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Abstract
Partially observable stochastic games (POSGs) represent a very general class of models
that can be used to reason about sequential decision making in the presence of adversaries.
In POSGs, each agent is uncertain about the state of the environment, as well as about
the actions of other agents and the information they have. The cost for this generality is,
however, the intractability of solving POSGs. This intractability can be attributed to the
problem of nested beliefs as the players have to reason not only about their beliefs, but
also about the beliefs other players have about the environment, about beliefs of other
agents, and so on.

In this thesis, we study subclasses of POSGs where this type of nested reasoning
is not necessary. First, inspired by security applications, we study a class of one-sided
POSGs. We model a competition between two players that lasts over an infinite period
of time. One of the players (typically the defender) has imperfect information, while the
adversary (typically the attacker) is perfectly informed. In the zero-sum case, this kind
of reasoning allows us to obtain robust strategies for the defender and provide guarantees
even for settings where the attacker is less informed. We provide a scalable algorithm for
solving one-sided POSGs that is inspired by techniques from the domain of POMDPs,
and that provably computes an ε-approximation of the solution of the game. In some
classes of games, however, the only way to win is to reason about the uncertainty of
the adversary. To this end, we provide a model of POSGs with public observations
that allows for reasoning about games where both players are imperfectly informed, but
no player can use his private information to refine his belief. We establish structural
properties of the solution of this class of games, and we also extend the algorithm for
solving one-sided POSGs to this setting.

We also study practical applications of the proposed methods. Namely, we apply
the model of one-sided POSGs to reason about a variant of lateral movement problem
known in cybersecurity. The attacker sequentially acquires resources in the network in an
attempt to reach his goal. On the other hand, the defender aims to prevent (or at least
harden) the progress of the attacker by deploying honeypots into the network. In our
model, the attacker can control an arbitrary subset of resources. Hence the state space
of the game is exponential, and the exact method of solving one-sided POSGs suffers
from the curse of dimensionality. To address this issue, we present a method to represent
the information of the players compactly, and we show that the algorithmic results
for one-sided POSGs can be extended to use this representation. While by using the
compact representation we lose theoretical guarantees for finding near-optimal solutions,
the compact representation allows us to scale to significantly larger instances.

Finally, we also discuss the problem of applying the heuristic search value iteration
algorithm to Goal-POMDPs. We illuminate the key challenges of applying the algorithm
in the undiscounted setting, and we design a novel algorithm, Goal-HSVI, that provably
converges to the ε-optimal solution, and outperforms the prior approach RTDP-Bel.

Keywords algorithmic game theory, partially observable stochastic games,
cybersecurity
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Abstrakt
Částečně pozorovatelné stochastické hry jsou velmi obecným modelem uvažování o
sekvenčním rozhodování agentů v adversariálních doménách. Každý z agentů má nejistotu
ohledně stavu prostředí a také ohledně akcí ostatních agentů a informací jimi získanými.
Obecnost tohoto modelu má za následek vysokou výpočetní složitost, kterou můžeme
přisuzovat tomu, že agenti musí uvažovat nejen o možném stavu světa, ale také o
představách ostatních agentů o světě, jejich představách o představách ostatních, atd.

V práci se zaměřujeme na podtřídy částečně pozorovatelných stochastických her, kde
takovýto typ uvažování není potřebný. Nejprve na základě inspirace z domén spojených s
bezpečností studujeme třídu jednostranně pozorovatelných stochastických her. Tato třída
modeluje soupeření mezi dvěma hráči, které trvá po nekonečně dlouhou dobu. Jeden z
hráčů (typicky obránce) má neúplné informace o průběhu hry, zatímco protihráč (typicky
útočník) hru pozoruje perfektně. Ve hrách s nulovým součtem nám tento způsob uvažování
umožňuje získat robustní strategie pro obránce, které mu poskytují garance i v situaci,
kdy je útočník méně informovaný. Pro tuto třídu her navrhujeme škálovatelný algorit-
mus, který je inspirovaný technikami pro řešení částečně pozorovatelných Markovských
rozhodovacích procesů a který poskytuje garance nalezení ε-optimálního řešení. Některé
hry nicméně můžeme vyhrát pouze tehdy, pokud uvažujeme o nejistotě našeho soupeře.
Proto třídu jednostranně pozorovatelných stochastických her dále zobecňujeme na třídu
her, kde mají oba hráči neúplnou informaci, ale nemohou využít své soukromé znalosti pro
zpřesnění svých představ. V práci se věnujeme jak strukturálním vlastnostem řešení této
třídy her, ale také ukazujeme, že se algoritmus navržený pro jednostranně pozorovatelné
hry dá zobecnit i na řešení této třídy her.

Práce se také věnuje praktickým aplikacím navrhovaných metod. Konkrétně vy-
užíváme model jednostranně pozorovatelných stochastických her pro analýzu problému,
který je v síťové bezpečnosti známý pod pojmem lateral movement. Poté, co útočník
získá přístup do sítě, se snaží dosáhnout svého cíle tím, že sekvenčně získává přístup
k dalším zdrojům v síti. Obránce se mu snaží postup ztížit tím, že do sítě přidává
tzv. honeypoty, které dokáží postup útočníka detekovat a zpomalit. V našem modelu
může v každém okamžiku útočník kontrolovat libovolnou podmnožinu síťových zdrojů.
Stavový prostor hry je proto exponenciální ve velikosti sítě, a exaktní metoda řešení jed-
nostranně pozorovatelných stochastických her proto špatně škáluje. V práci navrhujeme
tento problém vyřešit pomocí kompaktní reprezentace informace, kterou má obránce k
dispozici, a ukazujeme, že tento přístup může výrazně vylepšit škálovatelnost algoritmu.

Dále se také věnujeme aplikaci algoritmu HSVI v Goal-POMDP. Na příkladech
demonstrujeme základní problémy tohoto algoritmu v doménách, kde odměny nejsou
diskontované. Na základě těchto poznatků navrhujeme algoritmus Goal-HSVI, který
garantovaně konverguje k ε-optimálnímu řešení a překonává předchozí přístup RTDP-Bel.

Klíčová slova algoritmická teorie her, částečně pozorovatelné stochastické hry, síťová
bezpečnost
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CHAPTER1
Introduction

Sequential decision making plays a significant role in our daily lives. Every day we make
sequences of decisions to accomplish our goals and, if possible, we aim to achieve them
in an optimal, most convenient way for us, e.g., with respect to associated costs, time
efficiency or execution safety. Specifically, in an environment where the outcomes also
depend on the actions of other decision-makers, the optimality of the decisions we make
becomes critical. This is especially true in applications related to security, where the
attackers will try to identify weaknesses of our decisions and aim at exploiting these
weaknesses in their favor. If we want to avoid falling victim to an attack performed
by an advanced adversary, it is important to understand strategic interactions in the
environment and to anticipate future actions of our opponent.

Understanding strategic interactions between adversarial parties in complex domains
is, however, challenging. To this end, we use the mathematical framework of game
theory to quantify the risks related, e.g., to security operations and to derive powerful
defensive strategies that cannot be easily exploited by the adversary. Game theory has
its roots in the economy, but since then it has found numerous applications in many
fields including biology [Sandholm, 2015], social sciences [Shubik, 1984] and of course
also above mentioned security. The applications of game theory in security involve, to
name a few, the protection of critical infrastructures [Pita et al., 2008; Kiekintveld et al.,
2009; Shieh et al., 2012], computer networks [Vaněk et al., 2012; Durkota et al., 2015;
Kiekintveld et al., 2015; Cai et al., 2016; Nguyen et al., 2017], wildlife protection [Yang
et al., 2014; Fang et al., 2015, 2016; Wang et al., 2019] or patrolling [Basilico et al., 2009a;
Vorobeychik et al., 2014; Basilico et al., 2016].

Game theory provides us with mathematical concepts to study, understand, and
represent the rational behavior of self-interested agents. In order to apply these theoretical
concepts to drive the decision making in practice, we need to study game-theoretic models
that closely correspond to the reality. Furthermore, we need to devise scalable algorithms
for the computation of optimal or near-optimal strategies.

To understand the class of games we are interested in, let us consider a cyber-security
scenario where so-called advanced persistent threats (or APTs) [Virvilis and Gritzalis,



2 CHAPTER 1. INTRODUCTION

2013; Mandiant Intelligence Center, 2013] are involved. APTs are highly sophisticated
attackers that usually have access to considerable financial resources, and often they are
even state-sponsored. Their activity is often long-lived and targeted. Motivated by this
setting we can characterize the class of the games to consider. First, we need to reason
about games with a long or even infinite horizon that involve competition between the
attackers and the defenders. Second, players have only imperfect information about the
course of the game (e.g., in cases of successful APT attacks, the defending side had been
unaware of the infection for several years [Virvilis and Gritzalis, 2013, Table 1]). Third,
we need to consider models that are dynamic in the sense that the state of the game can
evolve (e.g., the attacker acquires additional privilege) and the players can react, e.g., to
the progress of the attack or defense measures used.

Partially observable stochastic games (POSGs) [Hansen et al., 2004] represent a very
general model that satisfies the above-mentioned requirements. Here, the game is played
on a set of states, while the players use their actions to influence the transitions between
the states. Each transition yields an individual reward for each of the players, and each of
the players is aiming to maximize their rewards. Importantly, the players do not directly
observe neither the state of the game, nor how other players are acting in the game, and
what observations of the game they make.

While a single-agent version of POSGs with perfect information (i.e., Markov decision
processes) can be solved in polynomial time [Papadimitriou and Tsitsiklis, 1987], the
introduction of multiple competing agents and the imperfect information increases the
complexity significantly. Goldsmith and Mundhenk [2008] have shown that the decision
problem associated with the existence of a “good” strategy in partially observable
stochastic games is NEXPNP-complete, and several problems associated to POSGs are
even undecidable [Madani et al., 1999].

Given these negative complexity results, the absence of scalable algorithms to solve the
general class of partially observable stochastic games is not surprising. Hansen et al. [2004]
propose a dynamic programming algorithm to incrementally generate non-dominated
deterministic policies to play the game. Upon generating the set of required policies
for the game, a normal-form representation of the game is formed and solved to obtain
optimal policies. The limiting factors of such an approach are apparent as the number of
policies grows doubly-exponentially in the horizon of the game (each policy considered
assigns an action to each of the exponentially many observation histories of a player).
Clearly, such an approach cannot be used to solve games with infinite horizon that we
need and can be applied only to games with very short horizon in practice (≈ 4 for a
game of a trivial size). Kumar and Zilberstein [2009] improved upon the scalability of
the algorithm of Hansen et al. by employing a more aggressive pruning of considered
policies—however, at the cost of optimality. Moreover, although these algorithms have
been framed in the POSG setting, both of these approaches have only been experimentally
evaluated in a setting where all the agents optimize a single shared reward function
(a framework commonly known as decentralized partially observable Markov decision
processes, Dec-POMDPs [Oliehoek et al., 2016]).
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The formalism of Dec-POMDPs has been extensively studied in the literature, and
numerous algorithms have been proposed to solve these cooperative models. Apart of
the algorithm of Hansen et al. [2004], the optimal algorithms for solving finite horizon
Dec-POMDPs include the search in the space of possible partial joint policies [Szer et al.,
2005] or value-based methods over the space of probability distributions over states and
individual histories of the agents [Dibangoye et al., 2016]. The number of joint policies
grows doubly-exponentially with the horizon, while the number of possible histories of
an agent is exponential in horizon. Neither of these methods can, therefore, be easily
applied in the setting with infinite horizon we are interested in. The techniques for
solving Dec-POMDPs with infinite horizon have also been developed and involve the
use of finite-state controllers (FSC). While the repeated use of an exhaustive-backup
procedure can yield ε-optimal solutions [Bernstein et al., 2009], practical algorithms focus
on optimizing the performance of controllers of a fixed size. Methods such as iterative
improvement of the performance of an FSC (Dec-BPI [Bernstein et al., 2005]) or direct
computation of the optimal controller via non-linear programming [Amato et al., 2010]
have been proposed to accomplish this goal. Bounding the size of the controller, however,
leads to approximate solutions only.

Although Dec-POMDPs are similar to partially observable stochastic games, the
transferability of results from Dec-POMDPs to the competitive game-theoretic setting is
limited. The conceptual differences between Dec-POMDPs and POSGs can be illustrated
on the class of policies that are required to represent the optimal solution. While the
optimal solution of Dec-POMDPs can be found within deterministic policies [Oliehoek
et al., 2008, Proposition 2.1], this does not hold for the game-theoretic setting where the
randomization is needed.1 As a result, e.g., the multi-agent A* algorithm of Szer et al.
[2005] relying on a search in a finite space of deterministic partial joint policies clearly
cannot be translated to POSGs.

Our work is inspired by the positive results on partially observable Markov decision
processes (POMDPs) [Astrom, 1965; Sondik, 1978; Pineau et al., 2003; Smith and
Simmons, 2004, 2005; Spaan and Vlassis, 2005; Bonet and Geffner, 2009; Somani et al.,
2013]. Although still intractable from the theoretical perspective (the decision problem
associated with the existence of a “good” policy is PSPACE-complete [Papadimitriou
and Tsitsiklis, 1987]), the absence of the multi-agent aspect in POMDPs allowed for the
design of scalable algorithms capable of solving many practical problems with infinite
horizon. From the perspective of this thesis, the class of so called point-based value
iteration methods [Pineau et al., 2003; Smith and Simmons, 2004, 2005; Spaan and Vlassis,
2005] plays a pivotal role. These methods improve upon the standard value-iteration
methods for solving POMDPs [Sondik, 1978; Littman, 1996; Zhang and Zhang, 2001] by
avoiding the exhaustive backup operation. Instead, each backup operation is focused on
improving the utility of the agent in a single belief as opposed to the exhaustive backup
operation that targets improving the utility of the agent everywhere. We believe that

1See Section 3.7 for an example of a game where Nash equilibrium exists in randomized strategies
only.
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the key characteristics of POMDPs that allow for the design of these efficient methods is
the ability to represent the information state of the agent concisely as his beliefs (i.e.,
objective probability distributions over possible states) and, importantly, the ability to
identify the beliefs that are about to be reached. In POMDPs, the agent is the single
decision-maker who influences the transitions between the states—hence given the known
probabilistic characterization of the environment, he is able to infer the future beliefs
by applying a Bayesian rule. This reasoning is more complicated in multi-agent settings
where the decisions made by other agents have to be taken into account.

Given the positive results on point-based methods for solving POMDPs, it is natural
to ask whether these methods can be extended to adversarial POSGs. Wiggers et al.
[2016] suggest that in the case of finite-horizon two-player zero-sum POSGs, the value
function can be defined using joint beliefs over private histories of the players. Wiggers
et al. further suggest that this representation may allow for design of point-based
methods. However, the representation using private histories of the players is similar
to the sequence-form representation of behavioral strategies in the sequence-form linear
program formulation [Koller et al., 1996; Shoham and Leyton-Brown, 2008] that can be
used to solve finite zero-sum extensive-form games. Given the scalability issues of the
sequence form LP formulation (recall that the number of private histories corresponding
to sequences is exponential in horizon), we believe that a coarse approximation of the
proposed belief space would have been required to design a scalable algorithm even for
small finite horizon—thus sacrificing optimality.

Unfortunately, it seems that the representation from [Wiggers et al., 2016] is the
most compact representation of information states of the players in zero-sum POSGs
with general information structure. The key challenge in reasoning about information
in POSGs lies in the asymmetry of the information the players have. Due to different
private observations of the environment, the players can achieve different beliefs [Hansen
et al., 2004]. The reasoning about optimal decisions then requires to reason not only the
private belief, but also about the possible beliefs of the adversary. This results in the
problem of so-called nested beliefs [MacDermed, 2013] where the players need to reason
about possible beliefs of the adversary, possible beliefs of the adversary about others’
beliefs, and so on. The actual distribution over possible private histories proposed in
[Wiggers et al., 2016] is able to capture this nested reasoning implicitly.

Since it is likely impossible to come up with a compact representation of beliefs in
general POSGs (and thus design near-optimal algorithms for solving POSGs with long or
even infinite horizon), we have to ask whether the POSG model is not unnecessarily general
to represent practical problems. This question has been discussed in [MacDermed, 2013].
In [MacDermed, 2013], the author proposes a subclass of POSGs called Markov games
of incomplete information (MaGII) where restrictions are imposed on the transitions
between states and the private observations the players can make. Namely, each player
has to be able to infer the probability distribution over possible current hidden states
of the environment and current private observations other agents observed solely from
the publicly known information and current private observation of the player. Although
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MacDermed provides an algorithm for solving MaGIIs, this algorithm addresses the
cooperative case (i.e., Dec-POMDPs) only.

We follow the direction of MacDermed [2013], and we focus on subclasses of POSGs
that are practical from the perspective of real-world applications and allow for efficient
algorithmic treatment. However, compared to this work, we focus primarily on problems
where competition is involved. First, inspired by the motivational example from the
domain of cybersecurity, we study a class of one-sided partially observable stochastic games
(OS-POSGs). These are two-player zero-sum games (modeling, e.g., the competition
between the defender and the attacker) where one side of the interaction (typically the
attacker) is assumed to be perfectly informed. We considered that the game is played
over an infinite horizon, and the players are optimizing the discounted sum of rewards.
While the restriction on information structure may seem overly restrictive, we argue that
it is well-suited for security applications. The exact information that is revealed to the
attacker is usually not known, and the assumption that the attacker is able to observe
everything is therefore sensible in critical scenarios and is made in several previous works,
e.g., on patrolling [Basilico et al., 2009a; Vorobeychik et al., 2014] or pursuit evasion [Isler
et al., 2005; Isler and Karnad, 2008; Amigoni and Basilico, 2012]. The theoretical aspects
of the class of OS-POSGs have been studied in [Sorin, 2003] where similarities with the
POMDP models have been shown. Namely, the beliefs in OS-POSGs are over states
only (i.e., does not involve private histories of the adversary), and the value function
defined over such beliefs is convex and can be characterized by a recursive formula. These
similarities allow us to use inspiration from POMDP techniques, and to design a scalable
algorithm to solve OS-POSGs. Second, inspired by works of Cole and Kocherlakota
[2001] and MacDermed [2013], we generalize the class of one-sided POSGs towards games
where both players have imperfect information, but the individual beliefs of the players
are conditioned on public information only. We therefore call such a class of games
partially observable stochastic games with public observations (PO-POSGs). For both of
these classes of games, we design scalable algorithms [Horák et al., 2017a; Horák and
Bošanský, 2019] that are inspired by the heuristic search value iteration approach for
solving POMDPs [Smith and Simmons, 2004, 2005]. Our proposed algorithms provably
converge to ε-optimal solutions of both OS-POSGs and PO-POSGs.

We also focus on applications of the proposed techniques in cybersecurity. Namely, we
apply the one-sided POSG model to study active deception techniques [Horák et al., 2017b]
and to design strategies against lateral movement in cyber-physical environments [Horák
et al., 2019a,b]. In the second example, the state space of the game is prohibitively large
(exponential in the size of considered computer networks). To this end, we propose a
technique to represent the information of the imperfectly informed defender in a compact
manner, and we show that the use of compact representation can significantly improve
the scalability of the algorithm.

Finally, we also focus on the problem of Goal-POMDPs. These are single-agent
problems where the agent aims at minimizing the total cost until the goal is reached.
Unlike in the previous models considered in the thesis, the objective is not a discounted
sum of rewards, but a total sum without discounting. We study the possibility of using
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heuristic search value iteration algorithm to solve Goal-POMDPs. We show key challenges
of applying this algorithm in undiscounted problems on examples, and based on these
insights we design a novel Goal-HSVI algorithm that provably converges to ε-optimal
solutions of Goal-POMDPs, and outperforms the prior heuristic approach RTDP-Bel.

1.1 Goals of the Thesis
Design scalable algorithms for solving practical subclasses of POSGs Solving
general POSGs is a challenging problem from the computational perspective [Goldsmith
and Mundhenk, 2008; Hansen et al., 2004]. To this end, we focus on subclasses of POSGs
that are easier to solve, while they are still relevant for practical applications.

Inspired by applications in security, we study a subclass of one-sided partially observ-
able stochastic games. In these two-player zero-sum games that last over infinite time
period, one player (typically the defender) is imperfectly informed about the course of
the game, while the adversary (typically the attacker) is able to observe the course of the
game perfectly. This one-sided imperfect information is well-aligned with previous works
on security problems (e.g., a standard assumption in patrolling [Basilico et al., 2009a]
is that the attacker can observe movements of the defender), and it allows us to obtain
robust strategies for the defender.

From the perspective of security domains, we want to design scalable algorithms that
provide guarantees on the quality of the computed solution. We want to achieve both
guarantees that the computed strategies will perform no worse than expected, as well as
guarantees that the computed solution is near-optimal (i.e., we aim at computing ε-Nash
equilibrium of the zero-sum game). We achieve this by providing an algorithm [Horák
and Bošanský, 2016; Horák et al., 2017a] inspired by the heuristic search value iteration
for POMDPs [Smith and Simmons, 2004, 2005]. We prove that the proposed algorithm
converges to the value of the game, and the representation of the solution allows us to
reconstruct strategies that achieve near-optimal performance.

To further emphasize the goal of scalability, we provide an approximate version of
the proposed algorithm that represents the uncertainty of the defender (i.e., his belief)
in a compact manner [Horák et al., 2019a,b] to significantly improve the scalability of
the algorithm. Although this sacrifices the guarantees on the near-optimality of the
computed solution, we still retain the guarantee that the computed value is a lower bound
on the value of the considered one-sided POSG (hence, we still get worst-case type of
guarantees for the defender).

As a last step, we also provide a generalization of the one-sided partially observable
stochastic games model and we introduce partially observable stochastic games with public
observations (PO-POSGs). Here, both players are allowed to be imperfectly informed,
however, they have to be able to infer the belief of the adversary. We provide the analysis
of structural properties of the solution of PO-POSGs, and we extend the heuristic search
value iteration algorithm from one-sided POSGs to PO-POSGs [Horák and Bošanský,
2019].
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Demonstrate the applicability of algorithmic results on real-world problems
To ensure that the classes of games that we study in this thesis are indeed relevant for
practical applications, we apply our algorithmic results to real-world problems. To this
end, we apply our algorithms in the context of network security.

First, we use the model of one-sided partially observable stochastic games to reason
about active deception in computer networks [Horák et al., 2017b]. Here, we provide
a case study that aims at providing evidence that game-theoretic incident response
strategies (i.e., the methods of how to react after we detect attacker’s presence in the
computer network) are needed. These strategies have to take the belief of the adversary
into account, and actively try to confuse the attacker.

Second, we study the problem of lateral movement in cyber-physical topologies. Here,
the attacker has already established his presence within the system, and he now aims at
extending his presence in attempt to accomplish his goal. We provide a game-theoretic
model based on one-sided POSGs [Horák et al., 2019a,b] that aims at studying the ways
the defender should allocate honeypots within the network to detect and possibly delay
the attacker. Importantly, however, our model considers the sequential nature of the
problem and allows the defender to reallocate the honeypots based on the information
the defender learns about the progress of the attacker.

1.2 Thesis Outline
In Chapter 2, we provide an overview of relevant concepts in game theory, and we provide
a brief introduction to partially observable Markov decision processes. In Chapter 3,
we provide a detailed discussion of one-sided partially observable stochastic games and
we present the first scalable algorithm to solve this class of games. This algorithm is
inspired by the heuristic search value iteration algorithm for solving POMDPs [Smith
and Simmons, 2004, 2005] and is guaranteed to find ε-optimal solution of one-sided
POSGs. We also provide an application of the one-sided POSGs model to study active
deception in computer networks in Section 3.9. In Chapter 4, we study the compact
representation of the beliefs in one-sided POSGs and we extend the heuristic search
value iteration algorithm to use this representation. Furthermore, we apply these ideas
to the problem of lateral movement known in cybersecurity, and we demonstrate that
this compact representation can significantly improve the scalability of the algorithm.
Next, in Chapter 5, we provide a generalization of the one-sided POSG model where both
players are imperfectly informed about the course of the game. We provide analysis of
the structural properties of the solution and we extend the heuristic search value iteration
algorithm to this class of games. In Chapter 6, we study the problem of Goal-POMDPs
and the applicability of the heuristic search value iteration to this class of partially
observable Markov decision processes. Finally, in Chapter 7, we provide an overview of
the thesis and we suggest directions for future work.
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CHAPTER2
Technical Background

2.1 Game Theory

Game theory is a mathematical framework that allows us to study cooperation and
conflict between rational decision-makers, termed players. In the most general setting, we
need to define four basic components that form the game – players who play the game,
actions they can use, their payoffs for possible outcomes of the game and the information
they have about the game Rasmusen and Blackwell [1994].

The behavior of the players during the game is described by strategies. These
(behavioral) strategies map each possible information state of the player to a (possibly
randomized) action the player is about to use at the given information state. Throughout
this thesis, we denote such decision rules σi where i denotes the player that uses the
strategy. A rational player i is aiming to choose a strategy such that his utility ui(σi, σ−i)
is maximal when strategies σ−i of other players1 are considered.

To describe the behavior of rational players, equilibrium solution concepts have been
established. Equilibrium points correspond to strategy profiles (i.e., vectors of strategies
for each of the players) that are stable in the sense that the players are not incentivized to
deviate from their strategy. One of the most famous solution concepts for characterizing
rational behavior in games is the Nash equilibrium [Nash et al., 1950]. A strategy
profile (σi, σ−i) is in Nash equilibrium if no player i is incentivized to unilaterally deviate
from his strategy σi, i.e., for every player i and every strategy σ′i of player i we have
ui(σi, σ−i) ≥ ui(σ′i, σ−i).

From the perspective of this thesis, we do not aim to compute the exact Nash equilib-
rium. Instead we focus on the concept of ε-Nash equilibrium, where the improvement of
utility the player can achieve by deviating from the equilibrial strategy profile is bounded
by ε, i.e., ui(σi, σ−i) ≥ ui(σ′i, σ−i)− ε holds for every player i and every his strategy σ′i.

1We use −i to refer to all players in the game except for the player i.
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2.1.1 Two-Player Zero-Sum Games
The focus of this thesis is on two-player zero-sum games (and we assume only such games
in the remainder of the thesis). Such games are played by two players (denoted player 1
and player 2) where the utilities u1 and u2 sum to zero, i.e., u1(σ1, σ2) = −u2(σ1, σ2)
for every strategy profile (σ1, σ2). Observe that in this setting, each player i not only
maximizes his own utility ui(σ1, σ2), but at the same time he minimizes the utility
u−i(σ1, σ2) of the adversary. To this end, a single utility function u is sufficient to
represent the goals of both players. We use u to denote the utility u1 of the player 1,
and we assume that player 1 aims at maximizing u while player 2 aims at minimizing u.

Definition 2.1 (Zero-sum game). A tuple (Σ1,Σ2, u) where Σ1 and Σ2 are the sets
of strategies of player 1 and player 2, respectively, and u : Σ1×Σ2 → R is the utility
function of player 1 is called a zero-sum game.

In the context of zero-sum games, the Nash equilibrium strategy profile (σ1, σ2) ∈ Σ1×Σ2
can be characterized by

u(σ1, σ2) ≥ u(σ′1, σ2) and u(σ1, σ2) ≤ u(σ1, σ
′
2) for all σ′1 ∈ Σ1, σ′2 ∈ Σ2. (2.1)

An important characterization of Nash equilibrium in zero-sum games is provided by
von Neumann’s minimax theorem [von Neumann, 1928; Nikaido, 1953].

Theorem 2.1 (Minimax theorem [von Neumann, 1928] as stated by Nikaido [1953]).
Let Σ1 and Σ2 be convex compact sets of strategies, and let utility function u be
continuous, quasi-concave in Σ1 and quasi-convex in Σ2. Then

V = max
σ1∈Σ1

min
σ2∈Σ2

u(σ1, σ2) = min
σ2∈Σ2

max
σ1∈Σ1

u(σ1, σ2) . (2.2)

Observe that the direct consequence of Theorem 2.1 is that a strategy profile (σ∗1, σ∗2)
where σ∗i are minimizers/maximizers from Equation (2.2) is a Nash equilibrium of the
game (Σ1,Σ2, u). The utility of player 1 when strategy profile (σ∗1, σ∗2) is used is u(σ∗1, σ∗2).
Since (σ∗1, σ∗2) are maximizers/minimizers from Equation (2.2), we have

u(σ∗1, σ∗2) ≤ max
σ1∈Σ1

u(σ1, σ
∗
2) = min

σ2∈Σ2
max
σ1∈Σ1

u(σ1, σ2) = (2.3)

= max
σ1∈Σ1

min
σ2∈Σ2

u(σ1, σ2) = min
σ2∈Σ2

u(σ∗1, σ2) ≤ u(σ∗1, σ∗2)

and therefore we have

u(σ′1, σ∗2) ≤ max
σ1∈Σ1

u(σ1, σ
∗
2) ≤ u(σ∗1, σ∗2) and u(σ∗1, σ′2) ≥ min

σ2∈Σ2
u(σ∗1, σ2) ≥ u(σ∗1, σ∗2)

(2.4)
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which corresponds to Nash equilibrium characterization from Equation (2.1). Since the
utility V = u(σ∗1, σ∗2) of a Nash equilibrium is uniquely defined, we call it value of the
game.

Several generalizations of von Neumann’s theorem have been proposed in the literature.
We provide a formulation of Sion [1958] where the set of strategies of one of the players
is allowed not to be compact.

Theorem 2.2 (Sion’s minimax theorem [Sion, 1958] as stated by Komiya [1988]).
Let Σ1 and Σ2 be convex sets of strategies where Σ2 is compact, and let utility function
u be
• upper semicontinuous and quasi-concave on Σ1
• lower semicontinuous and quasi-convex on Σ2.

Then
V = sup

σ1∈Σ1

min
σ2∈Σ2

u(σ1, σ2) = min
σ2∈Σ2

sup
σ1∈Σ1

u(σ1, σ2) . (2.5)

Throughout the thesis we will apply these theorems in a simplified setting where the
utility function u is concave in Σ1, convex in Σ2 and continuous. Note that in such a
case, u is also quasi-concave and upper semicontinuous on Σ1 and quasi-convex and lower
semicontinuous on Σ2.

2.1.2 One-Shot Games
In this section, we will cover games where there is no dynamic interaction. Instead, the
players act only once in the game. Such games are called normal-form (or matrix) games
(NFGs) [Shoham and Leyton-Brown, 2008]. In these games, players choose from a finite
set of actions, and the utility of the players is derived based on the joint action selected
by the players.

Definition 2.2 (Zero-sum normal-form game). A tuple (A1, A2, u) where A1, A2 are
finite sets of actions of player 1 and player 2 and u : A1×A2 → R is a utility function
assigning payoff of the maximizing player 1 to each joint action (a1, a2) ∈ A1 ×A2
is called a zero-sum normal form game.

In normal form games, the players simultaneously decide upon their actions (a1, a2) ∈
A1 × A2. In general, the equilibrium in NFGs exists only in mixed strategies. Hence
the decision of the players is characterized by randomized strategies σi ∈ ∆(Ai), termed
mixed strategies. The expected utility u′(σ1, σ2) of playing a strategy profile (σ1, σ2)
satisfies

u′(σ1, σ2) = Ea1∼σ1,a2∼σ2 [u(a1, a2)] =
∑

(a1,a2)∈A1×A2

σ1(a1) · σ2(a2) · u(a1, a2) . (2.6)
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Since the strategy sets Σi = ∆(Ai) are convex compact sets, and the utility function u′

is linear in both Σ1 and Σ2, von Neumann’s minimax theorem (Theorem 2.1) applies
and we can compute equilibrial strategies using the following linear program (here shown
from the perspective of the maximizing player 1, but the formulation for player 2 is
analogous).

max
σ1,V

V (2.7a)

s.t. V ≤
∑
a1∈A1

σ1(a1) · u(a1, a2) ∀a2 ∈ A2 (2.7b)

∑
a1∈A2

σ1(a1) = 1 (2.7c)

σ1(a1) ≥ 0 ∀a1 ∈ A1 (2.7d)

Here, the player 1 seeks a strategy σ1 that maximizes the utility against any best response
of player 2. The utility against individual best responses of player 2 is characterized by
constraints (2.7b).

Bayesian games generalize normal-form games and introduce incomplete information
about payoffs of the game. The payoffs of individual action profiles in the game are
conditioned on joint types of the players. While each player knows his own private type,
the type of the adversary is hidden.

Definition 2.3 (Zero-sum Bayesian game). A tuple (A1, A2,Θ1,Θ2, u, p) where
• A1, A2 are finite sets of actions of player 1 and player 2, respectively,
• Θ1,Θ2 are finite sets of private types of the players,
• u(a1, a2|θ1, θ2) is the payoff of action profile (a1, a2) when the joint type of

players is (θ1, θ2),
• p ∈ ∆(Θ1 ×Θ2) is the commonly known prior over joint types

is called a zero-sum Bayesian game.

Unlike in normal-form games, the strategy of the player i has to be conditioned
on the private type θi ∈ Θi that gets revealed to him at the beginning of the game.
Hence the strategy in the Bayesian game is a mapping σi : Θi → ∆(Ai). Under these
strategies, we can formulate the expected utility u′(σ1, σ2) of a strategy profile (σ1, σ2)
as an expectation over joint types and joint actions.

u′(σ1, σ2) =
∑

(θ1,θ2)∈Θ1×Θ2

p(θ1, θ2)
∑

(a1,a2)∈A1×A2

σ1(θ1, a1) · σ2(θ2, a2) · u(a1, a2 | θ1, θ2)

(2.8)
Any randomized strategy σi : Θi → ∆(Ai) in zero-sum Bayesian games can be

represented as a mixture over pure strategies σpure
i : Θi → Ai. Hence, any Bayesian game

can be converted to a normal-form game where the actions Ai of player i correspond to
the (finite) set of his pure strategies σpure

i .
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2.1.3 Stochastic Games

Stochastic games generalize the concept of Markov decision processes by introducing
multiple players that jointly influence the environment. We focus on zero-sum stochastic
games where competition is involved (hence also called competitive Markov decision
processes in [Filar and Vrieze, 1997]). Unlike in the one-shot models discussed in the
previous section, the game is played over multiple stages and the players accumulate
rewards over time.

Definition 2.4 (Zero-sum stochastic game). Zero-sum stochastic game is a tuple
(S,A1, A2, T,R) where
• S is a finite set of states,
• A1, A2 are finite sets of actions of player 1 and player 2, respectively,
• T (s′ | s, a1, a2) is the probability to transition from s to s′ when actions (a1, a2)
are taken by the players, and
• R(s, a1, a2) is the reward player 1 receives when actions (a1, a2) are applied in
state s.a

aDue to the zero-sum property, −R(s, a1, a2) is the reward of player 2.

The play in a stochastic game with initial state s(1) proceeds as follows. In each
stage, the players recall the entire history of the game (including all past states and
actions of both players) and they decide independently upon the actions to play at
the current stage t = 1, 2, . . .. When actions (a(t)

1 , a
(t)
2 ) are chosen at stage t, player 1

receives rt = R(s(t), a
(t)
1 , a

(t)
2 ) and the game moves to state s(t+1) with probability

T (s(t+1) | s(t), a
(t)
1 , a

(t)
2 ). Unless specified otherwise, we assume that this process is

repeated for an infinitely long period of time and the goal of the players is to optimize
the infinite discounted sum of rewards Discγ , where

Discγ =
∞∑
t=1

γt−1rt (2.9)

and γ ∈ (0, 1) is a constant discount factor. The discounted stochastic games are also
known as Shapley games [Shapley, 1953; Filar and Vrieze, 1997].

Although the players have access to entire histories (s(i), a
(i)
1 , a

(i)
2 )ti=1s

(t+1) at the
begining of the stage t+ 1, it has been shown that the equilibrium exists in stationary
strategies that depend on the current state only, i.e., σi : S → ∆(Ai). The value of
the discounted stochastic game exists [Shapley, 1953] and can be characterized using
a vector V ∗ ∈ RS where V ∗s is the value of the game starting from state s ∈ S. Fur-
thermore, vector V ∗ of optimal values can be characterized using a fixed point equation
where the effective utility is the sum of reward of player 1 in the first stage of the
game and the discounted utility player 1 is able to achieve in the rest of the game.
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V ∗s = [HV ∗]s = max
σ1(s)∈∆(A1)

min
σ2(s)∈∆(A2)

[
Ea1∼σ1(s),a2∼σ2(s)[R(s, a1, a2) + (2.10)

+γ
∑
s′∈S T (s′ | s, a1, a2) · V ∗s′ ]

]
The solution of Equation (2.10) corresponds to the value of normal-form game (A1, A2, us)
where us(a1, a2) = R(s, a1, a2) + γ

∑
s′∈S T (s′ | s, a1, a2) · V ∗s′ . If the vector V ∗ of optimal

values is known, we can use the linear program (2.7) to obtain strategies (σ1(s), σ2(s)).
These can then be used to form equilibrial stationary strategies in discounted stochastic
games.

Since the value backup operator H : Rs → Rs defined by Equation (2.10) is a
contraction, one can approximate the vector V ∗ of optimal values using value iteration
algorithm [Shapley, 1953; Bowling and Veloso, 2000] that provably converges to V ∗. This
algorithm starts with arbitrary value vector V0 ∈ RS and generates a sequence of vectors
{Vi}∞i=1 such that Vi+1 = HVi. Other methods for solving stochastic games include policy
iteration methods [Rao et al., 1973; Filar and Vrieze, 1997] or reinforcement learning
methods [Littman, 1994], however, their description is beyond the scope of this thesis.

2.1.4 Partially Observable Stochastic Games

Partially observable stochastic games [Hansen et al., 2004] generalize stochastic games
by introducing imperfect information. Unlike in perfect-information stochastic games,
the players can only observe their private observations and recall the actions they made.
They need not, however, have access to information about the states of the game, or
actions and observations of the adversary.

Definition 2.5 (Zero-sum partially observable stochastic game). A zero-sum par-
tially observable stochastic game is a tuple (S,A1, A2, O1, O2, T,R, b

init) where
• S is a finite set of states,
• A1, A2 are finite sets of actions of player 1 and player 2,
• O1, O2 are finite sets of observations of player 1 and player 2,
• T (o1, o2, s

′ | s, a1, a2) is a probability to transition to state s′ from s while
generating observations (o1, o2) when (a1, a2) was played,

• R(s, a1, a2) is the reward of player 1 when actions (a1, a2) are used in state s,
and
• binit ∈ ∆(S) is the initial belief.

The play in a zero-sum POSG proceeds as follows. First, the initial state s(1) is sampled
from the probability distribution binit which is commonly known by both players. In stage
t, players choose independently actions a(t)

1 , a(t)
2 . As a result, player 1 receives reward

R(s(t), a
(t)
1 , a

(t)
2 ) and player 2 receives −R(s(t), a

(t)
1 , a

(t)
2 ) due to the zero-sum property.
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The rewards are assumed to be unobservable by the players during the play.2 With
probability T (o(t)

1 , o
(t)
2 , s(t+1) | s(t), a

(t)
1 , a

(t)
2 ) the game moves to a state s(t+1), player 1

receives observation o(t)
1 , and player 2 receives observation o(t)

2 . The only information
available to player i when deciding upon action in stage t is the history of his past private
observations and actions, (a(j)

i , o
(j)
i )t−1

j=1.
Unlike in stochastic games of perfect information, it seems that the players have

to condition their decisions on the entire history of private observations and actions in
POSGs. The reason for this distinction lies in the fact that the players have a different
perception of the game, and hence attain different beliefs [Hansen et al., 2004]. A
behavioral strategy σi : (AiOi)∗ → ∆(Ai) of player i in a POSG is therefore a mapping
from private histories to a distribution over actions.

Structure of value function in finite-horizon zero-sum POSGs The focus of this
thesis is on designing scalable value methods for solving partially observable stochastic
games. To this end, it is necessary to establish a value function of POSGs. Wiggers et al.
[2016] study finite-horizon version of zero-sum POSGs where the objective is to optimize
undiscounted sum of rewards obtained over a finite period H, i.e.,

∑H
t=1 rt. Inspired by

previous results on Dec-POMDPs [Oliehoek, 2013], the authors propose to establish value
functions of POSGs based on so-called plan-time sufficient statistics.

For t-th stage of the game, a plan-time sufficient statistic is defined as a probability
distribution over possible joint action-observation histories of the players at t-th stage
of the game, i.e., p ∈ ∆((A1O1)t−1 × (A2O2)t−1). Based on this statistic, Wiggers et al.
define value function V ∗t of the t-th stage of the game. For p ∈ ∆((A1O1)t−1×(A2O2)t−1),
V ∗t (p) is the utility

∑H
i=t rt player 1 can achieve in the remaining stages when the

distribution over possible joint private action-observation histories of the players is p.
The authors show that the value function V ∗H for the last stage game corresponds to
the value function of a family of Bayesian games. Here, types ΘH

i = (AiOi)H−1 of
player i correspond to possible private action-observation histories player i can have at
the beginning of the last stage H of the game, and the utility function involves only single
reward, u(a1, a2 | θ1, θ2) =

∑
s(H)∈S P[s(H)|θ1, θ2] ·R(s(H), a1, a2). The authors show that

V ∗H is concave in the marginal probabilities over action-observation histories (A1O1)H−1

of the maximizing player 1, and convex in the marginal probabilities over (A2O2)H−1

of the minimizing player 2. Furthermore, they show that the value function of previous
stages t < H can be characterized inductively while preserving the structural properties,
i.e., V ∗t is concave in marginals ∆((A1O1)t) and convex in ∆((A2O2)t).

Although Wiggers et al. [2016] provide a useful theoretical characterization of value
in finite-horizon zero-sum POSGs, the number of possible action-observations histories
and therefore also the dimension of the value functions still grow exponentially in horizon.
Furthermore, the results are based on an inductive construction that starts from the
value function of the last stage of the game and they cannot therefore be applied to the

2This does not restrict generality of the model. The rewards can be made observable by including
them in observations the players get.



16 CHAPTER 2. TECHNICAL BACKGROUND

infinite-horizon setting that we are interested in. To this end, we focus on games where
this growth in the dimension does not occur. We will now provide an overview of some
classes of such games that are relevant to this thesis.

Sorin [2003] studies zero-sum stochastic games with one-sided incomplete information
and both finite and infinite horizon (with discounted rewards). Here, one player is
perfectly informed about the states, actions, and observations of the other player (hence
having perfect information about the game), while his adversary is less informed. In the
case of the discounted problem, the value function V ∗ : ∆(S)→ R is defined over beliefs
over states and is characterized by a recursive formula

V ∗(b) = min
π2(·|s)∈∆(A2)

max
a1∈A1

[
λ
∑
s,a2

b(s)π2(a2 | s)R(s, a1, a2) + (2.11)

+ (1− λ)Eb,a1,π2 [V ∗(τ(b, a1, π2, o)]
]

where τ denotes the Bayesian update of the belief of the imperfectly-informed player.3

Furthermore, V ∗ is a convex function which makes it structurally similar to the optimal
value function in POMDPs (see Section 2.2 for more details). Similar models where one
player is perfectly informed has also appeared, e.g., in [Chatterjee and Doyen, 2014] as
semi-perfect information games where the game is, however, considered to be turn-based
and a different class of objectives is used, or [Krausz and Rieder, 1997], where the actions
of the players are, however, assumed to be observable which is not convenient for security
applications we are interested in4.

The characterization of value function of one-sided models (Equation (2.11)) is possible
since the players can infer and agree upon each other’s beliefs when the strategy π2 is
known—i.e., the beliefs are Markov. Cole and Kocherlakota [2001] aim to identify a
class of games where beliefs are Markov. They use a factorization of the state space
s = (s1, s2), where player i observes si but not s−i, and observations oi = (opub, o

′
i) consist

of a commonly known public observation opub and a private observation o′i of player i.
To this end, they study deterministic Markov-private strategies σi : (Opub)∗Si → Ai that
depend only on the public information available to the players and their current private
state, and they suggest that the beliefs are Markov when the belief of player i at the t-th
stage depends only on the public information (opub)t−1

j=1 and the current private state s(t)
i

of player i. Cole and Kocherlakota [2001] provides an algorithmic characterization of
achievable payoffs, however, the approach does not translate to an efficient algorithm
and applies only to the setting where the strategies are deterministic.

MacDermed [2013] studies a model called Markov games of incomplete information
(MaGII) which closely resembles the model of Cole and Kocherlakota [2001]. Similarly,
the state space is factored s = (s′, s1, s2) where the private states si act as private

3In [Sorin, 2003], the role of the players is reversed, and the maximizing player is assumed to be
perfectly informed. To ensure consistency with the rest of the thesis, we reversed the roles of the players
in the formula.

4E.g., in patrolling problems, the attacker would have been required to announce that he attacks a
particular target if the actions were observable.
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observations, and the model requires that the distribution over states s(t) is independent
of private signal s(t−1)

i of the player i given a history of public observations and the current
private signal sti of player i. MacDermed [2013] provides an algorithmic approach for
solving common-payoff case of MaGIIs (which corresponds to a subclass of Dec-POMDPs
and hence is conceptually different from zero-sum POSGs). MacDermed [2013] further
suggest that MaGIIs with arbitrary payoffs (i.e., including the zero-sum case) can be
converted to a belief-stochastic game, however, no algorithm for solving such game is
provided.5 Furthermore, the strategies from this belief-stochastic game can only be used
when the players are required to publicly announce their past strategies (the subjective
belief of the player then corresponds to the true distribution over possible situations in
the game). This cannot be expected to happen in the domains we consider (e.g., the
actual strategy the attacker uses is not advertised) and the belief typically cannot be used
as a sufficient statistic in imperfect information games [Burch et al., 2014; Burch, 2018].
We demonstrate the insufficiency of belief in imperfect-information games (specifically
one-sided POSGs) in Section 3.7.

2.1.5 Extensive-form Games

Much of the success in designing scalable algorithms for solving dynamic games with
imperfect information has been achieved in the domain of extensive-form games (or
EFGs) [Koller et al., 1996; Bošanský et al., 2014; Moravčík et al., 2017; Brown and
Sandholm, 2018]. A two-player zero-sum extensive-form game is traditionally thought of
as a finite game tree H, where each node of the game tree represents a history h ∈ H of
play. Unless the history h represents a leaf node of the tree, a player P(h) ∈ {1, 2} ∪ {c}
(including the chance player c simulating stochastic actions of the environment) takes an
action a ∈ A(h)—and thus extends the current history h to ha. Histories Z ⊂ H which
are the leafs of the tree are called terminal and mark the end of the game. Upon reaching
a terminal history h ∈ Z, player 1 and player 2 collect utility u(h) and −u(h), respectively.
The limited information of the players is captured by the notion of information sets
(or infosets for short). Non-terminal histories Hi = {h ∈ H \ Z | P(h) = i} where
player i ∈ {1, 2} is to play are partitioned into disjoint sets Ii = {I(1)

i , . . . I
(k)
i }. An

infoset Ii ∈ Ii denotes a set of histories that the player i is unable to tell apart (i.e.,
also A(h) is identical for all h ∈ Ii and we denote that A(Ii) for simplicity). Since
the histories in Ii ∈ Ii are indistinguishable, player i has to behave identically in all of
these histories. To this end, a (behavioral) strategy σi of player i maps information sets
Ii ∈ Ii to randomized decisions, σi(Ii)→ ∆(A(Ii)). We denote the information set where
history h is contained I−1(h). In the remainder of this section, we will focus solely on
extensive-form games with perfect recall, i.e., the players remember their past actions
and past information they acquired.

5MacDermed [2013] suggests that the resulting stochastic game can be discretized and finite-state
stochastic games algorithms can be applied to obtain an approximate solution. The actual construction
of the game is not covered, and to the best of our knowledge the construction is not straightforward.
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Definition 2.6 (Perfect-recall in EFGs). An EFG is of perfect recall iff:
1. For every player i ∈ {1, 2}, every two distinct infosets Ii, I ′i ∈ Ii (Ii 6= I ′i),

every two histories h ∈ Ii and h′ ∈ I ′i, and every two extensions of these
histories h w h and h′ w h′ where player i is to act, I−1(h) 6= I−1(h′).

2. For every player i ∈ {1, 2}, every history h of player i (i.e., P(h) = i), every
two distinct actions a, b ∈ A(h) and every two extensions ha w ha and hb w hb
where player i is to play (i.e., P(ha) = P(hb) = i), I−1(ha) 6= I−1(hb).

The restriction on perfect-recall games does not significantly reduce the applicability of
the EFG model, however, it allows for design of scalable algorithms to compute Nash
equilibrium strategies in EFGs with perfect recall. The examples of such algorithms
include sequence-form linear programming [Koller et al., 1996] or counterfactual regret
minimization [Zinkevich et al., 2008].

Viewing POSG as extensive-form game Every POSG with a finite horizon H

can be thought of as an extensive-form game. Here, histories correspond to partial
plays in a POSG, H = H1 ∪ H2 ∪ Hc where H1 =

⋃H
t=1(SA1A2O1O2)t−1S, H2 =⋃H

t=1(SA1A2O1O2)t−1SA1 and Hc =
⋃H
t=1(SA1A2O1O2)t−1SA1A2. At the beginning

of stage t, the history of the EFG is h = (s(j)a
(j)
1 a

(j)
2 o

(j)
1 o

(j)
2 )t−1

j=1s
(t) ∈ H1. The play-

ers then consecutively choose their action: Player 1 chooses a(t)
1 ∈ A1 and extends

the history to ha
(t)
1 ∈ H2, then player 2 chooses a(t)

2 ∈ A2 and extends the history
to ha(t)

1 a
(t)
2 ∈ Hc. Finally, in history ha(t)

1 a
(t)
2 ∈ Hc the chance player applies a fixed

strategy simulating the transition probability T (o(t)
1 , o

(t)
2 , s(t+1) | s(t), a

(t)
1 a

(t)
2 ) and the

history is extended to ha
(t)
1 a

(t)
2 o

(t)
1 o

(t)
2 s(t+1). After H stages elapse, a terminal his-

tory hz = (s(j)a
(j)
1 a

(j)
2 o

(j)
1 o

(j)
2 )Hj=1s

(H+1) ∈ Z is reached and player 1 receives utility∑H
j=1R(s(j), a

(j)
1 , a

(j)
2 ) or

∑H
j=1 γ

j−1R(s(j), a
(j)
1 , a

(j)
2 ) when the discounting is employed.

Although the players decide sequentially in this EFG, the structure of information
sets ensures that they cannot use information they are not supposed to know in the
POSG. Namely, we have an information set Iωi ∈ Ii for every action-observation history
ω ∈

⋃H
t=1(AiOi)t−1 of player i, and Iωi consists of all histories h ∈ Hi where the action

observation history of player i is ω. Observe that in such a case, the behavioral strategy
σi of player i coincides with the behavioral strategy in the POSG with horizon H.

Based on this formulation, we provide a simple argument showing the existence of
the value of infinite-horizon partially observable stochastic games when the discounted
sum of rewards

∑∞
t=1 γ

t−1rt is used as the objective. The proof relies on constructing
EFG representations of a finite-horizon version GH of the given POSG. This game has
horizon H and the leaf nodes are assigned utility

∑H
t=1 γ

t−1rt (i.e., partial sum of the
infinite discounted sum of rewards).

Theorem 2.3. Any infinite-horizon zero-sum POSG with Discγ objective has a value.
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Proof. Denote VH the value of EFG GH constructed for the POSG with horizon H, and
let (σH1 , σH2 ) be Nash equilibrium strategy profile of GH . Since σH1 is a Nash equilibrium
of GH , playing σH1 in the infinite-horizon POSG player 1 ensures that the expected
partial sum E[

∑H
t=1 γ

t−1rt] of rewards in the first H stages is at least VH . The least
payoff the player 1 achieves in the rest of the game (when employing arbitrary strategy)
is
∑∞
t=H+1 γ

t−1rt ≥ γH
∑∞
t=1 γ

t−1r = γHr/(1 − γ) where r is the least reward in the
game. Hence by playing σH1 in the infinite horizon POSG for first H stages, player 1
is able to ensure utility of at least vH = VH + γHr/(1 − γ). Analogous reasoning can
be employed for player 2 to obtain that σH2 guarantees that the utility will be at most
vH = VH + γHr/(1 − γ) where r is the maximum reward in the POSG. As H → ∞,
the utilities vH and vH the players are able to guarantee in the infinite-horizon game
by playing σH1 and σH2 converge, and limH→∞ VH is the value of the infinite-horizon
POSG.

Solving extensive-form games Traditional approaches to solving extensive-form
games, such as sequence-form linear program [Koller et al., 1996] or counterfactual regret
minimization [Zinkevich et al., 2008] reason about the entire extensive-form game prior
to play. The limitations of such an approach for solving finite-horizon POSGs with
non-trivial horizon H is apparent as the size of the game tree is exponential in the
horizon. To the best of our knowledge, heads-up limit Texas hold’em poker (HULHE) is
the largest game that has been solved [Bowling et al., 2015] by approaches that operate on
the entire game tree. This game consists of 1014 information sets (i.e., action-observation
sequences in POSG terminology) and required 900 core-years to be weakly solved. To put
this in perspective, the number of information sets in HULHE is comparable with the
number of sequences of player i in a POSGs of trivial size where player i has only |Ai| = 2
actions and |Oi| = 2 observations and the considered horizon is H = 24. Techniques for
solving larger extensive-form games therefore usually rely on abstractions where a smaller
version of the game is formed and solved, and the resulting strategy is translated back to
the original game. However, such an approach to solving EFGs is only approximate and
typically leads to exploitable strategies that can be defeated [Wood, 2015].

Continual resolving & Deepstack A recent approach of Deepstack [Moravčík et al.,
2017] revolutionized the landscape of scalable algorithms for solving large extensive-
form games and allowed for the design of the first poker bot that achieved expert-level
performance in the game of heads-up no-limit poker (HUNL). Compared to HULHE,
the no-limit version of the game is significantly larger with 10160 decision points. The
approach relies on the idea of continual-resolving [Burch et al., 2014] that allows for
decomposition of the game based on the public information the players have. Namely,
it allows us to reconstruct a strategy for a subgame (i.e., subtree where the players
start with the same shared public information) without remembering the strategy for
the rest of the game that is not reached. Instead, one needs only to remember the
(counterfactual) values the subgame strategy has to achieve in the top-level information
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sets of the adversary (i.e., the value of the resolved strategy given each possible private
information the adversary could have at the beginning of the subgame).

To obtain the counterfactual values in order to start resolving the game, it is necessary
to solve the entire game first—which renders this approach of limited practical applicability
in solving very large games such as HUNL. Deepstack [Moravčík et al., 2017] avoids
such reasoning by introducing a limited-horizon lookahead. This idea is common in
perfect-information games, such as chess, but it has been unknown in the context of
games with imperfect-information. Instead of solving the entire (sub-)game from the root
to the very bottom of the tree, the tree is truncated at a predefined depth (thus lowering
the number of decision nodes within the considered tree significantly). At the cutoff
depth, the counterfactual values for the remainder of the game are estimated based on
the belief over possible private cards of player i (termed range) player −i would have at
the given situation of the game when the current estimate of (partial) strategy of player i
is considered. In Deepstack, these estimates are provided by a neural network that is
trained by solving randomly generated poker situations.

Similarly to the recursive characterization of value in POSGs (e.g., as in Equa-
tion (2.11)), Deepstack represents the solution of the current situation in terms of values
of later situation. However, unlike our approach that relies upon the recursive char-
acterization of value, the value function in Deepstack is more complex (instead of a
single number, it outputs a vector of counterfactual values for each possible private
information), and the approach does not leverage the structural properties of the value
function represented by a neural network, which in the case of Deepstack is treated
as a black box. The distinction can also be seen in the procedure used to propagate
the values. Deepstack uses an iterative procedure of CFR [Zinkevich et al., 2008] that
iteratively approximates the solution of every lookahead tree, while our approach uses
exact mathematical programming. However, the key difference is that we view the
problem from the perspective of infinite-horizon POSGs, while Deepstack and continual
resolving is framed within the context of finite-horizon extensive-form games.

2.2 Partially Observable MDPs
Partially observable Markov decision processes (POMDPs) [Astrom, 1965; Sondik, 1978;
Pineau et al., 2003; Smith and Simmons, 2004, 2005; Spaan and Vlassis, 2005; Bonet and
Geffner, 2009; Somani et al., 2013] are a standard tool for single-agent decision making
in stochastic environment under uncertainty about the states. From the perspective of
partially observable stochastic games, POMDPs can be seen as a variant of POSG that
is played by a single player only.

Definition 2.7 (Partially observable Markov decision process). A partially observ-
able Markov decision process is a tuple (S,A,O, T,R) where
• S is a finite set of states,
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• A is a finite set of actions the agent can use,
• O is a finite set of observations the agent can observe,
• T (o, s′ | s, a) is a probability to transition to s′ while generating observation o
when the current state is s and agent uses action a,
• R(s, a) is the immediate reward of the agent when using action a in state s.

In POMDPs, the agent starts with a known belief binit ∈ ∆(S) that characterizes the
probability binit(s) that s is the initial state. The play proceeds similarly as in POSGs,
except that there is only one decision-maker involved: The initial state s(1) is sampled
from the distribution binit. Then, in every stage t, the agent decides about the current
action a(t) and receives reward R(s(t), a(t)) based on the current state of the environment
s(t). With probability T (o(t), s(t+1) | s(t), a(t)) the system transitions to s(t+1) and the
agent receives observation o(t). The decision process is then repeated. Although many
objectives have been studied in POMDPs, in this section we discuss only discounted
POMDPs with infinite-horizon, i.e., the objective is to optimize

∑∞
t=1 γ

t−1rt for a discount
factor γ ∈ (0, 1).

A strategy σ : (A1O)∗ → A1 in POMDPs is traditionally called a policy and assigns a
deterministic action to each observed history ω ∈ (A1O)∗ of the agent. Since the agent is
the only decision-maker within the environment, and the probabilistic characterization of
the environment is known, the player is able to infer his belief Pbinit [s(t+1) | (a(i)o(i))ti=1]
(i.e., how likely it is to be in a particular state after a sequence of actions and observations
(a(i)o(i))ti=1 has been used and observed). This belief can be defined recursively

τ(b, a, o)(s′) = η
∑
s∈S

b(s) · T (o, s′ | s, a) (2.12)

where η is a normalizing term, and τ(b, a, o) ∈ ∆(S) is the updated belief of the agent
when his current belief was b and he played and observed (a, o). Sondik [1971] has
shown that the belief of the agent is a sufficient statistic, and POMDPs can therefore be
translated into belief-space MDP. In theory, standard methods for solving MDPs can be
applied, and POMDPs can be solved, e.g., by iterating

V t+1(b) = [HV t](b) = max
a∈A

[∑
s∈S

b(s) ·R(s, a) + γ
∑
o∈O

Pb[o | a] · V t(τ(b, a, o))
]

. (2.13)

Since H is a contraction, the repeated application of Equation (2.13) converges to a
unique convex value function V ∗ : ∆(S)→ R of the POMDP. However, since the number
of beliefs is infinite, it is impossible to apply this formula to approximate V ∗ directly.

Exact value iteration The value iteration can be, however, rewritten in terms of
operations with so-called α-vectors [Sondik, 1978]. An α-vector can be seen as a linear
function α : ∆(S)→ R characterized by its values α(s) in the vertices s ∈ S of the belief
simplex ∆(S). We thus have α(b) =

∑
s∈S b(s) · α(s).
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Assume that V t is a piecewise-linear and convex function where V t(b) = maxα∈Γt α(b)
for a finite set of α-vectors Γt. We can then form a new (finite) set Γt+1 of α-vectors to
represent V t+1 from Equation (2.13) by considering all possible combinations of α-vectors
from the set Γt:

Γt+1 =

α : α(s) = R(s, a) + γ
∑

(o,s′)∈O×S
T (o, s′ | s, a)αo(s′) | ∀a ∈ A, (αo)o∈O for αo ∈ Γt

 .

(2.14)
As |Γt+1| = |A| · |Γt||O|, this exact approach suffers from poor scalability. Several
techniques have been proposed to reduce the size of sets Γt [Littman, 1996; Zhang and
Zhang, 2001], however, this still does not translate to an efficient algorithm.

In the remainder of this section, we present two scalable algorithms for solving
POMDPs that are relevant to this thesis. First, we present RTDP-Bel that uses discretized
value function and applies Equation (2.13) directly. Second, we present heuristic search
value iteration (HSVI) [Smith and Simmons, 2004, 2005] that inspires our methods for
solving POSGs.

RTDP-Bel The RTDP-Bel algorithm [Bonet, 1998] is based on RTDP [Barto et al.,
1995] and has been originally framed in the context of Goal-POMDPs. In Goal-POMDPs,
the problem is undiscounted (i.e., γ = 1 in Equation (2.13)), however, the agent is
incentivized to reach the goal state g as his reward for every transition before reaching
the goal is negative (i.e., it represents the cost). The RTDP-Bel also applies to discounted
POMDPs as discounting can be modeled within the Goal-POMDP framework as a fixed
probability 1− γ of reaching the goal state during every transition [Bonet and Geffner,
2009].

RTDP-Bel adapts RTDP to partially observable domains by using a grid-based
approximation of V ∗ and using a hash-table to store the values, where V ∗(b) ∼ V̂ (bK · bc)
for some fixed parameter K ∈ N. This approximation, however, loses the theoretical
properties of RTDP. The algorithm need not converge as the values of the discretized
value function may oscillate. Moreover, there is no guarantee that the values stored in
the hash-table will form a bound on the values of V ∗ [Bonet and Geffner, 2009, p. 3,
last paragraph of Section 3]. Despite the lack of theoretical properties, RTDP-Bel has
been shown to perform well in practice. The RTDP-Bel algorithm performs a sequence
of trials (see Algorithm 2.1) that updates the discretized value function V̂ .

Algorithm 2.1: A single trial of the RTDP-Bel algorithm.
1 b← binit; s ∼ b
2 while b(g) < 1 do
3 Q(b, a)←

∑
s∈S b(s)R(s, a) +

∑
o∈O Pb[o | a] · V̂ (bK · τ(b, a, o)c)

4 a∗ ← arg maxa∈AQ(b, a)
5 V̂ (bK · bc)← Q(b, a∗)
6 (o, s′) ∼ T (o, s′ | s, a∗); b← τ(b, a∗, o); s← s′
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V ∗ V̂

(a) RTDP-Bel

V ∗ (VLB, VUB)

(b) HSVI (PWLC)

V ∗ (VLB, VUB)

(c) HSVI2 (sawtooth)

Figure 2.1: Comparison of value function approximation schemes

Heuristic search value iteration (HSVI) Heuristic search value iteration [Smith
and Simmons, 2004, 2005] is a representative of a class of point-based methods for solving
POMDPs. Unlike RTDP-Bel, it approximates V ∗ using piecewise-linear functions. We
illustrate the difference between a grid-based approximation used in RTDP-Bel and a
piecewise-linear approximation in Figures 2.1a and 2.1b. Observe that unlike the grid-
based approximation, a piecewise-linear approximation can yield a close approximation
of V ∗ even in regions with rapid change of value.

In the original version of the heuristic-search value iteration algorithm (HSVI) [Smith
and Simmons, 2004], the algorithm keeps two piecewise-linear and convex (PWLC)
functions V Γ

LB and V Υ
UB to approximate V ∗ (see Figure 2.1b) and refines them over time.

The lower bound on the value is represented in the vector-set representation using a finite
set of α-vectors Γ, while the upper bound is formed as a lower convex hull of a set of
points Υ = {(bi, yi) | i = 1, . . . ,m} where bi ∈ ∆(S) and yi ∈ R. We then have

V Γ
LB(b) = max

α∈Γ

∑
s∈S

b(s) · α(s) (2.15a)

V Υ
UB(b) = min{

∑m
i=1 λiyi | λ ∈ Rm≥0 :

∑m
i=1 λibi = b} . (2.15b)

Computing V Υ
UB(b) according to Equation (2.15b) requires solving a linear program.

In the second version of the algorithm (HSVI2, [Smith and Simmons, 2005]), the PWLC
representation of upper bound has been replaced by a sawtooth-shaped approxima-
tion [Hauskrecht, 2000] (see Figure 2.1c). While the sawtooth approximation is less tight
with the same set of points, the computation of V Υ

UB(b) does not rely on the use of linear
programming and can be done in linear time in the size of Υ.

HSVI2 initializes the value function V Γ
LB by considering policies ‘always play action

a’ and constructing one α-vector for each action a ∈ A corresponding to the expected
cost for playing such policy. For the initialization of the upper bound, the fast-informed
bound is used [Hauskrecht, 2000].

The refinement of V Γ
LB and V Υ

UB is done by adding new elements to the sets Γ and Υ.
Each of these updates is meant to improve the approximation quality in a selected belief
b as much as possible, hence termed point-based update (see Algorithm 2.2).

Similarly to RTDP-Bel, HSVI2 selects beliefs where the update should be performed
based on the simulated play (selecting actions according to V Υ

UB). Unlike RTDP-Bel,
however, observations are not selected randomly. Instead, HSVI2 selects an observation
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Algorithm 2.2: Point-based update(b) procedure of (V Γ
LB, V

Υ
UB).

1 αa,o ← arg maxα∈Γ
∑
s′∈S τ(b, a, o)(s′) · α(s′) for all a ∈ A, o ∈ O

2 αa(s)← R(s, a) + γ
∑
o,s′ T (o, s′ | s, a) · αa,o(s′) for all s ∈ S, a ∈ A

3 Γ← Γ ∪ {arg maxαa

∑
s∈S b(s) · αa(s)}

4 Υ← Υ ∪ {(b,maxa∈A
[∑

s∈S b(s)R(s, a) + γ
∑
o∈O Pb[o | a] · V Υ

UB(τ(b, a, o))
]
)}

Algorithm 2.3: HSVI2 for discounted POMDPs. The pseudocode follows the
ZMDP implementation and includes update on line 6.
1 Initialize V Γ

LB and V Υ
UB

2 while V Υ
UB(binit)− V Γ

LB(binit) > ε do explore(binit, ε, 0)
3 procedure explore(b, ε, t)
4 if V Υ

UB(b)− V Γ
LB(b) ≤ εγ−t then return

5 a∗ ← arg maxa∈A
[∑

s b(s) ·R(s, a) + γ
∑
o∈O Pb[o | a]V Υ

UB(τ(b, a, o))
]

6 update(b)
7 o∗ ← arg maxo∈O Pb[o | a] · excesst+1(τ(b, a∗, o))
8 explore(τ(b, a∗, o∗), ε, t+ 1)
9 update(b)

with the highest weighted excess gap, i.e. the excess approximation error

excesst+1(τ(b, a∗, o)) = V Υ
UB(τ(b, a∗, o))− V Γ

LB(τ(b, a∗, o))− εγ−(t+1) (2.16)

in τ(b, a∗, o) weighted by the probability Pb[o | a∗]. This heuristic choice attempts to target
beliefs where the update will have the most significant impact on V Υ

UB(binit)− V Γ
LB(binit).

The HSVI2 algorithm for discounted-sum POMDPs (γ ∈ (0, 1)) is shown in Al-
gorithm 2.3. This algorithm provably converges to an ε-approximation of V ∗(binit) using
values V Γ

LB(binit) and V Υ
UB(binit), see [Smith and Simmons, 2004].



CHAPTER3
One-Sided POSGs

In this chapter, we study a class of one-sided partially observable stochastic games where
one side of the game has imperfect information about the course of the game, while
the other player is perfectly informed. Scotland Yard board game [Wikipedia, 2019] is
an example of such a game. Here one party, the criminal who is escaping the team of
policemen, has access to all information about the game, while the other party, the team
of policemen trying to track down the criminal, is lacking information about the game
(specifically about the movement of the criminal).

Other examples of games that fit within this class of games can be found amongst
security-related problems. Many existing game models studied over the years naturally
belong to the class of one-sided POSGs, namely, e.g., patrolling games [Basilico et al.,
2009a; Vorobeychik et al., 2014], or recently proposed model of non-cooperative reinforce-
ment learning (N-CIRL) [Zhang et al., 2019]. In many security-related problems, the
defender is protecting an area (or a computer network, for example) against the attacker
that aims at intruding the area (network) or attacking some target. The defender does
not have full information about the environment since he does not know which actions the

This chapter is based on a manuscript by K. Horák, V. Kovařík and B. Bošanský that is being prepared
for submission, and on the following publications:
[Horák et al., 2017a] Horák, K., Bošanský, B., and Pěchouček, M. (2017a). Heuristic Search Value

Iteration for One-Sided Partially Observable Stochastic Games. In 31st AAAI Conference on
Artificial Intelligence, pages 558–564 (50%, 11 citations)

[Horák et al., 2017b] Horák, K., Zhu, Q., and Bošanský, B. (2017b). Manipulating adversary’s belief: A
dynamic game approach to deception by design for proactive network security. In International
Conference on Decision and Game Theory for Security (GameSec), pages 273–294 (33%, 18
citations)

[Horák and Bošanský, 2017] Horák, K. and Bošanský, B. (2017). Dynamic Programming for One-sided
Partially Observable Pursuit-evasion Games. In Proceedings of the 9th International Conference
on Agents and Artificial Intelligence (ICAART), pages 503–510 (50%)

[Horák and Bošanský, 2016] Horák, K. and Bošanský, B. (2016). A Point-Based Approximate Algorithm
for One-Sided Partially Observable Pursuit-Evasion Games. In International Conference on
Decision and Game Theory for Security (GameSec), pages 435–454 (50%, 5 citations)
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attacker performed (e.g., which hosts in the computer network have been compromised
by the attacker). At the same time, it is difficult for the defender to know exactly what
information the attacker has since the attacker can have infiltrated the system, or he
might have access to insider information, and thus he can have substantial knowledge
about the environment. Hence, as the worst-case assumption, the defender can assume
that the attacker has full knowledge about the environment. From this perspective,
one-sided POSGs can be used to compute robust defense strategies. We restrict to the
strictly competitive (or zero-sum) setting and in this case the defender has guarantees on
the expected outcome when using such robust strategies even against attackers with less
information.

The class of one-sided POSGs has been studied previously in [Sorin, 2003] as Level-1
stochastic games with incomplete information. Here, the author shows that the value
of the game (parameterized by the belief of the imperfectly informed player) can be
characterized by a recursive formula (see Equation (2.11)). Furthermore, the value
function that assigns the value of a game to each belief is a convex function. Although
Sorin [2003] provides a useful characterization of the value of one-sided POSGs, to
the best of our knowledge, no previous practical algorithm for computing solutions of
one-sided POSGs existed.

In this chapter, we focus on the algorithmic aspect of solving one-sided POSGs. The
results from [Sorin, 2003] suggest that the solution of one-sided POSGs has a similar
structure to value function of POMDPs (see Section 2.2). It is therefore natural to
ask whether POMDP techniques can be extended to apply to one-sided POSGs. We
answer this question affirmatively. First, we provide a detailed theoretical analysis of the
one-sided POSG model (including restating structural results of Sorin [2003] within our
formalism, see Lemma 3.3 and Theorem 3.15). This analysis will later help us to prove the
correctness of our scalable algorithm for solving one-sided POSGs. Namely, we represent
and later approximate the value function of one-sided POSGs by considering values of
strategies of the imperfectly informed player. We discuss the structural properties of
values of strategies, as well as, the value function of the game in Section 3.2. We show
that these values of strategies are linear in the belief of the imperfectly informed player
and that we can find the optimal value function by iteratively constructing improving
strategies (Sections 3.3 and 3.4). Then, based on this idea, we devise an exact value
iteration algorithm (Section 3.5) that similarly to the related algorithm for POMDPs
relies on manipulating finite sets of α-vectors. However, since one-sided POSGs extend
POMDPs1, we cannot expect that this exact method translates to a scalable algorithm.
To this end, our main contribution is a scalable algorithm (Section 3.6) that is inspired
by the heuristic search value iteration method from the domain of POMDPs [Smith and
Simmons, 2004, 2005]. This algorithm keeps and iteratively improves lower and upper
bounds on the optimal value function of one-sided POSGs. We provide a detailed analysis
of the algorithm, and we prove that the algorithm is guaranteed to approximate the value

1One can model a POMDP as a one-sided POSG by preventing the perfectly-informed player from
having impact on transitions and rewards, e.g., by setting A2 = {noop}.
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of one-sided POSGs within arbitrary ε > 0 starting from an arbitrary initial belief of
the imperfectly-informed player. Furthermore, we provide online algorithms that use
the bounds computed by the proposed algorithm to play the game (Section 3.7). These
algorithms allow us to obtain ε-Nash equilibrium strategies for the players.

In Section 3.9, we then provide one of the early applications of the ideas presented
in this chapter to the problem of active deception in cybersecurity. Here, we use the
one-sided POSG model to understand the beliefs of the attacker and how the beliefs of
the attacker influence the efficiency of deceptive techniques. In the provided case study,
we show that the use of game-theoretic active deception can significantly improve the
security level of network operation.

3.1 Game Model

Definition 3.1 (One-sided POSGs). A one-sided POSG (or OS-POSG) is a tuple
G = (S,A1, A2, O, T,R, γ) where
• S is a finite set of of game states,
• A1 and A2 are finite sets of actions of player 1 and player 2, respectively,
• O is a finite set of observations
• for every (s, a1, a2) ∈ S × A1 × A2, T (· | s, a1, a2) ∈ ∆(O × S) represents
probabilistic transition function,
• R : S ×A1 ×A2 → R is a reward function of player 1,
• γ ∈ (0, 1) is a discount factor.

The game starts by sampling the initial state s(1) ∼ binit from a distribution binit called
the initial belief. Then the game proceeds for an infinite number of stages where players
choose their actions simultaneously and receive feedback from the environment. At the
beginning of i-th stage, the current state s(i) is revealed to player 2, but not to player 1.
Then player 1 selects action a(i)

1 ∈ A1 and player 2 selects action a(i)
2 ∈ A2. Based on

the current state of the game s(i) and the actions (a(i)
1 , a

(i)
2 ) taken by the players, an

unobservable reward R(s(i), a
(i)
1 , a

(i)
2 ) is assigned2 to player 1, and the game transitions to a

state s(i+1) while generating observation o(i) with probability T (o(i), s(i+1) | s(i), a
(i)
1 , a

(i)
2 ).

After committing to action a(i)
2 , player 2 observes the entire outcome of the current stage,

including the action a(i)
1 taken by player 1 and the observation o(i). The player 1, on

the other hand, knows only his own action a(i)
1 and the observation o(i), while the action

a
(i)
2 of player 2 and both the past and new states of the system s(i) and s(i+1) remain

unknown to him.
The information asymmetry in the game means that while player 2 can observe

entire course of the game (s(i)a
(i)
1 a

(i)
2 o(i))ti=1s

(t+1) ∈ (SA1A2O)∗S up to the current

2Note that we consider a zero-sum setting, hence the reward of player 2 is −R(s(i), a
(i)
1 , a

(i)
2 ). We do

however consider that player 2 focuses on minimizing the reward of player 1 instead of reasoning about
the rewards of player 2 directly.
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decision point at time t+ 1, the player 1 only knows his own actions and observations
(a(i)

1 o
(i)
i=1)t ∈ (A1O)∗. The knowledge of players translates to the probabilistic decision

rules the players use to act in the game.

Definition 3.2 (Behavioral strategy). Let G be a one-sided POSG. Mappings
σ1 : (A1O)∗ → ∆(A1) and σ2 : (SA1A2O)∗S → ∆(A2) are behavioral strategies of
imperfectly informed player 1 and perfectly informed player 2, respectively. The
sets of all behavioral strategies of player 1 and player 2 are denoted Σ1 and Σ2,
respectively.

Plays in OS-POSGs Players use their behavioral strategies (σ1, σ2) to play the
game. A play is an infinite word (s(i)a

(i)
1 a

(i)
2 o(i))∞i=1, while finite prefixes of plays w =

(s(i)a
(i)
1 a

(i)
2 o(i))Ti=1s

(T+1) are called histories of length T , and plays having w as a prefix
are denoted Cone(w). Formally, a cone of w is a set of all plays extending w,

Cone(w) =
{

(s(i)a
(i)
1 a

(i)
2 o(i))∞i=1 ∈ (SA1A2O)∗

∣∣ (s(i)a
(i)
1 a

(i)
2 o(i))∞i=1 extends w

}
. (3.1)

At a decision point at time t, players extend a history (s(i)a
(i)
1 a

(i)
2 o(i))ti=1s

(t+1) of length
t by sampling actions from their strategies a(t+1)

1 ∼ σ1((a(i)
1 o(i))ti=1) and a

(t+1)
2 ∼

σ2((s(i)a
(i)
1 a

(i)
2 o(i))ti=1s

(t+1)). We consider a discounted-sum objective with discount
factor γ ∈ (0, 1), denoted Discγ , and the payoff associated with a play (s(i)a

(i)
1 a

(i)
2 o(i))∞i=1

is thus
∑∞
i=1 γ

i−1R(s(i), a
(i)
1 , a

(i)
2 ). Player 1 is aiming to maximize this quantity while

player 2 is minimizing it.

Apart from reasoning about decision rules of the players for the entire game (i.e.,
their behavioral strategies σ1 and σ2), we also consider the strategies they use for a single
decision point—or stage—of the game only (i.e., assuming that the course of the previous
stages (s(i)a

(i)
1 a

(i)
2 o(i))ti=1 is fixed and considered a parameter of the given stage).

Definition 3.3 (Stage strategy). Let G be a one-sided POSG. A stage strategy
of player 1 is a distribution π1 ∈ ∆(A1) over the actions player 1 can use at the
current stage. A stage strategy of player 2 is a mapping π2 : S → ∆(A2) from the
possible current states of the game (player 2 observes the true state at the beginning
of the current stage) to a distribution over actions of player 2. The sets of all stage
strategies of player 1 and player 2 are denoted Π1 and Π2, respectively.

Note that a stage strategy of player 2 is essentially a conditional probability distribu-
tion given the current state of the game. For the reasons of notational convenience, we
use notation π2(a2 | s) instead of π2(s)(a2) wherever applicable.



3.1. GAME MODEL 29

3.1.1 Probability measures

We now proceed by defining a probability measure on the space of infinite plays in one-
sided POSGs. Assuming that b ∈ ∆(S) is the initial belief characterizing the distribution
over possible initial states, and players use strategies (σ1, σ2) to play the game from the
current situation, we can define the probability distribution over histories (i.e., prefixes
of plays) recursively as follows.

Pb,σ1,σ2 [s(1)] = b(s(1)) (3.2a)

Pb,σ1,σ2 [(s(i)a
(i)
1 a

(i)
2 o(i))ti=1s

(t+1)] = Pb,σ1,σ2 [(s(i)a
(i)
1 a

(i)
2 o(i))t−1

i=1s
(t)] · (3.2b)

· σ1((a(i)
1 o(i))t−1

i=1, a
(t)
1 ) · σ2((s(i)a

(i)
1 a

(i)
2 o(i))t−1

i=1s
(t), a

(t)
2 ) ·

· T (o(t), s(t+1) | s(t), a
(t)
1 , a

(t)
2 )

This probability distribution also coincide with a measure µ defined over the cones, i.e.
plays having w as a prefix.

µ(Cone(w)) = Pb,σ1,σ2 [w] (3.3)

The measure µ uniquely extends to the probability measure Pb,σ1,σ2 [·] over infinite plays
of the game, which allows us to define the expected utility Eb,σ1,σ2 [Discγ ] of the game
when the initial belief of the game is b and strategies σ1 ∈ Σ1 and σ2 ∈ Σ2 are played by
player 1 and player 2, respectively.

Apart from probability measure Pb,σ1,σ2 [·] over plays and histories starting in state
s(1) ∼ b when strategies σ1 ∈ Σ1 and σ2 ∈ Σ2 of player 1 and player 2, respectively, are
played, we also introduce a probability measure Pb,π1,π2 [·] over the possible outcomes of
a single stage. When the current state s ∼ b and players follow stage strategies π1 ∈ Π1
and π2 ∈ Π2, the probability Pb,π1,π2 [s, a1, a2, o, s

′] that the stage starts in state s ∈ S,
player 1 and player 2 play actions a1 ∈ A1 and a2 ∈ A2, respectively, and the observation
o ∈ O is generated while transitioning to a new state s′ ∈ S satisfies

Pb,π1,π2 [s, a1, a2, o, s
′] = b(s)π1(a1)π2(a2 | s)T (o, s′ | s, a1, a2) . (3.4)

Probability distribution in Equation (3.4) can be marginalized to obtain, e.g., the
probability that player 1 plays action a1 ∈ A1 and observes o ∈ O,

Pb,π1,π2 [a1, o] =
∑

(s,a2,s′)∈S×A2×S
Pb,π1,π2 [s, a1, a2, o, s

′] =
∑

(s,a2,s′)∈S×A2×S
b(s)π1(a1)π2(a2 | s)T (o, s′ | s, a1, a2) .

(3.5)
An important characteristic for the decision making of the imperfectly informed

player 1 is his belief about the true current state of the game at the beginning of each
stage. If player 1 knows the stage strategy π2 used by player 2 in the current stage3,
player 1 is able to derive a distribution over possible states at the beginning of the next

3It cannot be, however, assumed that π2 is known when playing the game. We address this in
Section 3.7.
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stage. If player 1 played a1 ∈ A1 and observed o ∈ O, his updated belief τ(b, a1, π2, o)
over states is

τ(b, a1, π2, o)(s′) = Pb,π1,π2 [s′ | a1, o] =
∑

(s,a2)∈S×A2

Pb,π1,π2 [s, a2, s
′ | a1, o] (3.6a)

= 1
Pb,π1,π2 [a1, o]

∑
(s,a2)∈S×A2

Pb,π1,π2 [s, a1, a2, o, s
′] (3.6b)

= 1
Pb,π1,π2 [a1, o]

∑
(s,a2)∈S×A2

b(s)π1(a1)π2(a2 | s)T (o, s′ | s, a1, a2) .

(3.6c)

3.2 Value of One-Sided POSGs
We now proceed by establishing the value function of one-sided POSGs. The value
function represents the utility player 1 is able to achieve in each possible initial belief of
the game. First, we define the value of a strategy σ1 ∈ Σ1 of player 1, which assigns a
payoff player 1 is guaranteed to get by playing σ1 in the game (parameterized by the
initial belief of the game). Based on the value of strategies, we define the optimal value
function of the game where the player 1 chooses the best strategy for the given initial
belief.

Definition 3.4 (Value of strategy). Let G be a one-sided POSG and σ1 ∈ Σ1 be a
behavioral strategy of the imperfectly informed player 1. The value of strategy σ1,
denoted valσ1 , is a function mapping each belief b ∈ ∆(S) to the expected utility
that σ1 guarantees against a best-responding player 2 given that the initial belief is
b,

valσ1(b) = inf
σ2∈Σ2

Eb,σ1,σ2 [Discγ ] . (3.7)

When given an instance of a one-sided POSG with initial belief b, player 1 seeks a
strategy to play that yields the best possible expected utility valσ1(b). The value player 1
can guarantee in belief b is characterized by the optimal value function V ∗ of the game.

Definition 3.5 (Optimal value function). Let G be a one-sided POSG. The optimal
value function V ∗ : ∆(S)→ R of G represents the supinf value of player 1 for each
of the beliefs, i.e.

V ∗(b) = sup
σ1∈Σ1

valσ1(b) . (3.8)

Note that according to Theorem 2.3, every zero-sum POSG with discounted-sum
objective Discγ is determined in the sense that the lower (in the supinf sense) and upper
(in the infsup sense) values of the game coincide and represent the value of the game.
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Therefore, V ∗(b) also represents the value of the game when the initial belief of the game
is b ∈ ∆(S).

Since the Discγ objective is considered (for 0 < γ < 1), the infinite discounted sum of
rewards of player 1 converge. As a result, the values of strategies valσ1(b) and value of
the game V ∗(b) can be bounded.

Proposition 3.1. Let G be a one-sided POSG. Discγ payoff of an arbitrary play in
G is bounded by values

L = min
(s,a1,a2)

R(s, a1, a2)/(1− γ) U = max
(s,a1,a2)

R(s, a1, a2)/(1− γ) . (3.9)

Therefore also L ≤ V ∗(b) ≤ U and L ≤ valσ1(b) ≤ U for every belief b ∈ ∆(S) and
every strategy σ1 ∈ Σ1 of the imperfectly informed player 1.

Proof. The smallest payoff player 1 can hypothetically achieve in any play consists
of getting r = min(s,a1,a2)R(s, a1, a2) in every timestep. The infinite discounted sum∑∞
t=1 γ

t−1r converges to r/(1− γ) = L. Conversely, the maximum payoff can be achieved
if player 1 obtains r = max(s,a1,a2)R(s, a1, a2) in every timestep. Expected values of
strategies (and therefore also the value of the game) are expectation over the payoffs of
individual plays—hence are bounded by L and U as well.

We now focus on the discussion of structural properties of solutions of one-sided
POSGs. First, we show that the value of an arbitrary strategy σ1 ∈ Σ1 of player 1
is linear in b ∈ ∆(S). Note that every linear function α : ∆(S) → R defined on the
probability simplex ∆(S) can be represented as a convex combination of its values in the
vertices of the simplex. We overload the notation and denote the value of α in vertex
corresponding to s ∈ S by α(s), and hence

α(b) =
∑
s∈S

α(s) · b(s) where α(s) = α(1s), 1s(s′) =

1 s = s′

0 otherwise
. (3.10)

In accordance with the POMDP notation, we will call such linear functions defined over
the ∆(S) simplex α-vectors.

Lemma 3.2. Let G be a one-sided POSG and σ1 ∈ Σ1 be an arbitrary behavioral
strategy of player 1. Then the value valσ1 of strategy σ1 is a linear function in the
belief space ∆(S).

Proof. According to the Definition 3.4, the value valσ1 of strategy σ1 is defined as the
expected utility of σ1 against the best-response strategy σ2 of player 2. However, before
having to act, player 2 observes the true initial state s ∼ b. Therefore, he will play a
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best-response strategy σ2 against σ1 (with expected utility valσ1(s)) given that the initial
state is s. Since the probability that the initial state is s is b(s), we have

valσ1(b) =
∑
s∈S

b(s)valσ1(s) . (3.11)

This shows that valσ1 is a linear function in the belief b ∈ ∆(S).

As the point-wise supremum of linear functions is convex, Lemma 3.2 directly implies
that the optimal value function V ∗ is convex.

Lemma 3.3. Optimal value function V ∗ of a one-sided POSG is convex.

Proof. Definition 3.5 defines V ∗ as the point-wise supremum over linear functions valσ1

(over all strategies σ1 ∈ Σ1 of player 1). This means that V ∗ is convex [Boyd and
Vandenberghe, 2004, p.81].

Unless otherwise specified, we endow any space ∆(U) with the ‖ · ‖1 metric. To
later prove the correctness of the algorithm (presented in Section 3.6), we leverage the
fact that both the value of strategies and the optimal value function V ∗ are Lipschitz
continuous. Recall that for k > 0 a function f : ∆(U)→ R is k-Lipschitz continuous if
for every p, q ∈ ∆(U) it holds |f(p)− f(q)| ≤ k · ‖p− q‖1.

Lemma 3.4. Let U be a finite set and let f : ∆(U) → [ymin, ymax] be a linear
function. Then f is k-Lipschitz continuous for k = (ymax − ymin)/2.

Proof. Let p, q ∈ ∆(U) be arbitrary two points in the probability simplex over the set U .
Since f is a linear function, it can be represented as a convex combination of values α(u)
in the vertices of the simplex corresponding to the elements u ∈ U ,

f(p) =
∑
u∈U

α(u) · p(u) where α(u) = f(1u), 1u(v) =

1 v = u

0 otherwise
. (3.12a)

Without loss of generality, let us assume f(p) ≥ f(q). Now, the difference |f(p)− f(q)|
satisfies

|f(p)− f(q)| = f(p)− f(q) =
∑
u∈U

α(u) · [p(u)− q(u)] . (3.12b)

Denote U+ = {u ∈ U | p(u)− q(u) ≥ 0} and U− = {u ∈ U | p(u)− q(u) < 0}. We can
now bound the difference from Equation (3.12b) by

|f(p)− f(q)| =
∑
u∈U+

α(u) · [p(u)− q(u)] +
∑
u∈U−

α(u) · [p(u)− q(u)] (3.12c)

≤
∑
u∈U+

ymax · [p(u)− q(u)] +
∑
u∈U−

ymin · [p(u)− q(u)] (3.12d)
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= ymax
∑
u∈U+

[p(u)− q(u)] + ymin
∑
u∈U−

[p(u)− q(u)] . (3.12e)

Since both p, q ∈ U (i.e., ‖p‖1 = ‖q‖1 = 1), it holds∑
u∈U+

[p(u)− q(u)] = −
∑
u∈U−

[p(u)− q(u)] = ‖p− q‖1/2 . (3.12f)

Therefore

|f(p)−f(q)| ≤ ymax‖p− q‖1/2 +ymin(−‖p− q‖1/2) = (ymax−ymin)/2 · ‖p− q‖1 (3.12g)

which completes the proof.

This Lemma 3.4 directly implies that both values valσ1 of strategies σ1 of the im-
perfectly informed player 1, as well as the optimal value function V ∗ are Lipschitz
continuous.

Lemma 3.5. Let σ1 ∈ Σ1 be an arbitrary strategy of the imperfectly informed
player 1. Then valσ1 is (U − L)/2-Lipschitz continuous.

Proof. Value valσ1 of strategy σ1 is linear (Lemma 3.2) and its values are bounded
by L and U (Proposition 3.1). Therefore, according to Lemma 3.4, function valσ1 is
(U − L)/2-Lipschitz.

For the reasons of notational convenience, we denote the Lipschitz constant δ =
(U − L)/2 in the remainder of the text.

Theorem 3.6. Value function V ∗ of one-sided POSGs is δ-Lipschitz continuous.

Proof. V ∗ is defined as a supremum over δ-Lipschitz continuous values valσ1 of strategies
σ1 ∈ Σ1 of the imperfectly informed player 1. Therefore for arbitrary b, b′ ∈ ∆(S), it
holds

V ∗(b) = sup
σ1∈Σ1

valσ1(b) ≤ sup
σ1∈Σ1

[valσ1(b′) + δ‖b− b′‖1] = V ∗(b′) + δ‖b− b′‖1 . (3.13)

3.2.1 Elementary Properties of Convex Functions
In Lemma 3.3, we have shown that the optimal value function V ∗ of one-sided POSGs
is convex. In this section, we will explicitly state some of the important properties of
convex functions that motivate our approach and are used throughout the rest of the
text.
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Proposition 3.7. Let f : ∆(S)→ R be a point-wise supremum of linear functions,
i.e.,

f(b) = sup
α∈Γ

α(b) , Γ ⊆ {α : ∆(S)→ R | α is linear} . (3.14)

Then f is convex and continuous. Furthermore, if every α ∈ Γ is k-Lipschitz
continuous, f is k-Lipschitz continuous.

Proof. Let b, b′ ∈ ∆(S) and λ ∈ [0, 1] be arbitrary. We have

λf(b) + (1− λ)f(b′) = λ sup
α∈Γ

α(b) + (1− λ) sup
α∈Γ

α(b′)

= sup
α∈Γ

λα(b) + sup
α∈Γ

(1− λ)α(b′)

≥ sup
α∈Γ

[λα(b) + (1− λ)α(b′)]

= sup
α∈Γ

α(λb+ (1− λ)b′) = f(λb+ (1− λ)b′)

and f is therefore convex.

The continuity follows from the following argument. Every convex function is con-
tinuous on the interior of its domain. We will now show that it is continuous even on
the boundary of ∆(S). Assume to the contradiction that it is not continuous, i.e., there
exists b0 on the boundary such that for all b from its neighborhood f(b0) > f(b) + C for
some C > 0. Since f is a pointwise supremum of linear functions, there exists α ∈ Γ
such that α(b0) > f(b0)− C/2, however, at the same time α(b) ≤ f(b0)− C. This is in
contradiction with the fact that all α ∈ Γ are linear, and hence continuous.

Furthermore, suppose that every α ∈ Γ is k-Lipschitz continuous and let b, b′ ∈ ∆(S).
We have

f(b) = sup
α∈Γ

α(b)

≤ sup
α∈Γ

[
α(b′) + k‖b− b′‖1

]
(since every α ∈ Γ is k-Lipschitz)

=
[
sup
α∈Γ

α(b′)
]

+ k‖b− b′‖1

= f(b′) + k‖b− b′‖1.

Since the identical argument proves the inequality f(b′) ≤ f(b) + k‖b− b′‖1, this shows
that f is k-Lipschitz continuous.
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Proposition 3.8. Let Γ ⊆ {α : ∆(S)→ R | α is linear} be a set of linear functions.
Then for every b ∈ ∆(S) we have

sup
α∈Γ

α(b) = sup
α∈Conv(Γ)

α(b) . (3.15)

Proof. Clearly, it suffices to prove the inequality ≥. Let b ∈ ∆(S) be arbitrary and let∑k
i=1 λiαi be an arbitrary4 convex combination of linear functions from Γ, i.e., αi ∈ Γ for

every 1 ≤ i ≤ k. We need to show that α(b) ≥
∑k
i=1 λiαi(b) holds for some α ∈ Γ. This

is straightforward, as can be witnessed by the function αi∗ ∈ Γ, i∗ := arg maxi αi(b):

k∑
i=1

λiαi(b) ≤
k∑
i=1

λi max
1≤i≤k

αi(b) = max
1≤i≤k

αi(b) = αi∗(b) .

Proposition 3.9. Let f : ∆(S) → R be a convex continuous function. Then
there exists a set Γ of linear functions such that α ≤ f for every α ∈ Γ and
f(b) = supα∈Γ α(b) for every b ∈ ∆(S).

Proof. Let Γ := {α : ∆(S) → R linear | α ≤ f}. Clearly, the pointwise supremum of
Γ is no greater than f . It remains to show that supα∈Γ α(b0) ≥ f(b0) for each b0. Let
b0 be an interior point of ∆(S). By the standard convex-analysis result, there exists a
subdifferential of f at b0, that is, a vector v such that f(b) ≥ f(b0) + v · (b− b0) holds for
each b ∈ ∆(S). The function α(b) := f(b0) + v · (b− b0) is therefore contaned in Γ and
witnesses that supα∈Γ α(b0) ≥ f(b0).

Suppose that b0 lies at the boundary of ∆(S) and let η, ‖η‖1 = 1, be a direction for
which every bδ := b0 − δη, δ ∈ (0,∆], lies in the interior of ∆(S) (for some ∆ > 0). Since
f is convex, the directional derivatives f ′η(bδ) = limg→0+

f(bδ+gη)−f(bδ)
g are non-decreasing

as bδ get closer to b0. In particular, the linear functions αδ found for bδ in the previous
step satisfy

αδ(b0) ≥ f(bδ) + f ′η(bδ)δ ≥ f(bδ) + f ′η(b∆)δ.

The right-hand side converges to f(b0) + f ′η(b∆) · 0 = f(b0), which shows that the
supremum of αδ(b0) is at least f(b0). Since αδ ∈ Γ, this proves the remaining part of the
proposition.

In the proposed algorithm, we approximate V ∗ using piecewise linear and convex
functions. Such functions can be defined as a pointwise maximum over a finite set of
linear functions.

4Recall that according to the Carathéodory’s theorem, it suffices to consider finite convex combinations.
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Definition 3.6 (Piecewise linear and convex function on ∆(S)). A function f :
∆(S) → R is said to be piecewise linear and convex (PWLC) if it is of the form
f(b) = maxα∈Γ α(b) (for each b) for some finite set Γ ⊂ {α : ∆(S)→ R | α is linear}
of linear functions.

3.3 Composing Strategies
Every behavioral strategy of the imperfectly informed player 1 can be split into the
stage strategy π1 player 1 uses in the first stage of the game, and behavioral strategies
he uses in the rest of the game after reaching a subgame where he has already played
action a1 ∈ A1 and observed o ∈ O. We can also use the inverse principle, called strategy
composition, to form new strategies by choosing the stage strategy π1 for the first stage
and then deciding behavioral strategies for each one of the subgames.

Definition 3.7 (Strategy composition). Let G be a one-sided POSG and π1 ∈ Π1 be
a stage strategy of player 1. Furthermore, let ζ ∈ (Σ1)A1×O be a vector representing
behavioral strategies of player 1 for each subgame following a1 ∈ A1 and o ∈ O.
The strategy composition comp(π1, ζ) is a behavioral strategy of player 1 such that

comp(π1, ζ)(ω) =

π1 ω = ∅
ζa1,o(ω′) ω = a1oω

′
for each ω ∈ (A1O)∗ . (3.16)

By composing strategies ζ using π1, we obtain a new strategy where the probability
of playing a1 in the first stage of the game is π1(a1), and strategy ζa1,o is played after
playing action a1 and observing observation o in the first stage of the game. Importantly,
the newly formed strategy comp(π1, ζ) ∈ Σ1 is also a behavioral strategy of imperfectly
informed player 1, and therefore the properties of strategies presented in Section 3.2
apply also to comp(π1, ζ). Conversely, for each strategy σ1 ∈ Σ1 of player 1, we can find
the appropriate π1 and ζ such that σ1 = comp(π1, ζ).

Proposition 3.10. Every behavioral strategy σ1 ∈ Σ1 of player 1 can be represented
as a strategy composition.

Proof. Let σ1 ∈ Σ1 be an arbitrary behavioral strategy of player 1, and let π1 = σ1(∅)
and ζa1,o(ω′) = σ1(ω′) for every (a1, o) ∈ A1 × O and ω′ ∈ (A1O)∗. It can be easily
verified that comp(π1, ζ) defined in Definition 3.7 satisfies comp(π1, ζ) = σ1.

Importantly, we can obtain values valcomp(π1,ζ) of composite strategies without con-
sidering the entire strategy comp(π1, ζ). Instead, it is sufficient to consider only the first
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stage of the game and the values of the strategies ζ ∈ (Σ1)A1×O used in the subgames as
the following lemma shows.

Lemma 3.11. Let G be a one-sided POSG and comp(π1, ζ) a composite strategy.
Then the following holds:

valcomp(π1,ζ)(s) = min
a2∈A2

Ea1∼π1, (o,s′)∼T (· | s,a1,a2)
[
R(s, a1, a2) + γvalζa1,o(s′)

]
(3.17)

= min
a2∈A2

∑
a1∈A1

π1(a1)

R(s, a1, a2) + γ
∑

(o,s)∈O×S
T (o, s′ | s, a1, a2)valζa1,o(s′)

 .

The proof relies on the fact that upon reaching a subgame after player 1 played a1
and observed o, the strategy ζa1,o of player 1 guarantees that player 1 gets valζa1,o(s′)
when the given subgame starts in state s′ (and player 2 uses a best-response strategy).
Therefore, it is sufficient to focus on the best-response strategy of player 2 in the first
stage of the game only—as the values in the rest of the game are already known.

Proof. Let us evaluate the payoff if player 2 uses a2 in the first stage of the game given
that the initial state of the game is s. The expected reward of playing action a2 against
comp(π1, ζ) in the first stage is

∑
a1∈A1 π1(a1)R(s, a1, a2), i.e., the expectation over the

actions player 1 can take. Now, at the beginning of the next stage, player 2 knows
everything about the past stage—including action a1 taken by player 1, observation o he
received and the new state of the game s′. Therefore, player 2 knows the strategy ζa1,o

player 1 is about to use in the rest of the game. By definition of valζa1,o (Definition 3.4),
the best payoff player 2 can achieve in this subgame is valζa1,o(s′). After reaching the
subgame, however, one stage has already passed and the rewards originally received at
time t are now received at time t+ 1. To this end, valζa1,o(s′) gets multiplied by γ. The
probability that the subgame is reached is

∑
(a1,o,s′)∈A1×O×S π1(a1)T (o, s′ | s, a1, a2), and

the expectation over γvalζa1,o(s′) is thus computed. Player 2 chooses an action which
achieves the minimum payoff which completes the proof.

3.3.1 Generalized Strategy Composition
Lemma 3.11 suggests that we can use composition of values of strategies valζa1,o to form
values of composite strategies valcomp(π1,ζ). In this section, we relax the assumption that
the linear functions valζa1,o represents values of some strategy to obtain a generalized
principle of composition. This allows us to approximate value function V ∗ as a supremum
of arbitrary linear functions, instead of valσ1 only. Throughout the text, we will use
lin∆(S) to denote the set of linear functions on ∆(S) (i.e., α-vectors). We will also use
the term ‘linear’ to refer to functions that are linear on ∆(S).
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Definition 3.8 (Value composition). Let π1 ∈ Π1 and α ∈ (lin∆(S))A1×O. Value
composition valcomp(π1, α) : ∆(S)→ R is a linear function defined by the values in
vertices of the ∆(S) simplex as follows:

valcomp(π1, α)(s) = min
a2∈A2

∑
a1∈A1

π1(a1)
[
R(s, a1, a2) + (3.18)

γ
∑

(o,s′)∈O×S
T (o, s′ | s, a1, a2)αa1,o(s′)

]
.

Observe that according to Lemma 3.11, valcomp(π1, α) = valcomp(π1,ζ) for αa1,o =
valζa1,o . The value composition valcomp(π1, α), however, admits arbitrary linear function
αa1,o and not only the value valζa1,o of some strategy ζa1,o ∈ Σ1. Importantly, as long
as linear functions αa1,o underestimate values valζa1,o of some strategies ζa1,o ∈ Σ1, the
value composition valcomp(π1, α) underestimates value valσ1 of some strategy σ1 ∈ Σ1:

Lemma 3.12. Let π1 ∈ Π1 be a stage strategy of player 1 and let α ∈ (lin∆(S))A1×O

be a vector of linear functions such that for each αa1,o there exists a strategy ζa1,o ∈ Σ1
with valζa1,o ≥ αa1,o. Then there exists a strategy σ1 ∈ Σ1 such that σ1(∅) = π1 and
valσ1 ≥ valcomp(π1, α).

Proof. Let ζ ∈ (Σ1)A1×O from the assumption of the lemma, and let αζ such that
αζa1,o = valζa1,o . According to the assumption we have αζa1,o ≥ αa1,o. Replacing αa1,o by
αζa1,o in Equation (3.18) can only increase the objective value, hence

valcomp(π1, α)(s) ≤ valcomp(π1, α
ζ)(s) = valcomp(π1,ζ)(s) . (3.19)

Composite strategies are behavioral strategies of player 1, hence σ1 = comp(π1, ζ).

In case of value of composite strategies, we know that valcomp(π1,ζ) is a δ-Lipschitz
continuous linear function (since comp(π1, ζ) ∈ Σ1 is a behavioral strategy of player 1
and Lemma 3.5 applies). We prove, however, that as long as linear functions αa1,o are
bounded by L ≤ αa1,o(b) ≤ U for every belief b ∈ ∆(S), and are therefore δ-Lipschitz
continuous, the value composition valcomp(π1, α) is also δ-Lipschitz.

Lemma 3.13. Let π1 ∈ Π1 and α ∈ (lin∆(S))A1×O such that L ≤ αa1,o(b) ≤ U

for every b ∈ ∆(S). Then L ≤ valcomp(π1, α)(b) ≤ U for every b ∈ ∆(S) and
valcomp(π1, α) is a δ-Lipschitz continuous function.

Proof. Since valcomp(π1, α)(b) is a convex combination of values valcomp(π1, α)(s) in the
vertices of the ∆(S) simplex, it is sufficient to show that L ≤ valcomp(π1, α)(s) ≤
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U for every state s ∈ S. Let a∗2 ∈ A2 be the minimizing action of player 2 in
Equation (3.18). It holds r ≤ R(s, a1, a

∗
2) ≤ r, where r and r are minimum and

maximum rewards in the game. Hence r ≤
∑
a1∈A1 π1(a1)R(s, a1, a

∗
2) ≤ r. Sim-

ilarly, from the assumption of the lemma, we have L ≤ αa1,o(s′) ≤ U and hence
L ≤

∑
(a1,o,s′)∈A1×O×S π1(a1)T (o, s′ | s, a1, a

∗
2)αa1,o(s′) ≤ U . We will now prove that

valcomp(π1, α)(s) ≤ U (the proof of valcomp(π1, α)(s) ≥ L is analogous):

valcomp(π1, α)(s) =
∑
a1∈A1

π1(a1)R(s, a1, a
∗
2) + γ

∑
(a1,o,s′)∈A1×O×S

π1(a1)T (o, s′ | s, a1, a
∗
2)αa1,o(s′)

≤ r + γU = r + γ
r

1− γ = U .

The δ-Lipschitz continuity of valcomp(π1, α) then follows directly from Lemma 3.4.

3.4 Bellman Equation for One-Sided POSGs
In Section 3.2, we have defined the value function V ∗ as the supremum over the strategies
player 1 can achieve in each of the beliefs (see Definition 3.5). However, while this
correctly defines the value function, it does not provide a straightforward recipe to
obtaining value V ∗(b) for the given belief b ∈ ∆(S). In fact, obtaining the value for the
given belief according to Definition 3.5 is as hard as solving the game itself.

In this section, we provide an alternative characterization of the optimal value function
V ∗ inspired by the the value iteration methods, e.g., for Markov decision processes (MDPs)
and their partially observable variant (POMDPs). The high-level idea behind these
approaches is to start with a coarse approximation V0 : ∆(S)→ R of the value function
V ∗, and then iteratively improve the approximation by applying the Bellman’s operator
H, i.e., generate a sequence such that Vi+1 = HVi. In our case, the improvement is based
on finding a new, previously unknown, strategy that achieves higher values for each of
the beliefs by means of value composition principle (Definition 3.8). Throughout this
section, we will consider value functions that are represented as a point-wise supremum
over a (possibly infinite) set Γ of linear functions (called α-vectors), i.e.,

V (b) = sup
α∈Γ

α(b) for Γ ⊂ {α : ∆(S)→ R | α is linear} . (3.20)

Furthermore, without loss of generality, Proposition 3.8 allows us to assume that the set
Γ is convex. For more details on this representation of value functions see Section 3.2.1.

Definition 3.9 (Max-composition). Let V : ∆(S) → R be a convex continuous
function and let Γ be a convex set of linear functions such that V (b) = supα∈Γ α(b).
The max-composition operator H is defined as

[HV ](b) = max
π1∈Π1

sup
α∈ΓA1×O

valcomp(π1, α)(b) . (3.21)
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We will now prove several fundamental properties of the max-composition operator
H (Definition 3.9). First, we will show that the function HV resulting from applying
H on a convex continuous function V is also convex and continuous. This allows us to
apply the operator H repeatedly even though it is defined only for convex continuous
functions. Second, we introduce equivalent formulations of the operatorH which represent
the solution of [HV ](b) in a more traditional form of finding a Nash equilibrium of a
stage-game. These formulations also allow us to show that the operator H is in fact
independent on the set Γ used to represent the value function V . Finally, we conclude
by showing that the operator H can indeed be used to approximate the optimal value
function V ∗. Namely, we show that H is a contraction mapping, and repeated application
of thereof hence converges to the unique fixpoint, and we show that this fixpoint is the
optimal value function V ∗ we seek for.

Proposition 3.14. Let V : ∆(S) → R be a convex continuous function and let Γ
be a convex set of linear functions such that V (b) = supα∈Γ α(b). Then HV is also
convex and continuous. Furthermore, if V is δ-Lipschitz continuous, the function
HV is δ-Lipschitz continuous as well.

Proof. According to Definition 3.9, operator H can be rewritten as a supremum over all
possible value compositions:

[HV ](b) = max
π1∈Π1

sup
α∈ΓA1×O

valcomp(π1, α)(b) = sup
(π1,α)∈Π1×ΓA1×O

valcomp(π1, α)(b) , and (3.22a)

[HV ](b) = sup
α∈Γ′

α(b) Γ′ =
{

valcomp(π1, α) | π1 ∈ Π1, α ∈ ΓA1×O
}

. (3.22b)

In Equation (3.22b), HV is represented as a point-wise supremum from a set Γ′ of linear
functions valcomp(π1, α), which is a convex continuous function (see Proposition 3.7).

Moreover, in case V is δ-Lipschitz continuous, the set Γ representing V can be assumed
to contain only δ-Lipschitz continuous linear functions. According to Lemma 3.13,
valcomp(π1, α) is δ-Lipschitz continuous for every π1 ∈ Π1 and αa1,o ∈ Γ. Hence, Γ′

contains δ-Lipschitz continuous linear functions only and the point-wise maximum HV

over Γ′ is δ-Lipschitz continuous.

We will now prove that the max-composition operator H can be alternatively charac-
terized using max-min and min-max optimization. Recall that τ(b, a1, π2, o) denotes the
Bayesian update of belief b given that player 1 played a1 and observed o, and player 2 is
assumed to follow stage strategy π2 in the current round (see Equation (3.6)).
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Theorem 3.15. Let V : ∆(S)→ R be a convex continuous function and let Γ be a
convex set of linear functions on ∆(S) such that V (b) = supα∈Γ α(b) for every belief
b ∈ ∆(S). Then the following definitions of operator H are equivalent:

[HV ](b) = max
π1∈∆(S)

sup
α∈ΓA1×O

valcomp(π1, α)(b) (3.23a)

= max
π1∈Π1

min
π2∈Π2

[
Eb,π1,π2 [R(s, a1, a2)] + γ

∑
a1,o

Pb,π1,π2 [a1, o] · V (τ(b, a1, π2, o))
]

(3.23b)

= min
π2∈Π2

max
π1∈Π2

[
Eb,π1,π2 [R(s, a1, a2)] + γ

∑
a1,o

Pb,π1,π2 [a1, o] · V (τ(b, a1, π2, o))
]

.

(3.23c)

Proof. We first prove the equality of (3.23b) and (3.23c). Let us define a payoff function
u : Π1×Π2 → R to be the objective of the maximin and minimax optimization in (3.23b)
and (3.23c).

u(π1, π2) = Eb,π1,π2 [R(s, a1, a2)] + γ
∑
a1,o

Pb,π1,π2 [a1, o] · V (τ(b, a1, π2, o)) (3.24a)

After expanding the expectation Eb,π1,π2 [R(s, a1, a2)] and expressing V as a supremum
over linear functions α ∈ Γ, we get

u(π1, π2) =
∑

s,a1,a2

b(s)π1(a1)π2(a2|s)R(s, a1, a2) +

+ γ
∑
a1,o

Pb,π1,π2 [a1, o] · sup
α∈Γ

∑
s′

τ(b, a1, π2, o)(s′) · α(s′) (3.24b)

=
∑

s,a1,a2

b(s)π1(a1)π2(a2|s)R(s, a1, a2) + (3.24c)

+ γ
∑
a1,o

π1(a1) · sup
α∈Γ

∑
s,a2,s′

b(s)π2(a2|s)T (o, s′ | s, a1, a2)α(s′) .

Note that the term Pb,π1,π2 [a1, o] cancels out after expanding τ(b, a1, π2, o) in Equa-
tion (3.24c).

We now show that the von Neumann’s minimax theorem [von Neumann, 1928; Nikaido,
1953] applies to the game with utility function u and strategy spaces Π1 and Π2 for
player 1 and player 2, respectively. The von Neumann’s minimax theorem requires that
the strategy spaces Π1 and Π2 are convex compact sets (which is clearly the case), and
that the utility function u (as characterized by Equation (3.24c)) is continuous, convex in
Π2 and concave in Π1. We will now prove the latter and show that u is a convex-concave
utility function. Clearly, for every π2 ∈ Π2, the function u(·, π2) : Π1 → R (where
π2 is considered constant) is linear in π1, and hence also concave. The convexity of
u(π1, ·) : Π2 → R (after fixing arbitrary π1 ∈ Π1) is more involved. As weighted sum of
convex functions with positive coefficients π1(a1) ≥ 0 is also convex, it is sufficient to
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show that f(π2) = supα∈Γ
∑
s,a2,s′ b(s)π2(a2|s)T (o, s′ | s, a1, a2)α(s′) is convex. Observe

that for every α ∈ Γ, the expression
∑
s,a2,s′ b(s)π2(a2|s)T (o, s′ | s, a1, a2)α(s′) is linear in

π2—hence the supremum over such linear expressions in π2 is convex in π2 (see Proposi-
tion 3.7). According to von Neumann’s minimax theorem maxπ1∈Π1 minπ2∈Π2 u(π1, π2) =
minπ2∈Π2 maxπ1∈Π1 u(π1, π2) which concludes the proof of equality of (3.23b) and (3.23c).

We now proceed by showing the equality of (3.23a) and (3.23b). By further rearranging
Equation (3.24c), we get

u(π1, π2) = sup
α∈ΓA1×O

[ ∑
s,a1,a2

b(s)π1(a1)π2(a2|s)R(s, a1, a2) + (3.25)

+ γ
∑
a1,o

π1(a1)
∑
s,a2,s′

b(s)π2(a2|s)T (o, s′ | s, a1, a2)αa1,o(s′)
]
.

Let us define a game with strategy spaces Γ and Π2 and payoff function u′π1 : Γ×Π2 → R
where u′π1 is the objective of the supremum in Equation (3.25) (Equation (3.26b) is an
algebraic simplification of Equation (3.26a)).

u′π1(α, π2) =
∑

s,a1,a2

b(s)π1(a1)π2(a2|s)R(s, a1, a2) + (3.26a)

+ γ
∑
a1,o

π1(a1)
∑
s,a2,s′

b(s)π2(a2|s)Ts,a1,a2(o, s′)αa1,o(s′)

=
∑
s

b(s)
∑
a2

π2(a2|s)
∑
a1

π1(a1)
[
R(s, a1, a2) + (3.26b)

+ γ
∑
o,s′

T (o, s′ | s, a1, a2)αa1,o(s′)
]
.

Plugging (3.26b) into (3.25), we can write

max
π1∈Π1

min
π2∈Π2

u(π1, π2) = max
π1∈Π1

min
π2∈Π2

sup
α∈ΓA1×O

u′π1(π2, α) . (3.27)

To prove the equivalence of (3.23a) and (3.23b), we need to show that the minimum and
supremum can be swapped. Since u′π1 is linear in both π2 and α, Π2 is a compact convex
set and Γ (and therefore also the set of mappings α ∈ ΓA1×O) is convex, it is possible to
apply Sion’s minimax theorem [Sion, 1958] to get

max
π1∈Π1

min
π2∈Π2

sup
α∈ΓA1×O

u′π1(π2, α) = max
π1∈Π1

sup
α∈ΓA1×O

min
π2∈Π2

u′π1(π2, α) . (3.28)

As u′π1 is linear in π2 (when π1 and α are fixed), the minimum over π2 is attained
in pure strategies. Denote π̂2 : S → A2 a pure strategy of player 2 assigning action
π̂2(s) to be played in state s, and Π̂2 the set of all pure strategies of player 2. We now
rewrite u′π1 to use pure strategies Π̂2 instead of randomized stage strategies Π2. First, in
Equation (3.29a), we replace the maximization over Π2 by maximization over the pure
strategies Π̂2 and replace expectation over actions of player 2 by using the deterministic
action π̂2(s) where appropriate. Then, in Equation (3.29b), we leverage the fact that
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player 2 knows the state before having to act, and hence he can optimize his actions
π̂2(s) independently. And, finally, in Equation (3.29c), we use Definition 3.8.

max
π1∈Π1

min
π2∈Π2

u(π1, π2) = max
π1∈Π1

sup
α∈ΓA1×O

min
π2∈Π2

u′π1(π2, α) =

= max
π1∈Π1

sup
α∈ΓA1×O

min
π̂2∈Π̂2

∑
s

b(s)
∑
a1

π1(a1)
[
R(s, a1, π̂2(s)) + (3.29a)

+ γ
∑
o,s′

T (o, s′ | s, a1, π̂2(s))αa1,o(s′)
]

= max
π1∈Π1

sup
α∈ΓA1×O

∑
s

b(s) min
π̂2(s)∈A2

∑
a1

π1(a1)
[
R(s, a1, π̂2(s)) + (3.29b)

+ γ
∑
o,s′

T (o, s′ | s, a1, π̂2(s))αa1,o(s′)
]

= max
π1∈Π1

sup
α∈ΓA1×O

∑
s

b(s) · valcomp(π1, α)(s) = max
π1∈Π1

sup
α∈ΓA1×O

valcomp(π1, α)(b) .

(3.29c)

This concludes the proof of the equality of Equations (3.23a) and (3.23b).

Corollary 3.16. Bellman’s operator H does not depend on the convex set Γ of linear
functions used to represent the convex value function V .

Since the maximin and minimax values of the game (Equations (3.23b) and (3.23c),
respectively) coincide, the value [HV ](b) corresponds to the Nash equilibrium in the
stage game. We define the stage game formally.

Definition 3.10 (Stage game). A stage game with respect to a convex continuous
value function V : ∆(S) → R and belief b ∈ ∆(S) is a two-player zero sum game
with strategy spaces Π1 for the maximizing player 1 and Π2 for the minimizing
player 2, and payoff function

uV,b(π1, π2) = Eb,π1,π2 [R(s, a1, a2)] + γ
∑
a1,o

Pb,π1,π2 [a1, o] · V (τ(b, a1, π2, o)) . (3.30)

With a slight abuse of notation, we use [HV ](b) to refer both to the max-composition
operator (Definition 3.9) as well as to this stage game.

We will now show that the Bellman’s operator H is a contraction mapping. Recall that
the mappingH is a contraction, if there exists 0 ≤ k < 1 such that ‖HV1−HV2‖ ≤ k‖V1−
V2‖. We consider uniform metric ‖ ·‖∞ such that ‖V1−V2‖∞ = maxb∈∆(S) |V1(b)−V2(b)|.
First, we focus on a single belief point and establish condition that guarantee that
|HV1(b) − HV2(b)| ≤ k|V1(b) − V2(b)|. Then, we show this condition directly implies
contractivity of H.
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Lemma 3.17. Let V,W : ∆(S)→ R be two convex continuous value functions and
b ∈ ∆(S) a belief such that [HV ](b) ≤ [HW ](b). Let (πV1 , πV2 ) and (πW1 , πW2 ) be
Nash equilibrium strategy profiles in stage games [HV ](b) and [HW ](b), respectively,
and C ≥ 0. If W (τ(b, a1, o, π

V
2 )) − V (τ(b, a1, o, π

V
2 )) ≤ C for every action a1 ∈

Supp(πW1 ) of player 1 and every observation o ∈ O such that Pb,πW1 ,πV2
[o | a1] > 0,

then [HW ](b)− [HV ](b) ≤ γC.

Proof. By deviating from the equilibrium strategy profiles in stage games [HV ](b) and
[HW ](b), the players can only worsen their payoffs. Therefore, we have

uV,b(πW1 , πV2 ) ≤ uV,b(πV1 , πV2 ) = [HV ](b) ≤ (3.31)
≤ [HW ](b) = uW,b(πW1 , πW2 ) ≤ uW,b(πW1 , πV2 ) .

We can thus bound the difference [HW ](b)− [HV ](b) by uW,b(πW1 , πV2 )− uV,b(πW1 , πV2 )
where, according to Definition 3.10,

uW,b(πW1 , πV2 )− uV,b(πW1 , πV2 ) = (3.32)

= γ
∑
a1,o

Pb,πW1 ,πV2
[a1, o] · [W (τ(b, a1, π

V
2 , o))− V (τ(b, a1, π

V
2 , o))] .

Since every W (τ(b, a1, o, π
V
2 ))− V (τ(b, a1, o, π

V
2 ) considered in Equation (3.32) with non-

zero probability Pb,πW1 ,πV2
[a1, o] is assumed to be bounded by C, also the expectation

over such W (τ(b, a1, o, π
V
2 ))− V (τ(b, a1, o, π

V
2 ) is bounded by C. Hence uW,b(πW1 , πV2 )−

uV,b(πW1 , πV2 ) ≤ γC, and also [HW ](b)− [HV ](b) ≤ γC.

Theorem 3.18. Operator H is a contraction mapping in the space of convex con-
tinuous functions V : ∆(S)→ R with contractivity factor γ under max-norm. Hence
V ∗ is the unique fixpoint of H, and every sequence {Vi}∞i=0 of value functions such
that Vi = HVi−1 converges to V ∗.

Proof. Let V,W : ∆(S)→ R be convex functions such that ‖V−W‖∞ = maxb∈∆(S) |V (b)−
W (b)| ≤ C. To prove the contractivity of H, it suffices to show that ‖HV −HW‖∞ ≤ γC,
i.e., |[HV ](b) − [HW ](b)| ≤ γC for every belief b ∈ ∆(S). Since |V (b) −W (b)| ≤ C

for every belief b ∈ ∆(S), both HV (b) − HW (b) ≤ γC and HW (b) − HV (b) ≤ γC

according to Lemma 3.17. Hence also |HV (b) − HW (b)| ≤ γC which completes the
proof of contractivity of H. The uniqueness of the fixed-point and the convergence
properties follow directly from Banach’s fixed-point theorem [Ciesielski et al., 2007], while
in Lemma 3.19 we show that V ∗ is the fixpoint.

Finally, we will prove that the optimal value function from Definition 3.5 is the fixpoint
of the Bellman’s operator H. Hence, according to Theorem 3.18, we can iteratively
generate sequences of value functions to gradually improve the approximation of V ∗ by
means of the operator H.
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Lemma 3.19. Optimal value function V ∗ satisfies V ∗ = HV ∗.

Proof. According to Corollary 3.16, the Bellman’s operator does not depend on the set Γ
used to represent the value function V ∗. To this end, we will assume that the set Γ used
to represent V ∗ is

Γ = Conv{valσ1 | σ1 ∈ Σ1} . (3.33a)

To prove the equivalence of value functions V ∗ and HV ∗ we consider that these
functions are represented as follows:

V ∗(b) = sup
α∈ΓV ∗

α(b) ΓV ∗ = {valσ1 | σ1 ∈ Σ1} (3.33b)

[HV ∗](b) = sup
α∈ΓHV ∗ )

ΓHV ∗ =
{

valcomp(π1, α) | π1 ∈ Π1, α ∈ ΓA1×O
}

. (3.33c)

To prove the equivalence of V ∗ and HV ∗, it suffices to show that for every α ∈ ΓV ∗ there
exists α′ ∈ ΓHV ∗ such that α′ ≥ α, and vice versa.

First, from Proposition 3.10, Lemma 3.11 and Definition 3.8, it follows that every
strategy σ1 ∈ Σ1 can be represented as a value composition valcomp(π1, ζ), and we have

valσ1 = valcomp(π1,ζ) = valcomp(π1, α
ζ) (3.33d)

where αζa1,o = valζa1,o ∈ Γ. Hence valσ1 = valcomp(π1, ζ) ∈ ΓHV ∗ .
The opposite direction of the proof, i.e., that for every α ∈ ΓHV ∗ there exists

α′ ∈ ΓV ∗ such that α′ ≥ α, is more involved. Let α = valcomp(π1, α) ∈ ΓHV ∗ be
arbitrary. From (3.33c), each αa1,o can be written as a convex combination of finitely
many elements of {valσ1 | σ1 ∈ Σ1}.

αa1,o =
K∑
i=1

λa1,o
i valσ

a1,o,i
1 (3.33e)

Let us form a vector of strategies ζ ∈ (Σ1)A1×O such that each ζa1,o is a convex combination
of strategies σa1,o,i

1 using coefficients from Equation (3.33e),

ζa1,o =
K∑
i=1

λa1,o
i σa1,o,i

1 . (3.33f)

We can interpret strategy ζa1,o as player 1 first randomly choosing among strategies
σa1,o,i

1 , and then following the chosen strategy in the rest of the game. If the player 2 knew
which strategy σa1,o,i

1 has been chosen, he is able to achieve utility valσ
a1,o,i
1 . However, he

has no access to this information, and hence valζa1,o ≥
∑K
i=1 λ

a1,o
i valσ

a1,o,i
1 = αa1,o. Now,

we have
α′ = valcomp(π1,ζ) ≥ valcomp(π1, α) = α (3.33g)

which concludes the proof.
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3.5 Exact Value Iteration
In Section 3.4, we have shown that the optimal value function can be approximated by
means of composing strategies in the sense of max-composition introduced in Defini-
tion 3.9. In this section, we provide a linear programming formulation to perform such
optimal composition for value functions that are piecewise linear and convex, i.e., can be
represented as a point-wise maximum of a finite set Γ of linear functions. Furthermore,
we show that as long as the value function V is piecewise linear and convex, HV is also
piecewise linear and convex. This allows for using the same linear program iteratively
to approximate the optimal value function V ∗ by means of constructing a sequence of
piecewise linear and convex value functions {Vi}∞i=1 such that Vi = HVi−1.

3.5.1 Computing Max-compositions

In order to compute HV given a piecewise linear and convex (PWLC) value function V , it
is essential to solve Equation (3.21). Every PWLC value function can be represented as a
point-wise maximum over a finite set of linear functions {α1, . . . , αk} (see Definition 3.6).
Without loss of generality, we consider that the set Γ used to represent the value function
V is the convex hull of the aforementioned set:

Γ := Conv ({α1, . . . , αk)} =
{

k∑
i=1

λiαi | λ ∈ Rk≥0, ‖λ‖1 = 1
}

. (3.34)

Recall that convexifying the set of linear functions used to represent V does not affect
the values V attains (see Proposition 3.8). The set Γ is a convex compact set, and we
have

[HV ](b) = max
π1∈Π1

sup
α∈ΓA1×O

valcomp(π1, α)(b) (3.35a)

= max
π1∈Π1

max
α∈ΓA1×O

valcomp(π1, α)(b) (3.35b)

= max
π1∈Π1

max
α∈ΓA1×O

∑
s∈S

b(s) · valcomp(π1, α)(s) (3.35c)

= max
π1∈Π1

max
α∈ΓA1×O

∑
s∈S

b(s) ·min
a2

[∑
a1

π1(a1)R(s, a1, a2) + (3.35d)

+ γ
∑

(a1,o,s′)∈A1×O×S
T (o, s′ | s, a1, a2)π1(a1)αa1,o(s′)

]
.

Equation (3.35b) follows from the fact that valcomp(π1, α) is continuous in α, and Γ
is a compact set (and hence is also ΓA1×O). The Equation (3.35c) represents value of
the linear function valcomp(π1, α) as the convex combination of its values in the vertices
of the ∆(S) simplex, and, finally, Equation (3.35d) rewrites valcomp(π1, α)(s) using
Definition 3.8.
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Equation (3.35d) can be directly formalized as a mathematical program in (3.36).
The minimization over a2 ∈ A2 is rewritten as a set of constraints for each value of state
V (s) (one for each action a2 ∈ A2 of player 2) in Equation (3.36b). The convexification
of set {α1, . . . , αk} is represented by (3.36c) where variables λa1,o

i represent coefficients of
the convex combination. The stage strategy π1 is characterized by (3.36e) and (3.36f).

max
π1,λ,α,V

∑
s∈S

b(s) · V (s) (3.36a)

s.t. V (s) ≤
∑
a1∈A1

π1(a1)R(s, a1, a2) + ∀(s, a2) ∈ S ×A2 (3.36b)

+ γ
∑

(a1,o,s′)∈A1×O×S
T (o, s′ | s, a1, a2)π1(a1)αa1,o(s′)

αa1,o(s′) =
k∑
i=1

λa1,o
i · αi(s′) ∀(a1, o, s

′) ∈ A1 ×O × S (3.36c)
k∑
i=1

λa1,o
i = 1 ∀(a1, o) ∈ A1 ×O (3.36d)∑

a1∈A1

π1(a1) = 1 (3.36e)

π1(a1) ≥ 0 ∀a1 ∈ A1 (3.36f)
λa1,o
i ≥ 0 ∀(a1, o) ∈ A1 ×O, 1 ≤ i ≤ k (3.36g)

The mathematical program (3.36) is not linear since it contains a product of variables
π1(a) · αa1,o(s′). The program can be, however, linearized by introducing substitution
α̂a1,o(s′) = π1(a1)αa1,o(s′) and λ̂a1,o

i = π1(a1)λa1,o
i . The resulting linear programming

formulation of max-composition [HV ](b) is shown in (3.37).

max
π1,λ,α,V

∑
s∈S

b(s) · V (s) (3.37a)

s.t. V (s) ≤
∑
a1∈A1

π1(a1)R(s, a1, a2) + ∀(s, a2) ∈ S ×A2 (3.37b)

+ γ
∑

(a1,o,s′)∈A1×O×S
T (o, s′ | s, a1, a2)α̂a1,o(s′)

α̂a1,o(s′) =
k∑
i=1

λ̂a1,o
i · αi(s′) ∀(a1, o, s

′) ∈ A1 ×O × S (3.37c)

k∑
i=1

λ̂a1,o
i = π1(a1) ∀(a1, o) ∈ A1 ×O (3.37d)∑

a1∈A1

π1(a1) = 1 (3.37e)

π1(a1) ≥ 0 ∀a1 ∈ A1 (3.37f)
λ̂a1,o
i ≥ 0 ∀(a1, o) ∈ A1 ×O, 1 ≤ i ≤ k (3.37g)
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For the sake of completeness, we provide a dual formulation of the linear program (3.37)
(with some minor modifications to improve readability).

min
V,π2,τ̂

V (3.38a)

s.t. V ≥
∑

(s,a2)∈S×A2

π2(s ∧ a2)R(s, a1, a2) + γ
∑
o∈O

V̂ (a1, o) ∀a1 (3.38b)

V̂ (a1, o) ≥
∑
s′∈S

τ̂(b, a1, o, π2)(s′) · αi(s′) ∀(a1, o), 1 ≤ i ≤ k (3.38c)

τ̂(b, a1, π2, o)(s′) =
∑

(s,a2)∈S×A2

T (o, s′ | s, a1, a2)π2(s ∧ a2) ∀(a1, o, s
′) (3.38d)

∑
a2∈A2

π2(s ∧ a2) = b(s) ∀s (3.38e)

π2(s ∧ a2) ≥ 0 ∀(s, a2) (3.38f)

Here, the stage strategy of player 2 is represented as a joint probability π2(s ∧ a2) of
playing action a2 ∈ A2 while being in state s ∈ S (i.e., π2(a2 | s) = π2(s ∧ a2)/b(s)
where applicable). Player 1 then seeks the best response a1 ∈ A1 (constraint (3.38b))
that maximizes the sum of expected immediate reward and γ-discounted utility in the
subgames after playing action a1 and seeing observation o ∈ O. The beliefs τ(b, a1, π2, o)
in the subgames are multiplied by the probability of reaching the subgame (i.e., there
is no division by Pb,a1,π2 [a1, o] in Equation (3.38d)), hence also the values of subgames
V (a1, o) need not be multiplied by Pb,a1,π2 [a1, o]. The value of a subgame V (a1, o) is
expressed as a maximum maxα∈Γ α(τ(b, a1, π2, o)) expressed by constraints (3.38c).

3.5.2 Value Iteration
To apply linear program (3.37) repeatedly to enable a value iteration algorithm, we
require that every Vi in the sequence {Vi}∞i=0, starting from an arbitrary PWLC value
function V0, is also piecewise linear and convex. By Theorem 3.20 this is always the case.

Theorem 3.20. Let V be a piecewise linear and convex function. Then HV is also
piecewise linear and convex.

Proof. Consider the linear program (3.37) which computes the optimal value composition
valcomp(π1, α) in [HV ](b) according to Definition 3.9. The polytope of feasible solutions
of the linear program defined by the constraints (3.37b)–(3.37g) is independent of belief
b (which only appears in the objective (3.37a)). Therefore, the set Q of vertices of
this polytope is also independent of belief b ∈ ∆(S). The optimal solution of a linear
programming problem (3.37) representing [HV ](b) can be found within the vertices Q of
the polytope of feasible solutions [Vanderbei, 2015]. There is a finite number of vertices
q ∈ Q, and each vertex q ∈ Q corresponds to some assignment of variables defining the
value composition valcomp(πq1, αq). Since the set Q of the vertices of the polytope is
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independent of the belief b, we have

[HV ](b) = max
q∈Q

valcomp(πq1, αq) . (3.39)

The set Q is finite and hence the Equation (3.39) defines a piecewise linear and convex
function HV .

The proof of Theorem 3.20 provides a straightforward algorithm to generate the
set Γ′ of linear functions that support HV . For every vertex q ∈ Q of the polytope of
the linear program (3.37), we are able to generate the corresponding value composition
valcomp(πq1, αq). The value function HV then satisfies

[HV ](b) = max
α∈Γ′

α(b) Γ′ = {valcomp(πq1, αq) | q ∈ Q} . (3.40)

A more efficient algorithm can be devised based on, e.g., the linear support algorithm for
POMDPs [Cheng, 1988]. Here, the set Γ′ of linear functions defining HV is constructed
incrementally until it is provably sufficient to represent value function HV . Exact value
iteration algorithms to solve POMDPs are, however, generally considered to be capable of
solving problems of very small sizes only. We cannot, therefore, expect decent performance
of such approaches when solving one-sided POSGs that are more general than POMDPs.
To this end, we provide a point-based approach to solve one-sided POSGs in Section 3.6.

3.6 Heuristic Search Value Iteration for OS-POSGs
In this section, we provide a scalable algorithm to solve one-sided POSGs inspired by
the heuristic search value iteration (HSVI) algorithm [Smith and Simmons, 2004, 2005]
for approximating value function of POMDPs presented in Section 2.2. Our algorithm
approximates the convex optimal value function V ∗ using a pair of piecewise linear and
convex value functions V Γ

LB (lower bound on V ∗) and V Υ
UB (upper bound on V ∗). These

bounds are refined over time and, given the initial belief binit and the desired precision
ε > 0, the algorithm is guaranteed to approximate the value V ∗(binit) within ε. In
Section 3.7, we show that this process also generates value functions that allow us to
extract ε-Nash equilibrium strategies of the game.

We first show the approximation schemes used to represent V Γ
LB and V Υ

UB, and the
methods to initialize these bounds (Section 3.6.1). The bounds induced by functions
V Γ

LB and V Υ
UB are refined by means of so-called point-based updates that are discussed in

Section 3.6.2. Finally, in Section 3.6.3 we state the algorithm and we prove its correctness.

3.6.1 Value Function Representations
Following the results on POMDPs and the original HSVI algorithm [Hauskrecht, 2000;
Smith and Simmons, 2004], we use two distinct methods to represent upper and lower
PWLC bounds on V ∗.
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Lower bound V Γ
LB Similarly as in the previous sections, the lower bound V Γ

LB : ∆(S)→
R is represented as a point-wise maximum over a finite set Γ of linear functions called
α-vectors, i.e., V Γ

LB(b) = maxα∈Γ α(b). Each α ∈ Γ is a linear function α : ∆(S) → R
represented by its values α(s) in the vertices of the ∆(S) simplex, i.e., α(b) =

∑
s∈S b(s) ·

α(s).

Upper bound V Υ
UB Upper bound V Υ

UB : ∆(S) → R is represented as a lower convex
hull of a set of points Υ = {(bi, yi) | 1 ≤ i ≤ k}. Each point (bi, yi) ∈ Υ provides an
upper bound yi on the value V ∗(bi) in belief bi, i.e., yi ≥ V ∗(bi). Since the value function
V ∗ is convex, it holds that

V ∗
(

k∑
i=1

λibi

)
≤

k∑
i=1

λi · V ∗(bi) ≤
k∑
i=1

λi · yi for every λ ∈ Rk≥0 such that
k∑
i=1

λi = 1 .

(3.41)
This fact is used in the first variant of the HSVI algorithm (HSVI1 [Smith and Simmons,
2004]) to obtain the value of the upper bound V Υ

HSVI1(b) for belief b: A linear program
can be used to find coefficients λ ∈ Rk≥0 such that b =

∑k
i=1 λi · yi holds and

∑k
i=1 λi · yi

is minimal:

V Υ
HSVI1(b) = min

{
k∑
i=1

λiyi | λ ∈ Rk≥0 :
k∑
i=1

λi = 1 ∧
k∑
i=1

λibi = b

}
, (3.42)

In the latter proof of the Theorem 3.25 showing the correctness of the algorithm, we
require the bounds V Γ

LB and V Υ
UB to be δ-Lipschitz continuous. Since this needs not hold

for V Υ
HSVI1, we define V Υ

UB as a lower δ-Lipschitz envelope of V Υ
HSVI1:

V Υ
UB(b) = min

b′∈∆(S)

[
V Υ

HSVI1(b′) + δ‖b− b′‖1
]
. (3.43)

This computation can be expressed as a linear programming problem

V Υ
UB(b) = min

λ,∆,b′

k∑
i=1

λiyi + δ
∑
s∈S

∆s (3.44a)

s.t.
k∑
i=1

λibi(s) = b′(s) ∀s ∈ S (3.44b)

∆s ≥ b′(s)− b(s) ∀s ∈ S (3.44c)
∆s ≥ b(s)− b′(s) ∀s ∈ S (3.44d)
k∑
i=1

λi = 1 (3.44e)

λi ≥ 0 ∀1 ≤ i ≤ k (3.44f)

Here, we have ∆s = |b′(s)− b(s)| (and hence
∑
s∈S ∆s = ‖b− b′‖1). We now prove that

the function V Υ
UB represents an upper bound on V ∗.
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Lemma 3.21. Let Υ = {(bi, yi) | 1 ≤ i ≤ k} such that yi ≥ V ∗(bi) for every
1 ≤ i ≤ k. Then V ∗(b) ≤ V Υ

UB(b) ≤ V Υ
HSVI1(b) for every b ∈ ∆(S). Furthermore,

value function V Υ
UB is δ-Lipschitz continuous.

Proof. We first prove V Υ
UB(b) ≤ V Υ

HSVI1(b) for every b ∈ ∆(S). This is clearly the case
from Equation (3.43):

V Υ
UB(b) = min

b′∈∆(S)
[V Υ

HSVI1(b′) + δ‖b− b′‖1] ≤ V Υ
HSVI1(b) + δ‖b− b‖1 = V Υ

HSVI1(b) . (3.45)

Proving V ∗(b) ≤ V Υ
UB(b) is more involved. Consider that λ ∈ Rk is the minimizer of

the linear program (3.44) corresponding to the solution of V Υ
UB(b), i.e.,

V Υ
UB(b) =

k∑
i=1

λiyi + δ

∥∥∥∥∥b−
k∑
i=1

λibi

∥∥∥∥∥
1

(3.46)

holds. According to the assumption of Lemma 3.21, for every (bi, yi) ∈ Υ, V ∗(bi) ≤ yi
holds. Since V ∗ is convex and δ-Lipschitz continuous (Lemma 3.3 and Theorem 3.6), we
have

V ∗(b) ≤ V ∗
(

k∑
i=1

λibi

)
+ δ

∥∥∥∥∥b−
k∑
i=1

λibi

∥∥∥∥∥
1
≤

≤
k∑
i=1

λiV
∗(bi) + δ

∥∥∥∥∥b−
k∑
i=1

λibi

∥∥∥∥∥
1
≤

k∑
i=1

λiyi + δ

∥∥∥∥∥b−
k∑
i=1

λibi

∥∥∥∥∥
1

= V Υ
UB(b) .

Finally, let us prove that V Υ
UB is δ-Lipschitz continuous. Let us consider beliefs

b1, b2 ∈ ∆(S). Without loss of generality, assume that V Υ
UB(b1) ≥ V Υ

UB(b2). Let barg min
be the minimizer of V Υ

UB(b2), i.e.,

barg min = arg min
b′

[V Υ
HSVI1(b′) + δ‖b2 − b′‖1]. (3.47)

Due to triangle inequality, we have

V Υ
UB(b1) = min

b′∈∆(S)
[V Υ

HSVI1(b′) + δ‖b1 − b′‖1] ≤ V Υ
HSVI1(barg min) + δ‖b1 − barg min‖1 ≤

≤ [V Υ
HSVI1(barg min) + δ‖b2 − barg min‖1] + δ‖b1 − b2‖1 = V Υ

UB(b2) + δ‖b1 − b2‖1

which completes the proof.

The dichotomy in representation of value functions V Γ
LB and V Υ

UB allows for easy
refinement of the bounds. By adding new elements to the set Γ, the value V Γ

LB(b) =
maxα∈Γ α(b) can only increase—and hence the lower bound V Γ

LB gets tighter. Similarly,
by adding new elements to the set of points Υ, the solution of linear program (3.44) can
only decrease and hence the upper bound V Υ

UB tightens.
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Initial Bounds

We now describe our approach to form initial bounds V Γ
LB and V Υ

UB on the optimal value
function V ∗ of the game:

Lower bound V Γ
LB We initially set the lower bound to the value valσunif

1 of the uniform
strategy σunif

1 ∈ Σ1 of player 1 (i.e., one that plays each action a1 ∈ A1 with probability
1/|A1| in each stage of the game). Recall that the value valσunif

1 of the strategy σunif
1 is a

linear function (see Lemma 3.2), and hence the initial lower bound V Γ
LB is a piecewise

linear and convex function represented as a pointwise maximum of the set Γ = {valσunif
1 }.

Upper bound V Υ
UB We use the solution of a perfect information variant of the game

(i.e., where player 1 is assumed to know the entire history of the game, unlike in the
original game). We form a modified game G′ which is identical to the OS-POSG G (i.e.,
has the same states S, actions A1 and A2, dynamics T and rewards R), except that all
information is revealed to player 1 in each step. G′ is a perfect information stochastic
game (Section 2.1.3) and we can apply the value iteration algorithm to solve G′. The
additional information player 1 in G′ (compared to G) can only increase the utility he
can achieve. Hence V ∗s of the state s of game G′ forms an upper bound on the utility
player 1 can achieve in G if he knew that the initial state of the game is s (i.e., his belief
is bs where bs(s) = 1). We set Υ to contain one point for each state s ∈ S of the game,
i.e., vertex of the ∆(S) simplex,

Υ = {(bs, V ∗s ) | s ∈ S} bs(s′) =

1 s = s′

0 otherwise .
(3.48)

3.6.2 Point-based Updates
Unlike the exact value iteration algorithm (Section 3.5) which constructs all α-vectors
needed to represent HV in each iteration, the HSVI algorithm focuses on a single belief
at a time. Performing a point-based update in belief b ∈ ∆(S) corresponds to solving
the stage-games [HV Γ

LB](b) and [HV Υ
UB](b) where the values of subsequent stages are

represented using value functions V Γ
LB and V Υ

UB, respectively.

Update of lower bound V Γ
LB First, the linear program (3.37) is used to compute the

optimal value composition valcomp(πLB
1 , αLB) in [HV Γ

LB](b), i.e.,

(πLB
1 , αLB) = arg max

π1∈Π1
α∈Conv(Γ)A1×O

valcomp(π1, α)(b) . (3.49)

The valcomp(πLB
1 , αLB) function is a linear function corresponding to a new α-vector that

forms a lower bound on V ∗. This new α-vector is used to refine the bound by setting
Γ := Γ ∪ {valcomp(πLB

1 , αLB)}. The application of point-based updates to refine lower
bound V Γ

LB preserves desirable properties of V Γ
LB as the following lemma shows.
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Lemma 3.22. Application of point-based updates preserve the following properties:
(1) V Γ

LB is δ-Lipschitz continuous.
(2) V Γ

LB is lower bound on V ∗.

Proof. Initially, value function V Γ
LB satisfies both conditions. The set Γ contains only

the value valσunif
1 of the uniform strategy σunif

1 , i.e., V Γ
LB(b) = valσunif

1 (b) for every belief
b ∈ ∆(S). Value valσunif

1 is the value for a valid strategy σunif
1 of player 1—hence it is

δ-Lipschitz continuous (Lemma 3.5) and lower bounds V ∗.
Assume that every α-vector in the set Γ is δ-Lipschitz continuous, and that for each

α ∈ Γ there exists strategy σ1 ∈ Σ1 with valσ1 ≥ α (which holds also for the initial V Γ
LB).

Let valcomp(πLB
1 , αLB) be the value composition from Equation (3.49) obtained when

performing the point-based update of V Γ
LB by solving [HV Γ

LB](b). We will now show that
the refined function V Γ′

LB represented by the set Γ′ = Γ ∪ {valcomp(πLB
1 , αLB)} satisfies

both properties, and hence any sequence of application of the point-based updates of
V Γ

LB preserves aforementioned properties.
(1) According to Lemma 3.13, valcomp(πLB

1 , αLB) is δ-Lipschitz continuous (and thus so
is the value function V Γ′

LB represented by the set Γ′ = Γ ∪ {valcomp(π1, α)}).
(2) All α-vectors in Γ form lower bound on the value of some strategy of player 1. Since

αLB ∈ ΓA1×O, we have that every αa1,o lower bounds the value of some strategy
of player 1. The fact that valcomp(πLB

1 , αLB) is also a lower bound follows from
Lemma 3.12—and hence every α-vector from the set Γ′ = Γ ∪ {valcomp(πLB

1 , αLB)}
is a lower bound on V ∗. Hence also V Γ′

LB(b) = supα∈Γ′ α(b) ≤ V ∗(b).

Update of upper bound V Υ
UB Similarly to the case of the point-based update of

the lower bound V Γ
LB, the update of upper bound is performed by solving the stage

game [HV Υ
UB](b). Since V Υ

UB is represented by a set of points Υ, it is not necessary to
compute the optimal value composition. Instead, we form a refined upper bound V Υ′

UB
(which corresponds to V Υ

UB after the point-based update is made) by adding a new point
(b, [HV Υ

UB](b)) to the set Υ′ representing V Υ′
UB, i.e., Υ′ = Υ ∪ {(b, [HV Υ

UB](b))}. We now
show that the upper bound V Υ

UB has the desired properties, and these properties are
retained when applying the point based update—and hence we can perform point-based
updates of V Υ

UB repeatedly.

Lemma 3.23. Application of point-based updates preserve the following properties:
(1) V Υ

UB is δ-Lipschitz continuous.
(2) V Υ

UB is an upper bound on V ∗.

Proof. V Υ
UB has been defined as a lower δ-Lipschitz envelope of V Υ

HSVI1, hence it is δ-
Lipschitz continuous (Lemma 3.21). We will therefore focus only on the property (2).
Since the upper bound is initialized by a solution of a perfect information variant of the
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game, we have that yi ≥ V ∗(bi) for every (bi, yi) from the initial set Υ (Equation (3.48)).
Hence applying Lemma 3.21, V Υ

UB is an upper bound on V ∗.
We will now show that if yi ≥ V ∗(bi) holds for (bi, yi) ∈ Υ (and V Υ

UB is thus an
upper bound on V ∗), the application of a point-based update in any belief yields set Υ′

such that yi ≥ V ∗(bi) also holds for every (bi, yi) ∈ Υ′—and the resulting value function
V Υ′

UB is therefore upper bound on V ∗ as well. Since V Υ
UB ≥ V ∗, the utility function of

any stage game satisfies uV Υ
UB,b(π1, π2) ≥ uV ∗,b(π1, π2) for every b ∈ ∆(S), π1 ∈ Π1 and

π2 ∈ Π2. This implies that [HV Υ
UB](b) ≥ [HV ∗](b) = V ∗(b). We already know that

yi ≥ V ∗(bi) holds for (bi, yi) ∈ Υ, and now we have [HV Υ
UB](b) ≥ V ∗(b). Therefore, for

every (bi, yi) ∈ Υ ∪ {(b, [HV Υ
UB](b))}, we have yi ≥ V ∗(bi), and applying the Lemma 3.21,

we have that the value function V Υ′
UB is an upper bound on V ∗.

The linear programs (3.37) and (3.38) solve the stage game [HV ](b) when the value
function V is represented as a maximum over a set of linear functions (i.e., the way
lower bound V Γ

LB is). It is, however, possible to adapt constraints in (3.38) to solve the
[HV Υ

UB](b) problem. We replace constraint (3.38c) by constraints inspired by the linear
program (3.44) used to solve V Υ

UB(b).

V̂ (a1, o) =
|Υ|∑
i=1

λa1,o
i yi + δ

∑
s′∈S

∆s′
a1,o ∀(a1, o) ∈ A1 ×O (3.50a)

|Υ|∑
i=1

λia1,obi(s
′) = b′a1,o(s

′) ∀(a1, o, s
′) ∈ A1 ×O × S (3.50b)

∆s′
a1,o ≥ b

′
a1,o(s

′)− τ̂(b, a1, π2, o)(s′) ∀(a1, o, s
′) ∈ A1 ×O × S (3.50c)

∆s′
a1,o ≥ τ̂(b, a1, π2, o)(s′)− b′a1,o(s

′) ∀(a1, o, s
′) ∈ A1 ×O × S (3.50d)

|Υ|∑
i=1

λa1,o
i =

∑
s′∈S

τ̂(b, a1, π2, o)(s′) ∀(a1, o) ∈ A1 ×O (3.50e)

λia1,o ≥ 0 ∀(a1, o) ∈ A1 ×O, 1 ≤ i ≤ |Υ| (3.50f)

3.6.3 The Algorithm
We are now ready to present the heuristic search value iteration (HSVI) algorithm for one-
sided POSGs (Algorithm 3.1) and prove its correctness. The algorithm is similar to the
HSVI algorithm for POMDPs [Smith and Simmons, 2004, 2005]. First, the bounds V Γ

LB
and V Υ

UB on the optimal value function V ∗ are initialized (as described in Section 3.6.1)
on line 1. Then, until the desired precision V Υ

UB(binit) − V Γ
LB(binit) ≤ ε is reached, the

algorithm performs a sequence of trials using the Explore procedure, starting from the
initial belief binit (lines 2–3).

The recursive procedure Explore generates a sequence of beliefs {bi}ki=0 (for some
k ≥ 0) where b0 = binit and each belief bt reached at the recursion depth t satisfied
excesst(bt) > 0 on line 2 or 10. The algorithm tries to ensure that values of beliefs bt
reached at t-th level of recursion (i.e., t-th stage of the game) are approximated with
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Algorithm 3.1: HSVI algorithm for one-sided POSGs
Data: Game G, initial belief binit, discount factor γ ∈ (0, 1), desired precision

ε > 0, neighborhood parameter D
Result: Approximate value functions V Γ

LB and V Υ
UB satisfying V Υ

UB(b)− V Γ
LB(b) ≤ ε,

sets Γ and Υ constructed by point-based updates that represent V Γ
LB and

V Υ
UB

1 Initialize V Γ
LB and V Υ

UB (see Section 3.6.1)
2 while excess0(binit) > 0 do
3 Explore(binit, 0)

4 return V Γ
LB and V Υ

UB, sets Γ and Υ that represent V Γ
LB and V Υ

UB
5 procedure Explore(bt, t)
6 (πLB

1 , πLB
2 )← equilibrium strategy profile in [HV Γ

LB](bt)
7 (πUB

1 , πUB
2 )← equilibrium strategy profile in [HV Υ

UB](bt)
8 Perform point-based updates of V Γ

LB and V Υ
UB at belief bt (see Section 3.6.2)

9 (a∗1, o∗)← select according to forward exploration heuristic
10 if Pb,πUB

1 ,πLB
2

[a∗1, o∗] · excesst+1(τ(bt, a∗1, πLB
2 , o∗)) > 0 then

11 Explore(τ(bt, a∗1, πLB
2 , o∗), t+ 1)

12 Perform point-based updates of V Γ
LB and V Υ

UB at belief bt (see Section 3.6.2)

sufficient accuracy and the gap between V Υ
UB(b) and V Γ

LB(b) is at most ρ(t), where ρ(t) is
defined by

ρ(0) = ε ρ(t+ 1) = [ρ(t)− 2δD]/γ . (3.51)

We require that ρ is a monotonically increasing and unbounded sequence, which holds
for an arbitrary value of parameter D satisfying 0 < D < (1 − γ)ε/2δ. When the
approximation quality V Υ

UB(bt)− V Γ
LB(bt) of the value of a belief bt reached at the t-th

recursion level of Explore (i.e., at the (t+ 1)-th stage of the game) exceeds the desired
approximation quality ρ(t), it is said to have a positive excess gap excesst(bt),

excesst(bt) = V Υ
UB(bt)− V Γ

LB(bt)− ρ(t) . (3.52)

Note that our definition of excess gap is more strict compared to the original HSVI
algorithm for POMDPs, where the −2δD term from Equation (3.51) is absent (see
Equation (2.16)). Unlike in POMDPs which are single-agent, the belief transitions
τ(b, a1, π2, o) in one-sided POSGs depend also on player 2 (and her strategy π2). The
tighter bounds on the approximation quality allows us to prove the correctness of the
proposed algorithm in Theorem 3.25.

Forward exploration heuristic The algorithm uses a heuristic approach to select
which belief τ(b, a1, π

LB
2 , o) will be considered in the next recursion level of the Explore

procedure, i.e., what action observation pair (a1, o) ∈ A1×O will be chosen by player 1, on
line 9. This selection is motivated by Lemma 3.17—in order to ensure that excesst(bt) ≤ 0
(or more precisely excesst(bt) ≤ −2δD) at the currently considered belief bt in t-th
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recursion level, all beliefs τ(bt, a1, π
LB
2 , o) reached with positive probability when playing

πUB
1 have to satisfy excesst+1(τ(bt, a1, π

LB
2 , o)) ≤ 0. Specifically, we focus on a belief

that has the highest weighted excess gap. Inspired by the original HSVI algorithm for
POMDPs [Smith and Simmons, 2004, 2005]), we define the weighted excess gap as
the excess gap excesst+1(τ(bt, a1, π

LB
2 , o)) multiplied by the probability that the action-

observation pair (a1, o) that leads to the belief τ(bt, a1, π
LB
2 , o) occurs. Hence, we select

the action-observation pair (a∗1, o∗) for further exploration, where

(a∗1, o∗) = arg max
(a1,o)∈A1×O

Pb,πUB
1 ,πLB

2
[a1, o] · excesst+1(τ(bt, a1, π

LB
2 , o)) . (3.53)

We now show formally that if the weighted excess gap of the optimal (a∗1, o∗) satisfies
Pb,πUB

1 ,πLB
2

[a∗1, o∗] · excesst+1(τ(bt, a∗1, πLB
2 , o∗)) ≤ 0, performing the point based update at

bt ensures that excesst(bt) ≤ −2δD.

Lemma 3.24. Let bt be a belief reached at t-th recursion level of Explore procedure
such that the action observation pair (a∗1, o∗) selected at line 9 of Algorithm 3.1
satisfies

Pb,πUB
1 ,πLB

2
[a∗1, o∗] · excesst+1(τ(bt, a∗1, πLB

2 , o∗)) ≤ 0 . (3.54)

Then excesst(bt) ≤ −2δD after performing a point based update at bt. Furthermore,
all beliefs b′t ∈ ∆(S) such that ‖bt − b′t‖1 ≤ D satisfy excesst(b′t) ≤ 0.

Proof. Since V Γ
LB ≤ V ∗ ≤ V Υ

UB, it holds that [HV Γ
LB](bt) ≤ [HV Υ

UB](bt). Applying
Lemma 3.17 with C = ρ(t + 1) yields that in case beliefs τ(bt, a1, π

LB
2 , o) satisfy

V Υ
UB(τ(bt, a1, π

LB
2 , o))− V Γ

LB(τ(bt, a1, π
LB
2 , o)) ≤ ρ(t+ 1) then [HV Υ

UB](bt)− [HV Γ
LB](bt) ≤

γρ(t + 1). This has to hold in the considered situation—otherwise there will be
(a1, o) ∈ A1 × O with V Υ

UB(τ(bt, a1, π
LB
2 , o)) − V Γ

LB(τ(bt, a1, π
LB
2 , o)) > ρ(t + 1) (i.e.,

excesst+1(τ(bt, a1, π
LB
2 , o)) > 0) such that Pb,πUB

1 ,πLB
2

[a1, o] > 0, which would have contra-
dicted Pb,πUB

1 ,πLB
2

[a∗1, o∗] · excesst+1(τ(bt, a∗1, πLB
2 , o∗)) ≤ 0.

Now, according to Equation (3.51), [HV Υ
UB](bt)− [HV Γ

LB](bt) ≤ γρ(t+1) = ρ(t)−2δD.
Hence the excess gap after performing the point-based update in bt satisfies

excesst(bt) = V Υ
UB(bt)− V Γ

LB(bt)− ρ(t) ≤ γρ(t+ 1)− ρ(t) = [ρ(t)− ρ(t)]− 2δD = −2δD
(3.55)

which completes the proof of the first part of the lemma.
Now since the value functions V Γ

LB and V Υ
UB are δ-Lipschitz continuous (Lemma 3.22

and Lemma 3.23), the difference V Υ
UB − V Γ

LB is 2δ-Lipschitz continuous. Thus for every
belief b′t ∈ ∆(S) satisfying ‖bt − b′t‖1 ≤ D we have

V Υ
UB(b′t)−V Γ

LB(b′t) ≤ V Υ
UB(bt)−V Γ

LB(bt)+2δ‖bt−b′t‖1 ≤ V Υ
UB(bt)−V Γ

LB(bt)+2δD . (3.56)

Now since excesst(bt) ≤ −2δD, we have excesst(b′t) ≤ 0 which proves the second part of
the lemma.
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We now use Lemma 3.24 (especially its second part) to prove that the Algorithm 3.1
terminates with V Υ

UB(binit)− V Γ
LB(binit) ≤ ε. Furthermore, we later show that the value

functions V Γ
LB and V Υ

UB can be used to obtain ε-Nash equilibrium strategies for the game
in Section 3.7.

Theorem 3.25. The Algorithm 3.1 terminates with V Υ
UB(binit)− V Γ

LB(binit) ≤ ε for
arbitrary ε > 0 and 0 < D < (1− γ)ε/2δ.

Proof. By the choice of parameter D, the sequence ρ(t) (for ρ(0) = ε) is monotonically
increasing and unbounded, and the difference between value functions V Γ

LB and V Υ
UB is

bounded by U −L (since L ≤ V Γ
LB(b) ≤ V Υ

UB(b) ≤ U for every belief b ∈ ∆(S)). Therefore,
there exists Tmax such that ρ(Tmax) ≥ U − L ≥ V Υ

UB(b)− V Γ
LB(b) for every b ∈ ∆(S), and

the recursive procedure Explore thus always terminates.
We prove that the Algorithm 3.1 terminates by reasoning about sets Ψt ⊂ ∆(S) of

belief points where the trials performed by the Explore terminated. Initially, Ψt = ∅
for every 0 ≤ t < Tmax. Whenever the Explore recursion terminates at recursion level
t (i.e., the condition on line 10 does not hold), the belief bt (which was the last belief
considered during the trial) is added into set Ψt (Ψt := Ψt ∪ {bt}). Recall that since
∆(S) is compact, it is, in particular, totally bounded, i.e., if a subset Ψt ⊂ ∆(S) satisfies
∀b, b′ : ‖b − b′‖1 > D then Ψt must be finite. As the number of possible termination
depths is finite (0 ≤ t ≤ Tmax), the algorithm has to terminate unless some Ψt is infinite.
We show that this, however, cannot happen as every b, b′ ∈ Ψt has to satisfy ‖b− b′‖ > D.

Assume to the contradiction that two trials terminated at recursion level t with the
last beliefs considered b(1)

t (for the earlier trial) and b(2)
t (for the trial that occurred at a

later time), and ‖b(1)
t − b

(2)
t ‖1 ≤ D holds. When the former trial has been terminated

in belief b(1)
t , all reachable beliefs from b

(1)
t had negative excess gap (otherwise the trial

would have continued as the condition on line 10 would have been satisfied). According
to Lemma 3.24, after the point-based update is performed in b(1)

t , the excess gap of all
beliefs b′t with ‖b

(1)
t − b′t‖1 ≤ D have negative excess gap excesst(b′t) ≤ 0. When b(2)

t has
been selected for exploration in (t− 1)-th level of recursion, the condition on line (10)
was met and b

(2)
t must have had positive excess gap excesst(b(2)

t ) > 0. This, however,
contradicts that all beliefs b′t with ‖b

(1)
t − b′t‖1 ≤ D (i.e., including b(2)

t ) already have
negative excess gap.

Note that at least one trial must have terminated in the first level of recursion (unless
the Algorithm 3.1 has terminated on line 2 with excess0(binit) ≤ 0 beforehand). By
Lemma 3.24, the update in binit then renders excess0(binit) ≤ −2δD ≤ 0. We then have
that V Υ

UB(binit)− V Γ
LB(binit) ≤ ρ(0) = ε which completes the proof.

3.7 Using Value Function to Play
In the previous section, we have presented an algorithm that is able to approximate the
value V ∗(binit) of the game within an arbitrary given precision ε > 0 starting from an
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H T
H 1 -1
T -1 1

(a) Normal form

s0

sH

sT

∗/H(0)

∗/T (0)

s∞

∗/ ∗ (0)

H/ ∗ (1/γ)
T/ ∗ (−1/γ)

T/ ∗ (1/γ)
H/ ∗ (−1/γ)

(b) OS-POSG representation

sH sT

0

1/γ

αH αT

(c) Value function V ∗

Figure 3.1: Example of a game where the belief is not a sufficient statistic for the
imperfectly informed player 1.

arbitrary initial belief binit. However, in many cases, knowing the value of the game only
cannot be considered as a solution of the game since the strategies that achieve this
near-optimal performance are required. In this section, we show that using the value
functions V Γ

LB and V Υ
UB computed by the HSVI algorithm (Algorithm 3.1) is sufficient to

devise ε-Nash equilibrium strategies for both players.
The existence of the Bellman’s equation for one-sided POSGs (see Theorem 3.15) may

suggest that the near-optimal strategies can be extracted by employing the lookahead
decision rule (similarly to POMDPs) and obtaining strategies to play in the current stage
by computing the Nash equilibrium of stage games [HV Γ

LB](b) and [HV Υ
UB](b), respectively.

However, this is not possible in case of one-sided POSGs—and unlike in the case of
POMDPs and MaGIIs, belief of player 1 does not constitute a sufficient statistic for
playing the game. The reasons for this are similar to the usage of unsafe resolving [Burch,
2018; Seitz et al., 2019] in the realm of extensive-form games. We use the following
example to demonstrate the insufficiency of the belief to play the game.

Example 3.1. Consider a matching pennies game shown in Figure 3.1a. This game can
be formalized as a one-sided POSG that is shown in Figure 3.1b. The game starts in the
state s0 (i.e., the initial belief is binit(s0) = 1) and the player 2 chooses her action H or
T . Next, after transitioning to sH or sT (based on the decision of player 2), player 1 is
unaware of the true state of the game (i.e., the past decision of player 1) and chooses his
action H or T . Based on the combination of decisions taken by the players, player 1 gets
either 1/γ or −1/γ and the game transitions to the state s∞ where it stays forever with
zero future rewards.

To understand the caveats of using belief b ∈ ∆(S) to derive the stage strategy
to play, let us consider the optimal value function V ∗ of the OS-POSG representation
(Figure 3.1b) of the matching pennies game. Figure 3.1c shows the values of V ∗ over
simplex ∆({sH , sT }). If it is more likely that the player 2 played H in the first stage
of the game (i.e., the current state is sH), it is optimal for player 1 to play strategy
prescribing him to play H in the current stage (with value αH). Conversely, if it is more
likely that the current state is sT , the player 1 is better of with playing T (with value αT ).
The value function V ∗ is then a point-wise maximum over these two linear functions.
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Now, since the uniform mixture between H and T is the Nash equilibrium strategy
for both players in the matching pennies game, player 1 will find himself in a situation
when he assumes that the current belief is {sH : 0.5, sT : 0.5}. In this belief, any decision
of player 1 yields expected reward 0—hence based purely on the belief, the player 1 may
opt to play, e.g., “always T ”. However, such strategy is not in equilibrium and player 2 is
able to exploit it by playing “always H”. This example illustrates that the belief alone
does not provide sufficient information to choose the right strategy π1 for the current
stage based on the Equation (3.23b).

3.7.1 Justified Value Functions
First of all, we define conditions under which it makes sense to use value function to play
a one-sided POSG. The conditions are similar to uniform improvability in, e.g., POMDPs.
Our definitions, however, reflect the fact that we deal with a two-player problem (and
we thus introduce the condition for each player separately). Moreover, we use a stricter
condition for the player 1 who does not have a perfect information about the belief—and
thus defining the condition based solely on the beliefs is not sufficient.

Definition 3.11 (Min-justified value function). Convex continuous value function
V is said to be min-justified (or, justified from the perspective of the minimizing
player 2) if for every belief b ∈ ∆(S) it holds that [HV ](b) ≤ V (b).

Definition 3.12 (Max-justified value function). Let Γ be a compact set of linear
functions, and V be a value function such that V (b) = supα∈Γ α(b). V is said to
be max-justified by a set of α-vectors Γ (or, justified from the perspective of the
maximizing player 1) if for every α ∈ Γ there exists π1 ∈ Π1 and α ∈ ΓA1×O such
that valcomp(π1, α) ≥ α.

Note that if the value function V is min-justified, then there exists a strategy
σ2 of player 2 that justifies the value V (b) for every belief b ∈ ∆(S), i.e., we have
Eb,σ1,σ2 [Discγ ] ≤ V (b) against every strategy σ1 of the player 1. Similarly, if the value
function V is max-justified by Γ, for every belief b ∈ ∆(S), there exists a strategy σ1 of
player 1 such that valσ1(b) ≥ V (b). In Sections 3.7.2 and 3.7.3, we use these technical
definitions to show that such strategies not only exist, but we are able to construct them
in an algorithmic way.

We will now support this intuition by showing that if a value function is min-justified
or max-justified, respectively, it cannot attain better utility than any strategy of player 2
or player 1 can achieve.

Lemma 3.26. Let V be a value function that is min-justified. Then V (b) ≥ L.
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Proof. Assume for the contradiction that V (b) < L for some belief b ∈ ∆(S). We pick
b = arg minb′∈∆(S) V (b′) and denote ε = L − V (b). Now, using the utility uV,b from
Definition 3.10 and using our choice of b, we have

uV,b(π1, π2) = Eb,π1,π2 [R(s, a1, a2)] + γ
∑
a1,o

Pb,π1,π2 [a1, o]V (τ(b, a1, π2, o))

≥ r + γ
∑
a1,o

Pb,π1,π2 [a1, o]V (b) = r + γV (b) = r + γ(L− ε)

where r is the minimum reward in the game. Since L =
∑∞
t=1 γ

t−1r = r +
∑∞
t=2 γ

t−1r =
r+γL, we also have that uV,b(π1, π2) ≥ L−γε. Therefore it would have to also hold that
[HV ](b) = maxπ1∈Π1 minπ2∈Π2 u

V,b(π1, π2) ≥ L − γε > L − ε = V (b) which contradicts
that V is min-justified.

Lemma 3.27. Let V be a value function that is max-justified by a set of α-vectors
Γ. Then for every α ∈ Γ we have α ≤ U .

Proof. Let V be max-justified by Γ and let us assume for contradiction that there
exists α ∈ Γ and s ∈ S such that α(s) > U . We pick α and s such that (α, s) =
arg maxα∈Γ,s∈S α(s) and denote ε = α(s) − U . Using Definition 3.8 and our choice of
(α, s), we get the following for every π1 ∈ Π1 and α ∈ ΓA1×O:

valcomp(π1, α)(s) = min
a2∈A2

∑
a1∈A1

π1(a1)
[
R(s, a1, a2) + γ

∑
o,s′∈O×S

T (o, s′ | s, a1, a2)αa1,o(s′)
]

≤ min
a2∈A2

∑
a1∈A1

π1(a1)
[
r + γ

∑
o,s′∈O×S

T (o, s′ | s, a1, a2)α(s)
]

= min
a2∈A2

[r + γα(s)]

where r = max(s,a1,a2)R(s, a1, a2) is the maximum reward in the game. Since U =∑∞
t=1 γ

t−1r = r +
∑∞
t=2 γ

t−1r = r + γU , we have

valcomp(π1, α)(s) ≤ min
a2∈A2

[r + γα(s)] = r + γ(U + ε) = U + γε < U + ε = α(s) .

Now, we have that for every value composition valcomp(π1, α) it holds valcomp(π1, α)(s) <
α(s). This contradicts Definition 3.12 as no value composition can satisfy valcomp(π1, α) ≥
α, and V cannot thus be max-justified by Γ.

In the later proof showing that the value function V Γ
LB resulting from the execution

of the Algorithm 3.1 is max-justified by Conv(Γ), we will be using the following technical
lemma.
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Lemma 3.28. Let Γ be a set of linear functions, and V a value function that is
max-justified by Γ. Then V is also max-justified by Conv(Γ).

Proof. Recall that V is max-justified by Ω if 1) V (b) = supα∈Ω α(b) and 2) for every
α ∈ Ω there exists π1 ∈ Π1 and α ∈ ΩA1×O such that valcomp(π1, α) ≥ α. We will
now verify that these properties hold for Conv(Γ). First of all, 1) follows directly from
Proposition 3.8 and we can replace Γ by Conv(Γ) without changing the values V attains.
We will now prove 2) by showing that for every α ∈ Conv(Γ), there exists π1 ∈ Π1 and
α ∈ Conv(Γ)A1×O such that valcomp(π1, α) ≥ α.

First of all, let us write α ∈ Conv(Γ) as a finite convex combination
∑k
i=1 λiα

i of
α-vectors αi ∈ Γ. Using the assumption that V is max-justified by Γ, we have that
for every αi there exists valcomp(πi1, αi) such that αi ∈ ΓA1×O and valcomp(πi1, αi) ≥
αi. We claim that the desired π1 and α that witness that V is max-justified by
Conv(Γ) satisfy π1(a1) =

∑k
i=1 λiπ

i
1(a1) and αa1,o =

∑k
i=1 λiπ

i
1(a1)αia1,o/π1(a1).5 Clearly,∑k

i=1 λivalcomp(πi1, αi) ≥
∑k
i=1 λiα

i = α ∈ Conv(Γ). To finish the proof, we show that
valcomp(π1, α) ≥

∑k
i=1 λivalcomp(πi1, αi). By Definition 3.8, we have

valcomp(π1, α)

= min
a2∈A2

[ ∑
a1∈A1

π1(a1)R(s, a1, a2) + γ
∑

(a1,o,s′)∈A1×O×S
π1(a1)T (o, s′ | s, a1, a2)αa1,o(s′)

]

= min
a2∈A2

[ k∑
i=1

∑
a1∈A1

λiπ
i
1(a1)R(s, a1, a2) + γ

∑
(a1,o,s′)∈A1×O×S

T (o, s′ | s, a1, a2)
k∑
i=1

λiπ
i
1(a1)αia1,o(s

′)
]

= min
a2∈A2

k∑
i=1

λi
[ ∑
a1∈A1

πi1(a1)R(s, a1, a2) + γ
∑

(a1,o,s′)∈A1×O×S
πi1(a1)T (o, s′ | s, a1, a2)αia1,o(s

′)
]

≥
k∑
i=1

λi min
a2∈A2

[ ∑
a1∈A1

πi1(a1)R(s, a1, a2) + γ
∑

(a1,o,s′)∈A1×O×S
πi1(a1)T (o, s′ | s, a1, a2)αia1,o(s

′)
]

=
k∑
i=1

λivalcomp(πi1, αi) .

3.7.2 Strategy of Player 1
In this section, we will show that when the value function V is max-justified by a set of
α-vectors Γ, then we can implicitly form a strategy σ1 of player 1 that achieves utility
of at least V (binit) for any given initial belief binit. The Algorithm 3.2 is inspired by the
ideas of continual resolving for extensive-form games [Moravčík et al., 2017].

5Observe that αa1,o ∈ Conv(Γ) since π1(a1) =
∑k

i=1 λiπ
i
1(a1) and the coefficients λiπi1(a1)/π1(a1)

thus sum to 1.
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In the course of playing according to the Algorithm 3.2, the algorithm keeps a lower
bound ρ on the values the reconstructed strategy has to achieve. In accordance with the
terminology of continual resolving for extensive-form games, we term the linear function
ρ a gadget. The goal of the Act(b, ρ) method is to reconstruct a strategy σ1 of player
such that its value satisfies valσ1 ≥ ρ. We will now show that the Act method achieves
exactly this. The reasoning about the current gadget allows us to obtain guarantees on
the quality of the reconstructed strategy, even though the player 1 does not know the
stage strategies used by the adversary, and thus cannot trust his current belief.

Algorithm 3.2: Continual resolving algorithm for one-sided POSGs
input : one-sided POSG G

a compact set Γ of linear functions representing convex value function V
1 b← binit

2 ρinit ← arg maxα∈Γ α(binit)
3 Act(binit, ρinit)
4 procedure Act(b, ρ)
5 (π∗1, α∗)← arg maxπ1,α{valcomp(π1, α)(b) | π1 ∈ Π1, α ∈

ΓA1×O s.t. valcomp(π1, α) ≥ ρ}
6 π2 ← solve [HV ](b) to obtain assumed stage strategy of the adversary
7 sample and play a1 ∼ π∗1
8 o← observed observation
9 b′ ← τ(b, a1, π2, o)

10 Act(b′, α∗a1,o)

Theorem 3.29. Let V be a value function that is max-justified by a set of α-vectors Γ.
Let binit ∈ ∆(S) and ρinit ∈ Γ be arbitrary. By playing according to the Act(binit, ρinit),
player 1 implicitly forms a strategy σ1 such that valσ1 ≥ ρinit.

Proof. Let binit and ρinit be as in the theorem. To get to our result, we will first consider
arbitrary belief b ∈ ∆(S) and gadget ρ ∈ Γ, and we will consider that player 1 follows
Act(b, ρ) for K stages of the game only, and then follows the uniform strategy σunif

1 in the
rest of the game. We denote such strategy of player 1 σb,ρ,K1 , and we prove that the value
of such strategy satisfies valσ

b,ρ,K
1 ≥ ρ− γK · (U − L). We prove this claim by induction.

First, assume that K = 0, i.e., player 1 plays the uniform strategy σunif
1 immediately.

Value of the uniform strategy σunif
1 is at least valσunif

1 ≥ L (Proposition 3.1) while ρ ≤ U
(Lemma 3.27). Hence valσ

b,ρ,0
1 ≥ L ≥ L− (U − ρ) = ρ− γ0(U − L).

Now let K ≥ 1 and let us assume that valσ
b′,ρ′,K−1
1 ≥ ρ′ − γK−1(U − L) for every

b′ ∈ ∆(S) and every gadget ρ′ ∈ Γ. Observe that due to the recursive nature of the Act
method, we can represent the strategy σb,ρ,K1 as a composite strategy σb,ρ,K1 = comp(π∗1, ζ)
where ζa1,o = σ

τ(b,a1,π2,o),α∗a1,o,K−1
1 and π∗1 comes from line 5 of Algorithm 3.2. (To ensure

that α∗ and π∗1 are correctly defined, the algorithm requires the existence of a value



3.7. USING VALUE FUNCTION TO PLAY 63

composition satisfying valcomp(π1, α) ≥ ρ. This requirement holds since V is max-
justified by the set Γ and ρ ∈ Γ.) Applying Lemma 3.11, the induction hypothesis, and
Definition 3.8 (in this order), we have

valcomp(π∗1 ,ζ)(s) = min
a2∈A2

∑
a1∈A1

π∗1(a1)
[
R(s, a1, a2) + γ

∑
(o,s′)∈O×S

T (o, s′ | s, a1, a2)valζa1,o(s′)
]

≥ min
a2∈A2

∑
a1∈A1

π∗1(a1)
[
R(s, a1, a2) +

+ γ
∑

(o,s′)∈O×S
T (o, s′ | s, a1, a2)[α∗a1,o(s

′)− γK−1(U − L)]
]

= min
a2∈A2

∑
a1∈A1

π∗1(a1)
[
R(s, a1, a2) +

+ γ
∑

(o,s′)∈O×S
T (o, s′ | s, a1, a2)α∗a1,o(s

′)
]
− γK(U − L)

= valcomp(π∗1, α∗)− γK(U − L) .

Now, we have valσ
b,ρ,K
1 = valcomp(π∗1 ,ζ) ≥ valcomp(π∗1, α∗) − γK(U − L). Furthermore,

according to constraint on line 5 of Algorithm 3.2, we also have valcomp(π∗1, α∗) ≥ ρ.
Therefore, we also have valσ

b,ρ,K
1 ≥ ρ− γK(U − L) which completes the induction step.

Denote by σ1 the strategy where player 1 follows Act(binit, ρinit) for infinite period of
time (i.e., as K →∞). We then have

valσ1 = lim
K→∞

valσ
binit,ρinit,K
1 ≥ lim

K→∞
[ρinit − γK(U − L)] = ρinit

which completes the proof.

Corollary 3.30. Let binit ∈ ∆(S) be an arbitrary initial belief and let V be a
value function max-justified by the compact set Γ of α-vectors. Then Algorithm 3.2
implicitly constructs a strategy σ1 which guarantees utility of at least V (binit) to
player 1.

Proof. ρinit from line 2 of Algorithm 3.2 has value ρinit(binit) = V (binit) in the initial
belief binit. According to Theorem 3.29, we have that we are able to construct a strategy
σ1 with value valσ1 ≥ ρinit. Hence valσ1(binit) ≥ ρinit(binit) = V (binit).

3.7.3 Strategy of Player 2
We will now present an analogous algorithm to obtain strategy for player 2 when the value
function V is min-justified. Recall that the stage strategies π2 of player 2 influence the
belief of player 1 (Equation 3.6). Unlike player 1, player 2 knows which stage strategies
π2 have been used in the past, and he is thus able to infer the current belief of player 1.
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To this end, the Act method of Algorithm 3.3 depends on the current belief of player 1
only (and not on the gadget ρ as it did when strategy of player 1 was considered).

Algorithm 3.3: Strategy of player 2
input : one-sided POSG G

convex value function V
1 Act(binit)
2 procedure Act(b)
3 π∗2 ← optimal strategy of player 2 in the stage game [HV ](b)
4 s← currently observed state
5 sample and play a2 ∼ π∗2(· | s)
6 (a1, o)← action of the adversary and the corresponding observation
7 Act(τ(b, a1, π

∗
2, o))

We will now show that if the value function V is min-justified, then playing according
to Algorithm 3.3 guarantees that the utility will be at most6 V (binit).

Theorem 3.31. Let V be a min-justified value function and let binit be the initial
belief of the game. The Algorithm 3.3 implicitly constructs a strategy σ2 which
guarantees utility of at most V (binit) to player 2.

Proof. For the purposes of this proof, we will use val2(σ′2, b) = supσ1∈Σ1 Eb,σ1,σ′2
[Discγ ] to

denote the value of a strategy σ′2 of player 2 when the belief of player 1 is b. Similarly
to the proof of Theorem 3.29, we will first consider strategies σb,K2 where player 2 plays
according to Act(b) for K steps, and then follows an arbitrary (e.g., uniform) strategy in
the rest of the game, and we show that val2(σb,K2 , b) ≤ V (b) + γK(U − L).

First, let K = 0 and b ∈ ∆(S) be the belief of player 1. By Proposition 3.1,
player 1 cannot achieve higher utility than U . Moreover, V is min-justified so we
have V (b) ≥ L by Lemma 3.26. Therefore, player 1 cannot achieve higher utility than
val2(σb,02 , b) ≤ U ≤ U + V (b)− L = V (b) + γ0(U − L) when his belief is b.

Now let K ≥ 1 be arbitrary. By the induction hypothesis, we have that strategy
σb
′,K−1

2 guarantees that the utility is at most val2(σb
′,K−1

2 , b′) ≤ V (b′) + γK−1(U − L)
when the belief of player 1 is b′. Let us evaluate the utility that σb,K2 guarantees against
arbitrary strategy σ1 of player 1 in belief b. In the first stage of the game, player 2
plays according to π∗2 obtained on line 3 of Algorithm 3.3, and the expected reward from
the first stage is Eb,σ1,π∗2

[R(s, a1, a2)]. If player 1 plays a1 and observes o, he reaches a
subgame where the belief of player 1 is τ(b, a1, π

∗
2, o) and player 2 plays στ(b,a1,π∗2 ,o),K−1

2 .
Using the induction hypothesis, we know that player 1 is able to achieve utility of
at most val2(στ(b,a1,π∗2 ,o),K−1

2 , τ(b, a1, π
∗
2, o)) ≤ V (τ(b, a1, π

∗
2, o)) + γK−1(U − L). This

implies that an upper bound on the utility that σ1 achieves against σb,K2 (i.e., the strategy

6In other words, this is a performance guarantee for the (minimizing) player 2.
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corresponding to player 2 following Act(b) for K stages) is

Eb,σ1,π∗2
[R(s, a1, a2)] + γEb,σ1,π∗2

[V (τ(b, a1, π
∗
2, o)) + γK−1(U − L)]

= Eb,σ1,π∗2
[R(s, a1, a2)] + γ

∑
(a1,o)∈A1×O

Pb,σ1,π∗2
[a1, o] · [V (τ(b, a1, π

∗
2, o)) + γK−1(U − L)] .

By allowing the player 1 to maximize over σ1, we get an upper bound on the value
val2(σb,K2 , b) strategy σb,K2 guarantees when the belief of player 1 is b.

val2(σb,K2 , b) ≤

≤ sup
σ1∈Σ1

[
Eb,σ1,π∗2

[R(s, a1, a2)] +

+ γ
∑

(a1,o)∈A1×O
Pb,σ1,π∗2

[a1, o] · [V (τ(b, a1, π
∗
2, o)) + γK−1(U − L)]

]
= max

π1∈Π1

[
Eb,π1,π∗2

[R(s, a1, a2)] + γ
∑

(a1,o)∈A1×O
Pb,π1,π∗2

[a1, o] · V (τ(b, a1, π
∗
2, o))

]
+ γK(U − L)

= max
π1∈Π1

uV,b(π1, π
∗
2) + γK(U − L)

Using the fact that π∗2 is the optimal strategy in the stage game [HV ](b), the definition
of the stage game’s value, and the fact that V is min-justified, we get

max
π1∈Π1

uV,b(π1, π
∗
2) + γK(U − L) = min

π2∈Π2
max
π1∈Π2

uV,b(π1, π2) + γK(U − L)

= [HV ](b) + γK(U − L) ≤ V (b) + γK(U − L) .

Hence, the utility player 1 with belief b can achieve against player 2 who follows strategy
σb,K2 is at most V (b) + γK(U −L), and we have val2(σb,K2 , b) ≤ V (b) + γK(U −L) which
completes the induction step.

Now, similarly to the proof of Theorem 3.29, when player 2 follows Act(binit) for
infinitely many stages (i.e., plays strategy σ2 from the theorem), player 1 is able to
achieve utility at most

val2(σ2, b
init) = lim

K→∞
val2(σb

init,K
2 , binit) ≤ lim

K→∞
[V (binit) + γK(U − L)] = V (binit)

which completes the proof.

3.7.4 Using Value Functions V Γ
LB and V Υ

UB to Play the Game
In Sections 3.7.2 and 3.7.3, we have shown that we can obtain strategies to play the game
when the value functions are max-justified or min-justified, respectively. In this section,
we will show that the heuristic search value iteration algorithm for solving one-sided
POSGs (Section 3.6) generates value functions with these properties. Namely, at any
time, the lower bound V Γ

LB is max-justified value function by the set of α-vectors Conv(Γ),
and the upper bound V Υ

UB is min-justified.
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This allows us to derive two important properties of the algorithm. First, since
Theorem 3.25 guarantees that the algorithm terminates with V Υ

UB(binit)− V Γ
LB(binit) ≤ ε,

we can use the resulting value functions V Γ
LB (represented by Γ) and V Υ

UB to obtain ε-Nash
equilibrium strategies for both players. Next, we can also run the algorithm in anytime
fashion, and since the bounds V Γ

LB and V Υ
UB satisfy the properties at any point of time,

use these bounds to extract the strategies with performance guarantees.
We will first prove that at any point of time in the execution of Algorithm 3.1, the

lower bound V Γ
LB is max-justified by the set Conv(Γ), and the upper bound V Υ

UB is a
min-justified value function. To prove this, it suffices to show that the initial value
functions satisfy the property, and that the property is preserved after any sequence of
point-based updates performed on V Γ

LB and V Υ
UB.

Lemma 3.32. Let Γ be the set of α-vectors that have been generated at any time
during the execution of the HSVI algorithm for one-sided POSGs (Algorithm 3.1).
Then the lower bound V Γ

LB is max-justified by the set Conv(Γ).

Proof. Observe that the set Γ is modified only by the point-based updates on lines 8
and 12 of Algorithm 3.1. To this end, in order to prove the claim, it suffices to show
that (1) the initial lower bound V Γ

LB is max-justified by the set Conv(Γ) = Γ = {valσunif
1 }

and that (2) if V Γ
LB is max-justified by Conv(Γ) then any point-based update results in a

value function V Γ′
LB that is max-justified by the set Conv(Γ′).

First, let us show that the initial lower bound V Γ
LB is max-justified by the initial

set of α-vectors Γ = {valσunif
1 } (and therefore also by Conv(Γ) = Γ). Clearly, σunif

1 =
comp(πunif

1 , ζunif), i.e., the uniform strategy σunif
1 can be composed from a uniform stage

strategy πunif
1 for the first stage of the game, and playing uniform strategy ζunif

a1,o = σunif
1 in

every subgame after playing and observing (a1, o). Hence, valσunif
1 = valcomp(πunif

1 , αunif)
for αunif

a1,o = valσunif
1 and the initial V Γ

LB is therefore max-justified by the set Conv(Γ) =
Γ = {valσunif

1 }.
Now let us assume a lower bound V Γ

LB considered by the Algorithm 3.1 and assume
that it is max-justified by a set Conv(Γ). The point-based update constructs a set
Γ′ = Γ ∪ {valcomp(π1, α)} for some π1 ∈ Π1 and α ∈ Conv(Γ)A1×O, see Equation (3.49).
Since V Γ

LB was max-justified by Conv(Γ), we know that for every α ∈ Conv(Γ) there
exists π′1 ∈ Π1, α′ ∈ Conv(Γ)A1×O such that valcomp(π′1, α′) ≥ α. The same holds for
the newly constructed α vector valcomp(π1, α), and V Γ′

LB is therefore max-justified by
Conv(Γ) ∪ {valcomp(π1, α)}. By Lemma 3.28, we also have that V Γ′

LB is max-justified by
Conv(Conv(Γ) ∪ {valcomp(π1, α)}) = Conv(Γ′). Every point-based update thus results in
a value function V Γ′

LB which is max-justified by Conv(Γ′) which completes the proof.

Lemma 3.33. Let V Υ
UB be the upper bound considered at any time of the execution of

the HSVI algorithm for one-sided POSGs (Algorithm 3.1). Then V Υ
UB is min-justified.



3.7. USING VALUE FUNCTION TO PLAY 67

Proof. Upper bound V Υ
UB is only modified by means of point-based update on lines 8

and 12 of Algorithm 3.1. Therefore, it suffices to show that (1) the initial upper bound is
min-justified and that (2) the upper bound V Υ′

UB resulting from applying a point-based
update on a min-justified upper bound V Υ

UB is min-justified as well.
First, let us prove that the initial value function V Υ

UB is min-justified. Initially,
V Υ

UB(b) is set to the value of a perfect information version of the game, where the
imperfectly informed player 1 gets to know the initial state of the game. By removing this
information from player 1, the utility player 1 is able to achieve can only decrease. Hence
[HV Υ

UB](b) ≤ V Υ
UB(b), and the initial value function V Υ

UB(b) is therefore min-justified.
Now, let us consider an upper bound V Υ

UB represented by a set Υ = {(bi, yi) | 1 ≤ i ≤
k} that is considered by the Algorithm 3.1 and let us assume that V Υ

UB is min-justified.
Consider that a point-based update in bk+1 is to be performed. We show that the
function V Υ′

UB resulting from the point-based update in bk+1 is min-justified as well. Recall
that Υ′ = Υ ∪ {(bk+1, yk+1)} and yk+1 = [HV Υ

UB](bk+1). Clearly, since Υ ⊂ Υ′, it holds
V Υ′

UB(b) ≤ V Υ
UB(b) and [HV Υ′

UB](b) ≤ [HV Υ
UB](b) for every b ∈ ∆(S). Due to this and since

V Υ
UB is assumed to be min-justified, we have yi ≥ [HV Υ′

UB](b) for every 1 ≤ i ≤ k + 1. We
will now show that V Υ′

UB is min-justified by showing that [HV Υ′
UB](b) ≤ V Υ′

UB(b) holds for
arbitrary belief b ∈ ∆. Let λi and b′ correspond to the optimal solution of the linear
program (3.44) for solving V Υ′

UB(b). We have

V Υ′
UB(b) =

k+1∑
i=1

λiyi + δ‖b− b′‖1 (λi and b′ represent an optimal solution of V Υ′
UB(b))

≥
|Υ|∑
i=1

λi · [HV Υ′
UB](bi) + δ‖b− b′‖1

≥ [HV Υ′
UB](b′) + δ‖b− b′‖1 (HV Υ′

UB is convex, see Proposition 3.14)

≥ [HV Υ′
UB](b) (V Υ′

UB is δ-Lipschitz continuous, and hence according to

Proposition 3.14 also HV Υ′
UB is) .

This shows that any point-based update results in a min-justified value function V Υ′
UB.

Therefore the Algorithm 3.1 only considers upper bounds V Υ
UB that are min-justified.

We are now ready to show that the Algorithm 3.1 can be used to obtain ε-Nash
equilibrium strategies for the given one-sided partially observable stochastic game.

Theorem 3.34. Consider that Algorithm 3.1 has terminated. Then we can use
Algorithms 3.2 and 3.3 to obtain ε-Nash equilibrium strategies for both players.

Proof. According to Theorem 3.25, the Algorithm 3.1 terminates and the value func-
tions V Γ

LB and V Υ
UB that result from the execution of the algorithm satisfy V Υ

UB(binit)−
V Γ

LB(binit) ≤ ε. Furthermore, we know that lower bound V Γ
LB is max-justified by the set Γ

resulting from the execution of Algorithm 3.1 (Lemma 3.32), and the upper bound V Υ
UB is
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min-justified (Lemma 3.33). We can therefore use Algorithm 3.2 to obtain a strategy for
player 1 that achieves utility of at least V Γ

LB(binit) for player 1 (Corollary 3.30). Similarly,
we can use Algorithm 3.3 to obtain a strategy for player 2 that ensures that the utility of
the player 1 will be at most V Υ

UB(binit) (Theorem 3.31). Since V Υ
UB(binit)− V Γ

LB(binit) ≤ ε
these strategies form ε-Nash equilibrium of the game.

3.8 Experimental evaluation
In this section, we focus on the experimental evaluation of the heuristic search value
iteration algorithm for solving one-sided partially observable stochastic games from
Section 3.6. We demonstrate the scalability of the algorithm in three security domains.
Rewards in all of the domains have been scaled to the interval [0, 100] or [−100, 0],
respectively, and we report the runtime required to reach V Υ

UB(binit)− V Γ
LB(binit) ≤ 1. We

first outline the details of our experimental setup.

3.8.1 Algorithm Settings
Compared to the version of the HSVI algorithm presented in Section 3.6, we adopt several
modifications to improve the scalability of the algorithm. In this section, we provide
description of these modifications, and we show that the theoretical guarantees of the
algorithm still hold.

Pruning the Sets Γ and Υ Each time a point-based update is performed, the size
of the sets Γ and Υ used to represent value functions V Γ

LB and V Υ
UB increases. As new

elements are generated, some of the elements in these sets may become unnecessary for
the representation of the bounds V Γ

LB and V Υ
UB. To prevent unnecessary growth of the

size of the representation, we remove such obsolete elements. Whenever a new α-vector
valcomp(πLB

1 , αLB) is generated according to Equation (3.49), all dominated elements in
the set Γ get removed and only those elements of α ∈ Γ that dominate valcomp(πLB

1 , αLB)
in at least one state remain, i.e.,

Γ := {α′ |α′ ∈ Γ : ∃s ∈ S : α′(s) > valcomp(πLB
1 , αLB)(s)} ∪ {valcomp(πLB

1 , αLB)} .
(3.57)

For the set Υ used to represent the upper bound V Υ
UB, we use a batch approach instead of

removing dominated elements immediately. We remove dominated elements every time
the size of the set Υ increases by 10% compared to the size after the last pruning was
performed (this is analogous to the pruning technique proposed in [Smith and Simmons,
2004]). Algorithm 3.4 inspects each point (bi, yi) ∈ Υ and checks whether it is needed to
represent value function V Υ

UB—and if it is not needed, the point gets removed.
Removing elements from sets Γ and Υ does not violate theoretical properties of

the algorithm. First of all, only elements that are not necessary to represent currently
considered bounds are removed—hence the values of value functions V Γ

LB and V Υ
UB

considered at each step of the algorithm remain unchanged, and the convergence property
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Algorithm 3.4: Pruning set Υ representing the upper bound V Υ
UB

input : Set Υ used to represent V Υ
UB

1 for (bi, yi) ∈ Υ do
2 if yi > V Υ

UB(bi) then Υ := Υ \ {(bi, yi)}

is hence retained. Furthermore, we can still use pruned value functions to extract
strategies with guaranteed performance. Since the resulting upper bound value function
V Υ

UB is identical to the one obtained without pruning, it is still min-justified, and can
be used to obtain strategy of the minimizing player 2 with guaranteed utility at most
V Υ

UB(binit) (Section 3.7.3). Similarly, V Γ
LB can be used to obtain strategy of player 1

(Section 3.7.2). Despite the fact that the resulting set Γ of α-vectors is different from
the set constructed by Algorithm 3.1 when no pruning is used, we can see that for every
missing element α′ there has to exist an element α such that α ≥ α′ (see Equation (3.57)).
Therefore, we can always replace missing α-vectors in value compositions (i.e., linear
functions αa1,o) without decreasing the values of the resulting value composition—and
hence V Γ

LB remains max-justified by the set of α-vectors Conv(Γ).

Partitioning States and Value Functions In many games, even the imperfectly
informed player 1 has access to some information about the game. For example, in the
pursuit-evasion games we discuss below, the pursuer knows his position—and representing
his uncertainty about his position within the belief is unnecessary. To reduce the dimension
of the beliefs, we allow for partitioning states into disjoint sets such that the imperfectly
informed player 1 always knows which set he is currently in. Formally, let S =

⋃K
i=1 Si

such that Si ∩ Sj = ∅ for every i 6= j. Player 1 has to know the initial partition, i.e.,
Supp(binit) ⊆ Si for some 1 ≤ i ≤ K. Furthermore, he has to be able to infer which
partition he is in at any time, i.e., for every belief b over a partition Si (i.e., Supp(b) ⊆ Si),
every achievable action-observation pair (a1, o) and every stage strategy π2 ∈ Π2 of
player 2, we have Supp(τ(b, a1, π2, o)) ⊆ Sj for some 1 ≤ j ≤ K. We use T (Si, a1, o) to
denote such Sj .

This partitioning allows for reducing the size of linear program (3.37) used to compute
stage game solutions. Namely, the quantification over s ∈ S can be replaced by s ∈ Si,
where Si is the current partition. Furthermore, since also the partition of the next stage has
to be known, we can also replace (a1, o, s

′) ∈ A1×O×S by (a1, o, s
′) ∈ A1×O×T (Si, a1, o).

Parameters and Hardware We use value iteration for stochastic games, or MDPs,
respectively, to initialize the upper and lower bounds. The upper bound is initialized by
solving a perfect-information variant of the game (see Section 3.6.1). The lower bound
is computed by fixing the uniform strategy σunif

1 for player 1 and solving the resulting
Markov decision process from the perspective of player 2. We terminate the algorithms
when either change in valuations between iterations of value iteration is lower than 0.025,
or 20s time limit has expired. The initialization time is included in the computation
times of the HSVI algorithm.
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We use ε = 1. However, similarly to Smith and Simmons [2004], we adjust ε in each
iteration, and we get εimm that is about to be used in the current iteration using formula
εimm = 0.25 + η(V Υ

UB(binit)− V Γ
LB(binit)− 0.25) with η = 0.9. We set the parameter D to

the largest value such that ρ(t) ≥ 0.25−t holds for every t ≥ 0.

3.8.2 Experimental Results
We now turn our attention to the discussion of experimental results. We introduce the
domains that have been used in the experiments and comment on the scalability of the
proposed algorithm.

Pursuit-Evasion Games (inspired by [Chung et al., 2011; Isler and Karnad,
2008]) In pursuit-evasion games, a team of K centrally controlled pursuers (we consider
a team of K = 2) is trying to locate and capture the evader—who is trying to avoid
getting captured. The game is played on a grid (in our case the size of the grid is 3×N),
where the pursuers start in the top-left corner of the grid, while the evader starts in
the bottom-right corner. In each step, the units move to one of their adjacent locations
(i.e., the actions of the evader are A2 = {left, right, up,down}, while the actions available
to the team of pursuers are joint actions for all units in the team, A1 = (A2)K). The
game ends when one of the units from the team of pursuers enters the same cell as the
evader—and the team of pursuers (player 1) then receives a reward of +100. The reward
for all other transitions in the game is zero. The pursuer knows the location of their
units but the current location of the evader is not known.

The game with N = 3 was solved in 9s on average, the game with N = 6 took 3.5
hours to be solved to the gap ε = 1. Sizes of the games range from 143 states and 2671
transitions to 1299 states and 34807 transitions.

Search Games (inspired by [Bošanský et al., 2014]) In search games that model
intrusion, the defender patrols checkpoint zones (see Figure 3.2a, the zones are marked
with box). The attacker aims to cross the graph, while not being captured by the defender.
She can either wait for one move to conceal her presence (and clean up the trace), or
move further. Each unit of the defender is able to move to adjacent nodes within its
assigned zone. The goal of the attacker is to cross the graph to reach node marked by T
without encountering any unit of the defender. If she manages to do so, the defender
receives a reward of −100.

We consider games with 2 checkpoint zones with varying number of nodes in a zoneW
(i.e. width of the graph) and 2 configurations of the defending forces—with one defender
in each of the checkpoint zones (we denote this configuration 1-1), and 2 defenders in the
first zone while just 1 defender being in the second one (denoted 2-1).

The results are shown in Figure 3.2b (with 5 runs for each parameterization, the
confidence intervals mark the standard error in our graphs). The largest game (W = 5
and 2 defenders in the first zone) has 4656 states and 121239 transitions and can be
solved within 27 minutes. This case highlights that our algorithm can solve even large
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Figure 3.2: (a) Intrusion-search game: W = 3, configuration 1-1: A denotes initial
position of the attacker, D initial positions of defender’s units, T is attacker’s target (b)
Intrusion-search games with 2 zones, each with W vertices: Time to reach V Υ

UB(binit)−
V Γ

LB(binit) ≤ 1 (c) Patrolling games played on graphs generated from ER(0.25): Time to
reach V Υ

UB(binit)− V Γ
LB(binit) ≤ 1 (only successfully solved instances within 10 hours) (d)

Patrolling games played on graphs generated from ER(0.25): Percentage of successfully
solved instances with t× = 4 and the gap on failed instances after 10 hours
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games. However, a much smaller game with the configuration 1-1 (964 states and 9633
transitions) is more challenging, since the coordination problem with just 1 defender in
the first zone is harder, and is solved within 3.5 hours.

Patrolling Games (inspired by [Basilico et al., 2009a; Vorobeychik et al.,
2014]) In patrolling game, a patroller (player 1) aims to protect a set of targets V . The
targets are represented by vertices of a graph, and the possible movements of the patroller
are represented by the edges of the graph. The attacker observes the movement of the
patroller, and decides which target v ∈ V he will attack, or whether he will postpone
the decision. Once the attacker decides to attack a target v, the defender has t× steps
to reach the attacked vertex. If he fails to do so, he receives a negative reward −C(v)
associated to the target v—otherwise he successfully protects the target and the reward
is zero. The patroller does not know whether and where the attack has already started.

Following the setting in [Vorobeychik et al., 2014], we focus on graphs generated
from Erdos-Renyi model [Newman, 2010] with parameter p = 0.25 (denoted ER(0.25))
with attack times t× ∈ {3, 4} and number of vertices |V| ranging from 7 to 15. Each
instance with attack time t× = 3 was solved by our algorithm in less than 12 minutes (see
Figure 3.2c). For attack time t× = 4, however, some number of instances failed to reach
the precision V Υ

UB(binit)− V Γ
LB(binit) ≤ 1 within the time limit of 10 hours. For the most

difficult setting, |V| = 13, the algorithm reached desired precision in 60% of instances
(see Figure 3.2d). For unsolved instances, mean V Υ

UB(binit)− V Γ
LB(binit) after the cutoff

after 10 hours is however reasonably small (also depicted in Figure 3.2d, see the solid line
and right y-axes). The results include games with up to 856 states and 6409 transitions.

3.9 Cybersecurity Application: Active Deception
In Section 3.8, we have provided experimental evaluation of our novel algorithm for
solving one-sided POSGs, and we have demonstrated its scalability. All the domains
we have considered have their origin in security, and as the worst-case assumption the
defender was the imperfectly informed player in the game. In [Horák et al., 2017b], we
have used the model of one-sided POSGs in a different setting. In order to study active
deception in computer network security, we assume that the attacker is the imperfectly
informed player in the game, while the defender either has not detected the attacker yet
(i.e., cannot actively influence the transitions), or he is able to reconstruct entire history
of the attack (i.e., he has perfect information).

Underbrink [2016] classifies cyber deception into two broad categories—passive and
active deception. The passive deception is targeted against attacker’s reconnaissance
efforts and relies on a proactively deployed static infrastructure of decoy systems, e.g.,
honeypots [Kreibich and Crowcroft, 2004; Spitzner, 2003] or fake documents [Bowen
et al., 2009]. The active deception that we study in [Horák et al., 2017b], on the other
hand, attempts to interactively engage the attacker who has been already detected by
the sensing systems. The defender attempts to anticipate probable future actions of the
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Figure 3.3: Network topology (attacker starts outside of the network and attempts to
gain access to the most valuable assets in the network)

attacker and takes proactive countermeasures against them to prevent the attacker from
achieving his goals. While a lot of work has been dedicated to understanding strategical
aspects of passive deception techniques, e.g., [Durkota et al., 2015; Mohammadi et al.,
2016; Zhu et al., 2012, 2013], very few works have focused on strategical aspects of active
deception. Underbrink [2016] introduced the Legerdemain approach to active deception
where critical assets in the network are secretly manipulated. In this work, however, it is
assumed that the attacker will never realize that he is being deceived.

In contrast to the Legerdemain approach, in our game-theoretic model, the attacker
is the imperfectly informed player in the one-sided POSG, and hence he actively reasons
about the probability that he has been detected (and thus that he is subject to ongoing
active deception). To this end, the strategy of the defender has to aim on creating and
reinforcing the view of the attacker. We will now describe the game-theoretic model that
we used for the case study of active deception, and we will discuss the results.

3.9.1 Game-Theoretic Model
We illustrate the concept of active deception using a network topology depicted in
Figure 3.3. We use this topology as an abstraction of a multilayer network which is
commonly adopted in critical network operations, such as power plants or production
facilities [Kuipers and Fabro, 2006]. Our example network consists of three layers. The
outermost layer of the network (Layer 1) is directly exposed to the Internet via demilit-
arized zones (DMZs) and provides less sensitive services that are used to communicate
with the customers and business partners. More critical assets are located in the deeper
layers of the network. In our example, the second layer consists of data stores containing
confidential data. The third layer is the most critical one since it provides an access
to physical devices, such as actuators and sensors, the integrity of which is absolutely
essential for the secure operation of the facility. Breach of assets in Layer 3 may even
pose a risk of physical damage, such as in the case of the Stuxnet attack [Falliere et al.,
2011; Gostev and Soumenkov, 2011].

Attack options We assume that an attack is initiated from a computer outside of
the network. The attacker attempts to take control of a system in Layer 1 and then
escalates his privileges to take control of the computers located deeper in the network
by compromising them (hence we refer to this action of the attacker as compromise).
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At any point, the attacker can either wait or leverage the current access. Apart from
attempting to compromise a host in the next layer, he has two options:

The first option is to cause significant immediate damage, such as eliminating a
physical device in Layer 3 (having the attacker had access to it) – we refer to this action
as take down. Such an action surely attracts the attention of the defender and will lead
to the detection of the attacker’s presence. Therefore, the attacker is forced to quit the
network and possibly repeat his attack at a later time.

The second option is to cause smaller amount of damage while attempting not to
attract defender’s attention. The actions the attacker can use to this purpose include,
e.g., a stealthy exfiltration of the data or a manipulation of the records in the database –
for simplicity we refer to them collectively using the exfiltrate action. Nevertheless,
even these careful options still run into a small risk of being detected. Moreover these
options run into the risk that the defender will avert the damage resulting from them
by means of active deception and possibly even use the fact that the attacker uses the
exfiltrate action for his benefit (e.g. to collect evidence). This makes it critical for the
attacker to understand whether he is deceived or not.

Detection system An intrusion detection system (IDS) is deployed in the network and
can identify malicious actions of the attacker. This detection is not reliable. We assume
that the attacker’s presence is detected with probability dcomp = 0.2, if he escalates his
privileges and penetrates deeper in the network using the compromise action. If the
attacker performs stealthy exfiltration of the data (exfiltrate action), we detect him
with probability dexf = 0.1. We have chosen these probabilities based on a discussion
with an expert, however, the model is general enough to account for any choice of these
parameters.

Active deception We assume that the passive defensive systems, such as IDS and
honeypots, are already in place and we focus on the way the defender can actively
deceive the attacker when his presence has been detected. We take an abstracted view on
defender’s actions to focus on the main idea of deception, however, our model is general
and these actions can be refined to account for any actions the defender can use. In
our example, he can either use a stealthy deceptive action and attempt to engage the
attacker in the network, or he can attempt to exclude the attacker from the network
(non-deceptive block action). We assume that the block action really achieves its goal
and all the privileges the attacker has get revoked and the attacker thus has to start
his attack from scratch. If it were not the case and the block action was less powerful,
blocking the attacker would have been less tempting and hence the use of deception
we are advocating would have been even more desirable. By engaging the attacker we
attempt to anticipate the action of the attacker and minimize (or even eliminate) the
damage caused by his stealthy damaging action of exfiltrate. We cannot, however,
contain the more damaging take down action by engaging the attacker – the only way
to prevent that kind of damage is to block the attacker in time. Note that both of these
actions of the defender can be only used once the attacker got detected – otherwise, the



3.9. CYBERSECURITY APPLICATION: ACTIVE DECEPTION 75

compromise compromise compromise

exfiltrate exfiltrate exfiltrate

compromise

exfiltrate

compromise

exfiltrate exfiltrate
engage

engage

engage

engage

engage

any action
block

N
o
t

d
et

ec
te

d
D

et
ec

te
d

ID
S

alert

wait

ta
ke

d
ow

n
&

st
ar

t
ov

er Layer 1 Layer 2 Layer 3

Figure 3.4: Transition system of a one-sided partially observable stochastic game
representing attack on the network from Fig. 3.3. The attacker is uncertain whether he
has been detected or not. The attacker can use the take down action in every layer. The
wait action of the attacker has been omitted for clarity and is always applicable.

defender has to rely on the infrastructure of passive defensive systems as the attacker
has to be detected first.

Game model We represent the above scenario as a one-sided POSG where the attacker
is imperfectly informed about the state of the detection, i.e., he does not know whether
he has been detected by the intrusion detection system (IDS) or not. The transition
system of the game is shown in Figure 3.4. The state space is divided into two parts. In
the upper half, the presence of the attacker in the network has not yet been revealed by
the IDS, therefore, the defender cannot take active countermeasures yet. Triggering an
IDS alert switches the game states into the bottom part and thus gives the defender an
opportunity to decide between engage and block actions.

The arrows in the diagram represent individual transitions in the game. If the attacker
uses compromise action, he penetrates deeper in the network. If he opts for exfiltrate,
he stays in the current layer of the network while possibly gaining access to confidential
information. And finally, he can decide to do the immediate damage by the take down
action at any time. In such a case he gets detected and thus returns to the initial state,
outside of the network. The defender can stop all this from happening by taking the
block action (had he detected the attacker) when the defender is pushed out of the
network as well. Due to the presence of the IDS in the network, there is a probability of
transitioning from the upper states to lower states (dcomp if the attacker uses compromise
action, dexf if he opts to exfiltrate).

The attacker can identify the layer he has penetrated (i.e. he knows the “column” of
the transition system where he is located), but he does not know whether he has been
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State (s(t)) Action Defender’s loss
Position Detected Attacker (a(t)

A ) Defender (a(t)
D ) LD(s(t), a

(t)
A , a

(t)
D )

any no compromise — −2 (= L1)
Layer i no exfiltrate — 15i (= Li2)
Layer i no take down — 25i (= Li3)
any yes compromise engage −4 (= L4)
any yes exfiltrate engage −2 (= L5)

Layer i yes take down engage 25i (= Li6)
any yes compromise block −2 (= L7)
any yes exfiltrate block 0 (= L8)
any yes take down block 0 (= L9)

Table 3.1: Game rewards for the game represented in Fig. 3.4. In each time step, the
players take their actions simultaneously and the loss of the defender in the current time
step is determined according to their joint action.

detected or not (i.e. whether the game is in the upper or lower half). The defender
also does not have perfect information about the state of the attack – namely, he does
not know anything about the attacker until the IDS generates an alert. After the alert
is generated, however, he can get a close to perfect information about the attacker by
studying the traces he has created in the system. Since the defender cannot make use
of the information about the attacker in the upper states (he cannot take any active
countermeasures), we can safely assume that the defender has a perfect information in
the whole game. The game therefore belongs to the class of one-sided POSGs, and we
can use techniques presented in this chapter to solve the game.

We consider discounted-sum utilities, and we use discount factor γ = 0.95 to account
for the impatience of the attacker during the attack. In every stage of the game, the
players choose their actions simultaneously, and the immediate loss of the defender LD(·)
(i.e., the reward of the attacker) follows Table 3.1. Here, we use aA to denote actions of
the attacker (i.e., the player 1 who maximizes the loss of the defender) and aD to denote
the actions of the defender who is aiming on minimizing the loss. The actual values for
the case study have been devised based on a discussion with an expert, however, the
model is general to capture any kind of preferences of the defender. We now present a
brief intuition behind the game rewards.

The compromise action does not cause any immediate harm to the defender and only
leaks information to the defender (e.g. about an exploit used) so the loss of the defender
is negative (L1 = L7 = −2). Note that a negative loss is in fact a gain. Moreover, if the
defender is already aware of attacker’s presence and engages him in the network, he can
better understand the techniques used by the attacker and thus his loss is (L4 = −4).

The exfiltrate action is already harmful to the defender. If the defender does not
take any active countermeasures, the attacker accesses confidential data which implies a
significant damage to the defender. Since the assets located deeper in the network are
more valuable, we account for this by defining the cost for the defender of Li2 = 15i for
losing data located in the i-th layer.
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Figure 3.5: Optimal defense strategy for the network from Fig. 3.3. The optimal
strategy of the defender is randomized and depends on the current position of the
attacker (the layer he penetrated) and his belief about the detection state.

If the defender realizes that he is dealing with a malicious user, he can minimize or
eliminate the risk of losing sensitive data, e.g. by presenting (partly) falsified data to
the attacker, using the engage action. The attacker then receives useless data and only
provides the defender with time to collect the forensic evidence. The loss of the defender
is, therefore, negative (L5 = −2) if the attacker exfiltrates data while being engaged.
The defender can also prevent the data exfiltration by restricting attacker’s access to the
network (action block), however, by doing so, he loses the option to collect the evidence
and hence the reward is L8 = 0.

If the attacker decides to cause significant immediate damage by the take down
action, the only option of the defender to prevent this from happening is to block the
attacker (if applicable) when the loss is L9 = 0. Otherwise, the cost of the defender is
Li3 = Li6 = 25i (when i represents the layer the attacker is in).

3.9.2 Results
In this section, we provide an overview of the numerical results obtained for the model
introduced in Section 3.9.1 that we use in our case study. These results support the claim
that the use of game-theory based active deception can significantly improve the security
level of the network operation.

Optimal defense strategy The optimal defense strategy incurs expected long-term
discounted loss of the defender of 282.154. This is a significant improvement over the
common practice nowadays of attempting to block the attacker immediately after he is
detected. The always-block strategy where the defender is restricted to play only block
action after detecting the attacker leads to an expected loss of 429.375. It is also, however,
not good to keep the attacker engaged in the deception forever (and consider only the
engage action – we refer to this strategy as always-engage). Such an approach would not
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Figure 3.6: Evolution of attacker’s belief over time. If we block the attacker immediately
after detection, he remains highly confident that we cannot employ deceptive actions
which allows him to perform long-term data exfiltration. If we always attempt to deceive
the attacker by engaging him, he realizes that he likely faces a deception and decides to
cause immediate damage – which is not prevented by the deceptive engage action.

make the deception believable, and the attacker would rather cause the damage by using
the takedown action and forfeit his current attack attempt than battle the deception.

In Figure 3.5 we depict the optimal strategy of the defender based on the current
belief of the attacker. Since the defender has only two actions available in the model, we
express the probability of playing the engage action only. Observe that the more the
attacker believes that he has been already detected, the less efficient the active deception
is—and hence the defender is less likely to continue deceiving the attacker. Furthermore,
observe that the closer the attacker is to his primary goals (or at least the closer he thinks
to be), the less concerned he is about the fact that he might be deceived. Therefore, it
is easier to deceive the attacker in deeper levels of the network—and the probability of
playing the deceptive engage action in Layer 3 is thus higher than, e.g., in Layer 1.

To better understand the advantages of using the game-theoretic strategy to actively
deceive the attacker compared to the baseline approaches, let us consider the evolution of
the belief of the attacker in time shown in Figure 3.6. Observe that in case the defender
uses block action immediately after he detects the attacker (strategy Always block in
Figure 3.6), the attacker remains highly confident that he has not been detected yet, and
thus is able to cause significant damage. Similarly, if the defender tries to engage the
attacker at all times, the attacker can perform damaging actions take down when he
becomes highly confident that the data that he exfiltrates is useless. In contrast, when
employing the game-theoretic strategy, the belief of the attacker about being detected
stabilizes at 0.4968. This is the right belief where the attacker still thinks that it is worth
attempting to cause long-term damage by data exfiltration, despite being vulnerable to
deceptive attempts of the defender.
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Engaging the attacker We have shown that the common practice in incident response
deployments of blocking the attacker immediately after detection is susceptible to severe
drawbacks. We proposed an alternative strategy, based on a game-theoretic model, that
postpones the decision to block the attacker to minimize the long-term damage to the
network. The key motivation for using this strategy is that by anticipating malicious
actions of the attacker, we can minimize negative impacts of his actions and delay his
progress. On the other hand, excluding the attacker from the network is only temporary.
The attacker is potentially able to reenter the network and cause significant damage
before we manage to detect him again.

Our strategy has, however, one more significant advantage since it can be leveraged to
decrease false positive rates of the IDS. False detections can have a considerable negative
impact on the network operations. By engaging a suspicious user in the network, we can
make use of the extra time given by our deceptive strategy to identify the user, infer their
objectives and take proper defense actions to reduce the impact of the network defense
system on legitimate users. To this end, we can use various types of deceptive signals
that do not influence legitimate users but make the progress of an attacker difficult.

We conducted an experimental evaluation of our game-theoretic strategy to determine
the average time between the first IDS alert and the time we decide to block the user. We
evaluated our strategy against an advanced attacker who conducts the most damaging
attack (a best response to our strategy) and we considered only the attacks where the
attacker does not decide to quit the network himself. We found out that the average
time between detection and the time we decided to restrict attacker’s access is in our
case 4.577 time steps. In this time window, the defender gets additional alerts from the
IDS which may help him decide about the credibility of the alert and thus assure that he
is not about to block a legitimate user.
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CHAPTER4
Scaling Up

In Chapter 3, we have presented an algorithm for solving a class of one-sided partially
observable stochastic games. This algorithm approximates the solution by approximating
the optimal value function V ∗ : ∆(S) → R of the game, i.e., approximates the utility
V ∗(b) player 1 is able to achieve in the game in case his belief is b ∈ ∆(S). The primary
motivation for the class of one-sided POSGs comes from the domain of security. By
assuming that the attacker is perfectly informed about the course of the game, we are
able to come up with robust strategies that are guaranteed to work well even in cases
where some (possibly unknown) information is leaking to the adversary.

Unfortunately, for many real-world large-scale security problems, the scalability of the
basic version of the HSVI algorithm for solving one-sided POSGs (see Algorithm 3.1) is
insufficient. In this chapter, we study an application of the algorithm to design dynamic
defensive strategies against lateral movement, which is a well-known problem from the
domain of cybersecurity [Noureddine et al., 2016; Kamdem et al., 2017]. In the model we
consider, the state space of the game is exponential in the size of the analyzed network,
and the basic algorithm can thus solve only the smallest instances. We first discuss the
problem of lateral movement in Section 4.1 and provide an overview of the related work
in Section 4.2. In Section 4.3, we introduce the idea of compact representation of the
information the defender has and we extend the heuristic search value iteration algorithm
for one-sided POSGs to use this representation. In Section 4.4, we discuss the idea of
compact representation of the beliefs in the context of the lateral movement POSG. In
Section 4.5, we further improve the scalability of the approach by using incremental
strategy generation techniques. Finally, in Section 4.6, we conclude by experimental

This chapter is based on following publications:
[Horák et al., 2019b] Horák, K., Bošanský, B., Tomášek, P., Kiekintveld, C., and Kamhoua, C. (2019b).

Optimizing honeypot strategies against dynamic lateral movement using partially observable
stochastic games. Computers & Security, 87:101579 (40%)

[Horák et al., 2019a] Horák, K., Bošanský, B., Kiekintveld, C., and Kamhoua, C. (2019a). Compact
Representation of Value Function in Partially Observable Stochastic Games. In 28th International
Joint Conference on Artificial Intelligence (IJCAI), pages 350–356 (65%)
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evaluation of our approach that demonstrates that the idea of compact representation
can significantly improve the scalability of the solution algorithm.

4.1 Lateral Movement as Game Theoretic Problem
One of the most potent threats in cybersecurity are the Advanced Persistent Threat
(APT) attackers. These are sophisticated (possibly state-sponsored) attackers who
execute highly targeted, long-term, stealthy attacks against government, military, and
corporate organizations. In many cases of known attacks, APTs have been successful
at establishing a deep and persistent foothold in a target network and maintaining
this presence for months or even years before being discovered [Mandiant Intelligence
Center, 2013]. Another emerging challenge in cybersecurity is securing highly dynamic,
diverse mobile networks against short-term but very intense attacks, as in the Internet of
Battlefield Things (IoBT) [Abuzainab and Saad, 2018]. In both of these cases lateral
movement plays a key role in the attack, as an attacker with a foothold needs to move to
compromise additional network resources to achieve the goal of the attack. One of the
methods a defender can use to detect and mitigate lateral movement is using honeypots
and other deception technologies to detect, confuse, and redirect the attacker [Noureddine
et al., 2016; Kamdem et al., 2017].

The resulting adversarial competition for control of a network between the defender
and the attacker can be modeled as a game, where the defender is allocating defensive
resources (e.g., honeypots), and the attacker is taking actions to gain greater control
while remaining undetected. Game theory is becoming an increasingly important tool for
optimizing cybersecurity resources, including strategic allocation of honeypots [Píbil et al.,
2012; Kiekintveld et al., 2015; Durkota et al., 2015], allocating resources to perform the
deep packet inspection [Vaněk et al., 2012], and modifying the structure or characteristics
of the network [Jajodia et al., 2012; Cai et al., 2016; Nguyen et al., 2017].

Motivated by the scenarios of APT attackers and attacks on mobile IoBT infra-
structure, we use partially observable stochastic games, where the interactions between
the attacker and defender are dynamic, involve uncertainty, and are long-lived. First,
in the realistic cases we want to model the interaction which is dynamic, in that the
defender and attacker can observe and react to new information and the moves of the
other player, allowing them to update their strategies over time. Second, the players have
imperfect information; for example, the defender typically does not know exactly what
set of resources an attacker may control at any given time. Finally, the interactions can
be very long (as in the case of APTs), or very frequent (as in the case of IoBT networks
under short but very intense attacks). Previous work using game theory to model lateral
movement [Kamdem et al., 2017] and honeypot allocation [Píbil et al., 2012; Kiekintveld
et al., 2015; Durkota et al., 2015; Wang et al., 2017] has not been able to address all of
these problems.

In this chapter, we introduce a lateral movement POSG, a one-sided partially observ-
able stochastic game that model an attacker moving laterally in a computer network. We
assume that the attacker infiltrated some nodes in a network and aims to reach a certain
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host (e.g., the main database). We model this problem as a two-player game on a graph
between the attacker and the defender. The nodes of the graph correspond to hosts
in the network, and the edges correspond to attacking another host using a particular
vulnerability on the target host, which has an associated cost. The attacker sequentially
chooses which hosts to attack to progress towards the goal. The defender chooses edges
that will act as honeypots (i.e., fake vulnerabilities) which are able to detect certain
moves by the attacker through the network and allow the defender to take additional
mitigating actions. The defender can also change his honeypot deployment after any
detection event to take into account the new piece of information about the attack.

There are two key challenges in solving the lateral movement POSG. First, the states
in the game correspond to subsets of hosts/nodes the attacker has already managed to
compromise. This means that the number of states, as well as the dimension of the
belief space, is exponential in the size of the network. This means that representing,
updating, and reasoning about the beliefs of the defender becomes computationally
intractable for all but the smallest instances. The second challenge comes from the
number of possible actions of the players. In the lateral movement POSG, the actions
of the defender correspond to placing multiple honeypots on edges in a graph. Even if
there are only 20 possible edges in a network and the defender can use 3 honeypots, the
defender has up to 6.8 · 103 possible actions to choose from at a single decision point
in the game. Since the game is dynamic with many decision points, this problem is
exacerbated even further by the length of the game. We address both of these challenges
and propose two key contributions for improving the scalability of the HSVI algorithm
for solving the lateral movement POSG: (1) we replace the representation of beliefs over
the exponential number of possible states with a summarized abstraction that captures
key information but reduces the dimensionality of the beliefs; (2) we use an incremental
strategy generation technique to iteratively expand the strategy space of the players in
order to overcome large branching factor. We present general version of the algorithms
and novel solution concepts, and then show how they can be applied specifically to
the lateral movement POSG. We give theoretical justification and analysis of the key
elements of the algorithm. In addition, we evaluate the performance of our algorithm
empirically on realistic instances of the lateral movement POSG. Our algorithm is capable
of finding strategies that are very near the optimal solutions for small cases where we can
compute the true optimal value. It also scales dramatically better than the previous state
of the art, allowing us to solve games with twenty or more nodes that are of practical
significance. For example, we can find defense strategies in smaller computer networks or
abstractions of larger network. With more aggressive approximation we could scale to
even larger examples using the same algorithms.

4.2 Related Work

The concept of a honeypot has been around for more than 30 years in cybersecurity [Stoll,
1989]. They have been used for many different purposes, and have evolved to be much more
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sophisticated with greater abilities to mimic real hosts and to capture useful information
about attackers [Mairh et al., 2011; Nawrocki et al., 2016]. Recently, there have been a
large number of game theory models developed to capture aspects of how honeypots and
other deception methods can be strategically used to improve cybersecurity [Garg and
Grosu, 2007; Píbil et al., 2012; Kiekintveld et al., 2015; Durkota et al., 2015; La et al.,
2016; Wang et al., 2017].

While none of these previous models address the full scope of long-term dynamic
games with uncertainty that we consider here, several have considered similar aspects of
uncertainty or dynamic interactions. For example, Wang et al. [2017] investigate the use
of honeypots in the smart grid to mitigate denial of service attacks through the lens of
Bayesian games. Durkota et al. [2015] developed a model of honeypot allocation under
uncertainty. La et al. [2016] model honeypots mitigating denial of service attacks in the
Internet-of-Things domain. Du et al. [2017] tackle a similar “honeypots for denial of
service attack” problem with Bayesian game modeling in the social networking domain.
In addition, a number of works have consider deception as a signaling game (e.g., [Pawlick
and Zhu, 2015]).

We use the idea of representing high-dimensional beliefs using low-dimensional char-
acteristic vectors. Similar ideas has appeared in the literature focused on single-agent
partially observable Markov decision processes (e.g., in [Roy et al., 2005; Li et al., 2010;
Zhou et al., 2010]). The most general approach was to choose an abstraction based on
Principal Components Analysis [Roy et al., 2005]. For our lateral movement POSG, we
can exploit natural representation in marginal probabilities—i.e., reason about probability
of each resource being infected as individual coordinates of the characteristic vector,
instead of explicitly considering all possible subsets of infected resources.

Finally, we also use incremental strategy generation method that is often known as
the double-oracle algorithm and often used for solving games with large combinatorial
number of actions in security games (e.g., in [McMahan et al., 2003; Jain et al., 2011,
2013]), and more recently, the double oracle method is being also used in combination
with reinforcement learning on domains where computing (approximate) best response is
not possible [Lanctot et al., 2017; Oliehoek et al., 2017; Wang et al., 2019]. Double-oracle
algorithm restricts the space of possible actions to choose from—the algorithm forms a
restricted stage game that is iteratively expanded by adding new actions into the restricted
game. These actions are often computed as best responses to the current strategy of
the opponent in the restricted problem. In the worst case, all actions have to be added
into the restricted problem. This, however, rarely happens in practice and double-oracle
algorithms are often able to find an optimal strategy using only a fraction of all possible
plans (see, for example, [Jain et al., 2011; Bošanský et al., 2014; Lanctot et al., 2017]).
While the domain-independent idea of double-oracle algorithm is simple, our contribution
is in (1) full integration of this methodology into the algorithm for solving stage games
of lateral movement POSGs and (2) description of exact and heuristic oracle algorithms
for determining which actions should be added into the restricted game.
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4.3 Compact Representation of V ∗

The dimension of the value function V ∗ of a one-sided POSG depends on the number
of states, which can be very large in games like the lateral movement POSG where the
number of states is exponential in the size of the network. We propose an abstraction
scheme called summarized abstraction to decrease the dimensionality of the problem by
creating a simplified representation of the beliefs over the state space.

We associate each belief b ∈ ∆(S) in the game with a characteristic vector χ(b) = A · b
(for some fixed matrix A ∈ Rk×|S| where k � |S|) and we define an (approximate) value
function Ṽ ∗ : Rk → R over the space of characteristic vectors. We denote χinit the
characteristic vector corresponding to the initial belief binit, i.e., χinit = A · binit.

The main goal is to adapt algorithms based on value iteration to operate over the
more compact space Rk instead of the original belief space ∆(S). First, we adapt the fixed
point Equation (3.23c) for OS-POSGs to work with compact Ṽ ∗ (instead of original V ∗).
We let the player 2 choose any belief that is consistent with the current characteristic
vector χ (by adding an extra minimization term), and we replace the value of belief b,
V ∗(b), by the value of its characterization Ṽ ∗(A · b). We also denote this compound
function Ṽ ∗ ◦A.

Ṽ ∗(χ) = H̃Ṽ ∗(χ) = min
b|Ab=χ

min
π2∈Π2

max
π1∈Π1

(
Eb,π1,π2 [R(s, a1, a2)] + (4.1)

+ γ
∑
a1,o

Pb,π1,π2 [a1, o] · Ṽ ∗(A · τ(b, a1, π2, o))
)

We will now prove that similarly to unabstracted one-sided POSGs, the operator
H̃ defined by Equation (4.1) is a contraction mapping—and hence Ṽ ∗ is the limit of
repeated application of the operator H̃.

Lemma 4.1. Operator H̃ is a contraction mapping with contractivity factor γ.

Proof. Assume value functions Ṽ1, Ṽ2 : Rk → R in compact representation, and assume
that ‖V1−V2‖∞ = maxχ∈Rk |Ṽ1(χ)−Ṽ2(χ)| ≤ C. We will show that |H̃Ṽ1(χ)−H̃Ṽ2(χ)| ≤
γC for arbitrary χ ∈ Rk. Without loss of generality, we will assume that H̃Ṽ1(χ) ≤
H̃Ṽ2(χ). Let (b, π2) be the optimal solution of H̃Ṽ1(χ). We will now show that by using
(b, π2) instead of the optimal minimizer for H̃Ṽ2(χ) guarantees a solution with value at
most H̃Ṽ1(χ) + γC—and using the optimal minimizer instead of (b, π2) can only decrease
the value, and hence H̃Ṽ2(χ) ≤ H̃Ṽ1(χ) + γC.

Let us fix (b, π2) in H̃Ṽ2(χ), and let us consider the objective values u1(π1) and u2(π1)
of using π1 against (b, π2) in H̃Ṽ1 and H̃Ṽ2, respectively. It holds

u2(π1)− u1(π1) = γ
∑
a1,o

Pb,π1,π2 [a1, o]
[
Ṽ2(A · τ(b, a1, π2, o))− Ṽ1(A · τ(b, a1, π2, o))

]
≤ γ

∑
a1,o

Pb,π1,π2 [a1, o]
∣∣∣Ṽ2(A · τ(b, a1, π2, o))− Ṽ1(A · τ(b, a1, π2, o))

∣∣∣
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≤ γ
∑
a1,o

Pb,π1,π2 [a1, o] · C = γC .

Now,

H̃Ṽ2(χ) ≤ max
π1

u2(π1) ≤ max
π1

[u1(π1) + γC] = max
π1

u1(π1) + γC = H̃Ṽ1(χ) + γC

which completes the proof.

Theorem 4.2. Value function Ṽ ∗ is uniquely defined by the fixed point Equa-
tion (4.1).

Proof. The theorem is a direct consequence of Lemma 4.1 and Banach’s fixed point
theorem [Ciesielski et al., 2007].

From the perspective of security problems, an important aspect of defining value
function Ṽ ∗ using the fixed point Equation (4.1) is the ability to obtain worst-case type
of guarantees. Namely, the utility represented by the abstracted value function Ṽ ∗(A · b)
always lower-bounds the utility V ∗(b) of the unabstracted game.

Theorem 4.3. Ṽ ∗(χ(b)) ≤ V ∗(b) for every b ∈ ∆(S).

Proof. To prove this claim, we consider sequences of value functions {Ṽt}∞t=1 and {Vt}∞t=1,
and we will use induction to show that Ṽt(χ(b)) ≤ Vt(b). Let Ṽ0 be arbitrary and let V0
of the original game be V0(b) = Ṽ0(χ(b)) (i.e., Ṽ0 ≤ V0).

Assume that the induction hypothesis holds for t, i.e., Ṽt(χ(b)) = [Ṽt◦A](b) ≤ Vt(b) for
every b ∈ ∆(S). Therefore, we have also that H(Ṽt◦A) ≤ H(Vt). The extra minimization
over beliefs b in H̃Ṽ can only decrease the utility of the stage game and hence

Ṽt+1(χ(b)) = H̃Ṽt(χ(b)) ≤ H(Ṽt ◦A)(b) ≤ HVt(b) = Vt+1(b) . (4.3)

The property holds even in the limit, and hence Ṽ ∗(χ(b)) ≤ V ∗(b) for every b ∈ ∆(S).

4.3.1 Solving H̃Ṽ

Similarly to one-sided POSG, in case Ṽ is a piecewise linear and convex (PWLC) function,
the optimization problem H̃Ṽ (χ) defined in Equation (4.1) can also be solved using
linear programming. Let us consider a value function Ṽ represented as a point-wise
maximum over a set Γ of affine functions αi(χ) = (a(i))Tχ+ z(i).1 We modify the linear

1Note that this representation will later be used to represent a lower bound ṼLB on Ṽ ∗, similarly to
unabstracted one-sided POSGs presented in Chapter 3.
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program (3.38) by considering that the minimizing player 2 can choose the belief, and
hence the belief b is a variable (constrained by χ),

min
V,π2,τ̂ ,b,χ̂,q

V (4.4a)

s.t. constraints (3.38b), (3.38d), (3.38e), (3.38f) (4.4b)∑
s

b(s) = 1 (4.4c)

A · b = χ (4.4d)
b(s) ≥ 0 ∀s , (4.4e)

and we replace the constraint (3.38c) to account for different representation of Ṽ by

χ̂a1o = A · τ̂(b, a1, π2, o) ∀a1, o (4.4f)
qa1o = 1T · τ̂(b, a1, π2, o) ∀a1, o (4.4g)

V̂ (a1, o) ≥ (a(i))T · χ̂a1o + z(i) · qa1o ∀a1, o, αi , (4.4h)

where qa1o = 1T · τ̂(b, a1, π2, o) is the probability that o is generated when player 1 uses
action a1. Recall that τ̂(b, a1, π2, o) from constraint (3.38d) corresponds to the updated
belief τ(b, a1, π2, o) multiplied by the probability Pb[o | a1] = qa1,o. Similarly, χ̂a1o is
multiplied by Pb[o | a1].

4.3.2 Properties of Ṽ ∗

Observe that the only constraints in the linear program (4.4) where non-zero constant
terms are involved are constraints (4.4c) and (4.4d). This allows us to prove that in case
Ṽ is PWLC, H̃Ṽ is also PWLC.

Lemma 4.4. Let Ṽ be a piecewise linear and convex function. Then H̃Ṽ is piecewise
linear and convex function as well.

Proof. Consider a dual formulation of the linear program (4.4). Since the only non-
zero constant terms within constraints of the primal are 1 (constraint (4.4c)) and χ

(constraints (4.4d)), the objective of the dual formulation is o(χ) = χT · a + z. Moreover,
this is the only place where the characteristic vector χ occurs. Hence the polytope of the
feasible solutions of the dual problem is identical for every characteristic vector χ ∈ Rk

and o(χ) (after fixing variables a and z to feasible values) forms a lower bound on the
objective value of the solution for arbitrary χ. Since we maximize over all possible o(χ)
in the dual, the objective value of the linear program (and also H̃Ṽ ) is convex in the
parameter χ.

The solution of a dual linear program to (4.4) can be found within finitely many
vertices of the corresponding polytope induced by its constraints [Vanderbei, 2015]—
corresponding to a finite number of possible objective functions o(χ). Hence the value
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function H̃Ṽ can be represented as a point-wise maximum over a finite set of linear
functions o(χ), which is piecewise linear and convex.

Since the optimal value function Ṽ ∗ of compact OS-POSGs, is the limit point of
applying H̃ iteratively, the Lemma 4.4 also implies that Ṽ ∗ is convex.

Theorem 4.5. The optimal value function Ṽ ∗ of compact OS-POSGs is convex.

Proof. Due to the contractivity of operator H̃ and Banach’s fixed point theorem [Ciesielski
et al., 2007], Ṽ ∗ is the limit point of the repeated application of operator H̃. Let
Ṽ0 : Rk → R be an arbitrary piecewise linear and convex value function and let {Ṽi}∞i=0
be a sequence of value functions such that Ṽi+1 = H̃Ṽi. Lemma 4.4 implies that every Ṽi
is convex—and therefore also the limit point Ṽ ∗ is convex.

The convexity of the optimal value function Ṽ ∗ of a compactly represented OS-POSG
allows us to focus on piecewise linear and convex functions ṼLB and ṼUB to approximate
Ṽ ∗. This is again similar to the approach used to solve OS-POSGs in Chapter 3.

4.3.3 Stage Games
In the optimization problem (4.1), the player 2 first chooses the belief b ∈ ∆(S) satisfying
Ab = χ, and then chooses the stage strategy π2 ∈ Π2. This two-level optimization
can, however, be replaced by letting the player 2 choose a joint probability distribution
π̂2 ∈ ∆(S ×A2) over states and actions of player 2 which satisfies the constraint induced
by the characteristic vector χ, i.e.,

bπ̂2(s) =
∑
a2∈A2

π̂2(s ∧ a2) ∀s ∈ S and Abπ̂2 = χ (4.5)

where bπ̂2 denotes the belief induced by the joint probability distribution π̂2. For
simplicity, we use Π̂χ

2 to denote the set of all joint probability distributions that satisfy
constraint (4.5). We can use this representation of strategies of player 2 to define a stage
game corresponding to the optimization problem H̃Ṽ (χ).

Definition 4.1 (Stage game in compact representation). Let Ṽ be a continuous
convex value function in compact representation. A stage game with respect to the
Ṽ and characteristic vector χ ∈ Rk is a two-player zero-sum game with strategy
space Π1 and Π̂χ

2 for player 1 and player 2, respectively, and utility function

uṼ ,χ(π1, π̂2) = Eπ1,π̂2 [R(s, a1, a2)]+γ
∑
a1,o

Pπ1,π̂2 [a1, o]·Ṽ (A·τ(bπ̂2 , a1, π̂2, o)) . (4.6)

We overload the notation and use H̃Ṽ (χ) to denote this stage game.
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Algorithm 4.1: HSVI algorithm for one-sided POSGs when summarized abstrac-
tion is used.
1 Initialize ṼLB and ṼUB to lower and upper bound on Ṽ ∗
2 while excess0(χinit) > 0 do
3 Explore(χinit, 0)

4 return ṼLB and ṼUB

5 procedure Explore(χt, t)
6 (b, π2)← optimal belief and stage strategy of player 2 in H̃ṼLB(χ)
7 π1 ← optimal stage strategy of player 1 in H̃ṼUB(χ)
8 Perform point-based updates of ṼLB and ṼUB at characteristic vector χ
9 (a∗1, o∗)← select according to forward exploration heuristic

10 χ′ ← A · τ(b, a∗1, π2, o
∗)

11 if Pb,π1,π2 [a∗1, o∗] · excesst+1(χ′) > 0 then
12 Explore(χ′, t+ 1)
13 Perform point-based updates of ṼLB and ṼUB at characteristic vector χ

Following the proof of Theorem 3.15, it can be shown that the utility function uṼ ,χ

is convex in the strategies Π̂χ
2 of the minimizing player 2 and concave in the strategies

Π1 of player 1. Therefore, the assumptions of the von Neumann’s minimax theorem [von
Neumann, 1928; Nikaido, 1953] apply, and minimax and maximin values of the stage games
in compact representation coincide (and the optimal strategies form Nash equilibrium of
the stage game).

4.3.4 HSVI Algorithm for Compact POSGs
The Algorithm 4.1 we propose for solving abstracted games is a modified version of
the original heuristic search value iteration algorithm (HSVI) for solving unabstracted
one-sided POSGs (see Algorithm 3.1). The key difference here is that we use the value
functions ṼLB and ṼUB that are defined over Rk (instead of V Γ

LB and V Υ
UB defined over

∆(S)) and we must have modified all parts of the algorithm to use the abstracted
representation of the beliefs. We provide a high-level overview of the algorithm, and we
provide details specifically for the case of the lateral movement POSG in Section 4.4.

First, we initialize bounds ṼLB and ṼUB (line 1) to valid piecewise linear and convex
lower and upper bounds on Ṽ ∗. Then, we perform a sequence of trials (lines 2–3) from
the initial characteristic vector χinit = A · binit until the desired precision ε > 0 is reached.

Similarly to unabstracted one-sided POSGs, in each stage (i.e., call to the procedure
Explore) we first compute optimal optimistic strategies of player 1 and player 2. The
strategy of the minimizing player 2 is represented as the optimal choice of belief b
and stage strategy π2 when evaluated with respect to the lower bound ṼLB on Ṽ ∗.
Conversely, the strategy of player 1 originate from solving the stage game H̃ṼUB(χ)
with respect to the upper bound ṼUB. Next, we choose the action a∗1 of player 1 and
the observation o∗ (lines 9–10) so that the excess approximation error excesst+1(χ′) =
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ṼUB(χ′)− ṼLB(χ′)− εγ−(t+1) in the subsequent stage (where the belief is described by
a characteristic vector χ′ = τ(χ, a1, π2, o)) multiplied by the probability Pb,π1,π2 [a∗1, o∗]
of witnessing (a∗1, o∗) is maximized. If this excess approximation error is positive, we
recurse to the characteristic vector χ′ (line 12).

Before and after the recursion the bounds ṼLB(χ) and ṼUB(χ) are improved using the
solution of H̃ṼLB(χ) and H̃ṼUB(χ) (lines 8 and 13). The update of ṼUB is straightforward
and a new point (χ, H̃ṼUB(χ)) is added to the set Υ used to represent upper bound
ṼUB. To obtain a new linear function to add to the set Γ that represents ṼLB, we use
the objective function o(χ) = χT · a + z (after fixing variables a and z) of the dual
linear program to (4.4) that forms a lower bound on H̃ṼLB and Ṽ ∗ (see the proof of
Theorem 4.4 for more discussion). We provide more details on the representation of value
functions ṼLB and ṼUB in Section 4.4.2.

4.3.5 Extracting Strategy of the Player 1

In Section 4.3, we have presented linear programs to solve stage game H̃Ṽ (χ) from the
perspective of the player 2. These linear programs solved a minimax problem of player 2 by
explicitly reasoning about her strategies. The actions of the player 1, however, were only
represented as best-response constraints which does not provide the strategy of player 1
directly. In this section, we discuss the dual formulation of the linear program (4.4)
and show the way the strategy of the player 1 can be extracted from dual variables. In
Section 4.5.2, we use this representation of strategy of player 1 to devise an exact oracle
to compute missing actions of the attacker.

Consider constraints (3.38b), (4.4f), (4.4g) and (4.4h) and let us establish the following
mapping to dual variables.

Constraints (3.38b) Dual variables π1(a1) ≥ 0
Constraints (4.4h) Dual variables βa1o(αi) ≥ 0
Constraints (4.4f) Dual variables âa1o ∈ Rk

Constraints (4.4g) Dual variables ẑa1o ∈ R

The dual formulation of (4.4) then contains the following constraints (corresponding to
variables V , V̂ (a1, o), χ̂a1o and qa1o in the primal):∑

a1

π1(a1) = 1 (4.7a)∑
αi

βa1o(αi) = γπ1(a1) ∀a1, o (4.7b)

âa1o
j =

∑
αi

a(i)
j β

a1o(αi) ∀a1, o, 1 ≤ j ≤ k (4.7c)

ẑa1o =
∑
αi

z(i)βa1o(αi) ∀a1, o . (4.7d)
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Constraints (4.7) give the following interpretation to variables π1, βa1o, âa1o and ẑa1o.
Variables π1 directly represent the strategy of player 1 for the current stage, π1 ∈ ∆(A1).
Variables βa1o(αi) are the probabilities of playing strategy the value of which is represented
by the linear function αi(χ) = (a(i))Tχ+z(i) in a subgame where player 1 played action a1
and received observation o. These probabilities are represented in the form of realization
plans, i.e., they sum to γπ1(a1) instead of one. We can, however, obtain the true
probabilities by dividing βa1o by γπ1(a1) where applicable. Variables âa1o and ẑa1o then
define a linear function ζ̂a1o(χ) = (âa1o)Tχ+ ẑa1o representing the value of playing the
given mix of strategies in the subgame and are used to express the value of the game in
the rest of the dual formulation.

By normalizing variables βa1o we obtain a linear function ζa1o : Rk → R, called gadget,
which represent the value in the subgame given that subgame has been reached,

ζa1o(χ) = (aa1o)Tχ+ za1o where aa1o =
∑
αi

(βa1o(αi)/γπ1(a1)) · a(i) (4.8)

za1o =
∑
αi

(βa1o(αi)/γπ1(a1)) · z(i) .

Note that the gadgets ζa1o are only defined for subgames that can be reached, i.e., where
π1(a1) > 0.

The representation of a strategy of player 1 using variables π1 and ζ can then be
used to play the game following the similar ideas that are used in continual resolving
in the domain of extensive-form games [Burch et al., 2014; Moravčík et al., 2017] and
is analogous to the way strategy of the imperfectly informed player is constructed in
OS-POSGs (see Section 3.7.2).

Algorithm 4.2: Playing a compact OS-POSG using ṼLB.
1 χ← χ0, ζ ← initial gadget ζ(χ) = −∞
2 while player 1 is required to act do
3 Solve H̃ṼLB(χ) with additional constraint o(χ) ≥ ζ(χ) in the dual formulation

and extract strategy π1, ζ of player 1
4 Sample action a1 ∼ π1, execute it and observe an observation o
5 χ← χ̂a1o/qa1o, ζ ← ζa1o

Algorithm 4.2 describes the algorithmic scheme to play a game in compact repres-
entation. Whenever player 1 is required to act, he solves a stage game H̃ṼLB(χ). In
the first stage, he solves the game without any additional constraints (since initially
ζ(χ) = −∞) to find the near-optimal strategy for the entire game. In the subsequent
stages, player 1 has to ensure that the strategy he is about to play is consistent with the
strategy assumed in the first stage, i.e., it provides (at least) the value represented by the
gadget ζa1o from the previous stage. To this end, a constraint o(χ) ≥ ζ is added to the
dual formulation of (4.4) (recall that o(χ) is the objective of the dual linear program).
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Figure 4.1: Example of a lateral movement POSG: (a) Example of a network with 6
vertices. Attacker starts in vertex v1 and is trying to reach vertex v|V | while minimizing
the cost. (b) Subset of states of the game (in total, 14 non-terminal states are reachable).
Initial state of the game is I0 (only v1 is infected). Further states are reached by infecting
adjacent vertices to an already infected vertex. OS-POSGs define the belief as a probability
distribution over states—b is an example of such belief. (c) Our approach summarizes
the belief b using a characteristic vector χ(b). In this case, χ(b)

i represents the probability
that vertex vi is infected when belief b from Figure 4.1b is considered (here, v2 is infected
in the states of infection I4, I5, I6 and I8, i.e., χ(b)

2 = b(I4) + b(I5) + b(I6) + b(I8) = 0.3).

4.4 The Lateral Movement POSG

We now formally define the lateral movement POSG and describe the key steps of the
algorithm specifically for this domain. The game is played on a directed acyclic graph
G = (V,E) representing a computer network. We assume that V = {v1, . . . , v|V |}. The
goal of the attacker is to reach vertex v|V | from the initial source of the infection v1 by
traversing the edges of the graph, while minimizing the cost to do so, see Figure 4.1a.

Initially, the attacker controls only the vertex v1, i.e., the initial state of infection
is I0 = {v1}. Then, in each stage of the game, the attacker chooses a directed path
P = {P (i)}ki=1 (where k is the length of the path) from any of the infected vertices to
the target vertex v|V |. Figure 4.1a provides examples of paths the attacker may consider,
however, he can only use paths P2 and P3 if vertex v2 has been previously infected.

Unless the defender takes countermeasures, the attacker infects all the vertices on the
path, including the target vertex v|V |, and pays the cost of traversing each of the edges
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on the path,
c−,P =

∑
P (i)∈P

C(P (i)) , (4.9)

where C(P (i)) is a cost associated with taking edge P (i).
The defender tries to discover the attacker and increase his cost to reach the target

(and thus possibly discourage the attack) by deploying honeypots into the network. In
each stage, the defender can decide a subset H ∈ E[NH ] of edges E (where E[NH ] denotes
all subsets of E with cardinality NH) to be honeypots. A honeypot is then deployed
on every edge h ∈ H and is able to detect if the attacker traverses that specific edge.
Furthermore, it also increases the cost for using the edge h to C(h). If the attacker
observes that he has traversed any of the honeypot edges, he may decide to change his
plan and therefore he does not execute the rest of his originally intended path P . The
cost of playing a path P against a honeypot placement H is therefore

cH,P =
∑

P (i)∈P≤H

C(P (i)) +
∑
h∈H

1h∈P≤H · [C(h)− C(h)] (4.10)

where P≤H is the prefix of the path P until the interaction with any honeypot edge
h ∈ H,

P≤H =

P P ∩H = ∅
{P (i)}min{j|P (j)∈H}

i=1 otherwise .
(4.11)

For the reasons of notational simplicity, we write P≤h instead of P≤{h} when it is clear
that h is a singleton.

Since the attacker does not need to continue to execute his selected path P (since
the defender can update his belief over the possible subsets of infected nodes and thus
reconfigure the honeypots), the new state of infection IH,P (i.e., the subset of vertices
that are infected at the beginning of the next stage) becomes

IH,P = I ∪ {v | (u, v) ∈ P≤H} . (4.12)

We assume the worst case scenario from the perspective of the defender where the attacker
is assumed to be able to infer the position of all honeypots upon interacting with any of
them.

The above problem can be formalized as a one-sided partially observable stochastic game:
• states are possible subsets of infected vertices (or infections), i.e., S ⊆ 2V (Fig-
ure 4.1b shows an example of a state space where filled dots represent infected
vertices),
• actions of the defender (player 1) are honeypot allocations, i.e., A1 = E[NH ] where
E[NH ] denotes NH -element subsets of E,
• actions A2 of the attacker (player 2) are directed paths in G reaching v|V |,
• observations denote whether and where the defender detected the attacker (ob-
servations det(h)) or the attacker reached the target v|V | undetected (observation
¬det),
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• transitions follow the Equation (4.12) and an observation det(h) is generated if and
only if the honeypot edge h is the first honeypot edge traversed on the path chosen
by the attacker,
• reward of the defender is the cost of the attacker, i.e., R(H,P ) = cH,P ,
• discount factor of the game is γ = 1, and
• initial belief binit of the game satisfies binit(I0) = 1.

Note that the original HSVI algorithm for one-sided POSGs has been defined and proved
for discounted problems with γ < 1. In this particular case, however, we expect that
the convergence properties translate even to this undiscounted case since the game is
essentially finite (in a finite number of steps, all vertices, including v|V |, get infected and
the game ends).

4.4.1 Characteristic Vectors
The number of states in the game is exponential in the number of vertices of the graph,
up to |S| = 2|V |−2 +1 (we consider that v1 is always infected and we treat all states where
v|V | is infected as a single terminal state of the game). We use marginal probabilities of
a vertex being infected as characteristic vectors χ ∈ R|V |, i.e.

χ
(b)
i =

∑
I∈S | vi∈I

b(I) . (4.13)

Consider the example of a belief from Figure 4.1b. The belief in the original OS-POSG
model is a probability distribution over states, i.e., |S|-dimensional vector with |S| − 1
degrees of freedom. In this game, the number of non-terminal reachable states (i.e.,
states where v|V | is not yet infected) is 14. In comparison, the characteristic vector
(see Figure 4.1c) has only |V | dimensions. Moreover, observe that in this case the set
{b′ |Ab′ = χ(b)} of possible beliefs that get projected to χ(b) is a singleton and contains
only the belief b from Figure 4.1b.

4.4.2 Value Function Representation
The algorithm from Section 4.3.4 approximates Ṽ ∗ using a pair of value functions, the
lower bound ṼLB and the upper bound ṼUB. Similarly to one-sided POSGs, we use a point-
wise maximum over a finite set Γ = {α1, . . . , αk} of affine functions αi(χ) = (a(i))Tχ+z(i)

to represent ṼLB, i.e.,
ṼLB(χ) = max

α∈Γ
α(χ) . (4.14)

The representation of the upper bound ṼUB is, however, more challenging.
In the original algorithm, the value function V Υ

UB is defined (see Equation (3.42))
over the probability simplex ∆(S). In that case, it suffices to consider |S| points in Υ to
define V Υ

UB for every belief. In contrary, the space of characteristic vectors (i.e., marginal
probabilities) is formed by a hypercube [0, 1]|V | with 2|V | vertices, which would make the
straightforward point representation impractical.
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R|V |

aTχ+ k

χ

ṼUB

Figure 4.2: Dual interpretation of the projection on the convex hull.

We can, however, leverage the fact that in this domain infecting an additional node
can only decrease the cost to the target (and hence Ṽ ∗ is decreasing). Consider the dual
formulation of the optimization problem (3.42). In this formulation, the projection of χ
to the lower convex hull of a set of points is represented by the optimal linear function
aTχ+ z defining a facet of the convex hull (see Figure 4.2). Since Ṽ ∗ is decreasing in
χ, we can also enforce that aTχ+ z is decreasing in χ (i.e., add the constraint a ≤ 0 to
the dual formulation). This additional constraint translates to a change of the equality∑

1≤i≤|Υ| λiχ
(i) = χ in the primal problem to an inequality.

ṼUB(b) = min
λ∈R|Υ|≥0

 ∑
1≤i≤|Υ|

λiy
(i) | 1Tλ = 1,

∑
1≤i≤|Υ|

λiχ
(i) ≤ χ

 (4.15)

Now it is sufficient that the set Υ contains just one point (χ(i), y(i)) where χ(i) = 0|V |

(instead of 2|V | points) to make the constraint
∑

1≤i≤|Υ| λiχ
(i) ≤ χ satisfiable.

It is possible to adapt the constraint (4.4h) to use the representation from (4.15)
using similar ideas used to derive (3.50)—and thus obtain a linear program for solving
H̃ṼUB(χ).

4.4.3 Using Marginalized Strategies in Stage Games
The linear program formed by modifications from Equations (4.4) still requires solving
the stage game for the original, unabstracted problem. In this section, we show that it
is possible to avoid expressing the belief b explicitly, and to compute the stage game
directly using the characteristic vectors and marginalized strategies of the attacker.

First, we present the representation of the stage-game strategies of the attacker.
Instead of representing joint probabilities π2(I ∧ P ) of choosing path P in state I, we
only model the probability π̃2(P ) of choosing path P aggregated over all states I ∈ S.
Furthermore, we allow the attacker to choose the probability ξ(P ∧ vi) that vertex vi is
infected while he opts to follow path P .∑

P

π̃2(P ) = 1 (4.16a)

0 ≤ ξ(P ∧ vi) ≤ π̃2(P ) ∀P, vi (4.16b)
π̃2(P ) ≥ 0 ∀P (4.16c)
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To ensure that the strategy represented by variables π̃2 and ξ is feasible it must be
consistent with the characteristic vector χ, where χi is the probability that the vertex vi
is infected at the beginning of the stage.∑

P

ξ(P ∧ vi) = χi ∀vi (4.16d)

Furthermore, the path P must start in an already infected vertex (denoted as Pre(P )),
i.e., the conditional probability P[Pre(P ) ∈ I |P ] of Pre(P ) being infected when path P
is chosen has to be 1. Now, since ξ(P ∧ v) is the joint probability, ξ(P ∧ v) = P[Pre(P ) ∈
I |P ] · π̃2(P ), we get that

ξ(P ∧ v) = π̃2(P ) ∀P, v = Pre(P ) . (4.16e)

Example 4.1. Consider the example from Figure 4.1a and assume that the attacker
wanted to play a strategy π2 in the original game, where

π2(I0 ∧ P1) = 0.7 π2(I8 ∧ P1) = 0.1
π2(I8 ∧ P2) = 0.1 π2(I8 ∧ P3) = 0.1 .

The same strategy can be described using the marginalized representation π̃2 and ξ:

π̃2(P1) = π2(I0 ∧ P1) + π2(I8 ∧ P1) = 0.8
π̃2(P2) = π2(I8 ∧ P2) = 0.1
π̃2(P3) = π2(I8 ∧ P3) = 0.1

ξ(P1 ∧ v1) = 0.8 ξ(P1 ∧ v2) = 0.1
ξ(P2 ∧ v1) = 0.1 ξ(P2 ∧ v2) = 0.1
ξ(P3 ∧ v1) = 0.1 ξ(P3 ∧ v2) = 0.1

all other variables π̃2 and ξ are zero

It is straightforward to verify that variables π̃2 and ξ satisfy Equations (4.16a)–(4.16e)
when the characteristic vector χ(b) from Figure 4.1c is considered.

The representation of strategies of the attacker using variables π̃2 and ξ is sufficient
to express the expected immediate reward of the strategy π̃2, hence the constraint (3.38b)
can be changed to use the marginalized strategies,

V ≥
∑
P

π̃2(P )cH,P +
∑
h∈H

V̂ (H,det(h)) ∀H ∈ E[NH ] . (4.16f)

Importantly, we can also skip the computation of the belief bH,det(h) and compute
the characteristic vector formed by the marginals χH,det(h) directly from the variables π̃2
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and ξ. We now present the equation to compute the updated marginal χH,det(h) given
that the attacker has been detected while traversing the honeypot edge h (and this has
been the first honeypot edge he traversed). Denote the set of all paths satisfying this
condition PhH = {P |h ∈ P ∧ P≤h ⊆ P≤H}.

χ̂
H,det(h)
i =

∑
P∈PhH |P≤(·,vi)⊆P≤h

π̃2(P ) +
∑

P∈PhH |P≤(·,vi) 6⊆P≤h

ξ(P ∧ vi) (4.16g)

The first sum stands for the probability that the attacker is detected while traversing
edge h, but he managed to infect vi on his chosen path before the detection. The second
sum represents the probability that the attacker was detected on the edge h as well, but
this time he has not infected vi using path P , however, the vertex vi has already been
infected before he started to execute path P .

Analogously, we can obtain the probability qH,det(h) that the attacker got detected
while traversing edge h as

qH,det(h) =
∑
P∈PhH

π̃2(P ) . (4.16h)

We need not consider the subsequent stages where the attacker has not been detected
(i.e., ¬det observation has been generated) or the honeypot edge h reaches the target
vertex v|V |. In each of these cases, the target vertex has been reached and thus the value
of the subsequent stage is zero.

Example 4.2. Consider once again the example from Figure 4.1 and the strategy of
the attacker π2 from Example 4.1 and assume that a honeypot is deployed on the edge
h = (v3, v5) only (i.e., H = {h}) and the attacker has been detected there. In such case,
the attacker could have either used path P1 or P2, but not P3 as it does not reach h.

If the attacker used P1 in I0 in his strategy π2, he infects v3 and v5 up to the point
of the detection and thus reaches a new state of infection I3 (this might have happened
with probability 0.7). Similarly, using P1 in I8 reaches I4 (with probability 0.1) and using
P2 in I8 reaches I5 (with probability 0.1). The (denormalized) belief τ(b,H, π2,det(h))
(corresponding to Equation (3.38d)) is thus

τ(b,H, π2, det(h))(I3) = 0.7 τ(b,H, π2,det(h))(I4) = τ(b,H, π2, det(h))(I5) = 0.1 .

Computing marginal probabilities that each of the vertices is infected in the belief
τ(b,H, π2,det(h)) yields

χ̂
H,det(h)
1 = χ̂

H,det(h)
3 = χ̂

H,det(h)
5 = 1

χ̂
H,det(h)
2 = 0.2 χ̂

H,det(h)
4 = 0.1 .

We can obtain exactly the same marginal probabilities when using marginalized
strategy π̃2 and ξ from Example 4.1. For example, neither P1 nor P2 infects vertex v2
(i.e., no edge (·, v2) is present). Therefore, the first sum in Equation (4.16g) is empty and
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χ̂
H,det(h)
2 = ξ(P1∧v2)+ξ(P2∧v2) = 0.2. Similarly, only P2 infects v4 before reaching edge
h, hence is contained in the first sum in (4.16g), and χ̂H,det(h)

4 = π̃2(P2)+ξ(P1∧v4) = 0.1.

4.4.4 Initializing Bounds
We now describe our approach to initialize bounds ṼLB and ṼUB (line 1 of Algorithm 4.1).
We start with the former. To obtain a lower bound ṼLB, we assume that no honeypots
can be deployed in the network. The attacker then only needs to find the cheapest (i.e.,
shortest) path in the graph when costs C are considered. Denote C∗(vi) the cost of the
cheapest path from vertex vi to the target v|V |. We initialize the lower bound ṼLB using
two linear functions. Firstly, the cost cannot be negative and we use a linear function
α1(χ) = 0. Next, we consider linear function α2(χ) = (a(2))Tχ+ z(2) where z(2) = C∗(v1)
and a(2)

i = min{C∗(vi)−C∗(v1), 0} which is a tighter lower bound for some χ (especially
close to the initial characteristic vector χinit where χinit

1 = 1 and other vertices are not
infected, i.e., χinit

i = 0 for i ≥ 2).
To initialize the upper bound ṼUB, we consider a perfect information variant of the

game (similarly to Section 3.6.1). However, since the number of states (i.e., possible
subsets of infected vertices) in such a game can be exponential, we consider a simpler
version of the game where the attacker is only in charge of the vertex he visited the
last (instead of a subset of all vertices visited in the past) which can only increase the
cost for the attacker. Denote C∗(vi) the expected cost of the attacker in the perfect
information variant of the game where the attacker controls vertex vi only. We then use
the set Υ = {(χ(j), y(j)) | 1 ≤ j ≤ |V |} of points to initialize ṼUB where

χ
(j)
i =

1 i = j

0 i 6= j
y(j) = C

∗(vj) . (4.17)

4.5 Incremental Strategy Generation
In the previous section, we introduced marginalized beliefs and strategies to deal with the
large number of game states. However, the number of actions grows fast as well which
makes the game computationally challenging and may cause memory consumption issues
in practical implementation of the approach. In this section, we address this issue by
adopting a double-oracle approach to generate actions of the players incrementally.

4.5.1 Double-Oracle Scheme for Solving Stage Games
Before describing the oracle algorithms used in the experiments, we provide a generic
scheme for using double-oracle approach to solving stage games H̃Ṽ (χ), see Algorithm 4.3.
The algorithm keeps global sets of actions Ã1 and Ã2 defining a restricted game where
only these actions are considered (instead of entire sets of actions A1 and A2). Set A1 is
initialized to a single arbitrary honeypot allocation, set A2 is initialized to an arbitrary set
of |V | paths P1, . . . , P|V | from each of the vertices vi to v|V |. When solving a stage game,
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we first query the oracle of the defender before querying the oracle of the attacker. This
decision is motivated by the possibility to use a heuristic oracle for generating actions of
the defender (see Section 4.5.4) which is less computationally demanding compared to
the exact computation of actions of the attacker.

Algorithm 4.3: Generic double-oracle scheme for solving stage games.
1 Ã1, Ã2 ← initial subsets of actions of player 1 and player 2 defining a restricted

game

2 When solving a stage game H̃Ṽ (χ):
3 do
4 Solve stage game H̃Ṽ (χ) considering actions Ã1 and Ã2 only
5 if improving allocation H for the defender is found then
6 Ã1 ← Ã1 ∪ {H}
7 continue
8 else if improving path P for the attacker is found then
9 Ã2 ← Ã2 ∪ {P}

10 continue
11 break
12 while an improving action is found for one of the players

4.5.2 Exact Oracle of the Attacker
In Section 4.3.5, we have described the way the strategy of player 1 can be extracted
in the form of variables π1 and gadgets ζH,det(h)(χ) = (aH,det(h))Tχ + zH,det(h). The
oracle of the attacker inspects this strategy and its lower bound o(χ) (extracted from the
objective of the dual formulation of the stage game) and tries to prove or disprove that
the value o(χ) is a valid lower bound on the solution.

To this end, the attacker selects a single path from any of the vertices of the graph
towards the target vertex v|V | and selects a characteristic vector χ where this path of the
attacker is applicable.

δ(vj) +
∑

(vi,vj)∈E
Pij =

∑
(vj ,vk)∈E

Pjk ∀vj 6= v|V | (4.18a)

∑
vi 6=v|V |

δ(vi) = 1 (4.18b)

Pij ∈ {0, 1} ∀(vi, vj) ∈ E (4.18c)
δ(vi) ≥ 0 vi 6= v|V | (4.18d)

(4.18e)

The single path of the attacker is represented as an integral flow in the graph of capacity
1. Constraint (4.18a) represents the Kirchoff’s law which has to hold for any but two
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vertices—the source vertex of the path which is indicated by δ(vj) = 1, and the target
vertex v|V |. Furthermore, constraint (4.18b) ensures that only one path is considered.

The characteristic vector χ must make the path represented by the flow P applicable,
i.e. χi = 1 for the source vertex vi where δ(vi) = 1.

χi ≥ δ(vi) ∀vi 6= v|V | (4.18f)
0 ≤ χi ≤ 1 ∀vi ∈ V (4.18g)

We now express the cost of playing a path represented by the flow P against the
honeypot allocation H. To this end, we first define an auxiliary flow PH which is identical
to P , except that it gets blocked by the first honeypot edge (vi, vj) ∈ H.

δ(vj) +
∑

(vi,vj)∈E\H
PHij =

∑
(vj ,vk)∈E

PHjk ∀vj 6= v|V | (4.18h)

PHij ≤ Pij ∀(vi, vj) ∈ E (4.18i)
0 ≤ PHij ≤ 1 ∀(vi, vj) ∈ E (4.18j)

Note that the fact that flow PH is identical to P (except for the blocking on honeypot
edges H) is ensured by the constraint (4.18i)—if the flow has to continue from any vertex,
it must follow the edge contained in P . Now, we can express the immediate cost of
playing P against honeypot allocation H as

cH,P =
∑

(vi,vj)∈E\H
C(vi, vj)PHij +

∑
(vi,vj)∈H

C(vi, vj)PHij . (4.18k)

Next, we express the characteristic vector χH in the subgame given that the attacker got
detected on any edge from H (here,

∑
(vi,vj)∈E P

H
ij is a binary value indicating whether

the attacker reached vj by the time he got detected).

χHj =
∑

(vi,vj)∈E
PHij + χj

1−
∑

(vi,vj)∈E
PHij

 (4.18l)

This allows us to derive the expected cost in the subgame given that the attacker got
detected on a honeypot edge h = (vx, vy) ∈ H.

V H,det(h) =

0 vy = v|V |∑
vi∈V aH,det(h)

i χHi P
H
xy + zH,det(h)PHxy otherwise

(4.18m)

Note that V H,det(h) is zero if the attacker does not reach edge h (in that case PHxy = 0)
or the attacker reached his target v|V |. This gives us the expected cost V H of the path
represented by the flow P against honeypot allocation H,

V H = cH,P +
∑
h∈H

V H,det(h) , (4.18n)
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and the expected cost of using path P is then

V =
∑
H

π1(H)V H . (4.18o)

The optimization objective of the attacker is to disprove that o(χ) is the lower bound.
To this end, he attempts to find abstracted belief χ and path represented by P where
the difference o(χ)− V is maximized, i.e.,

max o(χ)− V
s.t. constraints (4.18a)–(4.18o) .

If o(χ)− V > 0, the function o(χ) is provably not a lower bound on the solution of
the stage game. Hence, the path of the attacker represented by P can be added into the
restricted game.

Note that all products z = term1 · term2 of variable expressions in the above math-
ematical program only involves expressions term1 ∈ [0, 1] and a binary expression
term2 ∈ {0, 1}. Such products can be rewritten using a set of linear constraints

z ≤ term1 z ≤ term2 z ≥ term1 − (term2 − 1) z ≥ 0 (4.19)

and we thus obtain a mixed integer linear program formulation.

4.5.3 Exact Oracle of the Defender
The oracle of the defender is aimed on computing a best response of the defender (i.e., the
best possible placement of honeypots on edges) against a fixed strategy of the attacker
(described by variables π̃2 and ξ). To this end, we propose a branch-and-bound approach.

Each node of a branch-and-bound search tree corresponds to a partial allocation of
the honeypots H. We can obtain a lower bound on the cost of the attacker induced by
all solutions H ′ ⊇ H by assuming that only honeypot edges in H are used,

LB(H) =
∑
P

π̃2(P )cH,P +
∑
h∈H

qH,det(h)Ṽ (χ̂H,det(h)/qH,det(h)) . (4.20)

Note that the division by qH,det(h) is used to account for the fact that χ̂H,det(h) is multiplied
by qH,det(h) = Pb[det(h) | H] (i.e., by the probability that observation det(h) is generated
when honeypot allocation H is used).

An upper bound on the solutions H ′ ⊇ H is obtained by neglecting the sequential
interaction of remaining honeypots (i.e., the attacker can be possibly caught more than
once). By placing a honeypot on an edge h 6∈ H, the cost can be increased by at most

∆h =
∑

P |h∈P∧P≤h⊆P≤H∪{h}

π̃2(P ) · (C(h)− C(h)) + qH∪{h},det(h)Ṽ (χH∪{h},det(h)/qH∪{h},det(h)) .

(4.21)
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Given that the attacker reaches edge h, he pays C(h)− C(h) extra cost and furthermore
he enters a subgame where he got detected on edge h from a honeypot set H ∪ {h}. We
can then obtain the upper bound using

UB(H) = LB(H) +
NH−|H|∑
i=1

∆∗i , (4.22)

where ∆∗1, . . . ,∆∗NH−|H| are the NH − |H| highest values among ∆h.

4.5.4 Heuristic Oracles

In practice, finding exact solutions of oracles from Sections 4.5.2 and 4.5.3 can be
computationally expensive. To mitigate the impact of the oracle computation times
on the performance of the algorithm, we present a heuristic version of the oracle of
the defender. The heuristic oracle is a greedy variant of the exact oracle presented in
Section 4.5.3.

Algorithm 4.4: Heuristic version of the oracle of the defender.
1 H ← ∅
2 while |H| < NH do
3 h∗ ← arg maxh∈E\H∆h

4 H ← H ∪ {h∗}

The use of the heuristic oracle of the defender from the Algorithm 4.4 can lead to a
degradation of the quality of the solution found by the HSVI algorithm. By omitting
some actions of the defender from the support of the equilibrium, the cost of the attacker
can be lowered. Nevertheless, the lower-bound guarantees on the quality of the solution
found by the algorithm (Theorem 4.3) are retained.

4.6 Experimental Evaluation

In this section we focus on the experimental evaluation of the proposed techniques on
the lateral movement POSG introduced in Section 4.4. We consider three variants of the
HSVI algorithm for compact POSGs depending on the oracle algorithm used: (1) the
version where no oracles are used (i.e., Ãi = Ai), (2) the variant using exact oracles for
both of the players (described in Sections 4.5.2 and 4.5.3), (3) and finally the variant
where heuristic oracle for the defender (described in Section 4.5.4) is used instead of the
exact computation of the best response. We also compare these approaches with the
original HSVI algorithm presented in Chapter 3 where the summarized abstraction is not
used and the computation is performed based on the entire (exponential) state space.
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4.6.1 Experiments Setting

The evaluation has been performed on a set of randomly generated directed acyclic graphs
with varying parameters—number of vertices in the network |V |, number of honeypots
NH and the density of the graph.

We use the following algorithm to generate mesh-like networks. First, positions of
|V | nodes are randomly generated from a 2-dimensional interval [0, 20]× [0, 20] with v1
positioned at (0, 0) and v|V | positioned at (20, 20) (pi ∈ [0, 20]2 denotes the position of
vi). For each vertex vi a set of k nearest neighbors Nk(vi) (with respect to positions pj)
is determined and an edge connecting vertices vi and vj is created for every vj ∈ Nk(vi).
The orientation of the edges is set to always lead towards the vertex closer to the target
v|V |. Note that increasing the parameter k leads to an increase in the number of edges in
the graph.

The graph generated by the above method may, however, contain multiple vertices with
zero in-degree or out-degree (apart of vertices v1 and v|V |). We fix this by regenerating
positions of such nodes until finding a directed acyclic graphs where only v1 and v|V |
have zero in-degree and out-degree, respectively.

Next, we define a cost function f(x, y)→ R>0. This function indicates the hardness
to operate in point (x, y). In our experiments, we use f(x, y) = x+ y which attains its
maximum in (20, 20) where the target vertex v|V | is located (i.e., the network is the most
secured around the target vertex). To obtain the cost C(vi, vj) of traversing an edge
(vi, vj) given that the honeypot is not deployed there, we integrate the cost function f
along the line connecting points pi and pj ,

C(vi, vj) = ‖pi − pj‖2
∫ 1

0
f(λpi + (1− λ)pj) dλ . (4.23)

Furthermore, we partition the vertices into 3 security perimeters (with multiplicative
constants κ1, κ2 and κ3) based on the distance from the position of the target vertex v|V |.
The vertices closest to the target vertex v|V | are the most secured, hence the attacker has
to use a potentially costly zero-day exploit to proceed (and risk its revelation). Thus the
cost C(vi, vj) of traversing an edge entering vertex vj that is present in the most secured
zone is high,

C(vi, vj) = κ3 · C(vi, vj) for κ3 = 4 . (4.24)

For security perimeters further away from the target vertex v|V | we use κ2 = 1.5 and
κ1 = 1. Figure 4.3 provides an example of such a network and its accompanying cost
function f .

All computational results have been obtained on computers equipped with Intel Xeon
Scalable Gold 6146 processors and 16GB of available RAM while limiting the runtime of
the algorithms to 2 hours. CPLEX 12.9 has been used to solve (mixed integer) linear
programs. The algorithms were required to find an ε-optimal solution where ε is set
to 1% of the error ṼUB(χinit)− ṼLB(χinit) in the initial characteristic vector χinit after
the initialization phase described in Section 4.4.4 is completed. If the algorithm failed
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Security Level 1 (κ1)

Security Level 2 (κ2)

Security Level 3 (κ3)

Figure 4.3: Example of a mesh network used in experiments. Contour lines depict
the cost function f used to derive the costs C and C of the edges. The vertices are
partitioned into 3 security levels.

to reach this level of precision within 2 hours, we report an instance as unsolved. The
results are based on 100 randomly generated networks for each parameter set.

4.6.2 Scalability in the Size of Graphs
First, we focus on the scalability of the algorithms in size of the network—in the number
of vertices |V |, and in the density of the graph (controlled by the parameter k).

Figure 4.4 depict the scalability of the algorithms in the number of vertices. First
of all, observe that the original HSVI algorithm for one-sided POSGs has been unable
to solve all but the smallest instances with 8–12 vertices and even with only NH = 1
honeypots (while exhausting the memory on larger instances). To this end, we did not
evaluate this algorithm on more complicated instances with NH > 1. In contrary, the
algorithm relying on the technique of summarized abstractions have been able to solve
most of the instances with NH = 1 even without the use of the incremental strategy
generation technique described in Section 4.5. The versions of the algorithm relying on
the incremental strategy generation were then able to solve all 100 randomly generated
instances for each parameterization when NH = 1 honeypot is considered. Importantly,
the bounds computed by the versions using incremental strategy generation overlap
with the bounds computed by the remaining variants. This demonstrates that in spite
of improving the runtimes by using the incremental strategy generation technique, the
quality of the solution does not deteriorate.

Increasing the number of honeypots to NH = 2 highlights the advantages of using the
oracles to generate actions of the players incrementally. While the algorithm that does
not use the oracles failed to solve most of the instances with |V | ≥ 18 in the time limit
of 2 hours, both of the variants relying on the incremental strategy generation technique
were able to solve even most of the largest instances with 24 vertices and k = 4 in less
than 20 minutes on average (considering only the instances solved by the algorithms).

Increasing the number of honeypots to NH = 3 highlights the computational advant-
ages of using the heuristic version of the oracle of the defender presented in Section 4.5.4.
This version of the algorithm was able to solve significantly more instances compared to
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Figure 4.4: Scalability in the number of vertices in the network |V | (averages based on
100 instances for each parameter set). Confidence intervals mark the standard error. The
reported runtimes include only instances solved by the algorithms. The percentage of
instances where the algorithms failed to terminate within 2 hours are reported separately.
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Figure 4.5: Scalability of the algorithms: (Left) in the density (i.e., the number k of
nearest neighbors considered when forming the edges) of the network with 14 vertices
and NH = 2 honeypots, (Right) in the number of honeypots NH in a network with 14
vertices and k = 6. Confidence intervals mark the standard error. The reported runtimes
include only instances solved by the algorithms. The percentage of instances where the
algorithms failed to terminate within 2 hours are reported separately.

the version using the exact version of the oracle of the defender (Section 4.5.3). Note that
the version that does not use the strategy generation technique was able to solve only a
few instances with |V | ≤ 14. This is mainly attributed to the size of the linear programs
to solve the stage games—e.g., the number of possible combinations of actions of players
in the games with 14 vertices and k = 5 we considered is up to |A1| × |A2| ≈ 5.2 · 107.
Note that the algorithms using the oracles were able to solve nearly all instances in this
setting (|V | = 14 and k = 5).

In Figure 4.5 (left), we focus on the scalability of the three variants of the algorithm
using the summarized abstraction based on the density of the network (controlled by the
parameter k). The number of actions in the game can grow fast with the addition of new
edges to the network which makes solving the game challenging for the variant without
the use of oracles. However, the addition of the edges need not increase the support of
the equilibrium and hence the runtime of the variants relying on incremental strategy
generation is not affected by the increasing value of the parameter k.

4.6.3 Scalability in the Number of Honeypots
In Figure 4.5 (right) we focus on the scalability of the algorithm in the number of
honeypots. The number of actions of the defender is exponential in the number of
honeypots NH . Hence, it is not surprising that the algorithm that does not use the
incremental strategy generation to form defender’s actions can solve only the smallest
instances in terms of the number of honeypots NH . The variants of the algorithm relying
on the oracles to incrementally generate the actions perform significantly better, however,
when the number of honeypots is large (NH ≥ 4), computing the best response of the
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defender exactly (using the approach from Section 4.5.3) is prohibitively expensive. In
contrary, the heuristic variant of the oracle of the defender allows the algorithm to scale
better and solve most of the instances up to NH = 6.

Interestingly, we observed that using the heuristic oracle did not impact the quality
of the solution in a negative way. Considering the instances from Figure 4.5 (right) that
were solved by the variant using the exact oracle of the defender, we observed that the
lower bounds ṼLB(χinit) computed by these two variants of the algorithm were within
0.6% of each other.

4.6.4 Applicability to Computer Networks
Previous experiments have been focused on randomly generated mesh networks. The
physical properties of mesh networks typically disallow direct communication between
the devices (e.g., due to the presence of obstacles, or low signal strength caused by large
distances between the devices). This leads to a significantly lower number of edges in
the corresponding game graph compared to regular computer network architectures. To
demonstrate the versatility of our approach, we evaluate our algorithms on a graph
originating from a fundamentally different network topology given as an example by a
network security expert.2

In Figure 4.6a, the physical topology of the considered computer network is shown.
Based on this topology, we derived logical communication links, shown in Figure 4.6b,
that the attacker can use to perform lateral movement and that do not directly correspond
to the physical links. For example, every device can directly communicate with the web
server and thus the attacker can use this communication channel to carry on his attack.
Moreover, compromising the web server allows an attack on the database server. We
also reflect potential side channels in the networks such as social engineering allowing
the attacker to compromise end-user machines by publishing malicious files on the web
presentation of the company.

Each logical link can be used to infect an adjacent machine. The links, however, differ
in the difficulty of carrying such an attack along the edge, e.g., it is substantially easier to
infiltrate web server via an exploitable web presentation than attempting to compromise
the domain controller running the latest versions of the services. We distinguish three
difficulty levels (with three different associated costs representing the time needed to
successfully traverse the edge): easy (C(e) = 10 units of time), medium (C(e) = 20)
and hard (C(e) = 40). In the presence of a honeypot, the costs increase to C(e) = 40,
C(e) = 80 and C(e) = 160, respectively3.

In our example, we assume that the attacker uses a computer outside of the network
(i.e., in the internet zone) to infiltrate the network, with the aim of compromising the
target node within the internal part of the network (assume that sensitive data are

2We thank Sridhar Venkatesan for providing the expertise on experiments with the business network.
3Note that the exact values of costs do not affect usability of our algorithm and hence can be set

specifically for each network.
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Figure 4.6: Computer network topology considered in the experiments: (a) Physical
topology of the network. Nodes marked with asterisk exist in multiple instances and can
be used as honeypots. (b) Logical communication links in the network. Dashed lines
correspond to easy difficulty levels, solid lines to medium difficulty and finally bold solid
lines represent hard difficulty.
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located at this host). The defender attempts to slow down attacker’s progress by deploying
a honeypot on one of the hosts4 within the network (hosts that can be selected are
denoted by an asterisk in Figure 4.6a).

We assume that each such host is present in d instances within the network (e.g., one
being the production server and the remaining instances serving for backup purposes). In
order to serve the legitimate users, the defender is allowed to operate a honeypot on one
of the instances only. For d = 2 instances of each server, the algorithm (using the exact
versions of the oracles) took 982s to find a solution with the lower bound on attacker’s
cost of 69.4, while for d = 3 instances of each server a solution with quality 63.3 has been
found in 5950s. The shortest attack path in the graph has a cost of 50, which marks
an increase in the attacker’s cost by 38.8% and 26.6%, respectively. The larger of the
two instances (with d = 3) is represented by a graph with 52 vertices and 504 edges.
Note that the decreasing value of the game with increasing value of d is caused by the
fact that the defender is able to cover only one of the instances of a server—thus the
probability that the attacker manages to choose an unprotected instance increases.

While we have demonstrated the capabilities of the algorithm to solve problems
related to computer networks, we believe that its scalability on this type of networks can
be significantly improved and we discuss this in the next section.

4.7 Discussion and Future Extensions

The model introduced in Section 4.4 represents the interaction with an attacker who
is determined to reach his goal (in our case reach the target vertex v|V |). The attacker
accepts the risk of getting detected in the course of the attack, and understands the
implications of a successful detection. First, the cost of traversing a honeypot edge is
higher. More importantly, the defender gets vital information about the progress of the
attack which the defender can use to harden further progress of the attacker.

In Section 4.6.4, we presented an application of the proposed algorithm to improve
security of computer networks. Real-world applications, however, require that the
legitimate services do not get replaced by honeypots to sustain the operation of the
network. We reflected this by operating each server in multiple instances (essentially by
duplicating vertices and their incident logical communication links in the network) and
allowing the defender to use only one of the instances as a honeypot (thus confusing the
attacker without compromising the experience of legitimate users).

Such an approach inherently introduces symmetries to the problem—the defender
can decide to choose any of the instances of a single service as a honeypot, while the
attacker can choose any instance (not knowing which one is a decoy) to carry on the
attack. Symmetries, however, have negative impact on the time needed to solve the game
as the experiments in Section 4.6.4 show.

4If a honeypot is deployed in vertex vi, all edges adjacent to vi are honeypots.
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We believe that our approach is well suited to deal with such symmetries. Since all
instances vi1 , . . . , vid of a service are indistinguishable within the graph, it is possible to
replace coordinates χi1 , . . . , χid of a characteristic vector χ by a single value χi1 + · · ·+χid
without compromising the quality of the solution.

The location of the honeypots is typically assumed to be known to legitimate users,
and the interaction with a honeypot can thus be considered as a reliable indication
of an ongoing attack. Real-world computer networks rely also on intrusion detection
systems (IDS) to discover potential malicious actions of the attackers. The detection of
IDS is, however, not reliable. Another natural direction is thus to extend the algorithm
(especially the Equations (4.16)) to account for unreliable detection represented by
stochastic transitions in the game.



CHAPTER5
Towards Two-Sided POSGs

In Chapters 3 and 4, we have studied partially observable stochastic games where only
one side of the game has the imperfect information (hence called one-sided POSGs). This
approach is well-motivated by security applications. Here, we often do not know what
pieces of information are available to the adversary, and hence it is sensible to assume
the worst-case scenario, i.e., that the adversary knows everything. By doing so, we are
able to obtain robust strategies and obtain strong security guarantees.

Although it is possible to apply similar ideas to every two-player game and thus
assume that our opponent has perfect information about the game, such an approach can
have undesirable effects. In many real-world games (e.g., card games), the only way to win
is to reason about the uncertainty of the adversary and leverage this uncertainty to our
advantage. In case we approximate a two-sided game using the one-sided POSG model,
we lose this possibility—and the computed strategies can be thus overly conservative. As
an example, consider a variant of poker where each player can pay the opponent to reveal
their private cards. One of the key characteristics of poker is that the game involves
strategic betting, and each player needs to reason about possible cards of the players. In
most situations, accepting the payment and revealing the cards to the adversary thus
significantly degrades the chances of the player to win the game. If we used the one-sided
POSG model to reason about such variant of poker, we would have had to assume that
the adversary already knows our card. However, within this assumption, there is no
reason to decline the payment. The adversary is assumed to already know our cards,
and hence the model of one-sided POSGs does not allow us to understand the negative
consequences of revealing the cards to the adversary, and the optimal strategy computed
within the one-sided POSG framework would therefore suggest to accept the payment
and show the cards.

This chapter is based on following publications:
[Horák and Bošanský, 2019] Horák, K. and Bošanský, B. (2019). Solving partially observable stochastic

games with public observations. In 33rd AAAI Conference on Artificial Intelligence, pages
2029–2036 (70%, 1 citation)
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Unfortunately, solving general POSGs with two-sided imperfect information is chal-
lenging. The players need not see each other’s actions and observations, and hence they
form different beliefs [Hansen et al., 2004]. Furthermore, since the decision-making of
the agents depends on their beliefs, they need to reason about what is the belief of the
opponent, what is the belief of the opponent about our belief, and so on. This reasoning
can go on indefinitely and results in so-called nested beliefs [MacDermed, 2013].

The approach we presented in Chapter 3 for solving games with one-sided imperfect
information relied on the fact that we can characterize the information concisely without
the need for the infinite nesting of beliefs. Since this seems not to be possible for general
two-sided POSGs with infinite horizon, designing a scalable and optimal value-iteration
algorithm for such games does not seem to be possible.

In this chapter, we take a step towards solving games with two-sided partial in-
formation by introducing a model of partially observable stochastic games with public
observations (PO-POSGs) that is inspired by the works of Cole and Kocherlakota [2001]
and MacDermed [2013]. However, unlike these works, we focus on a two-player zero-sum
setting where randomized strategies are used. PO-POSGs generalize one-sided POSGs by
allowing both players to have imperfect information about the private state and actions of
the adversary. Although the players form different beliefs, each one of them can infer the
belief of his adversary—thus making the reasoning about the nested beliefs unnecessary.
We discuss the structural properties of the solution of PO-POSGs, and we show that the
algorithm for one-sided POSGs can be adapted to work on PO-POSGs.

5.1 Game Model
Similarly to [Cole and Kocherlakota, 2001], we employ factorization of the state space of
the game. Here, a state of the game s = (s1, s2) consists of private states s1 and s2 of
player 1 and player 2, respectively. Furthermore, the dynamics of the game ensures that
the beliefs are Markov, i.e., the players can infer each other’s belief when the strategies
are fixed.

Definition 5.1 (Partially observable stochastic game with public observations).
A partially observable stochastic game with public observations (PO-POSG) is
a two-player zero-sum game between players i ∈ {1, 2}a represented by a tuple
〈Si, Ai, Oi, Zi, Ti, R, binit, γ〉, where
• Si is a finite set of (private) states of player i
• Ai is a finite set of actions available to player i
• Oi is a finite set of observations for player i
• Zi(oi|s−i, a−i) is the probability to generate observation oi for player i, given

that his opponent −i played action a−i in private state s−i
• Ti(s′i|si, ai, oi, o−i) is the probability to transition from si to s′i when player i
played ai and public observations oi and o−i have been generated
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• R(s1, s2, a1, a2) is the reward of player 1 when actions (a1, a2) have been jointly
played in the joint state (s1, s2)
• binit = (binit

1 , binit
2 ) is the initial beliefs of the players, where binit

i ∈ ∆(S−i) is
the belief player i has about the states S−i of the opponent, and
• γ is the discount factor.

aAs it is commonly used, −i denotes opponent of player i.

A play in a PO-POSG proceeds as follows. First, the initial joint state (s(1)
1 , s

(1)
2 ) is

drawn with probability binit
2 (s(1)

1 ) · binit
1 (s(1)

2 ). Then, in each stage t, players observe their
current private state (player i observes s(t)

i , but not s(t)
−i of his opponent). Based on this

information (and history), each player i chooses actions a(t)
i ∈ Ai independently of the

decision of his opponent −i. As a consequence of this choice, player 1 receives reward
r(t) = R(s(t)

1 , s
(t)
2 , a

(t)
1 , a

(t)
2 ) and player 2 receives negated reward −R(s(t)

1 , s
(t)
2 , a

(t)
1 , a

(t)
2 ).

Furthermore, observation o(t)
i for each player is generated and made publicly known to

both players with probability Zi(o(t)
i |s

(t)
−i, a

(t)
−i) and a new private state s(t+1)

i of each player
is drawn from Ti(·|s(t)

i , a
(t)
i , o

(t)
i , o

(t)
−i). We consider infinite-horizon discounted setting

and the utility of player 1, denoted Discγ , is thus
∑∞
t=1 γ

t−1r(t). Player 1 is aiming on
maximizing this quantity, while the player 2 is trying to minimize it.

Apart from observing the public observations (o(t)
1 , o

(t)
2 ), the players are able to recall

their own actions and private states only. Player i hence cannot observe the states s(t)
−i

of the opponent, and the actions a(t)
−i the opponent has made. This means that the

private history of player i after T stages has passed is a sequence (s(t)
i a

(t)
i o

(t)
1 o

(t)
2 )Tt=1s

T+1
i .

Player i can only use this information for decision making, and hence his behavioral
strategy in PO-POSGs is defined as follows.

Definition 5.2 (Behavioral strategy). Strategy σi : (SiAiOiO−i)∗Si → ∆(Ai) of
player i is a mapping from private histories of player i to randomized decisions. The
set of all strategies of player i is denoted Σi.

Similarly to one-sided POSGs, we also reason about the strategies the players use to act
in the current stage of the game only.

Definition 5.3 (Stage strategies). A mapping πi : Si → ∆(Ai) is called a stage
strategy of player i. The set of all stage strategies of player i is denoted Πi.

Importantly, the need for reasoning about the nested beliefs is avoided due to the fact
that each player can infer the belief of his adversary. Let us assume that the belief of the
adversary i is bi (i.e., the probability that the current state of player −i is s−i ∈ S−i is
bi(s−i)). Now, given that a pair of public observations (o1, o2) is observed and player −i
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plays stage strategy π−i, the probability that the state of player −i changes to s′−i is

Pb,π1,π2 [s′−i | oi, o−i] =
∑

s−i∈S−i

∑
a−i∈A−i

Pb,π1,π2 [s−i, a−i, s′−i | oi, o−i] (5.1a)

= 1
Pb,π1,π2 [oi | o−i]

∑
s−i∈S−i

∑
a−i∈A−i

Pb,π1,π2 [s−i, a−i, oi, s′−i | o−i] (5.1b)

= 1
Pb,π1,π2 [oi | o−i]

∑
s−i∈S−i

∑
a−i∈A−i

Pb,π1,π2 [s′−i | s−i, a−i, oi, o−i]· (5.1c)

· Pb,π1,π2 [oi | s−i, a−i, o−i] · Pb,π1,π2 [a−i | s−i, o−i] · Pb,π1,π2 [s−i | o−i] .

Due to the conditional independence, Equation (5.1c) can be simplified. Hence, we have

Pb,π1,π2 [s′−i | oi, o−i] = 1
Pb,π1,π2 [oi]

∑
s−i∈S−i

∑
a−i∈A−i

Pb,π1,π2 [s′−i | s−i, a−i, oi, o−i]· (5.1d)

· Pb,π1,π2 [oi | s−i, a−i] · Pb,π1,π2 [a−i | s−i] · Pb,π1,π2 [s−i]

= 1
Pb,π1,π2 [oi]

∑
s−i∈S−i

∑
a−i∈A−i

T−i(s′−i | s−i, a−i, oi, o−i)· (5.1e)

· Zi(oi | s−i, a−i) · π−i(a−i | s−i) · bi(s−i)
= τi(bi, π−i, oi, o−i)(s′−i) . (5.1f)

We use τi(bi, π−i, oi, o−i) to denote the Bayesian update of the belief of player i. Note
that this update depends solely on the current belief bi of player i, the stage strategy π−i
of player −i and the pair of public observations (oi, o−i)—and no private information of
player i can be used to refine the belief of player i. All of this information is also available
to player −i, and hence both players can perform exactly the same computation.

5.2 Value of PO-POSGs
As in the case of one-sided POSGs, we first define the value of a strategy of player i.
Then we define the value of PO-POSGs as the utility the players can achieve by choosing
the best strategy to play.

Definition 5.4 (Value of strategy). Let σi ∈ Σ1 be a behavioral strategy of player i.
A function valσi|b−i : ∆(S−i)→ R is called value of strategy σi in the belief b−i of the
adversary, and it is defined as the utility σi achieves in the joint belief b = (bi, b−i)
against the best response of the adversary, i.e.,

valσ1|b2(b1) = inf
σ2∈Σ2

Eb1,b2,σ1,σ2 [Discγ ] , and (5.2)

valσ2|b1(b2) = sup
σ1∈Σ1

Eb1,b2,σ1,σ2 [Discγ ] . (5.3)



5.2. VALUE OF PO-POSGS 115

Observe that unlike in one-sided POSGs the value of a strategy σi depends on the belief
b−i of the adversary. We now represent the value of the game with an initial belief (b1, b2)
as the utility the best possible strategy achieves in (b1, b2), i.e., supσ1∈Σ1 valσ1|b2(b1) and
infσ2∈Σ2 valσ2|b1(b2) from the perspective of player 1 and player 2, respectively. Note that
since the value of zero-sum POSGs with discounted-sum objective exists (see Theorem 2.3),
these two values coincide.

Definition 5.5 (Optimal value function). A function V ∗ : ∆(S2) × ∆(S1) → R
where

V ∗(b1, b2) = sup
σ1∈Σ1

valσ1|b2(b1) = inf
σ2∈Σ2

valσ2|b1(b2) (5.4)

is called the optimal value function of a PO-POSG.

We now proceed by showing structural properties of values of strategies, and the
optimal value function V ∗. First, we show that when the belief b−i of the adversary
is fixed, the value valσi|b−i is a linear function in the belief bi ∈ ∆(S−i) of player i.
Similarly to one-sided POSGs (Proposition 3.1), we use L = minR(·)/(1 − γ) and
U = maxR(·)/(1− γ) to denote minimum and maximum utilities, respectively, in the
game.

Lemma 5.1. Let σi be a strategy of player i, and let us assume that the belief
b−i ∈ ∆(Si) of the adversary is fixed. Then the expected utility valσi|b−i : ∆(S−i)→ R
of playing σi against the best-responding opponent −i is linear in the belief bi ∈ ∆(S−i)
of player i, and it is (U − L)/2-Lipschitz continuous.

Proof. Player −i knows σi as well as his true state s−i, and his only uncertainty is
about the state si (the probability of which is b−i(si)). It is thus possible to focus
on a best response for each state s−i separately. Let us denote the expected utility
of playing a best response against σi starting from s−i (when si ∼ b−i) by ξ(s−i).
Since the strategy σi is fixed (and thus does not depend on bi), the expected value of
playing σi against a best response of the adversary is the expectation over values ξ(s−i),
valσi|b−i(bi) =

∑
s−i bi(s−i) · ξ(s−i), and thus the value valσi|b−i is linear in bi. Moreover,

observe that similarly to one-sided POSGs (see Proposition 3.1), the values are bounded,
and we have

L = minR(·)
1− γ ≤ valσi|b−i(bi) ≤

maxR(·)
1− γ = U (5.5)

Using Lemma 3.4 allows us to conclude that valσi|b−i is (U−L)/2-Lipschitz continuous.

We now leverage that the optimal value function V ∗ is defined as a supremum and
infimum over the values of strategies of player 1 and player 2, respectively, to establish
that the value function V ∗ is convex-concave and (U − L)/2-Lipschitz continuous. As in
the case of one-sided POSGs, we define δ = (U −L)/2, and we endow the relevant spaces
with the L1-norm. We first show a technical proposition followed by the main result.
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Proposition 5.2. Let V : ∆(S2) × ∆(S1) → R be a value function which is δ-
Lipschitz continuous in the belief b1 ∈ ∆(S2) of player 1 and δ-Lipschitz continuous
in the belief b2 ∈ ∆(S1) of player 2. Then V is δ-Lipschitz continuous.

Proof. Let (b1, b2) ∈ ∆(S2)×∆(S1) and (b′1, b′2) ∈ ∆(S2)×∆(S1) be arbitrary. Since V is δ-
Lipschitz in the beliefs of player 1 and player 2, we have |V (b1, b2)−V (b′1, b2)| ≤ δ‖b1−b′1‖1
and |V (b′1, b2)− V (b′1, b′2)| ≤ δ‖b2 − b′2‖1. Now, we have

δ‖(b1, b2)− (b′1, b′2)‖1 = δ‖b1 − b′1‖1 + δ‖b2 − b′2‖1
≥ |V (b1, b2)− V (b′1, b2)|+ |V (b′1, b2)− V (b′1, b′2)|
≥ |V (b1, b2)− V (b′1, b2) + V (b′1, b2)− V (b′1, b′2)|
= |V (b1, b2)− V (b′1, b′2)|

which proves δ-Lipschitz continuity of V .

Theorem 5.3. Value function V ∗ is convex and δ-Lipschitz continuous in the belief
b1 ∈ ∆(S2) of the maximizing player 1 and concave and δ-Lipschitz continuous in the
belief b2 ∈ ∆(S1) of the minimizing player 2. Moreover, V ∗ is δ-Lipschitz continuous.

Proof. According to the Definition 5.5, for a fixed b2, player 1 chooses a strategy that
maximizes the utility, hence

V ∗(b1, b2) = sup
σ1∈Σ1

valσ1|b2(b1) (5.6)

As all valσ1|b2 are linear, V ∗ is convex in b1. Vice versa, for given fixed b1, player 2
chooses a minimizing strategy. Hence

V ∗(b1, b2) = inf
σ2∈Σ2

V σ2|b1(b2) (5.7)

and V ∗ is concave in b2. Since V ∗ is a pointwise supremum/infimum (Equations (5.6)
and (5.7)) from δ-Lipschitz continuous functions valσi|b−i , V ∗ is δ-Lipschitz continuous
in the dimension of b1 as well as b2. Combining the Lipschitz constants in these two
dimensions in the sense of Proposition 5.2 results in δ-Lipschitz continuity of V ∗.

5.3 Composing Strategies
Similarly to one-sided POSGs, every strategy of player i can be decomposed to the
decision rule πi used in the first stage of the game, and the behavioral strategies player i
may use in the rest of the game. Here, we define the opposite principle of strategy
composition where we combine a vector (Σi)Si×Ai×Oi×O−i of strategies the player i chose



5.3. COMPOSING STRATEGIES 117

to follow after each possible outcome (si, ai, oi, o−i) ∈ Si × Ai × Oi × O−i of the first
stage where he follows a stage strategy πi.

Definition 5.6 (Strategy composition). Let ζi = (Σi)Si×Ai×Oi×O−i be a vector
of strategies and πi ∈ Πi be a stage strategy for the first stage of the game. A
behavioral strategy comp(πi, ζ

i) ∈ Σ1 is called a strategy composition of ζi using πi,
and is defined as

comp(πi, ζ
i)(si) = πi(· | si) , and

comp(πi, ζ
i)(siaioio−iω) = ζisi,ai,oi,o−i(ω) for every siaioio−iω ∈ (SiAiOiO−i)∗Si .

Importantly, the value valcomp(πi,ζ
i)|b−i can be computed similarly as in Lemma 3.11.

The key difference here is that we have to reflect the belief τ−i(b−i, πi, oi, o−i) of the
adversary when the strategy ζisi,ai,oi,o−i is about to be followed. We present the following
result from the perspective of the maximizing player 1. The formulation for the minimizing
player 2 can be obtained analogously by switching the roles of the players and replacing
minimization over stage strategies π2 ∈ Π2 of player 2 characterizing her best response,
by maximization over strategies π1 ∈ Π1 of player 1. Note that we prove a weaker
result involving inequality, since player 2 knows only the public observations (o1, o2) and
not state s1 and action a1 of player 1. The player 1, however, conditions the strategy
ζ1
s1,a1,o1,o2 he follows in a subgame even on s1 and a1. Player 2 thus does not know exactly
which strategy ζ1

s1,a1,o1,o2 is being followed—and hence need not be able to best-respond
it to get value valζ

1
s1,a1,o1,o2 |τ2(b2,π1,o1,o2)(τ1(b1, π2, o1, o2)) as considered in the proof.

Lemma 5.4. Let comp(π1, ζ
1) be a strategy composition of player 1, and (b1, b2) ∈

∆(S2) × ∆(S1) be an arbitrary joint belief. Then the value valcomp(π1,ζ
1)|b2 of the

strategy composition comp(π1, ζ
1) satisfies

valcomp(π1,ζ
1)|b2(b1) ≥ min

π2∈Π2

[
Eb,π1,π2 [R(s1, s2, a1, a2)] + (5.8)

+ γ
∑

(s1,a1,o1,o2)
Pb,π1,π2 [s1, a1, o1, o2] · valζ

1
s1,a1,o1,o2 |τ2(b2,π1,o1,o2)(τ1(b1, π2, o1, o2))

]
.

Proof. Let b = (b1, b2) ∈ ∆(S2)×∆(S2) be an arbitrary joint belief. We will provide a
lower bound u(π2) on the utility the composite strategy comp(π1, ζ

1) guarantees when
player 2 plays an arbitrary stage strategy π2 ∈ Π2 in the first stage. We get the lower
bound on the utility comp(π1, ζ

1) guarantees against any strategy of player 2 (i.e., even
against the best response of player 2 as in Definition 5.4) by allowing the player 2 to
choose arbitrary stage strategy π2, and results in Equation (5.8), which then completes
the proof.
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Let π2 ∈ Π2 be arbitrary. The expected reward in the first stage when playing
π2 against comp(π1, ζ

1) is Eb,π1,π2 [R(s1, s2, a1, a2)]. It remains to focus on the rewards
player 2 is able to achieve in the rest of the game. By Definition 5.4, the minimizing
player 2 cannot achieve lower utility than valζ

1
s1,a1,o1,o2 |τ2(b2,π1,o1,o2)(s′2) when the player 1

is about to play strategy ζ1
s1,a1,o1,o2 , the current distribution over states of player 1 (i.e.,

the belief of player 2) is τ2(b2, π1, o1, o2) and the current state of player 2 is s′2. Hence we
have

u(π2) ≥ Eb,π1,π2 [R(s1, s2, a1, a2)] + γ
∑

(s1,a1,o1,o2)
Pb,π1,π2 [s1, a1, o1, o2]

∑
s′2

Pb,π1,π2 [s′2 | o1, o2] ·

· valζ
1
s1,a1,o1,o2 |τ2(b2,π1,o1,o2)(s′2)

= Eb,π1,π2 [R(s1, s2, a1, a2)] + γ
∑

(s1,a1,o1,o2)
Pb,π1,π2 [s1, a1, o1, o2]

∑
s′2

τ1(b1, π2, o1, o2)(s′2) ·

· valζ
1
s1,a1,o1,o2 |τ2(b2,π1,o1,o2)(s′2)

= Eb,π1,π2 [R(s1, s2, a1, a2)] +

+ γ
∑

(s1,a1,o1,o2)
Pb,π1,π2 [s1, a1, o1, o2] · valζ

1
s1,a1,o1,o2 |τ2(b2,π1,o1,o2)(τ1(b1, π2, o1, o2)) .

By allowing the player to choose π2 that minimizes u(π2), we get the claimed inequality.

5.4 Bellman’s Equation for PO-POSGs
In this section, we provide a Bellman’s equation for PO-POSGs which allows us to
approximate the optimal value function V ∗ iteratively. The structure of the Bellman’s
equation is similar to one-sided POSGs (see Theorem 3.15). The players choose their
stage strategies π1 ∈ Π1 and π2 ∈ Π2 to optimize their expected utility. This utility
consists of the expected reward in the first stage of the game starting from the joint
belief (b1, b2) and the utility the players are able to achieve in the rest of the game. We
prove that V ∗ is the solution of the Bellman’s Equation (5.10), and that the Bellman’s
operator is a contraction mapping.

Theorem 5.5. Let b = (b1, b2) ∈ ∆(S2)×∆(S1) be an arbitrary joint belief. Optimal
value function V ∗ satisfies

V ∗(b1, b2) = [HV ∗](b1, b2) = max
π1∈Π1

min
π2∈Π2

[
Eb,π1,π2 [R(s1, s2, a1, a2)]+ (5.9)

+ γ
∑

(o1,o2)∈O1×O2

Pb,π1,π2 [o1, o2] · V ∗ (τ1(b1, π2, o1, o2), τ2(b2, π1, o2, o1))
]
.

We provide the proof of Theorem 5.5 at the end of this section. The Equation (5.10)
introduces the Bellman’s operator H that we now define formally.
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Definition 5.7 (Bellman’s operator). Denote F∆(S2)×∆(S1) the set of all continuous
value functions f : ∆(S2) × ∆(S1) → R. Bellman’s operator is a mapping H :
F∆(S2)×∆(S1) → F∆(S2)×∆(S1) where

[HV ](b1, b2) = max
π1∈Π1

min
π2∈Π2

[
Eb,π1,π2 [R(s1, s2, a1, a2)]+ (5.10)

+ γ
∑

(o1,o2)∈O1×O2

Pb,π1,π2 [o1, o2] · V (τ1(b1, π2, o1, o2), τ2(b2, π1, o2, o1))
]
.

Before we prove Theorem 5.5, we define a stage game based on the objective of the
maximin optimization in Equation (5.10), and we prove an additional lemma that allows
us to swap the order of maximization and minimization over π1 and π2, respectively, in
the Equation (5.10).

Definition 5.8 (Stage game). Let V : ∆(S2)×∆(S1)→ R be a continuous convex-
concave value function mapping joint beliefs (b1, b2) ∈ ∆(S2)×∆(S1) to real numbers.
Let b = (b1, b2) ∈ ∆(S2)×∆(S1) be an arbitrary joint belief. A two-player zero-sum
game with strategy spaces Π1 and Π2 for the maximizing and minimizing players,
respectively, and utility function uV,b, where

uV,b(π1, π2) = Eb,π1,π2 [R(s1, s2, a1, a2)]+ (5.11)

+ γ
∑

(o1,o2)∈O1×O2

Pb,π1,π2 [o1, o2] · V (τ1(b1, π2, o1, o2), τ2(b2, π1, o2, o1))
]

is called a stage game with respect to the value function V and joint belief b.

Lemma 5.6. Let V : ∆(S2)×∆(S1) be a continuous convex-concave function (i.e.,
convex in b1 ∈ ∆(S2) and concave in b2 ∈ ∆(S1), and let b = (b1, b2) ∈ ∆(S2)×∆(S1)
be an arbitrary joint belief. Then

max
π1∈Π1

min
π2∈Π2

uV,b(π1, π2) = min
π2∈Π2

max
π1∈Π1

uV,b(π1, π2) . (5.12)

Proof. We use von Neumann’s minimax theorem [von Neumann, 1928; Nikaido, 1953] to
prove the equivalence. Clearly, sets Π1 and Π2 are convex compact sets, hence it suffices
to check that the utility function uV,b is convex in the strategy π2 ∈ Π2 of the minimizing
player, and concave in the strategy π1 ∈ Π1 of the maximizing player.

The expectation Eb,π1,π2 [R(s1, s2, a1, a2)] over the finite number of possible outcomes
of the first stage is linear in both π1 and π2, hence it suffices to focus on the second
term in uV,b. We prove that γ

∑
o1,o2 Pb,π1,π2 [o1, o2] · V (τ1(b1, π2, o1, o2), τ2(b2, π1, o1, o2))

is convex in π2. The fact that this expression is concave in π1 can be shown analogously.



120 CHAPTER 5. TOWARDS TWO-SIDED POSGS

Let us fix the stage strategy π1 ∈ Π1 of player 1, and define V |b2 : ∆(S2) → R as
a function V |b2(b1) = V (b1, b2). Since V is convex in b1, the function V |b2 is convex
as well—and hence by Proposition 3.9 we can represent V |b2 as a supremum of linear
functions Γb2 . Now, we have

γ
∑

(o1,o2)∈O1×O2

Pb,π1,π2 [o1, o2] · V (τ1(b1, π2, o1, o2), τ2(b2, π1, o1, o2)) = (5.13a)

= γ
∑

(o1,o2)∈O1×O2

Pb,π1,π2 [o1] · Pb,π1,π2 [o2] · V |τ2(b2,π1,o1,o2)(τ1(b1, π2, o1, o2)) (5.13b)

= γ
∑

(o1,o2)∈O1×O2

Pb,π1,π2 [o1] · Pb,π1,π2 [o2] · sup
α∈Γτ2(b2,π1,o1,o2)

α(τ1(b1, π2, o1, o2)) (5.13c)

= γ
∑

(o1,o2)∈O1×O2

Pb,π1,π2 [o1] · Pb,π1,π2 [o2] · sup
α∈Γτ2(b2,π1,o1,o2)

∑
s′2∈S2

τ1(b1, π2, o1, o2)(s′2) · α(s2) .

(5.13d)

Equation (5.13b) leverages that the observations are generated independently and rewrites
V (b1, b2) as V |b2(b1). Equations (5.13c) and (5.13d) rewrite the convex functions V |b2 as
supremum over linear functions. After expanding τ1 using Equation (5.1e) and canceling
out the terms Pb,π1,π2 [o1], we further have

γ
∑

(o1,o2)∈O1×O2

Pb,π1,π2 [o1, o2] · V (τ1(b1, π2, o1, o2), τ2(b2, π1, o1, o2)) =

= γ
∑

(o1,o2)∈O1×O2

Pb,π1,π2 [o2] · sup
α∈Γτ2(b2,π1,o1,o2)

∑
(s2,a2,s′2)∈S2×A2×S2

α(s′2)T2(s′2 | s2, a2, o1, o2)· (5.13e)

· Z1(o1 | s2, a2) · π2(a2 | s2) · b1(s2) .

The probability Pb,π1,π2 [o2] is independent of the stage strategy π2 of player 2 (observation
o2 depends only on states and actions of player 1), hence the expression in Equation (5.13e)
is a supremum over functions that are linear in π2. Expression in Equation (5.13e) is
therefore convex in π2, as is uV,b.

We are now ready to prove that V ∗ solves the Bellman’s equation introduced in
Theorem 5.5.

Proof of Theorem 5.5. Let b = (b1, b2) ∈ ∆(S2)×∆(S1) be an arbitrary joint belief. We
prove that [HV ∗](b1, b2) = maxπ1 minπ2 u

V ∗,b(π1, π2) ≤ V ∗(b1, b2). We have

[HV ∗](b1, b2) = max
π1∈Π1

min
π2∈Π2

[
Eb,π1,π2 [R(s1, s2, a1, a2)] +

+ γ
∑

(o1,o2)
Pb,π1,π2 [o1, o2] · V ∗(τ1(b1, π2, o1, o2), τ2(b2, π1, o1, o2))

]
= max

π1∈Π1
min
π2∈Π2

[
Eb,π1,π2 [R(s1, s2, a1, a2)] +

+ γ
∑

(s1,a1,o1,o2)
Pb,π1,π2 [s1, a1, o1, o2] · V ∗(τ1(b1, π2, o1, o2), τ2(b2, π1, o1, o2))

]
.
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Denote Γo1,o2
π1 = {valσ1|τ(b2,π1,o1,o2) | σ1 ∈ Σ1} the set of all values valσ1|τ(b2,π1,o1,o2) of

strategies σ1 ∈ Σ1 of player 1 when the belief of the adversary is τ(b2, π1, o1, o2). By
Definition 5.5 and Proposition 3.8, we have

[HV ∗](b1, b2) = max
π1∈Π1

min
π2∈Π2

[
Eb,π1,π2 [R(s1, s2, a1, a2)] +

+ γ
∑

(s1,a1,o1,o2)
Pb,π1,π2 [s1, a1, o1, o2] · sup

α∈Γo1,o2π1

α(τ1(b1, π2, o1, o2))
]

= max
π1∈Π1

min
π2∈Π2

[
Eb,π1,π2 [R(s1, s2, a1, a2)] +

+ γ
∑

(s1,a1,o1,o2)
Pb,π1,π2 [s1, a1, o1, o2] · sup

α∈Conv(Γo1,o2π1 )
α(τ1(b1, π2, o1, o2))

]
= max

π1∈Π1
min
π2∈Π2

sup
α|αs1,a1,o1,o2∈Conv(Γo1,o2π1 )

[
Eb,π1,π2 [R(s1, s2, a1, a2)] + (5.14)

+ γ
∑

(s1,a1,o1,o2)
Pb,π1,π2 [s1, a1, o2] · Pb,π1,π2 [o1] · αs1,a1,o1,o2(τ1(b1, π2, o1, o2))

]
.

The last equality uses the fact that the observation o1 is generated independently of s1,
a1 and o2 (it only conditionally depends on the state s2 and action a2 of player 2). After
expanding τ1(b1, π2, o1, o2) and using that each αs1,a1,o1,o2 is a linear function, we get

[HV ∗](b1, b2) = max
π1∈Π1

min
π2∈Π2

sup
α|αs1,a1,o1,o2∈Conv(Γo1,o2π1 )

[
Eb,π1,π2 [R(s1, s2, a1, a2)] +

+ γ
∑

(s1,a1,o1,o2)
Pb,π1,π2 [s1, a1, o2]

∑
(s2,a2,s′2)

b1(s2) · π2(a2 | s2) ·

· Z1(o1 | s2, a2) · T (s′2 | s2, a2, o1, o2) · αs1,a1,o1,o2(s′2)
]

The objective of the min-sup optimization problem is continuous and linear in both π2
and α, and since the set of all α is convex, and Π2 is a convex compact set, we can apply
the Sion’s minimax theorem [Sion, 1958] to Equation (5.14) to get

[HV ∗](b1, b2) = max
π1∈Π1

sup
α|αs1,a1,o1,o2∈Conv(Γo1,o2π1 )

min
π2∈Π2

[
Eb,π1,π2 [R(s1, s2, a1, a2)] + (5.15)

+ γ
∑

(s1,a1,o1,o2)
Pb,π1,π2 [s1, a1, o2, o1] · αs1,a1,o1,o2(τ1(b1, π2, o1, o2))

]
.

Every αs1,a1,o1,o2 ∈ Conv(Γo1,o2
π1 ) is a convex combination of values

∑
σ1 λ

σ1valσ1|τ(b2,π1,o1,o2)

of strategies of player 1. We can interpret such combination as a value of a strategy
where player 1 mixes between strategies σ1 ∈ Σ1, and plays σ1 with probability λσ1 . This
is a valid strategy of player 1, and hence its value valΣλσ1σ1|τ(b2,π1,o1,o2) ≥ αs1,a1,o1,o2 is
contained in the set Γo1,o2

π1 . We can therefore avoid convexifying the sets Γo1,o2
π1 and get
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[HV ∗](b1, b2) =

= max
π1∈Π1

sup
α|αs1,a1,o1,o2∈Γo1,o2π1

min
π2∈Π2

[
Eb,π1,π2 [R(s1, s2, a1, a2)] + (5.16a)

+ γ
∑

(s1,a1,o1,o2)
Pb,π1,π2 [s1, a1, o2, o1] · αs1,a1,o1,o2(τ1(b1, π2, o1, o2))

]
= max

π1∈Π1
sup

ζ
1∈(Σ1)S1×A1×O1×O2

min
π2∈Π2

[
Eb,π1,π2 [R(s1, s2, a1, a2)] + (5.16b)

+ γ
∑

(s1,a1,o1,o2)
Pb,π1,π2 [s1, a1, o2, o1] · valζ

1
s1,a1,o1,o2 |τ2(b2,π1,o1,o2)(τ1(b1, π2, o1, o2))

]
.

The criterion of the supremum in Equation (5.16b) coincides with the lower bound on
the value of a composite strategy comp(π1, ζ

1). We can therefore apply Lemma 5.4 to get

[HV ∗](b1, b2) ≤ sup {valcomp(π1,ζ
1)|b2 | π1 ∈ Π1, ζ

1 ∈ (Σ1)S1×A1×O1×O2} .

Since every composite strategy is a valid behavioral strategy of player 1, we further have

[HV ∗](b1, b2) ≤ sup {valcomp(π1,ζ
1)|b2(b1) | π1 ∈ Π1, ζ

1 ∈ (Σ1)S1×A1×O1×O2}

= sup
σ1∈Σ1

valσ1|b2(b1) = V ∗(b1, b2) .

By Lemma 5.6, we have that maxπ1 minπ2 u
V ∗,b(π1, π2) = minπ2 maxπ1 u

V ∗,b(π1, π2).
We can thus reverse the roles of the players and use an analogous proof to show that
[HV ∗](b1, b2) = minπ2 maxπ1 u

V ∗,b(π1, π2) ≥ V ∗(b1, b2). Hence [HV ∗](b1, b2) = V ∗(b1, b2).

5.4.1 Contractivity Properties of Bellman’s Operator
In Theorem 5.5, we have introduced the Bellman’s operator H for PO-POSGs, and we
have shown that the optimal value function V ∗ is the solution of the Bellman’s equation
V ∗ = HV ∗. In this section, we show that the operator H is a contraction—hence V ∗ is
the only solution to the Bellman’s equation. Furthermore, we can generate a sequence of
value functions {Vi}∞i=1 where Vi+1 = HVi to iteratively approximate the fixpoint V ∗.

Lemma 5.7. Let b = (b1, b2) ∈ ∆(S2)×∆(S1) be a joint belief and V,W : ∆(S2)×
∆(S1)→ R be two continuous convex-concave value functions such that [HV ](b) ≤
[HW ](b). Let (πV1 , πV2 ) and (πW1 , πW2 ) be Nash equilibrium strategy profiles in stage
games [HV ](b) and [HW ](b), respectively, and C ≥ 0. Assume that

W (τ1(b1, πV2 , o1, o2), τ2(b2, πW1 , o1, o2))− V (τ1(b1, πV2 , o1, o2), τ2(b2, πW1 , o1, o2)) ≤ C

for every (o1, o2) where Pb,πW1 ,πV2
[o1, o2] > 0. Then [HW ](b)− [HV ](b) ≤ γC.
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Proof. The proof is analogous to the proof of Lemma 3.17. Deviating from the Nash
equilibrium strategy can only worsen the utility of the player, hence we have

uV,b(πW1 , πV2 ) ≤ uV,b(πV1 , πV2 ) = [HV ](b) ≤ (5.17)
≤ [HW ](b) = uW,b(πW1 , πW2 ) ≤ uW,b(πW1 , πV2 ) .

By subtracting uW,b(πW1 , πV2 )− uV,b(πW1 , πV2 ), we get

uW,b(πW1 , πV2 )− uV,b(πW1 , πV2 ) = γ
∑

(o1,o2)
Pb,πW1 ,πV2

[o1, o2]· (5.18)

· [W (τ1(b1, πV2 , o1, o2), τ2(b2, πW1 , o1, o2))− V (τ1(b1, πV2 , o1, o2), τ2(b2, πW1 , o1, o2))] .

According to the assumption, the difference W (·) − V (·) in Equation (5.18) is less
than or equal to C for every (o1, o2) with non-zero probability Pb,πW1 ,πV2

[o1, o2]. Hence,
Equation (5.18) is an expectation over values that are all at most C. This expectation is
then multiplied by γ < 1, and we have

[HW ](b)− [HV ](b) ≤ uW,b(πW1 , πV2 )− uV,b(πW1 , πV2 ) ≤ γC (5.19)

which concludes the proof.

Theorem 5.8. Bellman’s operator H is a contraction mapping with contractivity
factor H.

Proof. The proof is similar to the proof of Lemma 4.1. Let us consider continuous value
functions V,W : ∆(S2)×∆(S1) such that ‖V −W‖∞ = max(b1,b2)∈∆(S2)×∆(S1) |V (b1, b2)−
W (b1, b2)| ≤ C for some C ≥ 0. We show that |[HV ](b1, b2) − [HW ](b1, b2)| ≤ γC for
arbitrary joint belief (b1, b2) ∈ ∆(S2)×∆(S1).

Let b = (b1, b2) ∈ ∆(S2)×∆(S1). Without loss of generality, assume that [HV ](b) ≤
[HW ](b). Let πV1 and πW1 be the maximizers from the problem [HV ](b) and [HW ](b),
respectively, as introduced in Equation (5.10). We will show that by using πW1 instead of
πV1 in [HV ](b), the utility is at least [HW ](b)−γC which shows that [HW ](b)−[HV ](b) ≤
γC.

[HV ](b) = max
π1∈Π1

min
π2∈Π2

uV,b(π1, π2) ≥ min
π2∈Π2

uV,b(πW1 , π2)

= min
π2∈Π2

[
Eb,πW1 ,π2

[R(s1, s2, a1, a2)]+ (5.20)

+ γ
∑

(o1,o2)∈O1×O2

Prb,πW1 ,π2
[o1, o2] · V (τ1(b1, π2, o1, o2), τ2(b2, πW1 , o2, o1))

]
≥ min

π2∈Π2

[
Eb,πW1 ,π2

[R(s1, s2, a1, a2)]+ (5.21)

+ γ
∑

(o1,o2)∈O1×O2

Prb,πW1 ,π2
[o1, o2] ·

[
W (τ1(b1, π2, o1, o2), τ2(b2, πW1 , o2, o1))− C

] ]
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= −γC + min
π2∈Π2

[
Eb,πW1 ,π2

[R(s1, s2, a1, a2)]+ (5.22)

+ γ
∑

(o1,o2)∈O1×O2

Prb,πW1 ,π2
[o1, o2] ·

[
W (τ1(b1, π2, o1, o2), τ2(b2, πW1 , o2, o1))

] ]
= −γC + max

π1∈Π1
min
π2∈Π2

[
Eb,π1,π2 [R(s1, s2, a1, a2)]+ (5.23)

+ γ
∑

(o1,o2)∈O1×O2

Prb,π1,π2 [o1, o2] · [W (τ1(b1, π2, o1, o2), τ2(b2, π1, o2, o1))]
]

= [HW ](b)− γC .

Equation (5.23) holds due to the fact that πW1 is assumed to be the maximizer in [HW ](b).
Now, we have [HW ](b)− [HV ](b) ≤ γC. We can use analogous reasoning to show that
[HV ](b) − [HW ](b) ≤ γC which shows that |[HV ](b) − [HW ](b)| ≤ γC and concludes
the proof.

5.5 Heuristic Search Value Iteration for PO-POSGs

Evaluating the dynamic programming operator H directly using Definition 5.7 is im-
possible since the set of all joint beliefs is infinite. To design a practical algorithm, we first
establish an approximation scheme for V ∗ that can be represented using a finite number
of elements (Section 5.5.1). Then we provide mathematical programs for computing HV
when this approximation scheme is used (Section 5.5.2). Finally, we state our scalable
algorithm to obtain ε-approximation of V ∗(binit) in PO-POSGs in Section 5.5.3.

5.5.1 Approximating V ∗

In POMDPs (or one-sided POSGs), the value function V ∗ is commonly represented either
as a point-wise maximum over a set linear functions (termed α-vectors), or by considering
a lower convex hull of a set of points (see, e.g., Section 3.6.1 for more details). Both
of these approaches leverage the fact that the value function V ∗ is convex which is not
the case for PO-POSGs where the value function is convex in the belief b1 ∈ ∆(S2) of
player 1, but concave in the belief b2 ∈ ∆(S1) of player 2. In this section, we present
a way to form a lower bound approximation of a convex-concave function V ∗ inspired
by both of the above-mentioned approaches (the construction of the upper bound is
analogous).

To represent the value of V Γ1
LB we use a generalized notion of the value valσ1|b2 of

strategies σ1 ∈ Σ1 of player 1. We consider arbitrary linear functions, termed αβ-vectors,
that form a lower bound on the value function V ∗. Since the value valσ1|b2 depends on
the belief b2 ∈ ∆(S1) of the adversary, we also let αβ-vectors to depend on the belief β
of the adversary.
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Definition 5.9. An αβ-vector of player i is a tuple consisting of a δ-Lipschitz
continuous linear function α : ∆(S−i)→ R and the belief of the adversary β ∈ ∆(Si)
satisfying

α(b1) ≤ V ∗(b1, β) , or α(b2) ≥ V ∗(β, b2) (5.24)

for player 1 or player 2, respectively.

Similarly to the way the lower bound is represented in one-sided POSGs (see Sec-
tion 3.6.1 for more details), we use a finite set of αβ-vectors to represent the lower bound
V Γ1

LB on V ∗. Denote Γ1 = {αiβi | 1 ≤ i ≤ k} an arbitrary finite set of αβ-vectors of
player 1. We will now discuss the construction of a lower bound V Γ1

LB on V ∗ when consid-
ering the set of αβ-vectors Γ1. First of all, observe that we can use convex combinations
of αβ-vectors of player 1 to form lower bound V ∗ in the sense of the following lemma.
For simplicity of the notation, we denote the set of all valid coefficients of a convex
combination of k elements Ck, and we have

Ck =
{
λ ∈ Rk≥0 |

∑k
i=1 λi = 1

}
. (5.25)

Lemma 5.9. Let λ ∈ Ck be coefficients of convex combination, and let (b1, b2) ∈
∆(S2)×∆(S1) be an arbitrary joint belief. Furthermore, let Γ1 = {αiβi | 1 ≤ i ≤ k}
be a finite set of αβ-vectors of player 1. Then the following holds:

V ∗(b1, b2) ≥ V ∗(b1,
∑k
i=1 λiβi)− δ‖b2 −

∑k
i=1 λiβi‖1 (5.26a)

≥
k∑
i=1

λiV
∗(b1, βi)− δ‖b2 −

∑k
i=1 λiβi‖1 (5.26b)

≥
k∑
i=1

λiαi(b1)− δ‖b2 −
∑k
i=1 λiβi‖1 . (5.26c)

Proof. The first two inequalities follow from the fact that the optimal value function V ∗

is concave in the belief of the player 2 and δ-Lipschitz (see Theorem 5.3). We then use
the Definition 5.9 of αβ-vectors of player 1 to obtain the final inequality.

We can directly use Lemma 5.9 to define the lower bound V Γ1
LB on V ∗ (see Figure 5.1 for

illustration).

Definition 5.10. Let Γ1 = {αiβi | 1 ≤ i ≤ k} be a finite set of αβ-vectors of
player 1. The lower bound V Γ1

LB : ∆(S2)×∆(S1) on V ∗ is a function defined by

V Γ1
LB(b1, b2) = max

λ∈Ck

[
k∑
i=1

λiαi(b1)− δ‖b2 −
∑k
i=1 λiβi‖1

]
. (5.27)
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β
b2
∈ ∆(S1)

(linear)

b1 ∈ ∆(S2)

α : ∆(S2)→ R

V Γ1
LB

V ∗

Figure 5.1: Lower bound V Γ1
LB on V ∗. Facets of V Γ1

LB are formed by convex combinations
of αβ vectors of player 1 in Γ1.

From the perspective of the proof of the correctness of the heuristic search value
iteration algorithm for solving PO-POSGs, it is important that the lower bound V Γ1

LB is
convex-concave and δ-Lipschitz continuous, which we prove in the next lemma.

Lemma 5.10. Let Γ1 = {αiβi | 1 ≤ i ≤ k} be a finite set of αβ-vectors of player 1.
V Γ1

LB is convex and δ-Lipschitz continuous in the beliefs ∆(S2) of player 1, and concave
and δ-Lipschitz continuous in the beliefs ∆(S1) of player 2. Furthermore, V Γ1

LB is
δ-Lipschitz continuous.

Proof. First, let us show that V Γ1
LB is concave and δ-Lipschitz continuous in the belief

of player 2. Let b2, b′2 ∈ ∆(S1) be arbitrary beliefs of player 2, and b1 ∈ ∆(S2) be a
fixed belief of player 1. Denote λ and λ

′ the coefficients of convex combination from
Equation (5.27) that maximize V Γ1

LB(b1, b2) and V Γ1
LB(b1, b′2), respectively, and let ρ ∈ [0, 1]

be arbitrary. Now, we show that ρV Γ1
LB(b1, b2)+(1−ρ)V Γ1

LB(b1, b′2) ≤ V Γ1
LB(b1, ρb2+(1−ρ)b′2)

to prove that V Γ1
LB is concave in the belief of player 2.

ρV Γ1
LB(b1, b2) + (1− ρ)V Γ1

LB(b2, b′2)

= ρ

[
k∑
i=1

λiαi(b1)− δ‖b2 −
∑k
i=1 λiβi‖1

]
+ (1− ρ)

[
k∑
i=1

λ′iαi(b1)− δ‖b′2 −
∑k
i=1 λ

′
iβi‖1

]

=
k∑
i=1

[ρλi + (1−ρ)λ′i]αi(b1)− δ‖ρb2 −
∑k
i=1 ρλiβi‖1 − δ‖(1−ρ)b′2 −

∑k
i=1(1−ρ)λ′iβi‖1

≤
k∑
i=1

[ρλi + (1− ρ)λ′i]αi(b1)− δ‖ρb2 + (1− ρ)b′2 −
∑k
i=1[ρλi + (1− ρ)λ′i]βi‖1

≤ max
λ∈Ck

[
k∑
i=1

λiαi(b1)− δ‖ρb2 + (1− ρ)b′2 −
∑k
i=1 λiβi‖1

]
= V Γ1

LB(b1, ρb2 + (1− ρ)b′2)
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We continue by proving that V Γ1
LB is also δ-Lipschitz continuous in the belief of player 2.

Without loss of generality, let us assume that V Γ1
LB(b1, b2) ≥ V Γ1

LB(b1, b′2). Assuming that
λ is the maximizer for V Γ1

LB(b1, b2) from Equation (5.27), we have

V Γ1
LB(b1, b′2) ≥

k∑
i=1

λiαi(b1)− δ‖b′2 −
∑k
i=1 λiβi‖1

≥
[ k∑
i=1

λiαi(b1)− δ‖b2 −
∑k
i=1 λiβi‖1

]
− δ‖b′2 − b2‖1

= V Γ1
LB(b1, b2)− δ‖b′2 − b2‖1 .

and hence V Γ1
LB is δ-Lipschitz continuous in the belief of player 2.

To prove that V Γ1
LB is convex and δ-Lipschitz continuous in the belief of player 1, let

us fix an arbitrary belief b2 ∈ ∆(S1) of player 2. Observe that every coefficients λ ∈ Ck

of convex combination can be associated with a linear function αλ : ∆(S2)→ R where
αλ(b1) =

∑k
i=1 λiαi(b1)− δ‖b2 −

∑k
i=1 λiβi‖1, i.e., the objective of Equation (5.27). We

can now rewrite Equation (5.27) for the fixed belief b2 as

V Γ1
LB(b1, b2) = max

λ∈Ck
αλ(b1) .

According to Definition 5.9, every αi is δ-Lipschitz continuous linear function in beliefs
b1 ∈ ∆(S2) of player 1. Since ψ = δ‖b2−

∑k
i=1 λiβi‖1 is a constant independent of b1, αλ

is δ-Lipschitz continuous linear function as well. When the belief b2 of player 2 is fixed,
V Γ1

LB is a point-wise maximum over δ-Lipschitz continuous linear functions αλ—hence by
Proposition 3.7 it is convex and δ-Lipschitz continuous in the belief of player 1. The
δ-Lipschitz continuity of V Γ1

LB then follows from Proposition 5.2.

By switching the roles of the players and by considering a finite set Γ2 = {αiβi |
1 ≤ i ≤ k} of αβ-vectors of player 2, we can use analogous reasoning to derive an upper
bound V Γ2

UB on V ∗. Also, Lemma 5.10 can be adapted to show that V Γ2
UB is δ-Lipschitz

continuous convex-concave function.

Definition 5.11. Let Γ2 = {αiβi | 1 ≤ i ≤ k} be a finite set of αβ-vectors of
player 2. The upper bound V Γ2

UB : ∆(S2)×∆(S1) on V ∗ is a function defined by

V Γ2
UB(b1, b2) = min

λ∈Ck

[
k∑
i=1

λiαi(b2) + δ‖b1 −
∑k
i=1 λiβi‖1

]
. (5.28)

5.5.2 Evaluating Bellman’s Operator
In this section, we present a linear programming formulation to solve the optimization
problem [HV ](b1, b2) introduced in Definition 5.7 when the value function is represented
using the technique introduced in Section 5.5.1. In this section, we focus on the evaluation
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of the Bellman’s operator H with respect to the lower bound V Γ1
LB , i.e., computation of

[HV Γ1
LB ](b1, b2). Analogous reasoning is used to obtain the linear program to compute

[HV Γ2
UB](b1, b2).

Assume that Γ1 = {αiβi | 1 ≤ i ≤ k} is a finite set of αβ-vectors of player 1 used to
represent V Γ1

LB . Using Definition 5.7 and Definition 5.10 and since the observations are
generated independently, we have

[HV Γ1
LB ](b1, b2) =

= max
π1∈Π1

min
π2∈Π2

[
Eb,π1,π2 [R(s1, s2, a1, a2)] + γ

∑
(o1,o2)

Pb,π1,π2 [o1] · Pb,π1,π2 [o2] · (5.29)

· max
λ
o1,o2∈Ck

[∑k
i=1 λ

o1,o2
i αi(τ1(b1, π2, o1, o2))− δ‖τ2(b2, π1, o1, o2)−

∑k
i=1 λ

o1,o2
i βi‖1

]]
= max
π1∈Π1

min
π2∈Π2

max
λo1,o2∈Ck∀(o1,o2)

[
Eb,π1,π2 [R(s1, s2, a1, a2)] + γ

∑
(o1,o2)

Pb,π1,π2 [o1] · Pb,π1,π2 [o2] ·

·
[∑k

i=1 λ
o1,o2
i αi(τ1(b1, π2, o1, o2))− δ‖τ2(b2, π1, o1, o2)−

∑k
i=1 λ

o1,o2
i βi‖1

]]
.
(5.30)

After expanding τ1 according to Equation (5.1e), using that αi are linear functions,
canceling terms Pb,π1,π2 [o1], and rewriting ‖ · ‖1 as sum of absolute values, we get

= max
π1∈Π1

min
π2∈Π2

max
λo1,o2∈Ck∀(o1,o2)

[
Eb,π1,π2 [R(s1, s2, a1, a2)] + γ

∑
(o1,o2)

Pb,π1,π2 [o2] · (5.31)

·
[∑k

i=1 λ
o1,o2
i

∑
s2,a2,s′2

b1(s2)π2(a2|s2)Z1(o1|s2, a2)T (s′2|s2, a2, o1, o2)αi(s′2) −

− δPb,π1,π2 [o1]
∑
s′1

|τ2(b2, π1, o1, o2)(s′1)−
k∑
i=1

λo1,o2
i βi(s′1)|

]]
.

Now, let us introduce substitution λ̂o1,o2
i = Pb,π1,π2 [o2] · λo1,o2

1 , i.e., since λo1,o2 ∈ Ck were
coefficients of convex combination,

∑k
i=1 λ̂

o1,o2
i = Pb,π1,π2 [o2] has to hold. This yields

= max
π1∈Π1

min
π2∈Π2

max
λ̂

[
Eb,π1,π2 [R(s1, s2, a1, a2)] + (5.32)

+ γ
∑

(o1,o2)

[ k∑
i=1

λ̂o1,o2
i

∑
s2,a2,s′2

b1(s2)π2(a2|s2)Z1(o1|s2, a2)T (s′2|s2, a2, o1, o2)αi(s′2) −

− δPb,π1,π2 [o1]
∑
s′1

|Pb,π1,π2 [o2] · τ2(b2, π1, o1, o2)(s′1)−
k∑
i=1

λ̂o1,o2
i βi(s′1)|

]]
.

Now, we expand τ2(·) according to Equation (5.1e) and we cancel Pb,π1,π2 [o2]. Furthermore,
we expand Eb,π1,π2 [R(s1, s2, a1, a2)].

= max
π1∈Π1

min
π2∈Π2

max
λ̂

[ ∑
s1,s2,a1,a2

b2(s1)b1(s2)π1(a1|s1)π2(a2|s2)R(s1, s2, a1, a2) + (5.33)
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+ γ
∑

(o1,o2)

[ k∑
i=1

λ̂o1,o2
i

∑
s2,a2,s′2

b1(s2)π2(a2|s2)Z1(o1|s2, a2)T (s′2|s2, a2, o1, o2)αi(s′2) −

− δPb,π1,π2 [o1]
∑
s′1

|
∑
s1,a1

b2(s1)π1(a1|s1)Z2(o2|s1, a1)T1(s′1|s1, a1, o1, o2) −

−
k∑
i=1

λ̂o1,o2
i βi(s′1)|

]]

s.t.
k∑
i=1

λ̂o1,o2
i = Pb,π1,π2 [o2] ∀(o1, o2)

Since Pb,π1,π2 [o1] =
∑
s2,a2 b1(s2)π2(a2 | s2)Z1(o1 | s2, a2), the objective of the mathem-

atical program is linear in π2 and concave in λ̂. Hence von Neumann’s theorem [von
Neumann, 1928; Nikaido, 1953] applies and we can reverse the order of minimization/max-
imization over π2 and λ̂. Furthermore, we simplify the formulation by using the fact
that since the objective is linear in π2, the solution will be found within pure stage
strategies of player 2 that assign action a2 to play in deterministic way. Next, we promote
the summation over s2 and minimize over each action a2 of the player 2 independently.
Note that Z1(o1 | s2, a2) corresponds to the probability Pb,π1,π2 [o1 | s2] when π2(s2)
deterministically assigns a2 to play in state s2.

= max
π1∈Π1

max
λ̂

∑
s2

b1(s2) ·min
a2

[ ∑
s1,a1

b2(s1)π1(a1|s1)R(s1, s2, a1, a2) + (5.34)

+ γ
∑

(o1,o2)

[ k∑
i=1

λ̂o1,o2
i

∑
s′2

Z1(o1|s2, a2)T (s′2|s2, a2, o1, o2)αi(s′2)− δZ1(o1|s2, a2) ·

·
∑
s′1

|
∑
s1,a1

b2(s1)π1(a1|s1)Z2(o2|s1, a1)T1(s′1|s1, a1, o1, o2)−
k∑
i=1

λ̂o1,o2
i βi(s′1)|

]]

s.t.
k∑
i=1

λ̂o1,o2
i = Pb,π1,π2 [o2] ∀(o1, o2)

This formulation can be directly rewritten as a linear program by rewriting minimization
over a2 as constraints, and rewriting the absolute value A = |x| as constraints A ≥ x and
A ≥ −x. Furthermore, we expand Pb,π1,π2 [o2] to

∑
s1,a1 b2(s1)π1(a1 | s1)Z2(o2 | s1, a1).

The resulting linear programming formulation LP1(HV Γ1
LB(b1, b2)) to solve [HV Γ1

LB ](b1, b2)
is shown in Figure 5.2. The linear program LP2(HV Γ2

UB(b1, b2)) for solving the optimization
problem [HV Γ2

UB](b1, b2) can be formed analogously.

Extracting αβ-vectors We will now show that the variables V1 in LP1(HV Γ1
LB(b1, b2)),

see Figure 5.2, can be used to form a new αβ-vector α1b2 of player 1. Let us fix
variables V1 to values corresponding to the solution of LP1(HV Γ1

LB(b1, b2)) used to solve
[HV Γ1

LB ](b1, b2), and define α̂1(b1) =
∑
s2 b1(s2)V1(s2) to be the value of the objective

parameterized by the belief of player 1. Since the belief b1 of player 1 occurs only in
the objective of LP1(HV Γ1

LB(b1, b2)), values of V1 remain feasible even after changing the
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max
π1,λ̂,V1,C,A

∑
s2

b1(s2) · V1(s2) (5.35a)

s.t. V1(s2) ≤
∑
s1,a1

b2(s1)π1(a1|s2)R(s1, s2, a1, a2) + γ
∑
o1,o2

Co1,o2 ∀s2, a2 (5.35b)

Co1,o2 =
k∑
i=1

λ̂o1,o2
i

∑
s′2

Z1(o1|s2, a2)T (s′2|s2, a2, o1, o2)αi(s′2) − ∀o1, o2 (5.35c)

− δZ1(o1|s2, a2)
∑
s′1

Ao1,o2,s′1

Ao1,o2,s′1 ≥
∑
s1,a1

b2(s1)π1(a1|s1)Z2(o2|s1, a1)T1(s′1|s1, a1, o1, o2)−
k∑
i=1

λ̂o1,o2
i βi(s′1)

Ao1,o2,s′1 ≥
k∑
i=1

λ̂o1,o2
i βi(s′1)−

∑
s1,a1

b2(s1)π1(a1|s1)Z2(o2|s1, a1)T1(s′1|s1, a1, o1, o2)

∀o1, o2, s
′
1 (5.35d)∑

a1

π1(a1|s1) = 1 ∀s1 (5.35e)

k∑
i=1

λ̂o1,o2
i =

∑
s1,a1

b2(s1)π1(a1|s1)Z2(o2|s1, a1) ∀o1, o2 (5.35f)

π1(a1|s1) ≥ 0 ∀s1, a1 (5.35g)
λ̂o1,o2
i ≥ 0 ∀o1, o2, 1 ≤ i ≤ k (5.35h)

Figure 5.2: Linear program LP1(HV Γ1
LB(b1, b2)) for solving optimization problem

[HV Γ1
LB ](b1, b2)
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belief of player 1. We thus have that α̂1(b′1) ≤ [HV Γ1
LB ](b′1, b2) for every belief b′1 ∈ ∆(S2)

of player 1. Furthermore, V Γ1
LB is a lower bound on V ∗ and we have V Γ1

LB ≤ V ∗ and
HV Γ1

LB ≤ HV ∗ = V ∗. Therefore also α̂1(b′1) ≤ V ∗(b′1, b2) for every b′1, and α̂ satisfies the
condition (5.24) from Definition 5.9.

However, Definition 5.9 further requires that α is δ-Lipschitz continuous to ensure
that V Γ1

LB is δ-Lipschitz continuous (Lemma 5.10). Recall that the value valσ1|b2 of every
strategy σ1 ∈ Σ1 of player 1 is bounded by L and U . We can thus truncate values
V1(s2) that are smaller than L, and define the desired linear function α1 using the values
in the vertices of the ∆(S2) simplex as α1(s2) = max{L, V1(s2)}. We now have that
L ≤ α1(s2) ≤ U and α1 is δ-Lipschitz continuous by Lemma 3.4. Hence α1b2 is the
desired αβ-vector of player 1. Note that we have that α1(b1) ≥ α̂1(b1) = [HV Γ1

LB ](b1, b2).
Hence after we perform a point-based update and set Γ′1 = Γ1 ∪ {α1b2}, we have that
V

Γ′1
LB(b1, b2) ≥ [HV Γ1

LB ](b1, b2).
Analogous reasoning can be used to obtain αβ-vector of player 2 from the linear

program LP2(HV Γ2
UB(b1, b2)) that is formed analogously to LP1. Here, the objective

is
∑
s1 b2(s1)V2(s1), and α2b1 for α2(s1) = min{U, V2(s1)} is the desired αβ-vector of

player 2.

Computing strategy of adversary In order to compute strategy of player 2 from
LP1(HV Γ1

LB(b1, b2)), it suffices to consider dual variables to constraints (5.35b). Here, the
value zs2,a2 of the dual variable associated to the constraint (s2, a2) corresponds to the
joint probability that action a2 is to be played in state s2, i.e., π2(a2 | s2) = zs2,a2/b1(s2)
if b1(s2) > 0. Similarly, we can compute strategy of player 1 from LP2(HV Γ2

UB(b1, b2)).

5.5.3 The Algorithm
We are now ready to state our algorithm to compute an ε-approximation of V ∗ in the
joint belief (binit

1 , binit
2 ) and to prove its correctness. The algorithm (Algorithm 4.1) follows

the ideas of the HSVI algorithm for POMDPs [Smith and Simmons, 2004, 2005] and
one-sided POSGs (Section 3.6) while replacing the point-based update step with the
computation of optimal αβ-vectors to add using the linear program from Figure 5.2.

Algorithm 5.1: HSVI algorithm for discounted PO-POSGs.
1 Initialize V Γ1

LB and V Γ2
UB

2 while excess0(binit
1 , binit

2 ) > 0 do explore((binit
1 , binit

2 ), 0)
3 procedure explore(bt = (bt1, bt2), t)
4 Extract πUB

1 from LP2(HV Γ2
UB(bt)) and πLB

2 from LP1(HV Γ1
LB(bt))

5 w-excess(o1, o2) = Pbt,πUB
1 ,πLB

2
[o1, o2]·excesst+1(τ1(bt1, πLB

2 , o1, o2), τ2(bt2, πUB
1 , o2, o1))

6 (o∗1, o∗2)← arg max(o1,o2) w-excess(o1, o2)
7 if w-excess(o∗1, o∗2) > 0 then
8 explore((τ1(bt1, πLB

2 , o∗1, o
∗
2), τ2(bt2, πUB

1 , o∗2, o
∗
1)), t+ 1)

9 Extract α1b
t
2 from LP1(HV Γ1

LB(bt)) (see Section 5.5.2 for more details)
10 Extract α2b

t
1 from LP2(HV Γ2

UB(bt)) (see Section 5.5.2 for more details)
11 Γ1 ← Γ1 ∪ {α1b

t
2} ; Γ2 ← Γ2 ∪ {α2b

t
1}
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Since we want to focus on the key characteristics of the algorithm, we initialize V Γ1
LB

and V Γ2
UB on line 1 of Algorithm 4.1 using the minimum and maximum possible utilities

of player 1,

L = min
s1,s2,a1,a2

R(s1, s2, a1, a2)/(1− γ) (5.36)

U = max
s1,s2,a1,a2

R(s1, s2, a1, a2)/(1− γ) . (5.37)

To initialize the lower bound, we form the initial set Γ1 that is used to represent V Γ1
LB by

considering one αβ-vector of player 1 for every state s1 ∈ S1 of player 1. Namely,

Γ1 = {αbs12 | s1 ∈ S1} α(b1) = L bs12 (s′1) =

1 s1 = s′1

0 otherwise
. (5.38)

We obtain Γ2 to form initial V Γ2
UB similarly by forming αβ-vectors of player 2 for every

s2 ∈ S2 and using U as the utility. In practice, we can obtain tighter bounds (and
consequently faster convergence) by either leveraging domain knowledge, or solving a
simplified version of the game (similarly to the initialization of bounds in the HSVI
algorithm for one-sided POSGs, see Section 3.6.1).

The remaining structure of the algorithm follows the structure of the HSVI algorithm
for one-sided POSGs (Section 3.6). Similarly as in one-sided POSGs, we run the algorithm
as long as the excess gap excess0(binit

1 , binit
2 ) in the initial belief is positive. The excess gap

is defined identically to Equation (3.52), except for using value functions V Γ1
LB and V Γ2

UB,

excesst(b1, b2) = V Γ2
UB(b1, b2)− V Γ1

LB(b1, b2)− ρ(t) , where (5.39)
ρ(0) = ε ρ(t+ 1) = [ρ(t)− 2δD]/γ .

In every call to the explore procedure, we first compute the optimistic strategies of the
players (the maximizing player 1 obtains the strategy πUB

1 from the overestimating value
function V Γ2

UB, while the minimizing player 2 obtains the strategy πLB
2 from the underes-

timating value function V Γ1
LB). Then the joint belief (τ1(bt1, πLB

2 , o1, o2), τ2(bt2, πUB
1 , o1, o2))

with the highest weighted excess gap, denoted w-excess, is targeted. Finally, a point
based update in the joint belief (bt1, bt2) is performed by extracting αβ-vectors of both
players from the solutions of LP1([HV Γ1

LB ](bt)) and LP2([HV Γ2
UB](bt)). These αβ-vectors

are then used to update sets Γ1 and Γ2, and thus to refine bounds V Γ1
LB and V Γ2

UB.

We will now prove that the algorithm is correct, i.e., it terminates with valid
bounds V Γ1

LB and V Γ2
UB on V ∗ (this is a consequence of Lemma 5.9), and it holds that

V Γ2
UB(binit

1 , binit
2 )−V Γ1

LB(binit
1 , binit

2 ) ≤ ε. The proof is analogous to the proof of Theorem 3.25
showing the correctness of the HSVI algorithm for solving one-sided POSGs.

Theorem 5.11. Algorithm 5.1 terminates with an ε-approximation of V ∗(binit
1 , binit

2 ).



5.5. HEURISTIC SEARCH VALUE ITERATION FOR PO-POSGS 133

Proof (sketch). The proof is closely similar to the proof of Theorem 3.25 showing the
correctness of the HSVI algorithm for one-sided POSGs and relies on the fact that
V Γ1

LB and V Γ2
UB are δ-Lipschitz continuous bounds on V ∗ (Lemma 5.10). Assume for the

sake of contradiction that the algorithm does not terminate and generates an infinite
number of explore trials. Since the length of a trial is bounded by a finite number
Tmax

1, the number of trials of length T (for some 0 ≤ T ≤ Tmax) must be infinite. The
set ∆(S2)×∆(S1) is compact and hence also totally bounded. It is therefore impossible
to fit an infinite number of belief points (b1, b2) satisfying ‖(b1, b2) − (b′1, b′2)‖2 > D

within ∆(S2)×∆(S1). Hence there must be two trials of length T , {(b(t)11 , b
(t)
21 )}Tt=0 and

{(b(t)12 , b
(t)
22 )}Tt=0, such that ‖(b(T )

11 , b
(T )
21 ) − (b(T )

12 , b
(T )
22 )‖2 ≤ D. Without loss of generality,

assume that (b(T )
11 , b

(T )
21 ) was visited the first. Applying Lemma 5.7, we can use a similar

reasoning to the proof of Lemma 3.24 to obtain that excessT (b(T )
11 , b

(T )
21 ) ≤ −2δD after

the point-based update in (b(T )
11 , b

(T )
21 ) is performed. Since V Γ1

LB and V Γ2
UB are δ-Lipschitz

continuous (Lemma 5.10) and V Γ2
UB − V

Γ1
LB is thus 2δ-Lipschitz continuous, we also have

excessT (b(T )
12 , b

(T )
22 ) ≤ 0. Based on the condition on line 7 of Algorithm 5.1, this contradicts

that (b(T )
12 , b

(T )
22 ) was selected by the algorithm.

5.5.4 Implementation Details
In this section, we provide some of the details on our practical implementation of the
HSVI algorithm for PO-POSGs.

Pruning The number of αβ-vectors grows in the course of the algorithm, however,
not all of the vectors are needed to represent V Γ1

LB (or V Γ2
UB) accurately. To counteract

this growth, we run a pruning procedure every time the size of Γi gets 1.5× larger than
after the pruning was last performed. An αβ-vector is pruned if there exists a convex
combination of vectors in Γi that dominates it.

Lipschitz continuity The theoretical proof of the correctness of the algorithm re-
lies on the fact that the approximating functions are δ-Lipschitz continuous. In the
implementation, we use a simpler representation of V Γ1

LB ,

V Γ1
LB(b1, b2) = max

λ∈Ck

{
k∑
i=1

λiαi(b1) |
k∑
i=1

λiβi = b2

}
. (5.40)

This formulation does not necessarily form a δ-Lipschitz continuous function in the beliefs
b2 ∈ ∆(S1) of player 2. However, despite breaking the assumption of δ-Lipschitz continuity
of V Γ1

LB and V Γ2
UB, we did not experience any convergence issues in the experiments.

Other Similarly to our previous work on one-sided POSGs (Chapter 3), we use the
idea of modifying ε between iterations. We get εimm for the current iteration as εimm =
ε+ 0.5(V Γ2

UB(binit)− V Γ1
LB(binit)− ε). This allows the algorithm to perform shorter trials in

1This is again caused by the fact that V Γ1
LB ≥ L and V Γ2

UB ≤ U
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Figure 5.3: Experimental results on the Patrolling domain for different sizes of graph
|V |. Time to reach V Γ2

UB(binit)− V Γ2
LB(binit) ≤ 1.

the initial phases of the search (when the bounds do not provide accurate information
about what parts of the belief space to target).

We construct a compact version of linear programs discussed in Section 5.5.2. Namely,
we consider only states, actions and observation pairs that can be played/observed in
the current joint belief (b1, b2). Furthermore, we adopt a column generation approach
to incrementally add variables λ̂oi,oj (·). Initially, we start with one αβ-vector (and its
λ̂oi,oj (αβ)) for each pure belief of the opponent and we add additional αβ-vectors once
they are necessary to accurately represent V (τ1(b1, π2, o1, o2), τ2(b2, π1, o2, o1)).

5.6 Experiments
We demonstrate the scalability of our algorithm on two fundamentally different domains—
partially observable patrolling inspired by [Basilico et al., 2009b] and a lasertag game
inspired by Tag from [Pineau et al., 2003]. All experiments use discount factor γ = 0.95
and were run on Intel i7-8700K (solving 6 instances in parallel).

Patrolling The game is played by two players—the patroller and the intruder. The
patroller moves between vertices V of a graph G = (V,E) and attempts to locate an
intruder before the intruder succeeds in causing damage. The intruder starts initially
outside of the graph and observes the position of the patroller whenever he steps on one
of the observable vertices O ⊆ V (otherwise the position of the patroller remains hidden).
The intruder may decide to attack any target vertex v ∈ T , T ⊆ O. Once the intruder
decides to attack, he has to stay undetected in the chosen vertex v for t× time steps to
complete his attack and get a reward c(v).

In our experimental evaluation, we consider t× = 3 and t× = 4 and generate random
graphs from the Dorogovtsev-Mendes model such that the shortest cycle covering all
targets is longer than t× (i.e., the patroller cannot cover the targets perfectly). There are
|T | = dV/4e targets and |O| = d2V/3e observable nodes. The costs c(v) of targets are
generated uniformly from the [70, 100] interval. Figure 5.3 summarizes the runtime of
our algorithm on 200 randomly generated instances of Patrolling (time to reach precision
1, i.e., 1% of the maximum cost, is reported). All instances have been solved within 10
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hours, while 97 instances with t× = 3 out of 100 and 82 instances with t× = 4 out of 100
have been solved in less than 20 minutes.

Lasertag The game is played by two players—the tagger and the evader—on a grid. In
each time step, the players can decide to move to an adjacent square (free of an obstacle),
or, the tagger can additionally shoot a laser beam either horizontally or vertically (which
is effective until hitting the first obstacle). If the beam tags the evader, the tagger receives
a reward +10 and the game ends, otherwise his reward is −10 and the game continues.
Unless the tagger decides to use the laser beam, his reward is −1 in each step. Hence, the
tagger attempts to terminate the game by tagging the adversary as quickly as possible.
Neither player knows the position of each other until the tagger decides to shoot. In such
a case the evader can observe the light ray (and thus deduce possible positions of the
tagger).

We consider lasertag games played on a 4× 4 grid with 3 obstacles where the tagger
starts in the top-left corner, while the evader starts at position (3, 4) next to the opposite
corner. The obstacles are placed randomly while guaranteeing the existence of a path
between the players (we discard symmetrical instances). We ran the algorithm with
ε = 0.05 for 5 hours. While the algorithm did not terminate within this limit on 16 out
of 20 instances, the average excess gap in the initial belief relative to the value of the
lower bound was 10%±2.6% (where the confidence interval marks standard error). For
grid size 3× 3, all non-symmetric instances with players starting in opposite corners have
been solved in less than 8 seconds.

Analysis We provide a detailed analysis of the performance of the algorithm for two
instances of patrolling, an 11-vertex instance with t× = 4 solved in 307s and a 13-
vertex instance with t× = 4 solved in 11004s. On both of the instances, 85% of the
runtime corresponds to the operations with the approximating functions (especially
computing values of V Γ1

LB and V Γ2
UB in a given joint belief), while the construction and

solving LPi(HV (b1, b2)) took only 10% of the runtime. The remaining 5% of the runtime
corresponds to the pruning step, initiated 95 times on the larger instance within the
1556 iterations. The pruning eliminated 22126 αβ-vectors out of 50404 generated on
the larger instance. Unlike in the patrolling domain, on a lasertag instance solved in
9337s the pruning was much more frequent (approximately one execution of the pruning
procedure per 6 iterations of the algorithm) and considerably more demanding (took
22% of runtime).
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CHAPTER6
Beyond Discounted Sum

Although the discounted-sum objective is one of the most commonly studied objectives
in the AI literature, it makes modeling of some real-world problems problematic or even
impossible. Since the sequence of weights {γt−1}∞t=1 is decreasing, the rewards obtained
early in the game are assumed to be of greater significance, compared to the rewards
obtained at later stages.

Consider a robot planning example, where the goal is to minimize the amount of
consumed energy until the mission is completed. Here, we can assign an execution cost
to each of the actions the robot can perform (corresponding to the amount of energy
consumed while performing the given action), and the goal is to optimize the undiscounted
sum of costs. Observe that approximating the problem using the discounted-sum objective
(for arbitrary discount factor γ < 1) can have undesirable results. For example, from the
perspective of minimizing the discounted-sum of costs, it can be beneficial to wait for
a long time before accomplishing the mission. Even though the undiscounted sum of
the costs of the actions that lead to the mission completion is the same (or may even
increase), by waiting for t steps, the discounted sum of the costs is decreased by a factor
γt.

The theoretical guarantees of the algorithms for solving one-sided POSGs and POSGs
with public observations presented in Chapters 3 and 5, however, apply to the discounted-
sum objective only. The introduction of the discount factor allowed us to establish,
e.g., the following two fundamental properties: Lipschitz continuity of the optimal value
functions V ∗ (Theorem 3.6), and contractivity of the Bellman’s operator used to solve
these games (Theorem 3.18).

In this chapter, we study the model of Goal-POMDPs and analyze the applicability
of the heuristic search value iteration algorithm (HSVI) [Smith and Simmons, 2004, 2005]

This chapter is based on following publications:
[Horák et al., 2018] Horák, K., Bošanský, B., and Chatterjee, K. (2018). Goal-HSVI: Heuristic Search

Value Iteration for Goal POMDPs. In 27th International Joint Conference on Artificial
Intelligence (IJCAI), pages 4764–4770 (45%)
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to these models. The objective in Goal-POMDPs is to minimize the infinite sum of
undiscounted costs. We provide an extended analysis of the convergence of the HSVI
algorithm when applied to Goal-POMDPs, and we illustrate the key challenges when
applying HSVI to undiscounted problems. Based on these insights, we propose a novel
algorithm called Goal-HSVI that provably converges to ε-optimal solution in the Goal-
POMDP setting. Since our methods for solving OS-POSGs and PO-POSGs are based
on the heuristic search value iteration algorithm, we believe that this analysis is the
first step towards applying these methods to solve game-theoretic problems where no
discounting is considered.

6.1 Goal-POMDPs
Apart of the standard discounted-sum objective, indefinite-horizon objective is another
classical and widely studied objective for MDPs and POMDPs [Bertsekas and Tsitsiklis,
1996; Patek, 2001; Bonet and Geffner, 2009; Kolobov et al., 2011; Chatterjee et al., 2016],
often under the name of Goal-POMDPs. In this case, there is a set of target states,
all positive costs, and the goal is to minimize the expected total cost till the target
set is reached. Note that this objective is not discounted-sum but a total sum without
discounts. The objective is also not finite-horizon, as there is no a priori bound on the
time when the target set is reached.

In contrast to POMDPs with discounted-sum objectives, to the best of our know-
ledge, there does not exist a scalable method for solving Goal-POMDPs that provably
converges to a near-optimal policy. The algorithms used previously in practice are
RTDP-Bel [Bonet, 1998; Bonet and Geffner, 2009], and also heuristic search value it-
eration (HSVI) algorithm [Smith and Simmons, 2004, 2005] that was used for solving
Goal-POMDPs in [Warnquist et al., 2013]. However, none of these algorithms guarantee
convergence, and HSVI need not even work for Goal-POMDPs in general [Smith, 2007,
Theorem 6.9]. For the overview of both of these algorithms, see Section 2.2.

Our contributions We extend the discussion on the convergence of HSVI algorithm
when applied to Goal-POMDPs, and we illuminate the key issues of HSVI on counter-
examples. We address these issues and, based on our insights, we present a novel
Goal-HSVI algorithm for solving Goal-POMDPs. Goal-HSVI is an advancement over
previous approaches from the theoretical as well as practical perspective: (1) From the
theoretical perspective, Goal-HSVI provides upper and lower bounds on the optimal
value (and the quality of the currently considered policy) at all points of time and these
bounds converge. Thus we provide the first algorithm with a theoretical guarantee of
convergence for Goal-POMDPs, and our algorithm provides an anytime approximation.
(2) From the practical perspective, we present an implementation of our algorithm and
experimental results on several classical POMDP examples from the literature. While
Goal-HSVI is comparable to RTDP-Bel on the RockSample domain, it dramatically
outperforms RTDP-Bel on several other domains.
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Goal-POMDPs We use the notation from [Bonet and Geffner, 2009] and define a
Goal-POMDP as a tuple 〈S,G,A,O, P,Q, c, binit〉, where S is a finite non-empty set of
states, G is a non-empty set of target (or goal) states (G ⊆ S), A is a finite non-empty
set of actions, O is a finite non-empty set of observations (og ∈ O notifies the agent
about reaching the goal), Pa(s, s′) is the probability to transition from s to s′ by using
action a, Qa(o|s′) is the probability to observe o when entering state s′ by using action
a, c(s, a) > 0 is the cost for taking action a in a non-target state s and binit ∈ ∆(S) is
the initial belief. Without loss of generality, we assume G = {g}.

We assume that the agent does not incur any cost after reaching the target state
g, i.e. c(g, a) = 0 for every a ∈ A. Moreover, state g is absorbing, i.e., Pa(g, g) = 1 for
every a ∈ A, and the agent is always certain about reaching g (i.e., Qa(og|g) = 1 for
every a ∈ A and Qa(og|s) = 0 for every s 6= g). We also assume that the goal state
is reachable from every non-target state, i.e., the agent can never enter a dead-end.
This requirement can, however, be overcome by precomputing a set of allowed actions
for each belief support [Chatterjee et al., 2016]. The algorithms for Goal-POMDPs
can, therefore, be easily extended to the problems with dead-ends by considering only
actions that are allowed in the current belief (and thus avoid dead-ends). Note that the
assumption of positive costs is, however, essential for the approximability of the problem
as allowing negative costs renders any approximation undecidable [Chatterjee et al., 2016,
Theorem 2].

Note that this formulation of Goal-POMDPs is analogous to the formulation of
POMDPs from Section 2.2. Namely, we can obtain POMDP from Definition 2.7 as a
tuple (S,A,O, T,R), where T (o, s′ | s, a) = Pa(s, s′) · Qa(o | s′) and R(s, a) = −c(s, a).
The discussion from Section 2.2 on solution techniques therefore applies.

6.2 Vanilla-HSVI and Goal-POMDPs

While HSVI2 [Smith and Simmons, 2005] (termed vanilla-HSVI for our purposes) was
applied in Goal-POMDPs [Warnquist et al., 2013], it loses its desirable theoretical
guarantees as shown already by Smith [2007]. We discuss three key issues related to the
algorithm in the Goal-POMDP setting and illustrate them on examples.

Since we use a different notation to describe POMDPs compared to Section 2.2, we
first restate the HSVI2 algorithm using this notation (Algorithm 6.2). Notice that the key
difference is that in Goal-POMDPs, we are minimizing costs instead of maximizing the
rewards. Hence, the value functions are concave (instead of convex when maximization
of rewards is considered). Furthermore, also the role of the bounds in the vanilla-HSVI
algorithm is reversed. Here, the lower bound on cost V Υ

LB is concave and uses the sawtooth
representation (see Figure 2.1c for the convex counterpart). On the other hand, the
upper bound on cost V Γ

UB is represented as a point-wise minimum over α-vectors. We also
omitted discount factor γ from the pseudocode since Goal-POMDPs are undiscounted
(i.e., γ = 1).
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Algorithm 6.1: Point-based update(b) procedure of Vanilla-HSVI.
1 αoa ← arg minα∈Γ

∑
s′ τ(b, a, o)(s′) · α(s′)〉 for all a ∈ A, o ∈ O

2 αa(s)← c(s, a) +
∑
o,s′ Pa(o, s′|s) · αoa(s′) ∀s, a

3 Γ← Γ ∪ {arg minαa
∑
s b(s) · αa(s)〉}

4 Υ← Υ ∪ {(b,mina
[∑

s b(s)c(s, a) + γ
∑
o Pb[o|a] · V Υ

LB(τ(b, a, o))
]
)}

Algorithm 6.2: Vanilla-HSVI (HSVI2 applied to Goal-POMDPs). The pseudo-
code follows the ZMDP implementation and includes update on line 6.
1 Initialize V Υ

LB and V Γ
UB

2 while V Γ
UB(binit)− V Υ

LB(binit) > ε do explore(binit, ε, 0)
3 procedure explore(b, ε, t)
4 if V Γ

UB(b)− V Υ
LB(b) ≤ ε then return

5 a∗ ← arg mina
[∑

s b(s)c(s, a)+γ
∑
o Pb[o|a]V Υ

LB(τ(b, a, o))
]

6 update(b)
7 o∗ ← arg maxo Pb[o|a∗]·[V Γ

UB(τ(b, a∗, o))− V Υ
LB(τ(b, a∗, o))− ε]

8 explore(τ(b, a∗, o∗), ε, t+ 1)
9 update(b)

Initial values can be infinite. Vanilla-HSVI initializes value function V Γ
UB by consid-

ering the values of a blind policy (i.e., a policy prescribing the agent to use a fixed action
a forever). Such policies, however, need not reach the goal with probability 1. Observe
that in the example from Figure 6.1 the policies ‘play a forever’ and ‘play b forever’ never
reach the goal and their cost is thus infinite. Moreover, since the play stays in s1 with
positive probability, V Γ

UB(s1) remains infinite forever.
Solution: Instead of blind policies, we initialize V Γ

UB using the uniform policy. Since the
goal state g is reachable from every state, the uniform policy reaches g with probability 1
and thus it has finite values [Chatterjee et al., 2016, Lemma 5 and 6].

Exploration need not terminate. In discounted-sum problems, the sequence εγ−t

is strictly increasing and unbounded (since 0 < γ < 1). Its value therefore eventually
exceeds the gap V Γ

UB(b)−V Υ
LB(b) (which is guaranteed by the initialization to be bounded)

and the recursive explore procedure of vanilla-HSVI terminates. This is clearly not the
case in Goal-POMDPs where γ = 1. In [Smith, 2007, Theorem 6.9], it has been shown
that the observation-selection heuristic of vanilla-HSVI (HSVI2) may cause the algorithm
to enter an infinite loop. We show that even the action selection (line 5 of Algorithm 6.2)

s1 s2 g

observation o1 observation o2 observation og

a : 0.5 b : 1

b : 1 a : 1a : 0.5

Figure 6.1: Blind policies have infinite values, binit(s1) = 1.
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r

s2

s1

m : 1

m : 1
m : 0.8

m : 0.1

m : 0.1

g

r1, r2 : 1

r1, r2 : 1

observation og

r1, r2 : 1

c(r, ri) = 50, c(s1, r2) = c(s2, r1) = 100, other costs in non-goals 1

m : 1

observation on

Figure 6.2: Goal-POMDP where the explore procedure of vanilla-HSVI does not
terminate, ri must be played to reach g, binit(r) = 1. Edges are labeled with actions and
respective transition probabilities when using the given action.

is susceptible to this behavior (and thus modifying the observation-selection heuristic
does not fix the algorithm).

Consider the Goal-POMDP shown in Figure 6.2 where r is the initial state. The
target state g can only be reached by playing action r1 or r2 at some point. We show,
however, that the way the value function V Υ

LB is updated and beliefs are changed during
the explore recursion prevents these actions to be ever considered. First, observe that
the only reachable non-goal beliefs in this POMDP are bT , where T ∈ Z+

0 and

bT (r) = 0.8T bT (s1) = bT (s2) = (1− 0.8T )/2 . (6.1)

Furthermore, since the goal state g is reached with probability 1 when using action ri,
the lower bound on the cost of playing ri in bT (i.e., the objective of argmin on line 5 of
Algorithm 6.2), denoted vri(bT ), is independent of T and constant.

vri(bT ) = V Υ
LB(τ(bt, ri, og)) + bT (r)c(r, ri) + (6.2)
+ bT (si)c(si, ri) + bT (s−i, ri)c(s−i, ri)

= 0 + 0.8T · 50 + (1− 0.8T )/2 · 1 + (1− 0.8T )/2 · 99 = 50 .

This means that the explore procedure selects ri (line 5 of Algorithm 6.2) in bT only if
the lower bound on playing m in bT , vm(bT ) = V Υ

LB(bT+1) + c(∗,m) is greater than the
lower bound on the cost of playing ri, vri(bT ) = 50. We show that this never happens
during the trial.

Denote b∞ the limit belief of the sequence {bT }∞T=0, i.e., b∞(s1) = b∞(s2) = 0.5. The
recursion starts with a linear V Υ

LB where V Υ
LB(b∞) = 1 and V Υ

LB(b0) = 6 (as initialized
by the fast informed bound). In this situation, value V Υ

LB(b1) is a convex combination
0.8V Υ

LB(b0) + 0.2V Υ
LB(b∞) and action m is optimal in b0, as its value in b0 is

vm(b0) = V Υ
LB(b1) + c(∗,m) = 5 + 1 = 6 = y0 (6.3)

and the addition of the point (b0, y0) to the set Υ does not change V Υ
LB.
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Figure 6.3: Value function V Υ
LB for the example from Figure 6.2 in the third level of

explore recursion.

At the T -th level of explore recursion, set Υ contains (b0, y0), . . . , (bT−1, yT−1) and
(b∞, 1). A point-based update is performed in bT (generating point (bT , yT )). It holds

vm(bT ) = c(∗,m) + V Υ
LB(bT+1) = 1 + V Υ

LB(bT+1) . (6.4)

At this point, V Υ
LB(bT+1) is a convex combination of values yT−1 = V Υ

LB(bT−1) and
V Υ

LB(b∞), 0.82yT−1 + 0.36 · 1 (see Figure 6.3 for illustration). If m was always optimal,
the sequence of yT = vm(bT ) values can be characterized by a difference equation
yT = 1 + 0.82yT−1 + 0.36 · 1. For y0 = 6, this sequence (generating points on the
dashed line in Figure 6.3) is decreasing and it never exceeds value 50. Hence m is
indeed always optimal and actions r1 and r2 are never used during the trial (since
vm(bT ) ≤ vri = 50. Note that V Γ

UB(bT ) ≥ V ∗(bT ) = 50 for every T ∈ Z+
0 (we cannot

avoid playing ri which yields expected cost 50). Therefore, for sufficiently small ε the
excess gap V Γ

UB(bT )− V Υ
LB(bT )− ε is always positive, and the trial never terminates.

Solution: In our Goal-HSVI algorithm, we cut off excessively long samples while guar-
anteeing that an ε-optimal solution is found within this limit. Such an approach has
been used previously in practice without studying its impact on the solution quality
(e.g., in POMDPSolver1 for discounted-sum POMDPs that was used in [Warnquist
et al., 2013], the depth limit is set to 200). However, using any fixed depth limit for
all indefinite-horizon POMDPs is not sound (consider a POMDP where more than 200
precisely timed steps have to be taken to reach the goal). We address this and consider a
depth limit that provides theoretical guarantees on the solution quality.

Observation-selection heuristic may suppress exploration. Finally, terminating
excessively long trials alone is not sufficient. Consider the example from [Smith, 2007,
Theorem 6.9]. Value functions V Υ

LB and V Γ
UB are never changed during the trial. Hence, if

we terminate a trial prematurely, a new trial operates on the same V Υ
LB and V Γ

UB, and thus
it visits the same beliefs again where no improvement can be made. Thus it remains in
states s0 and s1 – and the state s2 that is necessary for convergence is never considered.
Solution: There are multiple possible solutions to this problem (e.g., changing the
observation-selection heuristic). To remain consistent with vanilla-HSVI (and use the
same heuristic), our Goal-HSVI algorithm keeps a data structure (a closed-list, denoted

1Retrieved on December 20, 2019 from http://www.bgu.ac.il/~shanigu/

http://www.bgu.ac.il/~shanigu/
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CL) tracking the action-observation sequences that have been already considered. When
selecting an observation according to the observation-selection heuristic, the algorithm
avoids choosing one that would lead to an action-observation sequence fully explored
earlier.

6.3 Goal-HSVI

In this section, we present our novel Goal-HSVI approach to solve Goal-POMDPs. In
Section 6.3.1, we present the basic algorithm and its theoretical guarantees, and in
Section 6.3.2, we extend this algorithm to obtain a practical approach.

6.3.1 Basic Algorithm

The changes we presented in the previous section constitute the basis for our Goal-HSVI
algorithm (see Algorithm 6.3). Our algorithm extends the vanilla-HSVI (Algorithm 6.2)
with the three following key modifications:
(1) The uniform policy is used for initialization of V Γ

UB (line 1 of Algorithm 6.3).
(2) The search depth is bounded (line 5). We terminate trials longer than C

cmin
· C−ηε(1−η)ε

steps where C is the upper bound on cost of playing the uniform policy and cmin
is the minimum per-step cost. We prove that this choice together with a stricter
termination condition V Γ

UB(b) − V Υ
LB(b) ≤ ηε (for η ∈ [0, 1)) guarantees that an

ε-optimal solution is found by the Goal-HSVI algorithm (see Theorem 6.1).
(3) Exploring the same history more than once is avoided. We keep track of the action-

observation history (a,o) during the exploration. A history is marked as closed by
adding it to the closed list CL in case the history is terminal (line 6) or all histories
reachable when using action a∗ are already closed (lines 9-10). The set of observations
O′ denotes all observations that lead to an action-observation history that has not
yet been closed. Together with the choice of o∗ ∈ O′ (line 11 of Algorithm 6.3), this
guarantees that no action-observation history is considered twice.
Note that the closed list CL can be efficiently represented using a prefix tree. Each

action-observation history is represented by a path in the tree (where each node corres-
ponds to playing the given action or seeing the given observation). Furthermore, each
node is attributed a binary flag indicating whether the given action-observation history
is closed. The memory efficiency of this representation comes from the fact that multiple
histories share the same prefix (and thus the same part of the path). This claim is
supported by the experimental evaluation (see Table 6.1) as the number of nodes in
the prefix tree is typically comparable with the number of elements representing value
functions V Υ

LB and V Γ
UB.
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Algorithm 6.3: Goal-HSVI, η ∈ [0, 1)
1 Initialize V Υ

LB and V Γ
UB (V Γ

UB initialized by the uniform policy)
2 CL← ∅
3 while V Γ

UB(binit)− V Υ
LB(binit) > ε do explore(binit, ε, 0,∅,∅)

4 procedure explore(b, ε, t,a,o)

5 if V Γ
UB(b)− V Υ

LB(b) ≤ ηε or t ≥ C
cmin
· C−ηε(1−η)ε then

6 CL← CL ∪ {(a,o)} and return

7 a∗ ← arg mina
[∑

s b(s)c(s, a) +
∑
o Pb[o|a]V Υ

LB(τ(b, a, o))
]

8 update(b)
9 O′ ← {o ∈ O | (aa∗,oo) 6∈ CL}

10 if O′ = ∅ then CL← CL ∪ {(a,o)} and return
11 o∗ ← arg maxo∈O′ Pb[o|a∗] · [V Γ

UB(τ(b, a∗, o))− V Υ
LB(τ(b, a∗, o))− ηε]

12 explore(τ(b, a∗, o∗), ε, t+ 1,aa∗,oo∗)
13 update(b)

Theorem 6.1. Assume η ∈ [0, 1) and let C be the maximum cost of playing the
uniform policy (C = maxs V Γ

UB(bs) for the initial V Γ
UB). Let cmin = mins,a c(s, a).

Then the Goal-HSVI algorithm (Algorithm 6.3) with the cutoff at depth T = C
cmin
·

C−ηε
(1−η)ε terminates and yields an ε-approximation of V ∗(binit).

Proof. Let (∅,∅) ∈ CL. Let ω be an action-observation history and consider a policy
π(ω) where the agent plays action a∗ chosen in explore when ω (represented by (a,o)
in the algorithm) was closed on line 10. Since a history is closed when the horizon T
or precision ηε is reached, or when all action-observation histories reached by playing
a∗ are closed, it is clear that all plays according to π eventually reach a terminal
action-observation history (closed on line 6). Let bω be the belief after experiencing
action-observation history ω and let us assign values vLB(ω) and vUB(ω) to each terminal
action-observation history ω corresponding to values V Υ

LB(bω) and V Γ
UB(bω) at the time

ω has been closed. Let us propagate values vLB and vUB using Bellman equation in a
bottom-up manner, i.e. for i ∈ {LB,UB},

vi(ω) = c(ω, π(ω)) +
∑
o Pbω [o | π(ω)] · vi(ωπ(ω)o) . (6.5)

Since the bounds might have improved since the histories were closed, it holds vLB(∅) ≤
V Υ

LB(binit) ≤ V Γ
UB(binit) ≤ vUB(∅). Observe that the probability that any history consistent

with π reaches the depth limit T (i.e., the sum of probabilities of all plays reaching
the depth T when following π) is at most pcutoff ≤ (1 − η)ε/(C − ηε). Otherwise, the
contribution of those plays to the expected cost vLB(∅) would have been greater than
C (as at least cmin is paid per step) which would have contradicted that C is the upper
bound. Now, since vUB(ω)− vLB(ω) in terminal histories that were cut off is less than C
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(reached with probability pcutoff), and vUB(ω) − vLB(ω) ≤ ηε otherwise, the difference
vUB(∅)− vLB(∅) in the root is a weighted average of these values,

vUB(∅)− vLB(∅) ≤ pcutoffC + (1− pcutoff)ηε ≤ ε . (6.6)

As vUB(∅)− vLB(∅) ≥ V Γ
UB(binit)− V Υ

LB(binit), the result follows.

6.3.2 Practical Extension: Iterative Deepening
The bound on the search depth induced by Theorem 6.1 can be unnecessarily large
in practice. To avoid generating excessively long trials, we propose a variant of our
Goal-HSVI algorithm enriched by the ideas of iterative deepening. Instead of terminating
trials when they exceed T = C

cmin
· C−ηε(1−η)ε , a cut-off depth T̂ is introduced, starting with

T̂ := 1 and increasing it when one of the following situations occur:
(1) All action-observation histories within the current depth limit T̂ are explored. If

no ε-optimal solution was found with the current depth limit, the limit must be
increased. This situation is indicated by (∅,∅) ∈ CL.

(2) The improvement during the current trial was insufficient. We say that the im-
provement is sufficient if the difference V Γ

UB(b) − V Υ
LB(b) before and after a call

to explore (denoted δ and δ′) weighted by the probability of seeing the observa-
tion sequence o when playing actions a (denoted Oa(o)) is greater than ρ(T̂ ), i.e.
Oa(o) · (δ − δ′) ≥ ρ(T̂ ). Our implementation uses ρ(T̂ ) = pT̂ with p = 0.95.

Whenever T̂ is increased, CL is set to ∅ to allow the algorithm to re-explore action-
observation histories considered previously and search them to a greater depth. In our
implementation, we always increase the search depth T̂ by one.

6.4 Empirical Evaluation
We present an experimental evaluation of Goal-HSVI in comparison with RTDP-Bel [Bonet
and Geffner, 2009]. We do not include vanilla-HSVI (HSVI2 [Smith and Simmons, 2005])
in the experiments as the algorithm without modifications is theoretically incorrect in the
Goal-POMDP setting, and it indeed crashed due to the recursion limit on some instances
(Hallway 2, Seq[5,5,3], Seq[5,5,4]). We start with the description of the setting of the
algorithms considered.

Goal-HSVI. Our implementation is based on the ZMDP2 implementation of HSVI2.
We updated the solver according to Section 6.3. Few other changes were made: (1) We
do not use adaptive precision from ZMDP that changes ε between iterations (fixed values
ε = 2 and η = 0.8 are used). (2) We do not use α-vector masking as the implementation
of this technique in ZMDP is incompatible with Goal-POMDPs. We terminate the
algorithm after 900s if an ε-optimal solution is not found.

2https://github.com/trey0/zmdp
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Goal-HSVI (15min time limit) RTDP-Bel (150k trials)
|S| |A| |O| Cost %Goal Bounds Time tref |CL| |Γ ∪Υ| Cost %Goal Time

Hallway 60 5 21 14.4±0.04 100.0% [12.8 .. 15.0] 904s 1s 14277 16788 64.7±1.2 97.5% 397s
Hallway 2 92 5 17 29.2±0.07 100.0% [13.4 .. 66.4] 909s 2s 14616 12648 356.1±2.8 83.5% 5071s
RS[4,4] 257 9 2 231.0±0.01 100.0% [229.0 .. 231.0] 23s 1s 16348 6651 230.9±0.3 100.0% 12s
RS[5,5] 801 10 2 306.9±0.04 100.0% [299.2 .. 306.9] 900s 9s 62926 31661 309.9±0.3 100.0% 23s
RS[5,7] 3201 12 2 336.5±0.01 100.0% [310.8 .. 336.5] 901s 120s 17137 8078 336.3±0.4 100.0% 62s
Seq[5,5,2] 121 5 2 15.5±0.02 100.0% [14.0 .. 16.0] 196s 1s 19675 24107 138.9±1.9 93.8% 38s
Seq[5,5,3] 281 5 2 35.4±0.04 100.0% [27.4 .. 36.7] 901s 1s 46753 37915 1496.7±3.3 25.9% 645s
Seq[5,5,4] 601 5 2 43.4±0.07 100.0% [32.5 .. 51.0] 901s 1s 31355 30070 1426.5±3.5 29.6% 841s

Table 6.1: Experimental results (on Intel Core i7-8700K). Cost denotes average cost of
the computed policy for the first 2,000 steps taken over 250,000 simulated plays. %Goal
is the percentage of the simulated plays that reached a target in less than 2,000 steps.
tref denotes the time when the Goal-HSVI upper bound V Γ

UB(binit) reached the confidence
interval of the cost of RTDP-Bel. |CL| denotes the size of the closed list as the number
of nodes of the representing prefix tree. 95% confidence intervals are reported.

RTDP-Bel. GPT solver3 is used as a reference implementation of RTDP-Bel. Since
there are no guidelines for choosing the parameters of RTDP-Bel, we use the default
values used in GPT (most importantly, K = 15 as in [Bonet and Geffner, 2009]) except for
increasing the cutoff parameter from 250 to 2000. In our experiments we let RTDP-Bel
perform 150,000 trials before terminating. As RTDP-Bel is a randomized algorithm, we
perform 12 independent runs and report the result with the lowest average cost. We
consider the cost of RTDP-Bel policies as a reference, and we report the time when
Goal-HSVI finds a policy of the same quality as tref .

Policy evaluation. We evaluate the quality of the policies computed by the algorithms
using simulation. We perform 250,000 simulated plays (we cut each of them after 2,000
steps if the goal is not reached by that time) and we report the average total cost. We
also report the percentage of simulated plays that did not terminate within the limit.

We evaluate the performance of our Goal-HSVI algorithm on three different domains.
The domains are: Hallway [Littman et al., 1995] and RockSample [Smith and Simmons,
2004] in their Goal-POMDP variants, and a new domain of Sequencing (inspired by [Kress-
Gazit et al., 2009]).

Hallway [Littman et al., 1995]. An agent is navigating in a maze trying to reach the
goal location while using unreliable actuators and sensors. In the original version, the
agent receives a reward only when the goal is reached, and the discounted-sum objective
is considered. For the Goal-POMDP version of the problem, we assume that the goal
state is absorbing and each step of the agent costs one unit. Bonet and Geffner [2009]
observed that RTDP-Bel had been outperformed by HSVI2 in the discounted-sum setting.
Our Goal-HSVI algorithm similarly outperforms RTDP-Bel in the Goal-POMDP variant
of Hallway (see Table 6.1). Moreover, the upper bound on cost produced by Goal-HSVI

3https://github.com/bonetblai/gpt-rewards
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Figure 6.4: Seq[5,5,4]

after 2s is lower than the cost of RTDP-Bel, and unlike RTDP-Bel, the policy produced
by our algorithm always reached the goal in less than 2000 steps. (RTDP-Bel failed to
reach goal in 2.5% and 16.5% of plays on Hallway and Hallway 2, respectively.)
RockSample[n,k] [Smith and Simmons, 2004]. A robot is operating in an n× n grid
with k rocks. Each of the rocks can be either ‘good’ or ‘bad’ (unknown to the agent).
The goal is to sample all the good rocks (approach them and perform expensive sampling)
and then leave the map. In the Goal-POMDP version [Chatterjee et al., 2016], a cost is
associated with each movement. Moreover, the agent pays a penalty for all the ‘good’
rocks he failed to sample upon leaving the map.

RTDP-Bel works well on discounted RockSample [Bonet and Geffner, 2009] due
to the problem structure (e.g., observability of the current position), and the same is
to be expected in the Goal-POMDP setting. Although Goal-HSVI does not leverage
the problem structure, it is competitive on all RockSample instances we consider, see
Table 6.1. Moreover, it provably found solutions of a comparable (or even better) quality
as RTDP-Bel by decreasing the upper bound on cost (see tref for the time required).
Recall that RTDP-Bel cannot provide any such guarantees on the quality of the computed
policy.
Sequencing[n,k,t]. An agent inspects t targets in an n× n grid world with k obstacles
(see Figure 6.4). He is uncertain about his position, and he has 5 actions available – 4
movement actions N , S, W , E and the inspection action. The movement actions are not
reliable and may result in a step in any unintended direction with probability 0.15. The
inspection action is deterministic and inspects the target (if there is one at the current
position). The agent may receive two observations – either the last action succeeded (he
stepped on an empty square / inspected a target) or it failed (he hit an obstacle / there
is no target to inspect). An additional challenge is that he has to inspect the targets in
the prescribed order – otherwise he pays a penalty 100t where t is the number of targets
he should have inspected earlier. For example, if he inspects targets in Figure 6.4 in the
order (4, 1, 3, 2), he accumulates a penalty 400.

We observe that RTDP-Bel does not work well for Sequencing and fails to find a
policy reaching the goal state reliably, especially on the larger two instances. In contrary,
our Goal-HSVI algorithm produces superior policies that always reached the goal (see
Table 6.1). Notice that on Sequencing[5,5,3] and Sequencing[5,5,4], the time to complete
150,000 trials of RTDP-Bel is comparable to the time given to Goal-HSVI, yet still, the
policy of RTDP-Bel is inferior.



148 CHAPTER 6. BEYOND DISCOUNTED SUM



CHAPTER7
Conclusion

Partially observable stochastic games represent a very general class of models for reasoning
about a wide range of real-world adversarial problems. Their generality, however,
comes at a computational cost as solving partially observable stochastic games is highly
intractable [Goldsmith and Mundhenk, 2008]. In this thesis, we have provided scalable
algorithms for solving relevant subclasses of partially observable stochastic games, and
we have also explored the application potential of the proposed methods. In this chapter,
we provide an overview of the main contributions of the thesis, and we will also outline
directions of future work.

7.1 Thesis Contributions

Solving one-sided POSGs (Chapter 3) One-sided partially observable stochastic
games (OS-POSGs) represent a subclass of general partially observable stochastic games.
Here, the game is played by two competing players, where only one player is imperfectly
informed about the course of the game, while the opponent is able to observe the entire
history of the game. While this assumption can be seen as overly restrictive, a wide
range of problems, especially those arising in security applications, fit well within the
boundaries of the one-sided POSG model. In security applications, we typically do not
know the information available to the adversary (i.e., the attacker). By assuming that
the attacker is perfectly informed in the game, we can derive robust strategies for the
defender that provide guarantees even when the attacker is less informed. The examples
of security problems that naturally fit within the boundaries of the one-sided POSG
model include, e.g., patrolling [Basilico et al., 2009a; Vorobeychik et al., 2014].

Despite the importance of this class of games, to the best of our knowledge, no
previous scalable algorithm to compute solutions of OS-POSGs existed. We provide a
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detailed theoretical analysis of the class of one-sided POSGs.1 Based on these insights
and inspired by the results on efficient point-based methods for solving single-agent
POMDPs [Pineau et al., 2003; Smith and Simmons, 2004, 2005; Spaan and Vlassis, 2005]
which rely on similar structural results from the realm of POMDPs, we design a scalable
algorithm to solve OS-POSGs. Our proposed algorithm [Horák et al., 2017a] is inspired by
the well-known heuristic search value iteration algorithm for solving POMDPs [Smith and
Simmons, 2004, 2005] and provably converges to near-optimal solutions of the one-sided
POSG model.

The importance and novelty of our results is highlighted by a recent publication of
Zhang et al. [2019] which appeared during the time of writing this thesis. Here, the
authors study the model of so-called non-cooperative inverse reinforcement learning
(N-CIRL). This model represents an interaction between the defender and the attacker,
where only the intent of the attacker (that influences the rewards) is unknown to the
defender. The N-CIRL model naturally belongs to the class of one-sided POSGs, and
hence our methods directly apply to this model as well.

Compact representation of information to improve scalability (Chapter 4) In
one-sided POSGs, a belief is a probability distribution over the states of the game. Such
representation becomes unmanageable in case the number of states of the game is high.
Instead of dealing with high-dimensional beliefs, we propose to represent beliefs compactly
using low-dimensional characteristic vectors. We further show that the algorithmic results
from one-sided POSGs can be extended to use the compact representation.

We apply the ideas on the problem of lateral movement that is well-established in
the cyber-security literature [Kamdem et al., 2017]. Here, we assume that the attacker
has managed to establish his foothold within a computer network (e.g., he has access to
at least one node within the network), and he now plans his steps towards increasing
his presence by compromising additional assets. On the other hand, the defender is
trying to harden the progress of the attacker by placing honeypots within the network.
Since the attacker can control almost arbitrary subsets of nodes at a time, the state
space of the game is exponential in the size of the network. We demonstrate that the
approximate algorithm based on the use of low-dimensional characterization of beliefs
significantly improves the scalability on this game when compared to the exact approach
from Chapter 3.

POSGs with two-sided information (Chapter 5) We generalize the one-sided
POSG model towards a setting where both players are imperfectly informed about the
course of the game. We introduce a model of partially observable stochastic games with
public observations (PO-POSGs), where the state space of the game is factored, and the
dynamics of the state spaces of the players is coupled only via a pair of public observations.

1A limited subset of the presented theoretical results has appeared in [Sorin, 2003]. Our original
publication [Horák et al., 2017a] has been prepared independently of these results. We expand this
discussion significantly, while our main contribution is the algorithmic solution to solve one-sided POSGs.
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We generalize the structural results from one-sided POSG case to PO-POSGs, and we
show that we can also extend the HSVI algorithm towards PO-POSGs.

While the model cannot capture all kinds of imperfect information in POSGs (we
require that each player has to be able to infer the belief of the adversary), we believe
that the class of games that can be modeled as PO-POSGs is rather wide. As an example,
consider the one-sided N-CIRL model from [Zhang et al., 2019]. The N-CIRL model
assumes that the only imperfect information in the game is the lack of the defender’s
knowledge of the intent of the attacker. Using the PO-POSG model, we can easily add
uncertainty for the attacker, e.g., about the location of valuable assets or the state of
defensive measures.

HSVI for Goal-POMDPs (Chapter 6) The algorithms for solving one-sided POSGs
(Chapter 3) and POSGs with public observations (Chapter 5) apply to the setting where
the discounted sum

∑∞
t=1 γ

t−1rt of rewards is the optimization objective. In some cases,
however, discounting the rewards is not desirable. The examples include, e.g., mission
planning in robotics scenarios. Here, the goal is to optimize the total, i.e., undiscounted,
energy consumption of the robot during the time he executes the mission. Such objective
is known as indefinite-horizon objective [Bertsekas and Tsitsiklis, 1996; Patek, 2001;
Bonet and Geffner, 2009; Kolobov et al., 2011; Chatterjee et al., 2016] and cannot be
modeled as a discounted problem. For example, if we use discounting in the robotics
scenario, the robot would have been able to delay the execution of costly parts of the
mission to decrease the discounted sum of costs, while the actual undiscounted cost of
executing the mission remains the same, or may even increase.

As a first step towards designing algorithms for solving POSGs with indefinite-horizon
objective, we study the problem of Goal-POMDPs. Here, the goal of the agent is to
reach the goal state while minimizing the total expected cost to reach the goal. We
study the problems associated with applying HSVI algorithm [Smith and Simmons,
2005] to Goal-POMDPs. After identifying these problems, we propose a variant of the
HSVI algorithm that is tailored to solving Goal-POMDPs and provably converges to the
ε-optimal solution, unlike the prior heuristic approach RTDP-Bel [Bonet, 1998; Bonet
and Geffner, 2009]. Furthermore, experimental results suggest that the algorithm is able
to outperform RTDP-Bel in the quality of the solution.

7.2 Future Work
We believe that the algorithmic ideas presented in this thesis open up a wide range of
possible directions for future work. In this section, we discuss some of these directions.

Domain-Independent Compact Representation In Chapter 4, we have presented
the idea of using compact representation of the beliefs to improve the scalability of the
algorithm for solving one-sided POSGs proposed in Chapter 3. While the theoretical
discussion of the approach has been framed in a general setting, the algorithmic results
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have been obtained for a class of games originating in cybersecurity. It is natural to aim
at extending these algorithmic results to a broader class of games. As an example, we can
consider that the domain is characterized by propositional variables, and states in the
game are characterized by true/false assignments to these variables2. We can then define
the characteristic vector χ using a set of formulas {ϕ1, . . . , ϕk}, such that χi corresponds
to the probability that the formula ϕi is true in the current belief.

Another line of research applies to the refinements of the proposed abstraction scheme.
Instead of using a fixed specification of characteristic vectors as in Chapter 4, we can
incrementally generate new coordinates of characteristic vectors while solving the game.
As an example, we can add new coordinates to characteristic vectors when we realize that
the information provided by the currently considered characteristic vectors is insufficient.
We hope that such ideas can result in an algorithm that can provide approximation
guarantees without reasoning about high-dimensional beliefs of the unabstracted game.

We also believe that the compact representation of beliefs may allow us to tackle
games beyond the one-sided POSG setting. As an example, consider games where player 2
can no longer observe the true state of the game as in one-sided POSGs, but he still
observes actions and observations of player 1. In this setting, player 2 is more informed
than player 1, but since he does not know the state, he will have to form a belief about
the current state of the game. This belief depends not only on information available
to player 1 (i.e., actions and observations of player 1), but also on private information
player 2 acquired (e.g., private actions of player 2 also influence the transitions). The
less informed player 1 has to reason about the belief of the adversary, and hence he will
have to reason about possible private histories of player 2. These histories are, however,
sequences of privately acquired pieces of information and hence, similarly to [Wiggers
et al., 2016], their number grows exponentially in time. The compact representation
may allow us to handle this exponential growth, and even allow us to approximately
solve infinite-horizon games with the above-mentioned information structure where the
number of possible private histories of player 2 is unbounded. To achieve this goal, we
can extract significant features of possible private histories of player 2 (e.g., number of
timesteps elapsed since the attacker last saw the defender) and use these features to form
characteristic vectors of bounded dimension.

Solving One-Sided Reachability Games In Chapters 3 and 5, we have presented
algorithms for solving games with the discounted sum objective. Another important
objective for security problems is the reachability objective [De Alfaro et al., 2007; Hansen
et al., 2009, 2011] which is common in verification community. Here, the defender does
not optimize his discounted payoff. Instead, we optimize the probability that the defender
can successfully accomplish his goal (such as capturing the evader or bringing the system

2Similar representation is common in planning and is used in the STRIPS formalism [Fikes and Nilsson,
1971].
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to a safe state). To the best of our knowledge, no algorithms for quantitatively3 solving
stochastic games with the reachability objective and partial observability exist. Although
the negative results for concurrent reachability games with perfect information [Hansen
et al., 2009, 2011] suggest that we cannot expect to design a practical algorithm for the
worst-case instances, we believe that we can obtain a scalable algorithm to solve practical
instances of reachability games where the defender is imperfectly informed by extending
the results from Chapters 3 and 6.

3By solving the game quantitatively, we compute the probability that the defender can successfully
accomplish his goal.
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