but ensure
L(v) ≤ Tmax. The first Path move operator (p = 1) randomly
selects a part of v and moves it to a different position. The
Path exchange operator (p = 2) selects two random non-
overlapping parts of v and exchanges their positions. Thus, v′
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can have changed both the subset Ql and sequence Σ to visit
the configurations in Ql.

2) Local search: The local search procedure tries to
optimize solution v′′ (initialized by v′) by a sequence of
simple one target operations. The employed Randomized
VNS (RVNS) variant of the VNS uses randomized local search
operators where each operator examines |Q|2 simple changes
of the solution vector v′′. Each change is applied to v′′ only
if it improves the new solution w, i.e., R(w) > R(v′′) or
decreases the path length L(w) < L(v′′) for the same reward.
The One target move operator (p = 1) examines changes
where a randomly selected target is moved to a different place
within the solution vector. The One target exchange operator
(p = 2) examines changes where two randomly selected
targets are exchanged. The procedure is summarized in Alg. 3.

Algorithm 3: Local Search Procedure
Input : Q – target configurations, Tmax – budget, p – actual neighborhood

number, v′ – actual solution
Output: v′′ – created solution, B – target pairs rewards

1 v′′ ← v′

2 for |Q|2 do
3 if p = 1 then // One target move
4 wu ← v′′ with one randomly moved target

5 else // (p = 2) One target exchange
6 wu ← v′′ with one randomly exchanged target

7 B ←updateTargetPairRewards(B, wu)
8 w ← wu maximize l such that wσl is within Tmax

9 if R(w) > R(v′′) or [R(w) = R(v′′) and L(w) < L(v′′)] then
10 v′′ ← w

The local search operators firstly create a possibly unfea-
sible solution wu without adjusted position of qσl within
wu, and thus L(wu) � Tmax. It is because the paths con-
necting the configurations in wu can be shortened by a
roadmap expansion. Therefore, wu is used for updating B
in updateTargetPairRewards() where the reward of each
target pair contributing to wu is stored for the prioritization of
the promising solutions in the sampling strategy of roadmap
expansion. In this way, promising solutions are stored during
the search over the POP combinatorial solution space to guide
the expansion of the roadmap.

3) Sampling strategy: The sampling strategy of the
roadmap expansion uses equidistant sampling within the ellip-
soid (Alg. 1) based on the solution space search done by the
randomized local search procedure. The update of the reward
contribution B in updateTargetPairRewards() is performed
for all consecutive pairs of the target configurations qi, qj in
the solution wu. The reward of each pair βi,j is considered to
be increased by ∆β(wu) computed from the average reward
per a single target in wu, using the solution reward R(wu),
multiplied by a relative budget overshoot of the solution length
L(wu) determined as

∆β(wu) =
R(wu)

l − 1

(
1− L(wu)− Tmax

roTmax − Tmax

)
. (2)

The ratio ro is introduced to allow tuning of the overshoot.
The pair reward βi,j is then updated by

βi,j +=

{
0 for L(wu) > roTmax

∆β(wu) for L(wu) ≤ roTmax, R(wu) ≤ R(v)

10∆β(wu) for L(wu) ≤ roTmax, R(wu) > R(v)

. (3)

In (3), we further distinguish solutions wu satisfying roTmax
with the higher reward R(v) than the current best solution for
which the increase of βi,j is 10× higher to focus sampling
of the roadmap. The roadmap expansion thus depends on the
rewards B to focus sampling on the promising sequence of
configurations. Besides, the sampling strategy is also designed
to depend on its densities P = {ρi,j} to avoid adding samples
to already densely sampled ellipsoids. Thus, the sampling
priority m′i,j of each configuration pair (qi, qj) is proportional
to the reward βi,j and inversely proportional to the sampling
density ρi,j . This leads to disabling sampling of almost straight
line paths with high density.

m′
i,j =

βi,j

ρi,j
, mi,j = dmexp

m′
i,j∑i=n

i=1

∑j=n
j=1 m

′
i,j

e (4)

The number of samples mi,j added to the ellipsoid correspond-
ing to the path between qi and qj is determined using (4),
where mexp is the number of samples intended to be added
to the roadmap during each roadmap expansion.

V. RESULTS

The proposed VNS-PRM* for the introduced POP is eval-
uated in three simulation scenarios and verified in realistic
field deployment. First, the feasibility of the approach is
verified for instances with a point robot q = (x, y) ∈ R2 and
compared to the optimal solution found by the Integer Linear
Programming (ILP) using visibility graph for the shortest paths
between the target locations. Besides, the proposed online
roadmap expansion is compared with the usage of a single
static high-density roadmap. The VNS-PRM* is then applied
to the POP with the curvature-constrained Dubins vehicle,
q = (x, y, θ) ∈ SE(2) and compared with our implementation
of [27]. Finally, the method is used for q = (x, y, z) ∈ R3

environment and further verified in a small real outdoor
experiment with a hexarotor UAV.

Two different environments denoted potholes and dense
with 17 and 52 target locations, respectively, and with the
dimension of 2000×2000 map units are used for the evalua-
tions. The initial roadmap is constructed with minit = 1000
uniformly sampled configurations. The number of samples in
the roadmap expansion is mexp = 50 and the budget overshoot
ratio ro is empirically set to ro = 1.2. The optimization
is terminated after the maximal number of 1000 iterations,
50 iterations without improvement, or after one hour of the
computational time. The proposed method1 is implemented in
C++, and all the reported results are achieved using a single
core of the Intel Xenon processors cluster (2.2GHz-3.3GHz).
An example of solutions found by the proposed VNS-PRM*
for q ∈ R2 are depicted in Fig. 2.

The first evaluation scenario is focused on the comparison of
the proposed method with the optimal solutions for q ∈ R2 that
has been found using ILP OP formulation [1] in CPLEX 12.6.1
that is denoted ILP-VIS. The VNS-based solution without the
PRM* is denoted VNS-VIS and both the ILP-VIS and VNS-
VIS use path lengths determined from the visibility graph. The

1Method implementation, benchmark instances and obtained solutions are
available at https://github.com/ctu-mrs/vns-prm-pop
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(a) potholes, Tmax = 5500, R = 214 (b) potholes, Tmax = 5500, R = 204

(c) dense, Tmax = 6000, R = 406 (d) dense,Tmax = 6000, R = 360

Fig. 2. Example of the POP solutions for q ∈ R2 in (a) and (c), and q ∈
SE(2) for ρ = 60 in (b) and (d) for both simulation testing environments.

achieved results from fifty trials of all considered instances and
budget constraints Tmax are reported in Table I, where Rm and
R is the maximal and average collected reward, respectively,
σ is the standard deviation, Lr is the ratio of the average
path length with respect to the particular Tmax, and T is the
average computational time (in seconds). The best solutions
are highlighted in bold.

TABLE I
RESULTS ON THE POP INSTANCES WITH VISIBILITY GRAPH FOR q ∈ R2

Pr. Tmax
ILP-VIS VNS-VIS VNS-PRM*

Rm T Rm T Rm R± σ Lr T

po
th

ol
es

1500 48 0.01 48 0.07 48 48.0± 0.0 0.87 4.0
2500 91 0.06 91 0.11 91 89.1± 0.4 0.90 4.4
3500 143 0.11 143 0.14 143 131.1± 8.1 0.98 9.3
4500 176 0.08 176 0.17 168 161.6± 7.9 0.94 13.2
5500 214 0.05 214 0.19 214 204.0± 8.3 0.97 17.4
6500 247 0.09 247 0.21 245 235.8± 8.0 0.97 24.6
7500 270 0.07 270 0.18 270 266.5± 4.7 0.97 24.4
8500 292 0.06 292 0.20 292 292.0± 0.0 0.94 21.5
9500 299 0.02 299 0.19 299 298.6± 1.7 0.93 18.6

de
ns

e

2000 121 1.22 121 1.06 121 117.8± 2.7 0.96 31.9
4000 284 0.99 284 1.43 284 274.5± 6.4 0.98 71.8
6000 406 3.71 406 1.70 406 397.9± 7.0 0.99 210.3
8000 522 2.08 514 1.88 498 485.0± 9.2 0.98 264.0

10000 630 16.06 618 2.32 613 568.5±17.9 0.99 489.9
12000 741 0.99 718 2.51 705 667.7±20.7 0.99 937.6
14000 827 0.75 803 2.20 791 745.0±22.8 0.99 1221.1
16000 892 1.10 883 2.00 881 826.8±22.0 0.99 1884.0
18000 922 4.11 922 1.97 922 891.1±16.8 0.99 2187.9

Although the ILP-VIS provides optimal solutions, the ap-
proach is usable only with the point robot and configuration
space where the visibility graph can be used to determine
the shortest collision-free paths. The heuristic VNS-VIS pro-
vides competitive results to the optimal solutions, but most
importantly, the proposed VNS-PRM* provides the optimal
solutions in most of the cases, except the dense environment
which contains many obstacles. The ILP-VIS and VNS-VIS

utilize precomputed visibility graph (not counted in their
computational times), and therefore, the high computational
requirements of VNS-PRM* are not surprising. The main ad-
vantage of the VNS-PRM* is in the applicability for different
motion model, e.g., Dubins vehicle, and extendibility for more
complex robot shapes. The reported results for the VNS-VIS
and VNS-PRM* indicate that the inability to find the optimal
solutions using VNS-PRM* is caused by the VNS part of the
method as the optimal solution is not found using the shortest
paths in the VNS-VIS. Nevertheless, based on the reported
results, we consider the proposed approach feasible, and we
further report on the impact of the proposed sampling strategy.

The online sampling strategy with the preference of sam-
pling between target configurations of the promising solutions
found by the VNS is compared with a solution found on
a roadmap created only by the initial sampling, but with a
high number of samples minit. The evaluation is performed
for the potholes environment and the results are reported
in Table II, where VNS-Static Roadmap denotes the variant
with only initial sampling that has been considered with
minit ∈ {1× 104 , 3× 104 , 6× 104 , 1× 105 , 1.5× 105 }
uniform samples in Cfree without the online expansion. In
addition to the maximal sum of the collected rewards Rm from
fifty trials and the corresponding average computational time T
in seconds, the average time of the last solution improvement
of the VNS-PRM* is reported in the column Ti.

TABLE II
ONLINE SAMPLING STRATEGY VS. INITIAL SAMPLING ONLY

Tmax

VNS-PRM* VNS-Static Roadmap with minit samples

104 3× 104 6× 104 105 1.5× 105

Rm T Ti Rm T Rm T Rm T Rm T Rm T

1500 48 4 1 48 34 48 92 48 153 48 223 48 361
2500 91 4 1 89 42 89 83 89 155 91 259 91 419
3500 143 9 4 125 43 132 78 132 177 127 299 143 521
4500 168 13 5 168 39 168 115 168 219 168 369 168 569
5500 214 17 6 204 41 204 95 214 222 214 395 214 721
6500 245 25 8 245 47 245 123 245 204 245 478 237 916
7500 270 24 9 270 45 270 120 270 292 270 515 270 818
8500 292 21 6 292 52 292 122 292 260 292 511 292 836
9500 299 19 7 299 40 299 119 299 252 299 519 299 1056

The average computational time of the VNS-PRM* solution
is similar to the initial sampling with minit = 104, but
the time of the last solution improvement Ti is significantly
lower. Therefore, the relatively high number of 50 iterations
without improvement, which however causes the termination
in a majority of cases, can be decreased without affect-
ing the solution quality. The computational time of VNS-
Static Roadmap is dominated by the roadmap construction
and finding the shortest paths between all target pairs using
Dijkstra’s algorithm. The computational requirements of VNS
itself using already known shortest paths can be seen for
VNS-VIS approach in Table I. The VNS-PRM* finds the best
solutions in all instances while the computationally demanding
high number of initial samples does not provide the best solu-
tion for all considered Tmax. The average number of samples
needed to find solutions using VNS-PRM* in Table II is 6678.
Furthermore, the VNS-PRM* is an anytime algorithm which
starts with a relatively small number of samples to quickly find
a feasible solution that is then continuously improved if more
computational time is available, which is shown in Fig. 3.
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Fig. 3. Evolution of the average and maximal sum of the collected rewards
for the potholes scenario and selected budgets Tmax.

The proposed VNS-PRM* has been further examined for
curvature-constrained planning with Dubins vehicle, configu-
ration space SE(2), and compared with our implementation
of [27] for the POP. In SE(2), the optimal Dubins maneuvers
are used as the distance between every two configurations.
Because of Dubins vehicle, each target location is considered
as 12 configurations with equidistantly spread heading angle
θ to allow each target location to be visited using a different
vehicle heading. Only a single such sample is, however,
allowed to collect the reward associated with the particular
target location which transforms the problem into an instance
of the Set Orienteering Problem [29]. The implementation
of [27] for Dubins vehicle and the POP (denoted as the
PRM-MT) uses the navigation PRM roadmap in R2 with
1000 samples to guide the expansion of the motion tree in
SE(2). Since [27] does not address the POP, the following
modifications have been made: an ILP OP solver is used
instead of the PC-TSP solver, a solution has to reach proximity
of the terminal location, the solution length is used instead of
the execution time, and the sum of the rewards of unvisited
target locations is used instead of the PC-TSP penalty. The
results for solved instances with the turning radius of ρ = 60
are reported in Table III.

TABLE III
RESULTS ON THE POP INSTANCES WITH DUBINS VEHICLE – q ∈ SE(2)

Pr. Tmax
PRM-MT VNS-PRM*

Rm R± σ Lr Ti Rm R± σ Lr Ti

po
th

ol
es

1500 48 35.6±11.0 0.87 3 48 48.0± 0.0 0.89 5
2500 89 70.5±11.0 0.91 21 89 89.0± 0.0 0.94 6
3500 118 94.6±15.7 0.94 145 127 122.7± 4.3 0.93 56
4500 153 107.8±27.4 0.90 263 168 161.8± 7.7 0.98 109
5500 179 109.4±26.9 0.79 363 204 190.3±13.3 0.96 124
6500 221 120.1±35.0 0.74 370 242 226.0±10.8 0.97 165
7500 234 88.5±41.5 0.61 407 263 257.1± 5.9 0.95 221
8500 167 92.4±32.9 0.54 545 292 281.3±11.2 0.97 103
9500 219 91.7±43.1 0.52 552 299 295.2± 3.5 0.94 67

de
ns

e

2000 80 67.6± 9.5 0.90 219 108 107.8± 1.4 0.90 95
4000 154 74.9±26.4 0.54 2514 237 225.2± 4.8 0.96 560
6000 110 66.9±14.6 0.30 2513 360 339.5±10.5 0.98 812
8000 144 34.3±32.4 0.13 2522 472 429.0±11.7 0.98 1065

10000 130 9.7±21.7 0.03 3042 564 510.9±17.0 0.99 1363
12000 52 2.8±10.2 0.01 3144 646 596.7±21.2 0.98 1827
14000 121 8.1±23.1 0.02 2815 719 670.7±20.9 0.99 2356
16000 84 3.5±13.9 0.01 2510 806 742.3±23.9 0.99 2136
18000 55 8.9±16.2 0.02 2879 839 798.8±22.8 0.98 2488

Regarding the reported results, the VNS-PRM* outperforms
the PRM-MT in both the maximal achieved rewards Rm and
the average rewards R with smaller σ. The average ratio of the
used budget Lr for the PRM-MT indicates that the method is
unable to exploit the available travel budget. This is caused by
uniform sampling of PRM-MT along the navigation roadmap
without considering the ability of the motion tree to reach
these random samples. This can be improved by generating

samples according to the progress of the motion tree [30].
The average time of the last solution improvement Ti of the
VNS-PRM* is also lower than for the PRM-MT in most of the
cases. Low values of the collected rewards in dense scenarios
suggest that the PRM-MT [27] struggles with narrow passages
and the guidance along solutions found in static roadmaps
becomes less effective for longer Tmax with the possibility to
visit more targets.

The VNS-PRM* is further verified in 3D scenario denoted
as building that is 20×30×6 large and has seven rooms in each
of the two floors, see Fig. 4. One target location is in each
room with the reward in the range 5–30, thus 14 targets in the
total. The upper floor is accessible only by tight windows and
the robot is modeled as a cylindrical object with 0.7 diameter
and 0.5 height with the configuration q ∈ R3.

Fig. 4. Example solution of the POP in the building environment for Tmax =
140 with the collected reward R = 230 and solution length of 136.3.

The computational results for the building scenario are
depicted in Table IV, where Tinit denotes the average time
to find initial solution with the average reward Rinit and i is
the average number of the VNS-PRM* iterations.

TABLE IV
RESULTS ON THE POP INSTANCES FOR q ∈ R3

Pr. Tmax
VNS-PRM*

Rinit Rm R± σ Lr i Tinit T

bu
ild

in
g

60 4.8 60 29.2±14.5 0.92 71 0.6 6.7
80 30.5 100 76.8± 8.5 0.95 97 0.5 14.5

100 45.4 120 101.4±20.3 0.94 108 0.6 23.5
120 52.6 150 132.1±13.9 0.96 140 0.6 45.5
140 73.0 175 163.2±11.0 0.96 143 0.6 52.9
160 81.1 205 179.4±28.5 0.95 137 0.6 47.6
180 87.2 215 203.7± 7.9 0.96 150 0.6 68.0
200 92.0 225 215.7± 7.4 0.96 155 0.6 70.5
220 100.1 230 224.7± 4.3 0.95 147 0.7 67.1

Table IV shows that the VNS-PRM* finds an initial solution
within one second with the average solution quality of 35.3%
of the best-found solution. The number of iterations i indi-
cates that the algorithm terminates after the maximum of 50
iterations without improvement. Furthermore, the comparison
of computational times for q ∈ R2, SE(2), and R3 show the
increased computational requirements of planning in SE(2),
which is caused by the nearest neighborhood search of the
PRM* where k-d trees are not effective in SE(2).
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Finally, the VNS-PRM* has been experimentally verified
in a small data collection mission with a hexarotor UAV. The
scenario consists of three walls and four cylindrical obstacles
representing the indoor- or urban-like environment, see Fig. 1
with the visualization of the results. The environment was
about 9×10 m large with ten target locations, including initial
and terminal locations, with the constant altitude, and thus
the VNS-PRM* search space is R2. The UAV is modeled
as a cylindrical object with 1.4 m diameter and 0.5 m height
which corresponds to 1.75× enlargement of the real physical
dimension of the UAV to compensate possible localization
inaccuracies. The considered travel budget limit was set to
Tmax = 25 m and the solution found onboard of the UAV
before flight by the VNS-PRM* within T = 8.4 s is 24.11 m
long with the collected reward R = 75. The model predictive
trajectory tracking [31] was used to precisely follow the
trajectory and visit all six planned target locations.

VI. CONCLUSIONS

A novel generalization of the Orienteering Problem (OP)
for robotic data collection scenarios is introduced in this
paper. The problem is called Physical Orienteering Problem
(POP), and it is suitable for cases where collision-free paths
in environment with obstacles are required together with the
maximization of collected rewards from the given target loca-
tions using the limited travel budget. The proposed solution of
newly introduced POP is based on the Variable Neighborhood
Search (VNS) metaheuristic for the OP that is combined
with the asymptotically optimal motion planner PRM*. The
proposed VNS-PRM* starts with a low-dense roadmap that is
continuously expanded during the VNS-based route optimiza-
tion by selecting the most promising solutions for shortening
the collision-free paths and thus allowing to maximize the col-
lected rewards. The presented results show that the proposed
VNS-PRM* is a feasible and vital method and it can provide
optimal solutions when compared on 2D instances with a point
robot. Furthermore, the proposed roadmap expansion strategy
demonstrates computational benefits in comparison to a very
dense initial roadmap. The main benefit of the approach rests
in the generalization of the OP for more complex configuration
spaces demonstrated in a solution of the POP in R3 and with
Dubins vehicle in SE(2).
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[31] T. Báča, D. Heřt, G. Loianno, M. Saska, and V. Kumar, “Model
predictive trajectory tracking and collision avoidance for reliable outdoor
deployment of unmanned aerial vehicles,” in IEEE/RSJ IROS, 2018, pp.
6753–6760.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/LRA.2019.2923949

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

CHAPTER 7. PHYSICAL ORIENTEERING PROBLEM FOR UAV DATA
COLLECTION PLANNING IN ENVIRONMENTS WITH OBSTACLES 96



CHAPTER 8. RESULTS AND DISCUSSION 97

Chapter 8

Results and Discussion

In this chapter, we summarize the contributions of the presented articles as a whole
with respect to the initially presented research challenges of the data collection planning for
UAVs and this thesis. We further suggest future research objectives for particular challenges.

(1) Feasibility of traveling with nonholonomic fixed-wing UAV or dynami-
cally constrained VTOL UAV has been addressed in all core publications. In general, the
selection of motion primitive highly influence the quality of the final path, i.e., the length of
a path, its time of flight, or the amount of collected data within limited budget. However,
the more complex motion primitives such as Dubins airplane model [12a], Bézier curves [4c]
or Hermite curves [11a] increase computational requirements of the planning. Therefore, all
the core publications [1c]–[5c] mainly use a rather simple Dubins vehicle model, which creates
feasible plans for UAVs traveling a certain speed.

The main challenge of using curvature constrained Dubins vehicle is in the necessity
of determining the heading angle of the vehicle for each visited target location to feasibly
connect adjacent Dubins maneuvers. In the first core publication [1c], the heading angles at
the target locations are equidistantly sampled, and the particular heading angle samples for
a given sequence of targets are selected such that the path length is minimized. The pure
combinatorial optimization of the SOP presented in the core publication [3c] is also based
on the sampling-based approach for selecting the heading angles. In [5c], we use a notion of
planning in configuration space. However, for Dubins vehicle, we consider 12 configurations
with the equidistantly spread heading angle at each target location. The SOM-based solution
presented in [4c] uses an informed sampling-based algorithm for the DTP [97] to find the
appropriate heading angles for a given sequence of targets. The advantage of using [97] is the
tight lower-bound that can guide the informed sampling of heading angles close to the optimal
values for a given sequence. However, for the combinatorial route optimization of the target
sequence and target subset selection, the heading samples have to be initially present in order
to find some good route where the heading angles can be optimized. The sampling has to
be high-dense to obtain solutions with high quality, which, on the other hand, significantly
increases computational requirements as shown in [1c]. On the other hand, for a final solution,
only a fraction of such samples is ever used.

Therefore, in [2c] a low-dense initial sampling of heading samples is used together with
local optimization of headings [56] of high-quality solutions. Such optimized headings are then
iteratively inserted into the graph of all samples and further used while exploring the com-
binatorial part of the data collection routing problem. The results presented in [2c] suggest
that for the OP variants, the low-dense initial sampling with further heading optimization
increases solution quality and decreases computational time compared to the high-dense sam-
pling approaches.

For future work, we would like to employ the DTP solver [97] for the solution of the OP
variants such as for the one in [2c].

(2) Planning with respect to the limited time of flight has been addressed in
all core publication with the exception of [4c]. We employ the OP and its novel variants to
formulate the data collection planning with maximization of the collected reward within a
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limited budget. In [1c], we propose the DOP that generalizes the OP for Dubins vehicle,
however, it requires to find the heading angles of the vehicle in each visited target location.
We propose the VNS-based method for solving the DOP. The empirical results show that
the DOP formulation is necessary and can not be replaced by a straightforward combination
of the ordinary OP and the Dubins TSP. The main reason is the fact that the selection of
heading angles highly influences the solution length, which is limited by a given budget of the
DOP.

We further propose other variants of the OP for data collection with UAV. In [9a]
and in the core publication [2c], we generalize the DOP for non-zero sensing range, which
we call Dubins Orienteering Problem with Neighborhoods (DOPN). While in [9a], the VNS-
based solution is a straightforward extension of the VNS approach for the DOP [1c] with
additional neighborhood sampling, in [2c], we propose a novel VNS operators for heading
angle and neighborhood visit position optimization. In [3c], we unify both the sampling-
based DOP and DOPN as a variant of the Set Orienteering Problem (SOP) and propose
a modified VNS-based approach and ILP formulation. Finally, we propose a variant of the
OP for environments with obstacles called the Physical Orienteering Problem (POP), which
can be understood as OP explicitly deployed in the configuration space [27]. The proposed
VNS-PRM* method combines the combinatorial optimization of the VNS for the OP part
with asymptotically optimal Probabilistic Roadmaps for collision-free motion planning. In
all mentioned OP variants, the limited budget has to be directly considered in the planning
method in order to get feasible plans, as shown for the DOP in [1c].

In future work, we would like to focus on online replanning of OP solutions for, e.g.,
partially known environments with static and moving obstacles.

(3) Data collection planning with non-zero sensing range increases the solution
quality in most cases. The ordinary OP can be generalized to the OPN [8a]. The proposed
SOM-based planner [8a] is shown to provide higher collected rewards for larger sensing ranges
using the same budget. For Dubins vehicle, the DOP can be generalized to the DOPN [2c],
[9a]. Similarly to the OPN, the usage of non-zero sensing range in the DOPN increases the
collected reward, as shown for the VNS-based planners in [2c], [9a] and SOM-based planner
in [10a]. For the data collection planning formulation of the multi-vehicle Dubins TSP with
Neighborhoods (m-DTSPN) in [4c], the solution quality for larger sensing ranges also increases,
and shorter paths are found using both the VNS-based and SOM-based planners. However, the
computational complexity for non-zero sensing range formulations increases due to additional
search for locations of visits within the neighborhoods of the target locations.

The VNS based planners for the DOPN in [9a] and for the m-DTSPN in [4c] use a static
equidistant sampling of neighborhood positions around each target. The SOM-based planners
for the OPN [8a], DOPN [10a] and m-DTSPN [4c], use adaptation of the SOM neurons to
find the locations of visits within the neighborhoods. When compared for the DOPN, the best
performing approach is the VNS-based method presented in [2c] that uses a low-dense initial
sampling of the neighborhood positions that are then iteratively optimized and inserted to
the graph of all samples. The approach in [2c] thus uses the same technique for Dubins vehicle
heading samples and the samples of neighborhood positions.

The future work might consider recent approaches for solving Generalized Dubins In-
terval Problem [98] to find near-optimal values of Dubins vehicle headings and neighborhood
positions for a given sequence of samples.
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(4) Finding optimal solutions for data collection with Dubins vehicle and
non-zero sensing range has been addressed in core publication [3c]. We show that both
the OPN and the DOP can be solved as a recent variant of the OP from operational research
called the Set Orienteering Problem (SOP) [26]. In the SOP, the nodes are grouped in clusters
and each cluster has assigned reward. The objective of the SOP is to maximize the collected
reward by visiting at least one node in selected clusters using a limited budget path. In
the core publication [3c], the SOP is addressed using the VNS-based approach and shown
to outperform the existing heuristic. We also propose a novel ILP formulation of the SOP
that can be solved significantly faster than the existing one. Most importantly, we show
that the OPN and the DOP can be formulated as the SOP where the original (D)OP(N)
target locations become clusters of the SOP, and the individual heading angle samples or
neighborhood position samples become nodes of the respective clusters. The DOPN, however
not shown in [3c], can be similarly formulated as the SOP. Therefore, the data collection with
Dubins vehicle and non-zero sensing range can be solved optimally for a given sampling of
the problems, using the ILP formulation of the SOP.

For future work, we intend to investigate finding optimal solutions regardless of the
sampling, e.g., by combining solutions of the Generalized Dubins Interval Problem [98] with
the ILP formulation of the SOP.

(5) Data collection planning in environments with obstacles is particularly chal-
lenging due to the necessity of combining multi-goal routing with collision-free planning. The
approach proposed in the last core publication [5c] combines the VNS-based method for the
routing part with asymptotically optimal sampling-based Probabilistic Roadmap (PRM*) [89]
method for collision-free point-to-point planning. We call the novel variant of the OP in con-
figuration space as the Physical Orienteering Problem (POP) and the proposed method as
the VNS-PRM*.

The challenging part of combining the two problems in the POP is solved in the VNS-
PRM* such that the PRM* creates an initial low-dense roadmap for starting the combinatorial
optimization of the POP using the VNS. Afterward, the roadmap is iteratively expanded
in every VNS iteration in order to shorten selected collision-free paths in order to further
maximize collected reward within the same budget. The selection of the paths for shortening
is made during the combinatorial local search of the VNS with the preference of solutions
with a length close to the budget and with reward close to the best-found solution. Therefore,
only the promising solutions are selected for shortening, and the roadmap is expanded in
hyperellipsoids of individual collision-free paths between targets in such solutions. This way,
the roadmap is only expanded in promising parts, while the VNS combinatorial optimization
part simultaneously uses the roadmap when trying to maximize the sum of the collected
rewards.

In future work, we would like to address the approximation factor and optimality of the
OP in configuration space.



CHAPTER 9. CONCLUSION 100

Chapter 9

Conclusion

This thesis addressed the topic of data collection planning for Unmanned Aerial Vehi-
cles (UAV). In data collection missions, UAVs are typically required to visit a set of target
locations in order to collect desired data. The data collection planning for UAVs was formu-
lated either as a problem of minimizing the path visiting all target locations or maximizing the
collected data with a restricted budget. The thesis is based on five core publications, where
challenges related to the data collection planning for UAVs are tackled. We proposed several
data collection planning methods mostly based on the Variable Neighborhood Search (VNS),
unsupervised learning of the Self-Organizing Map (SOM), and also based on a solution of
the Integer Linear Programming (ILP) problem formulations. We proposed to use Dubins
vehicle to model UAV in data collection planning with limited time of flight and address
the novel problem using the VNS-based method. Further, we extended the method for cases
with non-zero sensing range where the efficiency of data collection can be increased by using,
for example, long-range sensors. Both data collection with Dubins vehicle model and non-zero
sensing range were formulated as an ILP problem and solved optimally for a given sampling of
Dubins vehicle heading angles and sensing positions. We also addressed the multi-robot vari-
ant of the data collection with Dubins vehicle and non-zero sensing range using the VNS-based
and SOM-based methods. Finally, we proposed a novel formulation of the data collection plan-
ning for a limited budget vehicle and environments with obstacles, that is solved by a tightly
coupled combination of VNS and asymptotically optimal sampling-based motion planner.
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[3c] R. Pěnička, J. Faigl, and M. Saska, “Variable neighborhood search for the set orien-
teering problem and its application to other orienteering problem variants,” European
Journal of Operational Research, vol. 276, no. 3, pp. 816 –825, 2019.
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[1c] R. Pěnička, J. Faigl, P. Váňa, and M. Saska, “Dubins orienteering problem,” IEEE
Robotics and Automation Letters, vol. 2, no. 2, pp. 1210–1217, 2017,
55% contribution, CS 4.56, citations: 22 in WoS, 26 in Scopus, 64 in GS.
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Krajńık, A. Zhou, A. Cho, M. Saska, and V. Kumar, “Localization, grasping, and
transportation of magnetic objects by a team of mavs in challenging desert-like envi-
ronments,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1576–1583, 2018,
CS 4.56, citations: 21 in Scopus, 47 in GS.

Thesis-related conference proceedings in WoS
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