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ABSTRACT 

 The master’s thesis deals with the environmental impacts of design alternatives for the 

Retirement Home in Horoměřice, Czech Republic using the life cycle assessment. 

 State of the art of the LCA and multiple case studies were reviewed. Methodology of the 

LCA used in this study was specified. Three design alternatives of the retirement home were 
analyzed—the original architectural study with a reinforced concrete frame structural system, a 
modified design with a reinforced concrete and sand-lime wall system, and a new design with a 

reinforced concrete and cross-laminated timber wall system. 

 A “cradle-to-gate” (A1 - A3) LCA was carried out based on two input data sources and 

weighting was applied. Although the results of the analysis vary depending on the source, the 
overall weighted ranking of all alternatives remains the same. The timber alternative performs 

significantly better than both the sand-lime modification and the original design.  

KEY WORDS 

 life cycle assessment, environmental impacts, reinforced concrete, sand-lime masonry, 
cross-laminated timber 
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2. INTRODUCTION 

2.1. CONSTRUCTION AND ENVIRONMENT 

 Discussions about impacts of human actions on the environment have intensified worldwide 
throughout past decades. The levels of greenhouse gasses (GHG) emissions, most notably carbon 
dioxide, nitrous oxide and methane, have skyrocketed in the last 70 years (Figure 2.1) forcing the 

climate to change [1]. To confine this change in sustainable bounds the production of GHG has to 
be substantially reduced.  

 Construction industry alone makes up a significant part of GHG production (Figure 2.2) and 

it is therefore crucial to implement environmentally friendly design strategies into practice.  
 As seen in Figure 2.2, CO2 emissions produced in order to ensure operation of buildings are 
more than twice the size of the embodied emissions of the structures and construction processes. 

This ratio (especially in developed countries) has been increasing slowly [8], as ever more modern 
buildings require less energy to operate among others due to greater thermal insulation usage and 
technological improvements such as increased efficiency of building systems. Figure 2.3 shows 

how a correlated ratio of energy consumption in construction has evolved in the Czech Republic, 
specifically. 

9

Figure 2.1. World greenhouse gas emissions by gas. [2]
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 The recent reduction in operational energy is evident. This fact brings the embodied energy  
(and embodied environmental indicators) in the spotlight as it now represents a significant 

percentage of energy usage in the construction sector. 

2.2. GOAL OF THE THESIS 

 This thesis is a contribution to the research on optimum life cycle assessment (LCA) design 
of a building in terms of its environmental impacts. It deals with a case study of the Retirement 
Home in Horoměřice, Czech Republic. 

 The original study [5] by Barbora Šádková was created in 2017 with emphasis on 
architectural design. It was later modified in Bearing Structure of Retirement Home in Horoměřice 
[6] with respect to operational aspects (flat units vs. facilities), selected indoor-environment-

comfort criteria and environmental criteria. In both mentioned cases, compromises were made, 
some of which at the cost of increasing the environmental footprint of the design. 

 The goal of this thesis is to evaluate and compare the original, modified and other design 
alternatives of the retirement home using the LCA focusing on embodied environmental indicators 
only.  

10

Figure 2.2. Global CO2 emissions by sector, 2018. [3]

Figure 2.3. Energy consumption for building construction and operation in the Czech Republic. 
[4]
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3. LCA: STATE OF THE ART 

 The Life Cycle Assessment represents a method to evaluate the environmental impacts of 

any process carried out by mankind—creation and usage of construction materials included. It is an 
important tool used to quantify environmental impacts of (existing or proposed) structures and thus 
to support decision-making for sustainable building designs. 

 The process of LCA consists of four components [16]: 

- goal and scope definition, 
- life cycle inventory analysis, 
- life cycle impact assessment, 
- assessment results interpretation. 

3.1. GOAL AND SCOPE DEFINITION 

3.1.1. GOAL DEFINITION 

 The definition of LCA goals is the very first and important part of the analysis. It 
determines and guides the choices made in later phases. According to EN ISO 14040 [17], the goal 
of the study should define: 

- the intended application and the reason for carrying out the study, 
- the intended audience, 
- whether the result is intended to be used in comparative assertions disclosed to the public. 

 Based on these points the scope of the life cycle assessment will then be determined. 

3.1.2. SCOPE DEFINITION 

 The definition of the LCA scope describes the detail and depth of the analysis. It should also 

show, that the goal set earlier may be met with the chosen scope. The most important aspects when 
defining the scope are as follows [18]: functional unit, system boundaries, allocation methods, 
assumptions and limitations, data quality requirements and impact categories. 

11

Figure 3.1. LCA components. 

[22]
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 Functional unit defines what is being studied and facilitates the possibility of comparison 
of different products. When analyzing building materials, for example, commonly used functional 

units are 1 kg or 1 m3 of given material or in case of complete buildings 1 m2 of living area.  

 System boundaries define which processes and activities are included in the assessment. 

The selection of these depends on the goal of the study. As production processes are often 
connected, a clear definition of included and excluded activities is required. Exclusion of certain 
processes (“cut-offs”) are possible based on the goal of the analysis:  

 “For example, in an LCA of a product the construction of the production site and capital 
equipment is often excluded due to the fact that this is assumed to have a small impact on the 

overall result.” [18] 

 Another example of this sort might be the consideration of depreciation of machines that are 
designed for the extraction and transport of primary raw materials [15]. 
 Figure 3.2 shows all stages and modules of any product’s life: product stage, construction 

process stage, use stage, end-of-life stage and product reuse/recycling stage. Based on the selected 
scope the assessment may consider the whole life cycle of the product (modules A1 - D) or only a 
part of it. 

 Typical examples of LCA systems are as follows: 

- A1 - A3: “Cradle-to-Gate” only product stage is considered, 
- A1 - A4: “Cradle-to-Site” product stage and transportation to building site are 

12

Figure 3.2. Life cycle assessment stages. [7]
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  considered, 
- A1 - A5: ”Cradle-to-Installation” product and construction process stages are considered, 
- A1 - D: “Cradle-to-Grave” all stages are considered. 

 Allocation refers to the partition of environmental loads of a process used to create multiple 

products. Allocation method needs to be specified in a manner ensuring that only an appropriate 
portion of the environmental load is considered in analysis of each product.  

 Due to complexity of the assessment, various assumptions often have to be made. The 
nature of these assumptions and choices such as system boundary setting, selection of data sources 
and impact categories may be subjective [17]. Therefore it is essential that they are transparent and, 

most importantly, the same for all compared alternatives of the analyzed product.  

 Data quality requirements address among others [17]: 

- time-related coverage, 
- geographical coverage, 
- technology coverage, 
- precision, completeness and representativeness of the data, 
- sources of the data, 
- uncertainty of information. 

 Environmental Impact 
categories are selected, again, 
based on the goal of the 

analysis. They may be divided 
into groups with respect to the 
type of impact they contribute 

to. Figure 3.3 presents these 
categories and their environ-
mental impacts. 

  

13
Figure 3.3. Environmental impact categories. [21]
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3.2. LIFE CYCLE INVENTORY ANALYSIS 

 Life cycle inventory analysis is a process of compiling and quantifying all material and 

energy flows in the assessed system. It involves data collection and calculation procedures to 
quantify relevant inputs and outputs [17]. These procedures may differ with regards to the goal and 
scope of the LCA. Figure 3.4 shows a simple flowchart of a product system that may be developed 

for better understanding of the product system while defining system boundaries, and also during 
the phase of inventory analysis. 

 Apart from the allocation methods described above, the calculation of energy flow shall be 
considered while taking into account the different fuels and electricity sources used, the efficiency 

of conversion and distribution of energy flow as well as the inputs and outputs associated with the 
generation and use of that energy flow [17]. 

 Figure 3.5 presents a small segment of a completed life cycle inventory analysis of a 
nitrogen fertilizer.  

14

Figure 3.4. Product system flowchart. [19]
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3.3. LIFE CYCLE IMPACT ASSESSMENT 

 The process of LCIA involves assigning of the inventory data to specific environmental 

impacts. According to EN ISO 14040 [17] it consists of several mandatory and optional stages 
[15, 24, 25]: 

 Mandatory stages: 

- Selection of impact categories, category indicators and characterization models. 

Environmental impact categories and midpoint indicators are selected with respect to the goal 
and scope of the analysis (3.1.2). An iterative process of reviewing the goal and scope may be 
required if the assessment infers they cannot be met. 

- Classification. Inventory parameters are sorted and associated with specific environmental 
impacts. 

- Characterization. Inventory results are converted to common equivalence units using 
appropriate characterization factors (CFs). CFs indicate the relative contribution of evaluated 
substances to each impact category. For many impact categories, however, these factors are 

not directly available. They are often extracted from models, either existing or self-
constructed [16] (see also impact assessment methods below).  

 Optional stages: 

- Normalization. The quantified impact results are compared to a certain reference value. For 

example new product to old product or to regional average. 
- Grouping. For the purpose of result interpretation, the environmental impacts are sorted and 

grouped with regards to e. g. geographic relevance. 
- Weighting. The results for each impact category are assigned an importance value—weight. 

Specific categories may then be considered more significant than others. Applying weights 
also facilitates an overall performance comparison based on multiple impact categories. This, 

15

Figure 3.5. Life cycle inventory analysis example. [23]
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however, may also lead to substantially different results of the assessment depending on the 
considered weighting set. It is recommended that the selection of the weighting set shall be 

described in the scope definition and shall not be changed at any later stage of the study [26]. 

 Figure 3.6 lists several examples of existing impact assessment methods. These are often 

used in practice, as most of the choices in the assessment are already implied (selection of impact 
categories, category indicators, etc.) and models for characterization and weighting are described. 

 To perform an LCIA of a building design, existing software or databases are used. These 

contain ready to use LCIA (and in some cases also inventory analysis) results for building materials 
and products. Some of the databases are listed below: 

- Ecoinvent (Switzerland), 
- Envimat (Czech Republic), 
- Ökobaudat (Germany), 
- IBO Baustoffdatenbank (Austria), 
- INIES (France), 
- ICE (United Kingdom). 

16

Figure 3.6. Examples of existing impact assessment methods. [25]
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 Datasets from these databases may, however, differ drastically depending on LCA 
methodology used—as described above. These differences may be caused by the definition of the 

LCA scope—common problematic questions deal with, among others [10]:  

- which production processes will be included in the assessment, 
- if and how to include the transportation of analyzed products, 
- how to include maintenance, refurbishment or replacement of used products, 
- how to include the recycling of used products with regards to future recycling technologies. 

 Data from these databases vary also with regards to location, as individual countries or areas 
differ in distinctive production technologies, accounted transportation distances, sources of energy 

production and the recency of the data [4]. 
 Figure 3.7 illustrates the differences mentioned above on a specific example—a comparison 

of LCIA results of wood fibre insulation board based on the Ecoinvent [11] and Ökobaudat  [29] 
databases. The values are harmonized on the basis of Ecoinvent results. While some indicators 
remain fairly similar, substantial differences occur in the PEIn and GWP impact categories. Global 

warming potential indicator, especially, points out the distinction of LCA scopes used, suggesting 
unlike system boundaries.  

 When assessing the environmental impacts it is therefore crucial to use only data from 
sources that are based on identical LCA methodology as well as location. 

17
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Figure 3.7. Comparison of LCIA results of wood fibre insulation board based on different LCIA 
datasets. Values are harmonized to Ecoinvent dataset.
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3.4. ASSESSMENT RESULTS INTERPRETATION 

 The goal of the interpretation phase of LCA is to reach valid conclusions and 

recommendations based on the combined results of life cycle inventory analysis and life cycle 
assessment. These should be in accordance with the goal and scope of the study which was set (and 
possibly modified) in the earlier stages. Interpretation of results should be well documented and 

transparent. 

 The interpretation phase consists of three main elements [27]: 

- Identification of significant issues. Most impactful items of both inventory analysis and 
impact assessment are pointed out. 

- Evaluation of results. Completeness and consistency check and sensitivity analysis are 
carried out. In order to obtain valid LCA results, it is crucial not to omit any substantial 

processes when defining the system boundaries (3.1.2). Especially in case of comparative 
studies, it is of upmost importance for all studies to be consistent, following the same 
methodology. Sensitivity analysis is conducted to determine which items of the inventory or 

impact assessment notably influence the results. The scope of the LCA may then be modified 
again if required—for example, if the high-impact data considered in the inventory analysis 
stage were not accurate enough and now present significant uncertainties.  

- Conclusions and recommendations are made based on the evaluated results. 

18
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4. CASE STUDIES RESEARCH 

 Multiple LCA studies from various geographical areas have been reviewed in order to create 

viable design alternatives of the retirement home that are to be evaluated. 

4.1. COMPARATIVE LCA OF STRUCTURAL SYSTEM 
ALTERNATIVES 

 This study [12] examines the potential of reducing greenhouse gas emissions by substituting 
multi-story steel and concrete buildings with timber structures. LCA was applied to compare the 

global warming potential of a reinforced concrete structure with a corresponding timber structure 
for building heights of 3, 7, 12 and 21 storeys.  
 Existing reinforced concrete structures were chosen. Timber alternatives to those structures 

were then dimensioned to meet the same loading conditions. The structures were also designed with 
the same footprint areas and building heights. Figure 4.1 shows the specifications of considered 
buildings. 

 Three scenarios were considered varying on the amount of fly ash and scrap rebar steel used 
in the concrete elements. These are explained in Figure 4.2. 

19
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Table 1. Building specifications 

  3 7 12 21 

Location USA USA USA Trondheim, Norway 

Design wind speed 67 m/s 67 m/s 67 m/s 26 m/s 

Live load 2.4 kN/m2 2.4 kN/m2 2.4 kN/m2 2-3 kN/m2 

Storey height 3.66 m 3.66 m 3.66 m 3.4 m 

Building height 12 m 26.5 m 44.8 m 76 m 

Gross floor area 2613 m2 6097 m2 10542 m2 11823 m2 

 

Table 2. Material quantity data  

Material 
RC structures   Timber structures 

3 7 12 21   3 7 12 21 

Concrete C25/30 (m3) 925 2031 3436 0  23 174 261 718 

Concrete C35/45 (m3) 0 0 0 7186  0 0 0 0 

Rebar steel (t) 51 105 186 955  2 24 36 93 

Glulam (m3) 0 0 0 0  78 125 206 234 

CLT (m3) 0 0 0 0   513 1410 2792 4639 

 

3.2. LCA methodology 

LCA is a standardised method used to quantify environmental impacts of a product´s life cycle from the extraction 
of resources, through raw material production, manufacture, use and up to EOL disposal and recycling. The ISO 
standards provide a framework [37] and rules for calculation [38]. The software tool SimaPro v7 is used to calculate 
the life cycle resource consumption and emissions of the building materials. Inventory data has been collected from 
several sources including the Ecoinvent v.3.2 database [39], EPDs, information from manufacturers and other studies. 
The goal of the LCA study is to compare the environmental impact of RC structures and timber structures, given 
different sets of assumptions and scenarios. The functional unit is defined to be a building structural system including 
foundations with a certain load bearing capacity and a given number of storeys, with a 60-year lifetime. Since only 
the building structures are assessed, and the goal is to compare two material choices, the system boundaries are set to 
cradle-to-gate. This corresponds to A1-A3 as defined in the standard NS-EN 15643-2 [40]. In a consequential 
approach, the avoided impacts due to recycling or reuse of materials after EOL are also accounted for (stage D). The 
impact category assessed is the climate change impact (CC), calculated with the ReCiPe method using the hierarchal 
perspective [41]. This perspective is based on the most common policy principles regarding time frame (100 years) 
and impacts considered.   

In the current study, three calculation approaches are applied, differing in analysis perspective, handling of biogenic 
CO2-emissions, allocation rules and accounting for recycling benefits. For all three approaches, material emission 
factors are calculated and multiplied with the corresponding material quantities to obtain the total CC for each building 
structure. Approach 1 follows common EPD practice as given by related standards [42-45]. Approach 2 differ in 
allocation methods and includes GWPbio factors from Guest, Cherubini and Strømman [25] and carbonation of 
concrete during the building lifetime. In approaches 1 and 2, all generic data is modelled with the Ecoinvent system 
PRGHO�³5HF\FOHG�FRQWHQW´��ZLWK�DOORFDWLRQ�E\�SDUWLWLRQLQJ�LQ�PXOWL-output processes and cut-off allocation in recycling 
chains. Approach 3 is a consequential approach, where impacts from reuse and recycling and carbonation of concrete 
after EOL are included. Generic processes applied in this approach are based on the consequential system model in 
Ecoinvent, with substitution by system expansion instead of allocation. All emission factors in approaches 1 and 2 are 
calculated with a Nordic electricity mix (0.139 kg CO2-eq/kWh). In the consequential approach, a marginal electricity 
mix has to be used. It is assumed that in a Nordic market, the marginal mix is a European mix (0.476 kg CO2-eq/kWh). 
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of resources, through raw material production, manufacture, use and up to EOL disposal and recycling. The ISO 
standards provide a framework [37] and rules for calculation [38]. The software tool SimaPro v7 is used to calculate 
the life cycle resource consumption and emissions of the building materials. Inventory data has been collected from 
several sources including the Ecoinvent v.3.2 database [39], EPDs, information from manufacturers and other studies. 
The goal of the LCA study is to compare the environmental impact of RC structures and timber structures, given 
different sets of assumptions and scenarios. The functional unit is defined to be a building structural system including 
foundations with a certain load bearing capacity and a given number of storeys, with a 60-year lifetime. Since only 
the building structures are assessed, and the goal is to compare two material choices, the system boundaries are set to 
cradle-to-gate. This corresponds to A1-A3 as defined in the standard NS-EN 15643-2 [40]. In a consequential 
approach, the avoided impacts due to recycling or reuse of materials after EOL are also accounted for (stage D). The 
impact category assessed is the climate change impact (CC), calculated with the ReCiPe method using the hierarchal 
perspective [41]. This perspective is based on the most common policy principles regarding time frame (100 years) 
and impacts considered.   

In the current study, three calculation approaches are applied, differing in analysis perspective, handling of biogenic 
CO2-emissions, allocation rules and accounting for recycling benefits. For all three approaches, material emission 
factors are calculated and multiplied with the corresponding material quantities to obtain the total CC for each building 
structure. Approach 1 follows common EPD practice as given by related standards [42-45]. Approach 2 differ in 
allocation methods and includes GWPbio factors from Guest, Cherubini and Strømman [25] and carbonation of 
concrete during the building lifetime. In approaches 1 and 2, all generic data is modelled with the Ecoinvent system 
PRGHO�³5HF\FOHG�FRQWHQW´��ZLWK�DOORFDWLRQ�E\�SDUWLWLRQLQJ�LQ�PXOWL-output processes and cut-off allocation in recycling 
chains. Approach 3 is a consequential approach, where impacts from reuse and recycling and carbonation of concrete 
after EOL are included. Generic processes applied in this approach are based on the consequential system model in 
Ecoinvent, with substitution by system expansion instead of allocation. All emission factors in approaches 1 and 2 are 
calculated with a Nordic electricity mix (0.139 kg CO2-eq/kWh). In the consequential approach, a marginal electricity 
mix has to be used. It is assumed that in a Nordic market, the marginal mix is a European mix (0.476 kg CO2-eq/kWh). 

Figure 4.1. Specifications of analyzed buildings. [12]
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 The LCA was conducted in the “Cradle-to-Gate” scope using the Ecoinvent material 
database. The results as shown in Figure 4.3 prove a significant improvement of the GWP indicator 

of the timber structures. 

4.2. LCA OF TWO RESIDENTIAL TOWERS AT THE UNIVERSITY 
OF BRITISH COLUMBIA 

 This study [13] compares the environmental impact of two similar existing buildings 
(Figure 4.4) in Vancouver, Canada. The Tallwood House (completed 2017) is an 18-storey building 
with a hybrid structure - the foundations, first floor, second floor slab and stair/elevator cores are 
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the recovery and recycling process. The aggregate is assumed to be exposed to air for 4 months, before it replaces 
natural gravel in new concrete production or as filling in belowground applications. The increased carbonation during 
the 4-month exposure period is accounted for in stage D. This stage also contains avoided impacts from extraction of 
natural gravel and impacts from crushing of concrete into gravel size. These impacts are calculated according to 
Wahlström et al [50], excluding transport between the crushing facility to the final utilization site due to uncertain 
data. The impact of crushing concrete into aggregate is almost as high as the impact of extracting gravel, hence the 
net benefit is very small.   

Table 4. Overview of the production technology scenarios applied for steel and concrete emission factors 

  PA Reference scenario PB Worst-case scenario PC Best-case scenario 

Concrete 5 % fly ash no fly ash 30 % fly ash 

Rebar steel 80 % scrap content 16 % scrap content 100 % scrap content 

Table 5. Material emission factors for concrete and steel applied in the current study, by calculation approach and production technology 
scenario. The carbonation uptake displayed yields for the 12-storey structure for C25/C30 and the 21-storey structure for C35/C45. 
Contribution from fly ash shows the resulting emissions from allocating impacts from burning of coal to the fly ash.   

Contribution  to CC 
Approach 1   Approach 2   Approach 3 

PA PB PC  PA PB PC  PA PB PC 

Concrete C25/30 (kg CO2-eq/m3) 

A1-A3 

Excluding fly ash emissions 291 383 207  291 383 207  293 377 203 

Contribution from fly ash 0 0 0  7 0 44  0 0 0 

Carbonation through lifetime 0 0 0  -26 -34 -16  -26 -34 -16 

D 
Carbonation after crushing 0 0 0  0 0 0  -35 -46 -21 

Net benefit from recycling 0 0 0  0 0 0  -0,07 -0,07 -0,07 

Total 291 383 207  272 349 235  231 297 167 

Concrete C35/45 (kg CO2-eq/m3) 

A1-A3 

Excluding fly ash emissions 326 433 228  326 433 228  343 444 239 

Contribution from fly ash 0 0 0  8 0 51  0 0 0 

Carbonation through lifetime 0 0 0  -22 -29 -14  -22 -29 -14 

D 
Carbonation after crushing 0 0 0  0 0 0  -45 -59 -27 

Net benefit from recycling 0 0 0   0 0 0   0 0 0 

Total 326 433 228  312 404 265  276 356 199 

Rebar steel (kg CO2-eq/kg) 

A1-A3  0.89 2.21 0.48  0.89 2.21 0.48  2.97 2.97 2.97 

D   0 0 0   0 0 0   -0.65 -0.65 -0.65 

Total 0.89 2.21 0.48  0.89 2.21 0.48  2.32 2.32 2.32 

 
The steel emission factors are modelled with Ecoinvent processes and modified according to scrap content and 

electricity mix. Rebar steel is commonly produced with a large share of steel scrap, and thus 80 % and 100 % scrap is 
assumed in the reference and the best-case scenario, respectively. The worst-case scenario is based on a global average 
rebar steel product from Ecoinvent with 16 % scrap. In approach 3, the availability of steel scrap is taken into account. 
Since there is a current lack of steel scrap, the benefit from recycling is allocated to the producer of steel as a benefit 
obtained after EOL (stage D). It is assumed that whenever a steel product is demanded, this result in production of 
some virgin steel, i.e. the global steel production mix is maintained. The recycled content in all scenarios is 
consequently assumed equal to the share of scrap in the global production mix. At EOL, it is assumed that 90 % of 
the steel is recycled and replaces the global average steel mix in 2076. According to Pauliuk et al. [31], the global mix 
in 2016 and 2076 respectively, contains approximately 30 % and 60 % steel scrap. Where the steel scrap is used is not 
important in a consequential approach, and thus equal emission factors are obtained for all production scenarios.  

Figure 4.2. Production technology scenarios for steel and concrete. [12]
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Table 7. CC per m2 GFA for all structures in reinforced concrete (RC) and timber (T). The saving shows the GHG emissions saved if a timber 
structure is constructed instead of a RC structure, relative to the emissions caused by the RC structure. 

  

Storeys 

  CC/GFA (kg CO2-eq/m2) 

 Reference scenario Worst-case scenario Best-case scenario 

  RC T Saving  RC T Saving  RC T Saving 

App. 
1 

3  120.5 26.3 -78 %  179.1 27.9 -84 %  82.8 25.3 -69 % 

7  112.3 37.8 -66 %  165.8 45.7 -72 %  77.3 33.8 -56 % 

12  111.6 40.0 -64 %  165.3 46.8 -72 %  76.7 36.4 -52 % 

21   270.1 67.3 -75 %  441.8 83.2 -81 %  177.7 59.0 -67 % 

App. 
2 

3  114.7 41.6 -64 %  168.1 43.1 -74 %  93.2 41.0 -56 % 

7  105.8 54.6 -48 %  154.1 62.1 -60 %  86.5 51.9 -40 % 

12  105.4 59.3 -44 %  154.1 65.8 -57 %  85.9 56.9 -34 % 

21   261.7 94.7 -64 %  424.1 109.7 -74 %  200.4 89.1 -56 % 

App. 
3 

3   127.9 -140.3 -210 %  151.1 -139.7 -193 %  104.8 -140.9 -234 % 

7  117.0 -144.7 -224 %  138.5 -142.8 -203 %  95.4 -146.5 -254 % 

12  117.3 -169.1 -244 %  139.0 -167.4 -220 %  96.0 -170.7 -278 % 

21   355.2 -230.8 -165 %  403.8 -226.8 -156 %  308.2 -234.8 -176 % 

 
 

  
Fig. 1. A: Comparison of CC per m2 GFA for reinforced concrete (RC) and timber (T), by building height and calculation approach for the 
reference scenario. B: absolute saving of CC/GFA by substituting RC structure by a timber structure for the reference scenario. 

Figure 2 and 3 shows the total CC for the 21-storey timber and the 21-storey RC structures, respectively. The CC 
is broken down into contribution from the different parts of the supply chains, according to the divisions shown in 
Table 5 and 6. Negative values means that GHG emissions are avoided as a result of activities related to the structures. 

For the timber structures, the biogenic CO2 emissions from incineration of biofuels increase the CC substantially 
when the GWPbio factor is applied. This increase is larger than the decrease caused by the negative GWPbio factor for 
the timber materials, resulting in a net increase of the CC from A1-A3 of about 40 %. In approach 3, the avoided 
emissions from replacement of natural gas by incineration of bioenergy and timber materials are larger than the 
emissions from the production of materials for the timber structure, resulting in a net negative CC.  When it comes to 
stage D, the total net avoided GHG emissions for the concrete structure are considerably smaller than the net avoided 
GHG emissions for the timber structures. Hence, the climate change mitigation potential of substituting concrete 
structures with timber structures is larger seen from a consequential analysis perspective.   

It is important to note that the dimensioning wind load is far greater for the buildings up to 12 storeys than for the 
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Figure 4.3. GWP per m2 for all structures in reinforced concrete (RC) and timber (T) and relative 
saving of GHG. [12]
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Campus as a Living Laboratory (CLL) program, which 
combines the planning, design, construction and operation of 
the built environment with opportunities for applied research, 
teaching and learning [1]. 

One of the research areas that UBC has explored in the past 
few years is the potential benefits of incorporating life cycle 
assessment (LCA) and life cycle costing (LCC) methodologies 
to make informed decisions regarding capital projects and to 
incorporate these in policy and guidelines for future projects.  

Currently, UBC’s LEED v4 Implementation Guide 
demands all new institutional buildings achieve the credits for 
the building life cycle impact reduction [2]. UBC is also 
developing a 20-year Green Building Plan for its Vancouver 
Campus, which will incorporate life cycle method and tools to 
achieve net-positive environmental impacts in buildings 
through material selection and management [3]. 

Over the past decade, students and consultants have 
conducted Life Cycle Assessment (LCA) and Life Cycle 
Costing (LCC) studies on the existing buildings or major 
capital projects on campus. For example, a technical elective 
course was offered from 2008 within the Civil Engineering 
program in which students conducted LCA of campus 
buildings, eventually covering almost all of the campus 
buildings.  However, the scope of these studies were somewhat 
limited in the elements or life cycle stages they studied.  

This paper focuses on the major challenges and 
opportunities associated with the process of conducting a 
comparative LCA and LCC study on a hybrid mass-timber 
residential tower and a high-rise of similar design but with a 
concrete structure. The study was conducted by the UBC 
Sustainability Initiative (USI), based on LCA and LCC 
analyses done by Athena Sustainable Materials Institute 
(Athena) and Sensible Building Science (SBS) respectively, 
with the support of BC Forestry Innovation Investment (FII). 

Brock Commons Tallwood House (Tallwood House) is an 
18-storey, 15,115 m2, residential building, which was 
completed in the summer of 2017 as the first building in 
a mixed-use student hub. Tallwood House has 404 
student beds and provides study and social spaces on the 
ground floor and a student lounge on level 18 (Fig. 1.a). 

Tallwood House has an innovative hybrid structure: 
the foundation, ground floor, second-floor slab, and 
stair/elevator cores are cast-in-place concrete, while the 
superstructure is composed of prefabricated cross-
laminated timber (CLT) panel floor assemblies supported 
on glue-laminated timber (GLT) and parallel strand 
lumber (PSL) columns with steel connections, and a steel 
roof deck. The mass timber is encapsulated with 3-4 
layers of type-X gypsum boards for fire protection (see 
[4] for further information regarding Tallwood House). 

Ponderosa Commons Cedar House (Cedar House) 
served as the baseline building for comparison in this 
study. It is an 18-storey plus basement, 12,838 m2, 
residential tower forming part of the mixed-use 
Ponderosa Commons complex. Completed in 2015, it 
provides accommodations for 310. The basement through 
Level 2 have a mixed-use program, including student 
communal areas, research and administrative offices and 
building services and storage facilities (Fig. 1.b).  

Cedar House has a conventional structure for a high-rise 
building. The foundation and basement are reinforced concrete, 
as are the two stair/elevator cores. The superstructure consists 
of two-way reinforced concrete suspended slabs supported by 
concrete columns and a concrete roof structure.     

2. A summary of the comparative LCA-LCC study 

Since the focus of this paper is on the lessons learned from 
the process of conducting such a life cycle analysis, rather than 
the findings of the research per se, a summary of the research 
objectives, scopes, project team, data collection process, and 
main findings are presented in this section. 

2.1. The LCA-LCC study goal and objectives 

The goal of the LCA-LCC study was to understand the 
benefits and trade-off of utilizing mass-timber products in the 
high-rise applications through a comparative analysis of two 
case study projects.  The objectives of the study were to: 

x Compare the environmental impacts for both projects, 
including environmental impacts, energy flows and resource 
flows. 

x Compare the total cost of ownership (TCO) for both 
projects. 

x Identify potential correlations between life cycle 
environmental impacts and costs. 

2.2. The scope of the LCA-LCC study  

A cradle-to-grave LCA of each building was conducted by 
Athena, according to a North American interpretation of EN 
15978, a European standard that specifies the LCA method to 
assess the environmental performance of a building [5]. The 
scope of the LCA studies is as follow:  

a b 

Fig. 1 Studied student residential tower at UBC (a) Brock Commons Tallwood House:  
Mass-timber hybrid structure (b) Ponderosa Commons Cedar House: concrete structure 
 (photos by: Zahra Teshnizi) 
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25% less Global Warming Potential (GWP) and 18% less 
Fossil Fuel Depletion Potential impacts respectively (Fig. 
3).  

x The structure of Tallwood House (including substructure, 
mass-timber floor construction, and roof structure), 
performs considerably better than the concrete structure of 
Cedar House across all the environmental impact categories. 
This includes GWP where Tallwood House has 36% less 
negative impacts (Fig. 3). This is despite the fact that the 
extra layers of type-X gypsum boards are included in the 
mass-timber structure of Tallwood House. 

x First costs, in particular construction costs, are where the 
most significant cost differences are between the two 
buildings. The construction cost for Tallwood House is 
11% higher than Cedar House. However, an innovation 
premium was part of the higher costs of Tallwood House.  
The construction manager reported that they expect this 
premium to go down significantly within the next few 
projects [7].  Moreover, the structure itself is not the source 
for the differences in the construction cost. In fact, 
structural costs of the buildings are similar at about 18% of 
the total cost for Tallwood House and about 20% of the 
total cost for Cedar House.  

3. Discussion of the opportunities and challenges  

This section looks at the conducted comparative LCA-LCC 
study through the lens of the challenges and educational 
opportunities it provided. These opportunities and challenges 
are categorized and discussed in three major categories:  data 
collection, applicability of the results, and educational 
opportunities for students.  

3.1. Data collection  

The involvement of the USI as an insider UBC organization, 
gave the research team a unique opportunity to identify and 
access project and UBC-specific data that otherwise would 
have been difficult or considerably more time consuming to 

collect. For instance the USI was aware that the actual energy 
use of UBC buildings is typically higher than the modeled 
energy. Therefore, they attained modeled and actual energy use 
data from three recent UBC high-rise residences to recalibrate 
the modeled operational energy of both Tallwood house and 
Cedar House.  

Despite this unique access, most of the barriers that arose 
throughout this study were related to the availability, 
accessibility, or quality of relevant data. Such data gaps can be 
discussed in three groups:  

x Insufficient project or context specific data: an instance is 
the maintenance and operation costs, where not all the 
costs are tracked in a building specific level for the UBC 
student residences. UBC rather plans and distribute the 
budget across all the student residence portfolio. Other 
examples include the distance between the manufacturing 
and construction sites, energy use on the construction sites, 
or recycling and reuse rates in the manufacturing facilities. 
While this information might have been available, they 
were not accessible to the research team within a 
reasonable investment of time and effort. 

x Insufficient life cycle data: the mechanical and electrical 
systems were excluded from the LCA study. This is due to 
the lack of North American LCI data for these systems. 
Even for the elements that are available in LCI databases, 
the information might reflect an average number for the 
region, rather than specific data for the elements and 
technologies used in the studied buildings. Moreover, the 
long timeframe of a whole building life cycle study, make it 
difficult to predict some future factors such as the durability 
of building systems or the functional, technological and 
regulatory evolution. This is especially challenging when an 
innovative project like Tallwood House is studied, where 
there is little to no precedent data available.  

x Defining a comparable baseline: Having a baseline to 
compare the results of the Tallwood House LCA and LCC 
study was crucial. Cedar House was the most similar 
building to Tallwood House, among the existing UBC 
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Fig. 2 Comparison of TCO of 100 years in 2017 CDN $ for Tallwood 
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Fig. 3 Comparison of environmental impacts of building materials in 
Tallwood House vs. Cedar House, by building element per m² 
 (Based on the LCA studies conducted by Athena) 
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made of reinforced concrete while the rest of the building is composed of CLT boards and GLT 
columns. The Cedar House (2015) is also an 18-storey building with a structure made entirely of 

reinforced concrete. 

 A “Cradle-to-Gate” LCA was applied to assess the environmental performance of both 

buildings. LCA material data were taken over from the North American database Athena. The 
results (Figure 4.5) show that the building materials life cycle impacts are significantly smaller in 
all but one (ODP) studied categories. 

4.3. LCA OF BUILDINGS COMPARING STRUCTURAL 
STEELWORK WITH OTHER CONSTRUCTION TECHNIQUES 

 This study [14] shows the results of a life cycle assessment of three office building with load 

bearing systems made of reinforced concrete, steel and timber.  

 System boundaries of the LCA were set to include all load bearing structures. Cladding, 
interior fittings and building services were neglected. Exactly as in the case of the retirement home, 
the energy demands of the three office buildings are estimated to be the same. The scope of the 

LCA was set as “Cradle-to-Gate”. 

21

LCA Case Study 
 
The aim of this paper is to determine the performance of office buildings with different construction techniques 
for load bearing systems based on the results of a pre-feasibility study undertaken for the “Austrian Steel 
Association” entitled “steel for buildings – a sustainable construction material?” [8]. A life cycle assessment 
(LCA) on the basis of the ISO 14040 [1] was performed. It is investigated to which extend it is possible today to 
determine benefits of sustainable construction regarding different construction techniques. 
 
Life Cycle Assessment: 
According to ISO 14040, an LCA is a methodical approach to evaluate the environmental impacts associated 
with a product, process or service by identifying and quantifying material and energy flows. On the basis of the 
inventory data an impact assessment can be carried out. The results can be used for identifying and evaluating 
opportunities for improvement. 
 
System boundary, functional unit and indicators used for the LCA: 
The spatial system boundary is the load bearing structure of the buildings. It follows thus that foundations, walls 
and pillars, floor ceilings and the roofs are included. Cladding, interior fittings and building services are 
neglected. Due to the explicit objective of the study, only the construction phase (construction materials) is 
investigated representing only the first step towards a complete life cycle assessment demanded in the near 
future. For this study the heat/cooling demand and the electricity consumption is estimated to be the same at all 
three buildings. These factors cannot be influenced by the construction technique, that’s why they are excluded 
in this study. 
 
The functional unit is defined as square meter (m²) net area. Hence the influence of the building size can be 
disregarded. The selection of the indicators used for the life cycle impact assessment is chosen according to the 
ISO/DIS 21930 [7] and the drafts of the CEN TC350 [3]. The results of the impact assessment are calculated 
using the ecoinvent data v1.3 [4]. 
 
LCI results:  
The top section in figure 1 illustrates the three buildings; reinforced concrete, steel skeleton and timber skeleton 
construction (f. l. t. r.). The results of the life cycle inventory (LCI) for the total mass of construction materials 
are shown below. The pie chart compares the mass fraction arranged by construction materials (total load 
bearing construction in mass percent). The table below subdivides the employed input of construction materials 
by showing the amount of construction materials used per m² net area.  

Figure 1: Analyzed buildings, comparison of mass fraction per m² net area arranged by construction materials 
(load bearing construction in kg per m² respectively in mass-%). 

Figure 4.6. Analyzed office buildings, comparison of mass fraction per m2 net area arranged by 

construction materials. [12]
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 The functional unit was defined as square meter net area. The influence of the building size 
may, therefore, be disregarded. Environmental impact data were taken over from the Ecoinvent v1.3 

database. Figure 4.6 presents the analyzed buildings and the weight of materials used. 

 Figure 4.7 illustrates the environmental performance of analyzed structures harmonized on 

the basis of the reinforced concrete construction.  

 According to these results, all assessed techniques prove to be very similar and no 
construction technique is preferable as their ranking differs in considered environmental categories. 

 To provide an overall comparison, environmental performances of each technique will be 
benchmarked using the weighted environmental indicators as proposed in the next chapter. 

Harmonized values have been estimated from Figure 4.7. 
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The striking dominance of concrete used for load bearing constructions is particularly noteworthy. In the case of 
the steel- and timber skeleton construction this results primarily from the usage of concrete for the building 
foundations and staircases (safety in case of fire). Steel- and timber skeleton constructions need less construction 
materials per m² net area as the reinforced concrete construction due to their more efficient material usage. 
 
LCIA Results: 
The main results of the life cycle impact assessment (LCIA), as illustrated in figure 2, are harmonized on the 
basis of the reinforced concrete construction (100%). This chart illustrates how the different construction 
techniques perform within each indicator at the building level. However, the different indicators (e.g. GWP and 
ODP) cannot be compared in their relation to one another due to their different absolute values. It shows that the 
environmental performance of all load bearing construction systems is very similar, even though their ranking 
differs in various indicators.  
 
In contrary to the results of the LCI the dominance of concrete cannot be proven on the LCIA level. Looking at 
this in more detail, the unexpected high POCP-value of the timber skeleton construction is caused by the 
relatively high use of glued laminated timber (GLT), affecting also the other indicator results ODP, AP, EP, HTP 
and CEDnr. Regarding the indicators HTP and TEPT, a significant environmental burden from steel products 
can be seen, whereas concrete doesn’t influence these indicators too much. 
 
The results also indicate that structural steel and connecting plates for timber skeleton constructions play a 
significant role in LCIA and should always be included in the system boundaries. It can be seen that the 
influence on the indicators vary between 2 and 4% at the building level. Comparing the employed timber with 
the structural steel and connecting plates for skeleton technique, the influence on the indicators rises to 33% in 
the case of EP and to 260% in the case of TETP. The influence on the assessment should never be 
underestimated.  
 

Figure 2: Comparison of construction techniques in alphabetical order with their environmental performance. 
Figure 4.7. Comparison of construction techniques with their environmental performance. [12]
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 The weighted results (Table 4.1) surprisingly favor the steel construction while the timber 

structure benchmarked last of the three. Even after applying weights to environmental indicators, 
however, the results are still rather close, varying in 7,3 percentage points at most. 

4.4. COMPARATIVE LCA OF A CONCRETE APARTMENT 
BUILDING AND TIMBER APARTMENT BUILDING 

 This study [28] presents the results of an LCA of two similar apartment buildings in 
Trondheim, Norway. The goal of the study was to compare greenhouse gas emissions from both 

buildings. The assessment considered modules A1 - A3 (product stage), A4 (transportation to the 
building site) and B6 (operational energy use). Due to different number of floors, the functional unit 

was set as kgCO2,eqv/m2. 

Table 4.1 - Benchmarking of analyzed construction techniques

construction 
technique performance

environmental categories weighted 
scorePEIn GWP AP EP ODP POCP

reinforced 
concrete

harmonized 1,000 1,000 1,000 1,000 1,000 1,000
92,4 %

weighted 0,404 0,221 0,111 0,038 0,073 0,077

steel
harmonized 1,005 0,805 0,960 1,035 0,950 1,270

96,6 %
weighted 0,402 0,274 0,115 0,037 0,077 0,061

timber
harmonized 1,125 0,765 1,215 1,220 1,005 1,535

89,3 %
weighted 0,359 0,288 0,091 0,032 0,073 0,050
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The bathrooms used in the project are prefabricated bathroom cabins which are fabricated in Finland 
and transported to the building site. No EPD was available for the bathroom cabins, and to calculate the 
GHG emissions, the bathroom cabins are assumed to be made of concrete, reinforcement, steel and 
ceramic tiles. This is based on drawings of the bathroom cabins and the SINTEF certification [23]. EPDs 
of the different products have been used to calculate the GHG emissions of the bathroom cabins. 

The GHG emissions from the concrete underground car park are allocated between the buildings by 
using the gross internal area of the buildings as a factor. 

2.4.  Calculation of emissions from transport 
The emissions from the transportation to the building site (A4) is taken from the information in the EPDs 
for the different products. This means that the greenhouse gas emissions from transport is not accurate 
for this construction site, but it gives an indication of how large the greenhouse gas emissions from the 
transportation of materials could be for a typical building site. 

For the materials that did not have any transport information (A4) in the EPD, a transport calculator 
developed by Østfoldforskning has been used [24]. This transport calculator is based on data from 
Ecoinvent version 3.1. In the calculator information about the weight of the material, distance and the 
means of transport is entered. Both direct and indirect environmental impacts are included in the total 
environmental impacts from the calculator. 

3.  Case buildings 
Maskinparken 2 and TRE are two apartment buildings in an area called Lilleby in Trondheim, Norway. 
Maskinparken 2 was completed in August 2018 and Maskinparken TRE was completed in December 
2018. The buildings are connected by an underground carpark made of reinforced concrete. 

 

 

Figure 1. Maskinparken TRE to the right and Maskinparken 2 to the left with the concrete 
underground car park underneath. The picture is taken from the Solibri model of the buildings. 

3.1.  Maskinparken 2 
Maskinparken 2 is a 5-story concrete and steel building with 31 apartments. It is built according to the 
Norwegian TEK10 standard energy demands. Slabs and walls in the building are made of reinforced 
concrete, with steel columns around the edges of the slabs. The slabs are reinforced with prestressing 
steel. The main staircase in the building is made of prefabricated concrete elements, and the elevator 
shaft is cast-in-place concrete. There is a technical room on the roof of the building. The outer walls are 

Figure 4.8. Case buildings: Maskinparken 2 (left) and Maskinparken TRE. [28]
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 Case buildings are shown in Figure 4.8. Building on the left—Maskinparken 2—is a 5-floor 
concrete and steel building. Maskinparken TRE is an 8-floor wooden apartment building. The walls, 

slabs, main staircase and the elevator cores are made of CLT elements. This building is designed to 
meet the Norwegian passive house standards, while the concrete building is designed to meet less 
strict standards. The two buildings are connected by an underground car park made of reinforced 

concrete. Construction was finished in 2018. 

 Material quantities for each building are presented in Figure 4.10. Looking at the data of the 
CLT building, it is apparent that the reinforced concrete structure of the underground garage makes 

up a significant portion of used concrete in both buildings. 

 LCA results are depicted in Figure 4.11. The GHG emissions for the product stage (A1 - A3) 
of the CLT building are about 25% lower compared to the concrete building. The impact of concrete 

and reinforcement used in the underground garage proves to be significant in both cases (Figures 
4.11 and 4.12) 
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built as isolated timber frames with outer wind barrier and inner vapour barrier with gypsum board, and 
the façade of Maskinparken 2 is an aired plaster system. The concrete quality used in the slabs and walls 
of Maskinparken 2 and the underground car park is C35. 

3.2.  Maskinparken TRE 
Maskinparken TRE is an 8-story wooden apartment building with a total of 47 apartments. The building 
is built to meet the passive house standard NS 3700 [25]. The walls, slabs, main staircase and the elevator 
shaft are made of CLT-elements. Outer and inner load bearing walls and the ceilings are lined and 
covered with gypsum board. The façade cladding is wooden panels. Maskinparken TRE has a technical 
room underneath the building in the underground car park. 

Table 1: Differences between the two buildings 

 Maskinparken 2 Maskinparken TRE 
Gross internal area 2376,1 m2 3784,8 m2 
Number of stories 5 8 
Number of apartments 31 47 
Construction system Reinforced concrete and steel CLT 
Foundation Concrete underground car park Concrete underground car park 
Façade Aired plaster Wood panelling 
Balconies Prefabricated concrete CLT 
Outer walls Insulated stud work Lined CLT walls 

Table 2: Delivered energy 

 Maskinparken 2 
[kWh/m2] 

Maskinparken TRE 
[kWh/m2] 

Direct electricity 34,0 36,4 
District heating 63,9 49,9 

Table 3: Material quantities of the two buildings 

 Maskinparken 2 [ton] [%] Maskinparken TRE [ton] [%] 
Cast-in-place concrete 3874 82,8 3185 65,6 
Prefabricated concrete 227 4,9 66 1,4 
Steel 20 0,4 23 0,5 
Screed 196 4,2 417 8,6 
Reinforcement 151 3,2 125 2,6 
Cross laminated timber 4 0,1 540 11,1 
Wood 34 0,7 51 1,1 
EPS 2 0,1 0 0,0 
Bathroom cabins 62 1,3 102 2,1 
Façade panel and plaster 13 0,3 0 0,0 
Gypsum board 51 1,1 207 4,3 
Stone wool insulation 8 0,2 71 1,5 
Windows and balcony doors 16 0,3 25 0,5 
Doors 11 0,2 16 0,3 
Glass railing 0 0,0 17 0,3 
Other materials 10 0,2 10 0,2 

 
 
 

Figure 4.9. Case buildings: basic information summary. [28]
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built as isolated timber frames with outer wind barrier and inner vapour barrier with gypsum board, and 
the façade of Maskinparken 2 is an aired plaster system. The concrete quality used in the slabs and walls 
of Maskinparken 2 and the underground car park is C35. 

3.2.  Maskinparken TRE 
Maskinparken TRE is an 8-story wooden apartment building with a total of 47 apartments. The building 
is built to meet the passive house standard NS 3700 [25]. The walls, slabs, main staircase and the elevator 
shaft are made of CLT-elements. Outer and inner load bearing walls and the ceilings are lined and 
covered with gypsum board. The façade cladding is wooden panels. Maskinparken TRE has a technical 
room underneath the building in the underground car park. 

Table 1: Differences between the two buildings 

 Maskinparken 2 Maskinparken TRE 
Gross internal area 2376,1 m2 3784,8 m2 
Number of stories 5 8 
Number of apartments 31 47 
Construction system Reinforced concrete and steel CLT 
Foundation Concrete underground car park Concrete underground car park 
Façade Aired plaster Wood panelling 
Balconies Prefabricated concrete CLT 
Outer walls Insulated stud work Lined CLT walls 

Table 2: Delivered energy 

 Maskinparken 2 
[kWh/m2] 

Maskinparken TRE 
[kWh/m2] 

Direct electricity 34,0 36,4 
District heating 63,9 49,9 

Table 3: Material quantities of the two buildings 

 Maskinparken 2 [ton] [%] Maskinparken TRE [ton] [%] 
Cast-in-place concrete 3874 82,8 3185 65,6 
Prefabricated concrete 227 4,9 66 1,4 
Steel 20 0,4 23 0,5 
Screed 196 4,2 417 8,6 
Reinforcement 151 3,2 125 2,6 
Cross laminated timber 4 0,1 540 11,1 
Wood 34 0,7 51 1,1 
EPS 2 0,1 0 0,0 
Bathroom cabins 62 1,3 102 2,1 
Façade panel and plaster 13 0,3 0 0,0 
Gypsum board 51 1,1 207 4,3 
Stone wool insulation 8 0,2 71 1,5 
Windows and balcony doors 16 0,3 25 0,5 
Doors 11 0,2 16 0,3 
Glass railing 0 0,0 17 0,3 
Other materials 10 0,2 10 0,2 

 
 
 

Figure 4.10. Case buildings: material quantities. [28]
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4.  Results 
The results from the LCA are shown in figure 2 below. The total GHG emissions for the production 
stage (A1-A3), transport (A4) and operational energy use (B6) is 801,5 kg CO2-eq/m2 for Maskinparken 
2 and 696,6 kg CO2-eq/m2 for Maskinparken TRE for a building lifetime of 60 years. When looking at 
the production stage alone, Maskinparken 2 has a greenhouse gas emission of 312,9 kg CO2-eq/m2, 
while Maskinparken TRE has an emission of 233,9 kg CO2-eq/m2. 

 

  

Figure 2: GHG emissions from Maskinparken 2 
and TRE for the production stage (A1-A3), 

transport (A4) and operational energy use (B6). 

Figure 3: GHG emissions from the underground 
car park and the building (A1-A3). 

 

  
Figure 4: GHG emissions from the materials that 
emit the most greenhouse gases in Maskinparken 

2 for the production stage (A1-A3). 

Figure 5: GHG emissions from the materials 
that emit the most greenhouse gases in 

Maskinparken TRE for the production stage 
(A1-A3). 
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Figure 4.11. GHG emissions from all evaluated LCA stages (left) and product stage only. [28]
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4.  Results 
The results from the LCA are shown in figure 2 below. The total GHG emissions for the production 
stage (A1-A3), transport (A4) and operational energy use (B6) is 801,5 kg CO2-eq/m2 for Maskinparken 
2 and 696,6 kg CO2-eq/m2 for Maskinparken TRE for a building lifetime of 60 years. When looking at 
the production stage alone, Maskinparken 2 has a greenhouse gas emission of 312,9 kg CO2-eq/m2, 
while Maskinparken TRE has an emission of 233,9 kg CO2-eq/m2. 
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Figure 3: GHG emissions from the underground 
car park and the building (A1-A3). 
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Figure 4.12. GHG emissions from used materials (product stage only). [28]
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4.5. FINDINGS 

 All the reviewed studies have shown that timber structures perform significantly better in 

the global warming potential category. The study of LCA of two residential towers in Canada (4.2) 
even indicates better environmental performance of timber structures in all but one indicator.  
 On the other hand the study of three different structural systems (4.3) has presented 

inconclusive results as each system performed better in different categories. Furthermore, after 
applying weights to those categories, concrete and steel structures were evaluated as more favorable 
than timber structures.  

 The studies show both positive and negative overall results of timber structures. An 
alternative design of the Retirement Home with a timber structure will be created, evaluated and 

compared to the case studies presented in this chapter. 
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5. METHODS 

 The goal of this thesis is to minimize the environmental impacts of construction of the 

Retirement Home in Horoměřice. In order to do so, the original study will be evaluated using life 
cycle assessment. Alternative designs of the building will be presented, analyzed and compared. 

 First of all, the original design [5] will be assessed. The LCA methodology used is described 
below.  

 In Bearing Structure of Retirement Home in Horoměřice [6], a modified design was 
introduced. This alternative proposes changes to the structural system based on, among others, 
selected environmental impact indicators. Through the comparison of LCA results it will be 

determined whether this modification will indeed prove as environmentally favorable. 
 Multiple case studies have been reviewed. These studies and also present trends in the local 
construction industry suggest that implementation of timber structural systems may serve as a 

mitigation of environmental impacts of construction. These claims will be put to the test as a third 
alternative of the retirement home using the CLT shear wall system will be assessed and compared.  

5.1. LCA METHODOLOGY 

5.1.1. GOAL DEFINITION 

 The life cycle assessment will be applied to and serves as a benchmarking tool of the 
building of Retirement Home in Horoměřice, specifically. The LCA will be conducted for academic 
purposes only and its scope will be defined accordingly. 

5.1.2. SCOPE DEFINITION 

 In this study, embodied environmental impacts of load bearing structures, infill walls and 

thermal insulation elements will be examined (see assumptions below). These impacts are 
represented mainly in the LCA modules A, C and D (Figure 3.2). Figures 5.1  - 5.3 show, however, 
that the significance of product stage modules (A1 - A3) of common building materials is far greater 

than the significance of construction process stage (A4 - A5), end-of-life stage (C) and reuse / 
recycling stage (D).  
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 Moreover, the data required to consider the latter stages are not easily accessible as it has 
proven to be difficult to accurately determine the environmental impacts these stages of the product 

reaching 50 years or more to the future. 

 It is for these reasons that the system boundaries will be limited by modules A1 - A3. 
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Figure 5.1. Importance of  individual modules in LCA of concrete, steel and reinforcement steel. 
[7]
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 In order to enable the limitation of the LCA scope, assumptions had to be made.  
 In the case of Retirement Home in Horoměřice, it is assumed that all assessed design 

alternatives will demand nearly identical amount of energy for operation.  
 This study acknowledges that even though all considered alternatives will be designed with 
identical U-values and without any layout changes, this assumption may introduce uncertainties into 

the analysis. Due to differences in another, unaccounted for, factors such as thermal capacity of 
designed systems (and e. g. cooling energy demand differences resulting from this factor) the 
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Figure 5.3. Importance of modules in LCA in selected environmental categories of a studied 

composite (steel and concrete) structure. [7]

Figure 5.2. Importance of modules in LCA in selected environmental categories of a studied 
concrete structure. [7]
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operation stage (B1-B7) impacts may vary with each alternative. These factors could be eliminated 
by implementing appropriate environmentally friendly design strategies (shading options, thermal 

storage adobe walls, etc.) which is not, however, the goal of this thesis. 
 Floors, interior and exterior finishings will not be included in the analysis as it is assumed 
these could be designed in a similar fashion in all evaluated alternatives. Furthermore, it is assumed 

that environmental impacts of the carcass are much greater than the completing constructions. 

 As defined in the system boundaries, this assessment will evaluate the environmental 

impacts of used materials. In the life cycle inventory analysis and life cycle impact assessment 
stages, these impacts are calculated with regards to the functional unit of 1 kg of given material. 
With regards to the goal of this LCA (as all analyzed alternatives represent the very same building) 

no universally comparable unit (such as 1 m2 of living area) is necessary—the alternatives will be 
compared based on absolute values. 

 Data quality requirements will be defined to meet the goal of the LCA. Only time-, 
location- and technology-appropriate data will be used (see also 5.1.4). 

 Environmental impact categories have been chosen as follows: 

- PEIn Non-renewable primary energy demand, 
- GWP global warming potential, 
- AP acidification potential, 
- EP eutrophication potential, 
- ODP ozone layer depletion potential, 
- POCP photochemical ozone creation potential. 

 These indicators have been chosen in accordance with the National Tool for Building 
Quality Certification for the Czech Republic - SBToolCZ [9]. 

5.1.3. LIFE CYCLE INVENTORY ANALYSIS 

 It is not within the reach of this thesis to evaluate the impacts of production processes for 

each material. Instead, publicly available LCIA databases will be used. 
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5.1.4. LIFE CYCLE IMPACT ASSESSMENT 

 The LCIA will be based on BIM models of the design alternatives. These models have been 

created by modification of structural elements and by addition of non-load-bearing elements to the 
3D structural model presented in [6]. Volumes of used materials will be extracted from the BIM 
model [S6] and organized [S5].  

 LCIA databases will be used to obtain already classified and characterized life cycle 
impact data for every building material used. As mentioned in 3.3, datasets provided by these 

databases may differ significantly. Two different databases will be used to evaluate every analyzed 
alternative. The results will then be compared to each other and used as a sensitivity study of sorts. 
Databases chosen for this study are Ecoinvent v3.6 (Switzerland, [11]) and Ökobaudat 2019-III 

(Germany, [29]). Datasets taken over from these databases will at no point of the study be 
combined. 
 The Ecoinvent database, in most cases, provides environmental impact data specified for 

these locations: Switzerland, Europe without Switzerland, and rest of the world. Europe without 
Switzerland dataset will be considered, as it is most likely to correspond with the current situation 
of construction industry in the Czech Republic. 

 Normalization will be performed in terms of comparison of all analyzed alternatives. 

Grouping will not be part of this assessment. 
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Figure 5.4. Weights of sustainable building criteria according to SBToolCZ for residential 
buildings. [9]
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 Individual impact indicators will be assigned weights. The importance of each indicator will 
be determined based on the SBToolCZ methodology [9]. SBToolCZ considers not only 

environmental but also social and economical criteria (Figure 5.4). Since only selected criteria will 
be analyzed in this scenario, the weight of each category will be rescaled with respect to its original 
relevance. 

5.1.5. INTERPRETATION 

 The outcome will be interpreted in the Results chapter. Significant contributors to each 

impact category will be pointed out for every alternative. A simplified sensitivity analysis will be 
performed by comparing the results of the two used LCIA databases.  

 After the assessment of all alternatives an overall score will be determined by applying of 
the weighting set.  

Table 5.1 - Considered environmental categories and their weights

SBToolCZ 
ID

SBToolCZ 
weight abbreviation description rescaled 

weight

E.09 10,5 % PEIn Non-renewable Primary Energy Demand 40,38 %

E.01 7,5 % GWP Global Warming Potential 28,85 %

E.02 3,0 % AP Acidification Potential 11,54 %

E.03 1,0 % EP Eutrophication Potential 3,85 %

E.04 2,0 % ODP Ozone Layer Depletion Potential 7,69 %

E.05 2,0 % POCP Photochemical Ozone Creation Potential 7,69 %

∑ 100,00 %
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5.2. RETIREMENT HOME - ORIGINAL STUDY 

 This section introduces the original study of the Retirement Home in Horoměřice [5] as 

designed by Bc. Barbora Šádková in 2017. 

5.2.1. BASIC INFORMATION 

Name of the building:  Retirement Home in Horoměřice 
Purpose of the building: retirement home 
Number of floors:  4 above-ground floors, 1 basement floor 

Location:   K Rybníku, Horoměřice, Czech Republic 
    k. ú. Horoměřice, plot nr. 80/1, 70/4, 601/2 

5.2.2. LOCATION 

 The master's thesis of Barbora Šádková consists of the urban design of the town centre 

(Figure 5.6) and the architectural design of the retirement home. The building is located next to the 
old Horoměřice castle and a small public park in the K Rybníku street. 
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Figure 5.5. Building location. [30]
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5.2.3. ARCHITECTURAL AND STRUCTURAL DESIGN 

 The U-shaped floor plan of the building is a result of the urban design concept. Maximum 

lengths of the west, south and east facades are approximately 22 m, 40 m and 42 m, respectively. 
 The building consists of one basement floor and four above-ground floors. The first floor 
copies the floor plan dimensions of the basement floor. Its facade is finished by dark brown plaster. 

In the east section of the building, upper floors deviate from the floor plans of lower floors and 
create short repetitive cantilever structures. The facade of these floors is ventilated with the finish 
made of timber cladding. The contrast of the facades separates the entrance floor with common 

spaces from the typical upper floors with living units. 
 The structural system is a cast-in-place reinforced concrete frame. The columns were 
designed with dimensions of 300 x 300 mm. The point-supported reinforced concrete slabs were 

dimensioned as 300 mm thick. The infill walls are made of hollow fired bricks 100 mm or 300 mm 
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Figure 5.6. Urban design of Horoměřice town center. The retirement home building is marked. [5]
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thick. The roof structure is created by timber roof trusses. The load-bearing structures of the frame 
system are illustrated in Figure 5.7.  

 The above-ground floors are thermally insulated by mineral wool (220 mm). The basement 
is insulated by XPS (100 mm). 

5.2.4. LAYOUT DESIGN 

 The main entrance is located on the south side of the building. A side entrance connects the 

entrance hall to the garden and the park on the north side. Access to the underground car park is 
enabled by a ramp in the north-east corner. 
 The basement consists of a large underground garage, a kitchen, a technical room and 

facilities. Supply of the kitchen is enabled through an elevator next to the main entrance. To deliver 
food from the kitchen to the dining area upstairs a set of food elevators is used. 
 On the first floor there are an entrance hall, a dining room, common areas and administrative 

spaces. In the east wing there are medical rooms and five living units. 
 All upper floors are nearly identical. On each floor there are 3 single rooms, 15 double 
rooms, a common room, specially equipped bathroom and a storage room. 

 In total, 59 living units were designed accommodating up to 106 residents. 

5.2.5. DRAWINGS 

 All drawings presented below were taken over from the original architectural study [5]. 
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Figure 5.7. Schematic 3D model of the original structural system. [6]
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Figure 5.8. Urban design block plan. [5]
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Figure 5.9. Floor plan - basement. [5]
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Figure 5.11. Floor plan - second floor. [5]

2ND FLOOR

sklad
nápojů

úklid

sklad
prádla

A´

A

A´

A

B´

B úklid

Figure 5.10. Floor plan - first floor. [5]
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Figure 5.12. Floor plan - third floor. [5]
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Figure 5.13. Floor plan - fourth floor. [5]

4TH FLOOR



METHODS Bc. Vít Verner
ENVIRONMENTAL IMPACTS OF DESIGN ALTERNATIVES FOR A RETIREMENT HOME

 

39

±0.000

+4.500

-3.750

+7.500

+9.500

+14.600

±0.000

+4.500

-3.000

+7.500

+9.500

+15.000

Figure 5.14. Section A. [5]
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Figure 5.16. North elevation. [5]

ELEVATION - NORTH

Figure 5.17. South elevation. [5]

ELEVATION - SOUTH

Figure 5.18. East elevation. [5]
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Figure 5.19. West elevation. [5]

ELEVATION WEST

Figure 5.20 - Visualization 1 (south-east view). [5]

VISUALIZATION 1
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Figure 5.21. Visualization 2 (south-east view). [5]

VISUALIZATION 2

Figure 5.22. Visualization 3 (north view). [5]

VISUALIZATION 3
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5.2.6. BIM-MODEL 

 The evaluated BIM-model was created based on a 3D structural model. The load-bearing 

structures were modified according to the original design. Non-load bearing structures made of 
hollow fired bricks were added.  
 In Bearing Structure of Retirement Home in Horoměřice [6], a preliminary design of 

foundation piles was made. The piles were dimensioned as 8,0 m long and 1,3 m thick in diameter. 
They support the reinforced concrete columns of the basement floor. These piles were added to the 
BIM-model as well. 

 The foundation strips supporting the basement walls were not designed in [6]. Two 
alternatives (plain concrete and reinforced concrete) will be created and assessed based on the LCA 
methodology described above. The better performing alternative will be added to the 3D model. 

5.2.6.1. DESIGN OF FOUNDATION STRIPS 

 Preliminary design of the foundation strips was created with respect to the design load 

values from [6] (Figure 5.23) and load-bearing capacity of subsoil values taken over from [31] 
(Table 5.2). 

Table 5.2 - Load-bearing capacity of subsoil - sand (excerpt) [31]

soil class USCS 
symbol

load-bearing capacity of subsoil [kPa]

foundation strip width - b [m]

0,5 1,0 3,0 6,0

S1 SW 300 500 800 600

S2 SP 250 350 600 500
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Figure 5.23. Maximum design loads of the foundation strips.
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 Input information: 
  maximum design load :  fd = 610,0 kN/m 

  strip width estimate:   b’ = 1,0 m 
  load-bearing capacity of subsoil: Rdt = 500 kPa 
  basement wall thickness  tw = 200 mm 

 Minimal strip width: 
    fd . l ≤ Rdt . b . l ; l = 1,0 m (length of the foundation strip) 

    b ≥ (fd . l) / (Rdt . l) 
    b ≥ (610,0 . l,0) / (500,0 . l,0) 

    b ≥ 1,22 m 
 Preliminary design:  b = 1,3 m 

 Load distribution angle: 
  plain concrete:    αPC = 60 ° 

  reinforced concrete:   αRC = 45 ° 

 Minimal strip height: 

    h ≥ (b - tw) / 2 . tgα 
    hPC ≥ (1,3 - 0,2) / 2 . tg60 = 953 mm 
    hRC ≥ (1,3 - 0,2) / 2 . tg45 = 550 mm 

 Preliminary design: hPC = 960 mm 
    hRC = 550 mm 
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 The two schematic design alternatives and their cross section areas are presented in 
Figure 5.24. Both alternatives were using the Ecoinvent material database (Annex I): 

 Even though the cross-section area of the RC foundation strip is smaller and the 
reinforcement percentage is rather low, this alternative performs worse than the plain concrete strip. 
Therefore, plain concrete foundation strips as illustrated in Figure 5.24 will be designed and added 

to the BIM-model. 

 The evaluated 3D model is depicted in Figure 5.25. 

Table 5.3 - Foundation strips design alternatives - LCIA

material
A 

cross-
section 

area 
[m2]

ρ 
bulk 

density 
[kg/m3]

m’ 
mass per 

1m 
[kg/m]

environmental indicator values per 1m of 
foundation strip total 

weighted 
score 
[%]PEI 

[MJ]
GWP 
[kgCO2]

AP 
[gSO2]

EP 
[gPO43-,eqv]

ODP 
[gCFC2,eqv]

POCP 
[gC2H4,eqv]

plain 
concrete

0,989 2300,0 2274,7 1,3E+03 2,5E+02 4,2E+02 1,0E+02 8,4E-03 1,5E+01

96,1 %relative score 100,0 % 88,7 % 100,0 % 100,0 % 92,0 % 100,0 %

weighted score 0,404 0,256 0,115 0,038 0,071 0,077

reinforced 
concrete 
(0,5 %)

0,715 2330,0 1665,95 1,6E+03 2,2E+02 4,5E+02 1,6E+02 7,8E-03 3,4E+01

86,9 %relative score 83,1 % 100,0 % 94,3 % 64,1 % 100,0 % 45,5 %

weighted score 0,336 0,289 0,108 0,024 0,077 0,035
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Figure 5.25. BIM-model of the original design.
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 The volumes of used materials extracted from the model are presented in the following 
table: 

 The estimation of reinforcement percentages (for all alternatives) is described in Annex I. 

5.3. RETIREMENT HOME - ALTERNATIVE 1 

5.3.1. DESIGN MODIFICATIONS 

 This alternative was created as a modification of the original study based on the analysis of 

the structural system of the building [6]. The original frame system provided variability of the 
building layout but it was assumed it could not reach the level of indoor comfort of the shear wall 
system—infill walls were designed as light structures with rather low sound reduction index and the 

concept of non-load-bearing infill walls itself brings up the issue of acoustic bridges in-between the 
living units of the retirement home. 
 A hybrid structural system was proposed. In the spaces of the basement floor and part of the 

first floor, where the underground garage, facilities and common area are located, the frame system 
shall be preserved. For the rest of the building, where no layout changes are expected, the structural 
system will be changed to shear wall system. 

 Based on this modification a masonry structures optimization was conducted in order to 

select best performing material of the walls in terms of the following criteria: 

Table 5.4 - Total volume and mass of materials - original design

Material Total Volume 
[m3]

bulk density 
[kg/m3]

Total Mass 
[t]

Plain Concrete 231,8 2300,0 533,1
Reinforced Concrete (0,25%) 199,2 2310,0 460,1

Reinforced Concrete (0,5 %) 2047,9 2330,0 4771,5
Reinforced Concrete (2,0 %) 56,9 2410,0 137,1

Hollow Fired Brick 1386,1 825,0 1143,5
Polystyren, Extruded 54,8 25,0 1,4

Mineral Wool 748,4 115,0 86,1

∑ 4724,9 7132,7
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- thickness 
- weight 
- thermal capacity (of innermost 100 mm) 
- sound reduction index 
- primary energy demand 
- global warming potential 
- acidification potential 

 For the purpose of this optimization these masonry units and thermal insulation elements 
(external walls) were considered: 

- hollow fired bricks (Porotherm Profi) 
- hollow fired bricks with MW filling (Porotherm T Profi) 
- hollow fired bricks with EPS filling (Heluz Family 2in1) 
- aerated concrete blocks (Ytong P3-450) 
- sand-lime blocks (Vapis QUADRO) 

- expanded polystyrene (EPS) 
- mineral wool (MW) 
- wood fibre boards 

 Combinations of every masonry unit with each insulation type were created, all with the 

same U-value of 0,15 Wm-2K-1. Weights were assigned to the evaluated criteria as shown in 
Table 5.5. 

 The results of the optimization are shown in Figure 5.26. Based on these results, the best 
performing combination was determined. It consisted of sand-lime blocks and wood fibre board 

insulation in case of external walls. Where necessary, due to fire safety issues, the wood fibre 
insulation was, however replaced by mineral wool [6]. Thermal insulation of the roof was also 
changed from mineral wool to cellulose fibre. 

Table 5.5 - Weights of evaluated criteria [6]

t m’ C100 Rw’ PEI’ GWP’ AP’ ∑

0,10 0,10 0,25 0,25 0,10 0,10 0,10 1,00
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 Finally, the structural system of Alternative 1 may be summarized as follows: RC columns 

of dimensions 400 x 400 mm and 250 x 850 mm were designed in the basement floor and partly in 
the first floor. Shear walls made of primarily sand-lime blocks (thickness of 200 mm) or RC 
(thickness  of also 200 mm) create the structural system of upper (typical) floors. RC slabs were 

dimensioned as 240 mm thick. The load-bearing structures are illustrated in Figures 5.27 - 5.29. 
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Figure 5.27. Schematic drawing of load-bearing structures - 1st floor. [6]
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Figure 5.29. Schematic 3D model of the structural system of Alternative 1. [6]

Figure 5.28. Schematic drawing of load-bearing structures - typical floor. [6]
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5.3.2. BIM-MODEL 

 The BIM-model was created in accordance with 5.2.6, including the design of the 

foundation strips. It is depicted in Figure 5.28. 

 The volumes of used materials extracted from the model are presented in table 5.6: 

Table 5.6 - Total volume and mass of materials - alternative 1

Material Total Volume 
[m3]

bulk density 
[kg/m3]

Total Mass 
[t]

Plain Concrete 231,8 2300,0 533,1
Reinforced Concrete (0,25%) 350,0 2310,0 808,5

Reinforced Concrete (0,5 %) 1694,5 2330,0 3948,1
Reinforced Concrete (2,0 %) 27,9 2410,0 67,3
Reinforced Concrete (6,0 %) 73,8 2630,0 194,1

Sand-lime Blocks 850,3 2000,0 1700,6
Polystyren, Extruded 54,8 25,0 1,4

Mineral Wool 162,2 115,0 18,7
Wood Fibre 384,4 160,0 61,5

Cellulose Fibre 337,6 50,0 16,9

∑ 4167,3 7350,1
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Figure 5.28. BIM-model of Alternative 1.
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5.4. RETIREMENT HOME - ALTERNATIVE 2 

5.4.1. DESIGN MODIFICATIONS 

 This alternative was created based on the reviewed case studies (4) and the LCIA results of 
the original design and Alternative 1. The goal of this design was to minimize the use of concrete 
and reinforcement as all studied cases prove significant environmental impacts of these materials. 

Instead timber structure made of CLT boards will be created in terms of a preliminary design. 
 Even in this alternative the use of concrete cannot be avoided, however. The structural 
system will remain unchanged (compared to Alternative 1) in the basement and partly in the first  

and second floors due to durability and structural design requirements.  

 This alternative assumes the maximum design loads as in Alternative 1 [6]. Dead and live 

design loads of the floors are listed in the following tables.  

 The non-load bearing CLT walls (bathroom partitions) will be considered as a uniformly 
distributed dead load fp,d. Its value is calculated for the typical floors based on the partition wall  
thickness (tp), length (lp), height (hp) and self weight (ɣp), and the area of a typical living unit (Alu). 

Tabulka 5.7 - Design dead loads of floors [6]

layer t 
[m]

ɣ 
[kN/m3]

gk 
[kN/m2]

ɣG 
[-]

gd 
[kN/m2]

ceramic tiles 0,010 20,0 0,20

1,35

0,27

adhesive 0,005 15,0 0,08 0,10

cement screed* 0,067 22,0 1,47 1,99

EPS system board* 0,028 0,4 0,01 0,01

CLT board - - - -

gypsum plaster 0,010 13,0 0,13 0,18

celkem 1,89 2,55

*Equivalent thickness was determined with respect to the irregular shape.

Table 5.8 - Design dead loads - partition walls

floor
partitions

Alu 
[m2]

fp,k 
[kN/m2]

ɣf 
[-]

fp,d 
[kN/m2]tp 

[m]
lp 

[m]
hp 

[m]
ɣp 

[kN/m3]

2nd - 4th 0,080 5,700 2,860 5,0 34,0 0,24 1,5 0,36
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 Total characteristic dead and live loads fs,g,k and fs,q,k considered in the preliminary design of 

CLT slabs: 
  fs,g,k = gk = 2,55 = 2,55 kN/m2 
  fs,q,k = fp,k + qk = 0,24 + 2,0 = 2,24 kN/m2 

 The preliminary dimensions of CLT slabs will be determined according to preliminary 
design tables (for continuous beams) presented in Figure 5.29 for the maximum slab span of 6,5 m 

[6]: 

Table 5.9 - Design live loads [6]

category qk 
[kN/m2]

ɣq 
[-]

qd 
[kN/m2]

floor slabs 2,00

1,5

3,00

staircases 2,00 3,00

balconies, loggias 2,50 3,75
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Two-span beam_Deformation

Dead 
weight

Imposed 
load

gk*) nk 3,00 m 3,50 m 4,00 m 4,50 m 5,00 m 5,50 m 6,00 m 6,50 m 7,00 m
1,00 ϴϬ�L3s ϴϬ�L3s ϵϬ�L3s ϭϮϬ�L3s ϭϰϬ�L5s
2,00 ϵϬ�L3s ϭϬϬ�L3s ϭϲϬ�L5s  – 2
2,80 ϴϬ�L3s ϵϬ�L3s ϭϬϬ�L3s
3,50
4,00 ϵϬ�L3s ϭϲϬ�L5s  – 2 ϭϴϬ�L5s
5,00 ϭϬϬ�L3s ϭϮϬ�L3s ϭϰϬ�L5s ϭϲϬ�L5s  – 2 ϭϲϬ�L5s  – 2 ϭϴϬ�L5s ϮϬϬ�L5s
1,00 ϲϬ�L3s ϴϬ�L3s ϵϬ�L3s ϭϬϬ�L3s ϭϮϬ�L3s ϭϲϬ�L5s  – 2
2,00 ϵϬ�L3s
2,80 ϵϬ�L3s
3,50
4,00 ϵϬ�L3s ϭϴϬ�L5s
5,00 ϭϬϬ�L3s ϭϮϬ�L3s ϭϰϬ�L5s ϭϲϬ�L5s  – 2 ϭϴϬ�L5s ϮϬϬ�L5s
1,00 ϵϬ�L3s ϭϬϬ�L3s ϭϮϬ�L3s ϭϲϬ�L5s  – 2
2,00 ϵϬ�L3s
2,80
3,50
4,00 ϵϬ�L3s
5,00 ϭϬϬ�L3s ϭϮϬ�L3s ϭϰϬ�L5s ϭϲϬ�L5s  – 2 ϭϴϬ�L5s ϮϬϬ�L5s
1,00 ϴϬ�L3s ϵϬ�L3s ϭϰϬ�L5s ϭϲϬ�L5s  – 2
2,00 ϴϬ�L3s
2,80
3,50
4,00
5,00 ϴϬ�L3s ϭϬϬ�L3s ϭϲϬ�L5s  – 2
1,00 ϴϬ�L3s ϭϮϬ�L3s ϭϴϬ�L5s
2,00
2,80
3,50
4,00
5,00 ϭϬϬ�L3s ϮϬϬ�L5s ϮϮϬ�L7s  – 2

>ŽĂĚͲďĞĂƌŝŶŐ�ĐĂƉĂĐŝƚǇ͗ ^ĞƌǀŝĐĞĂďŝůŝƚǇ͗ &ŝƌĞ�ƌĞƐŝƐƚĂŶĐĞ
a) Verification of bending stresses a) Quasi-constant design situation HFA 2011
b) Verification of shearing stresses zul w fin = 250 v1 = 0.65 mm/min

b) Infrequent design situation:

kmod = 0.8 zul w q,inst = 300 R0
zul w fin - w g,inst = 200 R30

R60
kdef = 0.6 R90

Span of single-span beam

ϭϰϬ�L5s

ϭϰϬ�L5s

ϮϬϬ�L5sϭϲϬ�L5s  – 2
ϭϮϬ�L3s

ϭϮϬ�L3s

ϭϰϬ�L5s

1,00

1,50

2,00

2,50

ϭϲϬ�L5s  – 2

ϭϴϬ�L5s
3,00

ϭϲϬ�L5s  – 2

ϴϬ�L3s

ϴϬ�L3s

ϵϬ�L3s

ϭϬϬ�L3s

ϭϲϬ�L5s  – 2

ϭϴϬ�L5s

ϭϴϬ�L5s

ϮϬϬ�L5s
ϭϲϬ�L5s  – 2

ϭϲϬ�L5s  – 2

ϭϴϬ�L5s

ϭϲϬ�L5s  – 2

ϭϮϬ�L3s

ϭϮϬ�L3s

ϭϰϬ�L5s

ϭϮϬ�L3s
ϭϮϬ�L3s

ϴϬ�L3s
ϵϬ�L3s

ϭϬϬ�L3s

ϭϮϬ�L3s

ϭϮϬ�L3s

ϭϰϬ�L5s

ϭϰϬ�L5s

ϭϲϬ�L5s  – 2

ϴϬ�L3s

ϴϬ�L3s

ϴϬ�L3s
ϭϬϬ�L3s

ϭϰϬ�L5s

ϭϲϬ�L5s  – 2
ϭϲϬ�L5s  – 2

ϭϲϬ�L5s  – 2

ϴϬ�L3s

ϴϬ�L3s

ϭϬϬ�L3s

ϭϬϬ�L3s

ϭϮϬ�L3s

ϭϰϬ�L5s
ϭϮϬ�L3s

ϭϮϬ�L3s

ϭϮϬ�L3s

ϭϮϬ�L3s

ϭϰϬ�L5s

ϭϮϬ�L3s

ϭϰϬ�L5s

ϭϲϬ�L5s  – 2

ϭϰϬ�L5s

In accordance w ith approval Z 9.1-559
DIN 1052 (2008) and/or EN 1995-1-1 (2006)

* The CLT self-weight is already taken into account in the table at ρ = 500 kg/m³! Service class 1, imposed load category A (ψ0 = 0.7; ψ1 = 0.5; ψ2 = 0.3)

ϲϬ�L3s

ϴϬ�L3s

ϴϬ�L3s

ϴϬ�L3s

ϭϬϬ�L3s

ϭϰϬ�L5s

ϭϲϬ�L5s  – 2

 

The analysis was carried out using the imposed load on one field. In the event of imposed loads on both fields, the required ceiling 
thickness may be reduced. 
This table specifies the required thicknesses for the normal design situation (R0). The colour shading represents the fire resistance 
time which is also attained with this thickness. If a higher fire resistance time is required, a separate analysis must be carried out. 
This table is only for preliminary estimate purposes and is not a substitute for a structural analysis. 

Figure 5.29. Preliminary design table for continuous beam CLT boards. [32]
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 Ceiling slab preliminary design:  ts = 160 mm 

 Design loads of vertical CLT elements will be determined using the preliminary design 
method used in [6] for dimensioning of load-bearing sand-lime walls. This calculation is based on 
the dead and live loads of the floors and approximate load area of the walls.  

 Total characteristic dead and live loads ff,g,k and ff,q,k considered in the preliminary design of 
CLT walls: 

  fw,g,k = ∑fw,g,k,i = 12,48 + 4,16 + 8,32 + 19,66 + 4,34 = 48,96 kN/m2 
  fw,q,k = ∑fw,q,k,i = 7,28 + 7,80 + 20,80 + 2,50 = 38,38 kN/m2  

 Structural height of the typical floors: hw = 3,1 m. 

 The preliminary dimensions of CLT walls will be determined according to preliminary 

design tables (for external walls) presented in Figure 5.30: 

Table 5.10 - Approximate most unfavorable line load of CLT walls

structure notes fk 
[kN/m2]

ɣf 
[-]

load 
width 

[m]

amount 
n 

[-]
fw,k,i 

[kN/m]

roofing

self weight 1,20 1,35

10,40 1

12,48

snow load 0,70 1,50 7,28

live load 0,75 1,50 7,80

roof slab self weight 
0,16 . 5,0 0,80 1,35 5,20 1 4,16

ceiling slabs

self weight 
0,16 . 5,0 0,80 1,35

5,20 2

8,32

floor 1,89 1,35 19,66

live load 2,00 1,50 20,80

partitions 0,24 1,50 2,50

Table 5.11 - Approximate self weight of CLT walls of upper floors

structure notes fk 
[kN/m]

ɣf 
[-]

h 
[m]

fk,total,sw 
[kN/m]

CLT 0,14 . 5,0 0,70 1,35 6,20 4,34
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 Load-bearing wall preliminary design:  tw = 120 mm 
 Partition wall preliminary design:  tw,p = 80 mm 

 The CLT structure will be designed as a platform framing system. The anchoring as 
illustrated in Figure 5.31 will approximately be accounted for in the LCA of the design, also. The 

amount of steel needed for anchoring is estimated below. 
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External walls (w = 1.00 kN/m² )

Dead 
weight

Imposed 
load

ŐŬΎͿ ŶŬ

R 0 R 30 R 60 R 90 R 0 R 30 R 60 R 90 R 0 R 30 R 60 R 90
ϭϬ͕ϬϬ ϴϬ��ϯƐ ϲϬ��ϯƐ ϭϮϬ��ϯƐ
ϮϬ͕ϬϬ
ϯϬ͕ϬϬ ϵϬ��ϯƐ
ϰϬ͕ϬϬ
ϱϬ͕ϬϬ
ϲϬ͕ϬϬ ϴϬ��ϯƐ ϵϬ��ϯƐ ϵϬ��ϯƐ ϭϬϬ��ϱƐ
ϭϬ͕ϬϬ ϴϬ��ϯƐ ϴϬ��ϯƐ ϭϬϬ��ϱƐ
ϮϬ͕ϬϬ ϵϬ��ϯƐ
ϯϬ͕ϬϬ
ϰϬ͕ϬϬ
ϱϬ͕ϬϬ
ϲϬ͕ϬϬ ϭϰϬ��ϱƐ ϭϮϬ��ϱƐ
ϭϬ͕ϬϬ ϲϬ��ϯƐ ϵϬ��ϯƐ
ϮϬ͕ϬϬ
ϯϬ͕ϬϬ
ϰϬ͕ϬϬ
ϱϬ͕ϬϬ
ϲϬ͕ϬϬ
ϭϬ͕ϬϬ ϲϬ��ϯƐ ϭϮϬ��ϯƐ ϵϬ��ϯƐ
ϮϬ͕ϬϬ ϭϬϬ��ϯƐ
ϯϬ͕ϬϬ
ϰϬ͕ϬϬ
ϱϬ͕ϬϬ
ϲϬ͕ϬϬ ϵϬ��ϯƐ ϭϬϬ��ϯƐ ϭϬϬ��ϯƐ ϭϮϬ��ϯƐ
ϭϬ͕ϬϬ ϴϬ��ϯƐ ϴϬ��ϯƐ
ϮϬ͕ϬϬ
ϯϬ͕ϬϬ
ϰϬ͕ϬϬ
ϱϬ͕ϬϬ
ϲϬ͕ϬϬ ϭϮϬ��ϱƐ
ϭϬ͕ϬϬ ϲϬ��ϯƐ ϭϮϬ��ϯƐ ϭϬϬ��ϱƐ ϭϬϬ��ϯƐ
ϮϬ͕ϬϬ
ϯϬ͕ϬϬ
ϰϬ͕ϬϬ
ϱϬ͕ϬϬ
ϲϬ͕ϬϬ ϭϲϬ��ϱƐ

Load-bearing capacity: Fire resistance
a) Verif ication as a column (compression in accordance w ith equivalent member method)
b) Shearing stresses

kmod = 0.8 R0
R30
R60
R90

Height (buckling length)

v1,i = 0.63 mm/min
v1,a = 0.86 mm/min

ϲϬ��ϯƐ
ϴϬ��ϯƐ

ϭϬϬ��ϱƐ
ϭϮϬ��ϯƐ

ϲϬ��ϯƐ

ϴϬ��ϯƐ

ϴϬ��ϯƐ
ϭϮϬ��ϯƐ

ϭϰϬ��ϱƐ

ϭϰϬ��ϱƐ

ϲϬ��ϯƐ

ϴϬ��ϯƐ

ϴϬ��ϯƐ

ϵϬ��ϯƐ

ϭϬϬ��ϱƐ

ϭϮϬ��ϯƐ

ϴϬ��ϯƐ

ϴϬ��ϯƐ
ϭϬϬ��ϱƐ

ϭϮϬ��ϯƐ
ϲϬ��ϯƐ

ϭϬϬ��ϯƐ

ϭϬϬ��ϱƐ

ϭϮϬ��ϱƐ
ϭϰϬ��ϱƐ

ϴϬ��ϯƐ

ϵϬ��ϯƐ

ϭϮϬ��ϯƐ

ϭϰϬ��ϱƐ

ϴϬ��ϯƐ

ϴϬ��ϯƐ

ϵϬ��ϯƐ

ϲϬ��ϯƐ

ϴϬ��ϯƐ

ϴϬ��ϯƐ ϭϬϬ��ϱƐ

ϴϬ��ϯƐ

ϵϬ��ϯƐ

ϭϬϬ��ϯƐ

ϭϬϬ��ϱƐ

ϭϬϬ��ϱƐ

ϭϮϬ��ϱƐ

ϭϮϬ��ϯƐ

ϭϰϬ��ϱƐ
ϭϮϬ��ϱƐ ϭϰϬ��ϱƐ

ϲϬ��ϯƐ

ϴϬ��ϯƐ

ϴϬ��ϯƐ
ϭϬϬ��ϱƐ

ϭϮϬ��ϯƐ

ϭϰϬ��ϱƐ
ϴϬ��ϯƐ

ϴϬ��ϯƐ

ϵϬ��ϯƐ

ϭϬϬ��ϱƐ

ϴϬ��ϯƐ

ϵϬ��ϯƐ ϭϬϬ��ϱƐ
ϭϮϬ��ϱƐ

ϵϬ��ϯƐ

ϭϬϬ��ϱƐ

ϭϮϬ��ϱƐ
ϭϰϬ��ϱƐ

ϵϬ��ϯƐ

ϭϰϬ��ϱƐ

ϭϰϬ��ϱƐ

ϲϬ��ϯƐ

ϴϬ��ϯƐ
ϵϬ��ϯƐ

ϭϬϬ��ϯƐ

ϭϬϬ��ϱƐ

ϴϬ��ϯƐ

ϴϬ��ϯƐ

ϭϮϬ��ϱƐ
ϭϰϬ��ϱƐ

ϵϬ��ϯƐ

ϭϬϬ��ϯƐ

ϭϮϬ��ϯƐ

ϭϰϬ��ϱƐ

ϴϬ��ϯƐ

ϴϬ��ϯƐ

ϵϬ��ϯƐ

ϭϬϬ��ϱƐ

ϭϮϬ��ϱƐ

ϵϬ��ϯƐ

ϭϬϬ��ϯƐ
ϭϮϬ��ϱƐ

ϭϰϬ��ϱƐϴϬ��ϯƐ
ϭϬϬ��ϱƐ

ϭϮϬ��ϯƐ

ϭϮϬ��ϱƐ ϭϰϬ��ϱƐ

ϭϬϬ��ϯƐ

ϭϬϬ��ϱƐ

ϭϮϬ��ϯƐ

ϭϮϬ��ϱƐ
ϭϰϬ��ϱƐ

3,00 m 4,00 m

ϭϬ͕ϬϬ

ϭϬϬ��ϱƐ

ϭϮϬ��ϱƐ
ϭϰϬ��ϱƐ

ϴϬ��ϯƐ

ϴϬ��ϯƐ

ϭϬϬ��ϯƐ
ϭϬϬ��ϱƐ

In accordance w ith approval Z 9.1-559
DIN 1052 (2008) and/or EN 1995-1-1 (2006)

* The CLT self-weight is already taken into account in the table at ρ = 500 kg/m³! 6HUYLFH�FODVV����LPSRVHG�ORDG�FDWHJRU\�$��ȥ0� ������ȥ1� ������ȥ2 = 0.3)

ϲϬ͕ϬϬ

ϮϬ͕ϬϬ

ϯϬ͕ϬϬ

ϰϬ͕ϬϬ

ϱϬ͕ϬϬ

ϭϬϬ��ϯƐ

2,50 m

 
 
This table is only for preliminary estimate purposes and is not a substitute for a structural analysis. 

Figure 5.30. Preliminary design table for external walls made of CLT boards. [33]

Figure 5.31. Platform framing CLT system. [34]
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 In this preliminary design, it will be assumed that the steel angles used for anchoring are 
placed 500 mm apart. The volume of a single steel angle will be estimated as 2,528 . 10-5 m3, which 

represents an equal leg angle with dimensions of 80 x 80 mm and 2 mm thickness. 

 The quantity of angles required will be estimated based on the area and wall length of a 

typical living unit of the retirement home. The unit is 6,4 x 5,0 m, length of partition walls inside 
each unit is 5,7 m. Total volume of steel will be added to the material quantities extracted from the 
BIM-model. 

 Total unit wall length:   l = 5,0 + 6,4 + 5,0 + 5,7 = 22,1 m 
 (one sided anchoring) 

 Quantity of angles per unit:  nunit = l / 0,5 = 22,1 / 0,5 = 44,2 pcs/unit 
 Livin unit area:   Aunit = 6,4 . 5,0 = 32,0 m2 

 Quantity of angles per m2:  nm2 = nunit / Aunit = 44,2 / 32,0 = 1,38 pcs/m2 
  Total floor area:   A = 2934 m2 
 Quantity of angles in total:  n = nm2 . A = 1,38 . 2934 ≐ 4050 pcs 

 Total volume:    V = n . Vangle = 4050 . 2,528 . 10-5 = 0,1023 m3 

 The structural system of Alternative 2 remains the similar as of Alternative 1 in terms of the 

basement and the first floor with the only difference being lower reinforcement percentage of RC 
beam grid supporting the load-bearing walls (due to significantly lower self weight of CLT boards). 
In the upper floors, sand-lime blocks are replaced with CLT wall boards with thickness of 120 mm 

55
Figure 5.32. Schematic 3D model of the structural system of Alternative 2.
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(load-bearing structures) or 80 mm (partition walls). The third floor, fourth floor and roof slabs are 
made of CLT floor boards with thickness of 160 mm.  

 The load-bearing structures are illustrated in Figure 5.32. 

5.4.2. BIM-MODEL 

 Again, the BIM-model was created in accordance with 5.2.6, including the design of the 
foundation strips. It is presented in Figure 5.33. 
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Figure 5.33. BIM-model of Alternative 2.
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 The volumes of used materials extracted from the model are listed in table 5.12: 

Table 5.12 - Total volume and mass of materials - Alternative 2

Material Total Volume 
[m3]

bulk density 
[kg/m3]

Total Mass 
[t]

Plain Concrete 231,8 2300,0 533,1
Reinforced Concrete (0,25 %) 353,2 2310,0 815,9

Reinforced Concrete (0,5 %) 1150,6 2330,0 2680,8
Reinforced Concrete (2,0 %) 27,9 2410,0 67,3
Reinforced Concrete (3,0 %) 73,8 2470,0 182,3

Sand-lime Blocks 249,7 2000,0 499,4
CLT 852,9 500,0 426,5

steel 0,1 7850,0 0,8
Polystyren, Extruded 54,8 25,0 1,4

Mineral Wool 147,5 115,0 17,0
Wood Fibre 352,3 160,0 56,4

Cellulose Fibre 337,6 50,0 16,9

∑ 3832,2 5297,7
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6. RESULTS 

 First of all, the results of Ecoinvent based assessment will be presented for all alternatives. 

The results of Ökobaudat based analysis will be described afterwards. Finally, a comparison of the 
two will be shown. 

6.1. ECOINVENT  

6.1.1. ORIGINAL DESIGN 

 The LCIA results of the original design are presented in Table 6.1 and Figure 6.1.  

Table 6.1 - LCIA results - Ecoinvent - Original Design

Material Total Mass 
[t]

PEIn 
[GJ]

GWP 
[tCO2]

AP 
[kgSO2]

EP 
[kgPO43-,eqv]

ODP 
[gCFC2,eqv]

POCP 
[kgC2H4,eqv]

Plain Concrete 533,1 306,5 58,6 98,6 24,5 2,0 3,6
Reinforced Concrete 

(0,25%) 460,1 350,2 55,9 104,2 33,2 1,9 6,3

Reinforced Concrete 
(0,5 %) 4771,5 4509,5 634,7 1277,3 467,9 22,2 97,1

Reinforced Concrete 
(2,0 %) 137,1 274,7 27,3 69,2 33,9 1,0 8,1

Hollow Fired Brick 1143,5 2943,0 272,9 623,9 196,7 20,4 45,4
Polystyren, Extruded 1,4 132,1 5,2 18,3 4,1 0,1 2,1

Mineral Wool 86,1 1737,9 97,5 719,4 157,5 4,8 38,3

∑ 7132,7 10254,0 1152,2 2910,8 917,8 52,4 200,9

Relative Contribution 0 - 5 % 5 - 10 % 10 - 20 % 20 - 30 % 30 - 40 % 40 - 50 % 50+ %
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Figure 6.1. Relative contributions of materials to individual categories - Original Design.
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6.1.2. ALTERNATIVE 1 

 The LCIA results of Alternative 1 are presented in Table 6.2 and Figure 6.2. 

 

Table 6.2 - LCIA results - Ecoinvent - Alternative 1

Material Total Mass 
[t]

PEIn 
[GJ]

GWP 
[tCO2]

AP 
[kgSO2]

EP 
[kgPO43-,eqv]

ODP 
[gCFC2,eqv]

POCP 
[kgC2H4,eqv]

Plain Concrete 533,1 306,5 58,6 98,6 24,5 2,0 3,6
Reinforced Concrete 

(0,25%) 808,5 615,4 98,3 183,2 58,4 3,4 11,0

Reinforced Concrete 
(0,5 %) 3948,1 3731,3 525,2 1056,9 387,1 18,4 80,3

Reinforced Concrete 
(2,0 %) 67,3 134,9 13,4 34,0 16,6 0,5 4,0

Reinforced Concrete 
(6,0 %) 194,1 873,7 69,0 206,3 116,1 2,7 29,3

Sand-lime Blocks 1700,6 2175,3 221,7 362,0 96,9 20,0 37,8

Polystyren, Extruded 1,4 132,1 5,2 18,3 4,1 0,1 2,1
Mineral Wool 18,7 376,7 21,1 155,9 34,1 1,0 8,3

Wood Fibre 61,5 114,9 10,8 63,3 26,1 0,5 1,9
Cellulose Fibre 16,9 120,6 6,2 49,0 10,8 0,7 2,1

∑ 7350,1 8581,4 1029,5 2227,4 774,8 49,2 180,3

Relative Contribution 0 - 5 % 5 - 10 % 10 - 20 % 20 - 30 % 30 - 40 % 40 - 50 % 50+ %
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Figure 6.2. Relative contributions of materials to individual categories - Alternative 1.
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6.1.3. ALTERNATIVE 2 

 The LCIA results of Alternative 2 are presented in Table 6.3 and Figure 6.3. 

 

Table 6.3 - LCIA results - Ecoinvent - Alternative 2

Material Total Mass 
[t]

PEIn 
[GJ]

GWP 
[tCO2]

AP 
[kgSO2]

EP 
[kgPO43-,eqv]

ODP 
[gCFC2,eqv]

POCP 
[kgC2H4,eqv]

Plain Concrete 533,1 306,5 58,6 98,6 24,5 2,0 3,6
Reinforced Concrete 

(0,25%) 815,9 621,0 99,2 184,8 58,9 3,4 11,1

Reinforced Concrete 
(0,5 %) 2680,8 2533,6 356,6 717,6 262,9 12,5 54,6

Reinforced Concrete 
(2,0 %) 67,3 134,9 13,4 34,0 16,6 0,5 4,0

Reinforced Concrete 
(3,0 %) 182,3 486,8 43,9 119,1 62,1 1,7 15,2

Sand-lime Blocks 499,4 638,8 65,1 106,3 28,5 5,9 11,1
CLT 426,5 2286,0 119,2 663,5 317,3 10,1 52,7
steel 0,8 23,4 2 6,6 3,8 0,0 1,0

Polystyren, Extruded 1,4 132,1 5,2 18,3 4,1 0,1 2,1
Mineral Wool 17,0 342,5 19,2 141,8 31,0 0,9 7,6
Wood Fibre 56,4 105,3 9,9 58,0 23,9 0,5 1,7

Cellulose Fibre 16,9 120,6 6,2 49,0 10,8 0,7 2,1

∑ 5297,7 7731,6 798,2 2197,7 844,4 38,3 166,6

Relative Contribution 0 - 5 % 5 - 10 % 10 - 20 % 20 - 30 % 30 - 40 % 40 - 50 % 50+ %
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Figure 6.3. Relative contributions of materials to individual categories - Alternative 2.



RESULTS Bc. Vít Verner
ENVIRONMENTAL IMPACTS OF DESIGN ALTERNATIVES FOR A RETIREMENT HOME

6.1.4. ECOINVENT RESULTS COMPARISON 

 Following Tables and Figures present a comparison of weighted results based on the 

Ecoinvent database. 

Table 6.4 - LCIA results - Ecoinvent - Comparison

Design Alternative PEIn 
[GJ]

GWP 
[tCO2]

AP 
[kgSO2]

EP 
[kgPO43-,eqv]

ODP 
[gCFC2,eqv]

POCP 
[kgC2H4,eqv]

Total Weighted 
Score 
[%]

Original Design 10254,0 1152,2 2910,8 917,8 52,4 200,9
74,4 %

relative score 75,4 % 69,3 % 75,5 % 84,4 % 73,1 % 82,9 %

weighted score 0,305 0,200 0,087 0,032 0,056 0,064

Alternative 1 8581,4 1029,5 2227,4 774,8 49,2 180,3
87,1 %

relative score 90,1 % 77,5 % 98,7 % 100,0 % 77,8 % 92,4 %
weighted score 0,364 0,224 0,113 0,038 0,060 0,071

Alternative 2 7731,6 798,2 2197,7 844,4 38,3 166,6
99,7 %

relative score 100,0 % 100,0 % 100,0 % 91,8 % 100,0 % 100,0 %
weighted score 0,404 0,289 0,115 0,035 0,077 0,077

Alt. 1 Difference -1672,5 -122,7 -683,4 -143,0 -3,2 -20,6 12,7 %
Alt. 2 Difference -2522,4 -353,9 -713,1 -73,3 -14,1 -34,3 25,3 %
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Figure 6.4. Relative comparison of each category for all alternatives (Ecoinvent).
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6.2. ÖKOBAUDAT  

6.2.1. ORIGINAL DESIGN 

 The Ökobaudat-based LCIA results of the original design are presented in Table 6.5 and 
Figure 6.5. 

 

Table 6.5 - LCIA results - Ökobaudat - Original Design

Material Total Mass 
[t]

PEIn 
[GJ]

GWP 
[tCO2]

AP 
[kgSO2]

EP 
[kgPO43-,eqv]

ODP 
[gCFC2,eqv]

POCP 
[kgC2H4,eqv]

Plain Concrete 533,1 244,3 48,6 70,4 13,1 1,3E-02 5,7
Reinforced Concrete 

(0,25%) 460,1 243,7 44,3 66,0 11,9 1,1E-02 6,0

Reinforced Concrete 
(0,5 %) 4771,5 2864,8 483,6 737,6 130,2 1,2E-01 72,4

Reinforced Concrete 
(2,0 %) 137,1 138,0 17,9 30,0 4,8 3,2E-03 3,8

Hollow Fired Brick 1143,5 2575,4 275,0 391,2 42,2 2,9E-03 26,2

Polystyren, Extruded 1,4 121,3 4,0 6,3 0,8 4,1E-08 2,0
Mineral Wool 86,1 1019,5 109,2 524,5 58,5 1,4E-04 25,9

∑ 7132,7 7207,0 982,6 1826,0 261,5 1,5E-01 142,0

Relative Contribution 0 - 5 % 5 - 10 % 10 - 20 % 20 - 30 % 30 - 40 % 40 - 50 % 50+ %
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Figure 6.5. Relative contributions of materials to individual categories - Original Design.
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6.2.2. ALTERNATIVE 1 

 The LCIA results of Alternative 1 are presented in Table 6.6 and Figure 6.6. 

Table 6.6 - LCIA results - Ökobaudat - Alternative 1

Material Total Mass 
[t]

PEIn 
[GJ]

GWP 
[tCO2]

AP 
[kgSO2]

EP 
[kgPO43-,eqv]

ODP 
[gCFC2,eqv]

POCP 
[kgC2H4,eqv]

Plain Concrete 533,1 244,3 48,6 70,4 13,1 0,0 5,7
Reinforced Concrete 

(0,003%) 808,5 428,4 77,9 115,9 21,0 0,0 10,5

Reinforced Concrete 
(0,5 %) 3948,1 2370,4 400,1 610,3 107,8 0,1 59,9

Reinforced Concrete 
(2,0 %) 67,3 67,8 8,8 14,7 2,4 0,0 1,9

Reinforced Concrete 
(6,0 %) 194,1 381,4 38,5 72,0 10,3 0,0 11,2

Sand-lime Blocks 1700,6 1723,4 258,0 187,4 46,3 0,0 -12,2

Polystyren, Extruded 1,4 121,3 4,0 6,3 0,8 0,0 2,0
Mineral Wool 18,7 221,0 23,7 113,7 12,7 0,0 5,6

Wood Fibre 61,5 711,5 -67,5 119,1 27,2 0,3 26,4
Cellulose Fibre 16,9 33,9 -21,6 16,9 3,0 0,1 1,4

∑ 7350,1 6303,3 770,5 1326,8 244,5 0,5 112,4

Relative Contribution 0 - 5 % 5 - 10 % 10 - 20 % 20 - 30 % 30 - 40 % 40 - 50 % 50+ %
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Figure 6.6. Relative contributions of materials to individual categories - Alternative 1.
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6.2.3. ALTERNATIVE 2 

 The LCIA results of Alternative 2 are presented in Table 6.7 and Figure 6.7. 

Table 6.7 - LCIA results - Ökobaudat - Alternative 2

Material Total Mass 
[t]

PEIn 
[GJ]

GWP 
[tCO2]

AP 
[kgSO2]

EP 
[kgPO43-,eqv]

ODP 
[gCFC2,eqv]

POCP 
[kgC2H4,eqv]

Plain Concrete 533,1 244,3 48,6 70,4 13,1 0,0 5,7
Reinforced Concrete 

(0,25%) 815,9 432,3 78,6 117,0 21,2 0,0 10,6

Reinforced Concrete 
(0,5 %) 2680,8 1609,5 271,7 414,4 73,2 0,1 40,7

Reinforced Concrete 
(2,0 %) 67,3 67,8 8,8 14,7 2,4 0,0 1,9

Reinforced Concrete 
(3,0 %) 182,3 230,1 27,1 47,3 7,2 0,0 6,5

Sand-lime Blocks 499,4 506,1 75,8 55,0 13,6 0,0 -3,6
CLT 426,5 1975,2 -556,6 593,6 138,6 0,8 112,2
steel 0,8 14,3 1 2,8 0,3 0,0 0,6

Polystyren, Extruded 1,4 121,3 4,0 6,3 0,8 0,0 2,0
Mineral Wool 17,0 200,9 21,5 103,4 11,5 0,0 5,1
Wood Fibre 56,4 652,2 -61,9 109,2 25,0 0,3 24,2

Cellulose Fibre 16,9 33,9 -21,6 16,9 3,0 0,1 1,4

∑ 5297,7 6088,0 -102,7 1551,1 309,9 1,2 207,3

Relative Contribution 0 - 5 % 5 - 10 % 10 - 20 % 20 - 30 % 30 - 40 % 40 - 50 % 50+ %
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Figure 6.7. Relative contributions of materials to individual categories - Alternative 2.
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6.2.4. ÖKOBAUDAT RESULTS COMPARISON 

 Following Tables and Figures present a comparison of weighted results based on the 

Ökobaudat database. 

Table 6.8 - LCIA results - Ökobaudat - Comparison

Design Alternative PEIn 
[GJ]

GWP 
[tCO2]

AP 
[kgSO2]

EP 
[kgPO43-,eqv]

ODP 
[gCFC2,eqv]

POCP 
[kgC2H4,eqv]

Total Weighted 
Score 
[%]

Original Design 7207,0 982,6 1826,0 261,5 0,1 142,0
62,6 %

relative score 84,5 % 9,5 % 72,7 % 93,5 % 100,0 % 79,2 %

weighted score 0,341 0,027 0,084 0,036 0,077 0,061

Alternative 1 6303,3 770,5 1326,8 244,5 0,5 112,4
67,7 %

relative score 96,6 % 11,8 % 100,0 % 100,0 % 29,2 % 100,0 %
weighted score 0,390 0,034 0,115 0,038 0,023 0,077

Alternative 2 6088,0 -102,7 1551,1 309,9 1,2 207,3
87,3 %

relative score 100,0 % 100,0 % 85,5 % 78,9 % 12,3 % 54,2 %
weighted score 0,404 0,289 0,098 0,030 0,009 0,042

Alt. 1 Difference -903,7 -212,1 -499,3 -17,0 0,4 -29,6 5,1 %
Alt. 2 Difference -1119,0 -1085,3 -274,9 48,3 1,1 65,3 24,7 %
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Figure 6.8. Relative comparison of each category for all alternatives (Ökobaudat).
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6.3. SUMMARY  

 The results of the assessment show that the hybrid structural system of design alternative 2 

made of reinforced concrete and CLT boards performs significantly better than the original design 
and Alternative 1. The overall scores of each alternative are presented in Table 7.1: 

 Although the absolute values of each category differ to a notable extent depending on the 

LCIA database used (Table 7.2), the ranking of design alternatives remains the same by a rather safe 
margin.  

Table 7.1 - Relative score of design alternatives

Rank Alternative Ecoinvent score Ökobaudat score

1 Alternative 2 - RC walls + CLT boards 99,7 % 87,3 %

2 Alternative 1 - RC + sand-lime blocks 87,1 % 67,7 %

3 Original - RC columns + hollow fired bricks 74,4 % 62,6 %

Table 7.2 - LCIA results - Ecoinvent vs. Ökobaudat comparison

design 
alternative LCIA database PEIn 

[GJ]
GWP 
[tCO2]

AP 
[kgSO2]

EP 
[kgPO43-,eqv]

ODP 
[gCFC2,eqv]

POCP 
[kgC2H4,eqv]

Original 
Design

Ecoinvent 10254,0 1152,2 2910,8 917,8 52,4 200,9

Ökobaudat 7207,0 982,6 1826,0 261,5 0,1 142,0

difference
-3046,9 -169,6 -1084,8 -656,2 -52,2 -59,0

-29,7 % -14,7 % -37,3 % -71,5 % -99,7 % -29,4 %

Alternative 
1

Ecoinvent 8581,4 1029,5 2227,4 774,8 49,2 180,3

Ökobaudat 6303,3 770,5 1326,8 244,5 0,5 112,4

difference
-2278,1 -259,0 -900,6 -530,2 -48,7 -67,9

-26,5 % -25,2 % -40,4 % -68,4 % -99,0 % -37,7 %

Alternative 
2

Ecoinvent 7731,6 798,2 2197,7 844,4 38,3 166,6

Ökobaudat 6088,0 -102,7 1551,1 309,9 1,2 207,3

difference
-1643,6 -900,9 -646,6 -534,5 -37,1 40,7

-21,3 % -112,9 % -29,4 % -63,3 % -96,9 % 24,4 %
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 Tables and Figures 6.1 - 6.3 and 6.5 - 6.7 point out the most influential items of the 
assessment. In cases of the Original Design and Alternative 1, reinforced concrete made up the most 

notable portion of the total impact in each category. Replacing of the concrete by cross-laminated 
timber boards lead to considerable savings in terms of needed primary energy and CO2,eqv emissions
—in accordance with Ökobaudat dataset—or even in all evaluated categories—based on the 

Ecoinvent dataset. 
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7. DISCUSSION  

 The fact that the overall ranking of design alternatives remained unaffected by the selection 

of LCIA datasets adds to the credibility of the assessment results. These results also correspond to 
the outcomes of the researched case studies presented in 4.1 - 4.4. 

7.1. CASE STUDIES COMPARISON 

 All of the reviewed studies show that timber design alternatives perform better in the global 

warming potential category by 25 - 80 %. This is true in the case of Retirement Home in 
Horoměřice, as well. Based on the Ecoinvent results, the GWP improvement is equal to 30 %. In the 
instance of Ökobaudat results, the improvement even exceeds 100% as Alternative 2 attained 

negative values of CO2,eqv emissions production (due to different system boundaries used). 

 The case study of two residential building in Canada (4.2) claims that improvements in all 

but one category (i.e. evaluated in this study) are achieved when timber structure is implemented. 
This correlates with the Ecoinvent results (Figure 7.1) whereas the Ökobaudat results have proven 
to be parallel to the findings of the case study 4.3 (Figure 7.2).  

68
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Figure 7.1. Comparison of LCA results (Ecoinvent) with reviewed case study (4.2) results [13].
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7.2. UNCERTAINTIES 

 It is necessary, however, to also address the uncertainties of the conducted LCA. Figures 7.1 
and 7.2 show that the presented results are dependent on the chosen LCA methodology.  

 While the results based on the Ecoinvent database clearly favor the timber design 
alternative, the Ökobaudat results, without the use of weighting, are rather inconclusive (Figure 
7.2). This demonstrates the importance of scope definition, especially the definition of system 

boundaries and the selection of environmental categories, as various LCIA input databases may 
produce different outcomes.  

 The process of weighting brings uncertainties in the assessment as weighting sets are 
always subjective. Many studies propose numerous strategies of weighting based on extensive 

surveys of this issue. The results of this LCA may vary significantly depending on the selected 
weights of individual impact indicators. 

 Another uncertainty arises from the location coverage of input LCIA data. As mentioned in 
5.1.4, Ecoinvent data specified for the region “Europe without Switzerland” was used in this LCA. 
The broadness of this location coverage may prove to be significant. In order to obtain more 

accurate results, environmental product declarations (EPDs) of local manufacturers should be used 
as LCIA input sources. A large percentage of the Ökobaudat database is based precisely on EPDs 
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The striking dominance of concrete used for load bearing constructions is particularly noteworthy. In the case of 
the steel- and timber skeleton construction this results primarily from the usage of concrete for the building 
foundations and staircases (safety in case of fire). Steel- and timber skeleton constructions need less construction 
materials per m² net area as the reinforced concrete construction due to their more efficient material usage. 
 
LCIA Results: 
The main results of the life cycle impact assessment (LCIA), as illustrated in figure 2, are harmonized on the 
basis of the reinforced concrete construction (100%). This chart illustrates how the different construction 
techniques perform within each indicator at the building level. However, the different indicators (e.g. GWP and 
ODP) cannot be compared in their relation to one another due to their different absolute values. It shows that the 
environmental performance of all load bearing construction systems is very similar, even though their ranking 
differs in various indicators.  
 
In contrary to the results of the LCI the dominance of concrete cannot be proven on the LCIA level. Looking at 
this in more detail, the unexpected high POCP-value of the timber skeleton construction is caused by the 
relatively high use of glued laminated timber (GLT), affecting also the other indicator results ODP, AP, EP, HTP 
and CEDnr. Regarding the indicators HTP and TEPT, a significant environmental burden from steel products 
can be seen, whereas concrete doesn’t influence these indicators too much. 
 
The results also indicate that structural steel and connecting plates for timber skeleton constructions play a 
significant role in LCIA and should always be included in the system boundaries. It can be seen that the 
influence on the indicators vary between 2 and 4% at the building level. Comparing the employed timber with 
the structural steel and connecting plates for skeleton technique, the influence on the indicators rises to 33% in 
the case of EP and to 260% in the case of TETP. The influence on the assessment should never be 
underestimated.  
 

Figure 2: Comparison of construction techniques in alphabetical order with their environmental performance. 

Figure 7.2. Comparison of LCA results (Ökobaudat) with reviewed case study (4.3) results [12].
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provided by local producers. Depending on the states of Czech and German production technology 
and procedures, this database may be more suitable. 

 Reinforcement percentage of concrete structures plays a noteworthy role in the impact 
assessment and it is, therefore, crucial to account for appropriate values in the analysis. The 

reinforcement percentages considered for all RC elements in this study are presented in Annex I. 
These are based on the preliminary design of structural system of Alternative 1 [6] and 
reinforcement detailing according to ČSN EN 1992-1-1 [35]. Preliminary design is a subject to 

change, however, and, ultimately, the reinforcement percentages of concrete structures considered 
in the LCA might not reflect the final state of the design. The LCA results show that reinforced 
concrete makes up a key share of total environmental impacts in all considered design alternatives. 

Consequently, final results of the assessment may vary depending on the amount of reinforcement 
steel used. 
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8. CONCLUSION  

 The goal of the thesis was to determine the environmental impacts of design alternatives of 

the Retirement Home in Horoměřice, Czech Republic. Three alternatives were considered: the 
Original Design (RC structural system), Alternative 1 (RC + sand-lime masonry) and Alternative 2 
(RC + CLT boards). A “cradle-to-gate” life cycle assessment was conducted based on two LCIA 

data sources - Ecoinvent and Ökobaudat 

 The Ecoinvent results show that substantial improvements in all but one evaluated category 
can be achieved by replacing reinforced concrete by timber elements. Comparison with the 
Ökobaudat results does not confirm the conclusively better performance of the CLT system, but the 

overall weighted score of the Alternative 2 remains to be the highest in both cases nonetheless. 
Alternative 2 (Figure 8.1) was, therefore, selected as the design with the lowest environmental 
impact.  

  The study suggests that timber structures provide a way of mitigation of environmental 
footprints of buildings. It acknowledges, however, the uncertainties of the assessment and the fact 

that the greatest potential for improvements in the present state of the construction industry lies in 
the operational phase of the life cycle.  
 In the case of the retirement home other design modifications could be applied in order to 

decrease its environmental impacts that would require cooperation with the architect and other 
specialists (such as possible removal of underground car park, more compact architectural design, 
renewable energy usage, etc.). 
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Figure 8.1. BIM-model of Alternative 2.
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9. ANNEX I: CONCRETE REINFORCEMENT 
PERCENTAGE ESTIMATION 

 The percentage of reinforcement was estimated for all considered structural elements. The 
values were either taken over from Bearing Structure of Retirement Home in Horoměřice [6] or 
reinforcement detailing according to ČSN EN 1992-1-1 [35]. 

 Reinforcement percentage of concrete slabs is assumed at 0,5 % [6]. This corresponds with 

a 240 mm thick two way slab reinforced by ∅10 bars with 120 mm spacing.  

 Reinforcement of concrete walls is assumed at 0,25 %. Based on the structural analysis 
performed in [6], the reinforcement of the walls was not necessary. The value was, therefore, taken 
over from [35] as the lowest amount of reinforcement possible. 

 Reinforcement percentage of concrete columns is assumed at 2,0 % [6]. This is roughly 

equal to a 300 x 300 mm column reinforced by 4 ∅22 bars and ∅10 stirrups with 300 mm spacing. 

 Reinforcement percentage of concrete foundation piles is assumed at 0,5 % [6].  

 Reinforcement percentage of the concrete beam grid (first floor / second floor slabs) 
supporting the load-bearing walls of upper floors is assumed at 6,0 % [6] for the Alternative 1 
(sand-lime walls + RC slabs) and 3,0 % for the Alternative 2 (CLT walls + CLT slabs).  
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10. ANNEX II: ENVIRONMENTAL IMPACT INDICATOR 
VALUES OF  USED MATERIALS 

 The following Tables present the values of selected midpoint impact categories of materials 
used in the life cycle assessment. Values for reinforced concrete were calculated manually based on 
the values of plain concrete and reinforcement steel, and the percentage of reinforcement. Ecoinvent 

values are shown first, Ökobaudat values second. 
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Table 10.1 - Environmental Indicators of Selected Materials - Ecoinvent

material ρavg 
[kg/m3]

PEIn 
[MJ/kg]

GWP 
[kgCO2/kg]

AP 
[gSO2/kg]

EP 
[gPO43-,eqv/kg]

ODP 
[gCFC2,eqv/kg]

POCP 
[gC2H4,eqv/kg]

masonry hollow fired brick 825,0 2,574E+00 2,386E-01 5,456E-01 1,720E-01 1,780E-05 3,972E-02

sand-lime block 2000,0 1,279E+00 1,304E-01 2,128E-01 5,700E-02 1,174E-05 2,223E-02

concrete 
and 

reinforced 
concrete

plain concrete 2300,0 5,749E-01 1,099E-01 1,849E-01 4,600E-02 3,706E-06 6,778E-03

reinforced concrete (0,25 %) 2310,0 7,611E-01 1,215E-01 2,265E-01 7,218E-02 4,183E-06 1,360E-02

reinforced concrete (0,5 %) 2330,0 9,451E-01 1,330E-01 2,677E-01 9,805E-02 4,655E-06 2,035E-02

reinforced concrete (2,0 %) 2410,0 2,004E+00 1,992E-01 5,046E-01 2,470E-01 7,371E-06 5,919E-02

reinforced concrete (3,0 %) 2470,0 2,671E+00 2,409E-01 6,537E-01 3,407E-01 9,081E-06 8,362E-02

reinforced concrete (6,0 %) 2630,0 4,502E+00 3,553E-01 1,063E+00 5,982E-01 1,378E-05 1,507E-01

thermal 
insulation

polystyren, expanded 15,0 1,051E+02 4,212E+00 1,490E+01 2,549E+00 1,320E-04 6,755E+00

polystyren, extruded 25,0 9,651E+01 3,821E+00 1,339E+01 3,012E+00 8,839E-05 1,537E+00

mineral wool 115,0 2,019E+01 1,133E+00 8,358E+00 1,830E+00 5,537E-05 4,454E-01

wood fibre 160,0 1,869E+00 1,757E-01 1,029E+00 4,241E-01 8,055E-06 3,022E-02

cellulose fibre 50,0 7,144E+00 3,678E-01 2,905E+00 6,380E-01 4,046E-05 1,218E-01

other
CLT 500,0 5,360E+00 2,795E-01 1,556E+00 7,440E-01 2,380E-05 1,235E-01

reinforcement steel 7850,0 2,253E+01 1,482E+00 5,095E+00 3,133E+00 6,000E-05 8,116E-01

steel 7850,0 2,907E+01 2,092E+00 8,274E+00 4,772E+00 5,777E-05 1,184E+00

Table 10.2 - Environmental Indicators of Selected Materials - Ökobaudat

material ρavg 
[kg/m3]

PEI 
[MJ/kg]

GWP 
[kgCO2/kg]

AP 
[gSO2/kg]

EP 
[gPO43-,eqv/kg]

ODP 
[gCFC2,eqv/kg]

POCP 
[gC2H4,eqv/kg]

masonry
hollow fired brick 825,0 2,252E+00 2,405E-01 3,421E-01 3,689E-02 2,539E-09 2,294E-02

sand-lime block 2000,0 1,013E+00 1,517E-01 1,102E-01 2,722E-02 7,029E-13 -7,185E-03

concrete 
and 

reinforced 
concrete

plain concrete 2300,0 4,583E-01 9,125E-02 1,321E-01 2,463E-02 2,488E-08 1,075E-02

reinforced concrete (0,25 %) 2310,0 5,298E-01 9,633E-02 1,434E-01 2,597E-02 2,466E-08 1,297E-02

reinforced concrete (0,5 %) 2330,0 6,004E-01 1,014E-01 1,546E-01 2,729E-02 2,446E-08 1,516E-02

reinforced concrete (2,0 %) 2410,0 1,007E+00 1,303E-01 2,190E-01 3,493E-02 2,326E-08 2,780E-02

reinforced concrete (3,0 %) 2470,0 1,263E+00 1,485E-01 2,595E-01 3,974E-02 2,250E-08 3,575E-02

reinforced concrete (6,0 %) 2630,0 1,965E+00 1,984E-01 3,708E-01 5,294E-02 2,043E-08 5,758E-02

thermal 
insulation

polystyren, expanded 15,0 7,974E+01 2,621E+00 5,991E+00 5,507E-01 1,502E-05 1,969E+01

polystyren, extruded 25,0 8,859E+01 2,894E+00 4,620E+00 5,930E-01 2,979E-11 1,428E+00

mineral wool 115,0 1,185E+01 1,269E+00 6,094E+00 6,792E-01 1,625E-09 3,010E-01

wood fibre 160,0 1,157E+01 -1,097E+00 1,937E+00 4,431E-01 4,989E-06 4,299E-01

cellulose fibre 50,0 2,006E+00 -1,281E+00 1,000E+00 1,786E-01 3,689E-06 8,571E-02

other
CLT 500,0 4,632E+00 -1,305E+00 1,392E+00 3,250E-01 1,767E-06 2,632E-01

reinforcement steel 7850,0 8,883E+00 6,904E-01 1,466E+00 1,829E-01 2,119E-11 2,725E-01

steel 7850,0 1,780E+01 1,735E+00 3,520E+00 3,700E-01 1,390E-07 6,980E-01
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