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Abstract—Correlation power analysis (CPA) is one of the most
common side-channel attacks today, posing a threat to many
modern ciphers, including AES. In the final step of this attack,
the cipher key is usually extracted by the attacker by visually
examining the correlation traces for each key guess. The naı̈ve
way to extract the correct key algorithmically is selecting the key
guess with the maximum Pearson correlation coefficient.

We propose another key distinguisher based on a significant
change in the correlation trace rather than on the absolute
value of the coefficient. Our approach performs better than
the standard maximization, especially in the noisy environment,
and it allows to significantly reduce the number of acquired
power traces necessary to successfully mount an attack in noisy
environment, and in some cases make the attack even feasible.

Index Terms—Side channel attack, correlation power analysis,
Pearson correlation coefficient, key distinguisher, edge detection

I. INTRODUCTION

Side channel attacks (SCAs) pose a serious security threat
to many modern cryptographic devices, even those based
on ciphers considered mathematically secure, such as AES.
One of the most common SCAs today is differential power
analysis (DPA) [1] and especially its enhanced, correlation
based variant, correlation power analysis (CPA) [2], [3].

The CPA attack is based on measuring the power con-
sumption of a cryptographic device while encrypting ran-
dom data, and then correlating obtained power traces with
the consumption predictions for each key candidate. These
predictions are usually based on the knowledge of the cipher
implementation and of the random data used. Comparing the
Pearson correlation coefficients for different key candidates
may give us a correct key candidate. The nature of the
CPA attack allows revealing the key in smaller portions,
e.g. bytes or nibbles, thus making the whole attack much less
computationally demanding than in case of attacking the whole
key at once by brute-force.

The number of measured power traces necessary for a suc-
cessful recovery of the key may be used as a metric for
evaluation and comparison of the SCA resistance of various
cryptographic systems, alongside other metrics such as success
rate, entropy guessing [4] or mutual information analysis [5].

The examination and comparison of correlation traces, in
order to obtain a valid key guess, is done visually by the

attacker. However, an algorithmization of this final step of
the CPA attack is highly relevant for batch attacking and for
the automatic evaluation of the side-channel attack. The naı̈ve
way to automate this process is simply selecting the key guess
which maximizes the Pearson correlation coefficient. In this
paper, we propose an algorithmic way of extracting the key
guess based on a significant change in the correlation trace
rather than on the correlation coefficient magnitude.

II. RELATED WORK

Differential power analysis (DPA), a non-profiled side-
channel attack applicable to the implementations of many
ciphers such as DES or AES, was introduced in [1], [6].
Different variants of the DPA attack were introduced over
the time, such as Correlation power analysis (CPA) [2], [3],
which uses Pearson correlation coefficient. Another approach,
Mutual information analysis, based on the Shannon’s entropy
principles, is described in [5]. The Mutual information analysis
may be used for the attack itself as well as for leakage
assesment.

Different power analysis distinguishers, such as Pearson
correlation coefficient or Mutual information, are discussed
in [7] regarding their practical usage. The correlation-based
methods are recommended in cases, where the attacker is
able to derive a good power model predictions. Furthermore,
a general statistical model for a side-channel attack analysis,
based on the Maximum Likelihood Estimate, is presented
in [8]. Many papers, such as [9], discuss and offer solutions
for the noise and interference problems when performing the
SCAs. Various metrics for the evaluation of the side-channel
analysis were published, such as success rate [10] or entropy
guessing [4].

Template attacks [11] are example of profiled side-channel
analysis, where the assumption is that attacker has the exact
same copy of the device under attack, allowing him to create
a precise model of the power consumption prior to attacking.
The attack itself can be viewed as a classification problem
then. In recent years, deep learning techniques are being
investigated in context of profiled side-channel analysis [12],
including use of multi-layer perceptron and convolutional
neural networks [13]. Even though that deep learning approach
still suffers from many problems [14], [15], it seems to be
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(a) Correlation traces based on a sufficient amount of power traces. The correct
key candidate is colored blue.

(b) Correlation traces based on an insufficient amount of power traces.
Searching for a (negative) maximum correlation coefficient leads us to the
wrong key candidate, which is colored blue (1). The correct key candidate is
colored red (2).

Figure 1. Correlation traces (a time series of a Pearson correlation coefficient
during the encryption), for all 256 key candidates.

a promising direction. Use of deep learning in non-profiled
attack scenarios is discussed in [16].

III. OUR CONTRIBUTION

Our approach extends Correlation power analysis (CPA), i.e.
non-profiled side-channel attack, and it is based on detecting
a sudden change (edge) in a correlation trace (a time series of
a correlation coefficient). With this approach we are able to
• significantly reduce the number of acquired power traces

necessary to successfully mount an attack in noisy envi-
ronment, and

• in some cases make the attack even feasible.
Reduction of the number of power traces reduces both the
acquisition (measurement) time and the time of analysis.

In [17] and [18], both the theory and computational ap-
proach to the edge detection and necessary (pre-)processing
steps are presented, making use of convolution operation.

IV. CPA ATTACK EVALUATION

Our primary research focus in this paper is AES-128,
a block cipher commonly used in many hardware cryptosys-
tems. Since AES implements 8-bit S-Boxes, attacking a byte

of the key at a time is possible [3]. We are able to predict the
power consumption of the device when encrypting/decrypting
a certain plain/cipher text, and since there are only 28 = 256
possibilities for a byte of the key, comparing a real power
consumption with our power predictions is computationally
acceptable. Since we do not know the exact time when the
predicted values correlate, we measure the consumption during
the whole encryption (or a specific part of it), giving us a finite
number of samples.

We call this collection of samples, obtained during a single
encryption, a power trace. In the first phase of the attack, a set
of power traces is measured. Correlating our 256 predictions
(for every power trace measured) with real power consumption
at each sample point gives us 256 different time series of
a Pearson correlation coefficient, which we call correlation
traces. These can be seen in Figure 1.

A. Motivation

To evaluate the correlation analysis results, the attacker
would visually examine the correlation traces, looking for
specific anomalies that might give him a hint about the right
cipher key. The naı̈ve way to automate this process might be
searching for the correlation curve with the strongest (positive
or negative) correlation and thus relevant key candidate.

Correlating our predictions with each sample point in the
power trace gives us a correlation matrix with dimensions
m × 256, with m being the number of samples per trace.
Looking for the maximum Pearson correlation coefficient in
this matrix gives us a hint for selecting the correct key
candidate. In situation depicted in Figure 1a, this approach
works just fine.

However, the shape of the correlation curve in time is
still more informative, than the magnitude of the correlation
coefficient itself. In Figure 1b, one can easily identify the
correct key candidate by the naked eye (red curve (2)), while
looking for the Pearson correlation coefficient with the highest
absolute value fails, as in such a case the blue curve (1) would
be selected. Note that with more measurements and power
traces available, the spike on the red curve (2) would grow
bigger, while correlation at other samples would converge to
zero.

The algorithmic evaluation of the correlation coefficients
using the naı̈ve maximum likelihood-based method may be-
come even more problematic when there is a significant noise
present. Correlation trace for the correct key candidate can
be seen in Figure 2. This trace was obtained from a board
featuring a switching power supply, which represents a sig-
nificant source of a background noise. Identifying the key
candidate by the naked eye is possible, but time demanding,
and searching for a maximum/minimum correlation coefficient
does not work well. Our observations led us to the idea of
examining the progression of the correlation coefficient in time
to algorithmically give the attacker a hint about the correct
key guess, rather than examining its instantaneous magnitude.
According to our research, when correlated working variable
causes a change in the power consumption of the device, an
edge typically appears in the correlation trace. This problem
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Figure 2. Correlation trace obtained while attacking AES on DPABoard [19]
(Artix 7 FPGA Board with a switching power supply).

is very similar to image edge detection problem as described
in [17], [18].

Since edge detecting operators are very sensitive to noise,
appropriate filtering/smoothing of the correlation traces must
be done first. In Subsection IV-B we discuss filters that
can be used for smoothing the correlation traces. Subsec-
tion IV-C discusses edge detectors explored in this paper. In
Subsection IV-D we describe how to combine filters and edge
detecting operators into one operation in order to reduce the
computational complexity.

B. Noise Filtering/Smoothing

In image processing, typical choice is a Gaussian filter-
ing [18], [17]. For our further experimental purposes, we have
chosen two filters: the Moving average filter and the Gaussian
filter.

Moving average filter is defined as follows: Assume that
f(t) is a discrete variable, then convolution

(f ∗ma(d))(t) =
1

d

t+d d2 e−1∑
i=t−b d2 c

f(i) (1)

is the result of filtering the variable f(t) using Moving average
filter with diameter d.

Gaussian filter is defined as follows: Assume that f(t) is
a discrete variable, then convolution

(f ∗ g(d, σ))(t) =

t+d d2 e−1∑
i=t−b d2 c

f(i) ·
exp(− (i−t)2

σ2 )

norm(d, σ)
(2)

is the result of filtering the variable f(t) using Gaussian filter
with diameter d and deviation σ, where

norm(d, σ) =

d d2 e−1∑
j=−b d2 c

exp(− j
2

σ2
) (3)

is the normalization, making sure that the sum of used Gaus-
sian filter equals to 1.

Figure 3. Correlation trace from Figure 2 processed by First derivative
operator with Gaussian filtering.

C. Edge Detection

After the noise filtering, the edge detection takes place.
There are two approaches to this: a first-derivative based
operator, and a second-derivative based/Laplace operator [17].

When the first derivative approach is used, the filtered
correlation traces are processed with the first derivative op-
erator, and then the search for the largest absolute value
of the derivative is done. When using the second derivative
approach, the algorithm searches for significant zero-crossings
of the Laplacian of the correlation trace. Both approaches are
compared in Section V.

D. Computational Approach

As suggested in [18], both derivative operators and filtering
are performed using a discrete convolution. The Moving
average filter with diameter d can be easily implemented as
a convolutional kernel:

ma(d) =
1

d
[1, 1, . . . , 1︸ ︷︷ ︸

d×

]. (4)

In a case of the Gaussian filter with deviation σ, appro-
priate convolutional kernel of width d can be obtained using
a formula:

G(x, σ) ∝ exp(−x
2

σ2
), (5)

and making sure, that the sum of all the terms in the kernel
is equal to 1. This can be done by dividing every term of
the kernel by the sum of all the kernel terms. For example,
Gaussian kernel g(d = 5, σ = 1) looks like

g(5, 1) = [0.06135, 0.2448, 0.3877, 0.2448, 0.06135]. (6)

For the approximation of the first derivative, the following
convolutional kernel is used:

d1 = [−1, 0, 1], (7)

while for the approximation of the second derivative, the
discrete Laplace kernel is used:

d2 = [1,−2, 1]. (8)
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Thanks to the associativity of convolution, the smoothing
and derivative operator can be precomputed beforehand, re-
sulting in one kernel performing both operations at once. First
derivative Gaussian convolution kernel can be obtained using
formula

G(x, σ)′ ∝ x

σ2
· exp(−x

2

σ2
), (9)

and Laplacian of Gaussian convolution kernel can be obtained
using formula

∆G(x, σ) ∝ x2 − σ2

σ4
· exp(−x

2

σ2
). (10)

The edge detection on a correlation trace can now be done
as a convolution, with time complexity O(m×d), where m is
the number of samples in the correlation trace, and d is the
diameter of the filter.

Searching for the key guess in the correlation matrix con-
sists of applying this convolution on each row of the matrix
and looking for the largest value (in case of first derivative) or
zero-crossings (in case of Laplacian) in the resulting matrix.

V. EXPERIMENTAL RESULTS

We have executed two classes of experiments:
• First, we have evaluated all proposed distinguishers re-

garding the amount of correctly revealed bytes of the
AES-128 cipher key, for a various fixed numbers of power
traces available. Results of this class of experiments are
presented in Subsection V-A.

• Second, we have evaluated the First derivative + Gaussian
distinguisher regarding the filter parameters (filter diam-
eter and deviation). Results of this class of experiments
are presented in Subsection V-B.

The platforms we used to evaluate presented methods were
following:
• DPABoard [19] (open experimental board) with Xilinx

Artix 7 FPGA in two revisions: with a switching power
supply, and with a low-noise power supply,

• Sakura-G board [20] with Xilinx Spartan 6 FPGA,
• Evariste III system [21] with development board con-

taining Altera Cyclone III FPGA, customized by remov-
ing the decoupling capacitors.

While working with the DPABoard [19] with a switching
power supply, we have experienced a lot of unwanted noise
in the measured power traces. A correlation trace based on
these power traces is shown in Figure 2. The correlation trace
proccesed with First derivative operator is shown in Figure 3.

A. Evaluation of Proposed Distinguishers

We evaluated following four distinguishers:
1) standard CPA, maximizing the Pearson correlation co-

efficient,
2) maximizing the first derivative of correlation traces,

smoothed using Moving average,
3) maximizing the first derivative of correlation traces,

smoothed using Gaussian filter,
4) searching for zero-crossings of the Laplacian of corre-

lation traces, smoothed using Gaussian filter.
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(a) DPABoard (Xilinx Artix 7 FPGA), powered by a switching power supply.
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(b) DPABoard (Xilinx Artix 7 FPGA), powered by a low-noise power supply.

Figure 4. Number of succesfully recovered bytes of AES-128 cipher key
using different distinguishers, for various number of power traces.
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Figure 5. Number of succesfully recovered bytes of AES-128 cipher key using
different distinguishers, for various number of power traces, using Sakura-G.

The distinguishers were tested on an AES cipher with 128-
bit key, run on three platforms mentioned above. Results are
summarized in Tables I-IV. Each table contains number of
succesfully recovered key bytes for numbers of power traces
varying between 100 and 100,000.

Tables I and II contain the results based on the corre-
lation traces obtained from an open DPA evaluation board
DPABoard [19] with Xilinx Artix 7. We have evaluated these
distinguishers using two different revisions of the board:
Table I and Figure 4a present the results when using the
DPABoard with a switching power supply. Table II and
Figure 4b present the results when using the DPABoard with
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Table I
NUMBER OF CORRECTLY GUESSED BYTES OF THE KEY, XILINX ARTIX 7 WITH A SWITCHING POWER SUPPLY.

# of power traces available
Evaluation method

100 175 250 500 1k 2.5k 5k 10k 50k 100k

Maximum Pearson correlation coefficient 0 0 0 0 0 0 0 0 2 4

First derivative + Moving Average (d=25) 0 0 0 0 0 11 16 16 16 16

First derivative + Gaussian (d=25, σ=12.0) 0 0 1 1 7 16 16 16 16 16

Laplacian of Gaussian (d=25, σ=12.0) 0 0 0 0 0 0 1 6 9 9

Table II
NUMBER OF CORRECTLY GUESSED BYTES OF THE KEY, XILINX ARTIX 7 WITH A LOW-NOISE POWER SUPPLY.

# of power traces available
Evaluation method

100 175 250 500 1k 2.5k 5k 10k 50k 100k

Maximum Pearson correlation coefficient 0 0 2 3 14 16 16 16 16 16

First derivative + Moving Average (d=25) 0 3 6 13 16 16 16 16 16 16

First derivative + Gaussian (d=25, σ=10.0) 0 1 5 15 16 16 16 16 16 16

Laplacian of Gaussian (d=25, σ=12.0) 0 1 2 5 5 6 7 7 7 7

Table III
NUMBER OF CORRECTLY GUESSED BYTES OF THE KEY, SAKURA-G (XILINX SPARTAN 6 WITH A LOW-NOISE POWER SUPPLY).

# of power traces available
Evaluation method

100 175 250 500 1k 2.5k 5k 10k 50k 100k

Maximum Pearson correlation coefficient 2 2 5 12 16 16 16 16 16 16

First derivative + Moving Average (d=30) 1 4 6 13 16 16 16 16 16 16

First derivative + Gaussian (d=25, σ=12.0) 2 3 6 12 16 16 16 16 16 16

Laplacian of Gaussian (d=25, σ=12.0) 1 2 5 11 16 16 16 16 16 16

Table IV
NUMBER OF CORRECTLY GUESSED BYTES OF THE KEY, EVARISTE III + ALTERA CYCLONE III WITH A LOW-NOISE POWER SUPPLY.

# of power traces available
Evaluation method

100 175 250 500 1k 2.5k 5k 10k 50k 100k

Maximum Pearson correlation coefficient 0 2 5 12 16 16 16 16 16 16

First derivative + Moving Average (d=25) 2 4 6 10 16 16 16 16 16 16

First derivative + Gaussian (d=25, σ=10.0) 2 3 4 11 16 16 16 16 16 16

Laplacian of Gaussian (d=25, σ=10.0) 0 1 1 2 2 2 6 8 11 11
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Figure 6. Number of succesfully recovered bytes of AES-128 cipher key using
different distinguishers, for various number of power traces, using Evariste III
+ Altera Cyclone III.

a low-noise power supply.

As can be seen in Figure 4a, in case of noisy power
traces obtained from the board with a switching power supply,
the performance of both First derivative based distinguishers
is much better than the performance of Maximum Pearson
correlation coefficient method, which actually fails. While in
case of First derivative approach we needed just 2,500 power
traces to succesfully reveal all 16 bytes of the key, Maximum
Pearson correlation coefficient method did not reveal any byte
of the key with the same amount of power traces, and only
4 bytes with 100,000 power traces available.

Figure 4b presents the number of successfully recovered
bytes of the key at Xilinx Artix 7 platform with a low-noise
power supply. As can be seen, even in noiseless environment,
our method provides better results. While in case of First
derivative approach we needed just 1,000 power traces to
successfully reveal all 16 bytes of the key, in case of Maximum
Pearson correlation coefficient method we needed 2,500 traces
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Table V
NUMBER OF POWER TRACES NECESSARY TO OBTAIN A FULL AES ENCRYPTION KEY (16 BYTES), RUNNING ON DPABOARD (XILINX ARTIX 7 WITH

A SWITCHING POWER SUPPLY).

Maximum Pearson corr. coef. >100,000

First Derivative + Gaussian (various parameter settings)

diameter (d) →
↓ deviation (σ)

5 11 17 23 29 35 41 47 53

1.0 13,400 13,400 13,400 13,400 13,400 13,400 13,400 13,400 13,400

2.0 9,400 7,500 7,500 7,500 7,500 7,500 7,500 7,500 7,500

4.0 9,400 4,600 4,500 4,400 4,400 4,400 4,400 4,400 4,400

8.0 9,400 4,000 3,700 2,400 2,400 2,400 2,400 2,400 2,400

12.0 9,500 3,900 3,100 2,400 2,400 2,400 2,400 2,400 2,400

16.0 9,500 3,900 3,100 2,400 2,400 2,400 2,400 2,400 2,400

20.0 9,500 3,900 3,100 2,400 2,400 2,400 2,400 2,400 2,800

24.0 9,500 3,900 3,100 2,400 2,400 2,500 2,400 2,400 2,800

30.0 9,500 3,900 3,100 2,400 2,400 2,500 2,400 2,800 2,800

to fully recover the whole key. The Laplacian of Gaussian
distinguisher did not prove to be any more effective than the
standard CPA. This may be due to the higher noise sensitivity
of the second derivative approach.

Table III and Figure 5 present the results obtained while
using Sakura-G [20] board, equipped with Xilinx Spartan 6
chip and a low-noise (linear) power supply. In this case, all
methods perform similar, although the first derivative based
distinguishers provide a slightly better results when there is
insufficient amount of power traces available.

Table IV presents the results for the Evariste III [21] with
Altera Cyclone III FPGA and a low-noise (linear) power
supply. In this case, first derivative distinguishers and standard
CPA are comparable again. First derivative approach may
perform a little better for a low amount of power traces,
nevertheless, at least 1,000 power traces were necessary for
a recovery of the full key. The Laplacian of Gaussian operator
did not prove to be any useful in this case either, as can be
seen in Figure 6.

B. Gaussian Parameters Evaluation

Previous results, summarized in Tables I-IV, indicate the
First derivative distinguisher with Gaussian filtering to be the
most promising method. It is particularly successful in noisy
environment, as demonstrated in Table I and Figure 4a.

The performance of the edge detecting operator depends on
the selection of its smoothing filter parameters:
• diameter of the filter (d), and
• deviation of the Gaussian (σ).
In this section, we evaluate the First derivative distinguisher

with Gaussian filtering, using all the evaluation platforms
listed in the previous subsection, and compare the results with
the Maximum Pearson correlation coefficient method.

Table V presents a number of power traces necessary for
obtaining the whole 16-byte long AES key, using the open
FPGA evaluation platform DPABoard [19] (Xilinx Artix 7)
with a switching power supply. While for the Maximum
Pearson distinguisher, we could not retrieve the whole key
even with 100,000 power traces available, with optimal First

derivative distinguisher only 2,400 power traces are necessary
to obtain the whole key.

Table VI presents results obtained using the same evaluation
platform, but equipped with the low-noise power supply. In
this case, less than a half of power traces is necessary for
a successful attack when using First derivative distinguisher
compared to the standard CPA Maximum Pearson correlation
coefficient (500 vs 1,200).

Table VII presents results obtained when using the Sakura-
G [20] evaluation platform (Xilinx Spartan 6), where the
performance of both distinguishers is similar.

Table VIII presents the results obtained using the
Evariste III [21] + Altera Cyclone III platform. In this case,
the optimal First Derivative distinguisher performs better than
the Maximum Pearson method.

As can be seen from results summarized in Tables V-VIII,
the selection of the filter parameters (d, σ) is crucial for
a satisfactory performance of a distinguisher with Gaussian
filtering. In our case, the deviation σ should be σ ≥ 8.0 to
minimize the number of power traces necessary for succesful
identification of a correct key. The diameter d also influences
the success of the method, although its impact is not that strong
as in the case of deviation. Nevertheless, the diameter d should
be large enough to fit the Gaussian with selected deviation, in
our case d ≥ 23.

VI. CONCLUSION

We have presented a new algorithmic approach to the final
step of the CPA attack, which is a selection (distinguishment)
of the correct key guess from the correlation traces.

Selecting the key candidate which maximizes the correlation
coefficient, according to the maximum likelihood principle,
is quite sufficient if the cryptographic device runs in an
environment well suitable for power trace measurements.
However, this method may fail with presence of noise or
interference present in the production environment, caused
e.g. by a switching power supply.

We show that our distinguisher based on first derivative edge
detection is more successful when evaluating the correlation
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Table VI
NUMBER OF POWER TRACES NECESSARY TO OBTAIN A FULL AES ENCRYPTION KEY (16 BYTES), RUNNING ON DPABOARD (XILINX ARTIX 7 WITH

A LOW-NOISE POWER SUPPLY).

Maximum Pearson corr. coef. 1,200

First Derivative + Gaussian (various parameter settings)

diameter (d) →
↓ deviation (σ)

5 11 17 23 29 35 41 47 53

1.0 >20,000 >20,000 >20,000 >20,000 >20,000 >20,000 >20,000 >20,000 >20,000

2.0 11,300 3,800 3,800 3,800 3,800 3,800 3,800 3,800 3,800

4.0 10,500 600 600 600 600 600 600 600 600

8.0 9,900 700 600 500 500 500 500 500 500

12.0 9,900 900 600 500 500 500 500 500 500

16.0 9,900 900 600 500 500 600 600 600 600

20.0 9,900 900 600 500 500 500 600 600 600

24.0 9,900 900 600 500 500 500 600 600 600

30.0 9,900 900 600 500 500 500 600 600 600

Table VII
NUMBER OF POWER TRACES NECESSARY TO OBTAIN A FULL AES ENCRYPTION KEY (16 BYTES), RUNNING ON SAKURA-G (XILINX SPARTAN 6 WITH

A LOW-NOISE POWER SUPPLY).

Maximum Pearson corr. coef. 800

First Derivative + Gaussian (various parameter settings)

diameter (d) →
↓ deviation (σ)

5 11 17 23 29 35 41 47 53

1.0 >20,000 >20,000 >20,000 >20,000 >20,000 >20,000 >20,000 >20,000 >20,000

2.0 6,200 2,200 2,200 2,200 2,200 2,200 2,200 2,200 2,200

4.0 5,400 1,200 1,200 1,200 1,200 1,200 1,200 1,200 1,200

8.0 5,400 1,200 1,000 900 900 900 900 900 900

12.0 5,400 1,200 900 900 900 800 800 800 800

16.0 5,400 1,200 900 900 900 800 800 700 700

20.0 5,400 1,200 900 900 800 800 700 700 700

24.0 5,400 1,200 900 900 800 800 700 700 700

30.0 5,400 1,200 900 900 800 800 700 700 700

Table VIII
NUMBER OF POWER TRACES NECESSARY TO OBTAIN A FULL AES ENCRYPTION KEY (16 BYTES), RUNNING ON EVARISTE III + ALTERA CYCLONE III

WITH A LOW-NOISE POWER SUPPLY.

Maximum Pearson corr. coef. 700

First Derivative + Gaussian (various parameter settings)

diameter (d) →
↓ deviation (σ)

5 11 17 23 29 35 41 47 53

1.0 6,800 6,800 6,800 6,800 6,800 6,800 6,800 6,800 6,800

2.0 2,100 1,400 1,400 1,400 1,400 1,400 1,400 1,400 1,400

4.0 1,900 900 800 800 800 800 800 800 800

8.0 9,900 900 900 700 700 700 700 700 700

12.0 9,900 900 900 900 700 700 700 700 700

16.0 9,900 900 900 900 700 700 700 600 600

20.0 9,900 900 900 900 800 700 700 700 700

24.0 9,900 900 900 900 800 800 900 700 700

30.0 9,900 900 900 900 800 900 900 700 700
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traces obtained in noisy environment, such as that made by the
switching power supplies. Using our method, approximately
2,400 power traces were necessary for a recovery of the whole
key, while maximization of Pearson correlation coefficient
failed to do so even with 100,000 power traces.

While working with low-noise/linear power supplies and
having a sufficient amount of power traces available, both
approaches work equally good. When the amount of power
traces is insufficient, our first derivative method may provide
slightly better results as well. The Laplacian of Gaussian based
distinguisher did not prove to be much useful.

The extra time complexity of proposed methods is insignif-
icant compared to the rest of the CPA attack. The resulting
reduction of the power traces necessary to reveal the cipher
key is even more beneficial considering that the measuring
of the power traces is by far the most time consuming part
of the attack. Although the time complexity of distinguishers
with Gaussian filtering increases with incresing diameter d, the
(very slight) increase of time is more than compensated by re-
ducing the time necessary for both acquisition of power traces
(i.e. measurement by an oscilloscope) and for calculation of
correlation traces.
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