
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 20, 2019

ASSIGNMENT OF MASTER’S THESIS
 Title: Redesign of the router administration web interface

 Student: Bc. Bogdan Bodnar

 Supervisor: Ing. Jiří Hunka

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of winter semester 2020/21

Instructions

The goal of the theses is to redesign the Forris configuration interface of the Turris project developed by
the CZ.NIC association. The final solution should support all hardware configurations of Turris routers and
communicate with the configuration back end via a Forris-controller program.
Follow the steps outlined below:
1. Analyze the solution in place and competing solutions.
2. Choose proper technology and design a front end including a user interface focusing on maintainability,
usability, and simple extensibility via plugins.
3. Implement the front end based on design. Implementation should be open-sourced, well documented
and should contain a demo plugin with instructions to serve as an example for the development of future
extensions.
4. Design, implement and evaluate appropriate tests.
5. Create a deployment package for the Turris OS and all supported devices.
6. Distribute the generated package to routers using test development branches and perform the user
testing.

References

Will be provided by the supervisor.

Master’s thesis

Redesign of the router administration web
interface

Bc. Bogdan Bodnar

Department of Software Engineering
Supervisor: Ing. Jiří Hunka

June 28, 2019

Acknowledgements

I would like to thank my supervisor Ing. Jiří Hunka, for his guidance. Also,
I would love to express my gratitude to Turris team members, especially
to Robin Obůrka and Štěpán Henek. I would also like to thank Alexander
Shatrovsky for his corrections of grammar. Many thanks to my family who
supported me during my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on June 28, 2019 …………………

Czech Technical University in Prague
Faculty of Information Technology
© 2019 Bogdan Bodnar. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Bodnar, Bogdan. Redesign of the router administration web interface. Mas-
ter’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2019.

Abstrakt

Tato diplomová práce se zabývá přepracováním administračního rozhraní pro
Turris routery vyvinuté sdružením CZ.NIC.

Hlavním úkolem práce je návrh, implementace a testování nového adminis-
tračního rozhraní s důrazem na rozšiřitelnost a za pomoci moderních přístupů
a technologií. Veškerá implementace je vyvinuta na základě znalostí získaných
z analytické části práce.

Tato práce obsahuje analýzu stávajícího rozhraní Foris a konkurenčních
řešení. Práce také popisuje návrh architektury a design uživatelského rozhraní
zvoleného řešení. Výstupem této práce je samotný zdrojový kód admin-
istrátorského rozhraní, včetně automatických testů, a výsledky uživatelského
testování.

Klíčová slova Turris, Foris, administrační rozhraní pro směrovače, Python,
Flask, React

vii

Abstract

This master thesis deals with the redesign of the web administration interface
of the Turris routers which are being developed by the CZ.NIC association.

The main goal of this thesis is to design, implement and test a new ex-
tensible router administration interface, using modern approaches and tech-
nologies, which will replace existing solution. Entire implementation is based
on the knowledge acquired in the analysis part.

This thesis contains the analysis of the current Foris interface and compet-
ing products. It also describes the architecture, UX and UI design of the final
solution. The output of this work also includes the new interface itself, tests
for the code base and results of the usability testing.

Keywords Turris, Foris, router administraion interface, Python, Flask, React

viii

Contents

Listings xv

Introduction 1
Background . 1
Motivation . 1

1 Analysis of similar solutions 3
1.1 Analysis strategy . 3
1.2 Turris . 4
1.3 COMPAL CH7465LG (UPC) 11
1.4 Summary . 15
1.5 Conclusion . 17

2 Analysis of the current solution 19
2.1 Hardware . 19
2.2 Software architecture . 21
2.3 Plugins . 28
2.4 Conclusion . 31

3 Design 33
3.1 Analysis of requirements . 33
3.2 Technologies . 39
3.3 Architecure . 42
3.4 Plugins system . 46
3.5 UI/UX Design . 47
3.6 Conclusion . 51

4 Implementation 53
4.1 Development environment . 53
4.2 reForis project . 56

ix

4.3 Backend . 56
4.4 Frontend . 63
4.5 JavaScript bundler . 63
4.6 Plugins system and demo plugin 71
4.7 Localization . 72
4.8 Documentation . 74
4.9 Deployment . 74

5 Testing 79
5.1 Backend . 79
5.2 Frontend . 80
5.3 Integration tests . 82
5.4 Usability testing . 83
5.5 Use test with functional application 84

Conclusion 89
Conslusion . 89

Bibliography 91

A Original Foris screenshots 99

B Current Foris class diagrams 113

C Wireframes 117

D Hi-fi prototype screenshots 129

E API endpoints 141

F reForis web interface screenshots 147

G Usability testing script and quizzes 163
G.1 Quiz before test . 163
G.2 Quiz after test . 163
G.3 Script . 164
G.4 Moderator script . 164

H Acronyms 167

I Contents of enclosed microSD card 169

x

List of Figures

1.1 Screenshots of LuCI . 6
1.2 Screenshot of the COMPAL CH7465LG web interface. 12

2.1 Simplified architecture schema of Foris. 22
2.2 Authentication and session management sequence diagram. 29

3.1 Use case diagram of UC-10: Reboot via notification 38
3.2 Use case diagram of UC-11: Reboot via notification 38
3.3 Architecture design of the future Foris application. 43
3.4 Authentication and session management sequence diagram. 45
3.5 Notifications activity diagram. 50
3.6 WAN settings activity diagram. 50

4.1 Screenshot of the PyCharm deployment settings. 54
4.2 reForis project directory structure. 57
4.3 reForis Flask application directory structure. 57
4.4 reForis React application directory structure. 65
4.5 Reboot handling sequence diagram. 67

A.1 Original Foris. Screenshot of the login page. 99
A.2 Original Foris. Screenshot of the notifications page. 100
A.3 Original Foris. Screenshot of the password settings page. 101
A.4 Original Foris. Screenshot of the network interfaces page. 102
A.5 Original Foris. Screenshot of the WAN configuration page. 103
A.6 Original Foris. Screenshot of the LAN configuration page. 104
A.7 Original Foris. Screenshot of the guest network configuration page. 105
A.8 Original Foris. Screenshot of the DNS configuration page. 106
A.9 Original Foris. Screenshot of the Wi-Fi configuration page. 107
A.10 Original Foris. Screenshot of the region and time settings page. . . 108
A.11 Original Foris. Screenshot of the administration page. 109
A.12 Original Foris. Screenshot of the updates settings page. 110

xi

A.13 Original Foris. Screenshot of the “About” information page. 111

B.1 Config handler class diagram1 . 114
B.2 Foris forms class diagram. 115
B.3 Foris form fields class diagram. 116

C.1 Wireframe of the login page. 118
C.2 Wireframe of the dashboard “Home” page. 119
C.3 Wireframe of the notifications dropdown menu. 120
C.4 Wireframe of the notifications page. 121
C.5 Wireframe of the WAN configuration page. 122
C.6 Wireframe of the LAN configuration page. 123
C.7 Wireframe of the Wi-Fi configuration page. 124
C.8 Wireframe of the administration page. 125
C.9 Wireframe of the updates settings page. 126
C.10 Wireframe of the backups creation and restoration page. 127
C.11 Wireframe of the “About” information page. 128

D.1 Hi-fi prototype. Screenshot of the login page. 129
D.2 Hi-fi prototype. Screenshot of the dashboard (home) page. 130
D.3 Hi-fi prototype. Screenshot of the notifications dropdown menu. . . 131
D.4 Hi-fi prototype. Screenshot of the notifications page. 132
D.5 Hi-fi prototype. Screenshot of the WAN configuration page. 133
D.6 Hi-fi prototype. Screenshot of the LAN configuration page. 134
D.7 Hi-fi prototype. Screenshot of the Wi-Fi configuration page. 135
D.8 Hi-fi prototype. Screenshot of the administration page. 136
D.9 Hi-fi prototype. Screenshot of the updates settings page. 137
D.10 Hi-fi prototype. Screenshot of the backups creation and restoration

page. 138
D.11 Hi-fi prototype. Screenshot of the “About” information page. 139

F.1 reForis. Screenshot of the login page. 147
F.2 reForis. Screenshot of the overview page. 148
F.3 reForis. Screenshot of the notifications page. 149
F.4 reForis. Screenshot of the notifications page. 150
F.5 reForis. Screenshot of the WAN configuration page. 151
F.6 reForis. Screenshot of the LAN configuration page. 152
F.7 reForis. Screenshot of the Wi-Fi configuration page. 153
F.8 reForis. Screenshot of the network interfaces page. 154
F.9 reForis. Screenshot of the guest network configuration page. 155
F.10 reForis. Screenshot of the DNS configuration page. 156
F.11 reForis. Screenshot of the password settings page. 157
F.12 reForis. Screenshot of the region and time settings page. 158
F.13 reForis. Screenshot of the reboot device page. 159
F.14 reForis. Screenshot of the updates settings page. 160

xii

F.15 reForis. Screenshot of the packages settings page. 161
F.16 reForis. Screenshot of the ”About” information page. 162

xiii

Listings

2.1 Example of ubus objects list. 26
2.2 Example of ubus objects methods. 27
2.3 Example of foris-client commands. 28
2.4 Example of a foris-controller module JSON Schema. 30
4.5 Example of .gitlab-ci.yml configuration file. 55
4.6 Application factory code example. 58
4.7 Wi-Fi view definition. 59
4.8 Login view code example. 60
4.9 Administration view code. 61
4.10 Loading additional tzinfo translations in a template. 61
4.11 Translation of the typical foris-controller setting module

to the API endpoint. 62
4.12 The code example of getting and checking session stored in a

filesystem. 63
4.13 useAPIGet hook code example. 66
4.14 Using ForisForm container with LAN form code example. . . . 69
4.15 LANForm code example. 70
4.16 The plugin registration with entry_points. 71
4.17 The plugin load via entry_points. 72
4.18 The example of loading the translations. 73
4.19 OpenWrt Makefile sample. 76
5.20 Coverage report of the Python code testing. 80
5.21 Coverage report of the JS code testing. 82

xv

List of Tables

1.1 The hardware comparision table. 16
1.2 The interfaces functionality comparision table. 16
1.3 The interfaces usability heuristic comparision table. 17

2.1 Hardware details of the Turris routers version 1.0 and 1.1 20
2.2 Hardware details of the Turris Omnia router 20

3.1 The traceability matrix of requirements coverage. 40

xvii

Introduction

This master thesis deals with the redesign of the Foris configuration interface
of the Turris project developed by the CZ.NIC association.

Background
Turris routers run on TurrisOS which is an operating system for routers based
on OpenWRT [1]. Despite OpenWRT already having LuCI [2] configuration
interface which is available out-of-the-box, Turris team has decided to develop
its own web administration interface due to complexity of the existing LuCI
interface for basic users.

Thus, came into being Foris, which is a simplified interface for adminis-
tration requirements of Turris routers. It has been created in order to provide
users with a simple and extensible administration and network configuration
tool.

Motivation
The history of Foris begins in October, 2013 when Jan Čermák posted the first
commit 2 to the Foris repository. Turris project had started as a startup
and gave birth to Foris which has grown very rapidly. During the process,
a lot of changes and new features were added to the existing code base without
much planing for future maintenance.

Thus, modern-day Foris has a lot of legacy code and technologies used.
Foris is an open-source project and it has an extensible architecture in order
to allow third-party developers and enthusiasts to create plugins to meet their
requirements. Unfortunately, developers are not very interested in contribut-
ing to the project with legacy code and unpopular technologies used in it.

2 A curious reader can find the first commit message on the CZ.NIC Labs GitLab [3].

1

Introduction

The new redesigned Foris interface is made using modern technology and a sim-
ple plugin system. Thus, it intends to rectify the shortcomings described above
in order to attract third-party developers.

2

Chapter 1
Analysis of similar solutions

Analysis of existing solutions is essential for this work because it helps to get
an overview of the modern state of the domain and also alleviate possible
issues in subsequent design and implementation.

This chapter analyzes and compares current competing solutions to iden-
tify common mistakes in making a router web interface. The analysis is also
focused on UI and UX design, trying to fix issues of the current interface
and taking into account both problems and benefits of the reviewed inter-
faces.

1.1 Analysis strategy
This section describes the principles of the following analysis of the routers
and their web configuration interfaces. The aspects of the solutions, which
this analysis is focused on, are described in the following subsections.

1.1.1 Hardware
Specification

Allows to find out if router has any extra features (such as additional
ports or swappable storage etc.).

Expansibility
the evaluation of expansibility of a device based on its specification.

1.1.2 Software
Operating system

Specification of a router OS or a software version. The number of fea-
tures provided by a router is directly dependent on the OS used.

3

1. Analysis of similar solutions

Configuration web interface

Functionality
Configuration features of a web interface entirely depend on the router
functionality.

Usability
The testing of usability of an interface based on heuristic eval-
uation consisting of ten individual heuristics described by Jakob
Nielsen [4]:
• Visibility of system status
• Match between system and the real world
• User control and freedom
• Consistency and standards
• Error prevention
• Recognition rather than recall
• Flexibility and efficiency of use
• Aesthetic and minimalist design
• Help users recognize, diagnose, and recover from errors
• Help and documentation

It can help to identify problematic areas in the domain and prevent
mistakes in future design.

Extensibility
This part of the analysis evaluates the possibility to extend the in-
terface with plugins. Also, this part is trying to assess how large is
the stack of technologies a developer must be familiar with in or-
der to create a plugin. It will help us to understand whether it is
a common approach or something more specific to this solution.

The result of the comparative part of the analysis is summarized in a few
tables in the last section of this chapter on page 15.

The issue with the examination of these routers and their interfaces is that
the author of this paper does not have them at his disposal. Fortunately, some
of these solutions are open-source, and the author is allowed to analyze them
closely. It holds true especially for current implementations of Turris routers
which are analyzed in the next section.

1.2 Turris
Even though the redesign of the web configuration interface of Turris routers is
described in detail in the next chapter on page 19, it is also analyzed in this one
with references to another chapter where it is compared with other solutions
on the market.

4

1.2. Turris

Turris project is developed by the CZ.NIC association and described on the
official Turris web page [5] as a service that utilizes a specialized router to help
its users protect their home networks from intruders.

1.2.1 Hardware
Presently Turris offers two different models of its router with one more being
in the development stage. Hardware specification of these models is described
in the chapter 2 on page 19.

1.2.1.1 Expansibility and upgrades of the hardware configuration

All models of Turris routers can more-or-less be upgraded by a user. Replace-
ment of Wi-Fi modules and mounting of additional storage in Turris and Turris
Omnia models is possible thanks to mini PCI slots. Moreover, Turris Omnia
offers to add an LTE modem [6]. MOX can be assembled from seven different
modules, this creates a massive diversity of the configurations.

In light of the above, design and realization of this work should take
into account different hardware configurations. It is discussed in more de-
tail in the “Design” chapter on page 33.

1.2.2 Software
1.2.2.1 Operating system

All represented models of routers use Turris OS as an operating system.
The source code of the Turris OS is available in the CZ.NIC labs git reposi-
tory [7] under GNU GPLv2 license. Turris OS is the Linux distribution based
on OpenWrt [1]. Unlike OpenWrt, it comes with features like automatic up-
dates and offers a simpler web interface. Simply said, Turris OS attempts to
be more user-friendly than OpenWrt. Fortunately, all these operating systems
are open-source, so it’s possible to study this software directly.

1.2.2.2 Web configuration interfaces

Turris OS has two configuration interfaces. It comes with LuCI configuration
interface [2] because it’s based on OpenWrt. Moreover, Foris configuration
interface is also present in the Turris routers as part of the Turris OS. Both
of these interfaces are studied in the following sections.

1.2.2.3 LuCI

LuCI is open-source software which is available on the OpenWrt organization
GitHub [2] under Apache License 2.0.

LuCI uses UCI (Unified Configuration Interface) [8] which is meant to cen-
tralize the configuration of OpenWrt. UCI configuration files can be modified

5

1. Analysis of similar solutions

through various programming APIs (like Shell, Lua and C), which are used
by LuCI to make changes to the UCI files [9].

Figure 1.1: Screenshots of LuCI

Functionality
LuCI is a powerful and exhaustive configuration interface. This interface can
be considered to be a step forward from setting up a router via configuration
files through the command line to doing it via a web interface. Due to this
fact, it attempts to cover all configuration possibilities which can be enabled
using config files 3.

Usability

Visibility of system status An issue was found with some pages containing
a long list of items that can be added or modified. After a user adds

3The whole list of supported configuration files is listed on the OpenWRT wiki page [10].

6

1.2. Turris

an item, he is led to believe that configuration was applied to the system.
In reality it was not, because there is a button at the bottom of the page
labeled Save & Apply which should be clicked to apply the setting. If
the list of items is too long, then the button is hidden under the scroll
bar. It confused the author a few times during the process of adding
of firewall rules.

Match between system and the real world The terms match real world
terms as closely as possible in the case of routers configuration interface.
The configuration terms are typical for networks domain, even though
they may not be known to non-advanced users.

User control and freedom Changes made by a user are not saved until
the user clicks the button Save&Apply.

Consistency and standards Issues were not found.

Error prevention Bizarre behavior was detected. The forms provide val-
idation of IP addresses and highlight a violating field in red if an IP
address doesn’t match the correct format. But despite this, a user can
still submit a form and changes may not be applied. A user doesn’t get
any error message in this case.

Some fields don’t have any validation at all, so it’s possible to fill in some
meaningless value and it will be saved (e.g., “Start” in DHCP Server
settings may be some really big number overflowing the range of IP
addresses).

Recognition rather than recall This partially overlaps with the first heuris-
tic. A user should remember that he made some changes and should not
forget to scroll to the bottom of the page and apply them. Other issues
weren’t found.

Flexibility and efficiency of use The interface is neither flexible nor adapt-
able for both beginners and advanced users. During the study there
could not be found a way to adapt the interface in any way. The inter-
face is more suitable for advanced users, and it doesn’t have any wizards
to provide a beginner user with a fast way to configure routers.

Aesthetic and minimalist design Menu items or tabs split most of the pages
but there is still a lot of information on single column pages.

Long lists preceding short forms make it even worse. On some pages,
a user should scroll through a long list in its entirety to find the infor-
mation he needs. It’s better to show only a few list items and expand it
if needed.

7

1. Analysis of similar solutions

Help users recognize, diagnose, and recover from errors The same is-
sue as described in “Error prevention”.

Help and documentation Help texts exist, but they are very few and sparse.
They are not sufficient for inexperienced users, because even some ab-
breviations are not explained (e.g., DHCP, DNS, MTU, etc.).

Conclusion Authors of the LuCI consider LuCI to be a clean interface [2].
This is true when compared to configuration file changes being done via a con-
sole. But LuCI is overloaded with a lot of configuration elements and has
an outdated design. Simply said, it’s better suited for advanced users.

Such a solution poses a challenge to average users who seek an answer
to the problem of a well-working home network. It provides an exhaustive
amount of configuration options in a way of a direct modification of the con-
figuration files but it’s not used by all users. It also doesn’t have any kind
of an initial configuration wizard which would allow a user to make only a few
necessary adjustments to get a fully-working router.

Extensibility LuCI is extensible via so-called modules. Process of module
creation is well-documented on LuCI GitHub wiki pages [11].

Modules are written in Lua programming language [12] using luci API.
LuCI has a simple template processor which parses HTML files into Lua func-
tions and allows to store precompiled template files [13]. LuCI API also pro-
vides “CBI models” which allow to create forms based on a user interface
and save their contents to a specific UCI config file using just the definition
of the models’ structure.

Each module is distributed as an OpenWrt package and should follow
the strictly predefined source code structure.

LuCI has a really thorough and well-documented way to extend it. Unfor-
tunately, it forces developers to study a set of obscure technology. This can
be an issue with attracting new developers to the community.

1.2.2.4 Foris

Foris is used by Turris routers as the current solution to provide users with
a basic configuration interface. Redesign of current Foris interface is the main
goal of this paper, so this solution is analyzed in detail in the chapter 2.

A set of orifginal Foris web interface screenshots is available in the ap-
pendix section on 99 page.

Functionality Foris allows users to perform basic router configuration. This
web interface includes all the settings needed to cover all of the most popular
scenarios used by an average user, including network settings, update man-
agement, and maintenance.

8

1.2. Turris

It’s possible to install plugins (e.g., storage management, VPN server,
etc.), which can extend functionality to meet custom demands of an individual
user. The plugin system of Foris is described in more detail in the paragraph
on the extensibility on page 10.

On top of that, Foris provides first configuration wizard, which guides
the user through the necessary steps to have a fully-working router.

Usability

Visibility of system status It has an issue similar to the previous interface.
A user should press the “Save” button to apply the settings change, but
in some long forms the button is hidden under the scroll bar, and users
may not notice that they should submit changes. Moreover, changed
fields are not marked as such - a user should remember the changes he
did. Even though forms in Foris are shorter than in LuCI, their length
may still cause issues.

Match between system and the real world The terms match real world
terms as close as possible in the case of routers configuration interface.

User control and freedom A user can simply quit the page if he makes
an error in some of the fields. Also, there is a “Discard changes” button
on every single form. Despite the button’s main purpose being to reset
the page, additionally it provides one more way to perform the “undo”
action.

Consistency and standards Some inappropriate location of the settings
was found in the first evaluation which is described in the next part of
the usability analysis (e.g., updates settings and notifications settings
on the maintenance page).

Error prevention The interface has a rich validation of fields where it’s
needed. Also, user input is limited by choices where it’s possible. No
outstanding issues were found.

Recognition rather than recall A user should remember that he made
some changes and that they need to be applied.

Flexibility and efficiency of use The interface provides first configuration
wizard which allows inexperienced users to get a working solutions with
just a few easy steps. There is also a way to skip it for advanced users
(user may want to just restore configurations from a backup).

Aesthetic and minimalist design The pages contains only required infor-
mation except for a few cases defined under “Consistency and standards”.

9

1. Analysis of similar solutions

Help users recognize, diagnose, and recover from errors The interface
provides WAN and DNS connection tests, which allow the user to per-
form configuration diagnostic.

Help and documentation Every page has a rich help text. Some fields
which may be unclear have toggled help text. The author’s subjective
view is that this is enough to satisfy both beginners’ and advanced users’
needs.

MI-NUR The first analysis of the actual Foris interface was performed
as part of the final project for the MI-NUR course 4. Here is the summary
of this evaluation.

• Advantages

– Design of the interface is simple and clear.
– It has a wizard with simple first configuration.
– Language switch is intuitively located on each page.
– The web interface has a responsive and modern design.
– The interface provides real-time notifications without the need to

refresh the page.

• Disadvantages

– In the first configuration guide, a user should click on the next
highlighted menu item and doesn’t get transferred automatically.

– “Automatic restarts after software updates” is located under the “Main-
tenance” section and not under the “Updater” section which is im-
plied by the setting’s name.

– “Maintenance” also has “Enable notification” setting. It can con-
fuse a user because there is already a “Notification” menu item
present.

– User can’t quickly check notifications from a random page. They
are hidden under a special menu item.

Extensibility Foris architecture supports functionality extension with plu-
gins. This extension system of Foris is described in detail in the chapter 2 on
page 28 and is summarized here.

The problem of this solution is that the technologies which developer
should use to implement a frontend part of the plugin are neither widespread

4 The evaluation was made by the following team: Bodnar, B., Karola, A.,
Kryvosheienko, M., Laskov, B. and Samigullina, G.

10

1.3. COMPAL CH7465LG (UPC)

nor standardized. Particularly, using custom forms (Bottle framework doesn’t
have those) and HTML elements instead of using existing, well-known and widespread
technologies like some other framework with built-in forms or existing toolkits
that work with HTML, JS, and CSS.

All these issues discourage the community of developers from writing new
Foris plugins. Author of this paper is trying to solve this issue in the chapter 3.

1.3 COMPAL CH7465LG (UPC)
UPC is one of the most popular internet providers in Europe. So UPC modems
represent a wide-spread solution for homes and small offices.

Even though CH7465LG is a modem it has router functionality as well.
So this model can be analyzed and compared with another product in this
section [14].

1.3.1 Hardware
1.3.1.1 Specification

The following summarized specification was described in detail in the security
evaluation performed by Search-LAB [15].

1.3.1.2 Components

• Intel XScale CE26XX processor

• All-Flash TSOP-48 1Gbit parallel NAND flash chip

• PHISON eMMC flash chip

• HIGH PERFORMANCE 2Gbit DDR3-1600 SDRAM 8 BANKS X 16Mbit
X 16

• 4+1 ethernet ports

• dual band 3x3 802.11ac single chip with 1300Mbps PHY rate support
and

• SMD QFN56 GP 802.11B/G/N Wi-Fi chip

1.3.1.3 Interfaces

• 3 control leds (behind a plastic cover)

• WPS button

• 2 RJ11 telephone connectors

11

1. Analysis of similar solutions

• 4 RJ45 Ethernet connectors

• Reset button

• RF cable input

• DC input

• Power on switch

1.3.2 Expansibility
This model of the modem doesn’t allow to extend it with additional hardware
or change hardware configuration.

1.3.3 Software
Software version of the sample is CH7465LG-NCIP-6.12.18.24-5p4-NOSH.

1.3.3.1 Web configuration interfaces

Figure 1.2: Screenshot of the COMPAL CH7465LG web interface.

12

1.3. COMPAL CH7465LG (UPC)

Functionality Following list of web interface functions was discovered dur-
ing analysis. The functions are grouped by configuration pages.

• Home

– Quick Set-Up Wizards
∗ Configuration of Wi-Fi network
∗ Network diagnostics tools
∗ Guest network configuration

– Wireless Gateway status overview
– Wireless connected devices list
– Ethernet connected devices list

• Connected devices

– List of all connected devices with names, “connected to” interfaces,
MAC addressees, IP addressees and connection speeds.

• Advanced settings

– Wireless
∗ Wireless signal
∗ Security
∗ Guest network
∗ WPS

– Security settings
∗ Firewall
∗ MAC filtering
∗ IP and Port filtering

– DHCP
– UPnP
– Tools

∗ Network status
∗ Ping
∗ Traceroute
∗ MTU size

• Admin

– Change password
– Reload and Reboot

13

1. Analysis of similar solutions

– Remote access settings
– Device info

This model of router and its web configuration interface is intended mostly
for average users, and it covers all basic home needs. The interface has 3
wizards for a quick router setup which may be useful. It also has a well-
designed dashboard with list of connected devices.

As a result of the analysis, no LAN port settings were detected. The web
interface doesn’t allow to set up the IP address of the router in a LAN network.

Usability

Visibility of system status The locations of the settings are hidden by JS
functionality and are not visible in URL. Thus it’s not possible to save
a page with a location of a setting as a link, and also it can be prob-
lematic for users who are used to quickly navigating a website using
the URL path.
During network diagnostics “Telephone Service” is marked with a green
check mark even when it’s not being used. Changes in the settings are
not highlighted, but a user is warned before he quits the page without
saving changes first.

Match between system and the real world Issues weren’t found.

User control and freedom Undo button was not found in the interface.
If a user does not want to apply settings, then he should not press
the “Apply changes” button.

Consistency and standards Some settings are not properly located and may
confuse a user (e.g., “Backup” setting is located in the “Reload and Re-
boot” section) The “Wi-Fi” term is used alongside “Wireless”.

Error prevention Wi-Fi password fields validation is performed after click-
ing “Apply changes” button.
Some fields demand the data to conform to a certain format upon saving
(e.g., MAC address) and some (e.g. IPv6) are validated in real time.

Recognition rather than recall A user has to remember that he made
changes in any of the interface forms and that these changes should
be applied. Issues were not found in other cases.

Flexibility and efficiency of use The interface covers both beginner and ad-
vanced user groups’ needs. But all network configurations are hidden
under the “Advanced configuration” menu item, that may confuse more
advanced users.

14

1.4. Summary

Aesthetic and minimalist design The interface has a minimalistic design.
The configuration pages are split properly, and they are not overflowing
with useless information.

Help users recognize, diagnose, and recover from errors The interface
comes with a connection troubleshooting tool on the front page. So,
a user can run diagnostics of the network connections and apply fixes
if necessary.

Help and documentation In every router configuration interface there are
a lot of domain-specific terms which should be accompanied by descrip-
tion or a help page. In the investigated web interface there are a lot of
help texts, but they are still lacking in some places (e.g., wireless modes,
firewall options, UPnP, MTU)

Other issues The password input fields are visible and not rendered as
a password. It may cause security issues, as someone behind your shoulder
can read this password. Also, these fields are not recognized by browsers as
a password input thus not taking advantage of the autofill feature.

Lags and freezes after moving between configuration sections were found
during heuristic evaluations.

Conclusion The web interface has a modern and pleasant minimalistic de-
sign. It is focused on satisfying users with not very advanced, but rather
basic needs. However, fixing discovered issues would make this interface even
better.

1.4 Summary
1.4.1 Hardware features
The following table Table 1.1 considers only hardware features which may
impact a web interface.

From this table, the reader can see that the analysis doesn’t concern itself
with any router with hardware extension possibilities. Very few routers pro-
vided on the market allow a user to change their hardware configuration due
to not being popular among average users. Thus, the author hasn’t got any
for the analysis.

1.4.2 Software
1.4.2.1 Functionality

The definition of the advanced configuration doesn’t have certain criteria. It
makes difficult to categorize interface by suitability for advanced users or be-

15

1. Analysis of similar solutions

hhhhhhhhhhhhhhh
HW feature

Router Tu
rri

s 1
.0

Tu
rri

s 1
.1

Tu
rri

s O
mn

ia
CO

M
PA

L
CH

74
65

LG

USB 3 3 3 7

miniPCI 3 3 3 7

Exchangeable Wi-Fi module 3 3 3 7

SIM slot 7 3 3 7

Extensibility 3 3 3 7

Table 1.1: The hardware comparision table.

hhhhhhhhhhhhhhh
SW feature

Interface Lu
CI

Fo
ris

UP
C

Advanced configuration 3 7 7

Initial configuration wizard 7 3 3

Extensibility (plugins) 3 3 7

Table 1.2: The interfaces functionality comparision table.

ginners. The author offers the following simple categorization: If the interface
affords to perform almost all theoretically possible network configurations
provided by router then it’s suitable for advanced users. If, on the other
hand, the interface covers a smaller subset of router configuration parameters
in order to be more clean and understandable for beginners, then we consider
the interface to provide only basic settings.

The functionality comparison is summarized in the table Table 1.2.

1.4.2.2 Usability

The usability comparison is based on the previous heuristic evaluations and it’s
summarized in the table Table 1.3.

The most critical and common usability issues found during heuristic eval-
uations of all the considered interfaces are summarized in the following list:

• No visible status of configuration changes. This also causes the next
issue.

• Changes are not preserved when a user accidentally leaves the page.

16

1.5. Conclusion

hhhhhhhhhhhhhhhhhhhhhhhhhhhh
Heuristic

Interface

Lu
CI

Fo
ris

UP
C

Visibility of system status l l l

Match between system and the real world l l l

User control and freedom l l l

Consistency and standards l l l

Error prevention l l l

Recognition rather than recall l l l

Flexibility and efficiency of use l l l

Aesthetic and minimalist design l l l

Help users recognize, diagnose, and recover from errors l l l

Help and documentation l l l

Legend:
Excellent solution – l

Without issues – l

Minor issues – l

Significant issues – l

Table 1.3: The interfaces usability heuristic comparision table.

• Confusing categorization of the settings.

• Neither beginner nor expert users’ needs are fully met.

1.5 Conclusion
The analysis helped to reveal the most common and major issues and limi-
tations of the current solutions, especially in regards of UI and UX design.
Moreover, during the analysis stage the author has done a deep dive into
the domain of router configuration interfaces. This has provided him with
an opportunity to approach the problem at hand from different angles: both
from developer’s and user’s point of view.

All of the exposed issues will be taken into account during the subsequent
redesign and implementation parts of the project. The author will afford to
keep all the advantages of the existing solution and to fix existed limitations.

17

Chapter 2
Analysis of the current solution

The main goal of the analysis is to familiarize ourselves with the technologies
used and the architecture of the Foris interface. Another goal is an inves-
tigation for weak architecture points and avoiding them in the subsequent
design and implementation. Also, the research has to focus on plugin devel-
opment which is essential to design and implementation of a better pluggable
architecture.

2.1 Hardware
Turris team has developed two models of the routers, and one model is cur-
rently in the development stage.

• Project Turris (1.0 and 1.1)

• Turris Omnia

• Turris MOX (development stage)

Turris routers have open-source hardware design. Hardware schemas and doc-
umentation are located on a documentation web page of the Turris project [16].

2.1.1 Project Turris

Turris, the first model of Turris routers. It was rented to selected users for
a symbolic price of one Czech crown to aid research.

The hardware configuration of these routers is described in the Table 2.1.
Information in the following table is taken from the official Turris web page [17],
and additional information about the Turris router is available there.

19

2. Analysis of the current solution

Turris 1.0 Turris 1.1
Processor Processor Freescale P2020, 1200 MHz

RAM 2 GB DDR3 RAM in a SO-DIMM slot
Storage 16 MB NOR and 256 MB NAND flash memory
Ethernet Dedicated gigabit WAN and 5 gigabit LAN ports
Wi-Fi 802.11a/b/g/n with 3x3 MIMO and removable ex-

ternal antennas
USB 2.0 2x on the back side
USB 3.0 no 1x on front side + 2x internally
miniPCIe 1 free slot, 1 slot occupied by Wi-Fi card

Other interfaces UART, SPI and I2C connected to a pin-header for
easy customization, debug console over internal mi-
croUSB port

SIM slot no yes
Power source 7,5 V 12 V

Power consumption 9.5 W without load, 12.5 W with CPU load and 14
W with maximum wired and Wi-Fi network load.
Measured power consumption includes the supplied
power adapter.

Table 2.1: Hardware details of the Turris routers version 1.0 and 1.1

CPU 1.6 GHz dual-core ARM
RAM 1 GB DDR3 (optionally 2 GB)

Storage 8 GB flash
LAN 5× Gbit port
WAN 1× Gbit port
SFP yes
USB 2× USB 3.0

Mini PCI Express 2×
mSATA / mini PCI Express 1×

Wi-Fi 3×3 MIMO 802.11ac
(mini PCIe) 2×2 MIMO 802.11b/g/n

Table 2.2: Hardware details of the Turris Omnia router

2.1.2 Turris Omnia

Turris Omnia is the second generation of Turris router. Changes from the pre-
vious version are not so significant but noticeable, they affect the design of
the device as well as hardware. The whole list of hardware feature is available
on the Turris Omnia webpage [18] and also in the following Table 2.2.

20

2.2. Software architecture

2.1.3 Mox
The latest generation of the Turris routers at the moment and it’s in the devel-
opment stage as of April 2019. MOX is the first modular router in the world
which allows users to build their own set of modules which are appropriate to
their use-cases. Seven different modules will be available to build a custom
router. The whole list of the modules and their configurations is available
on the MOX modules specification page [19].

This paper isn’t focused on the MOX model but it should consider it
in the final design of the interface, for it to be flexible towards this configura-
tion diversity. Another thing which is significant in the scope of this work is
a future possibility to make the so-called mesh Wi-Fi routers system. It will
offer users the ability to configure the whole network using a single interface,
although it can entail connectivity issues.

2.2 Software architecture
Simplified architecture schema of Foris is shown in the Figure 2.1.

2.2.1 Backend
A backend is a set of services, uci configurations, scripts, and notifications.
All these resources are covered by foris-controller as a facade. So frontend
has just one communication point with the backend.

foris-controller is open-source software, which is available on the CZ.NIC
gitlab [20] under GNU GPLv3 licence.

foris-controller does the following:

• Gets requests on the bus.

• Processes requests via backends.

• Sends response to the bus.

• Sends notifications to the bus.

• Validates messages against a JSON-schema.

Unfortunately, the foris-controller interface is not well-documented.
But it validates inputs against JSON-schema which is self-documented. Each
module of the foris-controller uses a relevant JSON-schema.

2.2.2 Frontend
Web application and WebSockets server represent a frontend.

21

2. Analysis of the current solution

Figure 2.1: Simplified architecture schema of Foris.

22

2.2. Software architecture

2.2.2.1 Web server

The web application is written in Python [21] language using bottle [22]
framework. And it runs with lighttpd server[23].

Foris is open-source and all the code described below is available in the of-
ficial Turris repository [24] with GNU GLPv3 licence.

Config handlers The code is split by modules into so-called config_handlers.
Every config_handler is the Python class which inherits BaseConfigHandler
and defines get_form() method. The method has the following responsibili-
ties:

• Getting configuration data from the backend (foris-controller) and prepar-
ing it to be used in a form.

• Preparing data to have a relevant structure and sending data to the back-
end.

• Creation of a form with fields and validation.

List of the config handlers:

• DNSHandler

• GuestHandler

• GuideFinishedHandler

• LanHandler

• MaintenanceHandler

• NetworksHandler

• NotificationsHandler

• PasswordHandler

• ProfileHandler

• RemoteHandler

• UnifiedTimeHandler

• UpdaterHandler

• WanHandler

• WifiHandler

The UML diagram of the some of the config handlers is available in the ap-
pendix on page 114.

23

2. Analysis of the current solution

Forms Foris forms don’t use any existing libraries and are written from
scratch. The form represents an object of the fapi.ForisForm class. This
class encapsulate data preparation, validation, caching, callbacks calling, error
collecting (and rendering).

Templates HTML code is dynamically generated via Jinja2 template lan-
guage [25].

Styles None of the toolkits for developing HTML documents with styles are
used. The styles are written from scratch via SASS, and it describes custom
elements styles.

Nowadays there exist a lot of toolkits which make developing arrangement
and styling of components easier and more maintainable but unfortunately
none of them are used.

Client-side code The client-side code is represented by dynamically gen-
erated (via Jinja2) JS code and static code.

The dynamically generated JavaScript code is used to make translated
messages which are used in dynamic components such as messages (e.g., pop-
ups and validation errors). This solution has one consequence. Every trans-
lated text should be generated in one place and can’t be defined in the place
where it’s used.

The static JavaScript code is represented by one file, and it’s in charge
of AJAX calls, WebSockets, rendering errors and warning messages (pop-
ups). Also, in this solution vex [26] a library is used that provides interactive
pop-up dialogs.

This approach also has consequences, there is a lot of logic contained
in the one long file which makes it difficult to maintain and add new fea-
tures. Also, this solution doesn’t use minification [27], which can optimize
code and decrease the amount of data transferred to the client.

Conclusion The set of technology has a few design issues which has prompted
this work to be started. bottle framework is a good choice to make some
simple web interface like Foris used to be at the beginning. But after new
functionality was added, a lack of features provided by the framework was
discovered (forms support, sessions management etc.). It resulted in the need
to implement such features on one’s own. This decision led to an increase
in the lines of code and obstructions emerging in the way of maintaining
and adding new features.

Also, the things which were written from scratch (e.g., forms and client-
side code) don’t split the logic in the best way and should be refactored or
redesigned.

24

2.2. Software architecture

2.2.2.2 WebSockets

Another part of the frontend is WebSockets server.
WebSockets is a protocol that allows a persistent TCP connection between

server and client so they can exchange data at any time [28]. The main
advantage of using WebSockets is that server can stream data without client
requests avoiding excess AJAX pulling.

WebSockets server is responsible for the following:

• Gets notifications from the bus.

• Resends received notifications through WebSockets to the client browser.

In other words, WebSockets transfer messages from the bus to the client
browser. It allows to update configuration page dynamically and notify browser
about configuration changes. It’s useful in cases when a user should be noti-
fied immediately (e.g. router restart is needed, configuration changes are being
applied etc.)

2.2.3 Communication buses

Backend and frontend communicate with each other via communication bus.
Now it supports three communication buses:

• ubus

• MQTT

• unix-socket5

2.2.3.1 ubus

Currently Foris uses ubus [29] to accomodate communication between fron-
tend and backend. Ubus is the communication interface which allows relaying
messaging between processes and services, which is widely used as the main
communication channel in OpenWrt.

It’s simple to get a list of the all objects provided by ubus as shown in List-
ing 2.1.

5unix-socket is used only for testing and it is not described in this paper.

25

2. Analysis of the current solution

root@turris:~# ubus list
dhcp
foris-controller-about
foris-controller-diagnostics
foris-controller-dns
foris-controller-guest
foris-controller-lan
foris-controller-maintain
foris-controller-networks
...
service
session
system
uci
websocket-listen

Listing 2.1: Example of ubus objects list.

Also, the command line interface of the ubus allows listing methods on a
certain object as we can see in the Listing 2.2. Notice, that the list of objects
methods is similar to JSON file structure.

26

2.2. Software architecture

root@turris:~# ubus -v list foris-controller-wifi
'foris-controller-wifi' @30bcb750
"get_settings": {

"request_id":"String",
"final":"Boolean",
"multipart":"Boolean",
"payload":"Table"

}
"reset": {

"request_id":"String",
"final":"Boolean",
"multipart":"Boolean",
"payload":"Table"

}
"update_settings": {

"request_id":"String",
"final":"Boolean",
"multipart":"Boolean",
"payload":"Table"

}

Listing 2.2: Example of ubus objects methods.

2.2.3.2 MQTT

There is a plan to switch from ubus to MQTT in the future. Currently MQTT is
used in the testing branches of Turris OS. MQTT, the M2M/IoT connectivity
protocol [30]. So, it allows connecting more devices via a uniform communi-
cation channel. It is planned to use in the future to provide a possibility to
configure many routers from single administration interface.

MQTT support is implements with Mosquitto [31]. Mosquitto, the open
source MQTT broker.

2.2.3.3 foris-client

The support of these buses is provided by foris-client library [32] which is
used in frontend as abstraction layer on the buses.

27

2. Analysis of the current solution

root@turris:~# foris-client-wrapper -m router_notifications\
-a create \
-I '{"severity":"news","immediate":false,"msg":"Example."}'

>>> {"result": true}
root@turris:~# foris-client-wrapper -m router_notifications\

-a list -I '{"lang":"en"}'
>>> {"notifications": [{

"id": "1553543653-7854",
"displayed": false,
"severity": "news",
"created_at": "2019-03-25T20:54:13",
"msg": "Example.",
"lang": "en"

}]}

Listing 2.3: Example of foris-client commands.

2.2.4 Authentication
The password to the Foris interface is saved in the UCI configs in the form of
a hash using 48bit pseudo-random salt internally generated by pbkdf2[33].

The foris-controller provides a handler to check if the hash of the re-
ceived password and the hash stored in the UCI match.

So the Foris web application performs authentication using foris-client
library which will request foris-controller to compare password hashes.
Thus, authentication is complete.

2.2.5 Session management
Both the web server and WebSockets server use server-side sessions via ubus
sessions management. After the client logs in, a new session is created using
ubus session management. The two session ids created via ubus are set as
a cookie with foris.session and foris.ws.session names in the client
browser. Thus, in subsequent requests, the web server and WebSockets server
can determine if the user has already been authenticated.

Both authentication and session management processes are illustrated via
sequence diagram on the Figure 2.2.

2.3 Plugins
Since Foris is composed by frontend and backend, the plugin should contain
modules for both these parts. That means that plugins consists of a module

28

2.3. Plugins

sd First authentication and sessions creation

Browser

User

Web server ubus

Go to some page

Check: session exists

sd Authentication via sessions

Reply: login
Set cookies:
foris.session

foris.ws.session

Request: some page
Cookie: foris.session

Request: connection establish
Cookie: foris.ws.session

Create
session

Create
session

Check: session exists

foris-controller Backend
(UCI)

WebSocket
server

Request: create foris session
Reply: foris session id

Request: create foris-ws session
Reply: foris-ws session id

Request: password check Request: password hash

Peply: password hash

Compare hashes

Request: loginLogin

Request: get sessions
Reply: get sessions

Reply: connection establish

Request: get sessions

Reply: get sessions

Reply: some page

Reply: password check

Figure 2.2: Authentication and session management sequence diagram.

for foris-controller and foris (frontend).

2.3.1 Backend part (foris-controller)

Module for foris-controller contains:

Python code gets requests, processes it and responds with results using a
bus. It may also send notifications.

JSON schema is a vocabulary that allows you to annotate and validate
JSON documents [34]. All requests are described and validated against
JSON schema. Example of JSON Schema for foris-controller is
shown in the Listing 2.4. More information about JSON Schema vali-
dation can be found in the foris-schema library [35].

Tests it is always better to test your code…

29

2. Analysis of the current solution

{
"oneOf": [{

"description": "Request to Get number of slices",
"properties": {

"module": {"enum": ["sample"]},
"kind": {"enum": ["request"]},
"action": {"enum": ["get_slices"]}

},
"additionalProperties": false

},]
}

Listing 2.4: Example of a foris-controller module JSON Schema.

Python code should contain the routing and handlers:

Routing gets incoming messages and calls appropriate handler.

Handlers get messages from routing and performs any necessary operations
(e.g. read and update of UCI configuration, start/restart/stop services,
run commands).

It’s possible to use prepared wrappers to call backend functions:

cmdline is a wrapper around command line commands.

uci this wrapper allows to read and update UCI configuration.

files wrapper around filesystem.

services wrapper around service management.

2.3.2 Frontend plugin (foris)
Foris code contains plugin example. The example isn’t documented as well
as the development process, but it has a lot of comments in the code. The
following text is a result of the demonstration plugin’s analysis.

Foris plugins contains following parts:

Python code is responsible for the following:

• Forms definition
• Template selection
• Positioning items in the menu
• Requests processing (AJAX as well)

30

2.4. Conclusion

• Calls to the backend
• Assets import

Templates (Jinja2) are used to generate dynamic HTML and JS.

Static/generated files (SASS,CSS,JS) are mostly styles and third-part
libraries.

It’s needed to define three Python classes to create a new Foris plugin.
These classes must inherit the following classes form the foris python module.

ForisPlugin defines and registers a plugin. It defines a plugin name and the paths
of static files.

ConfigPageMixin, SamplePluginConfigHandler represents a plugin page.
Defines templates, slug name and order in menu.

BaseConfigHandler represents a main form handler. It’s similar to config
handlers described on page 23.

The templates, static and generated files are very similar to described in
the analysis of Frontend above on page 24.

2.3.3 Summary
The plugin creation process involves creating two parts of the plugin for back-
end (foris-controller) and frontend (foris) separately. The plugins aren’t
well documented, but they have demos which are self-documented.

The main issue is that third-party developers have to study technologies
and API which aren’t widespread and standardized (e.g., forms, custom styles,
etc.).

2.4 Conclusion
In the course of the analysis, the author became acquainted with the ar-
chitecture of the application and attempted to identify weaknesses both in
the architecture itself and in the way plugins were developed.

The following design is made with an attempt to avoid these problems,
and it’s described in the design chapter on page 33.

31

Chapter 3
Design

The design part is essential for any project and its goal is to define the structure
of the software solution and create bases for the development process. It makes
a �omprehensive view on the project and allows avoid common architectural,
implementation and usability issues.

Moreover, it allows to split and structure development process into partic-
ular stages for better control and project management.

This chapter describes the design stage of the new Foris web interface. The
chapter is split into a few parts. The first part describes an analysis of func-
tional and non-functional requirements. The design of the plugin system is
presented in the second section. The last part contains information about user
interface and user experience design.

3.1 Analysis of requirements
In the first part of this chapter the author describes functional and non-
functional requirements which were defined after discussed with Turris teams.
Analysis of current solution is described in the previous chapter on page 19.

In the second part of this chapter use cases are described which were
defined after the analysis of functional requirements.

3.1.1 Functional requirements
Functional requirements define application functionality (it can be said that
it defines requirements from the user’s point of view). In other words, in this
section the author lists functions which the future application should be able
to perform.

The following requirements are collected during analysis of the current
solutions, backend functionality and from discussions with Turris team mem-
bers.

33

3. Design

The requirements are split into two sections according to network config-
uration or administration of the router.

3.1.1.1 Network

REQ-1 Wi-Fi Showing and changing the configuration of WiFi modules
and networks.

REQ-2 WAN Showing and changing the configuration of the WAN port.

REQ-3 WAN connection test Performing a connection test and present-
ing results.

REQ-4 LAN Showing and changing configuration of the local network.

REQ-5 DNS Showing and changing configuration of the DNS behavior.

REQ-6 DNS test Performing a DNS connection test and showing results.

REQ-7 Guest network Enabling and configuring of a guest network.

3.1.1.2 Administration

REQ-8 Password Foris and LuCI password changing and setting.

REQ-9 Notifications Router notifications showing and dismissing.

REQ-10 Email notifications The configuring router notification via email.

REQ-11 Backup Creating and restoring a configuration backup.

REQ-12 Reboot Performing a device reboot.

REQ-13 Updates Setting of updates behavior.

REQ-14 Region and time Setting up local region and time.

3.1.1.3 Other use cases

REQ-15 Reference to advanced configuration (LuCI) Possibility of mi-
grating to LuCI configuration interface.

REQ-16 About (information) List of device and operation system version
information.

34

3.1. Analysis of requirements

3.1.2 Non-functional requirements
Non-functional requirements are specified by so-called non-behavioral attributes
of the application. It mostly specifies how an application should work rather
than what functionality it should provide.

Hardware The application should support all developed Turris routers (Project
Turris (1.0 and 1.1) and Turris Omnia).

Integration with foris-controller The application should use existed
foris-controller program as backend.

Notification via WebSockets The application must to communicate with
WebSocket server to get and use “real-time” notifications.

Plugins The web interface should be extensible via plugins.

Localization The user interface should be translatable to many languages.
All text content has to be extractable in order to be uploaded to a Weblate
localization system [36] for subsequent translation.

3.1.3 Use cases
The system doesn’t have any deeply nested actions with complex logic. It
makes the use cases simple and straightforward, so they just follow the require-
ments. Because of it, most of the use cases aren’t needed to be supplemented
with diagrams. But a few of the use cases are accompanied by a diagram to
avoid misunderstanding.

The router configuration interface has only one user role which is “user”.
So the following use cases are described with only one person. In some of
the use cases, the router may be considered as a subject which does action,
and it is presented on the diagrams as well.

Every single use case is started with login if the user isn’t logged in yet.
Thus the login action is skipped in the description of each use case.

UC-1 Change Wi-Fi module configuration

1. User navigates to Wi-Fi module configuration.

2. User enables Wi-Fi module which he wants to configure if it is not en-
abled yet.

3. User changes Wi-Fi configuration.

4. User is notified whether Wi-Fi configuration changes succeeded or not.

35

3. Design

UC-2 Change WAN configuration with connection test

1. User navigates to WAN configuration.

2. User changes WAN configuration.

3. User is notified whether WAN configuration changes succeeded or not.

4. User performs WAN connection test.

UC-3 Change LAN configuration

1. User navigates to LAN configuration.

2. User changes LAN configuration.

3. User is notified whether LAN configuration changes succeeded or not.

UC-4 Change DNS configuration with DNS connection test

1. User navigates to DNS configuration.

2. User changes DNS configuration.

3. User is notified whether DNS configuration changes succeeded or not.

4. User performs DNS connection test.

UC-5 Change guest network settings
1. User navigates to guest network configuration.

2. User enables guest network.

3. User sets guest network.

4. User is notified whether guest network settings changes succeeded or
not.

UC-6 Change Foris password and set LuCI password.

1. User navigates to password settings.

2. User changes password.

3. User is notified whether password changes succeeded or not.

4. User sets LuCI password.

5. User is notified whether LuCI password setting succeeded or not.

36

3.1. Analysis of requirements

UC-7 Set sending notifications to email.

1. User navigates to notifications center.

2. User sets his email address in the notifications settings to get notification
by email in the future.

3. User is notified whether notification email setting succeeded or not.

UC-8 Backup saving

1. User navigates to backup page.

2. User performs backup collection and downloads backup as file.

UC-9 Backup restoration

1. User navigates to backup page.

2. User uploads backup file to the configuration system.

3. User performs restoration of a backup.

4. User is notified whether backup restoration succeeded or not.

UC-10 Reboot via notification

1. User is notified whether reboot of a device is needed.

2. User performs reboot of the device. User doesn’t have to navigate some-
where to perform reboot. He has a possibility to perform reboot using
a received notification.

3. User is notified whether reboot was done successfully.

UC-11 Updates setting.

1. The use case begins with automatic updates disabled.

2. User navigates to update settings page.

3. User enables automatic updates.

4. User is notified whether updates changes succeeded or not.

5. User is notified whether some updates are going to be applied.

6. User is notified whether updates were applied successfully.

37

3. Design

User

Foris application

Login

Notified

Dismiss notifications
<<Extend>>

Create notifications

Reboot router

Turris Router

<<Extend>>

<<Include>>

Figure 3.1: Use case diagram of UC-10: Reboot via notification

User

Foris application
Login

Enable updates

Dismiss notifications

Create notificationsTo be notified

Perform updates

<<Extend>>

Turris Router

<<Include>>

Figure 3.2: Use case diagram of UC-11: Reboot via notification

38

3.2. Technologies

UC-12 Region date and time.

1. User navigates to administration page.

2. User can see actual date and time settings.

3. User performs region, data and time setting changes.

4. User is notified whether changes succeeded or not.

UC-13 Go to advanced configuration.

1. User goes to LuCI by reference.

UC-14 Get information about device.

1. User goes to About page.

2. User gets required information about device and OS version.

3.1.3.1 Requirements traceability matrix

When all requirements and use cases are defined, we can simply check if all
requirements are covered with at least one use case by using the following
traceability matrix.

3.2 Technologies
The following stack of technologies was chosen based on the previous analysis.

• Backend

– Python 3.7

– Flask 1.0.2

• Frontend

– JavaScript (ECMAScript 2015+)

– Bootstrap 4.3

– Babel 7.2.2

– React 16.8.6

39

3. Design

Functional requirements

RE
Q-

1
RE

Q-
2

RE
Q-

3
RE

Q-
4

RE
Q-

5
RE

Q-
6

RE
Q-

7
RE

Q-
8

RE
Q-

9
RE

Q-
10

RE
Q-

11
RE

Q-
13

RE
Q-

14
RE

Q-
15

RE
Q-

16

UC-1 3

UC-2 3 3

UC-3 3

UC-4 3 3

UC-5 3

UC-6 3

UC-7 3 3

UC-8 3

UC-9 3

U
se

ca
se

s

UC-10 3 3

UC-11 3 3

UC-12 3

UC-13 3

UC-14

Table 3.1: The traceability matrix of requirements coverage.

3.2.1 Backend
Python Python programming language [21] was chosen just like in the cur-
rent solution. This is justified by the fact that Python is well known in Turris
team which should make maintenance of the Foris simple in the future.

Another reason to prefer Python is the existing set of tools and libraries to
facilitate working with foris-controller in an abstract way. Those include
but are not limited to foris-client which is a Python library.

Also, there exists a proven and tested way to deploy Python projects to
routers using OpenWRT as OS.

Flask During previous analysis lack of some commonly used features was
found in the chosen bottle framework 6. A lot of open-source web frame-
works [37] exist nowadays. After research and discussion with Turris team
members it was decided to use Flask [38]. The Flask has several advantages
which are going to help with future development of the Foris configuration
interface:

• HTTP request handling

• Session management
6 See analysis of the current solution on page 24.

40

3.2. Technologies

• Integrated support for unit tests

• Built-in support for templates (Jinja2)

• Possibility to use extensive set of Flask extensions [39]

Moreover, the Flask framework allows splitting an application into modules
(so-called Blueprints [40]), which will be an excellent base to build a pluggable
application.

Also, the Turris team members are familiar with the Flask web framework,
which also had an impact on the final choice.

3.2.2 Frontend
React At the beginning of the project redesign it was decided to only use
Jinja2 templates. Dynamic interactions and AJAX calls were planned to be
made using Vanila JS [41], which stands for native JavaScript relying only
on standard libraries. Although, after the initial analysis it was found that
using some of the existing tools can improve code structure and readability.

The Turris team members don’t have experience using any JavaScript
library or framework, so choosing the proper technology was completely up to
the author.

From a large array of currently existing frameworks and JavaScript li-
braries React [42] was chosen. There are several reasons for this choice that
are described below.

The React is not a framework, it is a library that allows you to use only
the necessary parts and to avoid over-engineering. This approach is different
from other frameworks that are made with an MVC pattern and require de-
velopers’ effort to keep specific code structure. It’s a proper way to build large
web application interfaces with complicated logic which Foris isn’t.

The pros of React is that it uses virtual DOM. It allows to split (iso-
late) code into reusable components (or libraries) and keep logic separately
(e.g., validation, AJAX API calls, communication with WebSockets, etc.).
It enables to make better code structure by composing components, unlike
solutions which work with real DOM and don’t have such a feature.

Also, React is well-documented and currently it’s one of the most used
solutions having a vast and rapidly growing community [43]. Moreover, it’s
supported by Facebook, Inc. All above ensures future support and stability.

Babel The toolchain that is mainly used to convert ECMAScript 2015+
code into a backward compatible version of JavaScript in current and older
browsers or environment [44]. There are a few reasons to use the Babel in our
future web application described below.

As was mentioned, Babel allows using features from newer versions of EC-
MAScript without carrying for deprecated browsers. It makes the development

41

3. Design

process much more straightforward. So a developer can use any construction
and syntax sugar from modern ECMAScript standards without headache.

Since the React library uses JSX [45] which isn’t a part of the JavaScript
language it should be compiled to compatible JavaScript code. Babel can also
do it using special presets.

Moreover, Babel provides code optimization and minification during server-
side compilation. It can optimize client-side code and make it more efficient.
Minification allows to decrease the amount of code sent to the client which
positively affects latency.

Babel will serve to build React application and minification. Building
and minification of the JS client code will be done in the Turris build system
on the deploy stage. So the router will get the prepared client-side code with-
out sources. This approach decreases router CPU usage and communication
load.

Bootstrap The current solution of the Foris web interface uses custom
written styles7. If we take into account insufficient documentation, support
and implementation of new functionality becomes a burden from a developer’s
standpoint.

One of the main objectives of this work is to encourage third-party devel-
opers to create modules (plugins) for the Foris interface. In light of the above,
some standardized techniques and tools should be used.

Bootstrap is an open source toolkit for developing with HTML, CSS,
and JS. It’s the world’s most popular framework for building responsive,
mobile-first sites [46].

The most frequently used elements in every router configuration interface
are the forms. Foris configuration interface almost entirely consist of forms.
Bootstrap allows for creation of nicely styled HTML forms without involving
a developer to make layouts from scratch. It has a lot of premade style com-
ponents such as buttons, form fields, popups, alerts and navigation elements.

Bootstrap has a large community and thanks to it a lot of styling themes
were developed. It’s easy to switch from one theme to another just by replacing
Bootstrap source code.

3.3 Architecure
The architecture of the future application is going to be similar to the cur-
rent Foris application. It’s due to the use of buses and services which are
described in the non-functional requirements of the application which are de-
fined on page 35.

The design of the architecture is visualized on the following architecture
design diagram on the Figure 3.3.

7See an analysis of the client-side code of the current solution on page 24.

42

3.3. Architecure

Turris router

File System

<<artifact>>
Sessions

Client

Browser

Web Server

foris-client

APIViews

WebSocket Server

foris-client

HTTP GET Req.

HTTP GET Res. Notification stream

Subscription on notifications

foris-controller

OS

Sessions write

Write/Perform

Sessions read

HTTP GET/POST Req.

HTTP GET/POST Res.

Sessions read

MQTT or ubus Notifications

Notifications

Reply/Notification

Reply
Request

Request

Read

Figure 3.3: Architecture design of the future Foris application.

43

3. Design

The detailed description of the architecture nodes and instances is de-
scribed below in the following sections.

3.3.1 Web server

3.3.1.1 Flask application

The main part of the application is going to be a Python application created
via Flask [38] framework.

The main task of the Flask application is to serve HTTP requests and re-
sponse. The Flask application will have two main components (in Flask ter-
minology they are called blueprints [40]).

The first blueprint is the main application. It defines the main views.
These views are single pages of Foris application, or in other words, they are
individual tabs. The list of the views is shown in the “Views” section below.

The second subpart of the Flask application is API. It’s going to be used
for serving AJAX calls which will be made by React application. The list of
the API endpoints is also described below in the “API” section.

3.3.1.2 foris-client

Due to non-functional requirements listed on page 35 the new Foris application
will use the same Python library called foris [32] to perform backend actions.
The foris-controller is described on page 27 in the “Analysis of the current
solution” chapter.

3.3.1.3 lighttpd

Flask has its own built-in web server, although this server is intended only for
development purposes. The built-in Flask web server is pretty slow, and it’s
not production-ready. Because of it, it was decided to use lighttpd [23] server
to serve Foris web application.

The lighttpd web server was chosen due to its efficiency in serving HTTP
requests using only a small memory footprint. This is extremely relevant to
the router’s domain.

3.3.2 WebSokets server

The same WebSockets server will be used in the production release. Although,
there are changes planned in the session management that should be imple-
mented in the actual foris-ws WebSockets server. These changes are de-
scribed below.

44

3.3. Architecure

3.3.3 Authentication and sessions management

3.3.3.1 Authentication

The authentication is done in the same way as it is in the current solution
and is described in the the chapter 2 chapter on page 28.

3.3.3.2 Sessions management

The session management will have changes compared to the current Foris
application. In the new application the session management will be moved to
Flask application (versus using ubus session management).

It will be done using Flask-Session [47] extension. The Flask-Session
allows using server-side sessions and storing session in many ways, e.g., using
a database, Memcached or filesystem. The sessions should be shared between
Flask application and the WebSockets server. Due to this it was decided to
store the session on the filesystem and allow the WebSockets server to read
sessions. This approach will cause changes in the foris-ws WebSockets server
which will be described in the “Implementation” chapter.

Both authentication and session management processes are illustrated via
sequence diagram on the Figure 3.4. A curious reader can compare this dia-
gram with Figure 2.2 on page 29 to observe the changes.

sd First authentication and session creation

Browser

User

Web server

Write: session

Read: sessions

sd Authentication via sessions

Reply: login
Set cookies:

session

Request: some page
Cookie: session

Request: connection establish
Cookie: session

foris-controller Backend
(UCI)

WebSocket
server

Create
session

Read: sessions

Check:
Session exists

Check:
Session exists

Go to
some page

FileSystem

Login
Request: password check Request: password hash

Reply: password hash

Reply: password check

Reply: some page

Reply: connection establish

Request: login

Compare hashes

Figure 3.4: Authentication and session management sequence diagram.

45

3. Design

3.3.4 React application

Since one of the main task for the reimplementation of the Foris was to make
a better plug-ins system, it was decided not to use a single React applica-
tion. Otherwise, it could complicate the creation of plug-ins for developers
unfamiliar with the React library.

So the React client-side code will be split into many applications. Each
application will represent a single tab in the interface (e.g., notifications, Wi-
FI, WAN, etc.).

This approach allows avoiding using React library for following plugins
implementation. Moreover, this approach shift routing from client-side code
to the Flask application.

3.4 Plugins system

3.4.1 Flask Blueprints

The plugins system will be implemented with Flask Blueprints [40]. Flask
blueprints system gives third-side developers full freedom in making plugins for
our Foris interface. A developer can define URLs, templates and all the logic
as he wishes without any limitations. Moreover, the developer is not restricted
in JS libraries or frameworks to develop plugins.

3.4.2 Python module

A resulting plugin is encapsulated with all dependencies and can be provided
as a Python module with installation via setup.py script. This approach
allows to define modules which can be automatically registered and integrated
into Foris application just by using a particular name.

3.4.3 Registration

The author suspects that Flask Blueprints system may not be enough, be-
cause plugins should specify the name of navigation item and position in
the navigation list. But this falls under implementation details, and it will be
investigated and described in the next chapter.

3.4.4 foris-controller

The integration plugin for the foris-controller stays the same because non-
functional requirements force author to use the existing foris-controller
program. Creation plugin for this part of the Foris application is described in
the “Analysis of the current solution chapter” on page 29.

46

3.5. UI/UX Design

3.5 UI/UX Design
The large part of the UI and UX design was developed under the MI-NUR
course under the direction of the supervisor of this paper Ing. Jiří Hunka.
The analysis, wireframes creation and development of the non-functional pro-
totype was made by members of the following team: Bodnar, B., Karola, A.,
Kryvosheienko, M., Laskov, B. and Samigullina, G. The following section of
this chapter is a restructured and rewritten result of that work.

3.5.1 Plan
The plan of the following user interface design is based on the MI-NUR course
lectures.

• Product statement

• Use cases

• Task list definition and analysis

• Prototyping

• Heuristic evaluation

• Redesign

3.5.2 Product statement
The Foris web application is a configuration interface for Turris routers which
provides access to network settings and device maintenance. The Turris
routers are more powerful and advanced than a regular home router. In other
words, it is intended for more experienced users (“geeks”). So the web inter-
face should provide access to everything needed by beginners and advanced
users router settings and maintenance tasks.

3.5.3 Use cases
The first part of the user interface design of the future Foris application is
use case definition and analysis was made in the “Analysis of requirements”
chapter and described on page 35.

3.5.4 Task list
A task list helps with the initial design and describes the application from a
user’s point of view. The task list is based on the use cases.

The list of task is split into groups by obvious affiliation to a specific
category. It’s made to improve the readability of the long task list.

47

3. Design

• Notifications

– Show notifications.
– Dismiss notification.
– Dismiss all notifications.
– Set email notifications setting.

• Administration

– Change Foris password.
– Change root password.
– Change time settings.
– Change region (timezone) settings.
– Change interface language.
– Reboot device.

• Network configuration

– WAN
∗ Set IPv4 configuration type (DHCP, Static, PPPoE).
∗ Set IPv6 configuration type (DHCPv6, Static, 6to4, 6in4).
∗ Set custom MAC address.
∗ Perform WAN connection test.

– LAN
∗ Set and configure Router LAN mode.
∗ Set and configure Computer LAN mode.

– Wi-Fi (for both modules)
∗ Enable module.
∗ Configure Wi-Fi module settings.
∗ Configure Wi-Fi network settings.
∗ Configure Wi-Fi Guest network.

– DNS
∗ Set DNS forwarding.
∗ Enable/Disable DNSSEC [48].
∗ Perform DNS connection test.

– Interfaces
∗ Assign an interface to a certain network.
∗ Disable an interface.

48

3.5. UI/UX Design

– Guest network
∗ Enable/Disable guest network.
∗ Set guest network settings.

• Updates

– Enable/disable automatic updates.
– Set update approvals.
– Select packages to install and update.
– Set restart after update.

• Misc

– Log in.
– Log out.
– Go to LuCI (Advanced administration).
– Display information about device and operating system (such as

serial number and OS version).
– Start the first configuration guide.

3.5.5 Activity diagrams
Activity diagrams help to better understand user interface behavior.

Most of tasks are straightforward and don’t need to be illustrated with
activity diagrams. In other cases, tasks with more complex logic are accom-
panied by activity diagrams.

3.5.5.1 Notifications

Notifications system allows the user to get real-time notifications about router
activity. Moreover, if the router reboot is needed, the user gets notification
about it and can perform device reboot in the same place.

This process is illustrated via the activity diagram on the Figure 3.5.

3.5.5.2 WAN settings

All network configuration changing flows are very similar. Thus the descrip-
tion of WAN settings flow covers them.

DNS and WAN network configurations flows are extended via configuration
tests. It’s illustrated on the following activity diagram on the Figure 3.6.

The rest of the network configurations are the same except for the missing
connection test.

49

3. Design

Dismiss notificaiton
:Notification
dismissed

Trigger reboot router

Receive reboot start
notification

:Notification
dismissed

User

Create info notification

:Notification
info

Create reboot notification

:Notification
reboot

Reboot device

Send reboot start
notification

Not an object.
Just signal about
device rebooting.

System

User can dismiss
notification after
reading.

System event

Figure 3.5: Notifications activity diagram.

Change WAN configuration
Trigger connection test

Apply
configuration settngs

Receive network restart finished
notification

Receive test connection
 start notification

Receive network restart started
notification

Configuration
:changed

:unvalidated

Visit WAN page

Change WAN config.

User decision

Configuration
:current

Connection Test
Results

User System

Send network restart started
notification

Send network restart finished
notification

Send test connection start
 notification

Connection test
performing

Collect connection
 tests results

Connection Test
Results

Configuration
:validated

Trigger device reboot

[configuration is valid]

Yes
No Validation

Perform connection
test

Network
restart

Figure 3.6: WAN settings activity diagram.

50

3.6. Conclusion

3.5.6 Prototyping
The prototyping helps to structure the user interface design process. The
prototyping is split into two parts. The first part is wireframes (lo-fi proto-
type) creation and the second part is interactive (hi-fi prototype) prototype
development. Both parts are described in the following sections.

3.5.6.1 Wireframes

Wireframes are a fast solution to design the structure of the future user inter-
face. Moreover, wireframes are material for future hi-fi prototype.

Wireframes are made with Axure prototyping application [49].
All wireframes are provided in the appendixes part of this paper on page 117.

3.5.6.2 Hi-fi prototype

Hi-fi prototype, the web application for the target platform that originates
from the lo-fi prototypes (wireframes) and research notes. The prototype is im-
plemented in the target platform, so it’s web application developed in Python
programming language using a Flask framework. The frontend part of the pro-
totype is made via Bootstrap 4 framework using Flexbox Layout.

All screenshots of the hi-fi prototype are listed in the appendixes part of
this paper on page 129.

The first iteration of usability testing is done using this hi-fi prototype.
The result of this usability test is described on page 83.

3.6 Conclusion
All of the materials developed in the design stage of this work and described
in this chapter serve as a base for the following implementation part.

51

Chapter 4
Implementation

The emphasis of this chapter is put on the implementation stage details. The
implementation is based on the design stage and it leverages results of the pre-
vious analysis in an effort to develop a better web interface for a router’s
configuration.

The project got a working title reForis, which stands for redesigned Foris.
It was given a new name to avoid confusion in the names of the projects
because the current Foris web interface is still supported. The project’s name
may change to Foris v2.0 after it passes the testing stage.

All following described source code is available on the CZ.NIC labs Git-
Lab [50] under GNU General Public License v3.0 license.

The screenshots of the resulting reForis web interface are available in
the appendix section of this paper on 147 page.

4.1 Development environment
4.1.1 Hardware
Hardware required for implementation in the form of Turris Omnia router has
been kindly provided to the author by the members of the Turris team.

4.1.2 Development build deployment
The software development of the router has a specific aspect. The source
code of the Python application should be transferred to the router for testing
purposes. It’s better if the code changes are automatically synchronized and a
developer doesn’t spend time transferring code manually.

There were many ways to approach code deployment e.g., mounting a
disk via sshfs [51]. Author has tried this particular method at the start
of the project but after some time he has discovered a few issues with this
solution.

53

4. Implementation

Firstly, the author didn’t want to open ports used by ssh on the develop-
ment computer for security and paranoia reasons. Eventually it led the author
to open port 22 on the router. A directory on the router was mounted to de-
velopment machine.

There is yet another solution to this problem. For example, one could
store all the code directly on the router. The issue with this approach is that
if a developer forgets to synchronize code between his machine and a router,
access to the router will be lost as soon as one of the devices leaves network.
The solution is to use another synchronization program such as rsync [52].

However, the author has discovered a way to improve upon the last solu-
tion. It is built-in in the PyCharm IDE [53]. PyCharm allows a developer
to set the remote machine for code deployment. Moreover, it monitors code
changes and only deployes recently modified files. It also comes with an option
to push selected source code files using the IDE interface.

The screenshot of the deployment settings is shown on the Figure 4.1.

Figure 4.1: Screenshot of the PyCharm deployment settings.

Another issue lies within eMMC [54]. It can only sustain 3–10K rewrite
cycles before it starts to cause bit errors [55]. In this regard, it’s better to
send the code to the RAM. This means that a developer needs to set source
code mapping to /tmp which is then mapped to the RAM instead of eMMC
flash disk. This can be achieved with tmpsfs [56].

54

4.1. Development environment

4.1.3 Version control system

Well-known Git [57] is used as a version control system for this project. An-
other service that was used in the project is the CZ.NIC GitLab [58] company
server. All project source code is open-sourced and can be found in the Turris
project in the reForis repository [50].

GitLab provides many tools [59] as GitLab CI/CD [60] which is also used
in this project and described below.

4.1.4 Continuous integration

CI is the set of approaches and practices with the main goal of frequent source
code testing to prevent integration issues [61].

GitLab comes with its own CI and CD pipeline tooling [60]. This tool was
used in the project to perform regular tests and lint checking.

GitLab CI/CD allows performing tests in the docker container [62] with a
very simple configuration.

image: debian:9

stages:
- test

before_script:
- apt-get update && apt-get -y install sudo make

test:
stage: test
script:

- make prepare-dev
- make test

lint:
stage: test
script:

- make prepare-dev
- make lint

Listing 4.5: Example of .gitlab-ci.yml configuration file.

It allows to run tests upon each code push. In case tests aren’t passing
the development branch can’t be merged into the master branch.

55

4. Implementation

4.1.4.1 Tests

The Python application as well as React application is tested via CI tools.
Code testing tools and approaches are described in detail in the testing chapter
of this paper on page 72.

4.1.4.2 Linters

Linter is a tool which allows to perform generally static source code analysis
to prevent bugs and stick to a certain code style. It’s especially useful when
the project is developed by a team of many developers.

The Python code is analyzed by two linters pylint [63] and pycodestyle [64].
Pylint is a customizable linter allowing to check type errors, unused imports
and much more. Pycodestyle checks if code corresponds to PEP8 [65] style
guide.

The JS application code is checked by ESLint [66]. It’s used to find prob-
lematic patterns in JavaScript code base. ESLint is extensible which allows
using specific plugins for frameworks and libraries such as React. These plug-
ins are extremely helpful in avoiding common bugs when using the framework.
In the project author used the following list of lint plugins for React library:

• eslint-config-react-app

• eslint-plugin-jsx-a11y

• eslint-plugin-react

• eslint-plugin-react-hooks

4.2 reForis project
The new Foris application project got a development name of reForis (which
means a redesign of Foris).

ReForis project has the following directory structure illustrated on the Fig-
ure 4.2.

4.3 Backend

4.3.1 Flask application

As was described in the “Design” chapter on page 44 the backend part of
the reForis is Flask application. The application directory structure is listed
on the Figure 4.3.

56

4.3. Backend

reforis
reforis. the Flask application directory
reforis_static..................the Python module with static files
tests..............................the tests set for Flask application
js....................................the React application directory
setup.py............the definition of the python Package installation
MANIFEST.in.............................defines non Python sources
babel.cfg................................... the Babel configuration
Makefile..........the utility contains set of the development helpers
scripts.........the directory contains script for timezone generation
pycodestyle..................the definition of the Python code style
pylintrc.................................the pylint configuration file
README.md
LICENSE

Figure 4.2: reForis project directory structure.

reforis
__init__.py....the python module and application factory definition
config.................the Flask application configurations directory
api.py.............the API Blueprint with endpoints implementation
views.py. the Views Blueprint with views implementation
plugins.py...................the helper to make plugins registration
locale.py.........the translations helper to generate JS translations
auth.py. the login and sessions implementation
backend.py............the foris-controller communication helper
static...............the static dir, contains images, CSS and JS files
templates....................................the templates directory
translations.........the locale directory, contains .po and .mo files

Figure 4.3: reForis Flask application directory structure.

4.3.2 Application factory

During implementation it was decided to use Flask application factory func-
tion instead of application object definition. This approach allows to create
more Flask applications with a different configuration for more thorough test-
ing. It also encourages to create a better application structure by defining all
of the application dependencies in one place [67].

The application factory function code is shown on the Listing 4.6.

57

4. Implementation

def create_app(config):
from flask import Flask
app = Flask(__name__)
Config file load.
app.config.from_pyfile(f'config/{config}.py')

Session management registration using Flask-Sessions.
from flask_session import Session
Session(app)

Protected/unprotected views definition.
from reforis.auth import register_login_required
register_login_required(app)

foris-client helper registration.
set_backend(app)

locale registration (using Flask-Babel extension).
set_locale(app)

Blueprints registration.
from .views import base
from .api import api
app.register_blueprint(base)
app.register_blueprint(api)

Plugins load and~registration.
load_plugins(app)

return app

Listing 4.6: Application factory code example.

The application is split into two main subparts called Blueprints in the Flask
terminology. These parts are described below.

4.3.3 Views

The “Views” blueprint defines very simple views which render single pages
with a template. These views don’t have any logic in them because all further

58

4.3. Backend

communication between client and server goes via AJAX calls using reForis
API which is described in the next section.

An example of such view is shown in Listing 4.7 code sample.

from flask import render_template

@base.route('/wifi')
def wifi():

return render_template('wifi.html')

Listing 4.7: Wi-Fi view definition.

But the simplicity of views has a few exceptions which are described in
the following sections.

4.3.3.1 Auth views

The login and logout logic isn’t moved to API because of the simplicity of
using pure HTML form without AJAX calls and built-in in Flask redirect
functions.

The login view is illustrated in the following code examples.

59

4. Implementation

from flask import redirect, render_template, request,\
session, url_for
from reforis.auth import login

@base.route('/login', methods=['GET', 'POST'])
def login():

error_message = None
if session.get('logged', False):

return redirect(url_for('Foris.index'))

if request.method == 'POST':
password = request.form['password']
if login(password):

return redirect(url_for('Foris.index'))
error_message = _('Wrong password.')

return render_template(
'login.html',
error_message=error_message

)

Listing 4.8: Login view code example.

4.3.3.2 Administration view

Administration view has region and time settings which need additional re-
gion, country and city translations. So in this way, we need to pass additional
timezone translations tzinfo into the template and load it into Babel JS
library.

This process is illustrated by code examples in the Listing 4.9 and List-
ing 4.10. The translations technique is described in detail in the “Localization”
section of this chapter on page 72.

60

4.3. Backend

from flask import current_app, render_template
from reforis import TranslationsHelper

@base.route('/administration')
def administration():

babel = current_app.extensions['babel']
translations = TranslationsHelper.load(

babel.translation_directories,
[get_locale()],
'tzinfo'

)
return render_template(

'administration.html',
babel_tzinfo_catalog=translations.json_catalog

)

Listing 4.9: Administration view code.

...
<script type="text/javascript">

ForisTranslations.load({{ babel_tzinfo_catalog | safe }});
</script>
...

Listing 4.10: Loading additional tzinfo translations in a template.

4.3.4 API

The React application communicates with the Flask server via AJAX calls.
The design of the API is imposed by foris-controller, and communication
tasks between client-side application and backend.

All API endpoints are implemented as views and belong to a Blueprint
having the same name – API.

In this case, the API Blueprint serves as a layer between the foris-controller
and a client application. It passes required endpoints with some adjustments
from Foris controller to the client via HTTP.

Each of the foris-controller endpoints which represent network, router
system operations and Foris application configurations has two actions:
get_settings and set_settings. These endpoints are “translated” to par-

61

4. Implementation

ticular HTTP endpoint with GET and POST methods by appropriate actions.
This aspect is shown on the Listing 4.11.

from flask import current_app, request, jsonify

@api.route('/wifi', methods=['GET', 'POST'])
def wifi():

return _foris_controller_settings_call('wifi')

def _foris_controller_settings_call(module):
try:

res = ''
if request.method == 'GET':

res = current_app.backend.perform(
module, 'get_settings'

)
elif request.method == 'POST':

data = request.json
res = current_app.backend.perform(

module, 'update_settings', data
)

return jsonify(res)
except ExceptionInBackend as e:

_process_backend_error(e)

Listing 4.11: Translation of the typical foris-controller setting module to
the API endpoint.

The full list of implemented API endpoints is available in the appendix
part of this paper on page 141.

4.3.5 Static files
One specific aspect of the router configuration interfaces is that while setting
up a router a user may not be connected to the Internet. This leads to the fact
that CDNs servers can’t be used to deliver static JS and CSS libraries. In this
way, all static files should be stored on the router and be directly delivered to
the user’s browser.

4.3.6 Authentication and sessions management
The authentication process and session management are described and illus-
trated via sequence diagram in the “Design” chapter on page 28.

62

4.4. Frontend

4.3.6.1 WebSockets server

As was described in the previous chapter, moving sessions storage to the filesys-
tem triggers changes in the WebSockets server. This changes affect the au-
thentication process.

The FileSystemCache object from werkzeug library [68] is used for getting
sessions stored in the file system, just in the same way as in Flask-Session
library. This process is shown on Listing 4.12.

... get session_id from cookies

from werkzeug.contrib.cache import FileSystemCache

fs_cache = FileSystemCache(SESSIONS_DIR)
data = fs_cache.get('session:' + session_id)

if data is None:
Process "Session not found" error

if not data.get('logged', None):
Process "Session is found but not logged"

#Process successful authentication

Listing 4.12: The code example of getting and checking session stored in a
filesystem.

For more information about authentication via WebSockets, please check foris-ws
repository [69].

4.4 Frontend
As was mentioned in the “Design” chapter on page 46, the frontend part of
the reForis project is developed with React library.

4.5 JavaScript bundler
As was described in the design chapter on page 41: Babel is used for EC-
MAScript 2015+ and JSX code compiling. But this solution needs another
tool for JavaScript modules bundling. Webpack [70] is used in this project
as a module bundler. Moreover, it has a built-in minification module which
allows to reduce the size of resulting JS code.

63

4. Implementation

4.5.1 React application file structure

React doesn’t enforce any specific file structure. Based on the React file struc-
ture tutorial [71] the author has chosen the “Grouping by features” approach
to structure React components.

The React application structure is shown on the Figure 4.4 8.

4.5.2 Hooks

Hooks is a new React approach for creating components [72] which is widely
used in this project. React Hooks came with React 16.8 and brought a no-
ticeable change in the component development.

There was an issue with sharing reusable state logic between components
before hooks had been released. One of the approaches was to create so-
called HOCs (Higher-Order Components). It’s a wrapper component which
contains state logic and passes it to children components. The HOCs are hard
to maintain and debug because if you have a lot of HOCs with different state
logic and build many layers from it, then you get into so-called wrapper hell.
Wrapper-hell is when state’s data passes between many HOCs layers, and you
aren’t able to debug and maintain it.

The author faced this issue at the beginning of this project. As a result,
all components were rewritten using the hooks technique.

Hooks allow you to split state logic into small parts and attach them
independently where it’s needed. Moreover, you can compose the state logic
of many hooks into one and attach it to a particular component.

There is a convention that all hook names should start with use word.
In the next sections the most important and interesting hooks of the reForis

application are described.

4.5.2.1 useForm

The useForm hook encapsulates all form logic: form fields data, error vali-
dation and form state. This hook provides a few functions to change hooks’
states.

The hook gets a validator as an additional function parameter. useForm
validates form data when it changes and outputs errors in case of invalid input
values.

The main purpose of this hook is to split the specific Foris form logic
and common form processing logic. This hook is used in the ForisForm com-
ponent.

8 The React file structure is not full, the full structure is available in the project reposi-
tory.

64

4.5. JavaScript bundler

js
package.json..............................the dependency definition
jest.config.js........................the jest testing library config
webpack.config.js.............................. the webpack config
.eslintrc.json................................the ESLint config file
src..the React source directory

app.js................................the main React application
notifications....................the notifications part directory
NotificationsDropdown..............the notifications component
wan..the WAN settings page
lan.. the LAN settings page
wifi......................................the Wi-Fi settings page
dns. the DNS settings page
connectionTest.........the connection and DNS test component
updates........................... the updates configuration page
reboot..the reboot page
regionAndTime..................the region and time settings page
password...............................the password change page
packages.......................................the packages page
routerStateHandler.....................the router state handler

RouterStateHandler.js...the router state handler component
NetworkRestartHandler.js.......the network restart handler
component
RebootHandler.js.......the router reboot handler component

formContainer................the common reForis form container
common....................the directory with common components

networkForms........ the common and reusable network forms
bootstrap..........................the Bootstrap components
constants.js..................the reForis form size constance
API.js. the definition of the Foris API endpoints
APIHooks.js...................................the API helper
WebSockets.js.........................the WebSockets helper
WebSocketsHooks.js....................the WebSockets hooks
RebootButton.js................the reboot button component
validations.js. the common form validation functions

utils...the timezone utils
testUtils................................the test helpers (mocks)

Figure 4.4: reForis React application directory structure.

65

4. Implementation

4.5.2.2 API hooks

The application has two API helper hooks: useAPIGet and useAPIPost.
These hooks encapsulate API calls logic states of response and request. useAPIGet
hook is shown on the following Listing 4.13.

import {useCallback, useReducer} from 'react';

export function useAPIGet(url) {
const [state, dispatch] = useReducer(

APIGetReducer, {
isLoading: false,
isError: false,
data: null,

}
);

const get = useCallback(async () => {
dispatch({type: API_ACTIONS.INIT});
try {

const result = await axios.get(
url, {timeout: TIMEOUT}

);
dispatch({

type: API_ACTIONS.SUCCESS,
payload: result.data

});
} catch (error) {

dispatch({
type: API_ACTIONS.FAILURE,
payload: error.response.data

});
}

}, [url]);

return [state, get];
}

Listing 4.13: useAPIGet hook code example.

66

4.5. JavaScript bundler

4.5.2.3 Router state handler hooks

The hooks which handle device reboot and network restart. They have very
similar logic and implementation. The difference is only in subscribing on the dif-
ferent foris-controller modules for WebSockets notifications and redirect-
ing after these processes are done.

These hooks provide the following logic: When reboot or restart notifica-
tion is received from the WebSockets server (with a list of the possible future
IP addresses of the router) then WS connection is closed and the user is no-
tified that reboot or network restart has been triggered. Then it waits until
the server is down via health check pooling and notifies a user with a recon-
necting message. Then it performs health check pooling to each IP address
from the list received from WebSockets notification. When one of the servers
respond then redirect a user’s browser to the login page (in case of a reboot)
or same page (in case of network restart).

The user should log in again after reboot because sessions are stored in
the RAM and are erased after device reboot.

This process is illustrated in the reboot handling sequence diagram on the Fig-
ure 4.5.

Client
Browser

sd Loop until server is down

Close WS connection

sd Loop until one of the servers is up

WebSocket
Server

WebServer
(other possible IPs)WebServer

Polling all servers
from the possible IPs list
then reconnect to the server
which reply on the health check.

Notification: Reboot is triggered
with list of a IP addresses

Health check request
Health check response

Health check requests

Health check response

Login page request
Login page response

Redirect to the login page

Show reconnection notification

Show reboot is started notification

Figure 4.5: Reboot handling sequence diagram.

67

4. Implementation

4.5.3 JSX

React library comes with so-called JSX language extension (dialect) of the JavaScript.
It combines JS and HTML syntax and makes is possible to compose HTML
elements and React components directly inside JS code [45]. The reader may
see the JSX usage in the code examples in the next section.

4.5.4 React components

React components are the building blocks of the application. Most React
applications have main components (called containers) which include other
components.

This section describes the main and most interesting components and con-
tainers of the reForis application. But before we start let’s take a look at a
few React helper libraries used in this project.

4.5.4.1 PropTypes

JavaScript is a dynamically typed language. Using wrong types may cause
bugs in the code. The prop-types library was made to prevent this annoy-
ance at least in the React components [73]. This library allows to specify
components of property types and to check them during runtime. In case a
wrongly typed property gets passed to a component, an exception is raised.

This approach makes debugging and error prevention much easier and it’s
used for all components in this project.

4.5.4.2 ForisForm

The main Foris form container. This container is used for each settings form
in the application.

It uses useForm hook and provides all needed functionality to the chil-
dren form components. Using this container allows keeping form components
implementation simple. The children form components specifies the fields
and form data changes and doesn’t have a responsibility of the API calling
and WebSockets communication.

ForisForm provides formData and formErrors objects which contain cor-
responding data. These objects mostly have other nested objects inside of
them because of the nested forms usage.

Also, ForisForm provides setFormValue function which gets updated rule
and returns onChange event handler. It allows to specify which particular form
data should be changed when some change has happened in the form.

Example of using a Foris form is shown in Listing 4.14.

68

4.5. JavaScript bundler

import React from 'react'; // Is needed to use JSX
import ForisForm from '../formContainer/ForisForm';
import LANForm from './LANForm';
import API_URLs from '../common/API';

export default function LAN({ws}) {
return <ForisForm

ws={ws}
// Definition of the~API endpoint and~WS module
forisConfig={{

endpoint: API_URLs.lan,
wsModule: 'lan',

}}
prepDataToSubmit={prepDataToSubmit}
validator={validator}

>
<LANForm/>
<LAN_DHCP_ClientsList/>

</ForisForm>
}
// prepDataToSubmit and~validator functions definitions...

Listing 4.14: Using ForisForm container with LAN form code example.

4.5.5 Form example

Let’s consider using ForisForm container with the LAN component. The LAN
component has two nested forms (subforms) which are switched when a user
chooses a proper LAN mode from two options (managed and unmanaged).

You can see the usage of this object in the following LANForm code example
on Listing 4.15. In this example the formData.mode string is passed as a value
to the Select component. And formData.mode_managed object is passed to
the LANManagedForm and process with the same approach as in the LANForm
component.

This approach allows making arbitrarily nested forms which are using sim-
ilar logic. It improves readability and maintenance of the forms implementa-
tion.

69

4. Implementation

import React from 'react';
import Select from '../common/bootstrap/Select';
import LANManagedForm from './LANManagedForm';
import LANUnmanagedForm from './LANUnmanagedForm';

export default function LANForm({
formData,
formErrors,
setFormValue,
...props

}) {
const lanMode = formData.mode;
return <>

<h3>{_('LAN Settings')}</h3>
<Select

label={_('LAN mode')}
value={formData.mode}
choices={LAN_MOD_CHOICES}
onChange={

setFormValue(value => ({mode: {$set: value}}))
}
{...props}

/>
{lanMode === LAN_MODES.managed ?

<LANManagedForm
formData={formData.mode_managed}
formErrors={formErrors.mode_managed}
setFormValue={setFormValue}
{...props}

/>
: lanMode === LAN_MODES.unmanaged ?

<LANUnmanagedForm
// ...
/>
: null}

</>
}

Listing 4.15: LANForm code example.

70

4.6. Plugins system and demo plugin

4.6 Plugins system and demo plugin
Implementation of the plugin system including demonstration plugin is de-
scribed in this section. This implementation is based on the plugin system
design mentioned on page 46.

Diagnostics plugin was chosen as a demo plugin due to its simplicity
and visibility.

JavaScript code is not used in this plugin. It is done in order to demon-
strate third-party developers that it is not mandatory to use any JS framework
and that they have freedom in choosing proper tools.

The source code of reforis-diagnostics plugin is available on the CZ.NIC
GitLab [74].

4.6.1 Registration
As was mentioned in the design section, the plugin registration is done us-
ing setup.py setup script [75]. Each reForis plugin must to define so-called
entry_points [76] section in their setup.py file. The entry_points section
should contain an entry point with a name defined in foris.plugins section
and a path to a Blueprint definition. This is illustrated in the subsequent List-
ing 4.16.

setuptools.setup(
name='reforis_diagnostics',
...
entry_points={

'foris.plugins':
'diagnostics = reforis_diagnostics:diagnostics'

},
...

)

Listing 4.16: The plugin registration with entry_points.

4.6.2 Loading
When all installed plugins have an entry_point defined in foris.plugins
section, then collecting all plugin Blueprints is very simple. Using pkg_resources [77]
module it’s possible to iterate through all entry_points having a certain
name and load them. iter_entry_points function provides iterator over
all globally installed modules’ entry_points. The code example is shown
on Listing 4.17.

71

4. Implementation

import pkg_resources

def get_plugins():
return [

entry_point.load()
for entry_point in pkg_resources.iter_entry_points(

'foris.plugins'
)

]

Listing 4.17: The plugin load via entry_points.

4.6.3 Static files

Static files (such as images, .css and .js) are files that are not dynamically
generated and are sent to the client browser as is. All these files are stored
into a separate Python module called reforis_static. It’s done to provide
singe static root to the lighttpd server which is used as a production web
server in this project.

4.7 Localization
The localization system was created in order to fulfill the non-functional re-
quirement which is described on 35 page. The localization tools and techniques
are described in this section.

4.7.1 Tooling

4.7.1.1 Flask-Babel

Flask-Babel is an extension to Flask that adds i18n support to any Flask
application with the help of babel. It has built-in support for timezone specific
date formatting. Also, it provides a simple and friendly interface to gettext
system [78].

4.7.1.2 gettext

gettext is a set of well integrated tools that provide a framework within
which other packages may produce multilingual messages. These tools include
a runtime library for retrieval of translated messages and a library supporting
parsing and creation of files that contain translated messages [79].

72

4.7. Localization

4.7.2 Messages creation

gettext produces .pot [80] files as a result of an extraction of translation
messages from source files. These files become templates for .po files which
contain translations for a particular language.

The advantage of the .po files is that they have a human-readable format.
Moreover, Weblate service [36] has support of .po file format. Thus, it pro-
vides a simple web interface which allows an enthusiast to make translations
of application text content.

Jinja2 templates, python code and JS code can contain text which should
be translated in the reForis project. Babel supports all these code syntaxes.
It can be configured to collect all translation strings into a single .pot file
given regex-defined paths to files and their corresponding file types.

4.7.3 Messages processing

When .po files containing prepared translations are ready, they have to be
compiled into .mo (Machine Object) files. .mo files are processed binary data.
Thus, they can be quickly processed and used by a computer in order to swap
original message with the one in native user language.

Flask-Babel and gettext process all Jinja2 templates and Python code.
Getting translations to work in JS source code was a tiresome process. Flask-
Babel can’t process JS codes in real-time because the entire JS code runs
on the client machine in a browser. A solution is using a small JavaScript
library called babel.js. It’s a simple library that provides a gettext-like
translation interface [81].

The translations catalog is generated using TranslationsHelper object.
It’s a helper which is inherited from babel.support.Translations object
in order to generate JSON translations dictionary with babel.js suitable
format. Then it is uploaded into JS code with Jinja2 template system. This
process is illustrated in the Listing 4.18.

babel.Translations
.load({{ babel_catalog | safe }})
.install();

Listing 4.18: The example of loading the translations.

73

4. Implementation

4.8 Documentation
4.8.1 Flask application
Documentation of the reForis Flask application is done using Sphynx [?]. Sph-
ynx is a set of tools for extracting, structuring and building documentation.
It allows generating documentation in PDF, HTML, ePub and other formats.

Entire documentation of Python code is done as Python docstrings and it
has been a part of the Python source code.

The Flask application documentation also contains plugin system docu-
mentation with explanation of plugin development and links to the demon-
stration plugin.

4.8.1.1 API endpoints documentation

Endpoints of API and Views Blueprints are also automatically extracted via
Sphynx and the following plugins:

• sphinxcontrib.httpdomain

• sphinxcontrib.autohttp.flask

• sphinxcontrib.autohttp.flaskqref

The endpoints documentation is illustrated by request and response ex-
amples.

4.8.2 React
The React components are documented via React Styleguidist documenta-
tion system [82]. The great feature of this tool is a possibility to illustrate
component documentation with code examples and rendered HTML code.
Moreover, it provides an interactive playground which allows to quickly try a
component. Also, it can automatically create documentation based on com-
ponents propTypes.

It supports only interactive HTML format. But it’s the best solution for
React components documentation in author’s opinion.

4.9 Deployment
4.9.1 TurrisOS and OpenWrt packages
TurrisOS is set of OpenWrt packages maintained by Turris team and contains
Turris-specific packages and backports from upstream [7]. Thus, the new
reForis package should be added to TurrisOS by adding OpenWrt-specific
installation script. OpenWrt uses the makefile which has been transformed

74

4.9. Deployment

into an object-oriented template [83]. An example of such makefile for reForis
project is shown in the Listing 4.19.

75

4. Implementation

include $(TOPDIR)/rules.mk

PKG_NAME:=reforis
PKG_VERSION:=0.2.1
PKG_SOURCE_URL:=https://gitlab.labs.nic.cz/turris/reforis
Another package definitions...

define Package/reforis
URL:=https://gitlab.labs.nic.cz/turris/reforis
TITLE:=reforis
DEPENDS:= #... Dependency list
MAINTAINER:=CZ.NIC <packaging@turris.cz>

endef

define Py3Package/reforis/install
$(INSTALL_DIR) $(1)/usr/bin
$(CP) $(PKG_INSTALL_DIR)/usr/bin/* $(1)/usr/bin/

Installation of a lighttpd configuration
$(INSTALL_DIR) $(1)/etc/lighttpd/conf.d/
$(INSTALL_DATA) ./files/reforis-config.lighttpd-conf\

$(1)/etc/lighttpd/conf.d/reforis-config.conf

$(INSTALL_DIR) $(1)/usr/share/foris
$(INSTALL_BIN) ./files/lighttpd-dynamic-conf\

$(1)/usr/share/reforis/lighttpd-dynamic-conf
#...

endef

define Package/reforis/postinst
[-n "$$IPKG_INSTROOT"] || {

/etc/init.d/lighttpd enable
/usr/bin/maintain-lighttpd-restart

}
endef

define Package/reforis/description
Web administration interface for turris router.

endef

Run prepared build script for Python 3
$(eval $(call Py3Package,reforis))
$(eval $(call BuildPackage,reforis))
$(eval $(call BuildPackage,reforis-src))

Listing 4.19: OpenWrt Makefile sample.

76

4.9. Deployment

4.9.2 lighttpd configuration
Since lighttpd server has been chosen as a production server, lighttpd config-
uration is needed. The server configuration should be set using a couple of
environment variables (such as $DEBUG, $BUS, $CONTROLLER_ID, etc.). More-
over, it’s better to pass exact URL routes to the configuration.gversion of
OS.

The author doesn’t like this solution because of bad readability and high
complexity of this bash script and considers to use Python script with Jinja2
template in the future.

4.9.3 Deployment to a testing branch
When installation scripts of an OpenWrt package are added to the master
branch of the turris-os-packages [84] GitLab repository, the package is
built automatically by Jenkins [85] automation server. If the build is suc-
cessful, it is automatically deployed to devices running on any versions of
TurrisOS. It is done with the updater system.

The reForis project has been deployed as an additional package. In the
current Foris interface it can be installed in the packages configuration section.
Also, the reForis package is available in the TurrisOS packages repository [86].
It can be downloaded and installed on any TurrisOS device as an OpenWRT
package.

77

Chapter 5
Testing

The testing stage is essential for any project, especially for a commercial
project which is going to be used by real people. Tests allow to reduce the num-
ber of bugs and usability issues. As a result, it increases the users’ satisfaction
with the product.

Entire described test implementation is available in the reForis repository
on CZ.NIC GitLab [50] or on the disk which is attached to this paper.

5.1 Backend

5.1.1 Router backend mocking

As was described in the previous parts of this thesis, the reForis project uses
foris-client library. It is a helper for communication between foris-controller
and the reForis application. This library is not present in the test environment
because of lack of foris-controller. Thus, this library has to be mocked.
The mocking is done by using unittest.mock [87] library module.

There was an issue of mocking Python module which is not available. The
author found a solution using surrogate.py [88] library which can create
mocks on the Python module level.

5.1.2 Views and API

Since Flask application is used as a layer between foris-controller and Re-
act client application, tests of the Python code are really simple and only check
that all required views are exposed. Also, tests check if correct foris-controller
module is called with an API request.

79

5. Testing

5.1.3 Authentication

The only part which is completely implemented in reForis Flask application
is authentication. A low-quality implementation of authentication can poten-
tially cause security issues. Thus, authentication logic should be covered by
appropriate tests. The author has implemented a set of authentication tests
in order to test the session attributes of a logged and unlogged user and test
redirects in case an unlogged user tries to get access to any of the protected
pages.

5.1.4 Coverage report

Name Stmts Miss Cover
--
reforis/__init__.py 68 9 87%
reforis/__main__.py 14 14 0%
reforis/api.py 158 32 80%
reforis/auth.py 31 2 94%
reforis/backend.py 60 29 52%
reforis/cli.py 19 19 0%
reforis/config/__init__.py 0 0 100%
reforis/config/dev.py 6 0 100%
reforis/config/prod.py 8 0 100%
reforis/config/test.py 2 0 100%
reforis/guide.py 10 5 50%
reforis/locale.py 22 5 77%
reforis/plugins.py 3 0 100%
reforis/utils.py 6 0 100%
reforis/views.py 55 5 91%
--
TOTAL 462 120 74%

Listing 5.20: Coverage report of the Python code testing.

5.2 Frontend

5.2.1 Jest

Jest is a testing framework aimed at helping writing, running and maintaining
JS code [89]. It allows to run tests in parallel using an isolated environment.
Furthermore, it provides a simple API to write assertions with a possibility to

80

5.2. Frontend

make snapshots of HTML code and compare them during tests. Jest is used
in the project as a testing framework.

5.2.2 React hooks testing

The author, in the first place, tried to implement unit tests for React hooks.
But then he figured out that it brings some complications because hooks are
used only inside of components. Thus, mocked component environment is
needed to get it done. Then author considered to use(react-hooks-testing-
library) [90]. But after consulting the documentation, the author realized
that hooks can be tested via components if they are created only for use
inside certain components. Thanks to this brilliant idea and contributors
to this library, it is possible to use fewer workarounds. Thus, (react-hooks-
testing-library) wasn’t used at all.

In this way useForisForm hook is tested inside ForisForm wrapper com-
ponent. Entire form logic is tested on the mocked component passed to
the ForisForm.

5.2.3 React components testing

Configuration forms are the main part of the react application. These compo-
nents have validation and data processing logic inside that has to be tested. All
these components are covered by tests with snapshots. It means that the ren-
dered HTML code is compared against prerecorded snapshots of the same
components. It’s a simple way to assert the testing expectations. Moreover,
it allows to simulate user behavior and compare a snapshot of a changed com-
ponent after user manipulation. Also, all these components are tested for
correctness and validity of the data they send to the server.. It is done using
jest-mock-axios [91] library.

The configuration form components contain form element components,
also known as pure components (such as inputs and buttons). It means that
they do not have any logic inside and their resulting render completely depends
on the arguments passed to them. All these pure components are also tested
with snapshots.

Simulation of a user behavior and snapshots rendering is done using React
Testing Library [92].

81

5. Testing

5.2.4 Coverage report

|-----------------------------|-------|--------|-------|-------|
File	%Stmts	%Branch	%Funcs	%Lines
All files	71.85	70.3	63.58	71.91
common	71.21	73.68	64.71	70.77
connectionTest	77.78	55.56	77.78	77.78
dns	61.11	71.43	52.94	64.71
formContainer	79.17	71.43	74.07	79.17
guestNetwork	77.14	78.57	66.67	77.14
interfaces	75.86	62.16	74.19	75.29
lan	91.94	84	72.22	91.94
languagesDropdown	0	0	0	0
notifications	84.31	60	93.75	83.67
notifications/Notifications	87.5	75	87.5	87.5
notificationsSettings	76.92	65.22	50	76.56
overview	0	0	0	0
packages	70	100	61.11	70
password	54.39	46.88	68.42	54.39
reboot	0	100	0	0
regionAndTime	68	41.67	58.33	68
testUtils	100	100	100	100
updates	66.67	62.5	100	66.67
utils	100	100	100	100
wan	84.52	77.88	61.11	84.52
wifi	85.33	88.1	75	84.72
-----------------------------	-------	--------	-------	-------

Listing 5.21: Coverage report of the JS code testing.

5.3 Integration tests

There is a possibility to write integration tests. Unfortunately, it forces a
developer to create a special testing environment which simulates hardware
used in Turris routers (e.g. it can be a Docker container). Turris team already
has one, but it is no longer used and is not supported. Author considers
creating such an environment in the future, but this project is going to be
time-consuming and it has a low priority currently.

82

5.4. Usability testing

5.4 Usability testing
Usability testing of a graphical user interface is an approach to test how easily
can a user control a GUI. The test is performed with real users in order to
find issues with usability and efficiency. Results of the analysis of the usability
test are used to fix usability issues in the next development iterations of the
project.

5.4.1 Prototype stage
The first stage of Usability testing was done under the MI-NUR course under
the direction of the supervisor of this paper Ing. Jiří Hunka. The first use test
was done with a non-functional prototype which was described on page 47.
The prototype was developed by members of the following team: Bodnar, B.,
Karola, A., Kryvosheienko, M., Laskov, B. and Samigullina, G.

The subsequent list is a restructured and rewritten summary of that work.

5.4.1.1 Changing a password is confusing

Description Foris and LuCI have two different passwords. When a user
wants to change a password his is prompted to type in his current password.
However, it is not clear, which password, Foris or LuCI, should that be, be-
cause both passwords are changed on the same form.

Possible solution To split the form into advanced configuration (LuCI)
and Forris password forms or rename the “Current password” field.

5.4.1.2 Pressing the Enter key to submit the form

Possible solution Correct usage of HTML forms.

5.4.1.3 Password input value is not visible

Possible solution Add a “Show/Hide” password trigger button.

5.4.1.4 Packages are not alphabetically sorted

Possible solution To sort them. It can be better to provide a user with
the text search.

5.4.1.5 Confusing color of input text

Description The color of typed text in the form input is gray (it is generally
used for disabled form elements).

Possible solution Changing color of form inputs to black.

83

5. Testing

5.4.1.6 “Show all notifications” button name is confusing

Description “Show all notifications” buttons redirects a user to the page
with notification settings and an incomplete list of notifications.

Possible solution Renaming “Show all notifications” to something else. Or
extracting notification settings into a separate page.

5.4.1.7 Reboot button is hard to find

Description It is caused by the small size of the reboot section located
at the bottom of the page.

Possible solution To put it on the top to be more visible.

Remark In the final solution, the “Reboot” button is moved to a separated
page and it can be accessed from the main navigation menu.

5.4.2 Conclusion

Some of the above-described issues were fixed in the prototype stage. The au-
thor took them into account during the implementation of the final application
in order to avoid replicating them.

5.5 Use test with functional application

5.5.1 Preparation

As Jakob Nielsen, Ph.D. mentions in one of his papers [93]: testing with only
five users covers most of usability issues. It means that it is not essential to
perform usability testing with a big group of users and it is better to select
test subjects from the target audience.

After consulting with Turris team members it was discovered that Turris
router audience mostly consists of people under 30 years of age. The Tur-
ris routers are more powerful than classic home routers, and users of Turris
routers mostly have some experience with network device configuration. But
also there is a group of people who are beginner enthusiasts.

5.5.2 Personas

As a result of the information above the author split target users into two
following groups of personas.

84

5.5. Use test with functional application

5.5.2.1 Expert

Age: 20–30

Network configuration expirience: expert.

Description: It may be a student or a Computer Science graduate.

5.5.2.2 Beginner

Age: 20–30

Network configuration expirience: beginner.

Description: It may be a Computer Science freshman or an IT enthusiast.
The main prerequisite is that the user has not had experience in the net-
work device configuration.

Seven volunteers were selected (4 experts and 3 beginners).

5.5.3 Script
The usability test script was created based on the issues which were found
during the preceding usability testing and functionality walkthrough. The
script is available in the appendix of this paper on page 163. This script
is accompanied by two quizzes in order to better understand user emotional
state before and after tests and to get more information about the experience
of the user or some improvement suggestions.

5.5.4 Analysis
Video recordings and screencasts of user behavior during the usability test are
used in the analysis and are available on the disk which is attached to the pa-
per.

During usability testing analysis subsequent issues were found.

5.5.4.1 The Turris logo in the header is not clickable

Description It is used by users who are used to that logo linking to the home
page.

Possible solution To add a link to the logo.

5.5.4.2 Some countries are placed in the wrong region in the
timezone selection

Description Spain is located under the African region.

85

5. Testing

Possible solution To use another library which has the correct country
and region placement.

5.5.4.3 Countries and cities are unordered

Possible solution Add alphabetical order to countries and cities.

Remark It had been fixed but another issue was found. The JS string
comparison works incorrectly with some languages. Thus, it should have some
multilingual solution.

5.5.4.4 “Notifications” title in the dropdown notifications menu is
not clickable

Description When a user wants to show all notifications there is only one
way to do it by clicking on a some notification. It’s better to provide some
way to do it when there are no notifications.

Possible solution To add a link to the notifications page to the title in the
dropdown menu.

Remark It has been fixed on the spot.

5.5.4.5 “Notifications” title in dropdown notifications menu is not
clickable

Description When a user wants to show all notifications there is only one
way to do it with clicking on the certain notification. It’s better to provide
some approach to do it when there are no notifications.

Possible solution To add a link to the notifications page on the title in
dropdown menu.

Remark It have been fixed on the spot.

5.5.4.6 DNS forwarder option does not have help text

Description Some of the beginner users may not know what DNS forwarder
means. It is better to add a remark to this option.

Possible solution Add help text to DNS forwarder option.

86

5.5. Use test with functional application

5.5.4.7 Link to advanced administration is confusing

Description It’s not clear to users that “Advanced administration” menu
item is linked to LuCI configuration interface.

Possible solution Renaming of the “Advanced administration” button. It
can be named “Advanced administration (LuCi)”.

5.5.4.8 Packages vs plugins

Description The difference between packages and plugins may be confus-
ing.

Possible solution Better naming for these menu items. It may be named
“Packages” and “Package management”.

5.5.4.9 Guest Wi-Fi setting is hardly visible.

Description The configuration of the guest Wi-Fi network is located at the bot-
tom of the Wi-Fi module configuration and it is not highlighted.

Possible solution Put guest Wi-Fi settings under their own title to make
them more noticeable.

Some of these issues were fixed on the spot. Other issues should be dis-
cussed with Turris team members in order to find the best solutions and will
be fixed in the next development iterations.

5.5.5 Improvement suggestions
Despite the high praise of UI experience users had a few subsequent improve-
ment suggestions.

• Dashboard with network load, CPU and memory usage on the main
page.

• List of connected devices (via Wi-Fi) on the main page with the possi-
bility to disconnect a selected device.

• Possibility to select UTC timezone.

All these suggestions will be passed to the Turris team members and may
be added in the future.

87

Conclusion

Conslusion
The goal of this project was to redesign and implement the new Foris router
administration web interface in order to create better architecture and user
experience based on the analysis and requirements. The project is done using
modern and simplified plugin system in the interest of motivating third-party
developers to contribute.

The resulting product code has been tested and added the test TurrisOS
release. Appropriate usability testing was performed and evaluated. More-
over, some of the discovered issues were fixed on the spot. Thus, Foris is ready
for the next development iteration.

In view of the above, I believe that I have fulfilled all goals.
This is my first production grade project which I was entirely responsible

for. It was really challenging, although positive feedback from Turris team
and users makes all the challenges worth it. I will be glad to follow through
this project and see it in the production stage.

89

Bibliography

[1] OpenWrt Project: Welcome to the OpenWrt Project . Feb 2019, [Online;
accessed 13. Feb. 2019]. Available from: https://openwrt.org

[2] OpenWRT / LuCI . Feb 2019, [Online; accessed 13. Feb. 2019]. Available
from: https://github.com/openwrt/luci/wiki

[3] first commit of somewhat-stable code (see comment below) (c42a021a)
· Commits · Turris / foris. Jun 2019, [Online; accessed 27. Jun. 2019].
Available from: https://gitlab.labs.nic.cz/turris/foris/commit/
c42a021a7f6249ed31fe1bc87d7e19aeb1ed8479

[4] Nielsen, J.; Molich, R. Heuristic evaluation of user interfaces. In Proceed-
ings of the SIGCHI conference on Human factors in computing systems,
ACM, 1990, pp. 249–256.

[5] Turris | Turris . Mar 2019, [Online; accessed 18. Mar. 2019]. Available
from: https://www.turris.cz/en

[6] Installation of LTE modem into Turris Omnia router [Project: Turris]
. Feb 2019, [Online; accessed 13. Feb. 2019]. Available from: https:
//doc.turris.cz/doc/en/howto/lte_modem_install

[7] Turris OS . Feb 2019, [Online; accessed 13. Feb. 2019]. Available from:
https://gitlab.labs.nic.cz/turris/openwrt

[8] UCI (Unified Configuration Interface) – Technical Reference [Old Open-
Wrt Wiki] . Feb 2019, [Online; accessed 15. Feb. 2019]. Available from:
https://oldwiki.archive.openwrt.org/doc/techref/uci

[9] The UCI System [Old OpenWrt Wiki] . Feb 2019, [Online; accessed
15. Feb. 2019]. Available from: https://oldwiki.archive.openwrt.org/
doc/uci

91

https://openwrt.org
https://github.com/openwrt/luci/wiki
https://gitlab.labs.nic.cz/turris/foris/commit/c42a021a7f6249ed31fe1bc87d7e19aeb1ed8479
https://gitlab.labs.nic.cz/turris/foris/commit/c42a021a7f6249ed31fe1bc87d7e19aeb1ed8479
https://www.turris.cz/en
https://doc.turris.cz/doc/en/howto/lte_modem_install
https://doc.turris.cz/doc/en/howto/lte_modem_install
https://gitlab.labs.nic.cz/turris/openwrt
https://oldwiki.archive.openwrt.org/doc/techref/uci
https://oldwiki.archive.openwrt.org/doc/uci
https://oldwiki.archive.openwrt.org/doc/uci

Bibliography

[10] The UCI System [Old OpenWrt Wiki] . Mar 2019, [Online; accessed
18. Mar. 2019]. Available from: https://oldwiki.archive.openwrt.org/
doc/uci

[11] openwrt/luci . Feb 2019, [Online; accessed 15. Feb. 2019]. Available from:
https://github.com/openwrt/luci/wiki/ModulesHowTo

[12] The Programming Language Lua . Jan 2019, [Online; accessed 15. Feb.
2019]. Available from: https://www.lua.org

[13] openwrt/luci . Feb 2019, [Online; accessed 15. Feb. 2019]. Available from:
https://github.com/openwrt/luci/wiki/Templates

[14] COMPAL CH7465LG Modem / User manual . Mar 2019, [Online; ac-
cessed 24. Mar. 2019]. Available from: https://business.upc.cz/pdf/
soho/UPC-Mercury-modem-uzivatelsky-manual-v5.pdf

[15] Eberhardt, G.; Bácsi, G.; et al. Security evaluation of the Compal
Broadband networks CH7465LG ”Mercur” Modem. In Proceedings of the
SIGCHI conference on Human factors in computing systems, SEARCH-
LAB, 2016, pp. 12–13. Available from: https://www.search-lab.hu/
media/Compal_CH7465LG_Evaluation_Report_1.1.pdf

[16] Documentation [Project: Turris] . Apr 2019, [Online; accessed 1. Mar.
2019]. Available from: https://doc.turris.cz/doc/en/start

[17] Hardware :: Project:Turris . Feb 2019, [Online; accessed 11. Feb. 2019].
Available from: https://project.turris.cz/en/hardware

[18] Turris Omnia . Feb 2019, [Online; accessed 12. Feb. 2019]. Available from:
https://omnia.turris.cz/en

[19] Turris - Technical specification of each MOX module . Feb 2019, [On-
line; accessed 12. Feb. 2019]. Available from: https://mox.turris.cz/
en/specification

[20] Turris / foris-controller . Mar 2019, [Online; accessed 4. Mar. 2019]. Avail-
able from: https://gitlab.labs.nic.cz/turris/foris-controller

[21] Welcome to Python.org . Mar 2019, [Online; accessed 4. Mar. 2019]. Avail-
able from: https://www.python.org

[22] Bottle: Python Web Framework — Bottle 0.13-dev documentation .
Mar 2019, [Online; accessed 4. Mar. 2019]. Available from: https://
bottlepy.org/docs/dev

[23] Home - Lighttpd - fly light . Jan 2019, [Online; accessed 4. Mar. 2019].
Available from: https://www.lighttpd.net

92

https://oldwiki.archive.openwrt.org/doc/uci
https://oldwiki.archive.openwrt.org/doc/uci
https://github.com/openwrt/luci/wiki/ModulesHowTo
https://www.lua.org
https://github.com/openwrt/luci/wiki/Templates
https://business.upc.cz/pdf/soho/UPC-Mercury-modem-uzivatelsky-manual-v5.pdf
https://business.upc.cz/pdf/soho/UPC-Mercury-modem-uzivatelsky-manual-v5.pdf
https://www.search-lab.hu/media/Compal_CH7465LG_Evaluation_Report_1.1.pdf
https://www.search-lab.hu/media/Compal_CH7465LG_Evaluation_Report_1.1.pdf
https://doc.turris.cz/doc/en/start
https://project.turris.cz/en/hardware
https://omnia.turris.cz/en
https://mox.turris.cz/en/specification
https://mox.turris.cz/en/specification
https://gitlab.labs.nic.cz/turris/foris-controller
https://www.python.org
https://bottlepy.org/docs/dev
https://bottlepy.org/docs/dev
https://www.lighttpd.net

Bibliography

[24] Turris / foris . Apr 2019, [Online; accessed 5. Mar. 2019]. Available from:
https://gitlab.labs.nic.cz/turris/foris

[25] Jinja2 Documentation (2.10) . May 2018, [Online; accessed 5. Mar. 2019].
Available from: http://jinja.pocoo.org/docs/2.10

[26] vex . Nov 2017, [Online; accessed 7. Apr. 2019]. Available from: https:
//github.hubspot.com/vex

[27] Code minification · WebPlatform Docs . Feb 2017, [Online; accessed
7. Mar. 2019]. Available from: https://webplatform.github.io/docs/
concepts/programming/javascript/minification

[28] WebSockets . Mar 2019, [Online; accessed 10. Mar. 2019]. Available from:
https://developer.mozilla.org/en-US/docs/Glossary/WebSockets

[29] ubus (OpenWrt micro bus architecture) [Old OpenWrt Wiki] . Mar
2019, [Online; accessed 3. Mar. 2019]. Available from: https://
oldwiki.archive.openwrt.org/doc/techref/ubus

[30] MQTT . Mar 2019, [Online; accessed 4. Mar. 2019]. Available from: http:
//mqtt.org

[31] Eclipse Mosquitto . Jan 2018, [Online; accessed 25. Mar. 2019]. Available
from: https://mosquitto.org

[32] Turris / foris-client . Mar 2019, [Online; accessed 18. Mar. 2019]. Available
from: https://gitlab.labs.nic.cz/turris/foris-client

[33] Kaliski, B. PKCS 5: Password-Based Cryptography Specification Version
2.0 . Apr 2019, [Online; accessed 21. Apr. 2019]. Available from: https:
//tools.ietf.org/html/rfc2898

[34] JSON Schema . Mar 2019, [Online; accessed 11. Mar. 2019]. Available
from: https://json-schema.org

[35] Turris / foris-schema . Mar 2019, [Online; accessed 11. Mar. 2019]. Avail-
able from: https://gitlab.labs.nic.cz/turris/foris-schema

[36] Č iha ř , M. Weblate - web-based localization . Jun 2019, [Online;
accessed 16. Jun. 2019]. Available from: https://weblate.org/en-gb

[37] Inc., S. Top 10 Python Web Frameworks to Learn in 2018 . Hacker Noon,
Apr 2019. Available from: https://hackernoon.com/top-10-python-
web-frameworks-to-learn-in-2018-b2ebab969d1a

[38] Welcome | Flask (A Python Microframework) . Apr 2019, [Online; ac-
cessed 8. Apr. 2019]. Available from: http://flask.pocoo.org

93

https://gitlab.labs.nic.cz/turris/foris
http://jinja.pocoo.org/docs/2.10
https://github.hubspot.com/vex
https://github.hubspot.com/vex
https://webplatform.github.io/docs/concepts/programming/javascript/minification
https://webplatform.github.io/docs/concepts/programming/javascript/minification
https://developer.mozilla.org/en-US/docs/Glossary/WebSockets
https://oldwiki.archive.openwrt.org/doc/techref/ubus
https://oldwiki.archive.openwrt.org/doc/techref/ubus
http://mqtt.org
http://mqtt.org
https://mosquitto.org
https://gitlab.labs.nic.cz/turris/foris-client
https://tools.ietf.org/html/rfc2898
https://tools.ietf.org/html/rfc2898
https://json-schema.org
https://gitlab.labs.nic.cz/turris/foris-schema
https://weblate.org/en-gb
https://hackernoon.com/top-10-python-web-frameworks-to-learn-in-2018-b2ebab969d1a
https://hackernoon.com/top-10-python-web-frameworks-to-learn-in-2018-b2ebab969d1a
http://flask.pocoo.org

Bibliography

[39] Extensions Registry | Flask (A Python Microframework) . Apr
2019, [Online; accessed 8. Apr. 2019]. Available from: http://
flask.pocoo.org/extensions

[40] Modular Applications with Blueprints — Flask 1.0.2 documentation
. May 2018, [Online; accessed 8. Apr. 2019]. Available from: http:
//flask.pocoo.org/docs/1.0/blueprints

[41] Vanilla JS . Apr 2019, [Online; accessed 8. Apr. 2019]. Available from:
http://vanilla-js.com

[42] React – A JavaScript library for building user interfaces . Apr 2019,
[Online; accessed 8. Mar. 2019]. Available from: https://reactjs.org

[43] Neuhaus, J. Angular vs. React vs. Vue: A 2017 comparison . Medium,
Sep 2018. Available from: https://medium.com/unicorn-supplies/
angular-vs-react-vs-vue-a-2017-comparison-c5c52d620176

[44] What is Babel? · Babel . Apr 2019, [Online; accessed 8. Apr. 2019].
Available from: https://babeljs.io/docs/en

[45] JSX | XML-like syntax extension to ECMAScript . Oct 2017, [Online;
accessed 8. Apr. 2019]. Available from: https://facebook.github.io/
jsx

[46] Otto, Mark. and Jacob, Thornton. and Bootstrap contributors . Boot-
strap . Mar 2019, [Online; accessed 8. Apr. 2019]. Available from: https:
//getbootstrap.com

[47] Flask-Session — Flask-Session 0.3.0 documentation . Apr 2019, [Online;
accessed 21. Apr. 2019]. Available from: https://pythonhosted.org/
Flask-Session

[48] Atkins, D.; Austein, R. Threat Analysis of the Domain Name Sys-
tem (DNS) . Apr 2019, [Online; accessed 15. Apr. 2019]. Available from:
https://tools.ietf.org/html/rfc3833

[49] Prototypes, Specifications, and Diagrams in One Tool | Axure Software
. Apr 2019, [Online; accessed 16. Apr. 2019]. Available from: https:
//www.axure.com

[50] Turris / reforis . May 2019, [Online; accessed 1. May 2019]. Available
from: https://gitlab.labs.nic.cz/turris/reforis

[51] libfuse/sshfs . Apr 2019, [Online; accessed 30. Apr. 2019]. Available from:
https://github.com/libfuse/sshfs

[52] rsync . May 2019, [Online; accessed 1. May 2019]. Available from: https:
//rsync.samba.org

94

http://flask.pocoo.org/extensions
http://flask.pocoo.org/extensions
http://flask.pocoo.org/docs/1.0/blueprints
http://flask.pocoo.org/docs/1.0/blueprints
http://vanilla-js.com
https://reactjs.org
https://medium.com/unicorn-supplies/angular-vs-react-vs-vue-a-2017-comparison-c5c52d620176
https://medium.com/unicorn-supplies/angular-vs-react-vs-vue-a-2017-comparison-c5c52d620176
https://babeljs.io/docs/en
https://facebook.github.io/jsx
https://facebook.github.io/jsx
https://getbootstrap.com
https://getbootstrap.com
https://pythonhosted.org/Flask-Session
https://pythonhosted.org/Flask-Session
https://tools.ietf.org/html/rfc3833
https://www.axure.com
https://www.axure.com
https://gitlab.labs.nic.cz/turris/reforis
https://github.com/libfuse/sshfs
https://rsync.samba.org
https://rsync.samba.org

Bibliography

[53] PyCharm . May 2019, [Online; accessed 1. May 2019]. Available from:
https://www.jetbrains.com/pycharm

[54] What is eMMC Memory – software support | Reliance Nitro .
May 2019, [Online; accessed 1. May 2019]. Available from: https:
//www.datalight.com/solutions/technologies/emmc/what-is-emmc

[55] Zhang, T.; Zuck, A.; et al. Flash Drive Lifespan *is* a Problem. In
Proceedings of the SIGCHI conference on Human factors in comput-
ing systems, The University of North Carolina at Chapel Hill & Tech-
nition Israel Institute of Technology, 2017, pp. 1–2. Available from:
http://www.cs.technion.ac.il/~dan/papers/fbrick-hotos-2017.pdf

[56] OpenWrt Project: Filesystems . May 2019, [Online; accessed 1.
May 2019]. Available from: https://openwrt.org/docs/techref/
filesystems

[57] Git . May 2019, [Online; accessed 1. May 2019]. Available from: https:
//git-scm.com

[58] CZ.NIC company GitLab . May 2019, [Online; accessed 1. May 2019].
Available from: https://gitlab.labs.nic.cz

[59] The first single application for the entire DevOps lifecycle - GitLab .
May 2019, [Online; accessed 1. May 2019]. Available from: https://
about.gitlab.com

[60] GitLab Continuous Integration Delivery . Jun 2019, [Online; accessed
12. Jun. 2019]. Available from: https://about.gitlab.com/product/
continuous-integration

[61] Booch, G.; Maksimchuk, R.; et al. Object-oriented Analysis and Design
with Applications, Third Edition. Addison-Wesley Professional, third edi-
tion, 2007, ISBN 9780201895513.

[62] What is a Container? | Docker . May 2019, [Online; accessed 12.
Jun. 2019]. Available from: https://www.docker.com/resources/what-
container

[63] Logilab. Pylint - code analysis for Python | www.pylint.org .
Apr 2018, [Online; accessed 13. Jun. 2019]. Available from: https:
//www.pylint.org

[64] pycodestyle ’ s documentation — pycodestyle 2.5.0 documentation
. Mar 2019, [Online; accessed 13. Jun. 2019]. Available from: https:
//pycodestyle.readthedocs.io/en/latest

95

https://www.jetbrains.com/pycharm
https://www.datalight.com/solutions/technologies/emmc/what-is-emmc
https://www.datalight.com/solutions/technologies/emmc/what-is-emmc
http://www.cs.technion.ac.il/~dan/papers/fbrick-hotos-2017.pdf
https://openwrt.org/docs/techref/filesystems
https://openwrt.org/docs/techref/filesystems
https://git-scm.com
https://git-scm.com
https://gitlab.labs.nic.cz
https://about.gitlab.com
https://about.gitlab.com
https://about.gitlab.com/product/continuous-integration
https://about.gitlab.com/product/continuous-integration
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://www.pylint.org
https://www.pylint.org
https://pycodestyle.readthedocs.io/en/latest
https://pycodestyle.readthedocs.io/en/latest

Bibliography

[65] PEP 8 – Style Guide for Python Code . Jun 2019, [Online; accessed 13.
Jun. 2019]. Available from: https://www.python.org/dev/peps/pep-
0008

[66] ESLint - Pluggable JavaScript linter . Jun 2019, [Online; accessed 13.
Jun. 2019]. Available from: https://eslint.org

[67] Application Factories — Flask 1.0.2 documentation . May 2018, [Online;
accessed 30. Apr. 2019]. Available from: http://flask.pocoo.org/docs/
1.0/patterns/appfactories

[68] pallets/werkzeug . May 2019, [Online; accessed 1. May 2019]. Available
from: https://github.com/pallets/werkzeug

[69] foris _ ws/authentication/filesystem.py · master · Turris
/ foris-ws . May 2019, [Online; accessed 1. May 2019]. Available
from: https://gitlab.labs.nic.cz/turris/foris-ws/blob/master/
foris_ws/authentication/filesystem.py

[70] webpack. Jun 2019, [Online; accessed 22. Jun. 2019]. Available from:
https://webpack.js.org

[71] File Structure – React . May 2019, [Online; accessed 1. May 2019].
Available from: https://reactjs.org/docs/faq-structure.html

[72] Introducing Hooks – React. Jun 2019, [Online; accessed 28. Jun. 2019].
Available from: https://reactjs.org/docs/hooks-intro.html

[73] facebook/prop-types . May 2019, [Online; accessed 2. May 2019]. Avail-
able from: https://github.com/facebook/prop-types

[74] Turris / reforis-diagnostics . Jun 2019, [Online; accessed 18. Jun.
2019]. Available from: https://gitlab.labs.nic.cz/turris/reforis-
diagnostics

[75] 2. Writing the Setup Script — Python 3.7.3 documentation . Jun
2019, [Online; accessed 18. Jun. 2019]. Available from: https://
docs.python.org/3/distutils/setupscript.html

[76] Package Discovery and Resource Access using pkg _ resources — setup-
tools 41.0.1 documentation . Jun 2019, [Online; accessed 18. Jun. 2019].
Available from: https://setuptools.readthedocs.io/en/latest/pkg_
resources.html#entry-points

[77] Package Discovery and Resource Access using pkg _ resources — setup-
tools 41.0.1 documentation . Jun 2019, [Online; accessed 18. Jun. 2019].
Available from: https://setuptools.readthedocs.io/en/latest/pkg_
resources.html

96

https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://eslint.org
http://flask.pocoo.org/docs/1.0/patterns/appfactories
http://flask.pocoo.org/docs/1.0/patterns/appfactories
https://github.com/pallets/werkzeug
https://gitlab.labs.nic.cz/turris/foris-ws/blob/master/foris_ws/authentication/filesystem.py
https://gitlab.labs.nic.cz/turris/foris-ws/blob/master/foris_ws/authentication/filesystem.py
https://webpack.js.org
https://reactjs.org/docs/faq-structure.html
https://reactjs.org/docs/hooks-intro.html
https://github.com/facebook/prop-types
https://gitlab.labs.nic.cz/turris/reforis-diagnostics
https://gitlab.labs.nic.cz/turris/reforis-diagnostics
https://docs.python.org/3/distutils/setupscript.html
https://docs.python.org/3/distutils/setupscript.html
https://setuptools.readthedocs.io/en/latest/pkg_resources.html#entry-points
https://setuptools.readthedocs.io/en/latest/pkg_resources.html#entry-points
https://setuptools.readthedocs.io/en/latest/pkg_resources.html
https://setuptools.readthedocs.io/en/latest/pkg_resources.html

Bibliography

[78] Flask-Babel — Flask Babel 1.0 documentation . Jun 2019, [Online;
accessed 16. Jun. 2019]. Available from: https://pythonhosted.org/
Flask-Babel

[79] gnu.org . Jun 2019, [Online; accessed 16. Jun. 2019]. Available from:
https://www.gnu.org/software/gettext

[80] GNU gettext utilities: PO Files . Jun 2019, [Online; accessed 16.
Jun. 2019]. Available from: https://www.gnu.org/software/gettext/
manual/html_node/PO-Files.html#PO-Files

[81] python-babel/babel . Jun 2019, [Online; accessed 17. Jun. 2019]. Avail-
able from: https://github.com/python-babel/babel/blob/master/
contrib/babel.js

[82] React Styleguidist: isolated React component development environment
with a living style guide. Jun 2019, [Online; accessed 27. Jun. 2019].
Available from: https://react-styleguidist.js.org

[83] OpenWrt Project: Creating packages. Jun 2019, [Online; accessed
23. Jun. 2019]. Available from: https://openwrt.org/docs/guide-
developer/packages

[84] cznic/foris/reforis · master · Turris / turris-os-packages. Jun
2019, [Online; accessed 23. Jun. 2019]. Available from: https:
//gitlab.labs.nic.cz/turris/turris-os-packages/tree/master/
cznic/foris/reforis

[85] Jenkins. Jun 2019, [Online; accessed 27. Jun. 2019]. Available from:
https://jenkins.io

[86] TurrisPackages repository. Jun 2019, [Online; accessed 27. Jun.
2019]. Available from: https://repo.turris.cz/hbd/omnia/packages/
turrispackages

[87] unittest.mock — mock object library — Python 3.7.4rc1 documentation.
Jun 2019, [Online; accessed 23. Jun. 2019]. Available from: https://
docs.python.org/3/library/unittest.mock.html

[88] ikostia/surrogate. Jun 2019, [Online; accessed 23. Jun. 2019]. Avail-
able from: https://github.com/ikostia/surrogate/blob/master/
surrogate.py

[89] Jest · Delightful JavaScript Testing. Jun 2019, [Online; accessed 23. Jun.
2019]. Available from: https://jestjs.io

[90] testing-library/react-hooks-testing-library. Jun 2019, [Online; accessed
23. Jun. 2019]. Available from: https://github.com/testing-library/
react-hooks-testing-library

97

https://pythonhosted.org/Flask-Babel
https://pythonhosted.org/Flask-Babel
https://www.gnu.org/software/gettext
https://www.gnu.org/software/gettext/manual/html_node/PO-Files.html#PO-Files
https://www.gnu.org/software/gettext/manual/html_node/PO-Files.html#PO-Files
https://github.com/python-babel/babel/blob/master/contrib/babel.js
https://github.com/python-babel/babel/blob/master/contrib/babel.js
https://react-styleguidist.js.org
https://openwrt.org/docs/guide-developer/packages
https://openwrt.org/docs/guide-developer/packages
https://gitlab.labs.nic.cz/turris/turris-os-packages/tree/master/cznic/foris/reforis
https://gitlab.labs.nic.cz/turris/turris-os-packages/tree/master/cznic/foris/reforis
https://gitlab.labs.nic.cz/turris/turris-os-packages/tree/master/cznic/foris/reforis
https://jenkins.io
https://repo.turris.cz/hbd/omnia/packages/turrispackages
https://repo.turris.cz/hbd/omnia/packages/turrispackages
https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html
https://github.com/ikostia/surrogate/blob/master/surrogate.py
https://github.com/ikostia/surrogate/blob/master/surrogate.py
https://jestjs.io
https://github.com/testing-library/react-hooks-testing-library
https://github.com/testing-library/react-hooks-testing-library

Bibliography

[91] jest-mock-axios. Jun 2019, [Online; accessed 24. Jun. 2019]. Available
from: https://www.npmjs.com/package/jest-mock-axios

[92] Testing Library · Simple and complete testing utilities that encourage
good testing practices. Jun 2019, [Online; accessed 24. Jun. 2019]. Avail-
able from: https://testing-library.com

[93] Nielsen, J.; Landauer, T. K. A mathematical model of the finding of
usability problems. In Proceedings of the INTERACT’93 and CHI’93
conference on Human factors in computing systems, ACM, 1993, pp.
206–213.

98

https://www.npmjs.com/package/jest-mock-axios
https://testing-library.com

Appendix A
Original Foris screenshots

Figure A.1: Original Foris. Screenshot of the login page.

99

A. Original Foris screenshots

Figure A.2: Original Foris. Screenshot of the notifications page.

100

Figure A.3: Original Foris. Screenshot of the password settings page.

101

A. Original Foris screenshots

Figure A.4: Original Foris. Screenshot of the network interfaces page.

102

Figure A.5: Original Foris. Screenshot of the WAN configuration page.

103

A. Original Foris screenshots

Figure A.6: Original Foris. Screenshot of the LAN configuration page.

104

Figure A.7: Original Foris. Screenshot of the guest network configuration
page.

105

A. Original Foris screenshots

Figure A.8: Original Foris. Screenshot of the DNS configuration page.

106

Figure A.9: Original Foris. Screenshot of the Wi-Fi configuration page.

107

A. Original Foris screenshots

Figure A.10: Original Foris. Screenshot of the region and time settings page.

108

Figure A.11: Original Foris. Screenshot of the administration page.

109

A. Original Foris screenshots

Figure A.12: Original Foris. Screenshot of the updates settings page.

110

Figure A.13: Original Foris. Screenshot of the “About” information page.

111

Appendix B
Current Foris class diagrams

9 The list of config handlers is not complete. Handlers of other modules have a similar
structure.

113

B. Current Foris class diagrams

B
as

eC
on

fig
H

an
dl

er

da
ta

 :
N

on
eT

yp
e

fo
rm

ge
t_

fo
rm

()
sa

ve
()

N
et

w
or

ks
H

an
dl

er

ba
ck

en
d_

da
ta

us
er

fr
ie

nd
ly

_t
itl

e

ge
t_

fo
rm

()
lo

ad
_b

ac
ke

nd
_d

at
a(

)

N
ot

ifi
ca

tio
ns

H
an

dl
er

us
er

fr
ie

nd
ly

_t
itl

e

ge
t_

fo
rm

()

Pr
of

ile
H

an
dl

er

ba
ck

en
d_

da
ta

us
er

fr
ie

nd
ly

_t
itl

e

ge
t_

fo
rm

()
lo

ad
_b

ac
ke

nd
_d

at
a(

)

R
em

ot
eH

an
dl

er

C
LI

EN
T_

ST
A

TU
S_

EX
PI

R
ED

C
LI

EN
T_

ST
A

TU
S_

G
EN

ER
A

TI
N

G
C

LI
EN

T_
ST

A
TU

S_
LO

ST
C

LI
EN

T_
ST

A
TU

S_
R

EV
O

K
ED

C
LI

EN
T_

ST
A

TU
S_

V
A

LI
D

TR
A

N
SL

A
TI

O
N

_M
A

P
: d

ic
t

ba
ck

en
d_

da
ta

us
er

fr
ie

nd
ly

_t
itl

e

ge
t_

fo
rm

()
ge

t_
ge

ne
ra

te
_t

ok
en

_f
or

m
()

ge
t_

to
ke

n_
id

_f
or

m
()

Si
m

pl
eD

el
ay

ed
Tr

an
sl

at
or

te
xt

us
er

fr
ie

nd
ly

_t
itl

e
us

er
fr

ie
nd

ly
_t

itl
e

us
er

fr
ie

nd
ly

_t
itl

e
C

LI
EN

T_
ST

A
TU

S_
V

A
LI

D
C

LI
EN

T_
ST

A
TU

S_
R

EV
O

K
ED

C
LI

EN
T_

ST
A

TU
S_

EX
PI

R
ED

C
LI

EN
T_

ST
A

TU
S_

G
EN

ER
A

TI
N

G
C

LI
EN

T_
ST

A
TU

S_
LO

ST
us

er
fr

ie
nd

ly
_t

itl
e

W
an

H
an

dl
er

ba
ck

en
d_

da
ta

hi
de

_n
o_

w
an

st
at

us
_d

at
a

us
er

fr
ie

nd
ly

_t
itl

e

ge
t_

fo
rm

()

us
er

fr
ie

nd
ly

_t
itl

e

W
ifi

H
an

dl
er

us
er

fr
ie

nd
ly

_t
itl

e

ge
t_

fo
rm

()

us
er

fr
ie

nd
ly

_t
itl

e

W
ifi

Ed
itF

or
m

en
ab

le
_g

ue
st

 :
bo

ol
te

m
pl

at
e_

na
m

e
: s

tr
tit

le

co
nv

er
t_

da
ta

_f
ro

m
_b

ac
ke

nd
_t

o_
fo

rm
()

co
nv

er
t_

da
ta

_f
ro

m
_f

or
m

_t
o_

ba
ck

en
d(

)
m

ak
e_

fo
rm

()
pr

ef
ix

ed
()

Figure B.1: Config handler class diagram9

114

Field

errors
field
hidden
hint : str
html_id
label_tag
multifield : bool
name
preproc : NoneType
required : bool
requirements : dict
type
validators : list

has_requirements()
render()
requires()

ForisFormElement

children
name
parent : NoneType
sections

ForisAjaxForm

controller_id : NoneType
controller_id : NoneType
foris_form
template_name : NoneType
title : NoneType
url : NoneType

convert_data_from_backend_to_form()
convert_data_from_form_to_backend()
make_form()

ForisForm

active_fields
callback_results : dict
callbacks : list
current_data
data
defaults : dict
errors
requirement_map
valid
validated : bool
validators : list

add_callback()
add_section()
clean_data()
get_active_fields()
invalidate_data()
process_callbacks()
render()
render_errors()
save()
validate()

Form

d : property
inputs : tuple
note : NoneType
valid : bool
validators
value

fill()
get()
render()
render_css()
rendernote()
validates()

__form_cache

OrderedDict

move_to_end()

children

Section

active_fields
description : NoneType
name
title

add_field()
add_section()
render()

defaultdict

default_factory : NoneType

requirement_map

Figure B.2: Foris forms class diagram.

115

B. Current Foris class diagrams

A
ttr

ib
ut

eL
is

t

co
py

()

H
or

iz
on

ta
lL

in
e

at
trs

de
sc

rip
tio

n
id na

m
e

no
te

 :
N

on
eT

yp
e

po
st

pr
e

re
qu

ire
d

va
lu

e

ad
da

tts
()

ge
t_

de
fa

ul
t_

id
()

ge
t_

ty
pe

()
ge

t_
va

lu
e(

)
is

_h
id

de
n(

)
re

nd
er

()
re

nd
er

no
te

()
se

t_
va

lu
e(

)
va

lid
at

e(
) at

trs

In
pu

t

at
trs

de
sc

rip
tio

n
id na

m
e

no
te

 :
N

on
eT

yp
e

po
st

pr
e

re
nd

er
_e

xt
ra

_a
fte

r
re

qu
ire

d
va

lid
at

or
s

: t
up

le
va

lu
e

ad
da

tts
()

ge
t_

de
fa

ul
t_

id
()

ge
t_

ty
pe

()
ge

t_
va

lu
e(

)
is

_h
id

de
n(

)
re

nd
er

()
re

nd
er

no
te

()
se

t_
va

lu
e(

)
va

lid
at

e(
)

at
trs

B
ut

to
n

de
sc

rip
tio

n
: s

tr

re
nd

er
()

C
he

ck
bo

x

ch
ec

ke
d

ge
t_

de
fa

ul
t_

id
()

ge
t_

va
lu

e(
)

re
nd

er
()

se
t_

va
lu

e(
)

D
ro

pd
ow

n

re
nd

er
()

In
pu

tW
ith

A
rg

s

ar
gs

Em
ai

l

ge
t_

ty
pe

()

Fi
le

ge
t_

ty
pe

()

Fo
rm

d
: p

ro
pe

rty
in

pu
ts

 :
tu

pl
e

no
te

 :
N

on
eT

yp
e

va
lid

 :
bo

ol
va

lid
at

or
s

va
lu

e

fil
l()

ge
t()

re
nd

er
()

re
nd

er
_c

ss
()

re
nd

er
no

te
()

va
lid

at
es

()

G
ro

up
ed

D
ro

pd
ow

n

re
nd

er
()

H
id

de
n

ge
t_

ty
pe

()
is

_h
id

de
n(

)

M
ul

tiC
he

ck
bo

x

re
nd

er
()

N
um

be
r

ge
t_

ty
pe

()

Pa
ss

w
or

d

ge
t_

ty
pe

()

Pa
ss

w
or

dW
ith

H
id

e

re
nd

er
_e

xt
ra

_a
fte

r

R
ad

io

ar
gs

ge
t_

de
fa

ul
t_

id
()

re
nd

er
()

R
ad

io
Si

ng
le

gr
ou

p
id na

m
e

ge
t_

de
fa

ul
t_

id
()

re
nd

er
()

re
nd

er
_s

in
gl

e(
)

St
or

ag
e

Te
xt

ar
ea

re
nd

er
()

Te
xt

bo
x

ge
t_

ty
pe

()

Ti
m

e

ge
t_

ty
pe

()

Figure B.3: Foris form fields class diagram.
116

Appendix C
Wireframes

117

C. Wireframes

Figure C.1: Wireframe of the login page.

118

Figure C.2: Wireframe of the dashboard “Home” page.

119

C. Wireframes

Figure C.3: Wireframe of the notifications dropdown menu.

120

Figure C.4: Wireframe of the notifications page.

121

C. Wireframes

Figure C.5: Wireframe of the WAN configuration page.

122

Figure C.6: Wireframe of the LAN configuration page.

123

C. Wireframes

Figure C.7: Wireframe of the Wi-Fi configuration page.

124

Figure C.8: Wireframe of the administration page.

125

C. Wireframes

Figure C.9: Wireframe of the updates settings page.

126

Figure C.10: Wireframe of the backups creation and restoration page.

127

C. Wireframes

Figure C.11: Wireframe of the “About” information page.

128

Appendix D
Hi-fi prototype screenshots

Figure D.1: Hi-fi prototype. Screenshot of the login page.

129

D. Hi-fi prototype screenshots

Figure D.2: Hi-fi prototype. Screenshot of the dashboard (home) page.

130

Figure D.3: Hi-fi prototype. Screenshot of the notifications dropdown menu.

131

D. Hi-fi prototype screenshots

Figure D.4: Hi-fi prototype. Screenshot of the notifications page.

132

Figure D.5: Hi-fi prototype. Screenshot of the WAN configuration page.

133

D. Hi-fi prototype screenshots

Figure D.6: Hi-fi prototype. Screenshot of the LAN configuration page.

134

Figure D.7: Hi-fi prototype. Screenshot of the Wi-Fi configuration page.

135

D. Hi-fi prototype screenshots

Figure D.8: Hi-fi prototype. Screenshot of the administration page.

136

Figure D.9: Hi-fi prototype. Screenshot of the updates settings page.

137

D. Hi-fi prototype screenshots

Figure D.10: Hi-fi prototype. Screenshot of the backups creation and restora-
tion page.

138

Figure D.11: Hi-fi prototype. Screenshot of the “About” information page.

139

Appendix E
API endpoints

• Notifications

Description: Provide list of the router notifications.
URL: /notifications
HTTP Method: GET
foris-controller module: router_notifications
foris-controller action: list

• Notification setting

Description: Get and update notifications settings.
URL: /notifications-settings
HTTP Methods: GET, POST
foris-controller module: router_notifications
foris-controller actions: get_settings, update_settings

• Network settings

– WAN
Description: Get and update WAN settings.
URL: /wan
HTTP Methods: GET, POST
foris-controller module: wan
foris-controller actions: get_settings, update_settings
foris-controller data: ["ipv4", "ipv6"]

– DNS settings test
Description: Trigger DNS settings test. The results of the test

are obtained via WebSockets and can be displayed in real-time.

141

E. API endpoints

URL: /connection-test
HTTP Method: GET
foris-controller module: wan
foris-controller actions: connection_test_trigger
foris-controller request data: ["dns"]
Note: The foris-controller module and action are the same

as in WAN connection test but have different request data.
Foris-controller uses the same module and action for WAN
and DNS tests for a historical reason.

– Connection test
Description: Trigger WAN connection test. The results of the

test are obtained via WebSockets and can be displayed in real-
time.

URL: /connection-test
HTTP Method: GET
foris-controller module: wan
foris-controller actions: connection_test_trigger
foris-controller request data: ["wan"]

– LAN
Description: Get and update LAN settings.
URL: /lan
HTTP Methods: GET, POST
foris-controller module: lan
foris-controller actions: get_settings, update_settings

– Wi-Fi
Description: Get and update Wi-Fi settings.
URL: /lan
HTTP Methods: GET, POST
foris-controller module: wifi
foris-controller actions: get_settings, update_settings

– DNS
Description: Get and update DNS settings.
URL: /lan
HTTP Methods: GET, POST
foris-controller module: dns
foris-controller actions: get_settings, update_settings

– Interfaces

142

Description: Get and update interface settings.
URL: /interfaces
HTTP Methods: GET, POST
foris-controller module: networks
foris-controller actions: get_settings, update_settings

– Guest network
Description: Get and update guest network settings.
URL: /guest-network
HTTP Methods: GET, POST
foris-controller module: guest
foris-controller actions: get_settings, update_settings

• Updates

Description: Get and update updater settings.
URL: /updates

HTTP Methods: GET, POST
foris-controller module: updater

foris-controller actions: get_settings, update_settings

• Updates approvals

Description: Get updates approval information or approve updates.
URL: /approvals

HTTP Methods: GET, POST
foris-controller module: updater

foris-controller actions: get_settings, resolve_approval

• Packages

Description: Get and update packages settings.
URL: /packages

HTTP Methods: GET, POST
foris-controller module: updater

foris-controller actions: get_settings, update_settings

• Password

Description: Set Foris and root password.
URL: /password

143

E. API endpoints

HTTP Method: POST

foris-controller module: password

foris-controller action: set

• Region and time settings

Description: Get and update region (timezone) and time settings.
URL: /region-and-time

HTTP Methods: GET, POST
foris-controller module: time

foris-controller actions: get_settings, update_settings

• Current router time

Description: Get router current time.
URL: /time

HTTP Method: GET

foris-controller module: time

foris-controller action: get_router_time

• Region and time settings

Description: Get and update region (timezone) and time settings.
URL: /region-and-time

HTTP Methods: GET, POST
foris-controller module: time

foris-controller actions: get_settings, update_settings

• Reboot

Description: Trigger reboot of the router. The state of the router
after the reboot was triggered is checked via WebSockets and health
check endpoint.

URL: /reboot

HTTP Method: GET

foris-controller module: maintain

foris-controller action: reboot

• Languages

Description: Get list of installed interface languages.

144

URL: /languages
HTTP Method: GET

• Language

Description: Get or set the current language.
URL: /language
HTTP Methods: GET, POST
foris-controller module: web
foris-controller actions: get_data, set_language

• Guide

– Guide
Description: Get guide state.
URL: /guide
HTTP Methods: GET
foris-controller module: web
foris-controller actions: get_data, get_guide

– Guide workflow
Description: Set guide workflow.
URL: /guide-workflow
HTTP Methods: POST
foris-controller module: web
foris-controller actions: update_guide

– Finish (skip) guide
Description: Set guide state as finished.
URL: /finish-guide
HTTP Methods: POST
foris-controller module: web
foris-controller actions: update_guide

• Health check

Description: Check if router configuration interface is up. This end-
point is used during device reboot and network restart to check
whether the web server is up or down.

URL: /health-check
HTTP Method: GET

145

Appendix F
reForis web interface

screenshots

Figure F.1: reForis. Screenshot of the login page.

147

F. reForis web interface screenshots

Figure F.2: reForis. Screenshot of the overview page.

148

Figure F.3: reForis. Screenshot of the notifications page.

149

F. reForis web interface screenshots

Figure F.4: reForis. Screenshot of the notifications page.

150

Figure F.5: reForis. Screenshot of the WAN configuration page.

151

F. reForis web interface screenshots

Figure F.6: reForis. Screenshot of the LAN configuration page.

152

Figure F.7: reForis. Screenshot of the Wi-Fi configuration page.

153

F. reForis web interface screenshots

Figure F.8: reForis. Screenshot of the network interfaces page.

154

Figure F.9: reForis. Screenshot of the guest network configuration page.

155

F. reForis web interface screenshots

Figure F.10: reForis. Screenshot of the DNS configuration page.

156

Figure F.11: reForis. Screenshot of the password settings page.

157

F. reForis web interface screenshots

Figure F.12: reForis. Screenshot of the region and time settings page.

158

Figure F.13: reForis. Screenshot of the reboot device page.

159

F. reForis web interface screenshots

Figure F.14: reForis. Screenshot of the updates settings page.

160

Figure F.15: reForis. Screenshot of the packages settings page. 161

F. reForis web interface screenshots

Figure F.16: reForis. Screenshot of the ”About” information page.

162

Appendix G
Usability testing script and

quizzes

G.1 Quiz before test

• How are you :)?

• Have you ever owned a router?

– If yes - have you ever set it up by yourself?

• Do you have technical skills?

– If yes - Have you ever set up network equipment in the past?

• Have you ever participated in usability testing?

G.2 Quiz after test

• What is your overall impression of the Foris interface?

• Were the scripts clear?

• What did you like about the interface?

• What did you not like about the interface?

• Do you have any suggestions for improvement?

163

G. Usability testing script and quizzes

G.3 Script
G.3.1 Introduction
Foris web application is a configuration interface for Turris routers which
provides access to the router network settings and maintains. The Turris
routers are more powerful and advanced than a regular home router.

You have a Turris router at home, and you want to change some of its
configuration. Please follow the steps below.

1. Login to the application with password forispassword.

2. Ensure that WAN connection is configured correctly.

3. Enable the first Wi-Fi Module and set it up with the same configuration
as described in the initial configuration below.

5 GHz:
SSID: mywifi
Password: mywifipassword

4. Configure guest Wi-Fi network in the first Wi-Fi module with the fol-
lowing settings.

SSID: guestwifi
Password: guestwifipassword

5. Set Google as the DNS forwarder and ensure that DNS config is properly
set.

6. Setup your actual country and timezone.

7. Install NAS package.

8. Restart the router.

9. You are all set, thank you!

G.4 Moderator script
G.4.1 Introduction
The Foris web application is a configuration interface for Turris routers which
provides access to the router network settings and maintains. The Turris
routers are more powerful and advanced than a regular home router.
You have Turris router at home, and you want to change some configurations.

164

G.4. Moderator script

Please follow the steps below.

Is description of the product clear to the user? Answer questions.

Test starts from the login page.

1. Login to the application with password forispassword.
User enters the password into the form and clicks the login button.

2. Ensure that WAN connection is configured correctly.
User clicks on the “Network settings” dropdown menu and navigates to
the WAN settings. After, the user clicks on the “connection test” button
and waits for the results.

3. Enable the first Wi-Fi Module and set it up with the same configuration
as in the initial configuration below.

5 GHz:
SSID: mywifi
Password: mywifipassword

The user navigates to the “Wi-Fi” page. Then he clicks on the “En-
able” checkbox under “1 Module”. User fills the form using the settings
provided. Then the user clicks the “Save” button.

4. Configure guest Wi-Fi network in the first Wi-Fi module with the fol-
lowing settings.

SSID: gueswifi
Password: guestwifipassword

In the same “Wi-Fi” page and the same module. User clicks on the
“Enable guest network” checkbox. User fills the form using the settings
provided. Then the user clicks the “Save” button.

5. Set Google as DNS forwarder and ensure that DNS config is properly
set.
The user navigates to the “DNS” page. User clicks on the “Use for-
warding” checkbox. The user chooses “Google” in the appeared select
element. Then the user applies settings by clicking on the “Save” but-
ton. At the end of this step, the user clicks on the connection test button
and waits for the results.

6. Setup your actual country and timezone.
User clicks on the “Administration” dropdown menu and navigates to
the “Region and time” page. User chooses his region, country, and city

165

G. Usability testing script and quizzes

in the select element. Then the user applies settings by clicking on the
“Save” button.

7. Install NAS package.
The user navigates to “Packages” and notices an alert about automatic
updates that should be enabled to manage packages. Then the user
navigates to the “Updates” page and enables automatic updates. After
that the user returns to the “Packages” page where he finds an NAS
package and enables it. Then the user clicks the “Save” button.

8. Restart the router.
The user navigates to the “Administration” page, then scrolls down to
“Device reboot”. Then the user presses the “Reboot” button and con-
firms action in the alert. The user waits until the reboot is done.

9. You are all set, thank you!

166

Appendix H
Acronyms

API Application Programming Interface

CD Continuous Delivery

CDN Content Delivery Network

CI Continuous Integration

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IoT Internet of Things

LAN Local Area Network

M2M Machine-To-Machine

OS Operating System

RAM Random-Access Memory

regex Regular Expression

UI User Interface

URL Uniform Resource Locator

UX User Experience

167

H. Acronyms

VPN Virtual Private Network

WAN Wide Area Network

WS WebSockets

168

Appendix I
Contents of enclosed microSD

card

readme.txt........................the file with disk contents description
thesis..................the directory of LATEX source codes of the thesis
DP_Bogdan_Bodnar.pdf................... the thesis text in PDF format
src...the directory of source codes

reforis.................................the directory of source codes
docs.........the directory of the Flask application documentation
js..............the directory of the React application source codes

docs......the directory of the React application documentation
reforis_diagnostics the directory of demo plugin source code

usability_testing..........the directory with usability testing records

169

	Listings
	Introduction
	Background
	Motivation

	Analysis of similar solutions
	Analysis strategy
	Turris
	COMPAL CH7465LG (UPC)
	Summary
	Conclusion

	Analysis of the current solution
	Hardware
	Software architecture
	Plugins
	Conclusion

	Design
	Analysis of requirements
	Technologies
	Architecure
	Plugins system
	UI/UX Design
	Conclusion

	Implementation
	Development environment
	reForis project
	Backend
	Frontend
	JavaScript bundler
	Plugins system and demo plugin
	Localization
	Documentation
	Deployment

	Testing
	Backend
	Frontend
	Integration tests
	Usability testing
	Use test with functional application

	Conclusion
	Conslusion

	Bibliography
	Original Foris screenshots
	Current Foris class diagrams
	Wireframes
	Hi-fi prototype screenshots
	API endpoints
	reForis web interface screenshots
	Usability testing script and quizzes
	Quiz before test
	Quiz after test
	Script
	Moderator script

	Acronyms
	Contents of enclosed microSD card

