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balance the usage of signal analysis and supervised machine learning. It should be implemented and tested
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distance function from the original score the musical ensemble used. It should also be compared to similar
tools available. The transcription should include, but is not limited to:

•    Set of instruments used.

•    Tuning of the song (e.g., as the frequency of the note A).

•    Notes played by each instrument, including their length dynamics, and rest notes.

•    Tempo and meter.

•    What key is used.

An option is to simplify the detection by having some extra inputs, e.g., the number of instruments, the
meter.
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Abstrakt

Přepis hudby hraje d̊uležitou roli v oblasti źıskáváńı hudebńıch informaćı, a je
to často složitý úkol i pro lidského posluchače. Automatizace tohoto přepisu se
těš́ı velkému zájmu z řad student̊u hudby, kteř́ı jej mohou využ́ıt pro nácvik
rozpoznáváńı not a učeńı nových skladeb. Také hudebńı producenti a DJ,
kteř́ı by mohli využ́ıt funkce detekce stupnice a odděleńı zdrojových nástroj̊u,
by z něj mohli těžit. Podobně streamingové platformy ho mohou použ́ıvat pro
své doporučovaćı systémy, atp.

Tato práce zkoumá nejmoderněǰśı řešeńı, která kombinuj́ı analýzu signál̊u
s př́ıstupy strojového učeńı s učitelem pro uvedené problémy. Navrhuje imple-
mentaci, která je využita k prováděńı úlohy transkripce hudby s v́ıce nástroji,
která má na vstupu surový zvukový soubor a produkuje sadu notových list̊u
pro každý použitý nástroj na výstupu. Řešeńı je implementováno v pro-
gramovaćım jazyce Python jako modul a současně jako aplikace s rozhrańım
pro př́ıkazovou řádku. Implementace je rozdělena do logických modul̊u zod-
povědných za odhad odpov́ıdaj́ıćıch část́ı výstupńı partitury, jmenovitě oddě-
leńı zdroj̊u, detekce výšek a událost́ı, odhad tempa, stupnice a taktového
předznamenáńı. Takové odděleńı umožňuje jednoduché rozšǐrováńı a testováńı.
Přesnost každého modulu je vyhodnocená na př́ıslušných datových sadách.

Kĺıčová slova Přepis hudby, zpracováńı zvuku, analýza signálu, učeńı s
učitelem.
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Abstract

Music transcription is important though complex, often even for a human
listener, task in the field of music information retrieval. Automation of such
task is in a big demand among musical students, who can use it for practicing
of note recognition and learning of the new pieces; music producers and DJs,
who could utilize its key detection and source instrument separation function-
ality; streaming platforms that may use it for their recommendation systems;
etc.

This thesis explores state-of-the-art solutions that combine signal analysis
and supervised machine learning approaches for the mentioned problems. It
proposes implementation that utilizes them to perform a multiple-instrument
music transcription task having a raw audio file on the input and producing a
set of sheet music scores for each played instrument on the output. The solu-
tion is implemented in the Python programming language as a module as well
as a command-line interface application. The implementation is separated
into logical modules responsible for estimation of the corresponding parts of
the output score, namely source separation, pitch and event detection, tempo,
key and time signature estimation. Such separation allows for simple expan-
sion and testing. The performance of each module is evaluated on appropriate
datasets.

Keywords Music transcription, audio processing, signal analysis, super-
vised learning.
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Introduction

The problem of automated sound transcription of sheet music increases its
popularity each year. The usage of a system capable to perform such task is
very wide-ranging. It can be utilized by musical students to learn new musical
peaces that they have only in digital format (in Waveform Audio File Format
(WAVE) or MP3) or to train their pitch detection ability. The systems that are
able to perform musical key detection (like Mixed in Key[1]) are commercially
successful and are very popular among DJs and music producers who use them
for mixing the music. And in general music information retrieving can bring
a deeper insight into musical structure, quality, genre, etc. that can be used
for many important real-world problems, including recommendation systems
for streaming platforms.

The problem of music transcription might be complicated even for a human
listener, may be simpler for a trained musician, but it appears very complex for
the automated system. Since 1970, a whole research community has formed
and has been improving the quality of automated transcription and reduced
the constraints required for producing it.

But it is still not a resolved problem and there is no such system that is
capable of automatically and accurately converting a recording of the musical
piece back into sheet music or a set of commands that would replicate a
recording on a music synthesizer.

This thesis proposes the implementation and its architecture that attempts
to solve the required tasks to generate the correct transcription of the given
musical piece. The architecture separates solutions for different problems into
modules which allows for simple extension of the system and testing of individ-
ual approaches for the given problems. It also provides an estimated quality
of each solution each evaluated on the appropriate datasets.
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Introduction

Problem definition

This thesis discusses the state-of-the-art solutions for the different problems
that underlie a task of music transcription, namely: source instruments sep-
aration, pitch and event detection, musical key, tempo and time signature
estimation that in combination determine necessary parts of the sheet music
notation.

Short introduction to a sheet music notation is presented in Appendix B.

Pitch estimation

The difficulty of multi-pitch estimation lies in the fact that sound sources of-
ten overlap in time as well as in frequency. Hence, the extracted information
may be partly ambiguous. Also, when musical notes are played in harmonic
relations, the parts of higher notes may overlap completely with those of lower
ones. Besides, spectral characteristics of musical instrument sounds, that de-
fine change of the note volume in time and timbre, are diverse, which increases
the ambiguity in the estimation of amplitudes of sound sources. The resulting
complexity leads not only to octave ambiguity but also the ambiguity in the
estimation of the number of sources.

Tuning

Tuning, in general, is not a big problem for automated transcription systems.
But it is important to note that recorded musical instruments may not be in
tune or all the notes are tuned higher or lower but keeping the correct ratios.
Estimation of a tuning, if used correctly, may improve the accuracy of the
output score.

Another problem is that different tuning system can be used other than
equal temperament, e.g. pythagorean tuning, meantone temperament, well
temperament, etc. But as most of the Western music uses equal temperament
system, only this system will be considered in the analysis.

Equal temperament is a tuning system in which the interval between each
pair of consequent notes has the same ratio. Having chosen one base note
and its frequency (commonly, A with 440 Hz is used), frequencies of all the
other notes are defined to have 12√2 ratio between adjacent notes, such that
same note of a higher octave would have twice the frequency, as there are 12
semitones in a standard 12 tone system.

Key

Musical key is a part of sheet music notation. It defines a set of used notes
and chords in a piece of music and their harmonic functions within the score.
It simplifies the notation and understanding of the piece for a musician who
reads it. And even though the detection of a set of used notes is a fairly simple
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Problem definition

task, having notes detected within a pitch estimation, classification of key is
still a big research field as it is not as straight-forward task. The same set of
notes may indicate different keys depending on the context. For example, key
of C major has the same set of notes as key of A minor and distinguishing
between them is often not a simple task even for a human listener.

3





Chapter 1
State-of-the-art

This chapter discusses existing state-of-the-art solutions for music transcrip-
tion.

Sound transcription into sheet music is a combination of several techniques
that include but are not limited to source instruments separation, pitch/note
detection, event detection, etc.

Source separation and sound transcription to sheet music are fairly inde-
pendent processes so their description and approaches may come from different
sources and different projects. Therefore, implementation will also be sepa-
rated.

1.1 Source separation

There were many successful attempts for music score source separation [2, 3, 4].
Performance of such projects are commonly measured according to Source
Separation campaign (SiSeC) [5] on the standard musdb18 [6] and DSD100 [7]
datasets.

Latest and most successful project in this field is Spleeter [2]. It is a project
of Deezer2. It takes similar approaches to previous solutions by University of
London and Spotify [3]. Spleeter’s pre-trained models will be used in the mod-
ule responsible for music source separation described in detail in chapters 2
and 3.

Following approaches are described in [2, 3, 4].

1.1.1 Spleeter’s approach

The pre-trained models are U-nets [3] and follow similar specifications as in
Singing voice separation: a study on training data [4]. The U-net is an en-
coder/decoder Convolutional Neural Network (CNN) architecture with skip

2Deezer is a French online music streaming service (deezer.com).
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1. State-of-the-art

connections [2]. Architecture used in this approach showed a state-of-the-art
results on DSD100 dataset [3] and in the last SiSeC [7].

1.1.2 U-net architecture

The U-Net shares the same architecture (shown in Fig. 1.1) as a convolutional
autoencoder with extra skip-connections that bring back detailed information
lost during the encoding stage to the decoding stage. It has five strided3 2D
convolution layers in the encoder and five strided 2D deconvolution layers in
the decoder.

The goal of the neural network architecture is to predict the vocal and in-
strumental components of its input indirectly: the output of the final decoder
layer is a soft mask for each source that is multiplied element-wise with the
mixed spectrogram to obtain the final estimate.

Figure 1. Network Architecture

Genre Percentage
Pop 26.0%
Rap 21.3%
Dance & House 14.2%
Electronica 7.4%
R&B 3.9%
Rock 3.6%
Alternative 3.1%
Children’s 2.5%
Metal 2.5%
Latin 2.3%
Indie Rock 2.2%
Other 10.9%

Table 1. Training data genre distribution

The above approach provides a large source of X
(mixed) and Yi (instrumental) magnitude spectrogram
pairs. The vocal magnitude spectrogram Yv is obtained
from their half-wave rectified difference. A qualitative
analysis of a large handful of examples showed that this
technique produced reasonably isolated vocals.

The final dataset contains approximately 20,000 track
pairs, resulting in almost two months worth of continuous
audio. To the best of our knowledge, this is the largest
training data set ever applied to musical source separation.
Table 1 shows the relative distribution of the most frequent

genres in the dataset, obtained from the catalog metadata.

4. EVALUATION

We compare the proposed model to the Chimera model
[15] that produced the highest evaluation scores in the 2016
MIREX Source Separation campaign 2 ; we make use of
their web interface 3 to process audio clips. It should be
noted that the Chimera web server is running an improved
version of the algorithm that participated in MIREX, using
a hybrid “multiple heads” architecture that combines deep
clustering with a conventional neural network [16].

For evaluation purposes we built an additional baseline
model; it resembles the U-Net model but without the skip
connections, essentially creating a convolutional encoder-
decoder, similar to the “Deconvnet” [19].

We evaluate the three models on the standard iKala [5]
and MedleyDB dataset [3]. The iKala dataset has been
used as a standardized evaluation for the annual MIREX
campaign for several years, so there are many existing
results that can be used for comparison. MedleyDB on
the other hand was recently proposed as a higher-quality,
commercial-grade set of multi-track stems. We generate
isolated instrumental and vocal tracks by weighting sums
of instrumental/vocal stems by their respective mixing co-

2 www.music-ir.org/mirex/wiki/2016:Singing_
Voice_Separation_Results

3 danetapi.com/chimera

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 747

Figure 1.1: U-net’s network architecture [3]

3Transposed convolutions – also called fractionally strided convolutions – work by swap-
ping the forward and backward passes of a convolution. One way to put it is to note that
the kernel defines a convolution, but whether it’s a direct convolution or a transposed con-
volution is determined by how the forward and backward passes are computed [8].
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1.2. Multi-pitch Detection

1.1.3 Data and training

Spleeter’s training dataset is an internal Deezer’s dataset and is not shared
(for copyright reasons).

Another project with similar approach, as explained in the dedicated ar-
ticle [4], uses two datasets during training of the models: MUSDB [6] and
Bean(private dataset).

MUSDB is the largest and most up-to-date public dataset for source sep-
aration [6]. It contains 150 songs of western music genres primarily pop/rock,
some hip-hop, rap and metal songs. And each song consists of four audio
tracks: drums, bass, vocal and other. Original mix (and input of the model)
is produced by summing tracks of four sources (expected outputs) together.

1.2 Multi-pitch Detection

There were several projects utilizing different approaches to a problem of
Automatic music transcription (AMT). Following sections discuss these ap-
proaches and projects that used them.

The most important part of transcription of sound into sheet music is
pitch (and subsequently note) detection. The core problem of polyphonic
music transcription is multi-pitch detection.

In his Ph.D. research Multiple fundamental frequency estimation of poly-
phonic recordings [9], Chunghsin Yeh classifies multi-pitch detection systems
according to their estimation type into two categories: joint and iterative.
The iterative approach extracts the most eminent frequency per each itera-
tion, until no other pitch can be estimated and extracted. Commonly, iterative
estimators generate errors on each iteration but are much cheaper in terms of
computation costs.

On the other side, the joint estimation models evaluate combinations of
pitches at once, which leads to increase in accuracy but also in computation
costs. Most of the latest approaches and state-of-the-art solutions fall into the
joint category. Solution in this thesis also follows this category and will be
discussed in detail in Chapter 2.

1.2.1 Feature-based multi-pitch detection

Most multi-pitch estimation and note tracking approaches exploit methods
that come from signal processing. There is no specific model (Machine learning
(ML) or other), and notes are detected using audio features that come from
the input time-frequency representation (spectrogram) either in an iterative
or joint way. Usually, multi-pitch estimation uses a pitch candidate set score
function or a pitch salience function.

A salience function is a function that provides an estimation of the pre-
dominance of different frequencies in an audio signal at every time frame [10].
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1. State-of-the-art

A pitch candidate set score function is a function designed to evaluate the
plausibility of the combination of the hypothetical sources [9].

These feature-based techniques have produced the best results in the Music
Information Retrieval Evaluation eXchange (MIREX) [11] multi-pitch and
note tracking evaluations. The work by Chunghsin Yeh [9] was the best per-
forming method in the MIREX multi-pitch and note tracking tasks. Yeh
proposed a joint pitch estimation algorithm based on a pitch candidate set
score function. Having a set of pitch candidates, the overlapping partials are
detected and smoothed according to the spectral smoothness principle, which
states that the spectral envelope4 of a musical sound tends to be slowly chang-
ing as a function of frequency. The score function for the pitch candidate set
consists of four features: harmonicity, mean bandwidth, spectral centroid, and
“synchronicity” (synchrony). A polyphony inference mechanism based on the
score function increase selects the optimal pitch candidate set [9].

In the following year, the best performing method for the MIREX multi-
pitch estimation and note tracking tasks, Karin Dressler described in her work
Multiple fundamental frequency extraction for MIREX [13]. A multiresolution
Fast Fourier transform (FFT) analysis was used as an input time/frequency
representation, where the magnitude for each spectral bin was multiplied with
the bin’s instantaneous frequency. Pitch estimation is made by identifying
spectral peaks and performing pair-wise analysis on them, resulting on ranked
peaks according to harmonicity, smoothness, the appearance of intermediate
peaks, and harmonic number. Finally, the system tracks tones over time using
an adaptive magnitude and a harmonic magnitude threshold.

Other notable feature-based AMT solution was introduced in the work by
Pertusa and Inesta Multiple fundamental frequency estimation using Gaussian
smoothness and short context [14]. They proposed a computationally inexpen-
sive method for multi-pitch detection which computes a pitch salience function
and evaluates combinations of pitch candidates using a measure of distance
between a Harmonic partial sequence (HPS) and a smoothed HPS. Another
approach for feature-based AMT was proposed in Hybrid genetic algorithm
based on gene fragment competition for polyphonic music transcription [15],
which uses genetic algorithms for estimating a transcription by mutating the
solution until it matches a similarity criterion between the original signal and
the synthesized transcribed signal.

More recently, Peter Grosche et al. proposed [16] an AMT method based
on a mid-level representation derived from a multiresolution FFT combined
with an instantaneous frequency estimation. His system also combines event
(specifically start of the note) detection and tuning estimation for computing
predictions. Finally, Juhan Nam et al. proposed [17] a classification-based
approach for piano transcription using features learned from deep belief net-

4Spectral envelope of the sound determines the particular vowel sound produced, and is,
in general, one of the important acoustic features that determine its perceived timbre [12].
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1.2. Multi-pitch Detection

works [18] for computing a mid-level time-pitch representation.

1.2.2 Statistical model-based multi-pitch detection

Many approaches in the literature formulate the multi-pitch estimation prob-
lem within a statistical framework. As Valentin Emiya et al. explains in
their article Multipitch Estimation of Piano Sounds Using a New Probabilistic
Spectral Smoothness Principle [19]: given an observed frame xxx and a set CCC of
all possible fundamental frequency combinations, the frame-based multi-pitch
estimation problem can then be viewed as a Maximum a posteriori (MAP)
estimation problem:

ĈMAP = arg max
C∈CCC

P (C|xxx) = arg max
C∈CCC

P (xxx|C)P (C)
P (xxx)

where C = {F 1
0 , . . . , F

N
0 } is a set of possible frequencies (considering tuning

of an instrument), CCC is the set of all possible F0 combinations, and xxx is the
observed audio signal within a single analysis frame.

An example of MAP estimation-based transcription is the PreFEst sys-
tem introduced by Masataka Goto in his article A real-time music-scene-
description system: predominant-F0 estimation for detecting melody and bass
lines in real-world audio signals [20], where each harmonic is modelled by
a Gaussian centered at its position on the log-frequency axis. Expectation-
maximisation (EM) algorithm is used to estimate MAP value. An extension
of this method was proposed by Kameoka et al. in A Multipitch Analyzer
Based on Harmonic Temporal Structured Clustering [21], which jointly esti-
mates multiple possible frequencies, moments of start and end of the note, and
dynamics. Partials are modelled using Gaussians placed at the positions of
partials in the log-frequency domain and the synchronous evolution of partials
belonging to the same source is modelled by Gaussian mixtures.

More recently, Peeling and Godsill, in their article Multiple pitch estima-
tion using non-homogeneous Poisson processes [22], also proposed a likelihood
function for multiple-pitch estimation where for a given time frame, the oc-
currence of peaks in the frequency domain is assumed to follow an inhomoge-
neous Poisson process. Also, Koretz and Tabrikian in Maximum a posteriori
probability multiple-pitch tracking using the harmonic model [23], proposed an
iterative method for multi-pitch estimation, which combines MAP and ML cri-
teria. The predominant source is expressed using a harmonic model while the
remaining harmonic signals are modelled as Gaussian interference sources [23].

9



1. State-of-the-art

1.2.3 Spectrogram factorisation-based multi-pitch detection

The majority of recent multi-pitch detection papers utilise and expand spec-
trogram factorisation techniques. Non-negative matrix factorisation (NMF) is
a technique first introduced in their paper by Paris Smaragdis et al. [24] as a
tool for music transcription. In its simplest form, the NMF model decomposes
an input spectrogram XXX ∈ RK×N

+ with K frequency bins and N frames:

XXX ≈WHWHWH

where R � K,N ; WWW ∈ RK×R
+ contains the spectral bases for each of the R

pitch components; and HHH ∈ RR×N
+ is the pitch activity matrix across time.

In his paper Realtime multiple pitch observation using sparse non-negative
constraints, Cont Arshia applies NMF to AMT problem. Sparseness con-
straints were added into the NMF update rules, in order to find meaningful
transcriptions using a minimum number of non-zero elements in HHH. Em-
manuel Vincent et al. in their article Adaptive harmonic spectral decompo-
sition for multiple pitch estimation [25] incorporated harmonicity constraints
in the NMF model, resulting in two algorithms: harmonic and inharmonic
NMF. The inharmonic version of the algorithm is also able to support de-
viations from perfect harmonicity and standard equal temperament tuning.
Also, Nancy Bertin et al. in their article [26] proposed a Bayesian framework
for NMF, which considers each pitch as a model of Gaussian components in
harmonic positions.

More recently, Ochiai et al. in his paper Explicit beat structure modeling
for non-negative matrix factorization-based multipitch analysis [27] proposed
an algorithm for multi-pitch detection and beat structure analysis. The NMF
objective function is constrained using information from the rhythmic struc-
ture of the recording. It helped to improve transcription accuracy in highly
repetitive recordings.

This thesis approaches AMT problem in similar fashion to spectrogram
factorisation and feature-based methods. Detailed description of used methods
is in Chapter 2.

1.3 Note Tracking

Typically AMT algorithms compute a time-pitch representation which needs
to be further processed in order to detect note events with a discrete pitch
value, a time of start and end of the note. This process is called note tracking.
Most spectrogram factorisation-based methods estimate the binary piano-roll
representation from the pitch activation matrix using simple thresholding (i.e.
in Explicit beat structure modeling for non-negative matrix factorization-based
multipitch analysis [28] by Graham Grindlay and in Adaptive harmonic spec-
tral decomposition for multiple pitch estimation [25] by Emmanuel Vincent).
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1.3. Note Tracking

This approach will be used in the implementation of the thesis. Also, one
simple and fast optimisation for note tracking is minimum duration pruning,
which is applied after thresholding (idea comes from paper by Arnaud Dessein
et al. Real-time polyphonic music transcription with non-negative matrix fac-
torization and beta-divergence [29]). Primary idea is that output notes that
have a duration smaller than a predefined threshold are removed from the
final score. Similar method was also used by Juan Pablo Bello et al. in their
paper Automatic piano transcription using frequency and time-domain infor-
mation [30], where more complex rules for note tracking were used, addressing
cases such as where a small gap exists between two note events. This method
will also be applied as it is easy to implement.

For threshold based method, there are several issues that may appear for
different instruments, primarily related to how notes are used and written
for them in practice. For instance, for percussion instruments, note decay is
exponential and physical duration of the note is irrelevant as it is not con-
trolled(for most percussion instruments) by a musician. This way notes may
appear short and require pauses(rests) after them, even though the rests would
not be written in sheet music. Such problems may be solved with other rule
based solutions specific to each instrument that requires them or more complex
approaches.

Even though a simple threshold-based solution was used for the note track-
ing task, following paragraph discusses some more complex and more accurate
solutions, though without detailed description of the approaches.

Hidden Markov models (HMMs) are frequently used at a stage of postpro-
cessing of note tracking. In his work A discriminative model for polyphonic
piano transcription [31], Graham Poliner proposes a note tracking method
that utilizes pitch-wise HMMs, where each HMM has two states, indicating
note activity and inactivity. HMM parameters (state transitions and priors)
were learned directly from a ground-truth training set, while the observation
probability is given by the posteriogram output for a specific pitch.

In Polyphonic music transcription using note event modeling [32] by Matti
P Ryynanen and Anssi Klapuri, a feature-based multi-pitch detection system
was combined with a musicological model for estimating musical key and note
transition probabilities. Note events are described using 3-state HMMs, which
model the envelope (attack, sustain, and noise/silence states) of each sound. In
addition, context-dependent HMMs were employed in Automatic transcription
of recorded music [16] for determining note events by combining the output of
a multi-pitch detection system with a note-start detection system.

Finally, dynamic Bayesian networks (DBNs) were proposed by Shigeki
Sagayama et al. in their paper [33] for note tracking. They used the pitch
activation of a NMF-based multi-pitch detection algorithm as input. The
DBN has a note layer in the lowest level, followed by a note combination
layer. Model parameters were learned using MIDI files from F. Chopin piano
pieces.
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1. State-of-the-art

1.4 Tuning, time signature, key, and tempo
estimation

There are several other subtasks of AMT systems that have to be resolved to
be able to generate correct transcription in a form of sheet music. Also, such
estimates, if properly incorporated to the system, may improve estimates of
detected pitches and their durations, events. Tuning, time signature, key, and
tempo estimation are such tasks.

1.4.1 Key and chord detection

Most Western music has a harmonic organisation around one key. The key is
generally unchanged over whole, or at least sections of musical pieces. At one
point in time, the harmony may be described by chord, which is a combinations
of simultaneous or sequential notes which are perceived to belong together
(and in general sound nice together, even though any combination of notes
has its chord). Algorithms for key (and similarly for chord) detection use
template matching or HMMs. For key detection, this thesis uses the simple
approach defined in Section 2.9.

1.4.2 Tempo and time signature estimation

The beats are regularly spaced in time pulses. They are the primary unit that
defines tempo and rhythm of most Western music. A number of beats per unit
of time (commonly per minute in sheet music) defines a tempo. A number of
beats per uniform repetitive sections in score (bars) defines a time signature.
In order to interpret an audio recording in terms of such a structure (which
is necessary in order to produce Western music notation), the first step is to
determine the rate of the most salient pulse, which is the tempo.

Algorithms used for tempo induction include autocorrelation, Fourier trans-
forms, and periodicity transform, which are applied to audio features such as
a note-start detection function (as Fabien Gouyon and Simon Dixon describe
in their article A review of automatic rhythm description systems [34]). The
next step involves estimating the timing of the beats constituting the main
pulse, a task known as beat tracking. Again, numerous approaches have been
proposed, such as rule-based methods (as in Computational models of beat in-
duction: The rule-based approach [35] by Peter Desain and Henkjan Honing),
adaptive oscillators (as in Resonance and the perception of musical meter [36]
by Edward W Large and John F Kolen), agent-based or multiple hypoth-
esis trackers (as in Automatic extraction of tempo and beat from expressive
performances [37] by Simon Dixon), and other.

Böck et. al. proposed a novel tempo estimation algorithm based on a
recurrent neural network that learn an intermediate beat-level representation
of the audio signal which is then fed to a bank of resonating comb filters to

12



1.4. Tuning, time signature, key, and tempo estimation

estimate the dominant tempo [38]. This algorithm got the best score in ISMIR
2015 Audio Tempo Estimation task. The implementation by the authors is
included in the opensource Madmom audio signal processing library5 which
will be used in the implementation.

The final step for rhythmic analysis consists of estimating the time signa-
ture, which indicates how beats are grouped and subdivided at respectively
higher and lower metrical levels, and assigning each note-start and offset time
to a position in this structure [39].

5https://pypi.org/project/madmom/
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Chapter 2
Analysis and design

This chapter defines architecture of the chosen solution. It provides details
of used approaches for music sources separation and models used in it, pitch
extraction and signal analysis, event detection, etc.

2.1 Architecture

The implementation of the system is separated into logical parts responsible
for sound data streaming, music source separation, pitch and events detection,
transcription and score generation. Following diagram shows architecture of
the solution. Arrows represent data flow. Dotted arrows represent flow that
is optional. If given parameters (like tuning, tempo, time signature and key)
are specified by user, they are not being estimated. Each rectangular block
represents logical module in implementation.

Detailed description of each component is in the dedicated section following
the diagram in Fig. 2.1.
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2. Analysis and design
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Figure 2.1: Architecture of the implementation.
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2.2. Audio streaming

2.2 Audio streaming

This implementation directly works only with WAVE (.wav/.wave). Any other
format is converted to WAVE first, then processed.

2.2.1 WAVE format

WAVE is an audio file format standard, developed by Microsoft and IBM,
for storing an audio bitstream on PCs. What’s important for this thesis and
implementation is that it stores data in chunks in Linear pulse-code modula-
tion (LPCM) format. This format allows to perform Discrete Fourier trans-
form (DFT) used in pitch extraction.

2.2.2 Sampling rate

LPCM mentioned above stores sampled amplitude of recorded audio at specific
sampling rate (frequency, measured in Hz).

The most common sampling rate is 44.1 kHz, or 44100 samples per second.
This is the standard for most consumer audio, used for formats like CDs [40].

The sampling rate determines the range of frequencies captured in digital
audio. The lowest frequency a person can hear is 20 Hz. The highest frequency
humans can hear are in the range of 20.000 Hz, but only young people can
hear such high tones [41]. According to Nyquist Theorem, a signal which has
a Fourier transform having only frequencies upto a certain maximum fm, we
can obtain the analog signal f(t) from the sampled signal f ′(t) by passing
the sampled signal f ′(t) through a low pass filter provided that the sampling
frequency fs is more than twice the maximum frequency fm present in the
signal i.e. , fs > 2fm [42]. Hence, having 44100 Hz sampling rate, we can
reproduce and analyse frequencies up to 22050 Hz (assuming an ideal low
pass filter). Otherwise, if recorder has a sampling rate lower than 2× the
highest frequency (which was not cut off by low pass filter) it causes the effect
called aliasing, which introduces unexpected sounds in the recording that were
not present in the original sound. If the sampling frequency is too low the
frequency spectrum overlaps, and becomes corrupted [42].

The implementation is able to process input sound with any sampling rate,
though lower sampling limits processed frequencies range to lower pitches.

17



2. Analysis and design

2.3 Music source separation

First step of the sound processing is separation of the sound into source in-
struments (i.e. voice, guitar, piano, etc.)

As was mentioned in the previous chapter, this implementation uses Spleeter
for separation of source instruments. Spleeter is a fast and state-of-the art
music source separation tool with pre-trained models [2]. Its implementation
contains three pre-trained models:

• vocals/accompaniment separation,

• 4 stems separation as in SiSeC [5] (vocals, bass, drums and other),

• 5 stems separation with an extra piano stem (vocals, bass, drums, piano
and other). It is, to the author’s knowledge, the first released model to
perform such a separation.

Estimations for all the models is performed in a frequency domain of the
sound. Meaning that sound data from time domain is converted to frequency
domain using FFT, passed to the models described in section 1.1.2 about U-net
architecture. Output of the model is separated tracks for each instrument and
voice. To get sound of each instrument and voice in time domain (as it would
be represented in WAVE), we would need to pass it through Inverse Discrete
Fourier transform (IDFT). But it is not necessary, as all the subsequent
processing will be performed on the sound in frequency domain.

More about FFT is in the following section 2.4 about pitch extraction.

2.4 Pitch extraction

Section 1.2 analyses many approaches to pitch (and specifically to multi-pitch)
detection. The one that is presented in this theses utilizes a combination
of ideas defined in works of Matti P Ryynanen et al. [32], Arnaud Dessein
et al. [29] and Paris Smaragdis et al. [24]. Solution is joint, thus estimates
played notes at a given moment all at once (opposed to iterative approaches).
It attempts to detect frequencies similarly to matrix factorization techniques
through analysis of sound spectrogram. But instead of matrix factorization
(NMF), this work attempts to detect notes’ events, specifically their envelopes
(more on the sound envelope in Section 2.4.1), using ML models. Specification
of the used data and training of the models is in Section 2.5.1.
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2.4. Pitch extraction

2.4.1 Sound envelope

Sound envelope is a variation of the sound volume in time [43]. Sound envelope
consists of 4 stages: attack, decay, sustain, and release (ADSR):

At
ta

ck

Decay

Sustain

Release

Time

Volume

Figure 2.2: Sound envelope.

Fig. 2.2 shows a theoretical simple ADSR model of sound envelope. But
different instruments produce different envelopes depending on a nature of
sound extraction:

Figure 2.3: Sound envelopes of piano and violin [44].

As seen in Fig. 2.3, piano and any other instrument that produces sound by
hitting, tapping or pinching of a string (like guitar, harp, bandura, balalaika,
etc.), will produce similar envelope with defined attack (the moment of piano
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2. Analysis and design

key pressing; pinching or hitting a string on guitar, etc.), decay and sustain
(when piano key remains pressed or piano sustain pedal is used, etc.) and
release (when piano key and sustain pedal are released, guitar strings are
muted, etc.).

2.5 Event detection

Note and subsequently its pitch and start are estimated by detecting its en-
velope. Having a sample of sound (change of volume of each pitch as deter-
mined from FFT) of duration k seconds specified by implementation, predic-
tive model attempts to estimate whether note has been played at a given point
in time by detecting its envelope that should look similar for each note of the
given instrument. That means that there will be a model for each predefined
instrument trained on its samples (more in Section 2.5.1).

2.5.1 Data and model training

Dataset for training of the above-mentioned models was generated from the
NSynth dataset [45]. NSynth is an audio dataset containing 305,979 musical
notes, each with a unique pitch, timbre, and envelope. For 1,006 instruments
from commercial sample libraries, there are generated four second, mono-
phonic 16kHz audio snippets, referred to as notes, by ranging over every pitch
of a standard MIDI piano (21-108) as well as five different velocities (25, 50,
75, 100, 127) [45].

NSynth contains samples for 11 different instruments: bass, brass, flute,
guitar, keyboard, mallet, organ, reed, string, synth lead, vocal. They are all
stored in WAVE format and have needed metadata in JSON format alongside
with them. Metadata for each sample includes instrument, note, pitch and
velocity in Musical Instrument Digital Interface (MIDI) format (in the range
[0, 127]), and sampling rate.

Spleeter, used for source separation, is able to separate sound only into 5
source instruments. Hence only those samples from NSynth will be used to
generate models.

The preprocessing of the training dataset is completely the same as pre-
processing of the sound samples during transcription. The whole data flow is
shown in Fig. 2.4.
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Figure 2.4: Data flow for pitch detection.
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2. Analysis and design

As shown in Fig. 2.4, input stream (blue) is a stream of data read from
input file or microphone (or any other input). It is read by chunks of size c
determined by implementation. Each window of k chunks is passed through
FFT to transform data to a frequency domain. Taking several chunks of data
to pass it through FFT increases its accuracy, peaks of played pitches become
more prominent and output becomes more robust to noise and phase shifts.
Overlapping of k-sized windows allows producing more data-points per second
and subsequently features for predictive model. Having T chunks and window
of size k, produced spectrogram is of size F, T − k where F is a number of
detected frequencies.

After transforming input to time-frequency spectrogram (red), frequencies
are translated to musical notes (green). Assuming equal temperament tuning
and A with 440 Hz frequency (actual tuning will be estimated later in the
analysis), frequencies are converted to the closest note. Frequencies converted
to the same note are filtered to leave only the highest volume value.

The output of previous step is passed to the model of a given instrument
by window of size m. So m is a number of input features of the model. The
model attempts to classify whether given window contains an envelope of a
played sound that starts from a given point in time. So for ∀i ∈ [0, N ], j ∈
[0, T − k−m], pi,j (pink) shows prediction of the model for note i at a time j.

Training data is generated from NSynth dataset in a similar fashion. Pos-
itive labels are set for the pitch being played in a sample, negative for all the
others. Also negative examples are generated from the same sample for played
pitch but with a time shift, starting the example from or ending it somewhere
in the middle of the actual sound envelope.

2.6 Tuning classification

Tuning of the instrument is not a part of score transcribed into sheet music
and most of the Western music follows the same tuning system. Specifically,
equal temperament system with A tuned to 440 Hz. But tuning estimation is
an essential part for correct reproduction of the sound.

There are two primary parts to tuning estimation: detection of frequency
of base note, commonly A:

� �
Figure 2.5: Base A commonly tuned to 440 Hz.

and tuning system, like equal temperament, pythagorean, meantone, etc.
While tuning system in the Western music very rarely diverges from equal
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2.7. Tempo estimation

temperament, frequency of a base note can often be chosen to be different
from 440 Hz. That also often might happen for instruments that are often
being retuned like guitars as tuning “by ear” by person that does not have
a perfect pitch6 is defined by tuning of the string relative to which all other
strings are tuned.

Having found one played frequency F in sound (or several frequencies for
better precision), it is matched to the closest note N in 440-Hz-A-tuning, then
real frequency of A note f(A) is calculated as:

f(A) = F ∗ 2
t(N)−t(A)

12

where t(N) is an index number of the note(semitone) N (for example in
MIDI representation). Now, all the other notes can be calculated in the same
way.

2.7 Tempo estimation

As was mentioned in Section 1.4.2, Madmom library will be used for the task
of tempo estimation. Authors use a recurrent neural network to learn an
intermediate beat-level representation of the audio signal. The output of the
neural network is a beat activation function, which represents the probability
of a frame being a beat position. And instead of processing the beat activation
function to extract the positions of the beats, authors use it directly as a one-
dimensional input to the bank of resonating comb filters. Comb filtering can
be defined as “the frequency response caused by combining a sound with its
delayed duplicate. The frequency response displays a series of peaks and dips
caused by phase interference. The peaks and dips look like the teeth in a
comb, with very narrow, deep notches where signals are attenuated.” [47].
Using comb filters with different lags (delays) implementation of madmom
detects at which lag the beat of the sound resonates the most. Given lag
would then define a tempo.

The range of possible tempo values (beats per minute (BPM)) t is limited
to 1 ≤ t ≤ 128 and to whole numbers only. This is decided so that the
range can include loops that last from only 1 beat to 128 beats, which would
correspond to a maximum of 32 bars in 4

4 meter.

2.8 Time signature estimation

Problem of time signature or meter estimation is similar to tempo detection
in a sense that the basic idea of it is finding its repetitiveness, recurrence -

6Perfect pitch or absolute pitch is the ability to identify a note by hearing it. The ability
is considered remarkably rare, estimated to be less than one in 10,000 individuals [46].
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2. Analysis and design

beat for tempo and content of a sheet music bar for time signature. That is
why solutions for these problems often overlap.

Another approach for tempo as well as for time signature estimation is
autocorrelation modeling. Autocorrelation modeling is used to determine the
length of the bar - number of beats per each meter. Technically, time signature
definition can contain any numbers for number of beats per measure (top
number) and the note value that receives one beat (bottom number). But most
of music peaces of western music use powers of 2 as a note value (otherwise it
is called irrational measure) and rarely higher than 8 ( ˇ “( ). As for number of
beats per bar, a 1 or values higher than 12 are considered to be the unusual
time signatures. So the implementation limits estimation to these ranges.

Knowing the tempo - a number of fourth notes ( ˇ “) per minute, taking
an average volume of the notes (0 if no notes are there) in all position in
time of sixteenth notes( ˇ “) ) produces the time series on which implementation
models autocorrelation. Assuming that rhythmical structure of the bar and
position of strong and weak7 beats is continues through the whole peace or its
significant part, the lag of modeled autocorrelation will determine the number
of sixteenth notes per bar.

Autoregressive integrated moving average (ARIMA) model is used to de-
termine the lag. ARIMA is a class of models that “explains” a given time
series based on its own past values, that is, its own lags (AR part) and the
lagged forecast errors (MA part), so that equation can be used to forecast
future values. Specifically its simpler version AR will be used. AR is defined
as follows:

Yt = α+ β1 ∗ Yt−1 + β2 ∗ Yt−2 + · · ·+ βn ∗ Yt−n + ε1

where Yt is value measured in time t, α is the intercept term, βk is coefficient
of the first lag, and ε is a noise. All of βs and α are estimated by the model.
The higher the absolute value βk - the higher the correlation between the
signal and its copy delayed by lag k. Obviously the highest correlation of a
signal is with its 0 lag. But as was explained above, the choice is limited to
range 2 ≤ k ≤ 12 with 8 as the shortest note value. So the coefficients β are
estimated from 8th up to 32nd lag to determine time signatures from 2

4 (which
in time is equivalent to 8

16) up to 12
8 (which in time is equivalent to 24

16) and
up to 8

4 or 4
2 (which in time are equivalent to 32

16).
Technically any score for which appropriate k was found, can be written

within k
16 measure. But it is better to identify the best logical value for the

number of beats per measure for simplification of reading of the score and
convert the time signature to either k/2

8 , k/4
4 , or k/8

2 .
7Commonly, some notes per bar are strong(louder) and some are weak(quieter). This

determines accents in measure. For example in 4
4 time, first beat is often the loudest(strong),

third is also strong, but not as strong as the first, and second and fourth are weak.
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2.9. Key classification

k 16 ( ˇ “) ) 8 ( ˇ “( ) 4 ( ˇ “) 2 ( ˘ “)
8 8

16
4
8

2
4

1
2

10 10
16

5
8

12 12
16

6
8

3
4

14 14
16

7
8

16 16
16

8
8

4
4

2
2

18 18
16

9
8

20 20
16

10
8

5
4

22 22
16

11
8

24 24
16

12
8

6
4

3
2

26 26
16

13
8

28 28
16

14
8

7
4

30 30
16

15
8

32 32
16

16
8

8
4

4
2

Table 2.1: Time signature selection table.

Having found a value of k, conversion is performed according to a Table 2.1
as indicated by green cells for even values of k. Odd values of k are not
expected as they are very unusual in measures of k

16 . If they are odd, the
time signature is left as is. It is important to note that measures indicated
by green cell are more common than their counterparts within a row but
time signatures like 6

8 and 2
2 are also widely used in music. But it is hard to

objectively identify which of the measures 6
8 or 3

4 , 2
2 or 4

4 should be used.

2.9 Key classification

Key signature is a part of sheet music notation that simplifies it by avoiding
redundant repetitive accidentals (sharps and flats) and by defining the set
of used notes which in its turn defines the set of used chords, their progres-
sions and harmonic functions in a piece of music. Detailed description of key
signature is in Appendix B.3.6.

As was mentioned in Section 1.4.1, there are several approaches to key
classification including template matching or HMMs. The best paid solution
for key detection is Mixed In Key [1] having 95% accuracy on their test dataset.
The best free solution is KeyFinder [48] with accuracy of 77%. But it is
implemented in C++ so is hard to incorporate into Python implementation
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2. Analysis and design

used in this work.
A simple heuristical solution was used in the framework of this thesis. For

each note that has a sharp counterpart (C, D, F, G, and A), if its semitone-
higher (sharper) note appears more often than its natural note in any octave,
its sharp symbol is included into a key signature. For example:

��
����

Figure 2.6: Notes in a key of C major.

will be translated into

�
�� �� �

Figure 2.7: Notes in a key of G major (note a ] on the F line).

The notes above are one F (natural) and two of F] from three different
octaves. As there are more F] notes, output transcription will be in a key of
G major, that consists of notes G, A, B, C, D, E, and F].

It is important to note that E minor key has the same set of notes, but to
determine whether key is G major or E minor is a much more complex task
and requires an analysis of chord progressions and their harmonic functions
within the context of a given score.

2.10 Post processing

Duration of the note is determined by its start (start of the sample passed
to the model) and its end (moment, when note’s volume lowers under the
predefined threshold). As was discussed in Chapter 1, implementation also
utilizes several simple postprocessing ideas:

• if the duration of the note is too short, it is omitted,

• if the note played at the same time with another note but with the
significant difference in volume, the quieter note is omitted.

Another goal of post processing module is the determination of the rests
positions and their lengths. Rests fill in the gaps in a bar where no note
is played. They are required to position notes correctly on the staff and
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2.11. Score generation

subsequently in time for the musician. As for notes, it is needed to determine
time of the rests’ start and their length (whole rest, half rest, quarter rest,
etc.). The process is fairly straightforward having the notes and their positions
detected:

for each bar do
while not the end of the bar do

if any note starts at the current position then
go to the end of the note;

else
mark start of the rest;
go to the next note or an end of the bar whatever comes
first and mark it as an end of the rest;

determine the length of the rest from its start and end;
end

end
end

Figure 2.8: Rests detection algorithm.

2.11 Score generation

Finally, having estimated time signature, key, positions and pitches of notes,
rests, the output transcription is generated.

LilyPond [49] is used for score generation. Lilypond is a computer program
and file format for music engraving. Notes in Lilypond are represented in
pitch-duration format: pitch is specified with Helmholtz pitch notation8, and
duration is specified with a numeral based system9.

The output of this module is a Lilypond file (in .ly format) and subse-
quently score in Portable Document Format (PDF).

8Helmholtz pitch notation is a system for naming musical notes. For example, the note C
is shown in different octaves by using upper-case letters for low notes, and lower-case letters
for high notes, and adding sub-primes and primes in the following sequence: C′′ C′ C c c′

c′′ c′′′, where c′ is the middle C.
9Duration of a note is specified with numbers 1 ( ¯ ), 2 ( ˘ “), 4 ( ˇ “), 8 ( ˇ “( ), etc. For a quarter

note ( ˇ “) number can be omitted.
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Chapter 3
Implementation

This chapter provides details of the implementation, used tools, training and
testing of the models.

3.1 Used tools

Python was used as a primary programming language for implementation of
the project. Input streams are processed by pyaudio library. Data is stored in
a numpy array in 16 bit integers. Numpy and Pandas were used for datasets
processing. Scipy’s implementation of deep neural networks (DNNs) (and
other models that were tested) was used for models of event detection mod-
ule. Models were trained in jupyter notebook included in the implementation
sources. Models are serialized into .pickle format using Python’s joblib mod-
ule. The statsmodels library is used to generate ARIMA model used in time
signature estimation

As was discussed in Chapter 2, implementations of Spleeter and Mad-
mom were used for source splitting and tempo detection modules respectively.
Output score in lilypond format is generated using abjad that has Pythonic
object-oriented interface for sheet music engraving which uses the lilypond
compiler.

3.2 Project structure

Project follows common approaches for Python project structures and imple-
ments a Python module as well as command line interface (CLI) for music
transcription. It is well parametrized such that user can define a set and
tuning of the instruments, tempo, time signature and key. Otherwise these
parameters are being estimated by dedicated modules according to design
described in a Chapter 2.
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3. Implementation

The main endpoint that is used by CLI and may be used by developers is
mimt.music transcription (mimt stands for multi-instrument music transcrip-
tion). It is responsible for the whole data pipeline that starts at input stream
reading.

3.2.1 Input stream

Input stream can have any source: file, microphone, or any other source
which implements audio reading. AbstractStream interface. For microphone
and file streaming there are already implemented classes MicrophoneStream
and FileStream respectively. Implementations are parametrized by size of read
chunks, but it is important to note that divergence from default value will af-
fect the representation of the data which in its turn would require retraining
of the models used in event detection.

3.2.2 Music source separation and tempo estimation

Modules of the implementation utilize existing solutions for problems of source
separation (Spleeter) and tempo estimation (Madmom). There are a dedicated
modules for both of the problems. The modules are just calling needed func-
tions from implementations of Spleeter and Madmom. Hence, modules are
simple and were included into a project as a dedicated Python modules only
to be consistent within a structure and interfaces of the implementation.

By default, this implementation uses five stems separation. Otherwise it
can be defined as a parameter of the analysis. If any of the output sheet music
scores does not have any notes, it is ignored and does not have output sheet
music.

3.2.3 Pitch detection

Following the source separation module, pitch extraction transforms signals
of each instrument from time domain to a frequency domain using FFT.
Numpy’s fft submodule is used to perform the transformation. Amplitudes of
frequencies generated by FFT then converted to decibels with the following
formula:

volume = 10 ∗ log10 amplitude

PitchExtractor stores the frame rate of the input stream to correctly convert
frequencies produced by FFT to real frequencies of a sound (Hz):

frequency = fft frequency ∗ frame rate

Frequencies are then converted to the closest notes. Assuming equal tem-
perament tuning system and note A tuned to 440 Hz, each frequency is con-
verted to a note in a format used in abjad modules, specifically {note name}{octave},
e.g. A2 is 440 Hz A note, C2 is the middle C, Cs3 is a C] - one octave and
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a semitone higher of the middle C, etc. First, the semitone number above or
bellow 440-Hz-A is calculated:

n = blog12
frequency

440 e

where n = 0 for the 440-Hz-A, n = 1 for A], n = −9 for the middle C, etc.
The note name and octave are then calculated simply:

note name = NOTES[n mod 12]

where
NOTES = [A,As,B,C,Cs,D,Ds,E, F, Fs,G,Gs]

and
octave = 2 + b n12c

where 2 is an octave of the 440-Hz-A.
Only the maximum volume value is selected from the frequencies that are

converted to the same note.

3.2.4 Event detection

EventDetector from event detection module goes through the spectrogram
(time-volume representation of the notes) of the sound with overlapping win-
dow as shown in Fig. 2.4 (green). The size of the window is determined by
3 parameters: shortest note value (default is 16( ˇ “) )), sampling rate of input
stream, and overlapping rate which defines how many data points (volume in
time) are shared between two consequent windows. Having these 3 parame-
ters, the size of the window is calculated as

window size = sampling rate/(shortest note value/overlapping rate)

and step between windows as

window step = bsampling rate/shortest note valuec

The window of spectrogram is passed to the pretrained model for the
given instrument to detect whether this window contains the envelope(s) for
the note(s) in this point in time. If it does, this window constitutes the start of
the note. As was mention in Section 2.5, the end of the detected note is a point
in time when its volume drops under specified threshold note volume− 10.
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Chapter 4
Testing

4.1 Source separation

Commonly used source separation quality evaluation metrics are presented
in a paper by Emmanuel Vincent et al. [50]. For a separating performance
measures are computed for each estimated source ŝj by comparing it to a given
true source sj . The computation of the criteria involves two successive steps.
In a first step, they decompose ŝj as:

ŝj = starget + einterf + enoise + eartif

where starget = f(sj) is a version of sj modified by an allowed distortion
f ∈ F , and where einterf , enoise and eartif are the interferences, noise, and
artifacts error terms respectively. These four terms represent the parts of ŝj

that come from the real source sj , from unwanted sources (si)i 6=j , from noise,
and from other causes. The performance of the model then is evaluated by 4
metrics:

• Source to Distortion Ratio (SDR) = 10 log10
‖starget‖2

‖einterf +enoise+eartif‖2

• Source to Interferences Ratio (SIR) = 10 log10
‖starget‖2

‖einterf‖2

• Sources to Noise Ratio (SNR) = 10 log10
‖starget+einterf‖2

‖enoise‖2

• Sources to Artifacts Ratio (SAR) = 10 log10
‖starget+einterf +enoise‖2

‖eartif‖2

The Spleeter’s performance measured on the standard musdb18 dataset [6]
comparing to Open-Unmix [51] implementation is shown in Table 4.1.
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4. Testing

SDR SIR SAR ISR SDR SIR SAR ISR
vocals bass

Spleeter 6.88 15.86 6.99 12.01 5.51 10.30 5.96 9.61
Open-Unmix 6.32 13.33 6.52 11.93 5.23 10.93 6.34 9.23

drums other
Spleeter 6.71 13.67 6.54 10.69 4.55 8.16 4.88 9.87
Open-Unmix 5.73 11.12 6.02 10.51 4.02 6.59 4.74 9.31

Table 4.1: Spleeter and Open-Unmix performances.

4.2 Sound envelope detection

Sound envelope detection models were trained and tested on the nsynth dataset [45].
For the purposes of the model selection, the dataset generated from the nsynth
data was split into four cross validation folds. Performance results averaged
among the folds are shown in Table 4.2.

time (s) test (%) train (%)
model fit score accuracy precision recall accuracy precision recall
MLP 6.22 0.05 65.0 70.8 57.3 67.3 72.4 60.6
RandomForest 3.72 0.48 64.6 66.6 61.7 1.00 1.00 1.00
XGB 2.45 0.08 64.3 67.0 60.3 67.1 70.1 63.2
AdaBoost 1.72 0.32 63.3 65.5 60.0 65.7 68.4 62.0
DecisionTree 0.25 0.03 59.4 59.4 59.4 59.9 59.8 60.0
Logistic 0.12 0.02 58.0 57.6 59.0 1.00 1.00 1.00
GaussianNB 0.01 0.02 57.0 59.6 52.6 57.9 60.3 53.4
KNeighbors 0.01 0.93 51.2 52.2 48.2 60.3 61.9 57.3

Table 4.2: Envelope detection models’ performance.

As seen from Table 4.2, the best performing model is multilayer perceptron
classifier. It is a neural network with two hidden layers with 64 and 32 neurons
respectively. It uses L2 regularization with α = 0.001 and adam optimizer for
learning.

The accuracy of 65% is not a competitive performance, so this part requires
some tuning of hyperparameters, network topology, or a completely different
approach.
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4.2. Sound envelope detection

4.2.1 Other modules

The key estimation module does not need a testing dataset to evaluate its
performance. It is simple rule based solution. Its accuracy is defined by
ratio of musical pieces (say k) that follow its key - have more sharp notes for
notes that have sharp symbol in the key signature and the same for flat and
natural notes; and ratio of usage of major keys (as a major key is assumed by
default in the implementation) among scores (say p). Having those two ratios
the accuracy of this solution is k ∗ p. Although the choice of the major or
corresponding to it minor key does not affect the key signature, so accuracy
for key signature estimation in output sheet music is just k.

Madmom does not provide evaluation of performance of tempo estima-
tion functionality. So it has been tested. The Free Music Archive (FMA)
dataset [52] was used for evaluation of madmom’s tempo prediction. Even
though tempo estimation seems like a regression problem, small inaccuracies
of the predictions are equally as bad as big ones as they deteriorate the whole
subsequent analysis. So the metric for the problem would be the accuracy
that shows a ratio of correctly estimated tempos to the number of analysed
songs. On the small version FMA dataset with 8000 30s songs, the accuracy
of madmom’s tempo estimation was 81.3%.
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Conclusion

This thesis introduces a reader to the problem of automated transcription of a
multi-instrument sound recording to sheet music. It discusses state-of-the-art
solutions to the tasks of a source instruments separation, pitch detection, key,
and time signatures estimation, etc.

The goal has been reached at a sufficient level. The analysis and design of
the implementation allow for future expansion and improvement of the quality
of the processing pipeline.

Possible improvements

Implementation does not take into consideration the dynamics of the notes.
Dynamic of a sound describes its amplitude or loudness (pp, p, mf, f, ff, etc.),
its emotional intensity and change through time (crescendo, decrescendo). It
is often an inalienable part of the description of the generated sound, hence a
part of the output sheet music. The solution to this task could be simple rule
based or more complex that utilize ML or statistical analysis.

Another optimization for pitch detection could be usage of Multiresolu-
tion FFT. This method is widely-used in a field of Music Information Re-
trieval (MIR) tasks. The frequency components of a DFT are equally spaced
and have a constant resolution. However, in polyphonic music a higher fre-
quency resolution is needed in the low and mid frequencies where there is a
higher density of harmonics. On the other hand, frequency modulation gets
stronger as the number of harmonic is increased, requiring shorter windows
for improved time resolution [53]. Thus, a multi resolution spectral represen-
tation is highly desired for the analysis of music signals and can be a great
improvement for the pitch detection module of this implementation.
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[5] Stöter, F.-R.; Liutkus, A.; et al. The 2018 Signal Separation Evaluation
Campaign. 2018, 1804.06267.

[6] Rafii, Z.; Liutkus, A.; et al. The MUSDB18 corpus for music sepa-
ration. Dec. 2017, doi:10.5281/zenodo.1117372. Available from: https:
//doi.org/10.5281/zenodo.1117372
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Appendix A
Acronyms

WAVE Waveform Audio File Format

LPCM Linear pulse-code modulation

FFT Fast Fourier transform

DFT Discrete Fourier transform

IDFT Inverse Discrete Fourier transform

CNN Convolutional Neural Network

SiSeC Source Separation campaign

AMT Automatic music transcription

ML Machine learning

MIREX Music Information Retrieval Evaluation eXchange

HPS Harmonic partial sequence

MAP Maximum a posteriori

EM Expectation-maximisation

NMF Non-negative matrix factorisation

HMM Hidden Markov model

DBN dynamic Bayesian network

ADSR attack, decay, sustain, and release

MIDI Musical Instrument Digital Interface

BPM beats per minute
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A. Acronyms

ARIMA Autoregressive integrated moving average

PDF Portable Document Format

CLI command line interface

DNN deep neural network

SDR Source to Distortion Ratio

SIR Source to Interferences Ratio

SNR Sources to Noise Ratio

SAR Sources to Artifacts Ratio

FMA Free Music Archive

MIR Music Information Retrieval
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Appendix B
Musical notation

Music notation, when properly applied, can completely describe any musical
score in a simple, concise manner. In order to achieve this, music notation
must describe all definable parameters of each sound, specifically[54]:

• duration

• pitch

• dynamic

• timbre

Duration is described by time signature (4
4 , 3

4 , 7
8 , etc.), tempo (primarily,

beats per minute: ˇ “ = 120), and duration values of note-heads ( ¯ , ˘ “, ˇ “, ˇ “( , ˇ “) , etc.)
and rests (<, > , ? , @ , etc.):

� ��
�
� ���

� = 120

416 � 	 ��

Pitch is defined by position of the note on the staff, key, accidentals ([, ], \)

and the specified clef (H, J, L, etc.):

f

� �
e

�
d

�
c

�
b a

�
g

�
ed

� �
c

� � �
a

�
gf

�

Dynamic of a sound describes its amplitude or loudness (pp, p, mf, f,
ff, etc.), its emotional intensity and change through time.
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B. Musical notation

Timbre describes specific color of a played note/sound. Timber primar-
ily depends on the instrument played but also can define other instrumental
directions (i.e. on bell of cymbal, etc.)

B.1 The Staff

The base for all musical scores is the staff. All other music symbols are placed
on the staff or in relation to it.

The staff consists of five horizontal lines and four spaces between the lines.
Every note-head is placed on one of the lines or on one of the spaces between
the lines. The higher the note-head on the staff - the higher the pitch of the
produced note.

��

� � �
� � � �

B.2 Leger Lines

Obviously, five lines and five spaces can provide only limited range of notes
(precisely, eleven places to put the note-head, including just beneath the
first(bottom) line and above fifth(top) line). If notes from outside this range
are needed, they are placed on or between so-called Leger lines. These are
the lines placed above or beneath the main staff only in places where they are
needed, so for each note individually.

� � � �

�
�� �

B.3 Clefs

The specified clef defines location of each pitch on the staff. The most com-
monly used clefs are the Treble and the Bass clefs[55].

B.3.1 The Treble Clef

The Treble Clef (or G clef, because the middle curl of it encircles line on the
staff that represents a G-note) is used for most high-sounding instruments (i.e.
violin, guitar, ukulele, flute, clarinet, saxophone, trumpet, etc.).

� �
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B.3. Clefs

As it defines second line as G, the lines on the staff, from bottom to top,
are E, G, B, D, F. The spaces then are F, A, C, E. The middle C10 goes on
the first leger line below the treble staff.

B.3.2 The Bass Clef

The Base Clef (or F clef, because line between two dots on the symbol repre-
sents an F-note) is used for low sounding instruments (i.e. bass guitar, cello,
trombone, tuba, etc.)

� �

As it defines fourth line as F, the lines on the staff are G, B, D, F, A, and
the spaces are A, C, E, G. The middle C goes on the first leger line above the
bass clef.

B.3.3 The Percussion Clef

The Percussion Clef is commonly used for drum-set notation. Each line and
space represent different part of the drum kit. They are often predefined at
the start of the part in so-called key or legend, or when they first appear in
the score.

� ��� ����

�
� � ��

B.3.4 The Alto and Tenor Clefs

Alto Clef (or C clef, because line in the middle of the alto staff represent
middle C) and The Tenor Clef are less often used clefs. The viola and the
alto trombone are generally the only instruments that use the Alto clef. Tenor
clef is occasionally used to represent the upper ranges of the cello, double bass,
bassoon, and trombone.

� �

� �

The lines of the alto staff are F, A, C, E, G, and the spaces are G, B, D,
F. Similarly, for tenor clef, C is moved up one line from alto clef, making the
notes on the lines D, F, A, C, E and notes in the spaces E, G, B, D.

10Middle C is a commonly used reference note. It is a closest C to the middle of a
standard 88 key piano (specifically, fourth C from the left). It is around 261.63 hertz.
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B. Musical notation

B.3.5 The Great Staff

The Great Staff or the Grand Staff is a combination of the treble staff and
the bass staff. Usually used by piano or harp musicians.

�
middle C�

�� �
��

Often they also divide score into to parts played by left and right hand
(i.e. on piano, treble clef part with the right hand, bass clef part with left
hand). So, even if some notes belong to treble clef they may be put on leger
lines above bass clef if played by left hand and vice versa.

�C
� ��� ��

��

B.3.6 Key signature

Key signature is a series of sharp symbols or flat symbols placed on the staff,
designating notes that are to be consistently played one semitone higher or
lower than the equivalent natural notes (for example, the white notes on a
piano keyboard) unless otherwise altered with an accidental. Key signatures
are generally written immediately after the clef at the beginning of a line of
musical notation, although they can appear in other parts of a score, notably
after a double bar[56].

�
C
�

C �

� �
C

�
F �

�
F �

��� �
F C �

�
� ��

F

�

Key D major (defined in example above) consists of notes D, E, F], G, A,
B, C]. So, after the clef, notes F and C marked with a ], so, when they occur
in a score without any accidentals, they are played one semitone higher (C]
instead of C, etc.)
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B.4. Rhythmic Description

B.4 Rhythmic Description

Alongside with pitch, it is required to describe rhythm. Rhythmic description
determines exactly when note should be played and when it should stop play-
ing. Notationally it is defined by note-heads, stems, flags, beams, rests, and
time signature.

B.4.1 Note-heads, stems, flags, beams

There are two types of note heads open and closed.

� ��
� ��

Stems are vertical lines attached to the side of the notes-head. Together
with flags, beams, and augmentation dots they define duration value:

�
Quarter note

�
Eighth note

�
�

Sixteenth note

�
��

Whole note Half note

�

Two half note have the same duration as one whole note, two quoter notes
have the same duration as one half note and so on.

B.4.2 Rests

Same as for notes, we can define pauses in music - rests:

� � ��� �

Whole rest, half rest, quoter rest, and so on accordingly.

B.4.3 Time signatures

Time signature is a sign that indicates the metre of a composition. Most
time signatures consist of two vertically aligned numbers, such as 2

2 , 3
4 , 6

8 ,
and 11

16 . The top figure reflects the number of beats in each measure, or
metrical unit; the bottom figure indicates the note value that receives one
beat (here, respectively, half note, quarter note, eighth note, and sixteenth
note). When measures contain an uneven number of beats falling regularly
into two subgroups, the division may be indicated as, for instance, 3+4

4 instead
of 7

4 [57].
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B. Musical notation

� � �8
6 � � � �� � �� � �4

3 ��� � �� ��

4
4 is such a common time signature that sometimes it is specified with S

and 2
2 as R .
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Appendix C
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
src.......................................the directory of source codes

mimt........................................implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
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