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Abstrakt 
 

Klesající zdroje fosilních paliv, rostoucí ceny pohonných hmot a liberalizace elektroenergetických 

systémů mění kontext, ve kterém jsou provozovány a regulovány architektury elektrické sítě. 

Obavy týkající se bezpečnosti dodávek elektřiny a spolehlivosti spolu s integrací obnovitelných 

zdrojů energie představují pro provozovatele soustavy několik nových výzev. Jednou z hlavních 

změn, která je vidět, je připojení technologie jalového napájení k architektuře elektrické sítě pro 

výrobu jalového výkonu. To nutí znovu přezkoumat způsob, jakým je plánováno a provozováno 

reaktivní napájení dnešního energetického systému. Architektury elektrické sítě jsou vybaveny 

sofistikovanými zařízeními, která jí umožňují splňovat různé požadavky na kód sítě. Patří sem 

opatření k řízení reaktivního a aktivního výkonu k zajištění robustního fungování elektrické sítě. 

Robustní provoz síťové architektury znamená příznivé přizpůsobení profilů ztrát napětí a výkonu, 

čehož lze dosáhnout pomocí reaktivního a aktivního řízení výkonu. 

Tato práce představuje technologii synchronního kondenzátoru pro usnadnění dodávky jalového 

výkonu do architektury elektrické sítě. Instalace synchronního kondenzátoru (SC) do elektrické 

sítě pomáhá v oblasti potřeb jalového výkonu, síly zkratu a následně setrvačnosti systému a 

zaručuje lepší dynamické obnovení napětí. Byla zkoumána schopnost synchronního kondenzátoru 

zajišťovat regulaci napětí a výstup jalového výkonu a cesta možnosti aktivního výkonu větrných 

turbín typu 3 pro dynamické stavové podmínky a problémy se stabilitou napětí. Tato práce přispívá 

k pochopení regulace napětí a minimalizace energetických ztrát v architektuře elektrické sítě s 

pronikáním obnovitelných zdrojů energie. Zdůrazňuje použití nových a / nebo dodatečně 

vybavených synchronních kondenzátorů pro výrobu jalového výkonu a větrných turbín typu 3 pro 

aktivní výrobu energie na architektuře radiální elektrické sítě. 

Pro přizpůsobení schopnosti výroby synchronního kondenzátoru produkci jalového výkonu. 

Optimálně byly studovány režimy architektury elektrické sítě 33 kV (režim jedna a režim dva). 

Byla vyvinuta metodika pro určení optimálního umístění synchronního kondenzátoru 

koordinovaného v navrhovaném elektrickém systému se zúčastněnými větrnými elektrárnami pro 

dodávku kompenzace jalového výkonu a vstřikování činného výkonu v místě společného vazby 

(PCC) větrnými elektrárnami. Metodika je implementována a testována na standardní architektuře 

elektrické sítě. Prezentované výsledky ukazují, že účinek adoptovaného modelu synchronního 

kondenzátoru v prostředí MATLAB/Simulink poskytuje jalový výkon, zvyšuje stabilitu napětí a 

minimalizuje energetické ztráty, zatímco větrné elektrárny poskytují aktivní podporu energie s 

danými praktickými pravidly sítě. 

 

Klíčová slova: činný výkon, jalový výkon, kompenzace jalového výkonu, synchronní 

kondenzátory, větrné elektrárny, architektura elektrické sítě, stabilita napětí, energetické ztráty. 
 



Abstract 

iv 
 

Abstract 
 

Dwindling fossil fuel resources, increasing fuel prices and the liberalization of electricity systems 

are changing the context in which electricity grid architectures are operated and regulated. 

Concerns about security of electricity supply and reliability along with the integration of renewable 

energy resources are presenting several new challenges to system operators. One of the major 

changes that is being seen is the connection of reactive power supply technology to the electricity 

grid architecture for reactive power production. This is forcing a reexamination of the way reactive 

power supply to present day power system is planned and operated. Electricity grid architectures 

are equipped with sophisticated devices that allows it to meet various grid code requirements. 

These include reactive and active power control measures to ensure robust functioning of the 

electricity grid. Robust operation of the grid architecture entails favorable voltage and power losses 

profile adjustments that can be achieved through reactive and active power controls. 

This thesis presents the synchronous condenser technology for facilitating reactive power supply 

to the electricity grid architecture. Installing the Synchronous Condenser (SC) onto the electricity 

grid assists in the area of reactive power needs, short-circuit strength and consequently system 

inertia, and guarantees better dynamic voltage recovery. The synchronous condenser capability of 

providing voltage regulation and reactive power output, and the active power possibility path of 

Type-3 wind turbines for dynamic state conditions and voltage stability issues were investigated. 
This work adds to the insight of voltage control and power losses minimization in electricity grid 

architecture with penetration of renewable energy resources. It emphasizes the usage of new and/or 

retrofitted synchronous condensers for reactive power production and Type-3 wind turbines for 

active power production on a radial electricity grid architecture. 

To accommodate the reactive power production ability of the synchronous condenser. A 33kV 

electricity grid architecture modes (Mode One and Mode Two) was optimally studied. A 

methodology was developed to determine the optimal location of the synchronous condenser 

coordinated in the proposed electricity system with participating wind plants to supply reactive 

power compensation and the injection of active power at the Point of Common Coupling (PCC) 

by the wind plants. The methodology is implemented and tested on a standard electricity grid 

architecture. Results presented demonstrates that the effect of the synchronous condenser solution 

adopted model in MATLAB/Simulink environment provides reactive power, enhances voltage 

stability and minimizes power losses, while the wind power plants provides active power support 

with given practical grid rules. 

 

Keywords: Active power, reactive power, reactive power compensation, synchronous condensers, 

wind plants, electricity grid architecture, voltage stability, power losses. 
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Chapter 1 
 

1.0 Introduction 
 

In modern electricity grid architecture with renewable energy penetration such as wind plants. 

Attention needs to be drawn to the importance of reactive power provision for the stability of the 

grid. Since electricity grid blackouts in many nations were as a result of the shortage of reactive 

power. One technology electricity utility managers and power system engineers can rely on for the 

provision of reactive power in the modern grid is the Synchronous Condenser (SC). Hence, the 

need for this research. This chapter is organized as follows: Section 1.1 provides the motivation 

for investigating reactive power compensation in modern electricity grid architecture with the 

synchronous condenser technology. General research background is given in Section 1.2. While 

the current state of reactive power provision in modern electricity grid architecture is discussed in 

Section1.3. This is followed by a statement of the considered research objectives in Section 1.4. 

Finally, an overview of the scientific contributions of this thesis is presented in Section 1.5.  

 

1.1 Motivation 
 

The motivation for this research is as follows: 

1. Traditional generators can be retrofitted to synchronous condensers for them to serve a better 

purpose of voltage stabilization.  

2. New synchronous condensers can be installed by electricity utility managers to serve same 

purpose of voltage stabilization.  

3. The possibility of using existing electricity utility assets, like generators and buildings, with 

optimized investment costs. 

4. Possibility of reusing existing power plant units at the end of their lifecycle. Instead of closing 

these units, they can be retrofitted to synchronous condensers and thus contribute to the stability 

of electricity grid architecture. 

5. Retrofitting of conventional generators to synchronous condensers allow other generators on an 

electricity transmission network to provide more active power by removing the burden of reactive 

power support at wind farms. This can raise rated plant capacity. 

6. Synchronous condensers provides smooth, step-less, and highly responsive voltage regulation 

with no switching required. 

7. Electricity grid reliability is increased due to the ease of voltage adjustment with the 

synchronous condenser technology. It is possible to avoid a series of other operations necessary to 

achieve the same effect which requires more time, more equipment, more communication devices, 

and consequently, more risk. 

8. Synchronous condensers increases flexibility of electricity grid operation in all load conditions. 

This is achieved by providing fast injection of reactive power to limit voltage drops and fast 

absorption of reactive power to limit any rise in the level of voltage. 

9. SCs increases network inertia. Thereby helping to limit network’s rate of change of frequency 

and supports low-voltage ride through requirements of electricity grid architecture. 
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10. The utilization of the synchronous condenser technology assists in avoiding constant variation 

in the taps of elevating transformers. 

11. SCs compensates for voltage drops over long transmission lines, resulting in improved 

transmission capacity and efficiency of electricity grid networks. 

12. SCs provides reactive power compensation without the introduction of significant transients, 

resonances, or harmonics to the grid. 

13. Different sizes of synchronous condensers available from various manufacturers, allow the 

optimal use of physical installation space for the equipment. 

 

1.2 Background  
 

Reactive power is the resultant power in watts of an Alternating Current (AC) circuit when the 

current waveform is out of phase with the waveform of the voltage. It is usually by 90 degrees if 

the load is purely reactive and is the result of either capacitive or inductive loads. Note here that 

only when current is in phase with voltage, that work is done, such as in resistive loads. A very 

good instance is the powering of an incandescent light bulb. In a reactive load power flows toward 

the load half the time, whereas in the other half power flows from it. This gives rise to the illusion 

that the load is not dissipating or consuming power [1]. There are three types of power present in 

loaded electricity circuits. These are true or active power, reactive power and apparent power. True 

or Active power—This is the actual amount of power in watts dissipated by an electricity grid 

circuit. Reactive power—This is the dissipated power resulting from inductive and capacitive 

loads. It is measured in volt-amperes reactive (VAR). Apparent power — This is the combination 

of reactive and true power. It is measured in volt-ampere (VA). Active, apparent and real power is 

only induced in an electricity circuit when current lags applied voltage by an angle, say Φ [1] – 

[2]. The right-angled triangle shown below in figure 1.1, illustrates the relation between active, 

reactive and apparent power. Electricity transmission lines need enough reactive power to satisfy 

the limits of power flow and to keep voltage limits. A very good demonstration of the significance 

of this electricity ancillary service is the fact that the electricity grid blackouts in many countries 

were mainly caused by the shortage of reactive power. The specific loss caused by reactive power 

flow on inductive transmission lines is approximately ten times more than the specific loss caused 

by active power flow. Furthermore, it is higher at significant load situations and not only in relative 

cases. For this reason, reactive power should not be transmitted over long distances. It should be 

generated at locations close to where it is needed [3]. Using a reliable and efficient reactive power 

compensation technology such as the synchronous condenser. 

Reactive power exists in AC grid circuits when voltage and current are not in phase, due to 

inductive or capacitive effects. These effects can be on generation, transmission, and distribution 

sides of electricity grid architecture. Considering inductors, voltage leads current, but the reverse 

is true for capacitor. Thus, the direction of power is reverse for both. As a convention, it is 

considered that capacitors produce reactive power, while inductors consume it. For voltage 

stability, reactive power generation should be equal to reactive power consumption. Reactive 

power imbalance can have adverse effects on electricity grids. Take for instance, a decrease in the 

reactive power of a load causes voltage drop. For real power, voltage drop causes load current to 

increase. This endangers grid loads owing to the possibility of causing damage to these loads. If 

voltage further drops, generators are tripped to ensure safety. Thus, making electricity grid 

architecture condition becoming worse with further voltage drop [4].  
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1.3 Current State of Reactive Power Provision in Modern 

Electricity Grid Architecture 
 

Electricity transmission lines are the main cause of reactive power mismatch. It has both inductive 

and capacitive effects. Therefore, it can create both increase and decrease in reactive power, while 

real power is being transmitted along power lines. An increase in reactive power causes voltage 

rise, while a decrease causes voltage drop along an electricity transmission line. At the distribution 

level, reactive power imbalance occurs owing to the inductive nature of most electricity 

distribution loads. Variation in demand at load side is another reason for reactive power effect on 

power lines. An increase in demand brings about increase in inductive reactive power at power 

distribution end. Resulting in additional reactive power being consumed at the transmission level. 

A decrease in demand causes an increase in capacitive reactive power at distribution end. Which 

equally results in additional reactive power to be generated at the transmission level. Thus, making 

voltage stability at stake at the distribution end too. Failure of generators and transmission lines 

can further increase reactive power demand. Thereby bring about the afore mentioned effects 

taking place again. Transmission System Operators (TSOs) and Distribution System Operators 

(DSOs) play their roles in controlling reactive power mismatch. TSO remunerates generators for 

reactive power. Besides, there may be some penalty charges for DSO or electricity consumers for 

creating additional reactive power mismatch [4].  
Electricity product end users reactive power compensation inverter-based technology is a 

technology used for compensating reactive power at the consumer end of power lines. This 

technology is efficient, flexible, scalable and reliable. Efficiency; consumers reactive power 

compensation inverter-based technology helps to compensate reactive power in a location where 

power line current flow ability tends to increase and minimize heat losses in a specified location. 

Also, it helps to compensate the right amount of reactive power, thereby avoiding over or under 

compensation of reactive power. Flexibility; this technology is flexible as it allows multiple users 

to contribute their part in solving the problem of reactive power compensation in differs ways. 

Scalability; unlike capacitor banks, inverter-based consumers reactive power compensation 

technology expands with distribution system expansion. Just as the number of electricity 

consumers increases, the number of inverter-based compensation technology in the same vein 

increases as well. Reliability; since there are many capacitors in conventional compensator in 

distribution power lines. So, the inverter-based compensation technology is more vulnerable to 

failure. Considering cybersecurity point of view, local compensation is more resilient than 

centralized compensation [5] – [9]. Figure 1.1 represents a power triangle. 

 
Fig. 1.1: Power Triangle [2]. 
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The power which is dissipated and does useful work in an electricity circuit is known as active 

power. It is measured in watts or megawatts. The active power is denoted by the capital alphabet 

P. The apparent power considering Fig. 1.1 is given by the expression [2]. 

 

S = P + JQ                                                                                                                             (1.1) 

S = √ (S2 + P2)                                                                                                                       (1.2) 

 

Where, S – apparent power 

Q – reactive power 

P – Active power 

 

 

Therefore: 

P = VIcosϕ                                                                                                                             (1.3) 

   = I2R Watts                          (1.4) 

 

The reactive power moves between source and load. This power is not doing any useful work on 

the load. Reactive power is measured in VAR. It is stored in a circuit and discharged by induction 

motor, transformer or solenoids [2]. 

 

Similarly, from Fig. 1.1; 

Q = VIsinϕ                                                                                                                              (1.5) 

    = I2 * VAR                       (1.6) 

 

Reactive power is equally called Phantom Power. Since it is not apparent wherever it goes or flows. 

It is common knowledge that reactive loads such as capacitors and inductors do not actually 

dissipate power. Reactive power in a sense is not used to power loads. But it is utilized for 

measuring the voltage and current around loads. Indicating the fact that reactive power drops 

voltage and draws current. Reactive power is dissipated through voltage drop and current drawn 

in the form of heat or waste energy. This is not done as actual work; hence power engineers have 

sought ways to lessen or rather minimize reactive power. Due to the presence of reactive power, 

conductors and generators are rated and sized accordingly. This enable generators and conductors 

to carry the total current in a network. Which is including not just the current that does the actual 

work, but also the wasted current. Active power does the useful work in a grid network. And the 

reactive power merely flows in a network without doing any useful work. Capacitors are 

considered to generate reactive power, whereas inductors consume it. So, when both are placed in 

parallel connection, the current flowing through them cancels out. This is essential when 

controlling the power factor of an electricity circuit and has become a fundamental mechanism in 

the transmission of electricity. Adding both capacitors and inductors in an electricity grid 

architecture helps partially to compensate for the reactive power consumed by the network loads 

[1] – [2]. 

Reactive power is a basic requirement for maintaining the voltage stability of an electricity grid 

architecture. As a well-established ancillary service, reactive power support and voltage control 

plays a vital role in the operation of electricity grids [10]. Solving reactive power flow problem is 

fundamental to the reduction of electricity transmission costs and is of increasing importance in 

grid operation [11]. The voltage level and economic operation of electricity grids has a close 
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relationship with the reactive power levels of a grid architecture. Reactive power compensation in 

several nodes of electricity grid does not only reduce the active and reactive power losses. But this 

equally helps to maintain voltage levels and improve the stability of grids, in order to ensure safe 

and economic operation of electricity grid architecture. Implying that the choice of nodes for 

reactive power compensation is important for stability and economic operation of electricity grids 

[12]. The modern electricity grid architecture is facing significant changes. Conventional power 

plants are being shut down as they are becoming more and more unprofitable due to the continuous 

growing number of renewable electricity resources [13]. It is expected that electricity supply 

schemes will change fundamentally. Owing to environmental reasons and shortage of conventional 

electricity resources, electricity supply will be increasingly satisfied by renewables [14].  

Penetration of renewables such as photovoltaic (PV) and wind power schemes is increasing for 

reducing carbon dioxide (CO2) emission and energy independency [15]. With the rapid 

advancement of wind power plants, its negative influence of its integration on the electricity grid 

architecture is getting much serious. Large scale wind plant penetration inevitably consumes a 

huge amount of reactive power in grid networks. Thereby bringing about lack of reactive power 

and voltage drops issues. Furthermore, the inherent characteristic of wind power such as volatility 

and intermittent nature requires continuous and frequent regulation of reactive power sources. 

Thus, it is sufficiently important to optimally manage the reactive power sources in wind farms 

[16]. As one of the most feasible renewable resource, wind power will be developed more widely 

owing to its sustained developing strategy. Thus, its impact on electricity grid architecture, 

operation characteristic and control method in different functioning modes needs to be paid more 

attention. Wind generating plants can be divided into two types, namely, fixed speed and variable 

speed. Fixed speed wind generators have been used in earlier wind farms. Wind plants inability to 

regulate voltage makes it to absorb reactive power from the grid, but it injects active power into 

the grid. With global wind power installations increasing. Electricity grid voltage issues will 

become more serious. The Doubly Fed Induction Generator (DFIG) has become the mainstream 

in many wind farms. DFIG can realize variable-speed, constant-frequency control and decoupling 

of active and reactive power with its stator interconnected onto the electricity grid and the AC 

excitation controlled by the rotor side converter. DFIG can take part in voltage control by 

absorbing or generating reactive power according to grid operation mode and control strategy [17]. 

However, DFIG is now a more mature technology. The most typical control strategy is to ensure 

that the fans operates in a constant power factor mode. But in such situation, the reactive power 

exchange between the doubly fed wind turbine and the grid is insufficient, which is far from 

satisfying grid-connection requirements. The variable-speed constant-frequency wind generator 

operates in constant power factor mode. Hence, it cannot make full use of its reactive power 

regulating ability. So, for a large-scale wind farm with dynamic reactive power regulating ability. 

Compensating reactive power efficiently according to grid voltage fluctuation is required [17] – 

[18]. Hence, the necessity for the utilization of the synchronous condenser technology for reactive 

power compensation in modern grid architecture. 

In the same vein, operation of large-scale grid-connected solar photovoltaic (PV) plants equally 

brings about voltage fluctuation. This affects the stable operation of electricity grids. To reduce 

this adverse effect of grid network loss brought about by PV plants, a novel coordination control 

strategy of reactive power control of PV plant is equally required. PV renewable plants can provide 

active power, thereby bringing about security of electricity grid architectures. Considering the fast 

advancement of centralized large-scale PV plants, reactive power control performance directly 

affects voltage security stability of grids. Hence, reactive power and voltage control are essential 
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ingredient of electricity grid architectures. This should be given much attention as regards to 

research in electric power engineering [19]. A Synchronous Condenser (SC) can be installed in the 

low voltage side of PV plants to improve the dynamic reactive power compensation performance 

of electricity grid architecture. 

The procurement and remuneration of Ancillary Service (AS) plays an important role in grid 

operation. AS is essential for the proper operation of electricity grid architecture. As part of AS 

policies, it is desirable to find a mechanism to motivate electricity utility companies to contribute 

to voltage control. Which ensures adequate supply of electricity product to consumers. Electricity 

grid voltage support as ancillary service, further buttress the need to give reactive power dispatch 

and assess to reactive power generation its due attention [20]. In the past, ancillary services such 

as reactive power compensation have been provided mostly by conventional power plants 

connected to the electricity grid. Owing to the changing conditions and composition of today’s 

electricity grid architecture. Innovative ways of reactive power provision are being investigated. 

One of such innovative ways to deal with reactive power provision in modern electricity grid 

architecture is the use of the synchronous condenser technology. 

 

1.4 Research Objectives  
 

The overall objective of the work presented in this thesis is the utilization of the synchronous 

condenser technology in the control of reactive power for wind integrated electricity grid 

architecture, which makes it possible for grid operators to manage voltage stability and power 

losses. To attain these goals, this research has been conducted by both theoretical analysis and 

simulations in MATLAB/Simulink environment. 

 

1.5 Overview of Contributions  
 

The contributions of this thesis are devoted to voltage control and reduction of power losses using 

the synchronous condenser technology through a developed MATLAB electricity grid 

architectures simulation toolbox. Papers addressing these issues have been published in journals 

and presented in conferences. Here, a brief overview of each paper is given which summaries the 

contribution. Thereafter, details of each paper are presented in the contributions section of this 

thesis. 

 

PAPER ONE 

 

Title: Utilizing the Synchronous Condenser for Robust Functioning of Wind Farm Implanted 

Electric Grid 

Authors: Famous Oghomwen Igbinovia, Ghaeth Fandi, Juraj Kubica, Zdenek Muller, Frantisek 

Janicek, and Josef Tlusty 

Published in: Journal of Electrical Engineering, The Journal of Slovak University of Technology, 

Volume 70: Issue 2, 2019, pp. 152 – 158.  

 

Paper one presents the synchronous condenser capability of providing voltage regulation and 

reactive power output, and the active power possibility path of a Type-3 wind machine for dynamic 
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state conditions and voltage stability issues carried out in MATLAB/Simulink environment. The 

simulation results prove the efficiency of the proposed methodology. 

 

PAPER TWO 

 

Title: Modeling and Simulation of the Anticipated Effects of the Synchronous Condenser on an 

Electric-Power Network with Participating Wind Plants 

Authors: Famous O. Igbinovia, Ghaeth Fandi, Ibrahim Ahmad, Zdenek Muller and Josef Tlusty 

Published in: Sustainability, MDPI, Open Access Journal, 2018, Vol. 10(12), 4834. 

 

Paper two summarizes the practical potential of the synchronous condenser coordinated in an 

electric-power network with participating wind plants to supply reactive power compensation and 

injection of active power at their point of common coupling; it provides a systematic assessment 

method for simulating and analyzing the anticipated effects of the synchronous condenser on a 

power network with participating wind plants. A 33-kV power line has been used as a case study. 

The results indicate that the effect of the adopted synchronous condenser solution model in the 

MATLAB/Simulink environment provides reactive power, enhances voltage stability, and 

minimizes power losses, while the wind power plants provide active power support with given 

practical grid rules. 

 

PAPER THREE 

 

Title: Reputation of the Synchronous Condenser Technology in Modern Power Grid 

Authors: Famous O. Igbinovia, Ghaeth Fandi, Zdenek Müller, Josef Tlusty 

Published in: Proceedings of the 11th International Conference on Power System Technology 

(POWERCON), Guangzhou, China, 6–8 November 2018, pp. 2108 - 2115. Publisher: IEEE. 

 

Paper three presents the synchronous condenser technology. It discusses the experience and 

lessons learnt from the use of the synchronous condenser in real projects. It also provides an 

outlook on the development of the use of the technology in modern power grid using two 

simulation study scenarios.  These developments include Scenario One:  utilizing only the 

synchronous condenser for voltage regulation on a power grid.  And Scenario Two:  Installing the 

synchronous condensers with Type-3 wind farm for voltage support on an electricity network, such 

contextualization is towards voltage stability in modern power grids.  

 

PAPER FOUR 

 

Title: Progressive Usage of the Synchronous Machine in Electrical Power Systems 

Authors: Famous O. Igbinovia, Ghaeth Fandi, Zdenek Muller, Josef Tlusty 

Published in: Indian Journal of Engineering, April 2018, Vol. 15, pp. 117-126. 

 

Paper four presents a brief assessment of the synchronous machine and the motivation for the 

research work. It discusses the importance of the synchronous machine in electrical power systems, 

and the progressive trend in the use of the synchronous machine in electric-power networks. It 

stresses the need for the use of the synchronous machine for reactive power compensation 

purposes, with a vivid description given with MATLAB/Simulink simulation model. When the 
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synchronous condenser is connected to the power system model at the terminating end of the 

network and switched ON, the medium voltage (MV) electrical power network simulation model 

effectively allows the control of reactive power, which improves voltage stability and power flow 

control of the proposed network. 

 

PAPER FIVE 

 

Title: Cost Implication and Reactive Power Generating Potential of the Synchronous Condenser 

Authors: Famous O. Igbinovia, Ghaeth Fandi, Zdenek Müller, Jan Švec, Josef Tlusty, 

Published in: Proceedings of the 2nd International Conference on Intelligent Green Building and 

Smart Grid (IGBSG 2016), 27-29 June 2016, pp. 1 – 6. Prague, Czech Republic, Publisher: IEEE. 

 

Paper five x-rays the cost implication of the synchronous condenser in today's challenging 

environment. A vivid description of the reactive power generating potential of the synchronous 

condenser is shown in MATLAB/Simulink environment simulation of a medium voltage (MV) 

power system network. It is observed that the synchronous condenser is cost-effective as compared 

to other reactive power generating equipment's and sources. Furthermore, MATLAB/Simulink 

simulation results of the MV electric-power network shows an effective scheme for reactive power 

generation. 

 

PAPER SIX 

 

Title: Optimal Location of the Synchronous Condenser in Electric-Power System Networks 

Authors: Famous O. Igbinovia, Ghaeth Fandi, Zdeněk Müller, Jan Švec, Josef Tlustý 

Published in:17th International Scientific Conference on Electric Power Engineering (EPE), 16-

18 May 2016, Prague, Czech Republic, pp. 1 – 6. Publisher: IEEE. 

 

Paper six focuses on the use of the synchronous condenser device for voltage stability and power 

flow control on a three-phase 33 kV Medium Voltage (MV) electric-power system network. 

MATLAB/Simulink is used for the simulation of the proposed system model. To test the validity 

of the system, measured and calculated power factor values were obtained. Two scenarios were 

studied; Firstly, is the scenario with the synchronous condenser located at the terminal end of the 

33 kV MV network (position 1). And secondly, is the scenario with the synchronous condenser 

placed at the beginning of the 33 kV MV power Line (position 2). Simulation results obtained 

from the study are compared in order to determine the most appropriate location for situating the 

synchronous condenser device. It is observed that the locations of the synchronous condenser 

equipment have different impacts on the electric-power system network. However, the proposed 

study of the simulation model base on the location of the synchronous condenser at the terminal 

end of the 33 kV MV electric-power system network (position 1) demonstrate a more effective 

and suitable scheme of the electric-power network concerning issues of voltage stability and power 

flow control. 

 

PAPER SEVEN 

 

Title: Comparative Review of Reactive Power Compensation Technologies 

Authors: Famous. O. Igbinovia, Ghaeth Fandi, Jan Švec, Zdenek Müller, Josef Tlusty 
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Published in: IEEE16th International Scientific Conference on Electric Power Engineering (EPE), 
20-22 May 2015, Kouty nad Desnou, Czech Republic, pp. 2 – 7. Publisher: IEEE. 

 

Paper seven made a comparative review of reactive power compensation technologies; the devices 

reviewed include Synchronous Condenser, Static Var Compensator (SVC) and Static Synchronous 

Compensator (STATCOM). These technologies were defined, critically examined and compared, 

the most promising technology was recommended for the realization of an effective, efficient, 

sustainable, qualitative and reliable electrical power network. 
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Chapter 2 

 

2.0 General Literature Review: Importance of 

Reactive Power and State of the Art Reactive 

Power Compensation Equipment’s in Modern 

Electricity Grid Architecture 
 

In deregulated electricity business environment, financial and market forces demand a more 

optimal and profitable operation of electricity grid architecture with respect to the generation, 

transmission, and distribution of electricity product. Therefore, electricity utility authorities have 

found solutions in the form of reactive power compensation devices to enhance grid stability and 

improve the quality of electricity product supply. Electrical practices for the entire electricity 

industry are tremendously changing and these progressions mark an evolution of new concepts 

and strategies in the future. Particularly concerning the planning and operation of modern 

electricity grid architecture. The detrimental effects such as aging, hazardous atmospheric changes 

associated with conventional electricity sources has made renewable energy generation to take a 

lead in future electricity generation methodology. However, the integration of renewables has 

created many power quality problems such as voltage harmonics, voltage sags, voltage swells, 

voltage imbalance, current harmonics, Reactive Power Compensation (RPC), current imbalance 

and circulation of neutral currents, impulse transients, and interruptions. Among these, reactive 

power compensation is considered as a major concern in electricity grid architectures. The 

electricity grid operates on alternating current and most of the loads used in our daily life demand 

reactive power. Thus, reactive power (VAR) compensation is characterized as the administration 

of reactive power to enhance the performance of an alternating current grid architecture. The issue 

of reactive power compensation is seen from two directions: That is load and voltage support. The 

aim is to achieve an improved power factor and real power balance from the load point of view. 

While voltage support is primarily necessary to reduce voltage fluctuations at given terminals of 

power lines. In both situations, the reactive power that flows through power lines should be 

effectively controlled and compensated [21] – [33]. 

 

2.1 Importance of Reactive Power Compensation in Modern 

Electricity Grid Architecture  
 

Importance of reactive power in electricity grid architecture is increasing with growing demand 

for electricity product by domestic and industrial electricity consumers. The stability and reliability 

of an electrical power system depends on reactive power management. Reactive power is required 

to supply electricity in a more efficient, reliable and cost-effective way. Effective delivering of 

electricity product requires the utilization of technologies like Flexible AC Transmission System 
(FACTS) devices, SCs and so on. This is to maintain voltage stability, high power factor and 
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minimize power losses. Reactive power plays a crucial role in AC electricity grid architecture. 

Alternating current has alternating voltage characteristics that makes it beneficial for use in 

electricity grid architecture. In AC network, energy storage elements like inductance and 

capacitance may result in periodic reversals of the direction of energy flow. This direction of 

energy flow produces active power, that is the portion of AC network that is averaged over a 

complete cycle of an AC waveform. Reactive Power is produced due to stored energy and returns 

to the source of generation and not to the load in each cycle. Despite the non-usefulness of reactive 

power in transferring energy to load in electricity grid architecture. Voltage control is dependent 

on it, in order to drive adequate active power. Alternating current electricity grid architectures 

produces and consumes two types of power; active and reactive power. Real power or active power 

is the true power given to electrical load. It is used to accomplish useful work like lighting lamps, 

powering rotating motors, etc. On the other hand, reactive power is regarded as imaginary power 

or apparent power. It does not do any useful work but simply moves back and forth in an electricity 

grid. Reactive power is a by-product of alternating current electricity systems. It is produced from 

inductive and capacitive loads. It exists when there is phase displacement between voltage and 

current, and it is measured in units of volt-ampere reactive (VAR). Reactive power is both a 

problem and solution to electricity grid architectures for several reasons. It plays an important role 

in electricity systems, owing to its various functions such as satisfying reactive power requirement, 

improving voltage profiles, decreasing electricity grid power loss, providing enough reserves to 

ensure electricity grid security in emergencies and so on. Reactive power importance as it relates 

to modern electricity grid architecture is further discussed below [34] – [36]. 

 

Reactive power helps in voltage control: Electricity grid architecture equipment’s are designed to 

operate within ±5% of nominal voltages. That is within specified limits of rated voltage at 

electricity consumer terminals. Fluctuations in voltage levels lead to malfunctioning of appliances. 

High voltage damages the insulation of windings. Whereas low voltage causes poor performance 

of equipment’s like low illumination of electric lightening bulbs, overheating of induction motors, 

etc. Voltage variations are mainly caused due to variation in load on electricity grid generation 

sources. If the load on an electricity grid source increases, the voltage drop in the grid components 

increases too. Hence, the voltage at the consumer terminals decreases, and vice-versa. These 

voltage changes on the electricity supply grid is undesirable as it aids in the deviation of the actual 

performance of equipment’s at consumer end such as lamps, motors and other equipment’s 

sensitive to voltage variations. An electricity grid architecture, therefore, should be designed to 

maintain voltage variations by providing voltage-control equipment at suitable locations on an 

electricity grid. The most common method of maintaining voltage profile in electricity grids is 

through the injection and absorption of reactive power. In general, an increase in reactive power 

causes grid voltage to rise while a decrease in reactive power causes grid voltage to fall [34], [36]. 

In electricity grid architectures, voltage control equipment’s are placed in two or more places. This 

assists in avoiding long distance transmission of reactive power and reduces excessive reactive 

power losses in grid networks. As there will be different voltage drops in different sections of 

electricity grid systems. Also, load characteristics will be different at various circuits of electricity 

grid. Most commonly voltage control equipment’s are placed at power generating stations, 

transmission substations and feeders. These equipment’s are employed for controlling the 

receiving-end voltage. In case of highly loaded electricity grid, the reactive power demand is more 

than that supplied. Hence, more current is drawn from the supply grid. This leads the receiving-

end voltage to fall drastically. If the voltage drop further increases, it causes tripping of the 
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generating units, equipment failures and overheating of motors. Under such situation, automatic 

operating mechanism or relays activates reactive power equipment’s, such that reactive power is 

increased. Generator excitation terminal voltage is usually increased to provide more alternating 

current to alternators, this brings back an electricity grid voltage to rated value. This can equally 

be achieved with series reactors and series capacitors. In case of light loaded electricity grid 

scheme, power demand is less than the supply of reactive power. The receiving-end voltage rises 

to a greater value. This causes insulation damage to machines, lower power factor and automatic 

tripping of equipment’s [34], [36]. 

 

Reactive power is used to reduce blackout in electricity grid architectures: Inadequate reactive 

power in electricity grid architectures has been a major reason for power outages in the globe. 

Insufficient quantity of reactive power on an electricity grid architecture causes voltage collapse. 

This ultimately leads to the shutdown of generating stations and equipment’s. Several electricity 

blackouts so far experienced is due to insufficient reactive power on the electrical power system. 

This is on a higher scale since demand for apparent power is unusually high due to long distance 

transmission of electricity product. This ultimately leads to shut down of equipment’s and 

generation units due to low voltages. So, to ensure proper working of the electricity grid 

architecture, enough reactive power must be present in it [34], [36]. 

 

Electricity grid architectures need to satisfy reactive power demand: Some loads such as 

transformers and HVDC converters need reactive power for their proper functioning. When the 

loads have large reactive power demand, voltage drop will take place. As voltage drops, more 

current will be drawn from the electricity supply source to maintain adequate power supply to 

consumers. This causes power lines to consume more reactive power and hence voltage drop 

further. Thereby leading to voltage collapse if voltage drops too low. Voltage collapse causes the 

tripping of generators, instability of electricity grid and tripping of equipment’s connected to a grid 

network. This voltage collapse is as a result of the grid network unable to supply reactive power 

demand of load which is not being met due to shortage of reactive power generation and 

transmission. In order to overcome this, reactive power sources like series capacitors are connected 

to the loads locally where reactive power is required by the loads. The synchronous condenser 

technology can be utilized for same purpose. However, utility companies charge consumers as a 

penalty for reactive power demand if the loads draw excessive reactive power over allowable 

reactive power demand [34], [36]. 

 

Machines/Equipment’s requires reactive power to produce magnetic flux for proper 

functioning: Most inductive loads such as motors, transformers, ballasts and induction heating 

equipment’s require reactive power in order to produce magnetic field. In every electrical machine, 

reactive power is consumed for creating and maintaining magnetic flux. However, this leads to 

lower power factor. In order to achieve a higher power factor, capacitors are generally connected 

across these devices to supply reactive power. Transformers, motors, generators and other 

electrical devices require reactive power to produce magnetic flux. This is so, since generation of 

magnetic flux is necessary for these devices to do useful work. Reactive power helps to create 

magnetic field in motor, but it leads to a decrease in the power factor. Therefore, capacitors are 

placed to compensate inductive reactive power by supplying capacitive reactive power [34], [36]. 
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2.2 Reactive Power Compensation Equipment’s in Modern 

Electricity Grid Architecture 
 

Existing research work suggests the application of different compensation devices as a solution to 

reactive power compensation. Usage of capacitor banks, application of TSC and TCR devices of 

classic technology mitigates issues of power quality as it relates to reactive power compensation. 

Power electronics based Flexible Alternating Current Transmission Systems (FACTS) devices 

[Conventional thyristor base FACTS devices--- Static Var Compensator/Shunt Type 

Compensator, Thyristor Controlled Series Capacitor (TCSC), and Thyristor Switched Series 

Capacitor (TSSC); Converter based FACTS devices--- Static Synchronous Shunt Compensator 

(STATCOM), Static Synchronous Series Compensator (SSSC), and Unified Power Flow 

Controllers (UPFC)], have been developed and seemingly provide a powerful solution to reactive 

power compensation. Different techniques for controlling voltage in electricity transmission lines 

are including of: excitation control, tap-changing transformers, shunt capacitors, series capacitors, 

synchronous condensers, and boosters. Each method has its own advantages and disadvantages. 

Depending on suitability, availability and cost, these methods are employed for controlling the 

receiving-end voltage electricity grid architectures. Basically, there are two types of reactive power 

sources namely dynamic and static reactive power sources. Dynamic reactive power sources 

include transmission equipment’s and devices, which can respond to reactive power changes by 

quickly injecting or providing enough reactive power into the electricity grid. These equipment’s 

are of high cost. These include; Synchronous generators - Depending on the excitation voltage, 

active and reactive power generated is varied in synchronous machines. Automatic Voltage 

Regulators (AVRs) are used to control the reactive power over an operating range in these 

machines. Synchronous condensers - These are types of small generators, used to produce the 

reactive power without producing real power. Solid state devices - These include power electronic 

converters and devices such as FACTS devices [21] – [36]. 

Static reactive power sources are low cost devices. Their response to reactive power variation is 

somewhat less than the dynamic reactive power devices. These equipment’s are including of: 
Capacitive and inductive compensators - These consist of some shunt capacitors and inductors 

connected to the system to adjust the system voltages. Capacitor generates apparent power whereas 

inductor absorbs reactive power. Underground cables and overhead lines - Current flowing through 

cables and overhead lines produces net magnetic flux which generates reactive power. A lightly 

loaded line acts as reactive power generator while heavily loaded line acts as absorber of reactive 

power. Photo Voltaic (PV) systems - These are used for active power injection as well as harmonic 

and reactive power compensation in electricity grid architectures [22] – [25].  

At the distribution level, minor variations in voltage are dealt with using VOLT/VAR control, that 

is Distribution System Voltage Control. These minor voltage changes during daily operations may 

cause both under and over voltage violations. On Load Tap Changers (OLTCs) and capacitor banks 

are technologies usually used for dealing with reactive power compensation at the electricity 

distribution level. The controller manages the taps of both and checks for voltage limits at nodes. 

The reactive power provided here is not at the expense of real power, and the only capital cost is 

the installation of controllers, capacitors, and OLTC. At the generation level, the primary voltage 

control is provided by Automatic Voltage Regulator (AVR). A controller regulates the terminal 

voltage of synchronous generator. Even so, Power System Stabilizer (PSS) is equally used for 

further improving stability. These controls are enough for reactive power and voltage control at 
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the generating end electricity grid architectures. Therefore, the main stability issue arises at the 

electricity transmission level. Thus, requiring reactive power compensation techniques. The 

conventional method is the use of synchronous generators at generation side for reactive power 

compensation resulting from reactive power imbalance at transmission level. Conventional power 

plants have synchronous generators to supply/absorb reactive power. Synchronous generator can 

produce reactive power in an over-excitation state. It can as well consume reactive power in an 

under-excitation state. All these are at the expense of real power [4]. 

Diverse sinks of reactive power do exist. Reactive power generated by generators and other sources 

is absorbed by loads, which are including of; Induction motor such as Pumps and Fans, 
Transformers, Under excited synchronous machines, and Heavily loaded electricity transmission 

lines. Transformers--- In order to produce magnetic field, transformers need reactive power, 

therefore it absorbs reactive power. The reactive power consumption of a transformer depends on 

the rating and current loading. Loads--- There are many reactive power consuming loads that have 

great impact on bus or power system voltage and stability. Some of these loads include induction 

motors, induction generators, arc furnaces, discharged lighting, constant loads such as induction 

heating, space heating, water heating, and air conditioning. Electricity Transmission Lines and 

Underground Cables--- Both transmission lines and cables absorb and generate reactive power. A 

heavily loaded electricity transmission line consumes reactive power. Thus, decreasing the voltage 

of the line whilst a lightly loaded electricity transmission line generates reactive power. Hence, 

increasing the voltage of the line. Solid State Converters--- There are several solid-state converters 

in-use in electricity grid operation, an example is the HVDC converters. These converters always 

consume reactive power when they are in operation. For this reason, most of the converters use 

reactive power compensation devices to control reactive power requirement of the converters. 

These equipment’s do experience losses; therefore, compensation devices are necessary to be 

placed at these loads [34], [36]. Some reactive power compensation equipment’s are discussed in 

detail in this chapter. 

 

2.2.1 Capacitor Banks 
 

A Capacitor Bank is a group of several capacitors of the same rating that are connected in series 

or parallel with each other to store electrical energy. The resulting bank is then used to counteract 

or correct a power factor lag or phase shift in an alternating current power supply. They can also 

be used in a direct current power supply scheme to increase the ripple current capacity of the power 

supply or to increase the overall amount of stored energy [37]. Connecting caps usually in parallel 

or unusually in series banks, still results in a capacitor. It is just one capacitor comprising of many 

caps. So, the functionality remains the same. But in the case of parallel connection, the capacitance 

increases. This is used to smoothen the output of huge rectified direct current supply. Most 

commonly utilized for power factor correction. For best efficiency, current and voltage must be in 

phase. In alternating circuits, this is only the case in purely resistive circuits. Inductance causes 

current to lag voltage. Capacitance causes current to lead voltage. In both cases, the greater the lag 

or lead angle, the greater the power losses. Realistically, most domestic, commercial and industrial 

loads are overall inductive, take for example transformers, motors, and generators. Inductance and 

capacitance have opposite effect. Capacitance causes current to lead voltage, while inductance 

causes current to lag voltage. The capacitive effect of capacitors is used to offset the inductance of 

combined inductive loads. This reduces voltage/current angle, thereby decreasing power losses 

[38]. In large electricity distribution systems such as are found in factories and other industrial 
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settings, there are sometimes lots of motors and transformers. Both types of devices use magnetic 

fields and have inductive reactance. Inductive reactance as well as capacitive reactance both causes 

electricity system power factor to shift away from the desirable state of unity or 1. What this means 

is that there is power being consumed by the system. But this power is not useful, and it is not 

doing work. This power is called apparent power. The plant, factory, or whatever usually still must 

pay for this power. So, it is literally throwing money away. Capacitor banks are used to correct 

inductive reactance, by adding capacitive reactance to the electricity grid architecture. This helps 

to get grids network power factor closer to unity. A unity power factor means that a plant is only 

paying for real power, or power doing useful work [39]. A capacitor represents energy stored in 

the electric field of any dielectric material. This energy is termed reactive energy and is required 

to support the maintenance of electromagnetic fields for the transmission of power through and 

throughout an electricity grid architecture via the propagation of power stored within 

electromagnetic fields. Without enough capacitive reactance or reactive power, grid voltage may 

collapse. Capacitors can be used for power factor correction and power transmission improvement. 

It does this by making reactive energy stored within dielectric material available to load in an 

electricity grid architecture [40]. 

Inductors, which are present in motors and transformers draw power from the electricity networks. 

But after a little while they give it back to the network as reactive power. This power is not 

consumed, but it must travel all the way from the generation plant to end users like industries, and 

then the way back. Although this power is not consumed, electricity supplier charges for it since 

electricity grid networks has been designed to handle it. This is in addition to active power, which 

is consumed by electricity end users. When a capacitor is put near an inductor, reactive power is 

exchanged between the inductor and the capacitor. Energy is passed from the capacitor to the 

inductor, then from the inductor to the capacitor and so on. By this way, reactive power does not 

have to be supplied all the way from the electricity generation plant [41]. Heavy loads are inductive 

in nature. Implying that current lags voltage, power factor is therefore less. This condition makes 

power losses to increase. Warranting the reduction of the inductive nature of loads. Which can be 

achieved with capacitor banks. These capacitors just cancel the effect of increases in inductance 

and power factor. Thus, power losses are reduced [42].  
In electricity grid architecture, most appliances used have inductive components. Therefore, they 

draw lagging reactive power from the grid. To balance or cancel out this effect, capacitors are 

connected in parallel with power system supply to draw leading reactive power. Leading reactive 

power is in the opposite direction of lagging reactive power. This methodology of connecting 

capacitors in parallel is to allow capacitance bank to maintain a voltage rating that is same or a 

little higher than system voltage [35]. The power consumed in a grid network is a combination of 

two types of powers, Active power (P) and Reactive power (Q). Take for instance, when running 

an electrical fan both active as well as reactive power is needed. The active power is responsible 

for the rotation of the fan and the reactive power is responsible for the magnetization of the field. 

But there are sometimes situations, when load consumes more reactive power than the desired 

value. Here, the reactive power demand increases beyond the desired value. There is a chance of 

voltage drop at the load end of the grid network. The generating side of the grid, at this instance 

cannot supply much amount of reactive power. If the voltage drops below a certain specified level, 

then there is chance of electric power failure. leading to electricity black out. To prevent issues 

like this, extra reactive power is supplied to loads with the help of capacitor bank. This VAR 

compensation technique helps to reduce the load on the generating station. The main purpose of  
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providing capacitor bank in case of electricity grid architecture is to supply reactive power to the 

power system. Capacitor banks are installed at the receiver end of grid networks [43]. 

Capacitor bank is used along with electricity transmission line system. It can supply reactive power 

mainly required by generators used in electricity power plants [44]. It can be star or delta 

connected. Delta-connected capacitor banks are generally used only in Medium Voltage (MV) 

distribution electricity systems and in Low Voltage (LV) installations. Capacitor banks may have 

built-in discharge resistors to dissipate stored energy to a safe level within a few seconds after 

power is removed. Capacitor banks are stored with the terminals shorted, as protection from 

potentially dangerous voltages due to dielectric absorption. High Voltage (HV) Capacitor banks 

are installed outdoors, surrounded by a fence, and LV Capacitor banks are installed indoors, in 

metallic enclosures such as switchboards. In MV installations Capacitor banks may be installed 

either outdoors, surrounded by a fence or in the pole of a MV overhead line, or indoors in metallic 

enclosures like switchgears. The fence has a lock with a delayed opening to assure the time 

requested for the complete discharge of the capacitors [45]. A shunt Capacitor bank or simply 

Capacitor banks is a set of capacitor units, arranged in parallel/series association within a steel 

enclosure. Series capacitor compensation is generally applied for electricity transmission lines to 

generate reactive power when it is most needed while shunt capacitors are installed at substations 

in load areas to generate reactive power and for keeping voltage within limits [36], [45]. In order 

to properly compensate reactive power changes that occur in an electricity grid system, shunt 

capacitor may need to be switched on or switched off at load maximum or minimum. This 

switching is apparently important to the success of this methodology, since load will always vary. 

Different conventional methods can be used to control switched capacitors, such as time, voltage 

and reactive power [35]. Capacitor banks for both HV and LV power systems operations are shown 

in Fig. 2.1 and 2.2 respectively. 

 

Combination of switched capacitors is the less expensive amongst reactive power compensation 

methods, and there is no loss of real power due to reactive power. Although, reactive power varies 

with voltage in a square relation, according to capacitor equation. Thus, this methodology is only 

suited for LVs and MVs applications. Considering HV applications and applications where voltage 

is a critical phenomenon, such as the tripping of voltage relays in power system protection domain, 

switched capacitor is not a proper option [4]. Capacitor banks must be implemented in proper 

location in an electricity grid architecture. But the drawback of this technique appears when the 

capacitors turns on and off, which may cause disturbance in an electricity distribution network. A 

fixed Capacitor bank may often lead to either over or under compensation. Other issues associated 

with Capacitor bank are the generation of high frequency harmonic and the Resistor, Inductor, and 

Capacitor (RLC) circuit created by Capacitor bank may lead to resonance at some frequencies [5], 

[28]. 
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Fig. 2.1: High Voltage Capacitor bank [45]. 

 

 

 
Fig. 2.2: Low Voltage Capacitor bank [45]. 

 

2.2.1.1 Capacitor Unit 
 

A capacitor is equally known as a condenser. It is an electrical element with two electrical 

conductors separated by an insulator material, in this case a dielectric. The most common used 

dielectrics are Ceramics; Plastic films; Oxide layer on metal such as Aluminum; Tantalum; and 

Niobium; Mica, glass, paper, air and other similar natural materials; and Vacuum. The electric 

parameter that defines a capacitor is the capacitance (C). The unit is the farad (F). Capacitors may 

retain a charge long after power is removed from a circuit; this charge can cause dangerous or even 

potentially fatal shocks or damage connected equipment’s [45]. A simplified scheme of a capacitor 

is shown in figure 2.3. 
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. 

 

Fig. 2.3: A simplified scheme of a capacitor [45]. 

 

The capacitor unit is the building block of a series capacitor bank. The capacitor unit is made up 

of individual capacitor elements, arranged in parallel-connected or series-connected groups, within 

a stainless-steel enclosure as shown in Fig. 2.4. The internal discharge device is a resistor that 

reduces the unit residual voltage to 50 V or less in 5 minutes. Capacitor units are available in a 

variety of voltage ratings from 240 V to 24 940 V, and in sizes of 2.5 kvar to about 1000 kvar. 

Capacitors are designed to withstand higher currents such as those experienced during emergency 

loadings (which are typically 30 minutes rating), system swings, and during faults as specified by 

the purchaser. Capacitor bank rating are designed to operate continuously according to IEEE Std 

1726™-2013.4. Capacitor units are designed to withstand specified continuous rated current, 

emergency loading, swing current, and power system faults, within a maximum allowable 

capacitor unbalance condition as determined by the control and protection system [46] – [48]. 

 

 
Fig. 2.4: The Capacitor Unit [46]. 
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The capacitance of a capacitor bank is accomplished by connecting capacitor units in series and 

parallel to provide a required capacitive reactance with a continuous current rating. Three different 

types of fusing arrangements are applied on series capacitor banks. These are Externally fused 

capacitor bank, Internally fused capacitor bank, and Fuse-less capacitor bank [46] – [48]. 

The externally fused capacitors involve the connection of groups of fused capacitors in parallel, as 

necessary to meet the current rating of the bank. These groups are connected in series to realize 

the voltage and impedance ratings of the bank. Dual-element fuses consisting of two fuses in series 

are typically applied to each capacitor unit. One of these fuses is a current-limiting type, it is used 

owing to the high stored energy in the parallel capacitors group. The second fuse is an expulsion 

type, it operates for lower current conditions and provides visible break. A failure of a capacitor 

element welds the foils together and short-circuits the other capacitor elements connected in 

parallel in the same group. The remaining capacitor elements in the unit remain in service with a 

higher voltage across them than before the failure and an increase in capacitor unit current. If a 

second element fails, the process repeats itself resulting in an even higher voltage for the remaining 

elements. Successive failures within the same unit will cause the fuse to operate, disconnecting the 

capacitor unit and indicating which one failed. This results in increased voltage on the parallel 

units. The magnitude of this voltage increase is dependent on the number of units in parallel in a 

manufacturer’s design. The available unbalance signal level decreases as the number of series 

groups of capacitors is increased or as the number of capacitor units in parallel per series group is 

increased. The capacitor units can have only one insulated terminal with uninsulated terminal 

connected to the rack or two insulated terminal bushings [46] – [48]. An Externally fused capacitor 

bank is shown in Fig. 2.5. 

 

 
Fig. 2.5: An Externally fused capacitor bank [46]. 

 

The internally fused capacitor units equally involve groups of fused elements connected in parallel. 

These groups are then connected in series to realize the rating for the unit. The units are connected 

in series and parallel as necessary to meet the overall ratings of the bank. The failure of a capacitor 

element results in a discharge current from the parallel elements through the associated internal 

fuse, which blows the fuse. This results in increased voltage on the parallel elements within the 

unit and a much smaller increase in the voltage across the associated unit. The magnitudes of these 

voltage increases are highly dependent on the number of elements in parallel in a manufacturer’s 
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design. The capacitor units may have one or two insulated bushings [46] – [48]. A typical 

illustration of internally fused capacitor units is shown in Fig. 2.6. 

 
Fig. 2.6: Internally fused capacitor bank [46]. 

 

The capacitor units for fuse-less capacitor banks are identical to those for externally fused, or 

elements inside the unit may equally be series elements in a string that are in parallel. A bank is 

made of strings of series-connected capacitor units between phase and neutral. These strings of 

capacitors are connected in parallel as necessary to attain the current and impedance ratings of the 

bank. The number of units connected in series is as required to achieve the necessary voltage 

capability. For capacitor units designed like externally fused banks the failure of a capacitor 

element results in a short circuit of the associated group of elements within the capacitor unit. This 

results in an increase in current through, and increased voltage on, the remaining elements within 

that capacitor unit and the other capacitor units in the associated string. The degree of this increase 

is dependent on the total number of elements in series in the string. The capacitor unit with the 

shorted element remains in continuous operation. Modern capacitor units used in fuse-less 

applications have an all-film dielectric system [46] – [48]. A fuse-less capacitor banks is vividly 

presented in Fig. 2.7. 

 

 

 

 

 

 

 

 

 

Fig. 2.7: Fuse-less capacitor bank [46]. 
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2.2.2 Conventional Generators 
 

There is scarcity of reactive power, when power system engineers fail to supply the required 

reactive power from generators at different electricity grid conditions. Scarcity of reactive power 

in an electricity grid architecture is due to the variation in generation and transmission capacity. 

Thus, power system engineers always ensure qualitative and reliable electricity product supply to 

customers. Despite efforts towards quality electricity product, overloading in existing power 

transmission systems, voltage collapse, voltage stability and power loss are still issues of major 

concerns. At grid conditions, the capability of a generator supplying reactive power can be 

increased by decreasing the requirements of the generator output. Also, voltage stability can be 

maintained with reallocation of reactive power production [49].  

Very large industrial electricity generation facilities use sets of synchronous generators coupled to 

prime mover elements, such as gas or steam turbines to produce electricity. The system dispatcher 

provides each power plant in the grid with both active and reactive power. Consequently, each 

power plant distributes active power among available generators based on generators size and 

limitations. However, despite correctly distributing active load among generators of a power plant 

feeding the same transmission line. Reactive load might not be properly shared among generators. 

The unbalance in distribution of reactive power among different generators may lead to issues such 

as --- Some generators producing significantly more reactive power than others in relation to their 

size; Overloading has a negative effect on power generators life span. It leads to higher 

maintenance costs of generators. --- Overloaded generators are more likely to reach their own 

production limit which is set by the manufacturer; When that happens, increase in active load 

forces operators to manually intervene in order to properly distribute reactive load among 

generators.--- Reactive power unbalance among generators connected in parallel might cause 

voltage stability issues; Voltage stability is the ability of an electricity grid architecture to maintain 

a steady voltage in the presence of disturbances. In situations when load increases drastically, and 

an immediate increase of reactive power is needed to maintain voltage stability. Generators that 

has already reached their reactive power limits might not be able to contribute reactive power. 

Thus, providing a de-stabilizing action to the voltage control system of the grid. --- Unbalanced 

distribution of reactive load might cause the generation of circulating currents, due to the phase 

shifts among different generator outputs. Such circulating currents results in waste of fuel and 

possible overheating of generator coils, thereby lowering the efficiency of generators. These 

problems are very common in electricity generation plants. Therefore, there is a need for a control 

system that can prevent any unbalanced distribution of reactive power among generators within 

the same power plant. Since generators connected to the same power transmission line could be of 

different sizes, a mechanism to determine the amount of unbalance in the reactive load distribution 

is equally needed for feedback control purposes [50].  
 

2.2.2.1 Reactive Power Capability of a Generator 
 

Synchronous machines can generate or absorb reactive power depending on the Direct Current 

(DC) excitation to its field winding. It generates reactive power when over-excited and absorbs 

reactive power when under-excited. It is the most commonly used source of reactive power for 

voltage control [36].  The picture of a synchronous machine is shown in Fig. 2.8 below. It is very 

important to consider the reactive capability limits of synchronous machines particularly in voltage 

stability and long-term stability studies. The output power of synchronous generators is specified 
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based on maximum MVA at rated voltage and power factor, which is to be carried out continuously 

without generator over-heating. The active output power is limited by the capability of prime 

mover. The continuous reactive output power limit of synchronous generator is mainly limited by 

armature current limit, field current limit, mechanical power limit and end region heating limit 

[51]. However, there are some limitations for synchronous generators provision of reactive power. 

Synchronous generators are designed to produce real power, and not reactive power. Therefore, 

the main issue is the loss of real power due to reactive power provision. The synchronous generator 

utilizes a significant portion of real power capability. It is thus clear that it is not very efficient 

utilizing it for the purpose of reactive power provision. The real power is limited by the size of 

turbine, and the reactive power has the limitation of the size of synchronous generator. Therefore, 

increase in reactive power means more investment in terms of increase in ratings of turbine and 

synchronous generator. There are equally limitations of rotor winding, stator winding, over-

excitation, under-excitation etc. [4]. Reactive power compensation using the synchronous 

generators is efficient in stabilizing high voltage part of electricity distribution grid. Electricity 

grid system is limited geographically to the entry point of distribution network. Therefore, the 

reactive power supplied by synchronous generators has limited effect on Reactive Power (Q) and 

Voltage (V) in distribution networks. This reactive power compensation technique is fast enough 

to compensate for rapid load changes. But additional compensator is required to ensure that the 

quality of power delivered to electricity product consumers in remote parts of distribution systems 

is satisfied [5], [28]. 

 
Fig. 2.8: Synchronous Machine [36]. 

 

Reactive Power Support (RPS) is the capability of a generating unit to supply reactive power to or 

absorb reactive power from the electricity grid architecture. This is done to maintain bus voltage 

within five percent (5%) of nominal voltage. A generator is providing RPS, if it operates outside 

the range of 0.85 lagging and 0.90 leading power factor but within its reactive capability curve. 
[52]. An illustration of generator capability curve is presented in Fig. 2.9 and 2.10 respectively. 

Traditional synchronous generator reactive power capability is typically described by a “D curve”, 

covering the range from zero to rated output. But it should be noted that synchronous generators 

are limited by the minimum load capability of generating plant. Some traditional generators are 

designed to operate as synchronous condensers. Thereby allowing them to provide reactive power 

at zero load. Although these generators still cannot operate between zero and minimum load. The 

ability of traditional generators to provide reactive power at zero load should be a prerequisite in 
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the design of power plant. Though this is not possible with many larger power plant designs. From 

the foregoing, it is vividly clear that the practical reactive power capability of a typical synchronous 

generator is more limited than the typical “D curve” as can be seen in Fig. 2.9 and 2.10. Taking 

into consideration negligible auxiliary load, corresponding power factor at the electricity 

transmission line interface is easily determined given generators power factor at terminal ends and 

reactance of generators step-up transformer. Generally, a generator with a reactive capability of 

0.9 lag and 0.983 lead as calculated at generator terminals. When connected to electricity 

transmission grid through a transformer with a leakage reactance of 14% on a generators MVA 

base, can provide 0.95 lag to lead at the electricity transmission line interface. This is possible if 

the electricity transmission system is at nominal voltage, that is 100%. Typical specifications for 

synchronous generators require 0.90 lagging and 0.95 leading at the machine terminals. Allowing 

voltage regulation at an electricity transmission voltage range of 90% to 110%. Synchronous 

generators have maximum continuous voltages of 105%, and minimum voltage of 95%. 

Depending on power system voltage and generator output level, these limits may come into play. 

In such situation, reactive power capability is reduced [53]. 

 

Fig. 2.9: An illustration of reactive power capability of a synchronous generator, taking into 

consideration power plant minimum load [53]. 

 
Fig. 2.10: Generator capability curve [52]. 
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Reactive power reserve is filtered into potential reactive power output and dynamic reactive power 

output. Potential reactive power reserve is the difference between the maximum reactive power 

output and current output in a certain power system operation mode. Putting into consideration 

software and hardware restrictions of generator unit. It represents generator’s ability to increase 

reactive power output under current output conditions. Dynamic reactive power reserve refers to 

the difference between actual maximum reactive power output by electricity generation and the 

steady-state reactive power output before failure occurs in a certain power system operation mode. 

It represents the activated and released part of the potential reactive power reserve when a 

generator is involved in specific transient process. Only dynamic reactive power reserve can be 

utilized to improve the dynamic characteristics of an electricity grid architecture. Non-activated 

reactive power reserve is potential reactive power reserve minus dynamic reactive power reserve 

[54]. Figure 2.11 represents an illustration of reactive power reserve.  

 

 
Fig. 2.11: An illustration of reactive power reserve [54].  

 

To achieve optimal voltage control as regards to minimum cost and increased reliability of 

electricity supply to consumers at transmission network buses. It is necessary to deploy full 

available generator reactive capability. While maintaining reactive reserve as high as possible. In 

addition to generators supplying active power in mega-watt (MW) to satisfy load requirements in 

an electricity grid architecture. Generators equally deliver reactive power to support voltages 

across electricity grids. Conventional generators are the main source of reactive power in power 

systems. Research have shown that voltage instability often occurs after key generators reach their 

reactive capability limit. Proper reactive power support from generators is crucial for maintaining 

voltage stability of electricity grid architectures. Reactive power from this compensator is required 

to provide voltage support, meet the reactive component of load and losses, and enable 

transmission of active power across an electricity grid architecture. Reactive power capability, that 

is ability of a compensator to generate reactive power, is a built-in function of the generator. The 

rated power factor of generators is usually 0.85 or 0.90. A lower power factor generator has a 

higher reactive capability at rated MW output. Reactive power support ability nonetheless, does 

not come free of charge. Normally, a standard 0.90 power factor generator costs approximately 

6% less than a 0.85 power factor generator [55] – [56]. 
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Independent System Operator (ISO) is ultimately responsible for proper allocation of reactive 

power sources as well for maintaining enough system reactive power reserve. To facilitate these 

actions, generator owners always must be fully aware of available generators reactive power (Q) 

capability. Generator capability diagram, that is D-diagram or generator performance chart, 

provided by a manufacturer at the time of commissioning of a generator unit, determines the 

boundaries for delivering reactive power at given real (active) power output. These boundaries, 

when reached, may sometimes results in violation of various constraints imposed by other system 

equipment’s and processes within the plant. Although the generator itself might be able to operate 

entirely in a safe condition. An auxiliary equipment voltage limits, stator or transformer winding 

voltage limits, over and under excitation limits and the accelerated ageing of generator and step-

up transformer parts, are some of the typical constraint violations that might occur when a 

generator is strictly following original D diagram provided by a manufacturer [56]. 

Power plant operators performs real and reactive power allocation among the generators in a power 

plant. But despite this, it is hard to achieve optimal power distribution among generators owing to 

different D-diagrams of individual generators and additional technical limitations that can reduce 

the operating range of power generators. Hence sometimes power system operators drive the 

generator operating point outside the D-diagram owing to lack of information about all relevant 

limitations imposed by power generators and equipment’s. Power plant operators cannot always 

adequately estimate the distance between the actual operating point of generators and the actual 

D–diagram boundaries owing to inability to update D-diagram in real time according to changes 

in generator terminal voltage. Nevertheless, fixed manufacturer D-diagrams does not provide an 

insight into all operational and physical limitations of power generators. Particularly terminal 

voltage limits, auxiliary services voltage limits and coordination with excitation limiters and 

protection. These limits are not fixed and depends on system operating conditions. Power plants 

and system operators will benefit from an on-line capability curve that would include, in real time, 

all operational and physical limitations on generators and information about the actual available 

reactive power range of generators in an electricity grid architecture [56]. 

 

2.2.3 Distributed Generators  
 

Distributed Generation (DG) is an electric power source connected directly to the distribution 

network or on the customer site of electricity meter [57]. It refers to small generating sources or 

units using real and reactive power to uplift voltage profile established near local loads and load 

centers. Distributed generation systems are located at or near point of electricity product 

utilization. This moderates the necessity of electricity grid architecture expansion. DGs can be 

expounded in several ways, it ranges from a few KW to 50 MW. It can be described as a generating 

plant serving consumer onsite or yielding aid to an electrical system linked to an electricity grid 

architecture at various voltage levels. DGs are of different types ranging from conventional fossil 

fuel-based combustion to renewable energy base, including micro turbines, wind, photovoltaic, 
Combined Heat and Power (CHP) systems also known as cogeneration, small hydro turbines or 

hybrid renewable schemes. Distributed Generation is impressionistic and varies with locality [57] 

– [58]. 

The changing regulatory and economic scenarios in the electrical industry; the need for more 

flexible electrical systems; technological advances; rising global fuel prices; and renewed interest 

in environmental issues are playing a key role in the development of distributed generation 

schemes. As part of a long-established practice, ancillary services are supplied by large 
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conventional generators. But, with the huge penetration of DGs as a result of the growing interest 

in satisfying energy requirements and considering the benefits it brings along to the electrical 

system and the environment. Ancillary services in electricity grid architectures could equally be 

provided by DGs in an economical and efficient way. Researches have considered DGs as potential 

providers of ancillary services. Many of these researches involve the use of DGs as providers of 

reactive power support. DGs are already being used to provide reactive power for grid stability in 

compliance with grid codes in many countries. Reactive power can be provided by DGs such as 

Photovoltaic (PV) plants, wind turbine plants and CHP plants. Generally, the power generated by 

DGs based on renewable resources such as wind and solar radiation varies considerably over time. 

A high degree of variability reduces the available capability of these DGs. Since their power output 

is uncertain. To determine the true available capability of DGs based on renewable resources for 

ancillary services. Uncertainty must be reduced, so that DGs based on renewable resources can be 

regarded as a reliable alternative. Particularly in the provision of sensitive services such as 

ancillary services [59] – [60].  
Variable electricity generating plants used to be considered as very small relative to conventional 

power generating units. Characteristically, it is either induction generator wind plants or line-

commutated inverters PV plants that have no inherent voltage regulation capability. Bulk power 

system voltage regulation was provided almost exclusively by synchronous generators. But, the 

growing level of penetration of renewable power generation, especially from wind and solar 

power. Led to the need for renewable generation to contribute more significantly to power system 

voltage and reactive power regulation. Variable electricity generation resources such as wind and 

solar PV are often located in remote locations, with weak transmission line connections. Therefore, 

it is not uncommon for wind and solar PV parks to have short circuit ratios of 5 or less, that is the 

ratios of three-phase short circuit Mega Volt-Amperes (MVA) divided by nominal MVA rating of 

a power plant. Ancillary service for voltage support in power systems is very vital, as it prevents 

voltage instability and ensures good power transfer [53]. 

 

2.2.3.1 Reactive Power Control with PV Inverter and Wind Generator 
 

Voltage regulation is an important issue in low and medium voltage electricity distribution 

systems. It is the responsibility of electricity distribution system operators to keep distribution grid 

voltage within acceptable range. Solar PV renewable energy systems have negative impacts on 

voltage profiles of electricity grid architecture. PVs usually consists of PV array, which is 

interfaced to electricity distribution systems through an inverter. With high penetration of PV 

renewable energy systems in electricity distribution circuits, real power injected to distribution 

grid schemes tend to cause local voltage profile to increase. This voltage rise can be large enough 

to cause adverse voltage fluctuations to electricity consumers loads connected to the distribution 

grid. Figure 2.12 shows the power generation profile of PV and the spare capacity of its inverter. 
The capability of PV inverter is shown in Fig. 2.13. Where PPV, QPV, and PFPV, are the output 

power of PV system, reactive power of PV system injected through an inverter, and power factor 

of PV system respectively. At night there is no power generation from PV system, so PV inverter 

supplies the maximum value of reactive power which is equal to its rating. Even so, PV inverter 

can inject enough reactive power to increase the output voltage within the voltage boundary. 

During day time PV array supplies active power onto electricity grid architecture. However, during 

this time output voltage is larger than upper limit voltage boundary. Hence, PV inverter absorbs 

reactive power from electricity grid, in order to reduce voltage profile below upper limit voltage 
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boundary. But note that absorbed value of reactive power is according to the rating of PV inverter. 

The spare capacity of PV inverter is almost zero during maximum PV power generation. 

Therefore, PV inverter cannot help in solving voltage rise issues at this instant, especially with 

high PV penetration [61]. 

 
Fig. 2.12: Power generation profile of PV and spare capacity of its inverter [61]. 

 

 
Fig. 2.13: Capability curve of PV inverter [61]. 

 

Wind power generators with converter interface are often designed for operation from 90% to 

110% of rated terminal voltage. Lagging capability of wind turbines may diminish as terminal 

voltage increases, owing to internal voltage constraints. It can equally diminish as terminal voltage 

decreases, owing to converter current constraints. Leading capability of wind energy generators 

normally increases with increasing terminal voltage. Doubly fed and full converter wind power 

generators are often sold with “triangular,” “rectangular,” or “D shape” reactive capability 

characteristic as shown in Fig. 2.14. This represents the reactive power capability of individual 

wind generators or PV inverters. Machines with rectangular or D-shaped reactive capability 

characteristic can be employed to provide voltage regulation service, when such machines are not 

producing active power by operating in a STATCOM mode during voltage reduction. Take for 

instance, a low-wind-speed condition for a wind energy resource or at night for solar PV energy 

resource. Although, this capability might not be available or enabled by default. Unlike doubly fed 

or full-converter wind turbine generators, induction-based wind generators without converters are 

unable to control reactive power. Under steady-state conditions, they absorb reactive power just 

like any other induction machine. Usually, mechanically switched capacitors are applied at wind 

generator terminals in order to correct power factor to unity. Several capacitor stages are used to 
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maintain power factor near unity over several ranges of output of PV inverters, having similar 

technological design to full converter wind generators. These are increasingly being sold with 

similar reactive power capability. Historically, PV inverters are designed for deployment in 

electricity distribution system. where applicable interconnection standards (IEEE 1547) do not 

currently allow for voltage regulation. Inverters for such grid applications are designed to operate 

at unity power factor. They are sold with kilowatt (kW) rating, as opposed to kilovolt-ampere 

(kVA) rating. At low DC voltages, that is Maximum Power Point (MPP) voltage. Many PV 

inverters cannot provide full reactive power support, as they are in overexcited mode. With the 

increased use of PV inverters on electricity transmission grid, the electricity industry is moving 

towards the ability to provide reactive power capability. Certain PV inverters have the capability 

to absorb or inject reactive power. Provided that current and terminal voltage ratings are not 

exceeded.  The cost of an inverter is related to the current rating of power plant. The provision of 

reactive power at full output means that inverter rating needs to be larger than plant MW rating. 

This comes at a higher cost compared to existing industry practice. Fundamentally, inverters can 

provide reactive power support at zero power, like STATCOM compensator. But this functionality 

is not standard in the electricity industry. PV inverters are normally disconnected from the 

electricity grid at night, in which case inverter-based reactive power capability is not available. 

This practice can be modified, if site conditions dictate the use of reactive capability during periods 

when generation is normally offline [53]. 

 

 
Fig. 2.14: Individual wind generators/PV inverters triangle, rectangular, and D-Shape capability 

curve for 0.9 power factor at rated output/nominal voltage [53]. 

 

Wind farms uses asynchronous induction machines to convert wind energy to electricity. Thus, in 

order to synchronize with the grid, wind farm generators use power converters such as AC-DC-

AC converters. AC-DC-AC power conversion provides independent control of reactive power. 

Reactive power is not dependent on real power for dynamic power system conditions. But, in order 

to maintain a continuous power factor and independent control of reactive power, it is required to 

oversize the converter by 10% of generator’s rating. Solar panels use Maximum Power Point 

Tracking (MPPT) and inverters to convert solar energy into electricity. These inverters can equally 

provide reactive power control. For dynamic situation, reactive power is dependent on real power. 

Oversizing inverters by 10% of generator’s capacity, make available 46% reactive power at 100% 

real power or 110% reactive power at zero real power [4], [62]. 

Reactive power capability considering power plant interconnection, are specified at the Point of 

Interconnection (POI). In between the POI and generator terminals is a series of collection feeders 
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designed to collect output power of individual generator. When given the spatial dispersion of 

generators for a given electricity grid architecture. There is added impedance which impacts 

reactive power delivered at the point of interconnection relative to generators reactive power 

contribution. This is a very important consideration for wind and solar power plants. This implying 

that several technical options can be considered in designing the plant to meet interconnection 

requirements. Technically speaking, a plant with inverter-based wind or solar generators can rely 

on the inverters to provide part or all the necessary reactive power range at the point of 

interconnection. Although, using external static and dynamic devices such as Static Synchronous 

Compensator (STATCOM), Static VAR Compensator (SVC), or Mechanically Switched 

Capacitors (MSCs) might be more economical. The additional amount of reactive support required 

depends on the reactive capability of individual wind generator or PV inverters and how the 

generator is utilized. Occasionally, external dynamic reactive power support is required to assist 

electricity grids voltage ride-through compliance. During times of low availability of wind or solar 

resource, some generators in a power plant may be disconnected from the grid. Also, the DC 

voltage for solar PV inverters may limit the reactive power capability of inverters. These issues 

should be taken into consideration when specifying reactive power capability for variable 

electricity generation plants. Below a certain output level, the specification should show a reduced 

power factor range, or a permissive MVAr range. The interconnection requirements such as shown 

in Fig. 2.15 are often applied to transmission-connected wind power plants. In the case of PV 

transmission-connected plants, a requirement to maintain reactive power range at full output 

represents a change with respect to historical electricity industry practice. Cost impact can be 

substantial, if PV plants relies on PV inverters to provide a portion or all the required plant-level 

reactive power capability. In order to achieve a power factor range of 0.95 lead or lag at the point 

of interconnection at rated plant output using only inverters. Overall total inverter rating would 

have to be increased by as much as 10%. Taking into consideration reactive power losses. PV 

plants and inverter-based wind plants are technically capable of providing reactive capability at 

full kVA output. Here, the difference between PV plants and inverter-based wind plants is that 

such a requirement is new to the solar renewable electricity industry, as compared to the wind 

renewable power industry. In order to keep pace with the needs of the electricity industry, inverter 

manufactures have de-rated their inverters and presently make available both kW and kVA ratings 

in the market [53]. 

Wind farm converters have limitations of terminal voltage. While inverters have limitations of 

terminal voltage, real power produced by PV panels, and current rating to produce reactive power. 

Equally, inverters produce reactive power at zero or very low wind and solar energy generation 

capacity. Its implementation requires keeping grid-connected power plants even at no wind and 

sun availability. Figure 2.15 shows the capability of such plant producing reactive power at zero 

real power. P and Q are the real power and reactive power respectively in per-unit (pu) at the point 

of interconnection with 0.95 power factor, at rated output with different combinations. This 

reactive power provision is not enough as compared to the imbalance. Therefore, this cannot fully 

replace conventional synchronous generators reactive power production. In usual practice, when 

reactive capability of variable generation resources is specified for transmission line 

interconnections, it is done at the point of interconnection. The point at which power is delivered 

to the transmission line [4], [53]. 
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Fig. 2.15: Reactive power capability specifications at the point of interconnection for 0.95 power 

factor at rated output, reduced capability or permissive range is below 0.2 pu. At low output levels, 

as indicated by the shaded area, a permissive reactive range may be considered. implying several 

possible reactive power capability specifications for variable generation, applicable at the point of 

interconnection [53]. 

 

Distributed generators can absorb or inject reactive power for voltage regulation and operation 

optimization of an electricity grid architecture. The capability curve defines the distributed 

generators permissible operating region for a given terminal Voltage (V). This region is generally 

bounded by equipment limitations expressed by maximum voltage or current limits. Therefore, 

companies that supplies distributed generators should provide information regarding DGs 

capability at different operating conditions. Many control schemes assume fixed DG power limits. 

Reactive power limits vary depending on actual generator active power (P) and terminal voltage 

(V). Figure 2.16 represents a typical reactive power capacity of a DG as a function of active power 

production and terminal voltage. Here, the reactive power capacity increases as active power 

reduces. If a distributed generators reactive capacity is fixed at Qlim, the generator capacity will be 

underused for low active power values. Hence, updated reactive power limits can be utilized to 

take full advantage of distributed generators capabilities. The use of fixed limits unnecessarily 

restricts DGs participation in voltage control and electricity grid architecture optimization. Hence, 

the limits can be obtained from generic capability curves as approximations of actual curves. 

Therefore, approximations can be utilized for efficient estimation of distributed generators reactive 

capabilities in on-line applications [5], [63] – [64]. 

 
Fig. 2.16: Fixed and actual reactive power limits [64]. 
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2.2.3.2 Generator Utilization in Renewable Energy Technology for Distributed 

Generation Systems 
 

There are basically two types of generators that can be used to convert mechanical energy to 

electrical energy. These are synchronous and asynchronous generators. Both generators have 

considerable advantages and disadvantages. But owing to cost associated with the size and 

complexity in designing generators. Asynchronous or induction generators are preferred to 

synchronous generators, considering its rotor design. This is because a generator must match the 

amount of rotational energy produced from kinetic energy. Hence, the choice of using an induction 

generator introduces reactive power loss. An induction generator is a source of active power but a 

sink of reactive power. A considerable amount of reactive power is drawn to magnetize its iron 

core even when active power output is zero. Just as increasing torque is applied to generate active 

power, extra reactive power is absorbed due to the reactive power consumed by the series 

reactance. If a distributed generator is connected to the grid, then absorption of reactive power will 

have an adverse effect on the electricity grid architecture. But without enough reactive power, 

voltage sags down and it is impossible to push the power required by the loads of electricity 

product consumers through power lines [35]. 

Reactive power is needed to setup the rotating magnetic field in an induction generator, this can 

be imported from the electricity grid. With the electricity grid/power lines issues, it is more 

economical to generate reactive power locally. This can be achieved using Power Factor 

Correction (PFC) principle, such as bank of capacitors. PFC capacitors could be installed at the 

base of power systems to generate required reactive power. Bringing the overall power factor of 

an electricity grid architecture close to unity. Banks of capacitor are usually divided into sections 

to give room for independent switching. Hence, the reactive power generated in a grid network 

can be adjusted to match with that consumed by the induction generator as operating conditions of 

power system changes. This solution is greatly valued by power system operators, since it reduces 

losses on electricity transmission lines. Reactive power control can be implemented using different 

techniques of power factor control principles. [35], [65]. Figure 2.17 shows an induction generator 

with power factor correction mechanism. 

 

 
Fig. 2.17: Induction Generator with Power Factor Correction [65]. 
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2.2.3.3 Demerits of Renewable Energy Technology in Distributed Generation 

Systems 
 

The fastest growing renewable energy technologies are solar photovoltaics and wind energy. But, 

one characteristic they share is their variability and relative unpredictability. This presents a 

challenge in integrating these renewable resources in electricity distribution networks that have 

been designed to operate with conventional power generators whose availability appears certain. 

This characteristic, however, can be stabilized with the use of power electronic converters in the 

distribution system. This will allow onward dispatch of electricity product to the grid. Another 

major drawback is the absorption of reactive power in generators utilized in converting mechanical 

energy to electrical energy [35]. These issues must be properly taken of, for reliable, efficient and 

sustainable electricity product from distributed generation schemes. 

 

2.2.4 Static Var Compensators (SVC) 
 

A Static Var Compensator (SVC) is a thyristor-controlled generator of reactive power, either 

lagging or leading, or both. Since it is thyristor controlled, it is therefore called static. This implying 

that, this equipment is a static reactive compensator. An SVC is a high voltage device that regulates 

effectively electricity network voltage at its coupling end. Its major function is to keep grid voltage 

constantly at a set reference point. Other control characteristics of SVC are: voltage control, 

reactive power control, damping of power oscillations, and unbalance control. The design and 

configuration of SVC device is all the time modified to project specifications. An SVC is one of 

the regulators founded on power electronics and other static devices known as Flexible Alternating 

Current Transmission Systems (FACTS) regulator, which is used to improve the ability and the 

flexibility of electricity transmission grid [66] – [69]. Static Var Compensator is a shunt-linked 

static VAR producer or assimilator whose output is regulated to exchange capacitive or inductive 

current to keep in good condition or regulate specific parameters of an electricity grid architecture, 

in most cases bus voltage. SVC is founded on thyristors without gate turn-off ability. The operating 

concept and features of thyristors achieved variable reactive power impedance SVC includes two 

main parts and their fusion: these are Thyristor-Controlled Reactor (TCR) and Thyristor-Switched 

Reactor (TSR); and Thyristor Switched Capacitor (TSC). The objectives of SVC designs are 

reactive power and load imbalance compensation. Utilizing traditional quantities in SVCs 

regulator, make it suitable in collaborative compensation methods in smart electricity grids [69] – 

[71]. Static VAR systems are applied to rapidly control the voltage at a weak point in an electricity 

grid architecture. SVCs are installed at the low-voltage side of transformer to compensate for 

unbalanced load and to reduce apparent power losses in power systems [72]. SVCs structure 

include Thyristor Switch Capacitor-Thyristor Controlled Reactor (TSC-TCR) configuration, as 

shown in Fig. 2.18. 
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Fig. 2.18: Configuration of SVC [72]. 

 

An SVC is a shunt-connected VAR generator or absorber whose output is regularly adjusted to 

exchange capacitive or inductive current to control specified parameter of an electrical power 

system. It is made from thyristors without gate turn-off capability. The operating principle and 

characteristics of thyristors makes SVC an automated impedance matching device, designed to 

bring an electricity power system closer to unity power factor. A typical one-line diagram of an 

SVC comprises of: Thyristor-Controlled and Thyristor-Switched Reactor (TCR and TSR); 

Thyristor-Switched Capacitor; Harmonic Filters; and Mechanically switched capacitors or reactor 

- usually switched by a circuit breaker [35]. The switching of this device takes place in sub-cycle 

timeframe, like in less than 1/60 of a second. Thus, providing continuous range of control. The 

range can be designed to span from absorbing to generating reactive power. Consequently, the 

controls can be designed to provide very fast and effective reactive power support and voltage 

control. Since SVCs uses capacitors, they suffer from the same degradation in reactive capability 

as voltage drops. They equally do not have short-term overload capability of synchronous 

condensers. SVC applications usually require harmonic filters to reduce the quantity of harmonics 

injected into an electricity grid architecture. Synchronous Voltage Condensers (SVCs) is another 

technique, employing switched capacitors as a part of its system. Consequently, it still has the issue 

of non-linear voltage dependency [4], [35]. Figure 2.19 shows a Static VAR Compensator 

consisting of a Thyristor controlled Reactor (TCR). It is an inductance in series with a bidirectional 

thyristor switch. The reactor is in parallel with a corrective capacitor to adjust for leading or 

lagging power factor. The main function of an SVC is to absorb or supply reactive power based 

on the changing VAR requirement of consumer load. Therefore, an SVC allows for the application 

of power factor correction to maintain unity power factor for variable consumer load [73]. 
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Fig. 2.19: SVC circuit [73]. 

 

Voltage stability is defined as the capability of an electricity grid architecture to retain an 

acceptable potential difference between its buses. The primary requirement to avoid voltage 

instability is that an electricity grid should be capable of moving reactive power from source to 

end users throughout steady operating situation. Hence, SVC is one of the main equipment of 

outmost importance to electricity utility authorities. SVC is a first-generation FACTS device and 

it is a reactive power compensator. SVC controls reactive power for bus voltage regulation. SVC 

continuously compensates reactive power in an electricity grid architecture, to increase power 

factor and power quality. It is a shunt FACTS device and it can function as both inductive and 

capacitive reactive power compensation. SVC is unable to exchange active power in an electricity 

grid architecture. A couple of thyristors which are attached in a back to back arrangement is used 

to control the current through an SVC [58].  

 
Fig. 2.20: Static Var Compensator V-I characteristic [74]. 

 

SVCs can be operated in two different modes: Voltage regulated mode - that is voltage is regulated 

within limits and VAR control mode – that is the SVC susceptance is kept constant. When an SVC 

is operated in voltage regulated mode, it implements the following Voltage-Current (V-I) 

characteristic. From Fig. 2.20. if the SVC susceptance B stays within maximum and minimum 

susceptance values imposed by total reactive power of capacitor banks (Bcmax) and reactor banks 
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(Blmax), voltage is regulated at the reference voltage Vref. However, voltage drops usually between 

1% and 4% at maximum reactive power output is normally used. The V-I characteristic has the 

slope indicated in Fig. 2.20 [74]. In active control range, current/susceptance and reactive power 

is varied to regulate voltage according to slope characteristic. The slope value depends on the 

desired sharing of reactive power production between various sources, and other needs of an 

electricity grid architecture. The slope is typically 1-5 percent. At the capacitive limit, the SVC 

becomes a shunt capacitor. At the inductive limit, the SVC becomes a shunt reactor where the 

current or reactive power might equally be limited [75]. A classical SVC system design is shown 

in Fig. 2.21. 

 
Fig. 2.21: Typical SVC system and main components [76]. 

 

 

2.2.4.1 Types of Static Var Compensators (SVCs) 

 
Thyristor-Controlled Reactor (TCR): TCR is defined as a shunt-linked thyristor-controlled 

inductor whose effective reactance is regulated in a continuous manner by partial conduction 

regulation of the thyristor valve. It is a thyristor regulated inductor whose effective reactance 

differs in a steady way by partial conduction regulation of thyristor valve. A thyristor-controlled 

reactor is one of the traditional SVC used in the field of power quality enhancement. With the TCR 

type of SVC put together with fixed capacitors, when operating a system with small reactive 

power. Almost 100% reactive power is produced at the reactor unit and the general system reactive 

power is decreased. It can draw-up sustain reactive power at the primary frequency of an electricity 

grid architecture. But it delivers appreciable odd harmonics which could cause many unpleasant 

consequences, such as; over currents, extra power losses, and noises to telecommunication systems 

[68], [77] – [78]. The one-line diagram to compensate reactive power and voltage flicker 

enhancement in power system comprising Electric Arc Furnace (EAF) with a thyristor regulated 
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reactor compensation, with fixed capacitor (TCR/FC) is shown in Fig. 2.22 [79]. TCR is also 

illustrated in Fig. 2.23 and 2.24 [70]. 

 
Fig. 2.22: Configuration of a TCR/FC connected to an EAF [79]. 

 

Thyristor-Switched Reactor (TSR): This is defined as a shunt-linked, thyristor-switched inductor 

whose effective reactance is differed in a stepwise appearance by full-conduction or zero-

conduction management of thyristor valve. Thyristor switched reactors are shunt compensators 

that can draw-up reactive power. The TSRs has the following qualities: its operating principle is 

simple, it has a delay of one-half cycles and it does not generate harmonics. The most general 

design of SVCs is made-up of a fixed shunt capacitor (FC) and a TCR. Filters are conventionally 

used to draw-up harmonic produced by SVC designs and large industrial loads [80] – [81]. A 

typical TSR is presented in Fig. 2.23 [70]. 

 
Fig. 2.23: General design of Static VAR Compensators, made-up of TCR/TSR, TSC, FC and 

Mechanically Switched Resistor [70]. 

 

Thyristor-Switched Capacitor (TSC): TSC is defined as a shunt-linked, thyristor-switched 

capacitor whose effective reactance is differed in a stepwise way by full-conduction or zero-

conduction operation of the thyristor valve. It has similar composition and same operational mode 

as TSR, but the reactor is substituted by a capacitor. The reactance can only be either fully 

connected or fully disconnected zero due to the features of capacitor. The reactive power of a TSC 
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is modified in steps decided by the number of banks of the capacitor. To avoid in-rush of current 

which occurs when linking capacitor to power lines. Capacitor is charged approximately to the 

peak evaluation of the source voltage made during thyristor switch off period. Additionally, 

thyristor switch is turned on only at the region of the time point where the voltage across both ends 

of the switch is zero. Therefore, the capacitor applicable time is once per source cycle per phase 

and maximum 360-degree time delay can be made for regulation [77], [80], [82]. A typical TSC is 

illustrated in Fig. 2.23 and 2.24. 

 

Thyristor-Controlled Reactor (TCR) and Thyristor-Switched Reactor (TSR) Combined: TCR 

and TSR are both made-up of shunt-linked reactor regulated by two parallel, reverse-controlled 

thyristors. TCR is regulated with thorough firing angle input to function in a continuous way. 

While TSR is regulated without firing angle control which brings about a step change in reactance. 

TSC has the same make-up and same operational mode as TSR. But the reactor is substituted by a 

capacitor. The reactance can only be either fully connected or fully disconnected zero owing to the 

features of capacitor. With non-identical combinations of TCR/TSR, TSC and fixed capacitors, an 

SVC can meet various requirements to draw-up or produce reactive power from or to an electricity 

transmission line. The TSR system provides stepped variation of current and TCR provides 

consistent variation of current. To make-up for the limitations of TSC, variable reactors are linked 

in parallel so that an electricity grid architecture entire reactive power can be fine-tuned 

continuously. The combined type has the merits of both TCR and TSC. It is normally suited to a 

capacitor in a substation for power system transmission lines. Which regulates reactive power for 

both leading and lagging phases. Usually it is at stand-by when in zero (0) VAR state and modifies 

reactive power speedily when fault happens on a power line. Appropriate Static Var Compensator 

technology combinations are normally selected base on several factors such as the responsibility, 

minimum adjustment width, operating efficiency and economy. The diagram of an SVC combined 

technology is shown in Fig. 2.23 and 2.24 [70], [77], [82] – [83].   

 

Fig. 2.24: Structure of SVC Device, TCR and TSC Combined, (a)TCR and (b) TSC [84]. 
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2.2.4.2 Merits of Static VAR Compensators 
 

The merits of SVCs are as follows [85]: 

It increases power transmission capability of electricity transmission lines. 

It improves transient stability of an electricity grid architecture. 

It helps to control the steady state and temporary over-voltages in grid networks. 

It helps to improve consumer load power factor, and therefore, reduces power line losses and 

improved power system capability. 

Static VAR compensator has no rotating parts. It is employed for surge impedance compensation 

and reactive power compensation by sectionalizing long electricity transmission lines. 

 

 

2.2.5 Static Synchronous Compensator (STATCOM) 
 

Static Synchronous Compensators (STATCOMs) are part of FACTS device lineage. Their primary 

aim is to provide a fast acting, precise, and adjustable quantity of reactive power to an AC 

electricity grid architecture to which they are linked. STATCOMs accomplish this by modifying 

the magnitude and polarity (that is the phase) of the reactive constituent of the current flowing in 

and out of the alternating current side of a grid network. This allows STATCOMs to regulate the 

quantity and direction of movement of reactive power swapped with alternating current grid 

networks. They are frequently applied for dynamic power factor correction. Such as dynamic 

reactive power compensation, in industrial machinery working with large arbitrary peaks of 

reactive power needed. STATCOMs multiplies power factor of machinery, reduces voltage 

variations at machinery input. Thereby preventing harm to power plants and minimizes 

equipment’s operating costs. STATCOMs can be used for voltage compensation at the receiver 

end of alternating current transmission power lines. Hence substituting banks of shunt capacitors. 

When STATCOM is used for this intention, it provide several benefits over banks of shunt 

capacitors. These are including of tighter regulation of voltage compensation at the receiver end 

of alternating current transmission power line and a rise in power line stability during load 

variations [86] – [87]. A typical STATCOM system nomenclature is shown in Fig. 2.25. LV---

low-voltage, LVRT---low-voltage ride through, MSC---mechanically switched capacitor, 

MSCDN---mechanically switched capacitive damping network, MSR---mechanically switched 

reactor, PCC---point of common coupling, PLC---power line carrier, POC---point of connection, 

RI---radio interference, rms---root-mean-square, RTDS---real time digital simulator, SIL---

switching impulse level, STATCOM---static synchronous compensator, SVC---static var 

compensator (thyristor-based), SVS---static var system, SWC---surge withstand capability, TCR-

--thyristor controlled reactor [88]. 
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Fig. 2.25: A typical STATCOM system nomenclature [88]. 

   

Figure 2.26 shows the equivalent circuit of a STATCOM. The STATCOM functions like a 

synchronous condenser – the difference being the absence of inertia and its superiority in terms of 

better dynamics, lower investment cost and lower operating and maintenance costs. A complete 

system basically consists of a direct current voltage source, self-commutated converters using Gate 

Commutated Turn-off (GCT) thyristors, and a step-up transformer. The GCT thyristor has an 

improved gate structure and gate drive circuitry. This dramatically reduces the system operating 

losses owing to the elimination of snubber circuit. In contrast, the snubber circuit is required in the 

conventional switching operation of Gate Turn-Off (GTO) thyristor, as well as Insulated-Gate 

Bipolar Transistor (IGBT) devices. Consequently, fewer components, as well as lower losses, are 

achieved in the GCT-based converter application. Static Synchronous Compensator is a dynamic 

technique with power electronics current controlled devices, in place of voltage-controlled 

capacitors. Thus, the issue of non-linear voltage dependency is eliminated. The cost here is higher 

than that of switched capacitors, but lower than that of synchronous condensers. There is equally 

no loss of real power due to reactive power. The reactive capability of power electronic converters 

differs from those of synchronous machines since they are normally not power-limited, as 

synchronous machines are. But limited by internal voltage, temperature, and current constraints 

[4], [35], [53], [89].  

 
Fig. 2.26: Equivalent circuit of a Gate Turn-Off (GTO) based STATCOM [35]. 
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The output voltage of the Gate Turn-Off converter (Vi) is controlled in phase with the power 

system voltage (Vs) and the output current (I) varies depending on Vi. If Vi = Vs, then no reactive 

power is delivered to the power system. Leading or lagging reactive power can only be produced 

when Vi > Vs and Vi < Vs respectively as presented in Fig. 2.27. The STATCOM smoothly and 

continuously controls voltage from V1 to V2, as shown in Fig. 2.28. However, if the power system 

voltage exceeds a low-voltage (V1) or high-voltage limit (V2). The STATCOM acts as a constant 

current source by controlling the converter voltage (Vi) appropriately. Thus, when operating at its 

voltage limits, the amount of reactive power compensation provided by the STATCOM is more 

than the most-common competing FACTS controller, such as the Static VAR Compensator. This 

is so since at low voltage limit, the reactive power drops off as the square of the voltage for Static 

VAR Compensator. But drops off linearly with the STATCOM. This makes the reactive power 

controllability of the Static Synchronous Compensators superior to that of the Static VAR 

Compensator, particularly during times when an electricity grid architecture experiences distress 

[35]. 

 
Fig. 2.27: Principle of operation of a STATCOM [89]. 

 

 
Fig. 2.28: Voltage-Current (V-I) characteristic of a STATCOM [35]. 
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STATCOM is a shunt connected power electronic device which is connected at the mid-point of 

an electricity transmission line through coupling transformer. The reason for its location is that the 

maximum variation in voltage is at the middle point of a transmission power line. It has Voltage 

Source Converter (VSC), a capacitor at the direct current side of converter and controller to 

generate pulse for inverter. Inverter is the heart of STATCOM. 3-phase Insulated-Gate Bipolar 

Transistor (IGBT) based self-commutated voltage source converter is used to generate controllable 

alternating current instantaneous output voltage. This voltage magnitude and phase angle decides 

the reactive power absorbed or generated by STATCOM. If the voltage of the inverter output is 

greater than alternating current bus voltage, under this circumstance STATCOM injects reactive 

power. If the inverter output voltage is less than AC bus voltage, STATCOM absorbs reactive 

power. If the angle between voltage and current of the inverter is 90 degree, then it only exchanges 

reactive power. When the angle between inverter output voltage and current is less than 90 degree, 

it exchanges both active and reactive power [90] – [94]. Several manufacturers see STATCOM 

undervoltage performance as superior. While SVCs is a master when dealing with over voltage 

situations [95]. A basic STATCOM configuration with its main components is presented in Fig. 

2.29. 

 

 
Fig. 2.29: A basic STATCOM configuration with its main components [96]. 

 

 



Chapter 2. General Literature Review 

42 
 

2.2.5.1 Basic Structure of a STATCOM 
 

The basic structure of STATCOM is presented in Fig. 2.30. Where Vs is the source voltage, Vdc-

direct current voltage and C-capacitor. The STATCOM is a power electronic based Synchronous 

Voltage Generator (SVG). From a DC capacitor, it generates a three-phase voltage in synchronism 

with electricity transmission line voltage. It is connected to a transmission line through a coupling 

transformer. By controlling STATCOM’s output voltage magnitude, reactive power is exchanged 

between STATCOM and electricity transmission system. Hence, the amount of shunt 

compensation can be controlled [97] – [98]. STATCOM is based on the principle that it regulates 

voltage at its terminal by controlling the amount of reactive power injected or absorbed by an 

electricity grid architecture. When system voltage is low, STATCOM generates reactive power, 

implying STATCOM capacitive. But when system voltage is high, it absorbs reactive power, 

implying STATCOM inductive. The variation of reactive power is performed by means of a 

Voltage-Sourced Converter (VSC) connected on the secondary side of a coupling transformer. 

From overall cost point of view, voltage-source converters seem to be preferred [99]. The VSC 

uses forced-commutated power electronic devices, such as Gate Turn-Offs (GTOs), Insulated-Gate 

Bipolar Transistors (IGBTs) or Integrated Gate-Commutated Thyristor (IGCTs) to synthesize 

voltage from direct current voltage source. Depending on the power rating of STATCOM, different 

technologies are used for the power converter. High power STATCOMs with ratings of several 

hundreds of MVars normally uses GTO-based converters, and square-wave voltage sourced 

converters (VSC). While lower power STATCOMs with rating up to tens of Mvars uses IGBT-

based or IGCT-based Pulse Width Modulation (PWM) voltage sourced converter [97]. 

 

 
Fig. 2.30: Basic structure of the STATCOM [97]. 
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2.2.5.2 Block Diagram of a STATCOM System 
 

STATCOM produces a three-phase voltage source which has internal reactance, amplitude and 

phase angle control. When the alternating voltage output of inverter is higher or lower than the bus 

voltage. The inverter generates leading or lagging current. The difference of the amplitude of the 

two voltage, decides the magnitude of current. This is used to control reactive power [100] – [101]. 
The device is mainly comprised of voltage signal condition, current signal condition, controller, 

impulsator and three-level main circuit. STATCOMs main block diagram is shown in Fig. 2.31. 

The working process of the STATCOM system is as follows; TV is voltage transformer and TA 

is current transformer. They are used to measure three-phase voltage and three-phase current signal 

of the STATCOM system. Voltage signal Uabc and current signal Iabc passes through the voltage 

and current conditioning circuits respectively. These signals are then converted to analog signal 

that Alternating/Direct (A/D) signal converter can accept. These analog signals then pass through 

a controller after A/D conversion. The controller completes the process of the STATCOM systems. 

This system has reactive power output and helps to control voltage. That is the STATCOMs output 

voltage and systems voltage phase difference (δ). The impulsator produces multiplex drive pulse 

that its phase and pulse width change along with the systems voltage phase difference. These pulses 

are sent into each power switch, causing the device to produce reactive power needed by an 

electricity grid architecture [102]. 

 
Fig. 2.31: STATCOM system block diagram [101]. 

 

2.2.5.3 Comparison Between SVC and STATCOM 
 

Most critical loads in an industrial low voltage alternating current system have unbalanced and/or 

nonlinear characteristic. This is so, since it is a single-phase rectifier with a capacitor or thyristor-

based three phase rectifier. The unbalanced and nonlinear characteristic of the load has an 

undesirable effect on the power quality of input utility authorities’ mains and adjacent load side. 

Therefore, reactive power should be generated and compensated properly to improve the power 

quality of input utility authorities’ mains. Typically, the response time and the bandwidth of the 

closed voltage regulation loop of STATCOM is a shunt-connected synchronous voltage source. 

These are significantly better than that of SVC which is shunt-connected reactive admittance. 
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Consequently, STATCOM are more effective than SVC in an industrial low voltage alternating 

current power system [103].  

Unbalanced load or nonlinear loads, such as single-phase lighting load, computer load or inverter 

to drive induction motor have a bad influence on the power quality of utility authorities’ mains. 

Equally, it is necessary for reactive power to be compensated, since most industrial loads are 

inductive and makes a lagging displacement of power factor. There are two types of controllable 

reactive power shunt generators. There is the Static Var Compensator (SVC), whose output is 

adjusted discontinuously to inject or absorb reactive current. It can be treated as a shunt connected 

reactive admittance. Typical SVC systems are the Thyristor Controlled Reactor (TCR), Thyristor- 

Switched Reactor (TSR) and Thyristor-Switched Capacitor (TSC). While the other is the Static 

Synchronous Compensator (STATCOM), whose output is adjusted continuously to inject or 

absorb reactive current. It is a shunt connected synchronous voltage source. Table 2.I gives a vivid 

comparison of an SVC and STATCOM. Generally, STATCOM is more effective and more rapid 

compensator, when compared to SVC as regards to V-I characteristic, V-Q characteristic, transient 

stability and response time [103] – [104].  

 

Table 2.1: Comparison Between SVC and STATCOM [103] 

 
 

Considering the curves which relate voltage magnitude to current (V-I) or reactive power (V-Q). 

Here, for both SVC and STATCOM, as they are commonly used for voltage support capabilities. 

A decrement in electricity grid architecture load level results in an increase in voltage magnitude 

at all grid nodes. SVC and STATCOM holds voltage magnitude by absorbing inductive current. 

On the other hand, an increase in electricity grid architecture load level produces a decrease in 

nodal voltage magnitudes. For this condition, both SVC and STATCOM devices maintains grid 

voltage magnitude by injecting capacitive current. In Fig. 2.32, V-I and V-Q curves for SVC and 

STATCOM are presented. With reference to Fig. 2.32a, STATCOM’s ability to provide current 

compensation is more extensive than that of SVC’s. Even at low voltage levels STATCOM can 

continue to supply full rated reactive current to an electricity grid architecture. It should be noted 

that the output current of STATCOM is independent of system voltage. Whereas the compensating 

current of SVC decreases linearly with system voltage [105]. 
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Fig. 2.32a: V-I curves for SVC and STATCOM [105]. 

 

A similar approach is taken for reactive power compensation for both SVC and STATCOM. In 

this case, Fig. 2.32b shows that the maximum VAR generation or absorption of STATCOM 

changes linearly with system voltage. Additionally, SVC cannot transiently increase the generation 

of VAR since high capacitive current consumed is determined strictly by the size of capacitor bank 

and system voltage magnitude. Moreover, in SVC if system voltage is lower than reference 

voltage, impedance of the reactor is high. Additionally, if the system voltage is increased to exceed 

the reference voltage, then the mechanism of SVC switches reactors to decrease the impedance of 

the inductive branch. The impedance of the capacitive branch varies linearly with applied voltage 

according to the characteristic of capacitor admittance. Note that if SVC has an upper voltage level, 

it behaves as an inductive element and hence absorbs reactive power. But for a lower voltage level, 

SVC behaves as a capacitive element, implying that it adds or injects reactive power [105]. 

 
Fig. 2.32b: V-Q curves for SVC and STATCOM [105]. 
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2.2.6 Synchronous Condenser Technology 
 

A synchronous condenser is identical to a synchronous motor. Naturally, a synchronous motor 

loads a power line with a leading Power Factor (PF). To increase the PF further, the mechanical 

load is removed, hence, over-exciting its field. This shows that a synchronous condenser is 

intentionally designed to allow its shaft to spin freely. Consequently, its purpose is not for energy 

conversion, but solely to adjust conditions on the electricity grid architecture. Its field is controlled 

by a voltage regulator to either generate or absorb reactive power as needed to adjust grid’s voltage, 

or to improve power factor. The main advantage with this control strategy is that reactive power 

generated can be continuously adjusted. It equally has the capability of increasing current as 

voltage decreases to ensure adequate reactive power is generated. However, it increases power 

loses of an electricity grid architecture. Synchronous condensers are synchronous generators which 

serve the purpose of compensation of reactive power only, and not real power. It consumes a little 

portion of real power to provide reactive power capacity. This dynamic reactive power capability 

technique has high maintenance and conversion costs [4], [34], [106]. The synchronous condenser 

technology is discussed in detail in chapter three. 

 

2.2.7 Unified Power Flow Controller (UPFC) 
 

Flexible Alternating Current Transmission Systems (FACTS) is a power electronic-based system. 

They are static equipment that provide control of one or more alternating current transmission 

system parameters to enhance controllability and increase power transfer capability [107]. FACTS 

are widely used for reactive power compensation in Extra High Voltage (EHV) or High Voltage 

(HV) electricity transmission systems. FACTS may be classified into different categories. One 

classification is according to the connection of FACTS device, either shunt or series FACTS. Static 

VAR Compensator (SVC) and Static Synchronous Compensator (STATCOM) are examples of 

FACTS shunt compensation. Thyristor-Switched Series Capacitor (TSSC), Thyristor-Controlled 

Series Capacitor (TCSC), GTO Thyristor-Controlled Series Capacitor (GCSC), Thyristor-

Switched Series Reactor (TSSR), and Thyristor- Controlled Series Reactor (TCSR) are examples 

of FACTS series compensation [108]. 

On the other hand, FACTS devices may be classified according to the technology used in the 

switching devices, this can be classified into two main categories; Current Source Converter (CSC) 

and Voltage Source Converter (VSC). The former is equally known as Line Commutated 

Converter (LCC) in which the switching device can only be turned on (not off). There is the turn 

off state reached naturally by the line voltage commutation action. Thyristor valves are used in 

LCC technology in SVC applications [109]. On the other hand, in VSCs the switching devices can 

be turned on and off independent of line voltage. VSCs uses Gate Turn-off Thyristor (GTO) or 

Insulated-Gate Bipolar Transistor (IGBT) [107]. 

Unified Power Flow Controller (UPFC), Interline Power Flow Controller (IPFC), and Hybrid 

Power Flow Controller (HPFC) are recent FACTS devices not earlier than 1991. They consist of 

shunt and series VSCs [110] – [112]. Development of economic electricity transmission systems 

with bulk power transfer capability is a very essential demand of residential and industrial 

electricity consumers. FACTS devices have ability to control and optimize power flow in 

electricity transmission lines. It equally has the capability to improve power transfer in 

transmission networks. Among different types of FACTS devices, UPFC is considered as a 

comprehensive multi-variable FACTS controller owing to its capability to control selectively or 
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simultaneously with multiple power system parameters. In the past, UPFC have been proposed to 

control power flow, reduce power losses and improve voltage profile. However, the biggest 

challenge of UPFC implementation is the design of its internal controller. It has 4 different control 

capabilities and all of them are adjusted properly to avoid any fault or failure of the controller 

functions [113] – [119]. Despite the advantages of using UPFC within an electricity grid 

architecture. It has significant challenges on existing protection system reliability, especially for 

conventional distance relay. As UPFC is used to modify line series impedance, terminal voltage, 

and line angle. Distance relay reach is affected both in magnitude and phase. Hence, distance relay 

is subject to either underreaching or overreaching [120] – [123]. 

 

2.2.7.1 Principle of Operation and Basic Structure of UPFC 
 

The Unified Power Flow Controller (UPFC) is an associate of the cluster of FACTS equipment’s 

that offers synchronous voltage source for efficient power control of electricity grids. Within the 

structure of traditional power transmission concepts, UPFC can control simultaneously or 

selectively the parameters affecting power in an electricity grid architecture [119]. The Unified 

Power Flow Controller is the most complex and powerful FACTS device. It is a comprehensive 
compensation device consisting of parallel or shunt static compensator (STATCOM) and series 

Static Synchronous Series Compensator (SSSC) through DC coupling. It helps in controlling node 

voltage and regulation of both active and reactive current of a power line. For active power control, 

the UPFC parallel converter absorbs or emits active power from access point through a parallel 

transformer. Active power flows through series converter of DC coupling. Thereafter, active power 

is finally delivered to the power line through a series transformer. UPFC provides active power 

transmission channel for power lines. Considering reactive power regulation, both UPFC parallel 

and series converters exchanges reactive power with grid node through a transformer. Owing to 

the presence of DC capacitor, reactive power exchange does not occur between parallel and series 

converters. A typical UPFC is composed of two back-to-back voltage source converters. The 

converters share DC bus, one of them is connected to AC node through a parallel transformer. 

While the other converter is connected to the AC line through a series transformer. Each converter 

individually emits or absorbs active and reactive power. The active power can flow bi-directionally 

between both converters through a DC link [120] – [126].  
UPFC includes series and shunt part, and its core equipment is the Voltage Source Converter 

(VSC). This is connected back-to-back at the DC terminal as shown in Fig. 2.33. A voltage source 

converter is integrated into the power network by a shunt transformer. This is used to control DC 

voltage and AC reactive power or voltage, it is like a STATCOM. The other voltage source 

converter is series connected to power network by a series transformer. It is equivalent to a voltage 

source with amplitude and phase control linked to a power transmission line. The active and 

reactive power of a transmission line can be regulated accurately and independently by voltage 

source converter control. Which is used to regulate the distribution of power flow in an electricity 

grid architecture. Generally, series voltage source converters can exchange both active and reactive 

power with power line while carrying out its function. Active power flows bi-directionally between 

the two voltage source converters. Here, UPFC combines the functions of STATCOM and Static 

Synchronous Series Compensator (SSSC). The series part is the core of UPFC and can complete 

many control functions. According to the needs of an electricity grid architecture, UPFC can select 

one or more of the following combination of features as the control target: Voltage regulator---The 

injected voltage of series voltage source converter is in-phase or reversed-phase with the voltage 



Chapter 2. General Literature Review 

48 
 

at the sending terminal. This is used to regulate voltage amplitude, but not the phase; Series 

compensator---The injected voltage of series voltage source converter is vertical to phasor current 

of a power transmission line. Which is equivalent to a capacitance or reactor and can compensate 

impedance of power transmission lines; Phasor regulator---The injected voltage of series voltage 

source converter is used to regulate phase voltage, but not the amplitude. This is equivalent to a 

phase shifter; Composite controller---It integrates the three functions of voltage regulation, series 

compensation, and phasor regulation. In addition to voltage source converters, it includes serial or 

parallel transformers, Thyristor Bypass Switch (TBS) and rapid mechanical bypass switch in the 

UPFC [127]. 

 
Fig. 2.33: Structure of a typical UPFC [127]. 

 

2.2.7.2 Hierarchical Structure of UPFC Control System 
 

The UPFC control system has hierarchical control structure. This consists of system level control, 

converter level control and valve level control [128]. System level control---The system level 

control is the highest level of control. It is used to coordinate the control objectives of different 

voltage source converters. These are including of power coordination control of the double-circuit 

power transmission lines, power flow control of specific interface and so on. Converter level 

control---The converter level control consists of various control function of converter, such as start 

up and out of operation of converter, power flow control of single line, dc-link voltage control, 

reactive power control of shunt voltage source converter, AC bus voltage control, fault-ride-

through control and so on. Valve level control---Valve level control is the lowest level of control 

and provides trigger signals to the submodules based on the reference voltage or number of 

submodules which should be put into operation. This is given by the converter level control. 

Besides, it equally monitors the states of the submodules. 
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2.2.7.3 Control Mode of Unified Power Flow Controller 
 

The control mode of unified power flow controller is basically made up of shunt and series 

converter [129]. 

 

Shunt converter: UPFC has many possible operating modes. Particularly, shunt converter operates 

in such a way to inject controllable current into power transmission lines. A component of this 

current balances active power of series converter. The other component is reactive which is set to 

desired reference level, either inductive or capacitive within the capability of converter. Reactive 

compensation control modes of the shunt converter are very similar to that of the STATCOM and 

SVC. The shunt converter can be controlled in two different modes: 

(a) VAR Control Mode: In reactive control mode, the reference input is inductive or capacitive 

VAR. In Var control mode the reference input is Var. This is maintained by the control system 

regardless of bus voltage variation. 

(b) Automatic Voltage Control Mode: In voltage control mode, the shunt converter reactive current 

is automatically regulated to maintain transmission line voltage at the point of connection to a 

reference value. For this mode of control, voltage feedback signals are obtained from the sending 

end bus feeding the shunt transformer. 

 

Series converter: Series inverter controls the magnitude and angle of voltage injected in series 

with power line. This voltage injection is intended to influence the flow of power on the line. But 

voltage is dependent on the operating mode selected for UPFC to control power flow. The actual 

value of injected voltage can be obtained in several ways. 

(a) Direct Voltage Injection Mode: The series converter generates a voltage vector with magnitude 

and phase angle requested by reference input. This operating mode may be advantageous when a 

separate system optimization control coordinates the operation of UPFC. Also, other FACTS 

controllers are installed in the transmission system. 

(b) Phase Angle Shifter Emulation mode: Here, the reference input is phase displacement between 

sending and receiving voltage. 

(c) Line Impedance Emulation mode: The reference input is an impedance value insert in series 

with power line impedance. This is done on purpose to control the magnitude of voltage vector, in 

proportion to the size of power line current. The desired impedance is specified by reference input. 

Generally, impedance may be complex with resistive and reactive components of either polarity. 

This operating mode can be selected to match existing series capacitive line compensation in the 

system. 

(d) Automatic Power Flow Control Mode: The magnitude and phase angle of injected voltage 

vector is controlled to adjust power line current vector. This results in the desired active and 

reactive power flow in power line. In automatic power flow control mode, series injected voltage 

is determined automatically and continuously by a vector control system. Ensuring that desired 

values of active and reactive power is maintained on the transmission line despite system changes. 

With this operating mode, there is possibilities of power flow scheduling and management. Which 

is not achievable with conventional power line compensating equipment. 

(e) Stand-Alone Shunt and Series Compensation: UPFC circuit has the possibility of operating 

independently as shunt and series converters. This is achieved by disconnecting the common DC 

terminals and splitting the capacitor bank. Here, the shunt converter operates as stand-alone 

STATCOM, and the series converter as a stand-alone SSSC. This feature can be included in UPFC 
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structure to handle contingencies. In the event of failure of any converter, the UPFC will be very 

much adaptable to power system changes. This makes the use of either converters for shunt only 

or series only compensation very innovative. In stand-alone mode, neither converters are capable 

of absorbing or generating active power. Operation is only possible in reactive power domain. 

Since injected voltage must be in quadrature with line current, only controlled voltage 

compensation or reactive impedance emulation is possible for power flow control. 

 

2.2.8 Unified Power Quality Conditioner (UPQC) 
 

There is a more complex network in an electricity grid architecture, in which generating stations 

are connected with load centers through long transmission and distribution power lines. To 

improve the performance of electricity distribution network. A new concept came into existence 

known as custom devices. One of custom power devices is Unified Power Quality Conditioner 

(UPQC) [130]. Conventional power quality mitigation equipment’s uses passive elements. These 

conventional power quality mitigation devices do not always respond correctly to grids power 

quality challenges, since conditions of electricity grid architecture continually changes. Active 

power filters are being exploited in the latest generation of power semiconductor devices. With 

improvements in power and control circuits, active filters are becoming a more viable alternative 

to passive filters. The term Active Power Filter (APF) is a widely used terminology in the area of 

power quality improvement. Unified power quality conditioner is an active power filter family 

member [130]. UPQC consists of combined shunt and series active power filters for simultaneous 

compensation of voltage and current. Hence, it helps to improve power quality on both source and 

load side of an electricity grid architecture [131] – [132]. Unified power quality conditioner has 

great potential owing to its high controllability [133]. The function of a unified power quality 

conditioner is to mitigate disturbances that affects the performance of a grids critical load. 

Normally, UPQC has two inverters that share one DC link capacitor. The two voltage-source series 

and shunt inverters are connected in three-phase four-wire or three-phase three-wire configuration. 

The series inverter is connected through transformers between the source and common connection 

point. While the shunt inverter is connected in parallel with the common connection point through 

transformers. The series inverter operates as a voltage source and the shunt inverter operates as a 

current source. UPQC can be used to compensate voltage sag and swell, harmonic current and 

voltage, power flow and voltage stability. It should be of note that UPQC cannot compensate 

voltage interruption since it has no energy storage in its DC link [134]. 

 
2.2.8.1 Basic Configuration of UPQC 
 

Among reactive power compensation equipment’s, UPQC is highlighted due to its unique ability 

in simultaneous compensation of utility voltage and load current. UPQC in its usual configuration 

is an integration of Parallel Active Filter (PAF) and Series Active Filter (SAF) with a common DC 

bus. Usually, PAF compensates for load current and regulates DC bus voltage. While SAF 

compensates for poor voltage quality of utility side of a grid [135] – [139].  UPQC consists of both 

shunt and series converters connected through a DC capacitor with each other. Two types of UPQC 

can be considered; These are left-shunt and right-shunt UPQC. The difference between them is 

that a shunt converter is connected at the utility or load side of an electricity grid architecture. 

Figure 2.34 shows the basic configuration of a left-shunt UPQC. In Fig. 2.34, L1 is the 

interconnecting inductance and Vs is the inserted voltage of the series inverter. In some cases, the 
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differences in the UPQC configuration affects its operating characteristics and effectiveness [133], 

[140] – [141]. 

 
Fig. 2.34: Basic configuration of the left-shunt UPQC [132]. 

 

2.2.8.2 Components of a UPQC 
 

The various components used in UPQC is the series inverter, shunt inverter, DC link capacitor, LC 

filter and injection transformer:  

Series inverter: The inverters connected in series to the supply is known as series active filter. 

This is a voltage source inverter, which helps to eliminate voltage interruption. Implying that series 

inverter is a voltage-source inverter connected in series with an alternating current power line 

through a series transformer. It is a voltage source inverter that helps to mitigate voltage 

distortions. UPQC assists in eliminating supply voltage flickers and imbalances from load terminal 

voltage. The control of series inverter output is performed using Pulse Width Modulation (PWM). 

The hysteresis band PWM technique is frequently used for controlling series inverter output, owing 

to its ease of implementation. Besides fast response, this technique does not need any knowledge 

of system parameters [130], [142]. 

Shunt inverter: The inverter connected in shunt to the supply line is known as shunt active filter. 

It helps to eliminate current related harmonics and equally minimizes reactive current in load 

circuit. This is a voltage-source inverter connected in shunt with an alternating current power line 

to cancel current distortions, compensate reactive current of load and improve power factor of 

system. The shunt inverter equally assists in DC-link voltage regulation. Which results in a 

significant reduction of direct current capacitor rating.  The output current of a shunt converter is 

adjusted using dynamic hysteresis band method. This is done by controlling the status of the 

semiconductor switches such that output current follows the reference signal and remains in a 

predetermined hysteresis band [130], [142].  

DC link Capacitor: Capacitor or inductor are usually used as common DC link. The capacitor in 

UPQC is used as DC link supplying direct current voltage. The shunt and series voltage source 

inverters are connected back to back with each other through UPQC capacitor.  The voltage across 

the UPQC capacitor provides self-supporting direct current voltage for proper operation of the 

shunt and series inverters [130], [142].    

LC filter: The output of the series active filter of a UPQC produces high switching ripples. The 

LC filter combining inductors (L) and capacitors (C) helps to minimize ripples in a system. The 

LC filter acts as low-pass or high-pass filter. The ripples during switching mode are minimized 
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using the high-pass filter. Low-pass filter is used to attenuate high-frequency components of 

voltages at the output of series converter. These are generated by high-frequency switching of the 

voltage source inverter. High-pass filter is installed at the output of shunt converter to absorb 

ripples produced due to current switching [130], [142] – [143]. 

Injection transformer: Series injection transformer is connected to series convertor. The necessary 

voltage generated by series inverter to maintain pure sinusoidal load voltage at a desired value, is 

injected into power line through series transformers [130], [142]. 
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Chapter 3 
 

3.0 Literature Review of Main Parts of 

Simulation Set-up: Electricity Grid 

Architecture, Synchronous Condenser (SC), 

and Wind Plant 
 

The purpose of this chapter is to describe the main components used in the simulation set-up of 

this thesis. The grid architecture has been explained. While the synchronous condenser technology 

has been comprehensively presented in Paper Three, Four, Five, Six and Seven, detailed in the 

contributions section of this thesis. Thereafter, the wind power plants are explained with its various 

types available now in the market discussed. 

 

3.1 Electricity Grid Architecture 
 

The electricity grid is a network that allows the distribution of electricity from suppliers to 

consumers. Operationally, conventional electrical grid starts at power generating systems such as 

power stations that generate three-phase alternating current electricity. Here, three-phase 

alternating current is passed through an electricity transmission substation that uses transformers 

to step up voltage from thousands to hundreds of thousands of volts. Increased voltage allows for 

efficient transmission of electricity over long distances. After being converted to high voltage, 

three-phase electricity is sent over long-distance transmission lines through three lines, one for 

each phase. Before electricity can be distributed to end users, it must pass through power substation 

that steps down voltage with transformers. Thereafter, electricity is then distributed to 

communities to be used in homes and businesses at the correct voltage [144]. According to system 

connection, electricity grid architecture can be classified as Radial, Ring main, and Meshed or 

Inter-connected networks. 

 

3.1.1 Radial Electricity Grid Architecture  
 

Radial electricity grid architecture is the most commonly used system for power distribution grids 

[145] – [146]. The radial electricity grid architecture topology is tree shape, where close loops 

does not exist. Since there are no closed loops in radial systems, power can be delivered from one 

bus to another bus without tracking down the original bus. But there will be a need to find the 

original bus while turning backwards. Radial electricity grid architecture topology is the simplest 

and cheapest topology for an electrical grid. But with this topology, if a power line is disconnected 

for some reason, all the lines downstream will equally be deprived of power [147]. 

Radial electricity grid architecture has a structure which begins from the root node where 

generation is connected. Lateral line follows the root node or main node in radial network. This 
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line begins from the main feeder and connecting loads. Sub-lateral line begins from the lateral line. 

Finally, minor lines begin from sub-lateral line. Distributed power systems with radial electricity 

grid architectures can be analyzed somewhat as an extension of conventional power grid 

distribution system. Since it is one of the most commonly used approaches in power distribution 

systems [147], [148] – [152]. 

In radial electricity grid architecture, separate feeders radiate from a single substation and feed the 

distributors at one end only. Figure 3.1 shows a single line diagram of a radial electricity grid 

architecture for a direct current distribution line. A feeder OC supplies a distributor AB at point 

A. Visibly, the distributor is fed at one end only, that is point A is this case. Figure 3.2 shows a 

single line diagram of a radial electricity grid for alternating current distribution. Radial electricity 

grid architecture is employed only when power is generated at low voltage and substation is located 

at the center of load [153]. 

 
Fig. 3.1: A single line diagram of a radial electricity grid architecture for (DC) distribution [153]. 

 

 

 
Fig. 3.2: A single line diagram of radial electricity grid architecture for AC distribution [153]. 
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3.1.1.1 Application of Radial Electricity Grid Architecture 
 

The general configuration of a radial electricity grid architecture consists of generators only at the 

starting point. This is connected through distribution transformer to load center. The nodes are 

numbered in ascending order. Every adjacent node is connected by branches which are numbered 

uniquely. Radial electricity grid architecture includes four important parts, these are: master 

controller, control system, correspondence system, and distribution line. The master controller is 

the central controller saddled with the activities of systems parameters identification, investigation 

control and client interfacing. The control system allows multilayer control, it uses an interchange 

system to communicate data [147], [154]. The radial electricity grid architecture is a remarkably 

adaptable system which empowers the creation and trial approval of new topologies, fittings, 

controls, correspondence, and security. Deterministic and stochastic parts can be incorporated 

together in radial electricity grid architecture. The limited inactivity of distributed network helps 

to intensify sensitivities to stochastic segments [155]. Distribution lines are used for 

interconnecting source, loads, and energy space units in radial electricity grid architecture [147]. 

 

3.1.1.2 Merits of Radial Electricity Grid Architecture 
 

Radial electricity grid architecture has a relatively simple circuit protection scheme to coordinate 

and design. With radial grid architecture, it is quite easy to determine grid component rating 

requirements [156]. In a radial grid, voltage compensation technique such as reactive power 

compensators can be easily implemented. Although, there might be different voltages at each 

equipment/load caused by unequal conductor length. Careful selection of conductor size 

minimizes voltage differences. This eliminates some of the electrical noise that might have been 

induced on power sensitive equipment caused by heavy equipment on power lines [147]. Radial 

electricity grid architecture is the simplest power system, since it is only fed at one end. The initial 

cost of a radial electricity grid architecture is low. A radial network is very useful if generation is 

at low voltage. Radial power system is preferred when power stations are located at the center of 

load. This helps in the simplicity to analyze and operate a power system [157]. 

 

3.1.1.3 Demerits of Radial Electricity Grid Architecture 
 

Radial electricity grid architecture has very limited growing flexibility as regards to planning. This 

is so, since load addition or new generation integration would necessitate installation of new cables 

or other components. With the exception, if the initial installed cables and other components were 

oversized. This adds on to extra costs [147]. In a radial electricity grid architecture, the end of 

distributor near to power substation gets heavily loaded. When the load on the distributor changes, 

electricity product consumers at the distant end of the distributor faces serious voltage fluctuations. 

Electricity product consumers are dependent on a single feeder and distributor in a radial grid 

system. Any fault in the power system causes interruption of power supply to all consumers 

connected to the distributor [158]. Power availability as per each load is lower as compared to 

other power distribution configuration. Such lower availability of power is not only caused by 

potential faults at the single point of failure. It can be equally caused by the complex maintenance 

operation of a grid system [147].  

To address power path availability limitations in radial network, an alternative is implemented in 

radial networks with redundant circuits [159]. This means that at least two circuits are run 
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simultaneously with each other from sources to load. Telecommunication power systems are 

common illustrations of redundant radial power distribution architecture. Here, two direct current 

circuits feed each load [147]. A brilliant design and planning of radial distribution system can 

achieve a fair degree of reliability even without much additional cost. This feeder system is 

constructed as a network and operates radially. In a Y connected radial system, the neutral 

conductor is connected through all open switch points, thereby forming a network connecting 

feeder and substations. This special type of radial distribution grid architecture is called auto-loop 

or parallel feeder distribution system [157]. An auto-loop or parallel feeder distribution system is 

differentiated from normal radial distribution system as it has two feeders that ties it to electricity 

product consumers load. The auto-loop system can automatically sense the loss of one source of 

voltage. It then quickly and automatically switches the load to the second feeder. This type of 

radial grid architecture adds reliability benefits by keeping outages to a few seconds or less. But 

the added cost of having two sets of utility equipment at one location, could be high for each 

installation [160]. Parallel feeders are common in urban areas or feeders to large single customers. 

Where load shedding in an emergency is possible. The higher cost of parallel feeders is justified if 

load is higher, more consumers are being supplied with electricity product, or there are loads such 

as hospitals which require high levels of reliability [161]. A parallel feeder network is presented 

in Fig. 3.3. 

 

 
Fig. 3.3: Auto-loop or parallel feeder radial electricity grid architecture [160]. 

 

3.1.2 Ring/Loop Electricity Grid Architecture 
 

Ring electricity grid distribution system follows a loop structure that loops the service from a 

source through a collection of loads and back to the source. All the nodes in ring electricity grid 

architecture are connected to each other. Making a close loop structure that runs through or around 

an area serving one or more distribution transformers or load center. It then returns to the same 
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substation [162]. There is a null-point on the loop where no power passes. This layout is basically 

dynamic radial system with open-point or null-point shifting as loads changes. A loop can meet 

all power and voltage drop requirements when fed from only one end, not both [157]. In a ring 

electricity grid architecture, utility authorities provide power in any direction of the ring. Hence, 

fault can be isolated without disturbing service to many consumer loads on the ring [163]. Ring 

electricity grid structure is highly attractive for high performance of distributed systems. This is as 

a result of fault isolation and the flexibility to locate sources with respect to loads. A distribution 

grid architecture with numerous connecting rings is known as a multi-ring structure. In a multi-

ring structure, a wide range of power transfer paths is available. This makes it flexible in the event 

of needed maintenance or clearing a fault on a section of a power system [147].  

Path multiplicity complicates automatic relaying or protection of a multi-ring system. This is so, 

as it might be difficult to quickly detect and determine the location of a fault and the correct actions 

to take to minimize interruption of electricity product supply to consumers [164], [165]. The task 

of isolating faults is better with multi-ring structure as compared to other simpler grid 

configurations. More than one decision can be implemented to isolate a fault. Thus, an optimal 

decision varies with operating conditions of a grid architecture [147]. In a loop system, the 

primaries of distribution transformers form a loop. The loop circuit starts from the substation bus-

bars. Making a loop through the area to be served and returns to the substation. Figure 3.4 shows 

the single line diagram of a ring main system for an alternating current distribution grid. The 

substation supplies electricity to the closed feeder LMNOPQRS. The distributors are tapped from 

different points M, O and Q of the feeder through distribution transformers [153]. 

 

 
Fig. 3.4: Ring or loop electricity grid Architecture [153]. 
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3.1.2.1 Application of Ring/Loop Electricity Grid Architecture  
 

Ring electricity grid architecture is commonly used in residential areas where electrical current 

flows in more than one direction. This offers better voltage stability and lower power losses. But 

it makes protection against faults more difficult. Ring electricity architecture with enhanced fault 

tolerant capacity can be used with renewable energy and electric vehicle charging stations [166]. 

 

3.1.2.2 Advantages of Ring/Loop Electricity Grid Architecture  
 

Ring electricity grid architecture is the most organized grid structure. It forms a closed loop by 

joining nodes to each other. As a result of this, several zones of protection within the ring system 

can be implemented. The protections can be implemented on both positive and negative ring bus. 

The ring electricity grid structure has a better performance rate compared to radial network. Even 

if the load in ring system increases, it still gives high reliability. The performance is not affected 

by additional devices added to the electricity network. In case a feeder is under fault or 

maintenance, the ring distributor is still energized by other feeders connected to it. Despite the fact 

of savings in cabling/copper as compared to parallel feeders [167]. This implying that power 

supply to electricity product consumers is not disrupted, even when a feeder is not in operation. 

Different section in the ring system can equally isolates at different appropriate points. This is to 

isolate sections of power systems in case of any fault occurrence [147]. 

A protection scheme for an electricity grid architecture can be achieved using a ring configuration 

for the mains of a direct current bus. Thereby creating several zones of protection within the ring 

bus. If a fault is detected in the electricity grid architecture, a controller is used to open the zone 

breakers. This ensures that all breakers are opened, and the fault zone de-energized. The ring bus 

splits into zones and each zone is monitored by a segment controller [168]. 

 

3.1.2.3 Disadvantages of Ring/Loop Electricity Grid Architecture  
 

A major disadvantage of the ring electricity grid structure is that the system is highly dependent 

on the cables that connect other components to the network. In terms of complexity, a loop feeder 

system is only slightly more complicated than a radial system and has a major drawback as it caters 

for the capacity and cost of the loop scheme [157]. 

 

3.1.3 Mesh or Interconnected Electricity Grid Architecture  
 

The electricity grid architecture can equally be organized in mesh or interconnected structure apart 

from radial and ring structures. Mesh grid structure is normally used with high or medium voltage, 

while radial grid is used with low level voltage [169]. Hence, mesh electricity distribution grid 

architecture is used to offset three-phases moment of peak power output. Which is disseminated 

between three-phases. Allowing a more consistent peak power output. A mesh grid structure 

follows the radial structure but includes redundant lines in addition to main lines. These are 

organized as backups for the purpose of re-routing power in the event of failures on the main power 

line [144]. Mesh electricity grid architecture has the most complicated configuration, when 

compared to radial systems. Since it includes many alternative connections between nodes. This 

makes the operation and protection of distributed schemes challenging [170]. Mesh grid is less 

ideal pertaining to its complexity, as it is the most often used electricity grid architecture rather 
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than ring system configurations. This is so, since mesh distributed systems utilizes existing 

configuration, instead of installing new network [147]. In a mesh electricity grid architecture, the 

feeder ring is energized by two or more generating stations or substations. Figure 3.5 shows the 

single line diagram of a mesh electricity grid architecture. The closed feeder ring ABCD is supplied 

by two substations S1 and S2 at points D and C respectively. Distributors are connected to points 

O, P, Q and R of the feeder ring through distribution transformers [153]. 

 

 
Fig. 3.5: A single line diagram of a mesh electricity grid architecture [153]. 

 

 

3.1.3.1 Application of Mesh Distributed Electricity Grid Architecture  
 

The revolution in the generation, transmission and distribution of electricity is expected to be 

achieved with smart electricity grid architecture solutions. The smart grid can complement 

electricity grid penetrated with renewable energy resources, to bring about a cleaner environment. 

For efficient electricity transmission and avoidance of power losses in an electricity grid 

architecture. It is essential to have a power structure that is excellent in electricity distribution 

[147]. Mesh micro-grid structure is efficient for short-distance electricity transmissions. It is very 

good in incorporating existing power system structure. Implying that it can effectively be upgraded 

from a radial to a mesh electricity grid structure. Power transmission in mesh grid architecture is 

carried to an aggregation point. Usually a sub-station that ensures reliability and control of 

fluctuating generated power [170]. Peak power is generated to various electricity product 

consumers hopping around power transformers. Hence, enough power is generated and 

transformed according to the needs of consumers. Mesh grid configurations can be efficiently 
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utilized for distribution characteristics of renewable energy resources. Where interface converters 

are connected to each other. [171]. 

 

3.1.3.2 Advantages of Mesh Electricity Grid Architecture  
 

A droop control system helps to bring stability to the grid. While providing efficient and robust 

electricity product to consumers. When using traditional droop control method in a distributed 

electricity grid architecture. Accurate load power sharing accuracy can be obtained, when direct 

current converter output power is set to be inversely proportional to corresponding droop 

coefficient. Power sharing error can equally be eliminated if droop coefficient and line impedance 

satisfy the relationship. Though, this supposition is only suitable for ideal electricity grid 

architecture. Hence, in a practical power system there is some error. This is the limitation of 

traditional droop control method in mesh grid configuration for direct current distributed systems 

[172]. The simplest network structures to protect are radial systems while meshed distribution 

networks have a higher short circuit power. The advantage of meshed networks is relatively 

balanced voltage profile and high reliability through redundancy [173]. 

 

3.1.3.3 Disadvantages of Mesh Electricity Grid Architecture  
 

Transmission of electricity using Mesh grid architecture utilizes nonlinear methodology. This 

method suffers from limitation of only focus on lossless distributed networks with purely inductive 

distribution lines. The results might not be applicable for distributed networks with heterogeneous 

and mixed R/X ratio lines. Which is common in low voltage distributed electricity grid 

architecture. Reactive power sharing is often not guaranteed as careful analysis can only be done 

on droop control [174]. Communication delay in a mesh grid configuration is a very sensitive 

parameter which can impact largely the stability of the electricity grid architecture [147].  

 

3.1.4 Comparison of the Various Electricity Grid Architecture  
 

Many factors need to be considered when comparing the best suitable system structure between 

radial, ring and mesh grid architecture. Considering factors are --- location of distributed 

generations; voltage range; grid structure of transmission target either underground or overhead; 

climate and environment; principles of operation i.e. directional, over current etc.; types of 

generators i.e. synchronous, asynchronous, converters; load classification; characterization and 

load schedules; different failure condition and so on [173], [175]. A radial electricity grid 

architecture was used for the simulation scheme of this thesis. This grid structure has been chosen 

due to its simplicity to analyze and operate an electricity grid architecture. 

 

3.2 Synchronous Condenser (SC) 
 

A synchronous condenser is a synchronous device that produces reactive power which leads real 

power by 90 degrees in phase [176]. It is a piece of equipment like a synchronous motor, whose 

shaft is not linked to anything but spins freely without constraint. Its objective is not to convert 

electric power to mechanical power or vice versa, but to regulate situations on the electric power 

transmission grid. Its field is regulated by a voltage regulator to either give rise to or assimilate 
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reactive power as needed to modify voltage or to enhance power factor in an electricity grid 

architecture. The synchronous condensers installation and operation are like massive electric 

motors. Increasing the machines field excitation brings about its provision of reactive power to the 

electricity grid architecture. Its most important merit is the effortlessness with which the quantity 

of correction can be modified. The kinetic energy stored in the rotor can help stabilize a power 

system during short circuits or speedily oscillating loads such as electric arc furnaces. Massive 

installations of synchronous condensers are occasionally used in connection with HVDC converter 

stations to provide reactive power to the alternating current grid. Unlike a capacitor bank, the 

quantity of reactive power from a synchronous condenser can be steadily regulated. Reactive 

power from a capacitor bank reduces as grid voltage reduces, while a synchronous condenser can 

build-up reactive current as voltage reduces. Nevertheless, synchronous machines have higher 

energy losses than static capacitor banks. Most synchronous condensers linked to electrical grids 

are rated between 20 Mvar and 200 Mvar and a great number of them are hydrogen cooled. There 

is no eruption threat if the hydrogen concentration is kept in good condition of above 70%, 

typically above 91% [177]. A typical synchronous condenser system is shown in Fig. 3.6. 

 

 
Fig. 3.6: A typical synchronous condenser system [178]. 

 

Synchronous condensers were once extensively utilized as a means of supplying reactive power 

compensation before the introduction of power electronic based devices. Several synchronous 

condensers were used in electricity grid architectures beginning in the late 1920’s to the end of 

late 1970’s. Synchronous condensers have been relevant in the scheme of things in voltage and 

reactive power control for many years now. Practically, a synchronous condenser is merely a 

synchronous machine linked to the electricity grid architecture. After the unit is synchronized, the 

field current is regulated to either generate or draw-up reactive power as needed by alternating 
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current electricity grid architectures. The device can provide incessant reactive power control when 

used with the right automatic exciter circuit. Synchronous condensers have been used at both 

distributions and transmission voltage levels to ameliorate stability and to support voltages within 

preferred boundaries under varying load states and emergency circumstances [179] – [180].  

Although, synchronous condensers are infrequently used today since they need considerable 

foundations and a significant quantity of starting and protective gadgets. They equally represent a 

part in short-circuit current. Also, they cannot be adjusted fast enough to balance speedy load 

changes. Furthermore, their losses are much higher than those related with static compensators, 

and the cost is much higher when likened with static compensators. Their merit lies in their high 

temporary over-load ability [179]. Synchronous condensers provide sustenance for network 

voltage by maintaining efficient and reliable operation of electricity grid architectures through 

reactive power compensation and extra short circuit power ability [181]. Synchronous condensers 

are well accepted technology for supplying reactive power and remedying power factor issues in 

industrial settings. Reliable grid synchronous condensers are precisely designed to meet the 

requirements of hybrid renewable electricity grid architectures. When compared with diesel 

generators, they help diesel generators in controlling voltage. In high wind and/or solar times, 

diesel generators are turned off, and synchronous condenser handles voltage regulation on its own 

[182]. Synchronous condenser solutions are being initiated worldwide to play a part in the optimal 

use of energy resources. It offers grid support for now and the future, in order to attain a reliable, 

secure, efficient, effective and sustainable supply to electricity product consumers [183]. Reactive 

power capacity is a critical feature of the electrical infrastructure and research underscores its role 

in avoiding power outages. The reliability of an electricity grid architecture depends not only on 

electricity generation and distribution equipment reliability. But equally on reactive power 

capacity, which is required to stabilize local system voltage [184]. An illustration of the capacity 

of a synchronous condenser is shown in Fig. 3.7. 

 

 
Fig. 3.7: Synchronous condenser reactive power capacity [185]. 
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3.2.1 Types of Synchronous Condensers 
 

Conventional/Traditional Synchronous Condenser: A synchronous condenser is a synchronous 

motor without any mechanical load. Its field is regulated by a voltage regulator to give rise to or 

to draw-up reactive power. This is to support electricity grid voltage or to keep a systems power 

factor at a specified level. Synchronous condensers installation and operation are identical to big 

electric motors. After the unit is synchronized, the field current is regulated either to give rise to 

or to draw-up reactive power as needed by AC system. The machine can supply uninterrupted 

reactive power regulation when used with the appropriate automatic exciter. A rise in the 

equipment’s field excitation brings about the provision of magnetizing power (kVArs) in an 

electricity grid architecture. Its major merit is the effortlessness in the regulation of the amount of 

correction [186] – [187]. The basic topology of an adjustable speed synchronous condenser is 

shown in Fig. 3.8. It is based on a double-fed machine with a conventional three-phase winding in 

the stator and a three-phase winding in the rotor. The latter is supplied by a three-phase converter 

connected back-to-back to a second converter, which is connected to an electricity grid 

architecture. This configuration allows the generation of a rotating magnetic flux in the rotor, 

which depends on the rotor converter frequency. When the machine is rotating at synchronous 

speed, the rotor converter operates at zero frequency and the magnetic flux in the rotor is stationary 

with respect to the rotor itself. In this case, the compensator operates as a conventional 

synchronous condenser [188]. 

 
Fig. 3.8: An adjustable speed synchronous condenser (ASSC) [189]. 

 

Superconducting Synchronous Condenser (SuperVAR): Only the field windings of this 

synchronous condenser make use of high-temperature superconductor winding, which is made-

cold with a cryocooler subsystem to about 35–40 K. The cryocooler module is laid in a stationary 
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frame and helium gas is used to cool the rotor of the equipment. The stator winding is normal 

copper winding. However, the winding is not placed in normal iron core teeth, since the iron core 

saturates owing to high magnetic field, typically 1.5–2.0 T, built in by the field winding. 

Exclusively, the stator yoke (that is the back iron) uses magnetic iron to supply magnetic shielding 

and to convey flux between adjacent poles. The omission of iron in many of the magnetic circuits 

in this machine brings about a very low synchronous reactance (typically 0.3–0.5 p.u). It is asserted 

that this synchronous condenser machines are more durable than conventional/traditional 

machines in the course of transient system faults. Whereas transient and sub-transient reactance’s 

are much the same to those of traditional machines. The lower synchronous reactance of this 

machine permits the operation of these machines at lower load angles than traditional machines 

[189] – [190].  

SuperVAR synchronous condensers act as reactive power shock-absorbers of an electricity grid 

architecture. Effectively producing or drawing-up reactive power (VARs), based on the voltage 

level of a transmission system.  SuperVAR machines also react immediately to secure grids and 

electricity consumer loads in case of voltage sags and surges. This is recognized in the power 

industry as voltage transients, which can be given rise to by lightning storms, short circuits brought 

about by tree branches fleetingly touching lines, animals touching transmission elements, and other 

sources.  SuperVAR machines and Dynamic-VAR (D-VAR) systems immediately stabilizes 

voltage and supply utilities new, economical techniques to actively improve the reliability and 

maximize the power of transmission grids [190]. A ± 8 MVAR high temperature superconducting 

dynamic synchronous condenser machine with key components is shown in Fig. 3.9 [192].  

 

 

 

 

 

Fig. 3.9: A ± 8 MVAR high temperature superconducting dynamic synchronous condenser 

machine [192]. 
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3.2.2 Benefits of Using SCs in Modern Electricity Grid Architecture 
 

The main utilizers of synchronous condensers are electricity utility companies and heavy industries 

that operate transmission, distribution or industrial electricity grids. Reasons for the rebirth of the 

synchronous condenser comprises the large-scale integration of wind and solar energy resources 

as well as the introduction of smart grid technologies in electricity grid architectures. Electricity 

utility companies are currently rediscovering the benefits of conventional synchronous condenser 
technology and are finding new ways to make use of them in their electricity networks. The 

synchronous condenser technology can be utilized in power system networks for ---Network 

frequency stabilization supported by its spinning inertia reserve; ---Contribution to power system 

short-circuit capacity, making the network more robust against faults; ---Providing voltage support 

during prolonged voltage sags and interruptions through good fault ride-through capability; ---

Reactive power support not affected by network voltage; and ---High over load capability for 

sustained periods [69], [193] – [199]. Therefore, the reasons for selecting the synchronous 

condenser technology in reactive power installations remarkably differs from case to case. The 

main benefits of the synchronous condenser technologies in modern electricity grid architectures 

are including of: 

Power generators can be converted or retrofitted into SCs: Is it possible to convert unused and 

retired large generators into synchronous condensers, converted generators are now operating as 

synchronous condensers in today’s electricity grid architectures. But compared with new dedicated 

and optimized synchronous condensers they have some demerits. They are usually old with 

outdated technologies, aging components and require lots of auxiliaries to run. Their starting is 

problematic. Lots of strenuous maintenance is needed. They are usually installed in a less favorable 

location, maybe at remote locations compared with new modern synchronous condenser units 

which are smaller, simpler and can be installed in any required place. This results in reduced 

performance and effectiveness [193] – [198]. 

It can be supplied in various capacity range: Large synchronous generators, motors or condensers 

can be supplied in powers ranging from 1 to 80 MVA at 3–15 kV system voltage. The voltage 

chosen depends on the optimization. Since the electricity grid voltage is much higher, so a step-up 

transformer is needed. Higher outputs can be achieved by utilizing a few units in a standardized 

module concept. This arrangement gives better redundancy and availability in contrast to one large 

unit [193]. 

It helps to strengthen electricity grid with additional short-circuit power in present changing 

mix of power generation sources: The intermittent and highly variable nature of wind and solar 

energy resources introduces stresses on electricity networks and dynamic reactive power 

compensation is needed to make sure that there is secure operation. Renewable energy resources 

are remotely located and feed power into a single radial line. Synchronous condensers can be 

installed close to renewable resource connection point to strengthen electricity grid with additional 

short-circuit power. This improves both the fault ride-through ability and provides additional 

voltage stability of the grid system installation itself [69], [193] – [200]. 

SCs can be designed without the constraints of startup considerations:  Synchronous machines 

can be started by a frequency converter, direct online or in the most ideal way by utilizing a pony 
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motor. This afford the synchronous condenser to be designed without the limitations of startup 

considerations. Small pony motor of between 200–300 kW can be coupled to synchronous 

condenser and supplied by a frequency converter which is set up for a few minutes start up ramp 

which brings the speed of the synchronous condenser into synchronous operation, usually at 1500 

rpm. The excitation system is there after started and at the right time the main breaker switches the 

machine online [193]. 

It helps to maintain short-circuit capacity of electricity grid after the removal of high inertia 

rotating generators: Electricity utility authorities are phasing out conventional power plants. But 

in most situation, they are not being replaced. As the synchronous generators at these locations 

have been supplying the power grid with significant amounts of short-circuit power. Simply 

removing them would put the stability of the adjacent power network at risk. Hence, synchronous 

condensers are needed to maintain the short-circuit capacity of power grid after the removal of 

high inertia rotating generators [69], [193] – [199]. 

SCs relatively small size allows its installation close to the required point in electricity grid 

network where they are needed: In many electricity grid architectures, the physical distance 

between power generating plants and major consumer load centers can be substantial. Typically, 

reactive power should be produced locally to minimize the losses associated with long distance 

electric power transmission and to ensure optimal utilization of electricity transmission lines. 

Synchronous condensers can effectively complement fast-operating static VAr-compensating 

devices at remote locations where voltage collapse must be avoided at any cost. The relatively 

small size of synchronous condensers allows installation close to locations in the electricity grid 

architecture where they are needed to maximize their benefits [193] – [195], [199]. 

It helps with additional short-circuit capacity and voltage stability in areas with significant 

seasonal variations in electricity demand: Seasonal changes in heavy industries electricity 

demand can introduce electrical load fluctuations which brings about significant voltage sags in a 

local electricity grid architecture. The synchronous condenser technology can be used to strengthen 

the short-circuit capacity of such electricity grid system to boost voltage and reactive power 

supply. Electricity consumers with significant seasonal variations in electricity demand and 

intermittent industrial processes can equally benefit from additional short-circuit capacity and 

voltage stability margins brought about with the help of synchronous condensers [69], [193] – 

[199]. 

New SCs are modern machines with new machine technology: Machines of old had a very slow 

speed of response, analog control systems and rheostats were not able to provide adequate response 

to dynamic events. However, present day machines come with latest digital controls and relays 

and utilizes digital field exciter as found in many modern combined cycle facilities. The speed and 

precision of modern exciters makes new synchronous condensers to rival SVC in terms of 

performance. With a rotating exciter built onto the shaft, the synchronous condenser technology 

can be built as brushless machines. Whereby a small digital exciter excites the rotating exciter, 

thereby eliminating maintenance elements. Before now synchronous condensers were made with 

10 to 12 poles for a slower speed. Its bearings and precise shaft balancing needed to produce a 

two-pole or four-pole machine are considered special and very expensive. But today a two-pole 
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synchronous generator is considered standard. Modern insulation systems and manufacturing 

methods allow new synchronous condensers to exhibit a high degree of reliability and availability 

[200]. 

SC technology has Fast Project Cycle Time: Synchronous condenser systems only requires 

integration to electric power delivery components. Thereby resulting in accelerated project cycle 

times. The design, manufacture, installation and commissioning of a synchronous condenser 

system can be completed within 16 months. Hence, synchronous condenser systems have on-time 

project completion and on-budget execution [178]. 

3.2.3 Cost Implication of Using SC in Modern Electricity Grid Architecture 

It can be seen in Table 3.1. that costs favors capacitors/reactors. Generators have exceptionally 

high capital costs since they are designed to provide real power, instead of reactive power. The 

incremental cost of reactive power provision from generators is high. However, it is hard to 

unambiguously split-up reactive power costs from real power costs. Operating costs for generators 

are high as well, since generators can be associated with real-power losses. Also, since generators 

have different uses, they undergo opportunity costs when called on at the same time to supply high 

levels of reactive and real power. Synchronous condensers have the same features as generators. 

But they are built exclusively to supply reactive support. Synchronous condensers capital costs are 

not as high as generators and they experience no opportunity cost. SVCs and STATCOMs are high 

cost equipment’s too. Although their operating costs are lower than those for synchronous 

condensers and generators. Power system operators can obtain reactive power sources either using 

mandates/authorization or purchases/acquisition. It might be feasible to establish competitive 

markets for securing these services. This is based on the condition that reactive power provisions 

are not geographically confined. It is a widespread opinion that the position constraints on reactive 

power resources are adequately challenging that competitive markets cannot be established for this 

service. Some power system operators pay generators their embedded costs for reactive power 

resources. Notwithstanding, deciding the embedded costs of generators to supply reactive power 

sustenance leads to uncertainty. This is so since; the same equipment is utilized to supply both real 

and reactive power. Queries such as what percentages, for instance, of the exciter, generator stator, 

generator rotor, turbine assembly, and step-up transformer should be allocated to each operation 

is difficult to answer. In the same vein, there is further uncertainty in deciding the embedded costs 

of synchronous condensers [201] – [203]. 

Synchronous machines are costly to procure in the first instance, and the equipment has internal 

losses, which present a continual operating cost. Normally, the mean cost for a synchronous 

condenser is between $10 to $40 per kVAR. While the maintenance cost ranges from about $0.4 

to $0.8/kVAR per year. The SuperVAR is a High Temperature Superconductor (HTS) Dynamic 

Synchronous Condenser equipment, that is meant to operate continually. This equipment cost 

between $1 million and $1.2 million. A SuperVAR is rated at 10 MVA, however its first model 

was 8 MVA [204] – [208]. Reactive power generating equipment’s/sources vary in their capital 

and  operating costs, as presented in Table 3.1 [209] – [211]. 
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Table 3.1: Cost comparison of reactive power generating equipment’s and sources.  

Reactive Power 

Generating 

Equipment’s and 

Sources 

Investment Cost 

Capital 

Cost 

(per 

kVAR) 

Operating 

Cost 

Opportunity 

Cost 

Capacitors/Reactors $10-30 
Very 

Low 
No 

Synchronous 

Generators 

Difficult         

to 

separate 

High Yes 

STATCOM $50-100 Moderate No 

Static VAR      

compensators 
$40-100 Moderate No 

Synchronous 

condensers 
$10-40 High No 

Distributed Energy 

Resources (DER) - 

Inverter 

$40-90 High Yes 

Distributed Energy 

Resources (DER) – 

Synchronous 

Generator 

$25-40 High Yes 

 

The cost benefit comparison between capacitor banks and a small generator retrofitted to 
synchronous condenser, with both rated 5.0 MVAR is tabulated in Table 3.2. it shows that the 
synchronous condenser come first on precise economic terms as against capacitor banks. Moreover, 
there are additional advantages from using synchronous condenser equipment’s that are difficult to 
quantify. Capacitors are situated all through utility’s service territory. Consequently, maintenance 
is extra costly as when compared to a single synchronous generator sited at a substation. Power 
system operators cannot be certain that its capacitors are functioning. Since they are too widely 
scattered for the monitoring of their status. Unpredicted occurrences, for instance lightning could 
stop capacitor timers from operating, without the knowledge of utility operators. The 
unpredictability on the status of the capacitors could be avoided by putting in place more costly 
control systems for capacitors. Alternatively having one synchronous condenser that can easily be 
reached or assessed in order to control reactive power flow/movement. Besides, synchronous 
condenser equipment’s can dynamically make available reactive power. It regulates its output 
depending on the condition of an electricity grid architecture [69], [189], [209] – [216]. 

Synchronous condensers may deliver extra indirect advantages such as: reduced losses, saved line 

capacity, and increased transfer capability; as compared to capacitor banks. This is as a result of the 

fact that injected reactive power from a synchronous condenser equipment is practically constant 

when voltage is low. But substantially low, that is by voltage squared, for capacitor banks. This 
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meaning that capacitors are least worthwhile when most needed in an electricity grid architecture. 

Over time, it has been seen that the more shunt capacitors are connected to an electricity grid. The 

more the possibilities for voltage collapse as the output of shunt capacitors decreases as the square 

of the measured voltage. Most capacitors that are installed by power system operators in order to 

keep away from power factor penalties normally in summer seasons are not actually required for 

the remaining period of the year. At present, utility authorities normally turn off half of its fixed 

capacitor banks throughout the duration of winter season. This is done to keep away from leading 

power factor costs. Synchronous condenser devices could assist utility authorities place a limit on 

installing capacitors that function only just for one third period of the year [209] – [211], [216]. 

Table 3.2: Cost benefit comparison between capacitors and synchronous condensers.  

Costs and Benefits 

($/year) 

Capacitor 
Banks (5.0 

MVAR) 

Small Generator 
Retrofitted to 
Synchronous 

Condenser (5.0 
MVAR) 

Capital Cost $22,000 $50,000 

Technology Life 
Time 

10 
years 

20 years 

Preventive 
Maintenance Cost 

$6,000 $3,500 

Cost of Voltage 
Regulator 

Maintenance 
$6,600 $3,300 

Annual Cost in 
Present Value 

$14,800 $9,300 

Saving from 
Avoided Power 
Factor Penalties 

$29,200 $29,200 

Annual Benefit in 
Present Value 

$29,200 $29,200 

Net Annual Saving 
in Present Value 

$14,400 $19,900 

Net Annual Saving 
in Present Value 

($/MVAR) 
$2,880 $3,980 

 

3.2.4 Practical Implementation of SC Technology in Modern Electricity Grid 

Architectures 

This section aims to establish the practical applications of the synchronous condensers in modern 

electricity grid architectures. Here, five projects utilizing the synchronous condenser technology 

is analyzed. These include: the next-generation synchronous condenser installation at the VELCO 

granite substation; innovative reuse of the Ensted deactivated power plant; conversion of two 

retired units at Huntington Beach station to synchronous condensers; turnkey delivery of 
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synchronous condenser solutions for the Bjæverskov, Fraugde and Herslev substations; and the 

Georgia Black Sea HVDC station. 

3.2.4.1 Granite Substation 

Vermont Electric Power Company, USA commissioned a Synchronous Condenser based reactive 

power device in the Granite substation as part of its Northwest Vermont Reliability Project. The 

reactive power device consisted of four +25/-12.5 MVAr synchronous condensers and four 

25MVAr shunt capacitor banks. This synchronous condenser based reactive power device was 

chosen over SVC and STATCOM owing to its merits over these devices. As for the Granite 

Substation, the synchronous condenser afforded the smallest base nameplate rating and still met 

the overload and low voltage requirements. Though maintenance is required, it is considered by 

VELCO to be on par with static device alternatives. The synchronous condenser technology was 

best suited to handle the local harmonic concerns and appears advantageous from a long-term life 

of product support standpoint. A picture of the condenser hall at Granite Substation is shown in 

Fig. 3.10. The units were commissioned in November of 2008 [180]. 

 

Fig. 3.10: Granite substation condenser hall [180]. 

3.2.4.2 Ensted power plant 

Converting power plants to synchronous condensers has enabled the innovative reuse of the Ensted 

deactivated power plant. This has ensured electricity grid stability in Denmark. The plant which 

was commissioned in 1979, is a former steam power plant located at the head of Aabenraa Fjord 

in the south of Denmark. Its Unit 3, formerly fired by coal and oil, had been Denmark’s largest 

combined heat and power unit. Ensted was equipped with a total electrical capacity of 626 MW 

and a heat capacity of 76 MJ/s. The operator had mothballed the power production by 1 January 

2013 due to expected lower electricity consumption and a rising share of energy production from 

renewable energy sources, mainly wind power plants. The Ensted power plant now contributes to 

the stability of the national Danish electricity grid when required. The rebuilding of the Ensted 

plant was associated with low investments and low risks: Components from the original 

manufacturer, the reuse of equipment and the smooth integration of the solution were conducted 

with minimal effort. The project was completed within the very narrow, challenging time frame of 
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five months [217]. It started operation in 2012, with generator rating of: 1500 MVA, 27 kV, 1500 

rpm, and reactive power ability of between: -450 … +850 MVAr [185]. The outcome of this project 

is the innovative reuse of a deactivated power plant; improved grid stability due to the generation 

of reactive power and short circuit power through conversion of the generator into synchronous 

condenser; As well as Low investment and operational costs [217]. 

 

3.2.4.3 Huntington Beach station 
 

The units three and four steam turbine generators at the Huntington Beach Generating Station, in 

California, USA, has been converted to synchronous condensers [218]. Faced with a critical 

shortfall in voltage support after the loss of the San Onofre nuclear plant. The California 

Independent System Operator converted two retired units at its Huntington Beach station to 

synchronous condensers. The experience offers lessons for other electricity utility authorities 

looking forward to dealing with impending plant retirements and changing grids. Two retired 

generators at the Huntington Beach plant were converted to synchronous condensers to provide 

voltage support to the Southern California grid after the unexpected retirement of the San Onofre 

Nuclear Generating Station. The conversion from generators to synchronous condensers has the 

plant not only stabilizing the grid and keeping the lights on in times of high demand, but equally 

keeping the air just a little bit cleaner in the process [219]. 

The four natural gas fired steam units that make up the Huntington Beach Generating Station are 

in Huntington Beach, California and owned by AES Southland Holdings, LLC. Units three and 

four had been retired since 1995. The operating units are of great regional significance as they 

generate enough power to light nearly a half-million Californian homes and businesses. The power 

supply of 400,000 homes in Southern California was challenged by the decommissioning of the 

San Onofre nuclear power plant in Southern California. To maintain grid reliability, it was decided 

that bringing unit three and four of Huntington Beach out of retirement to serve as synchronous 

condensers would be a good option. To do so, however, the application needed not only to comply 

with California’s strict environmental regulations, but also meet a short time schedule [218], [220]. 

The effect of this work is improved grid reliability due to the conversion of the two generators to 

synchronous condensers. No emissions thanks to synchronous condensers which use no fuel. 

Hence, further innovative use of shut down units [220]. 

 

3.2.4.4 Bjæverskov, Fraugde and Herslev substations 
 

The Danish transmission system operator placed three orders for turnkey delivery of synchronous 

condenser solutions for the Bjæverskov, Fraugde and Herslev substations. At the end of February 

2015, the synchronous condenser solutions of Fraugde and Herslev were handed over to the 

client’s full satisfaction. In May 2015 Bjæverskov substation had been successfully completed and 

was passed over to the Danish Transmission System Operator. The solutions help stabilize the 

transmission system. The scope of delivery for the synchronous condenser solutions included a 

synchronous generator with brushless excitation, a generator step-up transformer and the electrical 

auxiliary systems, such as control and safety systems, voltage regulators and startup systems. They 

feature high efficiency, low noise emissions and low installation and commissioning costs [221]. 

Each synchronous condenser solution can deliver more than 900 MVA of short-circuit power and 
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+215/-150 MVAr of reactive power. The startup time is designed so that the generators can reach 

up to 3,000 rpm within 10 minutes and be synchronized with the transmission grid. Since the 

synchronous condensers are designed for continuous operation and provision of short-circuit 

currents when voltage dips occur in the grid. Hence, they have a minimum availability of 98 

percent. These are important projects for the transmission system operator in Denmark for 

stabilizing the transmission network, Denmark is one of the few countries to include a large share 

of wind energy in its energy mix, which is why the country need synchronous condenser solutions 

to help stabilize her electricity transmission system and to support higher wind power generation 

in the country [221]. 

Bjæverskov substation 250 MVAr synchronous condenser solution started operation in 2013, 

providing the transmission system with a short-circuit power of more than 800 MVA in addition 

to reactive power control. The installation of this stand-alone synchronous condenser solution 

enabled the transmission system operator in Denmark to operate the transmission network without 

the need for a large thermal power plant. This makes the installation an economically and 

environmentally advantageous investment enabling the infeed of large amounts of renewable 

energy into the transmission network. Fraugde and Herslev substations synchronous condenser 

solution can deliver more than 900 MVA of short-circuit power and +150/-75 MVAr of reactive 

power [222]. 

 

3.2.4.5 Georgia Black Sea HVDC Station 
 

The Black Sea Transmission Network Project was started in 2009, to create an asynchronous 

interconnection between the 500 kV network of Georgia and the 400 kV network of Turkey [222]. 

Three 60 MVAr synchronous condensers were installed at the Georgia Black Sea HVDC station 

in June 2012. This synchronous condenser solution supports the transmission network between 

Georgia and Turkey with the required short-circuit power in order to operate the newly installed 

HVDC back-to-back station [223]. The Project was successfully completed in 2013. It provides 

700MW capacity interconnection between the Georgian and Turkish electricity grids. Through the 

rehabilitation/construction of 500kV Gardabani-Akhaltsikhe-Zestaponi overhead line and 

construction of 400kV interconnection line from Akhaltsikhe to Turkish border. As well as the 

construction of a new 500/400/220kV substation with HVDC back to back plant in Akhaltsikhe. 

Through this transmission infrastructure Georgia having abundance of renewable power sources, 

such as hydro and wind can export or wheel eco-friendly electricity to the emerging, demanding 

markets of Turkey. As well as other countries in eastern or central Europe and Asia [222], [224], 

[225]. 

 

3.2.5 Illustrative Example of Reactive Power Producing Ability of SC 

Technology 
 

To evaluate the effectiveness of the synchronous condenser reactive power producing ability in an 

electricity grid architecture. The schematic diagram in Fig. 3.11 is modeled using 

MATLAB/Simulink software program. This is detailed in Paper Three, Four, Five and Six 

presented in the contribution section of this thesis. Parameters of the electricity grid architecture are 

given in Table 3.3. The system has an Active Power (P) of 30 MW, a Capacitive Reactive Power 
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(QC) equal to 0.5 MVAR, and varying Inductive Reactive Power (QL) of 4, 7 and 10 MVAR, a load 

of 33 kV 50 Hz is connected to the grid structure. To test the validity of the power system, both 

measured and calculated power factor ( ) values of the electricity grid architecture were 

obtained. To evaluate the effect of the synchronous condenser on the power system, two possible 

scenarios of the proposed network were analyzed; Firstly, with the synchronous condenser installed 

at the terminal end of the power system (Position One, as seen in Fig. 3.12). And secondly, with the 

synchronous condenser installed at the beginning of the terminal of the electricity grid architecture 

(Position Two, as seen in Fig. 3.13). Three sets of data were analyzed for each study; data 1, 2, and 

3, as tabulated in Table 3.3. The synchronous condenser allows for the input of reactive power on 

the electricity grid architecture. This helps in the voltage stability and power flow control of the 

system. Voltage stability and power flow control is very significant most especially for sensitive 

loads in electricity grids.  
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Fig. 3.11: Schematic diagram of the proposed 33 kV MV electricity grid architecture without the 
installation of the synchronous condenser equipment. 
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Fig. 3.12: Schematic diagram of the synchronous condenser equipment installed at the terminal end 
of the 33 kV MV electricity grid architecture (Position One). 
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Fig. 3.13: Schematic diagram of the synchronous condenser equipment placed at the beginning of 
the 33 kV MV electricity grid architecture (Position Two). 
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Table 3.3: Values of power factor of load ( ) for the 33 kV 50 Hz loads. 

33 kV 50 Hz load  

Set of 

Data’s  

Active 

Power 

P 

(MW) 

Inductive 

Reactive 

Power 

QL 

(MVAR) 

Capacitive 

Reactive 

Power QC 

(MVAR) 

Measured 

Value 

Calculated 

Value 

1 30 4 0.5 0.99 0.99 

2 30 7 0.5 0.97 0.97 

3 30 10 0.5 0.95 0.95 

 

Calculated Power Factor of Load ( ) Values: Both measured and calculated  values are 

tabulated in table 3.3. The power factor of load calculation for data 1, 2, and 3, is done as follows;  

Data 1; 

𝑐𝑜𝑠 𝜑 =
𝑃

𝑆
=

𝑃

√𝑃2 + 𝑄2
=

30

√302 + 3.52
= 0.99 

 

Data 2; 

𝑐𝑜𝑠 𝜑 =
𝑃

𝑆
=

𝑃

√𝑃2 + 𝑄2
=

30

√302 + 6.52
= 0.97 

 

Data 3; 

𝑐𝑜𝑠 𝜑 =
𝑃

𝑆
=

𝑃

√𝑃2 + 𝑄2
=

30

√302 + 9.52
= 0.95 

 

Voltage Values and Directions of Power Flow with SC Placed at the End of the 33 kV MV 

Electricity Grid Architecture (Position One): When the synchronous condenser is installed at the 

end of the three-phase 33 kV MV electricity grid architecture linked to a 132/33 kV HV/MV 

transformer source. The observed voltage values at the sending and receiving end of the system is 

measured for the three set of data’s, 1, 2 and 3. The voltage values and directions of power flow 

are shown in Table 3.4 and 3.5 respectively. Table 3.4 shows the results of the voltage values and 

power flow direction obtained without the synchronous condenser connected to the end terminal 

of the electricity grid architecture. There is generally large voltage difference (Us-Ur) in the 

network and the direction of power flow is positive (+). This insinuating that voltage flows from 

the voltage sending (Us) terminal to the voltage receiving (Ur) terminal of the electricity grid 

architecture. While Table 3.5 presents the voltage values and power flow direction with the 

synchronous condenser connected to the end terminal of the 33 kV MV electricity grid. In this 

case, small voltage differences were observed on the system and the direction of voltage flow is 

negative (-). This insinuating that power flows from the voltage receiving (Ur) end of the grid 

terminal to the voltage sending (Us) terminal end of the 33 kV MV electricity grid architecture. 
 

cos

cos

cos cos
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Table 3.4: Voltage values obtained, and power flow directions observed without (W/O) the 

synchronous condenser connected to the end terminal of the 33 kV MV electricity grid 

architecture. 
Set of Data’s Sending Voltage  

(Us) 

Receiving Voltage  

(Ur) 

Voltage Difference 

(Us-Ur) 

Power Flow 

Direction 

1 32.95 32.39 0.56 + 

2 32.00 31.70 0.30 + 

3 31.70 31.30 0.40 + 

 

Table 3.5: Voltage values obtained, and power flow directions observed with the synchronous 

condenser connected to the end terminal of the 33 kV MV electricity grid architecture. 
Set of Data’s Sending Voltage  

(Us) 

Receiving Voltage  

(Ur) 

Voltage Difference 

(Us-Ur) 

Power Flow 

Direction 

1 32.70 33.10 - 0.40 - 

2 32.65 32,95 - 0.30 - 

3 32.20 32.40 - 0.20 - 

     

 

Voltage Values and Directions of Power Flow with SC Placed at the Beginning of the 33 kV 

MV Electricity Grid Architecture (Position Two): Table 3.6 and 3.7 present the voltage values 

obtained when the synchronous condenser is installed at the beginning of the three-phase 33 kV 

MV electricity grid architecture. The voltage at the sending and receiving end of the system is 

measured for the three set of data’s, 1, 2 and 3 as done earlier for position One. The directions of 

power flow are shown in Table 3.6 and 3.7 respectively. Table 3.6 present the results of voltage 

values and power flow direction obtained without the synchronous condenser connected to the 

beginning terminal of the electricity grid architecture. Large voltage difference (Us-Ur) is observed 

on the system and the direction of power flow is positive (+). Implying that power flows from the 

voltage sending (Us) terminal to the voltage receiving (Ur) terminal of the grid configuration. Table 

3.7 clearly show the voltage values obtained and the power flow directions observed when the 

synchronous condenser is connected at the beginning of the electricity grid architecture. Here, 

larger voltage differences (Us-Ur) is observed, as compared to the situation, when the synchronous 

condenser was not installed at the beginning terminal of the grid. The direction of power flow is 

equally positive (+), meaning that power flows from the voltage sending terminal (Us) to the 

voltage receiving (Ur) terminal of the grid. This suggesting that installing the synchronous 

condenser at the beginning of the network terminal has no significant positive influence on the 

voltage profile of the whole electricity grid architecture. Furthermore, it is observed that the 

direction of power flow remains the same, meaning that there was no change in the direction of 

power flow on the 33 kV MV electricity grid architecture as seen in Table 3.6 and 3.7 respectively. 

 

Table 3.6: Voltage values obtained and power flow directions without the synchronous condenser 

connected to the beginning terminal of the three-phase 33 kV MV electricity grid architecture. 
Set of 

Data’s 

Sending 

Voltage 

(Us) 

Receiving 

Voltage  

(Ur) 

Voltage 

Difference 

(Us-Ur)   

Power 

Flow 

Directions 

1 32.90 32.35 0.55 + 

2 32.74 31.70 1.04 + 

3 32.45 30.98 1.47 + 



                                                               Chapter 3. Literature Review of Main Parts of Simulation Set-up 

76 
 

Table 3.7: Voltage values obtained and power flow directions with the synchronous condenser 

installed at the beginning terminal of the three-phase 33 kV MV electricity grid architecture. 

Set of Data’s Sending 

Voltage (Us) 

Receiving 

Voltage (Ur) 

Voltage 

Difference (Us-Ur)   

Power Flow 

Direction 

1 32.70 31.90 0.80 + 

2 32.10 31.25 0.85 + 

3 31.40 29.60 1.80 + 

 

Simulation Results and Discussion: MATLAB/Simulink is used for the simulation of the system 
model. The model consists of a 132 kV High Voltage (HV) alternating current power supply source. 
Connecting a three-phase 33 kV Medium Voltage (MV) electricity grid architecture with the aid of 
a 132/33 kV HV/MV transformer. The 33 kV MV electricity grid architecture is connected to the 
MV side of the 132/33 kV HV/MV transformer. A 33 kV 50 Hz load is attached to the three-phase 
medium voltage power line. Two scenarios were studied; Scenario One, when the synchronous 
condenser is located at the end terminal of the 33 kV MV electricity grid architecture. Scenario 
Two, when the location of the synchronous condenser is changed and installed at the beginning of 
the 33 kV MV electric-power Line,  

Simulation Results and Analysis with SC Placed at the End Terminal of the 33 kV MV 
Electricity Grid Architecture (Position One): Firstly, the power factor ( ) values for data 1, 

2, and 3 were measured and thereafter calculated, this is done to test the validity of the electricity 
grid architecture. It was observed that the measured and calculated values of the power factors 
obtained were the same for the three sets of data observed. This is presented in Table 3.3, 
simulation results for the voltage values obtained at the beginning terminal of the 33 kV medium 
voltage (MV) power system without and with the synchronous condenser connected at the end 
terminal of the network is tabulated in Table 3.4 and 3.5 respectively. A graphical illustration with 
a three-dimensional (3D) diagram is shown in Fig. 3.14. Large voltage difference (Us-Ur) is 
observed on the 33 kV medium voltage (MV) grid line. The direction of power flow is from the 
voltage sending (Us) terminal to the voltage receiving (Ur) terminal of the power line for data’s 1, 
2, and 3 observed.  At the beginning terminal of the line, the scheme uses up reactive power when 
the synchronous condenser is not connected to the end terminal of the electricity grid architecture. 
Here, reactive power is injected onto the 33 kV medium voltage (MV) grid, when the synchronous 
condenser is installed at the end terminal of the grid. 

 
Fig. 3.14: Voltage values at the beginning terminal of the 33 kV MV electricity grid architecture, 

without and with the synchronous condenser connected at the end terminal of the grid. 

cos
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Figure 3.15 illustrates the voltage values obtained at the terminal end of the 33 kV medium voltage 

(MV) electricity grid architecture. Without and with the Synchronous Condenser Installed at the 

end terminal of the grid. Results shows that when the synchronous condenser is not installed onto 

the end terminal of the grid, the grid network uses up reactive power. But reactive power is injected 

into the 33 kV MV network, when the synchronous condenser is installed onto the terminal end of 

the electricity grid architecture. Here, the results depict a small voltage difference on the power 

line and the observed power flow direction movement is from the receiving voltage (Ur) terminal 

end of the proposed scheme to the sending voltage (Us) terminal end of the electricity grid 

architecture, this is tabulated in Table 3.5. 
 

 
Fig. 3.15: Voltage values at the terminal end of the 33 kV MV electricity grid architecture, without 

and with the synchronous condenser installed at the end terminal of the network. 

 

Furthermore, Fig. 3.16. vividly show the graphical illustration of the differences in voltage (Us–

Ur) values obtained at the beginning and end terminals of the 33 kV MV power-line. Without and 

with the synchronous condenser connected at the terminal end of the 33 kV MV electricity grid 

architecture. Considering the observed directions of power flow for data 1, 2, and 3 shown. Large 

voltage differences (Us-Ur) is observed and the direction of power flow is from the sending voltage 

(Us) terminal ends to the receiving voltage (Ur) terminal ends of the electricity grid architecture. 

Implying positive (+) directions of power flow for the situation without the synchronous condenser 

connected at the terminal end of the electricity grid architecture. The obtained voltage difference 

(Us–Ur) for the observed data’s 1, 2 and 3, when the synchronous condenser is connected at the 

terminal end of the power system is small and the directions of power flow is from the receiving 

voltage (Ur) terminal end to the sending voltage (Us) terminal end of the grid. Meaning that the 

observed power flow direction is negative (-). This suggests that the situation with the synchronous 

condenser connected at the end terminal of the 33 kV MV electricity grid architecture gave 

favorable results. This is as regards to enhanced voltage stability and power flow control. As 

compared to the situation without the synchronous condenser installed onto the electricity grid 

architecture.   
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Fig. 3.16: The observed directions of power flow and obtained voltage difference (Us-Ur) values 

at the beginning and end terminals of the 33 kV MV electricity grid architecture, without and with 

the synchronous condenser connected at the terminal end of the grid. 

 

Simulation Results and Analysis with SC Placed at the Beginning of the 33 kV MV Electricity 

Grid Architecture (Position Two): Simulation results for the voltage values obtained at the 

beginning terminal of the 33 kV MV electricity grid architecture. Without and with the 

Synchronous Condenser Connected at the beginning of the grid is tabulated in Table 3.6 and 

graphically illustrated with a three-dimensional (3D) diagram in Fig. 3.17. Large voltage 

difference is observed on the 33 kV MV grid. The direction of power flow is from the voltage 

sending (Us) terminal of the network to the voltage receiving (Ur) terminal for the three set of data 

observed. The difference between sending and receiving voltages (Us-Ur) becomes larger as values 

of inductive reactive power (QL) increases. More so, it is observed that reactive power is being 

used without the synchronous condenser connected to the beginning terminal of the grid. Whereas 

reactive power is injected onto the grid as the synchronous condenser is connected to the beginning 

terminal of the electricity grid architecture. The direction of power flow without and with the 

synchronous condenser device connected onto the beginning terminal of the network is from the 

voltage sending (Us) terminal to the voltage receiving (Ur) terminal of the power system. Implying 

that power flow direction is positive (+) as can be seen in Fig. 3.17. and Table 3.6. 

 
Fig. 3.17: Voltage values at the beginning terminal of the 33 kV MV electricity grid architecture, 

without and with the synchronous condenser connected at the beginning of the grid terminal. 
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The results obtained at the terminal end of the 33 kV MV power system without and with the 

synchronous condenser installed at the beginning of the grid is shown in Table 3.7. This is 

graphically illustrated in Fig. 3.18 with a 3D diagram. From Fig. 3.18, it is seen that the values of 

the voltage difference (Us-Ur) between the sending voltage (Us) and receiving voltage (Ur) 

becomes even larger. This is as a result of the installation of the synchronous condenser at the 

beginning of the 33 kV MV electricity grid architecture. Indicating that there is a gradual increase 

in the voltage difference (Us-Ur) on the grid, as values of inductive reactive power (QL) increases. 

The values of the voltage difference (Us-Ur) obtained is significantly larger when the synchronous 

condenser is connected at the beginning terminal of the grid. Even when compared to the voltage 

difference values obtained without the synchronous condenser installed at the beginning terminal 

of the network. Figure 3.18, and Table 3.7 further shows that the direction of power flow without 

and with the synchronous condenser device connected to the grid, specifically at the beginning of 

the power line, is from the voltage sending (Us) terminal to the voltage receiving (Ur) terminal. 

Implying a positive (+) direction of power flow. It can as well be seen in Fig. 3.18, that without 

the synchronous condenser installed at the beginning of the electricity grid architecture. The grid 

structure utilizes reactive power. But with the synchronous condenser installed at the beginning of 

the grid terminal. There is injection of reactive power to the electricity grid architecture. 

 
Fig. 3.18: Voltage values at the terminal end of the 33 kV MV electricity grid architecture, without 

and with the synchronous condenser installed at the beginning of the grid terminal. 
 

Graphical illustration of the comparison of the voltage differences (Us-Ur) between the sending 

voltage (Us) and receiving voltage (Ur), at the beginning and end terminals of the 33 kV MV 

electricity grid architecture is shown in Fig. 3.19. This is without and with the synchronous 

condenser connected to the beginning of the electricity grid architecture. This is equally tabulated 

in Table 3.6 and 3.7. Also, looking at the observed directions of power flow for data 1, 2, and 3 as 

illustrated in Fig. 3.19. Large voltage differences (Us-Ur) is observed and the direction of power 

flow is from sending voltage (Us) terminal ends to the receiving voltage (Ur) terminal ends of the 

grid. Indicating positive (+) direction of power flow for the situation without the synchronous 

condenser installed at the beginning terminal of the grid. The obtained voltage difference (Us-Ur) 

for observed data’s 1, 2, and 3. When the synchronous condenser is installed at the beginning of 

the grid is much larger. But the directions of power flow are still from the sending voltage (Us) 

terminal ends to the receiving voltage (Ur) terminal ends of the grid. This indicating that the 
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observed power flow direction is positive (+) for both situations. Without and with the synchronous 

condenser installed at the beginning of the electricity grid architecture. This implying that 

installing the synchronous condenser at the beginning of the terminal of the 33 kV MV grid system. 

Negatively affects voltage stability and power flow control of the electricity grid architecture. 

 
Fig. 3.19: The observed directions of power flow and obtained voltage difference (Us-Ur) values, 

at the beginning and end terminals of the 33 kV MV electricity grid architecture, without and with 

the synchronous condenser installed at the beginning terminal of the grid. 

 

3.3 Wind Plant 
 

Wind power is the kinetic energy of wind, harnessed and redirected to perform a task mechanically 

or to generate electricity. It is the capturing and converting of the energy from moving air into 

electricity [226] – [227]. A wind plant is a wind energy installation that converts the kinetic energy 

of wind into electrical energy [228]. The energy from the wind has been harnessed by mankind for 

millennia to carry ships across oceans and later to pump water and grind grain. The conversion of 

wind kinetic energy to electrical energy started in 1887, with an automated wind turbine equipped 

with a 12 kW direct current generator. To generate electricity from wind turbines more efficiently, 

reliably, and to compete against fossil fuel-based power plants. Many improvements have been 

made in the design of wind turbine mechanical and electrical components. Wind turbine 

technology reached maturity level by 1980s leading to the commissioning of the first 50 kW utility-

scale wind turbines [229] – [231]. 

Among all renewable energy sources, wind energy is increasingly becoming accepted and 

competitive with conventional sources of energy. The cumulative installed wind power capacity 

increased exponentially from 6100 megawatt (MW) in 1996 to 282.6 GW by 2012. It is anticipated 

that, following the current trend, the cumulative wind capacity would reach 760 GW by 2020. 

Cumulative wind capacity is expected to further increase as many countries are embracing wind 

energy technology in their electricity generation mix. In 2012, approximately 45 GWs of new wind 

power was added which represents investments of about Euros 56 billion. The wind energy 

industry is equally providing many direct or indirect job opportunities, leading to significant 

stimulus in economic development. The wind power industry demonstrated an excellent growth 

rate of more than 19% and represents 1.9% of the world’s net electricity production. Currently 

many countries are using wind energy on a commercial basis to generate electricity. Cost 
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reduction, government incentive programs, and technological advancements are some of the main 

reasons behind this impressive growth rate [231] – [233]. 

According to aerodynamic properties, the power output of a wind turbine is proportional to the 

square of a rotor diameter and a cubic of wind speed [232] – [233]. Large turbines can capture 

higher wind power with lower installation and maintenance costs. As compared to a group of small 

turbines. Owing to this fact, the size of commercial wind turbines has exponentially increased over 

the years as demonstrated in Fig. 3.20. Turbine size has increased from 50 kW in 1980 to 7.5 MW 

in 2010 [234] - [235]. Wind turbine rotor diameter has equally increased from 15 m in 1980 to 126 

m in 2010. The largest wind turbine reported by 2014 is 8MW with a diameter of 164 m. Wind 

turbines manufacturing companies has ambitious plans to develop 15MW and larger sizes of 

turbines. This is to further enhance turbine capability. Offshore technology is another important 

driving force behind this amazing growth size in wind turbines. The rotor diameter and power 

ratings of offshore wind turbines are higher as compared to onshore wind turbines. In 2013, the 

average size of onshore and offshore wind turbine is reported as 1.926 and 3.613 MW respectively. 

It is hoped that 10–20 MW turbines will be operational in near future with rotor diameters 

exceeding 150 m. This is approximately twice the length of a Boeing 747 airplane [231], [236]. 

 

 
Fig. 3.20: Evolution in the size of commercial wind turbines [231]. 

 

The basic configuration of grid-connected MW Wind Energy Conversion System (WECS) is 

depicted in Fig. 3.21. The WECS is composed of several components that convert wind kinetic 

energy into electric energy in a controlled, reliable and efficient manner. The major components 

of a WECS can be broadly classified as mechanical, electrical and control systems. The mechanical 

components include tower, nacelle, rotor blades, rotor hub, gearbox, pitch drives, yaw drives, wind 

speed sensors, drive-train, and mechanical brakes [237]. The electrical components include electric 

generator, possible power electronic converter along with generator and grid-side harmonic filters, 

step-up transformer and three-phase grid or collection-point [238]. The control related components 

are used with both the mechanical and electrical energy conversion systems [233], [239]. The most 

visible parts in large wind turbines are tower, nacelle and rotor blades, and the rest of the 

components are housed inside the wind turbine [231]. 
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Fig. 3.21: Basic configuration of a grid-connected megawatt wind turbine [231]. 

 

3.3.1 Types of Wind Energy Conversion System Base on Configuration 
 

The major electrical components in WECS are the generator and power electronic converter. Using 

different designs and combinations with these two components, a wide variety of WECS 

configurations can be achieved. The type 1, 2, 3, 4, and 5 WECS are the main five configurations 

that have been analyzed, documented and commercialized extensively for now.  

 

3.3.1.1 Type 1 WECS Configuration 
 

A fixed-speed Squirrel Cage Induction Generator (SCIG) based WECS without power converter 

interface, also called Type 1 turbine is illustrated in Fig. 3.22. where the generator is connected to 

the grid through a soft starter and step-up transformer [240] - [242]. This is the oldest and very 

first technology developed for the wind turbines. In high-power WECS, the SCIG contains 4 or 6 

poles for 50 or 60 Hz operation. The generator speed varies within 1% around the corresponding 

synchronous speed at different wind speeds. Thus, this configuration is called fixed-speed WECS. 

A gearbox is normally required to match the speed difference between the turbine and generator. 

After the start-up procedure, the soft-starter is by-passed by a switch, and the system essentially 

works without any power converter. The SCIG draws reactive power from the grid. To compensate 

for this, three-phase capacitor banks are usually employed [179], [238]. This configuration features 

simplicity, low initial costs, and reliable operation. The major drawbacks include: lower wind 

energy conversion efficiency; changes in the wind speed are reflected to the grid; and the grid 
faults cause severe stress on the mechanical components of wind turbine [243]. The fixed-speed 

wind turbines are equipped with additional hardware, such as STATCOM, to comply with grid 

codes [244], [245]. Despite its drawbacks, this configuration has been accepted by the wind 

industry and commercial solutions are available in MW range such as: 1.65 and 2.3 MW. Fixed 

speed turbines technology used to be popular, before it slowly became seldom due to its inherent 

disadvantages. These turbines which have been installed already are still in operation to generate 

electricity [231]. 

 
Fig. 3.22: Type 1: Fixed-speed (+/-1%) SCIG WECS [231]. 



                                                               Chapter 3. Literature Review of Main Parts of Simulation Set-up 

83 
 

3.3.1.2 Type 2 WECS Configuration 
 

The variable-speed operation of wind turbine increases energy conversion efficiency, and reduces 

mechanical stress caused by wind gusts, reduces wear and tear of gearbox and bearings, reduces 

maintenance requirements, and thus increases wind turbines life cycle. A semi variable-speed 

WECS using Wound Rotor Induction Generator (WRIG) and partial rated (10%) power converter 

is shown in Fig. 3.23. This is equally known as Type 2 WECS configuration. The change in the 

rotor resistance affects the torque/speed characteristic of the generator. Thereby enabling variable 

speed operation of turbine. This configuration is often called Optislip control [246]. The rotor 

resistance is normally made adjustable by a power converter composed of a diode-rectifier and 

chopper [238]. The speed adjustment range is typically limited to about +/-10% of its rated speed. 

With variable-speed operation, the system can capture more power from the wind. But it 

experiences energy losses in the rotor resistance. This configuration equally requires a gearbox, 

soft starter, and reactive power compensation. The WRIG with variable rotor resistance has been 

in use since the mid 1990’s with a power rating up to a couple of megawatts. A few commercial 

solutions range from 2.0-2.1 MW. This configuration is also becoming less important among wind 

turbine manufacturers due to limited speed range and low energy conversion efficiency [231]. 

 
Fig. 3.23: Type 2: Semi-variable speed (+/-10%) WRIG WECS [231].  

 

3.3.1.3 Type 3 WECS Configuration 
 

Another semi variable-speed WECS using Doubly-Fed Induction Generator (DFIG) is shown in 

Fig. 3.24. This is equally known as the Type 3 WECS configuration [247] – [248]. As the name 

implies, the power from the generator is fed to the grid through both stator and rotor windings. A 

partial rated (30%) power converter is employed in the rotor circuit to process the slip power. This 

is approximately 30% of the rated generator power. Like Type 1 and 2 wind energy conversion 

configurations, this configuration also uses gearbox. But there is no need for soft starter and 

reactive power compensation [249].  

The use of the power converters allows bidirectional power flow in the rotor circuit and increases 

the speed range of generator. This system features improved overall power conversion efficiency 

by performing maximum power point tracking (MPPT) [250], [251], extended speed range (+/-

30%), enhanced dynamic performance and robustness against power system disturbances, as 

compared to Type 1 and 2 turbines [252] – [253]. These features made the DFIG WECS one of 

the dominating technologies in today’s wind industry with a market share of approximately 50% 

[254], [255]. 

The Fault Ride-Through (FRT) capability of Type 3 turbines is limited due to the use of partial 

scale power converter in its configuration. The gearbox increases overall turbine cost, weight and 

it requires regular maintenance. Moreover, the power converter is connected to the rotor windings 
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through slip rings and brushes. The average life time of brushes is 6–12 months only, and thus 

regular maintenance is essential in the Type 3 turbines. These major drawbacks impede the Type 

3 turbine being applied in offshore wind farms where maintenance cost is quite expensive. A few 

high power DFIG turbine range from 6 MW, 5 MW and 3 MW [231]. 

 
Fig. 3.24: Type 3 semi-variable speed (+/-30%) DFIG WECS [231]. 

 

3.3.1.4 Type 4 WECS Configuration 
 

The performance of WECS can be greatly enhanced with the use of full-scale (100%) power 

converters as shown in Fig. 3.25. This is equally called Type 4 wind energy conversion system 

configuration. Permanent Magnet Synchronous Generator (PMSG), Wound Rotor Synchronous 

Generator (WRSG), and Squirrel Cage Induction Generator (SCIG) have all found applications in 

this type of configuration with a power rating of up to several megawatts. Since power converters 

must be rated same as generator capacity, the size, cost and complexity of the overall system of 

this configuration increases. Furthermore, losses in power converter are higher leading to lower 

efficiency. But with full-scale power converter, the generator is fully decoupled or disengaged 

from the electricity grid architecture. Hence, it can operate at full speed range from 0 to 100% 

[231], [256] – [260]. 

Power converters equally enable the system to perform reactive power compensation and smooth 

grid connection. The wind energy conversion efficiency is highest in these turbines compared to 

other types of turbines [261] – [263]. The best FRT compliance can equally be achieved without 

any external hardware. Although the cost of power converter is high, it is just a small fraction 

approximately 7%–12% of total wind turbine cost [264]. The need for gearbox can be eliminated 

by using a high-pole number PMSG/WRSG. This configuration is more robust when dealing with 

power system faults as compared to Type 1, 2, and 3 wind turbine configurations [265]. Typical 

commercial Type 4 wind turbines range from 7.5 MW, 5 MW, and 3 MW [231].  

 
Fig. 3.25: Type 4 Full-variable speed (0–100%) SCIG, PMSG or WRSG WECS [231]. 
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The distributed drive-train concept is used in recent megawatt Type 4 wind turbines. Although 

SCIG and WRSG can be used in this concept. The PMSG is most suitable since it eliminates the 

need for slip rings/brushes, thereby making the design simple [266]. The gearbox drives multiple 

generators at higher speeds. Owing to the presence of distributed drive-train and multiple 

generators, a higher power density can be achieved [267]. One available commercial application 

is the Clipper Liberty. It uses a quantum drivetrain, 4 generators and 4 converters as shown in Fig. 

3.26 [268]. 

Higher torque is distributed among the four drive trains. The power rating of the converters is one-

fourth of the system rating. This configuration equally offers effective fault tolerant operation. On 

the instance that one converter fails, the other three converters can still deliver power to the grid 

[238]. To minimize circulating currents, multi-winding transformer is used on the grid-side. The 

main disadvantage with this configuration is complicated drive-train [231]. 

 

 
Fig. 3.26: Type 4 WECS with distributed drive-train and quantum generators [231]. 

 

3.3.1.5 Type 5 WECS Configuration 
 

The Type 5 wind turbine with direct grid-connected WRSG and speed/torque converter is shown 

in Fig. 3.27. This is rather an old concept for wind turbines. Variable speed operation is achieved 

by mechanical converter rather than utilizing electrical converter [268] – [269]. The torque/speed 

converter, equally called Variable Ratio Transmission (VRT) converts variable speed of wind 

turbine to constant speed. The generator operates at a fixed-speed and it is directly connected to 

the grid through a synchronizing circuit breaker. The overall system cost and space is lower than 

Type 4 turbine as no power electronic converter is needed. The generator is directly connected to 

MV collection point without any step-up transformer. Since there is no restriction imposed by the 

power electronic converter unlike in Type 4 wind turbine. Despite the advantages of this 

configuration, it is rarely used in the wind energy industry. This is due to limited knowledge about 

this technology, and issues related to the mechanical converter. Commercial solutions are available 

in range of 2.2 MW and 2.0 MW [231]. 
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Fig. 3.27: Type 5 Full-variable speed (0–100%) WRSG WECS [231]. 

 

3.3.2 Induction Generator for Wind Energy Conversion Systems 
 

An induction generator is an asynchronous electrical machine that can function as a motor or as a 

generator. In the case of an asynchronous motor, the rotor spins less than the synchronous speed 

of the field. But as a generator, it spins faster than the synchronous speed. An induction generator 

is a type of asynchronous generator, meaning the waveform that is generated is not synchronized 

to the rotational speed. Induction generators are widely used in wind turbines and some smaller 

hydro-electric installations owing to their simplicity [270]. For a medium-size three-phase 

induction generator wind turbine. The stator coils are the armature coils on an induction generator. 

While the ends of these coils are connected to terminals that are accessible in a terminal box. In a 

true induction machine, the rotor creates the magnetic field only through induction as it turns past 

the stationary coils, so no slip rings or brushes are required. This is a great advantage in cases 

where minimum maintenance is important. Another advantage of induction generator is safety. If 

the electricity grid goes down, the generator loses its field and stops so that it cannot send power 

to the electricity grid architecture. The drawback of induction generators is that they are less 

efficient than synchronous generators [270]. 

Induction generators are one of the major generating facilities utilized in the wind power industry. 

The two most common wind power generating concepts employing induction machines are the 

fixed speed concept using conventional fixed-frequency induction machines. There is also the 

variable speed generating concept using doubly-fed induction machines. Although there are 

differences between the two induction machines. The fixed-speed induction machine is treated as 

a special case of a doubly-fed induction machine by assuming the rotor circuit of the DFIG is 

shorted. For this reason, a DFIG model can be used as a general model for WECS study for both 

wind power generating concepts [271] – [272]. 

An induction generator is not a self-excited machine. Hence, in order to develop the rotating 

magnetic field, it requires magnetizing current and reactive power. The induction generator obtains 

its magnetizing current and reactive power from various sources like supply mains or another 

synchronous generator. An induction generator cannot work in isolation since it continuously 

requires reactive power from supply system. But there is a self-excited or isolated induction 

generation, when using a capacitor bank for reactive power supply instead of alternating current 

supply system. There are two types of induction generators. These are externally excited and self-

excited induction generators; Externally excited generators are widely used for regenerative 

breaking of hoists driven by three-phase induction motors. While self-excited generators are used 

in wind mills. Thus, self-excited generator helps in converting unconventional sources of energy  
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into electrical energy. Some disadvantages of induction generators are as follows: The efficiency 

of the externally excited generator is not so good; Externally excited generator cannot be used for 

lagging power factor, this is a major demerit of this type of generator; The amount of reactive 

power required to run an externally excited generator is quite large; It cannot generate reactive 

voltamperes. It requires reactive voltamperes from supply line to furnish its excitation. The 

induction generator equally has advantages, these includes: It has robust construction requiring 

less maintenance; It is relatively cheaper; It has mall size per kW output power, that is high energy 

density; It runs in parallel without hunting; and No synchronization to the supply line is required 

as in the case of synchronous generator [272]. 

 

3.3.2.1 Singly Fed Induction Generator 
 

Instead of taking mechanical power from the rotor of an induction generator. The rotor can be 

driven by a prime mover such as wind. It can be driven to move faster than the synchronous speed 

and starts producing electrical power instead of consuming it. In this case, the basic induction 

motor becomes an induction generator. Electrical power is now taken from the stator, which now 

becomes the armature. Owing to its dual nature, an induction machine is sometimes referred to as 

a motor/generator. In the case of induction generator, after passing synchronous speed, the 

magnetic field is induced into the rotor from alternating current that is applied to the stator. A 

prime mover such as the wind turns the rotor faster than the synchronous speed, and power is 

generated. The prime mover equally returns power to the grid from the stator windings. The 

simplest induction generators are referred to as Singly Fed Induction Generators (SFIGs). It uses 

a squirrel cage. Since squirrel-cage induction machines look inductive, power factor correction 

capacitors are added to generators. Additionally, a soft-starter unit is usually used to reduce inrush 

current during start-up [270]. The basic structure of a Singly Fed Induction Generator (SFIG) used 

in a wind turbine is shown in Fig. 3.28. 

 

The main parts of a SFIG wind turbine system are the stator, which houses the armature windings; 

the squirrel-cage rotor, which provides the rotating field; and the end plates, which houses the 

bearings that support the ends of the rotor shaft. The electrical terminals of the generator are in the 

terminal box of the generator, so that connections can be made easily. For a four-pole generator 

with a 50 Hz output, the synchronous speed is 1,500 rpm. While for a 60 Hz output, it is above 

1,800 rpm. But if the number of poles doubles, the synchronous speeds are halved. Converting a 

slow-moving wind turbine to a higher speed generally requires adding a gearbox to the system or 

adding many poles to the generator. To produce power, the wind speeds need to be above the 

transition speed. Otherwise the motor/generator acts as a motor. Induction generators are used in 

larger wind turbine designs as three-phase alternating current machines. The alternating current 

voltage is typically increased to 12,470 V or more and connected to the electricity grid architecture 

[270]. 
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Fig. 3. 28: A block diagram showing the basic structure of a singly fed induction generator used 

in a wind turbine [270]. 

 

3.3.2.2 Doubly Fed or Double-Excited Induction Generator 
 

Just as in the case of singly fed machines, doubly fed machines can operate either as a motor or a 

generator. As a motor, this machine is useful for driving variable-speed devices such as certain 

tools or pumps. The doubly fed induction generator (DFIG) is particularly useful for wind turbines. 

It is used in many larger wind turbines. A doubly fed induction generator has a wound rotor that 

is connected to a different source of alternating current than the stator. It has a three-phase wound 

rotor connected through brushes and slip rings to a secondary alternating current source that can 

be controlled for frequency, phase, and voltage. If the secondary field is 0, DFIG acts like an 

asynchronous generator. Here, the output frequency depends strictly on the rotor’s rotational speed 

and the number of poles. But if the rotor has a secondary frequency included. The rotational speed 

of the magnetic field is a combination of the rotor speed and the alternating current fed to the rotor 

[270]. DFIG appears in several applications in different fields, such as; railway, marine, 

aeronautics, wind energy and so on. This is mainly as a result of the degrees of freedom it offers, 

owing to the accessibility of its rotor. Thus, there is the possibility of powering it with a converter 

on both stator and rotor side [274].  

Magnetic field’s rotational speed can either be increased or decreased by changing the phasing of 

alternating current to rotor. When the magnetic field owing to rotor’s applied alternating current 

rotates in the same direction as the movement of the rotor. Then the frequency induced in the stator 

is high. In reverse, if it rotates in the opposite direction as the movement of the rotor. It then implies 

that the frequency induced in the stator is low. This means that the magnetic field’s net rotational 

speed can be tightly controlled to generate exact match to the stator’s frequency. Hence, this is 

afterwards synchronized to utility frequency despite variations in rotor speed. This is a merit to 

wind turbines, since the rotor can be varied to follow changing winds speed without affecting the 

output frequency of the electricity grid architecture [270]. In wind energy conversion systems, a 

fascinating solution in using DFIG is to connect the stator directly to the electricity grid 

architecture. While its rotor is fed through an interface composed of two static converters, 

Multilevel Inverter (MLI) three-phase reversible. A converter is in AC/DC mode, while the other 

converter is in DC/AC mode. Implying a back to back mode [274].  

The secondary frequency is provided directly to the rotor through slip rings and brushes. This is 

without the losses experienced when the rotor receives its voltage by induction. The controller  
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determines the optimum characteristics of the alternating current of rotor. It equally controls the 

blade pitch, which determines the speed of the rotor and optimizes power for the given conditions. 

The stator is connected directly to the electricity authority’s utility line. Here, the frequency is 

either 50 Hz or 60 Hz, depending on the value used in a locality. The doubly fed induction 

generator can maintain an exact match of the grid frequency, in order to return electricity to the 

electricity grid architecture [270]. DFIG’s structure is like that of the wound induction motor. Its 

stator and rotor are both installed with three-phase symmetric winding. The stator winding is 

connected to the electricity grid through a transformer. It is excited by symmetric three-phase 

power with fixed frequency [275]. Its rotor winding is excited by symmetric three-phase power 

with variable frequency. The frequency can be regulated by back-to-back Pulse Width Modulation 

(PWM) converter, rotor side converter and the grid side converter. They are controlled by Digital 

Signal Processor (DSP) controller [276]. A block diagram of the basic structure of a typical DFIG 

system is shown in Fig. 3.29.  

 

DFIG is more complicated than a singly fed generator and thus costs more. But it has higher overall 

efficiency than a SFIG and can harvest energy at various wind speeds. It is equally very useful 

when the amount of energy surpasses intermittent machine rating. Since other generators are 

usually taken offline or operated with reduced load, when they are exposed to conditions that 

exceed their design rating. A DFIG generator accepts extra input energy. The generator speed 

increases for a short period of time and then continues to produce grid frequency. This continuous 

operation improves the overall efficiency of a DFIG generator. One very important control factor 

that is responsible for the widely usage of DFIG in wind turbines and microhydraulic systems, is 

attributed to the ac-dc-ac converter used to control the frequency of the voltage fed to the rotor. 

The slip rings and brushes in this system carries only current for the field. Although power is 

produced via the rotor. This is only about 20% of the total. Since rotor current is small as compared 

to total system current. The brushes can be made smaller. Thus, lesser wear is experienced [270]. 

If the doubly fed induction generator is used with a wind turbine, it produces power with a constant 

utility frequency rating of 6 mph to 50 mph in wind speeds. This allows wind turbines to accept 

gusting winds. It equally allows the blades to harvest extra energy at very high wind speeds. This 

improves the efficiency of wind turbines. For very large wind turbines of say 2 MW or larger. 

Individual wind turbine blade adjustments and nacelle directional yaw adjustments is incorporated 

onto the control system to harvest maximum amount of wind available. The doubly fed induction 

generator is used in micro hydrogeneration and other renewable energy systems where generator 

speed might be varied [270]. DFIG wind turbines allows prime mover to operate in a wider speed 

range. This helps to simplify the adjustment device and reduce mechanical stress during changing 

motor speed. Besides, DFIG system’s frequency converter occupies only part of the rated capacity. 

Thereby reducing the size of the frequency conversion device and cost [276]. Variable speed wind 

turbines with doubly fed induction generator (DFIG) are becoming the most common type of wind 

turbine. This is due to the low power converter rating of this wind turbine. Another reason is its 

ability to supply power at constant voltage and frequency, while the rotor speed is varied [277] – 

[279]. 



                                                               Chapter 3. Literature Review of Main Parts of Simulation Set-up 

90 
 

 
Fig. 3.29: A block diagram of a typical Doubly Fed Induction Generator [270]. 

 

3.3.2.2.1 Benefits of Doubly Fed Induction Generator for WECS  
 

Benefits can be derived from DFIG due to its low power converter rating. It equally can supply 

power at constant voltage and frequency while the rotor speed varies. For a variable speed wind 

turbine with doubly fed induction generator, the load torque can be controlled directly at the 

generator side. This assists in varying the speed of the turbine rotor within certain limits. In a 

variable speed wind turbine, the rotor speed can be adjusted in proportion to wind speed in low to 

moderate wind speeds to maintain optimal tip speed ratio. At this tip speed ratio, the aerodynamic 

efficiency (Cp) is at maximum value. Implying that energy conversion is maximized. Generally, 

variable speed wind turbines have two different control goals, depending on wind speed. The 

control goal in low to moderate wind speeds, is to maintain a constant optimum tip speed ratio for 

maximum aerodynamic efficiency. While the control goal in high wind speeds is to maintain rated 

output power [279]. 

Doubly fed induction generator wind turbine installation is increasing globally. This can be 

attributed to its low installation cost, low power rating of converter, and its active and reactive 

power controllability [280]. DFIG wind turbine faces two inevitable problems, like fault ride 

through (FRT) capability and output power fluctuation [281]. Since DFIG wind turbine is very 

vulnerable to grid faults, it might not be able to ride through. These faults can result in a large 

voltage dip at the connection point of DFIG. Subsequently, the stator and rotor of the machine is 

damaged owing to voltage dip causing overcurrent in the stator and rotor windings [248]. A doubly 

fed induction generator must be disconnected from the electricity grid architecture, for it to be 

protected from grid faults. As a result, electricity grid stability is adversely affected. But due to 

high penetration of grid-connected wind power sources, FRT capability is required for DFIG wind 

turbines to mitigate system instability. DFIG wind turbine equally suffers from output power 

fluctuation problem during normal grid operation. This negatively influences power quality, 

stability, and electricity grid architectures frequency and voltage [282] – [283]. 
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3.3.2.3 Variable-Speed Induction Generator 
 

An option for handling various range of wind speeds in a generator configuration is Variable-

Speed Induction Generator (VSIG). It uses many poles and requires no gearbox. VSIG is 

associated with losses and maintenance issues. Mechanical loading in the drive train is reduced 

since the generator is completely decoupled from the electricity grid architecture. VSIG 

configuration uses electrical or permanent magnet excitation and allows the generator to optimize 

power at an uncontrolled frequency. A full-scale frequency converter performs reactive power 

compensation and conversion to grid quality alternating current. VSIG wind turbine systems can 

take advantage of input in wind speeds ranging from a few mph during start-up to over 40 mph. A 

variable-speed induction generator uses a full-scale electronic frequency converter to match grid 

frequency. The drawback of this configuration is the high cost implication of the power electronics 

converter and large multipole generator. Figure 3.30 shows a block diagram of a Variable-Speed 

Induction Generator [270]. Although the variable speed configuration is a better solution for 

renewable energy electricity generation systems. It does present issues like how the operation at 

variable speed of the electrical generator can be adapted to feed electrical loads operating at fixed 

frequency. This can be solved with the use of an AC-DC-AC power converter, whose basic 

topology consists of two back-to-back power inverters connected by a direct current bus [284].  

 
Fig. 3.30: A block diagram of a typical variable-speed induction generator [270]. 

 

3.3.3 Comparison of WECS Configurations 
 

The Type 3 wind turbines hold the highest market share in the wind energy industry. This 

technology with different models is used by most wind turbine manufacturers around the globe. 

The Type 4 wind turbines follows the Type 3 wind turbine in terms of global market shares. Type 

4 turbines offers direct drive solutions. This implies that the best-selling wind turbines in today’s 

market uses Type 3 and 4 technologies. It is expected that the Type 4 wind turbine technology 

would take over the wind energy market in the coming years. They are compared using generator; 

capacity of power converter; speed-range achievable; requirement for soft-starter, gearbox and 

external reactive power compensation; maximum power point tracking (MPPT) ability; 
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aerodynamic power control, compliance with fault ride-through requirement; technology status; 

and market penetration. Overall, the Type 3 and 4 wind turbines are most favorable for MW-level 

applications [231]. In this thesis, the Type 3 wind turbine configuration has been used for this 

simulation framework. But with the reactive power decoupled. This is to enable production and 

injection of only active power from Type 3 wind plants.   
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Chapter 4 
 

4.0 Simulation Framework  

 

The purpose of this chapter is to briefly describe the developed MATLAB/Simulink simulation 

framework, detailed in Paper One, Two and Three as presented in the contributions section of this 

thesis. This chapter is organized as follows. Section 4.1 summarizes the modelling of the Point of 

Reference Data and its Elements. Next, in Section 4.2 The Point of Reference Lines, Transformer, 

Load and Three-phase Lines Parameters is presented. Then Section 4.3 provide detail modelling 

of the Synchronous Condenser (SC), and Section 4.4 shortly introduces the modelling of the Type-

3 wind machine. The methodology is summarized in Section 4.5. Finally, the algorithm is 

presented in Section 4.6. 

4.1 Modelling of the Point of Reference Electricity Grid 

Architecture Data and Elements  
 

In this thesis, a 50 Hz, 33 kV grid and 50 MVA substation base on a standard utility Medium 

Voltage (MV) electricity grid architecture as shown in Fig. 4.1, is presented as the benchmark Case 

for this thesis. There are two load points each totaling 11.18 MVA each. The MV distribution grid 

architecture has two 33 kV power lines L1 and L2 of lengths 30 km and 40 km respectively 

connected to it. The lines are interconnected, tieing different parts of the 11kV consumer network 

to facilitate power exchange among the loads. The installed capacity at the consumer end 

transformer substation is 25 MVA. Note that all transmission lines are modelled using pi-model.  

 

 
Fig. 4.1: Schematic diagram of the point of reference electricity grid architecture. 
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4.2 The Point of Reference Lines, Transformer, Load and 

Three-phase Lines Parameters  
 

The specifications of the power lines are outlined in detail in Table 4.1. Its rated Positive 

resistances  𝑟1(Ω/km), Zero-sequence resistances 𝑟0(Ω/km), Positive inductances 𝑙1(mH/km), 

zero-sequence inductances 𝑙0(mH/km), Positive capacitances 𝑐1(nF/km), zero-sequence 

capacitances 𝑐0(nF/km), and Frequency fn(Hz) are same for both lines. But the lines Length (km), 

Phase resistance R1(Ω), Phase Inductive reactance 𝑋1(Ω), and Phase susceptance B(μS) differs as 

presented. 

Table 4.1: Parameters of the MV standard electrical power lines. 

Line number 1 2 

Positive resistances  𝑟1(Ω/km) 0.0922 0.0922 

Zero-sequence resistances 𝑟0(Ω/km) 0.312 0.312 

Positive inductances 𝑙1(mH/km) 0.61 0.61 

zero-sequence inductances 𝑙0(mH/km) 2.83 2.83 

Positive capacitances 𝑐1(nF/km) 11.33 11.33 

zero-sequence capacitances 𝑐0(nF/km) 5.01 5.01 

Frequency 𝑓𝑛(Hz) 50 50 

Length (km) 30 40 

Phase resistance 𝑅1(Ω) 2.766 3.688 

Phase Inductive reactance 𝑋1(Ω) 5.749 7.665 

Phase susceptance 𝐵(μS) 53.39 71.19 

Individual MV power lines supply a 33 kV/11 kV transformer, with a rating of 25 MVA. The 

specification of this transformer is shown in Table 4.2. It is seen that the Frequency 𝑓𝑛(Hz), 

Nominal Power 𝑆𝑛(MVA), Magnetization resistance 𝑅𝑚  (MΩ), and Magnetization inductance 

𝐿𝑚(H) are same for both transformers. While the connection type, 𝑉𝑟𝑚𝑠(kV), R(Ω), and  𝐿(H) is 

D11, 33, and 0.15682 respectively. 0.005808 is for the high voltage winding. While Yg is 11, 

0.016639. 0.00061625 is for the low voltage winding. 

Table 4.2: Parameters of the three-phase 33/11 kV transformers. 

Transformer 1,2 

Higher 

voltage 

winding 

Lower 

voltage 

winding 

Connection type D11 Yg 

𝑉𝑟𝑚𝑠(kV) 33 11 

R (Ω) 0.15682 0.016639 

𝐿 (H) 

0.00580

8 

0.000616

25 

Frequency 𝑓𝑛  (Hz) 50 

Nominal Power 𝑆𝑛  (MVA) 25 

Magnetization resistance 

𝑅𝑚   (MΩ) 

0.06534 

Magnetization inductance 

𝐿𝑚 (H) 

207.98 
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The 25 MVA transformer at the consumer end busbar supply consumer load level of 11kV. The 

recorded values of consumer load are tabulated in Table 4.3. The Frequency 𝑓𝑛(Hz), and 

consumer’s voltage (kV) is same for both loads. But Active Power 𝑃𝐿(MW), Reactive Power 

𝑄𝐿(MVAr), Apparent Power 𝑆𝐿(MVA), and P.F cos(𝜑𝐿)  differs for both electrical loads. The 

benchmark three-phase line specifications of the standard electricity grid architecture supplying 

the 25 MVA transformer loads is shown in Table 4.4. It is inclusive of the sending and receiving 

active power (𝑃), sending and receiving reactive power (𝑄), sending and receiving voltage (𝑈), 

and power losses (∆𝑃). Table 4.4 shows that only the sending voltage (𝑈𝑠) value is same for both 

lines. But other specifications differ for both lines. 

Table 4.3: Measured values of the load. 

Active Power 𝑃𝐿  

(MW) 

10 

Reactive Power 𝑄𝐿   

(MVAr) 

5 

Apparent Power 𝑆𝐿  

(MVA) 

11.18 

P.F cos(𝜑𝐿)   0.894 

Frequency 𝑓𝑛   (Hz) 50 

consumer’s voltage 

(kV) 

11 

 

Table 4.4: Measured parameters of the benchmark commercial three-phase lines. 

Line 

𝑃𝑠  
(MW) 

𝑃𝑟   
(MW) 

𝑄𝑠  
(MVAr) 

𝑄𝑟   
(MVAr) 𝑈𝑠  (kV) 𝑈𝑟  (kV) 

∆𝑃 

(MW) 

1 8.818 8.547 5.088 4.632 32.582 30.946 0.271 

2 8.615 8.265 5.064 4.479 32.582 30.432 0.35 

 

4.3 Modelling of the Synchronous Condenser   
 

A 3.125 MVA synchronous condenser has been used in this thesis. It is a round-rotor type machine, 

modelled in detail with its excitation systems. It is a modified version of the built-in model by 

MATLAB/Simulink [285]. The setting allows feeding the entire electricity grid architecture with 

adequate reactive power needs. This type of control strategy focuses on reactive power injection 

to the local bus or substation. But it depends on the position or point of connection of the 

synchronous condenser. The synchronous condenser is investigated for reactive power production, 

when aiding Type 3 wind farm during dynamic situations. 
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4.4 Modelling of the Type-3 Wind Plant  
 

A wind farm rated 9 MW based on Type-3 wind machine, with a power factor rating of 0.9 is 

utilized for this thesis. The DFIG model used is a modified version of the built-in model by 

MATLAB/Simulink [285], it consists of a wound rotor induction generator and an 

AC/DC/AC/IGBT-based Pulse-Width Modulation (PWM) converter. PWM converters make 

available a compact solution for converting current into digital pulse width modulated signal. A 

reference voltage is made available on the PWM output.  The doubly fed induction generator is 

equally equipped with a pitch control system. This is built based on Doubly Fed Induction 

Generator using back-to-back PWM converters. The generator stator is directly linked to the 

electricity grid architecture. Whereas the rotor is joined to the electricity grid through an 

AC/DC/AC converter and slip rings. The converter consists of firstly; the Rotor-Side Converter 

(RSC) and secondly the Grid-Side Converter (GSC). A capacitor coupling the two converters acts 

as a DC voltage source, that is the DC bus. Active power is generated by way of a pre-defined 

power-speed characteristic. The DFIG model is deemed suitable for dynamic stability studies. In 

a DFIG active power is produced and injected into the electricity grid architecture by utilizing its 

AC/DC/AC converter system. Contains dq-current regulators, here ‘d’ stands for the d-axis and 

‘q’ for the q-axis. Methodically, by controlling the DFIG equations and steering the machines 

characteristic relations between flux, voltage, current and so on. Active power related equations 

are gotten. It is of note to know here that reactive power is decoupled. Enabling production and 

injection of active power only from the wind farm. The DFIG model utilized for this thesis employs 

a typical vector control scheme. Where active power is controlled by regulating rotor q-axis current 

and pitch angle. All power regulators use proportional–integral (PI) controllers [247], [249], [286] 

– [292]. 

 

4.5 Methodology 
 

Here two electricity grid architecture modes were studied (Mode One and Two). In each situation, 

the synchronous condenser and the wind farm positions were interchanged on the electricity grid 

architecture. 

 

4.5.1 Electricity Grid Architecture - Mode One 

 

For Mode One, five Cases were designed Case A, B, C, D and E, with the point of installation of 

the SC and wind farm altered in each situation. Case A is the reference case.  Case B is the situation 

when the wind farm is joined to the electricity grid architectures main substation. Case C is the 

situation with the wind farm connected to the electricity grid close to consumers load. Case D is the 

situation when the SC is installed at the main substation bus. Case E is the condition with the SC 

joined to the grid at the consumer load busbar. Schematic diagram of the simulation model and 

methodology of the reference point situation (Case A), Case B, Case C, Case D and Case E is shown 

in Fig. 4.2. The parameters of the Benchmark Case are applied in the methodology. Four steps were 
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monitored as shown in Table 4.5. In the table, P is the active power in megawatt, Q is the reactive 

power in megaVAR, while S is the apparent power in MVA.  

Table 4.5: Calculated values of reactive, active and apparent power for various steps of loads. 

Steps Active 

power 

𝑃1 

(MW) 

Rate 

increase 

% 𝑃1 

Reactive 

power 𝑄1 

(MVar) 

Rate 

increase 

% 𝑄1 

Apparent 

power 𝑆1 

MVA 

Rate 

increase 

% 𝑆1 

1 10 0% 5 0% 11.18 0% 

2 12 20% 6 20% 13.416 20% 

3 14 40% 7 40% 15.652 40% 

4 16 60% 8 60% 17.889 60% 

 

 

Fig. 4.2: The proposed electricity grid architecture with installed synchronous condenser and 
wind plants for Case A, B, C, D, and E considering mode one. 

 

4.5.2 Electricity Grid Architecture - Mode Two 

For Mode Two, there are three cases. The benchmark case, which is Case A. Case B, when the wind 

farm is placed at the grid main substation and SC is placed at the consumers load ends. Case C 

when the SC is placed at the main substation and the wind farm is placed at the consumer load ends. 

This scheme is vividly shown in Fig. 4.3. The parameters of the benchmark case are put to practical 

use just like in grid Mode One. Four steps were equally monitored for grid Mode Two. The first 

step is the benchmark case value parameter of loads. While steps 2 - 4 are increased in various 

percentage levels of active, reactive and apparent power as presented in Table 4.6 and Table 4.7 for 
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load 1 and 2 respectively. The active power, reactive power and apparent power values are 

measured and obtained as shown in Table 4.6, for load 1. The measured parameter values for load 

2 is presented in Table 4.7. 

Table 4.6: Calculated values of reactive, active and apparent power for various steps for load 1. 

Steps Active 

power 

𝑃1 

(MW) 

Rate 

increase 

% 𝑃1 

Reactive 

power 

𝑄1 

(MVar) 

Rate 

increase 

% 𝑄1 

Apparent 

power 𝑆1 

MVA 

Rate 

increase 

% 𝑆1 

1 10 0 % 4 0% 10.77 0% 

2 12 20% 5 25% 13 20.71% 

3 14 40% 6 50% 15.232 41.43% 

4 16 60% 7 75% 17.464 62.15% 

 

Table 4.7: Calculated values of reactive, active and apparent power for various steps for load 2. 

Steps Active 

power 

𝑃1 

(MW) 

Rate 

increase 

% 𝑃1 

Reactive 

power 

𝑄1 

(MVar) 

Rate 

increase 

% 𝑄1 

Apparent 

power 𝑆1 

MVA 

Rate 

increase 

% 𝑆1 

1 12 0% 6 0% 13.416 0% 

2 14 16.67% 7 16.67% 15.652 16.67% 

3 16 33.33% 8 33.33% 17.889 33.33% 

4 18 50% 9 50% 20.125 50% 

 

 

Fig. 4.3: Scheme of the proposed wind plant integrated electricity grid architecture for Case A, B, 

and C considering grid mode two. 
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4.6 Algorithm for the Proposed Radial Electricity Grid 

Architecture (Mode One and Two) 

This algorithm is to choose suitable active and reactive power source type for the radial distribution 

electricity grid architecture. It is done according to loads for grid Mode One and Two respectively. 

For the algorithm the following has been considered. 

1. Each load has active power, reactive power and power factor. 

2. Generally, assuming there are two sources. The first source produces active power. While 

the second source produces reactive power. Hence, this can be expressed as follows: 

𝑆𝑃𝑄 = 𝑃 + 𝑄                                                                                                                  (4.1) 

3. Now, considering loads 1……. n: 

𝑆1 = 𝑃1 + 𝑄1                                                                                                                  (4.2) 

𝑆2 = 𝑃2 + 𝑄2                                                                                                                  (4.3)                   

𝑆𝑛 = 𝑃𝑛 + 𝑄𝑛                                                                                                                  (4.4) 

4. Then the power sources are utilized for the distribution electricity grid architecture in all 

available cases for the two-mode operation: 

            Mode One: Active and reactive power separately sourced. 

            Mode Two: Active and reactive power combinedly sourced. 

5. Afterwards, power losses, voltage drop, sending power factor and receiving power factor 

are calculated. i.e. ∆𝑃, 𝛥𝑉, 𝑈𝑠 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛, 𝑈𝑟𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛, cos 𝜑𝑠 𝑎𝑛𝑑 cos 𝜑𝑟 

 

6. According to these parameters. Suitable mode and position are chosen for the distribution 

electricity grid architecture. 

 

The control algorithm developed for the electricity grid architecture, considering grid mode one 

and two is vividly shown in Fig. 4.4. It starts with the measurements of the various parameters. 

This ends with choosing the best position and capacity for the electricity grid architecture mode 

one and two respectively. 
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Start

Measurements of 

S=P+jQ and 

cos(φ) for all loads 

Electricity Grid Architecture - 

Mode One: P or Q (separated)

Electricity Grid Architecture - 

Mode Two: P & Q (combined)

Mode Two: 

Available Positions 1 to m

Available Capacities 0 to S

Stop

Mode One:

 Available Positions 1 to n

Available Capacities 0 to P or 0 to Q 

Measurements of ΔP, ΔV, Vs 
deviation, Vr deviation, sending 
cos(φ) and receiving cos(φ) for 
each position and capacity    

Measurements of ΔP, ΔV, Vs 
deviation, Vr deviation, sending 
cos(φ) and receiving cos(φ) for 
each position and capacity    

Best position and 

capacity of Mode One

Best position and 

capacity of Mode Two

Best position and capacity of 

Mode One and Two

 

Fig. 4.4: The control algorithm developed for the electricity grid architectures, considering grid 

mode one and two respectively.  
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Chapter 5 
 

5.0 Simulation of Electricity Grid 

Architecture – Mode One: Description, 

Analysis, Results and Discussion 
 

This chapter summarizes the main contributions within grids Mode One simulation framework, 

detailed in Paper One. This chapter is organized as follows. Section 5.1 vividly describe the 

mathematical model of the electricity grid architecture presented in Mode One. Next, in Section 

5.2 Mode One electricity grid architecture description, analysis, results and discussion is detailed.  

5.1 Mathematical Model for Mode One Electricity Grid 

Architecture 

 

S
u
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L1

L2

L3

Load1

Ln

ISL1

ISL2

ISL3

ISLn

ITL1

Load2ITL2

Load3ITL3

LoadnITLn

IBSS1

IBSS2

IBSS3

IBSSn

ICSS1

ICSS2

ICSS3

ICSSn

IAss

Case A 
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Case C 

Case E 
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IDC IEC

ICW
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Case B 

IBW

Case D 

IDSS1
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IESS1

IESS2
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IESSn

 

Fig. 5.1: Schematic diagram of simulation model, with its vector components and methodology of 

the point of reference Case (Case A), Case B, Case C, Case D and Case E for Mode One electricity 

grid architecture. 
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Taking into consideration the medium voltage substation network (S. S1) and its vector elements: 

𝑆𝑆𝑆 = ∑ 𝑆𝑆𝐿𝑖

𝑛

𝑖=1

                                         (5.1) 

𝐼𝑆𝑆 = ∑ 𝐼𝑆𝐿𝑖

𝑛

𝑖=1

                                         (5.2) 

In this respect: 

𝑆𝑆𝑆 is the apparent power of the substation system. 

𝐼𝑆𝑆 is the total line current of the substation system. 

𝐼𝑆𝐿𝑖 is the line current supplied to the nth number of power lines from the substation. 

𝑆𝑆𝐿𝑖 is the apparent power supplied to the nth number of power lines from the substation. 

𝑖 = 1,2,3, … … , 𝑛. i.e. nth number of Lines 

Hence, for nth lines that supply nth loads at the end of line from the medium voltage (MV) 

substation. The set of transformer and load is equal to total load. Thus, the total apparent power of 

each nth number of set is  𝑆𝑇𝐿𝑖 , in this situation: 

i=1,2,3,……,n. i.e. number of Loads.  Then, Line number = each load number. 

In Fig. 5.1: 

                                                                𝑃𝑆𝐿𝑖 = 𝛥𝑃𝐿𝐿𝑖 + 𝑃𝐿𝑇𝑖                 (5.3) 

In this condition: 

𝑃𝑆𝐿𝑖 is the active power supplied to nth number of lines. 

𝛥𝑃𝐿𝐿𝑖 is the active power losses of nth number of lines. 

𝑃𝐿𝑇𝑖 is the active power of nth number of lines. 

From equation (5.3): 

                                                                  𝛥𝑃𝐿𝐿𝑖 = 𝑃𝑆𝐿𝑖 − 𝑃𝐿𝑇𝑖                                                                                          (5.4) 

The power losses on the line is given by: 
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                                                                    𝛥𝑃 = 3𝐼𝐿
2 ∙ 𝑅1𝐿 (5.5) 

The difference in voltage (that is voltage drop) for each phase is given by: 

                                                                    𝛥𝑉 = 𝐼𝐿 ∙ 𝑍𝐿                  (5.6) 

Considering only Case, A, and from equation (5.5), and Fig. 5.1:  

                                                                           𝛥𝑃𝐿𝐿𝑖 = 3(𝐼2
𝑆𝐿𝑖 ∙ 𝑅1𝐿𝐿𝑖)                          (5.7) 

Therefore, power losses for nth number of lines for Case A will be: 

                                                                     𝛥𝑃𝐴𝐿𝐿𝑖 = 3(𝐼2
𝐴𝑆𝑆𝑖 ∙ 𝑅1𝐿𝐿𝑖)    (5.8) 

Where: 

                                                                     𝐼𝑆𝐿𝑖 = 𝐼𝐴𝑆𝑆𝑖   (5.9) 

𝐼𝐴𝑆𝑆𝑖  is the line current for nth number of power lines and it is equal to 𝐼𝑆𝐿𝑖 for Case A.  

𝛥𝑃𝐴𝐿𝐿𝑖 is the power losses of nth number of lines for Case A. 

Accordingly, the total losses of S. S1 for Case A will be: 

                                                      𝛥𝑃𝐴𝑇 = ∑ 𝛥𝑃𝐴𝐿𝐿𝑖
𝑛
𝑖=1                                                  (5.10) 

In like manner, from equations (5.6), and (5.9), and Fig. 5.1: 

                                                  𝛥𝑉𝐴𝐿𝐿𝑖 = 𝐼𝐴𝑆𝑆𝑛 ∙ 𝑍𝐿𝐿𝑖                                                            (5.11)                                  

Where: 

𝛥𝑉𝐴𝐿𝐿𝑖  is the voltage drop in nth number of lines of Case A. 

𝑍𝐿𝐿𝑖 is the longitudinal impedance of nth number of lines. 

Taking into consideration Case B: 

The wind farm is connected to the bus bar which supply all transmission lines as shown in Fig. 

5.1, applying Kirchhoff’s current law: 

                                                          𝐼𝐵𝑆𝑆 =  𝐼𝑆𝑆 + 𝐼𝐵𝑊           (5.12) 
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Where:  

𝐼𝐵𝑊 : wind farm line current  

𝐼𝐵𝑆𝑆 :  total substation line current of Case B. 

From equation (5.12) and the vector directions of the wind farm and synchronous condenser 

parameters in Fig. 5.1: 

                                                                 𝐼𝐵𝑆𝑆𝑖 =  𝐼𝑆𝑙𝑖 +  𝐼𝐵𝑊𝑖 

 

(5.13) 

In this instance: 

𝐼𝐵𝑊𝑖   is a constituent of the wind farm line current going through nth number of lines. 

𝐼𝐵𝑆𝑆𝑖  is the new line current supplied to nth number of power lines of Case B.   

From equation (5.5), (5.12) and (5.13), the power losses for nth number of lines of Case B is written 

as: 

                                    𝛥𝑃𝐵𝐿𝐿𝑖 = 3(𝐼2
𝐵𝑆𝑆𝑖 ∙ 𝑅1𝐿𝐿𝑖) (5.14) 

 𝛥𝑃𝐵𝐿𝐿𝑖 = 3 ∙ 𝑅1𝐿𝐿𝑖(𝐼2
𝑆𝐿𝑖 + 𝐼2

𝐵𝑊𝑖 + 2. 𝐼𝑆𝑙𝑖. 𝐼𝐵𝑊𝑖) (5.15) 

In this condition: 

𝛥𝑃𝐵𝐿𝐿𝑖  is the power losses for nth number of lines of Case B. 

Consequently, the total losses of S. S1 for Case B will be: 

𝛥𝑃𝐵𝑇 = ∑ 𝛥𝑃𝐵𝐿𝐿𝑖

𝑛

𝑖=1

                                        (5.16) 

Likewise, from equations (5.6), (5.12), and (5.13), and Fig. 5.1: 

                                                        𝛥𝑉𝐵𝐿𝐿𝑖 = 𝐼𝐵𝑆𝑆𝑖 ∙ 𝑍𝐿𝐿𝑖             (5.17) 

                                                        𝛥𝑉𝐵𝐿𝐿𝑖 = (𝐼𝑆𝐿𝑖 + 𝐼𝐵𝑊𝑖) ∙ 𝑍𝐿𝐿𝑖              (5.18) 

Where: 

𝛥𝑉𝐵𝐿𝐿𝑖  is the voltage drop of nth number of lines for Case B. 
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Now, taking into consideration Case C: 

The wind farm is joined to the end of all transmission lines as shown in Fig. 5.1, applying 

Kirchhoff’s current law: 

                                                            𝐼𝐶𝑆𝑆 =  𝐼𝑆𝑆 −  𝐼𝐶𝑊             (5.19) 

In this respect:  

𝐼𝐶𝑊 : wind farm line current  

𝐼𝐶𝑆𝑆 :  total substation line current for Case C. 

From equation (5.19) and the vector directions of the wind farm and synchronous condenser 

parameters in Fig. 5.1: 

                                                             𝐼𝐶𝑆𝑆𝑖 =  𝐼𝑆𝑙𝑖 − 𝐼𝐶𝑊𝑖 (5.20) 

Where: 

𝐼𝐶𝑊𝑖   is a constituent of the wind farm line current going through nth number of lines. 

𝐼𝐶𝑆𝑆𝑖  is the new line current supplied to nth number of power lines for Case C.   

From equation (5.5), (5.19) and (5.20), the power losses for nth number of lines for Case C is 

written as: 

                                      𝛥𝑃𝐶𝐿𝐿𝑖 = 3(𝐼2
𝐶𝑆𝑆𝑖 ∙ 𝑅1𝐿𝐿𝑖) (5.21) 

  

𝛥𝑃𝐶𝐿𝐿𝑖 = 3 ∙ 𝑅1𝐿𝐿𝑖(𝐼2
𝑆𝐿𝑖 + 𝐼2

𝐶𝑊𝑖 − 2. 𝐼𝑆𝑙𝑖 . 𝐼𝐶𝑊𝑖) (5.22) 

Where: 

𝛥𝑃𝐶𝐿𝐿𝑖  is the power losses for nth number of lines of Case C. 

On this account, the total losses of S. S1 for Case C will be: 

𝛥𝑃𝐶𝑇 = ∑ 𝛥𝑃𝐶𝐿𝐿𝑖

𝑛

𝑖=1

                                            (5.23) 

Correspondingly, from equations (5.6), (5.19), and (5.20), and Fig. 5.1: 
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                                                                 𝛥𝑉𝐶𝐿𝐿𝑖 = 𝐼𝐶𝑆𝑆𝑖 ∙ 𝑍𝐿𝐿𝑖                  (5.24) 

                                                                 𝛥𝑉𝐶𝐿𝐿𝑖 = (𝐼𝑆𝐿𝑖 − 𝐼𝐶𝑊𝑖) ∙ 𝑍𝐿𝐿𝑖                  (5.25) 

Where: 

𝛥𝑉𝐶𝐿𝐿𝑖  is the voltage drop of nth number of lines for Case C. 

Equally, considering Case D: 

The synchronous condenser is joined to the bus bar which supply all transmission lines as shown 

in Fig. 5.1, applying Kirchhoff’s current law: 

                                                                  𝐼𝐷𝑆𝑆 =  𝐼𝑆𝑆 +  𝐼𝐷𝐶            (5.26) 

In this condition:  

𝐼𝐷𝐶 : synchronous condenser line current  

𝐼𝐷𝑆𝑆 :  total substation line current for Case D. 

From equation (5.26) and the vector directions of the wind farm and synchronous condenser 

parameters in Fig. 5.1: 

                                                                   𝐼𝐷𝑆𝑆𝑖 =  𝐼𝑆𝑙𝑖 +  𝐼𝐷𝐶𝑖  (5.27) 

In this respect: 

𝐼𝐷𝐶𝑖 is a constituent of the synchronous condenser line current going through nth number of lines. 

𝐼𝐷𝑆𝑆𝑖  is the new line current supplied to nth number of power lines for Case D.   

From equation (5.5), (5.26) and (5.27), the power losses for nth number of lines for Case D is 

written as: 

                                𝛥𝑃𝐷𝐿𝐿𝑖 = 3(𝐼2
𝐷𝑆𝑆𝑖 ∙ 𝑅1𝐿𝐿𝑖) (5.28) 

𝛥𝑃𝐷𝐿𝐿𝑖 = 3 ∙ 𝑅1𝐿𝐿𝑖(𝐼2
𝑆𝐿𝑖 + 𝐼2

𝐷𝐶𝑖 + 2. 𝐼𝑆𝑙𝑖 . 𝐼𝐷𝐶𝑖) (5.29) 

In this condition: 

𝛥𝑃𝐷𝐿𝐿𝑖  is the power losses for nth number of lines for Case D. 

As a result, the total losses of S. S1 for Case D will be: 
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𝛥𝑃𝐷𝑇 = ∑ 𝛥𝑃𝐷𝐿𝐿𝑖

𝑛

𝑖=1

 (5.30) 

In the same way, from equations (5.6), (5.26), and (5.27), and Fig. 5.1: 

                                                                   𝛥𝑉𝐷𝐿𝐿𝑖 = 𝐼𝐷𝑆𝑆𝑖 ∙ 𝑍𝐿𝐿𝑖                   (5.31) 

                                                                   𝛥𝑉𝐷𝐿𝐿𝑖 = (𝐼𝑆𝐿𝑖 + 𝐼𝐷𝐶𝑖) ∙ 𝑍𝐿𝐿𝑖                   (5.32) 

Where: 

𝛥𝑉𝐷𝐿𝐿𝑖  is the voltage drop of nth number of lines for Case D. 

Furthermore, considering Case E: 

The synchronous condenser is linked to the end of all transmission lines as shown in Fig. 5.1, 

applying Kirchhoff’s current law, just as in other Cases: 

                                                                       𝐼𝐸𝑆𝑆 =  𝐼𝑆𝑆 − 𝐼𝐸𝐶              (5.33) 

In which:  

𝐼𝐸𝐶  : synchronous condenser line current  

𝐼𝐸𝑆𝑆 :  total substation line current for Case E. 

From equation (5.33) and the vector directions of the wind farm and synchronous condenser 

parameters in Fig. 5.1: 

                                                                       𝐼𝐸𝑆𝑆𝑖 =  𝐼𝑆𝑙𝑖 − 𝐼𝐸𝐶𝑖  (5.34) 

Where: 

𝐼𝐸𝐶𝑖 is a constituent of the of synchronous condenser line current going through nth number of lines. 

𝐼𝐸𝑆𝑆𝑖  is the new line current supplied to nth number of power lines for Case E.   

From equation (5.5), (5.33) and (5.34), the power losses for nth number of lines for Case E is 

written as: 

                                𝛥𝑃𝐸𝐿𝐿𝑖 = 3(𝐼2
𝐸𝑆𝑆𝑖 ∙ 𝑅1𝐿𝐿𝑖) (5.35) 

𝛥𝑃𝐸𝐿𝐿𝑖 = 3 ∙ 𝑅1𝐿𝐿𝑖(𝐼2
𝑆𝐿𝑖 + 𝐼2

𝐸𝐶𝑖 − 2. 𝐼𝑆𝑙𝑖 . 𝐼𝐸𝐶𝑖) (5.36) 
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In this situation: 

𝛥𝑃𝐸𝐿𝐿𝑖  is power losses for nth number of lines for Case E. 

Accordingly, the total losses of S. S1 for Case E will be: 

𝛥𝑃𝐸𝑇 = ∑ 𝛥𝑃𝐸𝐿𝐿𝑖

𝑛

𝑖=1

 (5.37) 

Equivalently, from equations (5.6), (5.33), and (5.34), and Fig. 5.1: 

                                                                   𝛥𝑉𝐸𝐿𝐿𝑖 = 𝐼𝐸𝑆𝑆𝑖 ∙ 𝑍𝐿𝐿𝑖                  (5.38) 

                                                                   𝛥𝑉𝐸𝐿𝐿𝑖 = (𝐼𝑆𝐿𝑖 − 𝐼𝐸𝐶𝑖) ∙ 𝑍𝐿𝐿𝑖                   (5.39) 

Where: 

𝛥𝑉𝐶𝐿𝐿𝑖  is the voltage drop of nth number of lines for Case E. 

5.2 Description, Analysis, Results and Discussion for Mode 

One Electricity Grid Architecture 

Fig. 4.2 in chapter 4, represents the proposed scheme with installed synchronous condenser and 

wind farm. This part of the thesis confirms the effectiveness of the synchronous condenser with 

Type-3 DFIG-based wind machine installed in the electricity grid architecture. Here, two 

performance criteria are used. First is the synchronous condenser capability to produce reactive 

power, and second is the wind farm active power generation ability. Furthermore, the wind farm 

and the synchronous condenser are then connected to the electricity grid architecture by changing 

their positions. The Type-3 DFIG wind machines are operated in active power regulation mode 

such that its reactive power regulation mode is decoupled. The results with the synchronous 

condenser installed and the Type-3 wind machine farms connected to the grid are compared with 

that of Case A. 

The parameters of the point of reference Case are put to practical use by utilizing the methodology 

proposed in chapter four. Four steps monitored values were obtained. The first step is the point of 

reference case value parameter of loads. While steps 2 - 4 are increased in 20% for each step levels 

of active, reactive and apparent power as presented in Table 4.5 in chapter 4, for load 1 and 2 

respectively. Note that the observed measured values for both lines are the same, since the loads 

connected to both lines are equally the same. The active power, reactive power and apparent power 

values are measured and obtained as shown in Table 4.5, for load 1 and 2 respectively.  
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Fig. 5.2: Percentage of sending voltage deviation from nominal voltage of 33 kV for different 

steps of Case A, B, C, D and E for Mode One electricity grid architecture. 

 

Fig. 5.3: Percentage of receiving voltage deviation from nominal voltage of 33 kV for different 

steps of Case A, B, C, D and E for Mode One electricity grid architecture. 

 

Fig. 5.4: Percentage of allowed additional voltage drop for different steps of Case A, B, C, D and 

E for Mode One electricity grid architecture. 
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Fig. 5.2 shows that the sending voltage deviation from the nominal voltage of 33 kV has the same 

value for all cases. it should be noted that the sending voltage deviation increases moving from 

step 1 through 4. It can be inferred that the position of the wind farm or synchronous condenser 

does not have any effect on the sending voltage deviation. The percentage of receiving voltage 

deviation from nominal voltage of 33 kV for different steps of Case A, B, C, D and E is plotted in 

Fig. 5.3. The result shows that receiving voltage deviation decreases with about 1% for Case C 

and E. Results for Case B and D is the same. Implying that when the wind farm or synchronous 

condenser is connected to the end of the 33 kV transmission lines, voltage deviation is reduced. 

The point of reference Case (Case A) result is equally the same with Case B and D. 

Furthermore, the percentage of allowed additional voltage drop for different steps of Case A, B, 

C, D and E is graphically presented in Fig. 5.4. It shows that the allowed additional voltage drop 

increases between 8 - 10 % for Case C and E. But the observed results for Case B and D is the 

same. Therefore, itt can be deduced from the foregoing that position or placement of the wind farm 

or synchronous condenser is very important especially for high values of loads, such as in step 4 

were the observed voltage drop is seen to be higher than 3.3 kV for Case B and D. Here, the 

standard Case (Case A) result is equally the same with Case B and D. It implies that as more loads 

are added to transmission lines, the more current flows. Current provision is limited to a given 

capacity owing to limitations of the ability of electricity grid architectures to produce charge 

imbalances. Consequently, the more the voltage drop. Note that current is the movement of 

charges. Whenever electrical load is connected to any power line. It draws more current than before 

and when current increases then voltage decreases. When load is applied to an electricity grid 

architecture, it means that current begins to flow. If there is any resistance in the lines connected 

to it, the resulting change in voltage will be in the dictate of reducing the voltage applied to the 

load. 

 

Fig. 5.5: Power losses for different steps of Case A, B, C, D and E for Mode One electricity grid 

architecture. 
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Fig. 5.6: Percentage of power losses reduction for different steps of Case B, C, D and E compared 

with Case A for Mode One electricity grid architecture. 

Under the analysis of power losses for different steps of Case A, B, C, D, and E. Power losses 

reduces slightly or did not change or increased slightly as regards to Case B and D. The point of 

reference Case result is the same with the observed results for Case B and D. But considering Case 

C and E power losses is significantly reduced especially in Case C. Hence, it can be inferred that 

when the wind farm or synchronous condenser is joined to the beginning of the electricity grid 

architecture, power losses reduced slightly. But when the wind farm or synchronous condenser 

were installed to the end of the transmission lines, power losses is drastically reduced.  Note that 

the effect of the wind farm is much higher due to its nominal power, which is 9 MVA. The nominal 

power of the synchronous condenser is 3.125 MVA, which is lower than that of the wind farm. 

The results for the power losses are presented in Fig.5.5.  

Figure 5.6 shows that investigating the percentage of power losses reduction for Case B and D, 

just as is the case for power losses in Fig. 5.5. Percentage power losses in Case B and D decreased 

slightly or did not change or increased slightly as compared with Case A. But for Case C and E 

the percentage power losses decrease significantly as compared to Case A. Figure 5.6, vividly 

shows that the percentage of power losses reduction in Case C is about 60% and that of Case E is 

about 35%. It can therefore be said that the position of the wind farm and synchronous condenser 

played a vital role in reducing power losses and nominal power. 
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Fig. 5.7: Sending power factor for different steps of Case A, B, C, D and E for Mode One electricity 

grid architecture. 

 

Fig. 5.8: Receiving power factor for different steps of Case A, B, C, D and E for Mode One 

electricity grid architecture. 

Fig. 5.7 reports the sending power factor values recorded for all the Cases observed. There were 

no remarkable changes seen in Case B and D. This equally applies to the benchmark Case (Case 

A). The observed sending power factor for Case C decreases in value from about 0.85 to 0.75, 

while that for Case E increases to about 0.95. Figure 5.8 is a graphical presentation of the receiving 

power factor values for all the Cases observed. The results gotten are like the results obtained for 

the sending power factor analysis. The observed steady power factor for Case A, B and D is owing 

to the wind farm and synchronous condenser being installed to the 50 MVA main substation 

busbar. Hence, the changes in the power flow though the transmission lines are very small. But 

considering Case C, the sending power factor decreases owing to the wind farm being connected 

to the end of the transmission line busbars. Therefore, the active power which flows through the 

transmission lines becomes smaller, thereby leading to a decrease in the power factor values. Also, 
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taking into consideration Case E, the sending power factor results obtain is seen to increase owing 

to the synchronous condenser being installed at the end of the 33 kV transmission lines busbar 

connected to the two step-down transformers. For this reason, the reactive power which flows 

through the transmission lines reduces. This brings about an increase in the value of power factor 

of the electricity grid architecture. 

 

Fig. 5.9: Percentage of voltage drop reduction for different steps of Case B, C, D and E compared 

with Case A for Mode One electricity grid architecture. 

 

Fig. 5.10: Percentage of voltage drop and power losses reduction for different steps of Case B, C, 

D and E compared with Case A for Mode One electricity grid architecture. 

The percentage of voltage drop reduction for different steps of all the cases is presented in Fig. 

5.9. Observed findings shows that voltage drop decreases only in Case C and E, with a decrease 

in voltage drop of 12%. This insinuating that the voltage drop could only be reduced when the 

wind farm or synchronous condenser is coupled to the end of the 33 kV electricity grid architecture 
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close to the consumer substation. Note here that the percentage of voltage drop reduction is the 

same for all the steps observed. Figure 5.10 displays the percentage of voltage drop and power 

losses reduction for the different cases observed. The reduction in the parameters monitored is 

exceptional only for Case C and E. Voltage drop decreases with about 12% for these two cases. 

The power losses equally decrease with 60% for Case C and 35% for Case E. This is due to the 

reasons earlier mentioned. 
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Chapter 6 
 

6.0 Simulation of Electricity Grid 

Architecture – Mode Two: Description, 

Analysis, Results and Discussion 
 
This chapter provides a summary of the main contributions of Mode Two electricity grid 

architecture. This is detailed in Paper Two and Three presented in the contributions section of this 

thesis. The chapter is organized as follows. Section 6.1 briefly talk about the mathematical 

modelling. It refers to chapter 5 for a detailed mathematical modelling, as the scheme for Mode 

One electricity grid architecture was equally modeled just as the scheme for Mode Two electricity 

grid architecture. Section 6.2 provides a vivid illustration of Mode Two electricity grid architecture 

as shown in Fig. 4.3 of chapter 4. 

6.1 Mathematical Model for Mode Two Electricity Grid 

Architecture 

 

Fig. 6.1: Diagram of the simulation model and methodology scheme of benchmark Case (Case A), 

Case B and Case C for Mode Two electricity grid architecture. 
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The synchronous condenser is modelled in detail with its excitation systems. All transmission lines 

of the proposed electricity grid architecture are modelled using pi-model. The grid architecture for 

Mode Two was mathematically modeled just as in the electricity grid architecture for Mode One, 

as presented in section 5.1 of Chapter 5. 

6.2 Description, Analysis, Results and Discussion for Mode 

Two Electricity Grid Architecture 

In this section, load 1 simulation is executed at several active power levels of 0%, 20%, 40%, and 

60%. While the reactive power levels are executed in 0%, 25%, 50%, and 75% respectively, as 

depicted in Table 4.6. The apparent power levels are 0%, 20.71%, 41.43%, and 62.15% for load 2 

as tabulated in table 4.7. With active, reactive and apparent power, levels of 0%, 16.67%, 33.33%, 

and 50%, implying that the same level of increment was used for the various steps. The percentage 

of sending voltage deviation from the nominal voltage of 33 kV for different steps in Case A, B 

and C is presented in Fig. 6.2. It shows that the differences between Case A, B and C is very small 

and unremarkable. It also portrays that the load increase in each step, brought about an increase in 

the sending voltage deviation from the nominal voltage value of 33 kV. Equally, Fig. 6.3 renders 

that the deviation of receiving voltage in Case B and C is lower than that of Case A. This is owing 

to the power injected onto the grid at the end of the 33 kV MV electricity grid architecture. It is 

noticed that the deviations in Case B and C are very close. 

 

Fig. 6.2: Percentage of sending voltage deviation from the nominal voltage of 33 kV for different 

steps of Case A, B and C for Mode Two electricity grid architecture. 
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Fig. 6.3: Percentage of receiving voltage deviation from the nominal voltage of 33 kV for different 

steps of Case A, B and C for Mode Two electricity grid architecture. 

The performance of the wind plant and synchronous condenser as regards to the percentage of 

allowed additional voltage drop for different steps in Case B and C, as well as for Case A is plotted 

in Fig. 6.4. It shows that the percentage of allowed additional voltage drops of the lines before the 

voltage drop exceeds 3.3 kV. This is 10% of the nominal voltage. Here, the maximum allowed 

voltage drop is 3.3kV. While the safety margin of Case B and C is higher than that of Case A. But 

the achievable voltage drops in steps 3 and 4 did not exceed 3.3 kV, going by 1% for step 3 and 

12 % for step 4. Fig. 6.5 pictures the power losses for the different steps in Case A, B and C. In 

this analysis, power losses for Case B and C is lower than that of Case A. In addition, power losses 

in Case B is less than that of Case C. This implying that using wind power plants to inject active 

power at the start point of the grid, and the synchronous condenser to produce reactive power at 

the consumer end of the 33 MV electricity grid architecture is more effective compared to the 

results obtained by the reverse positioning.  

From Fig 6.6 it is observed that the percentage of power losses reduction for different steps in Case 

B and C compared with Case A decreases for all Cases and steps. But the reduction in Case B is 

observed to be higher. It is vividly seen that the reduction in all steps was generally the same in 

each Case. The apparent power is the percentage increase in load, as the load increases the results 

becomes more favorable. 

 

Fig. 6.4: Percentage of allowed additional voltage drop for different steps of Case A, B and C for 

Mode Two electricity grid architecture. 
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Fig. 6.5: Power losses for different steps of Case A, B and C for Mode Two electricity grid 

architecture. 

 

Fig. 6.6: Percentage of power losses reduction for different steps of Case B and C compared with 

Case A for Mode Two electricity grid architecture. 

The sending power factor for different steps of Case A, B and C is plotted in Fig. 6.7. In this 

analysis, the sending power factor for Case B and C is higher than that of Case A. It ranges between 

0.97 and 0.93, whereas the result for Case A is between 0.86 and 0.83. Note that the sending power 

factor for Case C is higher than that of Case B. The receiving power factor for different steps of 

Case A, B and C is shown in Fig. 6.8. This result is like that gotten in Fig. 6.7, where the power 

factor for Case B and C is higher than that of Case A. The power factor values recorded for Case 

B and C range between 0.99 and 0.95, whereas the values observed for Case A is between 0.88 

and 0.87. It can be seen in Fig. 6.8, that the sending power factor as regards to Case C is higher 

than that of Case B. 

In the proposed electricity grid architecture, active power and a little amount of reactive power is 

needed. But with low power factor the reactive power is higher than usually needed. low power 

factor in the circumstance of Case A imply that reactive power is higher than active power. Hence, 

low power factor means dealing with high amount of reactive power. Therefore, low power factor 

drawback is the drawback of excessive reactive power. Hence, with low power factor the amount 

of apparent power in the grid is increased. Although the power in kW is still the same. This 

associates some significant losses both on the lines and on the consumer side as is the situation for 
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Case A. But the reverse is the situation for Case B and C were the losses on both the lines and the 

consumer side of the scheme is minimized due to the installation of the wind plant for active power 

regulation and synchronous condenser for reactive power generation. Furthermore, the voltage 

drop of the proposed MV grid distributors increases as the power factor values decreases. In order 

to keep up with the voltage at the receiving end. The Type-3 wind plants for active power control 

only and synchronous condensers for reactive power control only must be installed onto the 

proposed scheme. The 33kV line voltage is maintained owing to the observed power factor 

standing for both Case B and C. 

 

Fig. 6.7: Sending power factor for different steps of Case A, B and C for Mode Two electricity 

grid architecture. 

 

Fig. 6.8: Receiving power factor for different steps of Case A, B and C for Mode Two electricity 

grid architecture. 

In Fig. 6.9, the percentage of voltage drop reduction for different steps of Case B and C compared 

with Case A is presented. It can be vividly seen that voltage drop is reduced in Case B and C as 

compared with Case A. The performance of the various Case situations as regards voltage drop is 

the same for all steps. Additionally, the percentage of reduction of voltage drop is approximately 
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the same for all steps (that is 20%), but with corresponding small decrease when moving from step 

1- 4. On the contrary for Case A, the percentage of voltage drop steadily increases when moving 

from step 1 – 4. A Voltage drop performance analysis is required to ensure that the end of the 

power lines has enough power to drive the final load. The issue of voltage drop only gets worse as 

more loads are connected onto the power lines. As the length of power lines increases or as the 

current increases, so does the voltage drop. Note that leaving some margin for future loads ensures 

that electricity consumers gets reliable electricity product from the electricity grid architecture. 

The resulting measured and modelled percentage of voltage drop and power losses reduction for 

different steps in Case B and C compared with Case A is graphically illustrated in Fig. 6.10. It 

shows the general comparison of Case B and C with Case A. Here, it is observed that the 

methodologies used in Case B and C are better than that used in Case A. Results for Case B and C 

showed the same performance of voltage drop, which is about 20%. But regarding to power losses 

on the proposed electricity grid architecture, Case B fared better in terms of performance than Case 

C. The power losses reduction for Case B is about 70%, but it is 50% for Case C. Overall, the 

performance of Case B is seen to be the best-Case situation observed. 

 

Fig. 6.9: Percentage of voltage drop reduction for different steps of Case B and C compared with 

Case A for Mode Two electricity grid architecture. 

 

Fig. 6.10: Percentage of voltage drop and power losses reduction for different steps of Case B and 

C compared with Case A for Mode Two electricity grid architecture. 
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Chapter 7 
 

7.0 Concluding Remarks and Future 

Research 
 

This chapter summarizes the work presented in this thesis and provide conclusions on the research. 

Subsequently, suggestions for future work are provided. Paper One, Two, Three, Four, Five, Six 

and Seven have shown the capabilities offered by the synchronous condenser technology. 

Purposely developed simulation model was given substance to in a 33kV electricity grid 

architecture modes (Mode One and Mode Two) involving active power control by wind power 

plants and reactive power control using the synchronous condenser technology. This was achieved 

by effective positioning of both the wind plants and synchronous condenser. In this model, the 

Type-3 renewable wind power plant has been used to generate active power. While the 

synchronous condenser was used to produce reactive power. By choosing different points on the 

proposed electricity grid architecture to separately and combinedly connect the wind renewable 

source and the synchronous condenser. The grid is kept stable and power losses are equally 

reduced, even when the loads are increased. Implying that the proposed electricity grid architecture 

can absorb more loads. Hence, it can be posited that the Type-3 wind plant and the synchronous 

condenser scheme is effective and economical. It is worth mentioning that the proposed technique 

used in this thesis can be applied to different loads deployment in any electricity grid architecture. 

This will help to establish stability in preserving acceptable security performances of electricity 

grids.   

This thesis has shown that wind power plants and the synchronous condenser can play a great role 

in reducing power losses and voltage drop in modern electricity grid architectures. This work opens 

a variety of opportunities to utilize new or retrofitted synchronous condenser for further advanced 

research in future work. Since it has established an effective application of the synchronous 

condenser technology for the deployment of reactive power and the wind power plant for the 

deployment of active power in modern electricity grid architecture. Thereby generating useful data 

for managers, engineers and researchers in the electricity industry. This research data can be used 

to improve modern electricity grid architectures growth plans and formulate new electricity 

development strategies and action plans. This data is important for electricity managers to develop 

management strategies and development plans, which allow electricity resources to be utilized 

more effectively in a sustainable manner. Equally this data will help to improve power system 

security by providing adequate active and reactive power for stability of the electricity grid 

architecture and minimization of power system losses. Therefore, this work is likely to bring 

significant technical and financial benefits to power system operators. 

Although the synchronous condenser technology has been in use for a long time now. It remains 

an interesting topic for future work. This thesis focus was on dynamic case study on a radial 

electricity grid architecture related to active power, reactive power, power losses and voltage 

control. Hence, further studies should be encouraged considering fault situation and more complex 

electricity grid architectures. 
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Abstract: Present-day electricity grids are equipped with sophisticated devices that allow to meet 

various grid code requirements. These include reactive and active power controls to ensure robust 

functioning of the grid. Robust operation of the electricity grid entails favourable voltage and 

frequency profile adjustments that can be achieved through reactive and active power controls. 

This study presents the synchronous condenser capability of providing voltage regulation and 

reactive power output, and the active power possibility path of a Type-3 wind machine for dynamic 

state conditions and voltage stability issues. Simulations carried out in the MATLAB/Simulink 

environment prove the efficiency of the proposed methodology. 

 

Keywords: active power, reactive power, synchronous condenser, wind farm, voltage stability, 

power losses 
 

1. Introduction 

 

It is observed that the high impedance of a weak grid bond places a limit on the output power of a 

wind farm functioning at unity power factor. This shortcoming can be taken care of by adequately 

providing reactive power support to the grid. Even though it is feasible for wind power machines 

to generate the needed reactive power, this technique can markedly increase the volt-ampere (VA) 

rating need and consequently the cost of wind power machines and control inverters. Power system 

engineers in the electric-power industry have repeatedly had reactive power compensation as a 

concern owing to its influence on the active power transfer and on sustaining voltage levels at 

distinct buses and on the network security. It is noticeable that more than 90% of regional blackouts 

in some countries have been brought about by voltage collapse of the transmission network 

because of inadequate local sources of reactive power, predominantly dynamic or fast acting 

sources of reactive power provision like that supplied by generators, and flexible alternating 

current transmission system (FACTS) devices [1,2]. The issue of voltage collapse can be 

successfully resolved by the synchronous condenser (SC) supplying adequate reactive power to 

the grid [3-7]. It may be surprizing to mention the synchronous condenser as a new technology as 

it has been in use for many years. The synchronous condenser is a long-established, pre-

deregulation era technology that serves as a source of reactive power compensation. Synchronous 

condensers can provide inertia, short-circuit power contribution, short-term overload capability, 

and reactive power compensation to the electricity transmission network. To provide the required 

functionality, new synchronous condensers can be installed in existing transmission substations 

or, on the other hand, retired generators can be retrofitted to synchronous condensers [8]. 

 

Apart from reactive power compensation in electricity grids, the active power is equally an issue 

in modern electric power grids. Power production from renewable supplies is increasing rapidly 

as compared with traditional fuels. Wind is the fastest growing renewable energy source [9]. As 

electric power production mix advances to a higher spread of wind farms, there are points on the 

electricity grid where stability becomes a problem. Hence, the need arises for active and reactive 

power regulation using wind machines for the former and the synchronous condenser technology 

[10]. The Type-3 Wind machines are more efficient in extracting power than other types of wind 

power machines [11]. The coefficients of performance of Type-3 wind machines can be between 

0.4 and 0.5 [12,13]. Hence, the doubly fed asynchronous/induction generator (DFAG/DFIG), thus 

a Type-3 wind machine technology, has been recommended for wind farm electricity generation. 
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The active power priority mode for Type-3 wind power machines is recommended in this work. 

This is to allow wind farms to produce adequate active power during normal operating conditions. 

In this work, the Type-3 wind machine is set in the active power mode, while the reactive power 

path of the wind machine is decoupled. The DFAG/DFIG-based wind machines are extensively 

used in existing wind farms [14], where each DFAG/DFIG unit is linked to the collector network 

directly through its stator, while its rotor is connected to the grid through a back-to-back converter 

scheme. The converter scheme permits independent control of the active power delivery to the 

electricity grid via the Type-3 DFAG/DFIG-based wind farm and the reactive power exchange 

with the synchronous condenser. The rotor-side converter (RSC) of the wind machine often 

controls the stator power flow based on a smaller percentage of power injected into the rotor circuit 

of the suggested scheme. For this reason, the back-to-back converter is in most cases rated between 

30 and 40% of the wind machine rated power. The reduced size of the Type-3 machine converter 

implies a lower cost of both the converter and its filter. Additionally, it minimizes converter losses 

as compared with the full rated converter wind energy technology. 

 

Owing to the utilization of the synchronous condenser in electricity networks, additional inertia 

and short-circuit current could be made available, which could in turn enhance the functioning of 

the wind farm implanted grid. However, the synchronous condenser and wind machines are 

adopted for reactive and active power regulation. An obvious question that arises and needs to be 

answered by this research is the point or position, where the synchronous condenser and wind farm 

should be deployed. This query still has not been answered in existing research works. Therefore, 

this research work develops a methodology to evaluate the required position or point to locate the 

synchronous condenser and the wind farm on the electricity grid. To examine the effectiveness of 

the proposed methodology, it is applied to a medium voltage (MV) power grid with proliferated 

wind production. The reactive and active power control strategies and encountered issues are 

discussed including the methodology, measurements and simulation results from study cases. The 

results of this research will help in advising electricity utility providers to make better use of new 

synchronous condensers and retired retrofitted generators to provide the required functionality for 

the electricity grid, which will finally prepare the way for further integration of wind power 

machines and other renewables in present-time power systems. 

 

The rest of this research paper is organized as follows: In the second section, the standard power 

system and its elements are modelled. In the third section, the methodology for this research is 

presented. In the fourth section, analysis of results obtained with installed synchronous condenser 

and wind power plants is presented. The last part of this paper brings the conclusion. 
 

2. Modelling of the Standard Power System and its Elements  

 

In this research work, a 50 Hz, 33 kV grid and 50 MVA substation base on a standard utility 

medium voltage (MV) transmission power system is presented as a standard or reference case as 

shown in Fig. 1. 
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Fig. 1   Schematic diagram of the standard network. 

 

There are two load points, each totalling 11.18 MVA. The MV distribution system has two 33 kV 

power lines L1 and L2 of lengths 30 km and 40 km connected to it. The lines interconnect different 

parts of the 11 kV consumer network to facilitate power exchange between the loads. The installed 

capacity at the consumer end transformer substation is 25 MVA. Note that all transmission lines 

are modelled using pi-model. 

 

Specifications of the power lines are given in Table 1. The rated positive resistances r1 (Ω/km), 

zero-sequence resistances r0 (Ω/km), positive inductances l1 (mH/km), zero-sequence inductances 

l0 (mH/km), positive capacitances c1 (nF/km), zero-sequence capacitances c0 (nF/km), and 

frequency fn (Hz) are the same for the two lines. The lines lengths (km), phase resistances R1 (Ω), 

phase inductive reactances X1 (Ω), and phase susceptances B (μS) differ as presented. 

 

Table 1   Parameters of the MV electrical power lines 

 

line number 1 2 

positive resistances r1                              (Ω/km) 0.0922 0.0922 

zero-sequence resistances r0              (Ω/km) 0.312 0.312 

positive inductances l1                        (mH/km) 0.610 0.610 

zero-sequence inductances l0       (mH/km) 2.83 2.83 

positive capacitances c1                       (nF/km) 11.3 11.3 

zero-sequence capacitances c0       (nF/km) 5.01 5.01 

frequency fn                                                             (Hz) 50.0 50.0 

length                                                                           (km) 30.0 40.0 

phase resistance R1                                              (Ω) 2.77 3.69 

phase inductive reactance X1                       (Ω) 5.75 7.67 

phase susceptance B                                         (μS) 53.4 71.2 

 

The MV power lines supply 33 kV/11 kV transformers rated at 25 MVA. As shown in Table 2, 

the frequency , nominal power, magnetization resistance and magnetization inductance are the 

same for the two transformers. 
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Table 2   Parameters of the three-phase 33/11 kV transformers 
 

Transformer 1, 2 Higher voltage 

winding 

Lower voltage 

winding 

connection type D11 Yg 

V                                                    (V) 
33.0 11.0 

R                                                    (Ω) 0.157 0.0166 

L                                                    (H) 0.00581 0.000620 

frequency fn                                 (Hz) 50.0 

nominal power Sn                   (MVA) 25.0 

magnetization resistance Rm      (MΩ) 0.0653 

magnetization inductance Lm       (H) 208 

 

The 25 MVA transformer at the busbar end supplies the consumer load at a level of 11 kV. The 

recorded values of the load are shown in Table 3. The frequency and the load voltage are same for 

both loads, but the active power, reactive power, apparent power and the power factor differ for 

single loads.  
 

Table 3   Measured values of the load 
 

active power PL           (MW) 10.0 

reactive power QL    (MVAr) 5.00 

apparent power SL     (MVA) 11.2 

cos φ 0.894 

frequency fn                    (Hz) 50.0 

consumer voltage          (kV) 11.0 

 

Measurements of the source and load powers and voltages (thus of power losses and voltage 

drops) for the two lines were taken in the reference case, this is shown in Table 4. Subscripts 

‘s’ and ‘r’ denote the sending and receiving ends of the lines, respectively. 

 

Table 4   Measured parameters of the benchmark commercial three-phase lines 
 

Line Ps 

(MW) 

Pr 

(MW) 

Qs 

(MVAr) 

Qr 

(MVAr) 

Us 

(kV) 

Ur 

(kV) 

ΔP 

(MW) 

1 8.82 8.55 5.09 4.63 32.6 31.0 0.271 

2 
8.62 8.27 5.06 4.48 32.6 30.4 0.350 

 

 

3. Methodology  

 

A 3.125 MVA synchronous condenser has been used in this research work. It is a round-rotor type 

machine, modelled in detail with its excitation systems. It is a modified version of the built-in 

model by MATLAB/Simulink. The setting allows feeding the entire power system with adequate 

reactive power needs. This type of control strategy focuses on reactive power injection to the local 

bus or substation, depending on the position or point of connection. The synchronous condenser 

is investigated for reactive power production aiding the wind farm during dynamic situations. 
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A wind farm rated 9 MW based on Type-3 wind machine with a power factor rating of 0.9. The 

DFIG model used in this study is a modified version of the built-in model by MATLAB/Simulink 

[15]. It consists of a wound rotor induction generator and an AC/DC/AC/IGBT-based pulse-width 

modulation (PWM) converter. PWM converters provide a compact solution for converting current 

into a digital pulse width modulated signal, a reference voltage is made available on the PWM 

output. It is also equipped with a pitch control system and it is based on a doubly fed induction 

generator using back-to-back PWM converters. The generator stator is directly linked to the 

electric-power grid, whereas the rotor is joined to the electricity grid through an AC/DC/AC 

converter and slip rings. The converter consists of the rotor-side converter (RSC), and of the grid-

side converter (GSC). A capacitor coupling the two converters acts as a DC voltage source (DC 

bus). Active power is generated by pre-defined power-speed characteristic. The DFIG model is 

deemed suitable for dynamic stability studies. In a DFIG the active power can be produced and 

injected into the electric-power grid by utilizing its AC/DC/AC converter system which contains 

dq-current regulators (‘d’ stands for the d-axis and ‘q’ for the q-axis). Methodically, by influencing 

or controlling the DFIG equations and steering the machine characteristic relations between flux, 

voltage, current and so on, one gets active power related equations (note here that the reactive 

power is decoupled), enabling production and injection of active power only from the wind farm. 

The DFIG model utilized for this study employs a typical vector control scheme, where the active 

power is controlled by regulating the rotor q-axis current and the pitch angle. All power regulators 

use proportional-integral (PI) controllers [16-22]. 

 
 

4. Analysis with Installed Synchronous Condenser and Wind Plants  

 

We have designed a MATLAB/Simulink model with different positioning of the synchronous 

condenser and the wind farm. Five cases have been considered A, B, C, D and E, with the positions 

of the synchronous condenser and wind power plants altered in each case. Case A is the standard 

or reference case as detailed in section 2. Case B is a wind farm rated 9 MW connected to the grid 

at the busbar of the 50 MVA main substation. Case C is the situation, when the wind farm rated 

9 MW is connected to the grid at the busbar close to the consumer loads of the network through 

two step-down transformers. The consumer load bus system is connected to the larger electricity 

grid and the main substation through a bus tie. The larger medium voltage grid is modelled as an 

equivalent source with a 33 kV three-phase voltage source in series with an RL-impedance with a 

short-circuit capacity of 50 MVA. In case D there is a 3.125 MVA synchronous condenser 

installed at the 50 MVA main substation bus. Case E is a 3.125 MVA synchronous condenser 

connected to the electricity grid at the consumer load busbar through two step-down transformers 

each rated 25 MVA. The synchronous condenser is modelled in detail with its excitation systems. 

All transmission lines of the proposed scheme are modelled using pi-model. Details on modelling 

the system were published in [10,23]. 
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Fig. 2   The proposed scheme with installed synchronous condenser and wind plants. 

 

Figure 2 shows the scheme with installed synchronous condensers and wind farms. Two 

performance criteria are used: first the synchronous condenser capability to produce reactive 

power, and second the wind farm active power generation ability. Furthermore, both the wind 

farms and the synchronous condensers are connected to the grid by changing their positions. The 

Type-3 DFIG wind machines are operated in an active power regulation mode such that its reactive 

power regulation mode is decoupled. The results with the synchronous condenser installed and the 

Type-3 wind machine farms connected to the grid are compared with that of case A. 

 

Four monitored steps values were obtained. The first step is the standard or reference case value 

of loads, while steps 2 to 4 are increased by 20% in each step.  

 
Fig. 3   Percentage of source voltage deviation from the nominal voltage of 33 kV for different 

steps of cases A, B, C, D and E. 
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Fig. 4   Percentage of load voltage deviation from the nominal voltage of 33 kV for different steps 

of cases A, B, C, D and E. 

 

Figure 2 shows that the source voltage deviation from the nominal voltage of 33 kV has the same 

value for all cases. It should be noted that the source voltage deviation increases as we move from 

step 1 to 4. Positions of the wind farm or synchronous condenser do not have any effect on the 

source voltage deviation. The percentage of the load voltage deviation from the nominal voltage 

of 33 kV for different steps of case A, B, C, D and E is plotted in Fig. 3. The load voltage deviation 

decreased by a few percent in cases C and E. Results for cases B and D are the same. The result 

for reference case A is also the same with cases B and D. 

 

 
Fig. 5   Power losses for different steps of cases A, B, C, D and E. 
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Fig. 6   Percentage of power losses reduction for different steps of cases B, C, D and E  

compared with case A. 

 

When the wind farm or synchronous condenser is joined to the beginning of the transmission lines, 

the power losses reduce slightly, but when the wind farm or synchronous condenser were installed 

to the end of the transmission lines, power losses are reduced markedly. Note that the effect of the 

wind farm is much stronger due to its nominal power9 MVA. The nominal power of the 

synchronous condenser is 3.125 MVA. The results for the power losses are presented in Fig. 5. 
  

 
Fig. 7   Sending power factor for different steps of Cases A, B, C, D and E. 
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Fig. 8   Receiving power factor for different steps of Cases A, B, C, D and E. 

 

Figure 8 reports the source power factor values recorded for cases A to E. No remarkable changes 

were seen in cases B and D, this also applies to the reference case A. The observed source power 

factor for case C decreases from about 0.85 to 0.75, while that for case E increases to about 0.95. 

Figure 9 is a graphical presentation of the load end power factor values. The power factors for 

cases A, B and D are steady because of the wind farm and synchronous condenser installed to the 

50 MVA main substation busbar. Hence, the changes in the power flow though the transmission 

lines are very small. When considering case C, the source power factor decreases owing to the 

wind farm connected to the end of the transmission line busbars, therefore the active power flowing 

through the transmission lines becomes smaller, thereby leading to a decrease in the power factor 

values. Also, taking into consideration case E, the source power factor results is seen to increase 

owing to the synchronous condenser installed at the end of the 33 kV transmission lines busbar 

connected to the two step-down transformers. For this reason, the reactive power flowing through 

the transmission lines becomes lower, bringing about an increase in the value of the power factor. 
 

 
Fig. 9   Percentage of voltage drop reduction for different steps of cases B, C, D and E  

compared with case A. 
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The percentage of voltage drop reduction for different steps of all the cases is depicted in Fig. 9. 

The voltage drop decreases only in cases C and E (the decrease in voltage drop is 12%). This 

suggests that the voltage drop could only be reduced, when the wind farm or synchronous 

condenser is coupled to the end of the 33 kV transmission lines close to the consumer substation. 

Note here that the percentage of voltage drop reduction is the same for all the steps observed.  
 

5 Conclusions  

 

A purposely developed simulation model based on the proposed methodology was applied to a 

variety of cases involving active power control by wind power plants and reactive power control 

using the synchronous condenser, and effective positioning of both the wind plants and the 

synchronous condensers. The authors have shown that wind power plants and the synchronous 

condenser can play a great role in reducing the power losses and voltage drop in modern power 

systems. Additionally, the effect of position and power capacity, when wind plants or synchronous 

condensers are joined to the end of transmission lines, brought about a higher reduction in power 

losses in the proposed scheme because the power flow through the transmission lines is reduced 

or lowered. It was also observed that when the power capacity is high, power losses are drastically 

reduced. The presented work opens a variety of opportunities to utilize new or retrofitted 

synchronous condensers for a further advanced research in future work. Although being an old 

technology, the synchronous condenser remains an interesting topic for future work. Moreover, 

the synchronous condenser can be used for studies related to reactive power, power losses and 

voltage control. 
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Abstract: Installing the Synchronous Condenser (SC) onto the electricity grid can assist in the 

area of reactive power needs, short-circuit strength and consequently system inertia, and 

guarantees better dynamic voltage recovery. This paper summarizes the practical potential of the 

synchronous condenser coordinated in an electric-power network with participating wind plants 

to supply reactive power compensation and injection of active power at their Point of Common 

Coupling; it provides a systematic assessment method for simulating and analyzing the 

anticipated effects of the synchronous condenser on a power network with participating wind 

plants. A 33KV power line has been used as a case study. The results indicate that the effect of 

the synchronous condenser solution adopted model in MATLAB/Simulink environment provides 

reactive power, enhances voltage stability and minimizes power losses, while the wind power 

plants provides active power support with given practical grid rules.  

Keywords: Active power; Reactive power; Reactive power compensation; Synchronous 

condensers; Wind plants; Electric-power network 

1. Introduction 

For most electricity utility companies making sure of grid reliability, efficiency and security 

is a major task. As electric-power grid develops and electrical load profiles change, pressure is 

being put onto the electricity transmission and distribution grids, thereby making the need for 

voltage reinforcement and electric-power grid management much more demanding. Universally, 

electric-power utility authorities are facing many new electricity grid challenges and circumstances 

including: changes in electric-power production mix, decreases in traditional power production, 

increases in renewable power production and distributed generation, changes in environmental and 

regulatory policies, the retirement of traditional thermal producing stations. These challenges have 

an operational effect on electric-power infrastructure, particularly bringing about a general 

inadequacy in: reactive power compensation, voltage stability, power system inertia, and low short 

circuit strength. As compared with traditional power sources, wind renewable power has a 

reputation of strong randomness, intermittency and volatility, it has in common the intermittent 

feature of renewable power sources which are controlled by environmental elements such as 

instantaneous changes of weather which eventually give rise to voltage and frequency instability. 

Application related instances prove that connecting wind power plants to existing electricity grid 

have an adverse effect on the security and stable operation of the now present modern electrical 

power system [1-5]. High impedance of a fragile or weak electricity grid connection limits the 

output power of a wind plant operating at unity power factor. This limitation can be reduced by 

adequately providing high reactive power compensation with the help of the synchronous 

condenser technology. Although it is feasible for the Type-4 wind power plants to produce the 

requisite reactive power compensation. This technique can appreciably increase the active power 

rating need and hence reduce the cost of wind power plant and control inverters, since only the 

Type-3 wind power plants are involved in this instance [6].  

Synchronous condensers (SCs) were once generally put to practical use as a means of 

supplying reactive power compensation to power grid before the introduction of power electronic 

devices. Benefits of the synchronous condenser technology solution include being a long standing, 

well known and understood technology. It is a very resilient solution, can have high overload 

capacity, and can provide excellent reactive power support for the grid under low voltage 

situations. Synchronous condensers are origin of short circuit availability which can be a 
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significant benefit in weak electric-power grids and they are not sources of harmonics. Drawbacks 

of the Synchronous condenser can include a higher level of losses, slower response time as 

compared to power electronic devices and mechanical wear [7-12]. Synchronous condensers have 

been utilized conventionally in the electric- power industry to support weak electricity grids with 

poor voltage regulation. Static power electronics equipment such as static VAR compensators 

(SVCs) and static synchronous compensators (STATCOMs) are now frequently utilized for 

reactive power production. These static power electronics devices give the benefit of faster 

responses [13-15]. Under certain electric-power grid fault circumstances, SCs provide higher 

reactive power compensation, and, more significantly, the kinetic energy stored in the rotor makes 

available inertial assistance to the electricity grid during faults condition [16-19]. The inertia 

support ability of SCs becomes more significant as the electric-power grid connection needs, such 

as low-voltage ride-through for distributed generation networks, become stricter and SCs are 

needed to supply additional services of supporting electric-power grid stability [20-21]. With the 

continuous growth of the scale of wind power plants inclusion in electrical networks, the 

interconnection of wind renewable plants with electricity grids has brought remarkable drawbacks 

for electric-power system dispatching. Apart from the operating situation, wind plants are 

susceptible to many other factors such as component faults, weather problems, and power system 

disturbance, etc., bringing growingly conspicuous threat on power system stability [22-32]. 

Therefore, active and reactive power assessment methodologies and mechanisms have become a 

top priority among stake holders in the electric-power industry. 

This research work develops a methodology to generate active power by utilizing the Type-3 

wind plant and reactive power by using the synchronous condenser, particularly on a 33KV power 

network. To scrutinize the successfulness of the suggested methodology, it is applied to an 

interconnected power system with proliferated wind renewable electricity production. As net result 

this paper will help to put in place strict guidelines for electricity network operators to make a 

better use of the synchronous condensers for reactive power generation and the Type-3 wind plant 

for active power generation, which will at long last pave the way for further integration of wind 

power plants onto the electricity grid. 

The remaining part of this article is organized in the following manner. In Section 2, the 

vulnerability of the modern grid as a result of high penetration of wind power plants is discussed. 

In Section 3, the benchmark case setup of the research is given. This consists of the benchmark 

line parameters, the benchmark transformer parameters, the benchmark load and three-phase lines 

parameters. And implementation of the benchmark case using MATLAB/Simulink software. 

Section 4 explains the methodology used in this study and explores data from the simulation setup. 

Section 5 presents the mathematical model of the system. Section 6 illustrates a vivid case study. 

While Section 7, provides results and discussions considered in the study case. Conclusions are 

presented in Section 8.  

2. Vulnerability of the Modern Grid as a Result of High Penetration of Wind Power Plants  

Increasing grid voltage instability, reactive power control, short circuit strength, power system 

inertia, frequency control and more with each of them independently, and in some cases in 

combination, affects the ability of the modern grid to effectively make use of high renewable 

energy penetration systems such as wind power plants. These also affect the demand for electricity 

and ability to access, produce, and distribute it. An evaluation of these impacts, both positive and 

negative is needful to inform forward-looking endeavor to increase power system security. These 

effects occur and affect all modern electricity grid and the vulnerabilities faced by various 
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stakeholders in the power industry may vary remarkably depending on their degree of specific 

exposure to wind renewable power penetration. In general, large-scale wind farms, consisting of 

many wind power plants, often cover large areas. When wind plants run at nearly full power, the 

voltage drop of line becomes significant [33].  

With the increasing share of wind renewable power plants in present day electric-power 

production mix, traditional fossil fuel-based synchronous generators continue to be substituted 

from the electric-power production fleet. High availability of wind power may equally be 

accountable for the planned retirement of thermal power plants. Nowadays, wind power plants are 

mostly based on Type-3 and Type-4 machine plants. These variable speed wind plants are 

decoupled from the corresponding electricity grid by power electronic converters. Different from 

synchronous generators, some types of wind plants are not able to play a part in frequency control 

activities such as inertia and governor response after a disturbance [34-38]. Although several 

control methodologies have been developed to allow the Type-3 and Type-4 wind plants to be 

used for frequency regulation [39-40], such solutions are still not mandatory and normally not 

operating for the Type-3 wind plant. Thus, owing to increased wind production, sustaining enough 

frequency response is becoming of vital concern for network operators. Aside from frequency 

response, short-circuit operation is one more vital issue in power system security owing to higher 

wind renewable penetration on the grid [41]. Short-circuit operation is determined by making use 

of an indicator called Short-Circuit Ratio (SCR). Short-circuit ratio at the electric-power grid 

connection point or Point of Common Coupling (PCC) of a wind power plant is defined as the 

ratio between the short-circuit level at its PCC and the rated efficiency of the wind power plant 

[42]. A minimal value of SCR at the PCC of a wind power plant is necessary for protection 

equipment to distinguish between a development of a fault or not. Owing to the limitation of power 

electronics efficiency, the Type-3 and Type-4 wind power plants commonly generate less fault 

current compared with traditional synchronous generators of equivalent rating [43]. Consequently, 

the possibility of obtaining undesirable SCR at the PCC of modern grid with wind plants very 

much increases for high penetration of wind machines [44]. The insertion of a large numbers of 

wind renewable power plants has changed the robustness of alternating current (AC) grid and made 

the electric-power grid ineffectual, which is marked by low short circuit ratio (SCR) or low inertia 

[45]. SCR is closely associated with voltage stability, so the lower-level the SCR of wind power 

plants at the PCC, the quicker to respond to voltage fluctuation will be. This will give rise to 

instability and occasion wind plants to trip leading to breakdown of grid stability [46], mostly in 

situations where a large concentration of wind power plants is joined to a relatively weak electric-

power grid [47-49].  

It is obvious from the foregoing that in most situations, frequency response and short-circuit 

functioning are scrutinized as separate issues. Traditionally, they are individually enhanced when 

necessary. Regardless of how, both are related to modern grid security as a result of high wind 

plants penetration and should be simultaneously considered. Owing to the accumulative entrance 

of wind power plants on today’s modern grid, most thermal power plants may be subjected to 

planned retirement [50]. These traditional power generators perhaps would be taken out, which 

will result in misuse of assets and leads to economic concern. Thus, a second use of these 

traditional plants could be anticipated in order to get some monetary return. For this reason, there 

is the need for retrofitting reasonable portion of these synchronous generators into synchronous 

condensers. As a result of the utilization of new SCs or synchronous generators being retrofitted 

to SCs and joined to existing electricity substations to provide the required functionality of reactive 

power compensation, additional inertia and short-circuit current are made available to the grid, 
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which in turn improves the security performances of the grid in case of high wind plant generation 

[44].  

3. Benchmark Case Setup 

The benchmark Case setup utilized in this work consists of a commercial medium voltage (MV) 

distribution network with a substation transformer rating of 50 MVA and voltage level of 33 kV. 

The MV distribution system has two power lines L1 and L2 of lengths 30 km and 40 km 

respectively connected to it. Fig. 1 gives an overview of the benchmark system. A more detailed 

description of the elements of the system is provided hereafter. 

 
Figure 1. The Benchmark System. 

3.1. Benchmark Line Parameters 

The parameters of the power lines are described in detail in Table 1. Here, it suffices to illustrate 

the lines main characteristics. Its rated positive resistances  𝑟1(Ω/km), zero-sequence resistances 

𝑟0 (Ω/km), positive inductances 𝑙1 (mH/km), zero-sequence inductances 𝑙0(mH/km), positive 

capacitances 𝑐1 (nF/km), zero-sequence capacitances 𝑐0 (nF/km), and frequency f_n (Hz) are the 

same for both lines. But the lines Length (km), phase resistance R_1 (Ω), phase Inductive 

reactance 𝑋1 (Ω), and phase susceptance B (μS) vary as presented. 

Table 1. Parameters of the MV commercial electrical power lines 

Line number 1 2 

Positive resistances  𝑟1(Ω/km) 0.0922 0.0922 

Zero-sequence resistances 𝑟0 

(Ω/km) 

0.312 0.312 

Positive inductances 𝑙1  

(mH/km) 

0.61 0.61 

zero-sequence inductances 

𝑙0(mH/km) 

2.83 2.83 
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Positive capacitances 𝑐1  

(nF/km) 

11.33 11.33 

zero-sequence capacitances 

𝑐0 (nF/km) 

5.01 5.01 

Frequency 𝑓𝑛 (Hz) 50 50 

Length (km) 30 40 

Phase resistance 𝑅1 (Ω) 2.766 3.688 

Phase Inductive reactance 𝑋1 

(Ω) 

5.749 7.665 

Phase susceptance 𝐵 (μS) 53.39 71.19 

3.2. Benchmark Transformer Parameters 

Each of the power line supply a 33kv/11kv transformer, with a rating of 25 MVA, the parameters 

of this transformer detailed in Table 2, show that the frequency 𝑓𝑛  (Hz), Nominal Power 𝑆𝑛 

(MVA), Magnetization resistance 𝑅𝑚   (MΩ), and Magnetization inductance 𝐿𝑚 (H) are the same 

for both transformers while the connection type, 𝑉𝑟𝑚𝑠(kV), R (Ω), and  𝐿 (H) is D11, 33, 0.15682, 

0.005808 for the high voltage winding and Yg, 11, 0.016639, and 0.00061625 for the low 

voltage winding. 

Table 2. Parameters of the three-phase 33/11 kV transformers 

TRANSFORMER 1,2 

High 

voltage 

winding 

Low voltage 

winding 

Connection type D11 Yg 

𝑉𝑟𝑚𝑠(kV) 33 11 

R (Ω) 0.15682 0.016639 

𝐿 (H) 0.005808 0.00061625 

Frequency 𝑓𝑛  (Hz) 50 

Nominal Power 𝑆𝑛  (MVA) 25 

Magnetization resistance 

𝑅𝑚  (MΩ) 

0.06534 

Magnetization inductance 

𝐿𝑚 (H) 

207.98 
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3.3. Benchmark Load and Three-phase Lines Parameters 

Each of the 25 MVA transformers supply consumer load level of 11kV, the measured values of 

consumer load are tabulated in Table 3, the Frequency 𝑓𝑛   (Hz), and consumer’s voltage (kV) is 

the same for both loads. But Active Power 𝑃𝐿 (MW), Reactive Power 𝑄𝐿  (MVAr), Apparent Power 

𝑆𝐿  (MVA), and P.F cos(𝜑𝐿) vary for both electrical loads. The benchmark three-phase line 

parameters of the standard power lines that supply the 25 MVA transformer loads is presented in 

Table 4. It includes the sending and receiving active power (𝑃), sending and receiving reactive 

power (𝑄), sending and receiving voltage (𝑈), and power losses (∆𝑃). Table 4 shows that only the 

sending voltage (𝑈𝑠) value is the same for both lines, but other parameters differ. 

Table 3. Measured values of Consumer load 1, and 2 

parameters Load 1,2 

Active Power 𝑃𝐿  (MW) 10 12 

Reactive Power 𝑄𝐿   

(MVAr) 

4 6 

Apparent Power 𝑆𝐿  

(MVA) 

10.77 13.416 

P.F cos(𝜑𝐿)   0.928 0.894 

Frequency 𝑓𝑛   (Hz) 50 50 

consumer’s voltage 

(kV) 

11 11 

           

Table 4. Measured parameters of the benchmark commercial three-phase lines 

 

 

  

 

 

3.4. Implementation of Benchmark Case in MATLAB/Simulink 

Just as presented by Fig.1, and then described in Sections 3.1–3.3, only the benchmark 

parameters were added onto the benchmark simulation scheme specifically for this research work 

and implemented with a MATLAB/Simulink software. This benchmark system, which is a 

standard normal power system network is referred to as Case A.  

Line 

𝑃𝑠  
(MW) 

𝑃𝑟   
(MW) 

𝑄𝑠  
(MVAr) 

𝑄𝑟   
(MVAr) 

𝑈𝑠  
(kV) 

𝑈𝑟  

(kV) 

∆𝑃 

(MW) 

1 8.929 8.673 4.237 3.814 32.570 31.077 0.256 

2 10.061 9.576 6.131 5.261 32.570 30.017 0.485 
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4. Method 

In the suggested approach, the system is modelled by MATLAB/Simulink simulation 

software.  There are three case studies: first is the Benchmark Case, here after referred to as Case 

A, next is the second Case, which is the Case when the wind power plant, which is modeled as 

Type-3 wind machines is installed at the main substation of the system for producing active power 

only and the synchronous condenser is placed at the consumer transformer load ends for reactive 

power generation, this is referred to as Case B. Finally case C refers to the situation where the 

synchronous condenser is placed at the substation for producing reactive power only and the Type-

3 wind power plants is placed at the consumer transformer load ends for producing active power 

only. These arrangements are tested on a 33KV power network. This methodology is adopted to 

achieve stability and reduce power losses in the system. This is vividly illustrated in Fig. 2, and 

Fig. 3 respectively. 

Authors are going to discuss the results and how they can be interpreted in perspective of 

previous studies and of the working hypotheses. The findings and their implications will be 

discussed in the broadest context possible. Future research directions may also be highlighted. 

5. Mathematical Model of the System 

 
Figure 2. Diagram of the simulation model and methodology scheme of Benchmark Case (Case 

A), Case B and Case C. 

Considering the MV substation system (S. S1) and its vector components: 

𝑆𝑆𝑆 = ∑ 𝑆𝑆𝐿𝑖

𝑛

𝑖=1

 (1) 

𝐼𝑆𝑆 = ∑ 𝐼𝑆𝐿𝑖

𝑛

𝑖=1

 (2) 
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Where: 

𝑆𝑆𝑆 is the apparent power of the substation system. 

𝐼𝑆𝑆 is the total line current of the substation system. 

𝐼𝑆𝐿𝑖 is the line current supplied to n number of power lines from the substation network. 

𝑆𝑆𝐿𝑖 is the apparent power supplied to n number of power lines from the substation network. 

𝑖 = 1,2,3, … … , 𝑛. i.e. nth number of Lines 

Hence, for n number of lines that supply n number of loads on the end of line from the MV 

substation, the set of transformer and load is equal to the total number of loads. Thus, the total 

apparent power of each n number of set is  𝑆𝑇𝐿𝑖 ,where: 

i=1,2,3,……,n. i.e. number of Loads.  Therefore, Line number = each load number. 

Hence, in Fig. 2: 

                                                                          𝑃𝑆𝐿𝑖 = 𝛥𝑃𝐿𝐿𝑖 +
𝑃𝐿𝑇𝑖 

                                         (3) 

Where: 

𝑃𝑆𝐿𝑖 is the active power supplied to n number of lines. 

𝛥𝑃𝐿𝐿𝑖 is the active power losses of n number of lines. 

𝑃𝐿𝑇𝑖 is the active power of n number of lines. 

From equation (3): 

                                                        𝛥𝑃𝐿𝐿𝑖 = 𝑃𝑆𝐿𝑖 − 𝑃𝐿𝑇𝑖                                                           (4) 

The power losses on the line is given by: 

                                                                                𝛥𝑃 = 3𝐼𝐿
2 ∙ 𝑅1𝐿 (5) 

And the difference in voltage (voltage drop) of each phase is given by: 

                                                                                  𝛥𝑉 = 𝐼𝐿 ∙ 𝑍𝐿 (6) 

Considering case A only, and from equation (5) and Fig.2:  
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                                                                           𝛥𝑃𝐿𝐿𝑖 = 3(𝐼2
𝑆𝐿𝑖 ∙ 𝑅1𝐿𝐿𝑖)                                                                                                  (7) 

Consequently, power losses for n number of lines for Case A will be: 

                                                                         𝛥𝑃𝐴𝐿𝐿𝑖 = 3(𝐼2
𝐴𝑆𝑆𝑖 ∙ 𝑅1𝐿𝐿𝑖) (8) 

Where: 

                                                                                     𝐼𝑆𝐿𝑖 = 𝐼𝐴𝑆𝑆𝑖 (9) 

𝐼𝐴𝑆𝑆𝑖  is the line current for n number of power lines and it is equal to 𝐼𝑆𝐿𝑖 for Case A.  

𝛥𝑃𝐴𝐿𝐿𝑖 is power losses of n number of lines for Case A. 

Therefore, the total losses of S. S1 for Case A will be: 

𝛥𝑃𝐴𝑇 = ∑ 𝛥𝑃𝐴𝐿𝐿𝑖

𝑛

𝑖=1

 (10) 

Similarly, from equations (6), and (9), and Fig. 2: 

 𝛥𝑉𝐴𝐿𝐿𝑖 = 𝐼𝐴𝑆𝑆𝑛 ∙ 𝑍𝐿𝐿𝑖                                                           (11)                                  

Where: 

𝛥𝑉𝐴𝐿𝐿𝑖  is the voltage drop on n number of lines of Case A. 

𝑍𝐿𝐿𝑖 is the longitudinal impedance of n number of lines. 

Also, considering Case B, the wind power plants are connected to the bus bar which supply all 

transmission lines and the synchronous condenser is installed at the end of the MV transmission 

lines as shown in Fig. 2, applying Kirchhoff’s current law: 

                                                                       𝐼𝐵𝑆𝑆 =  𝐼𝑆𝑆 + 𝐼𝐵𝑊 − 𝐼𝐵𝐶 (12) 

Where:  

𝐼𝐵𝑊 : wind plant line current  

𝐼𝐵𝐶 : synchronous condenser line current  

𝐼𝐵𝑆𝑆 :  total substation line current of Case B. 
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From equation (12) and the vector directions of the wind power plants and synchronous 

condenser parameters in Fig. 2: 

            𝐼𝐵𝑆𝑆𝑖 =  𝐼𝑆𝑙𝑖 +  𝐼𝐵𝑊𝑖−𝐼𝐵𝐶𝑖 (13) 

Where: 

𝐼𝐵𝑊𝑖   is a constituent of the wind power plant line current going through n number of lines. 

𝐼𝐵𝐶𝑖 is a constituent of the synchronous condenser line current going through n number of lines. 

𝐼𝐵𝑆𝑆𝑖  is the new line current supplied to n number of power lines of Case B.   

From equation (5), (12) and (13), the power losses for n number of lines of Case B is written as: 

    𝛥𝑃𝐵𝐿𝐿𝑖 = 3(𝐼2
𝐵𝑆𝑆𝑖 ∙ 𝑅1𝐿𝐿𝑖)          (14) 

𝛥𝑃𝐵𝐿𝐿𝑖 = 3 ∙ 𝑅1𝐿𝐿𝑖(𝐼2
𝑆𝐿𝑖 + 𝐼2

𝐵𝑊𝑖 + 𝐼2
𝐵𝐶𝑖 + 2. 𝐼𝑆𝑙𝑖 . 𝐼𝐵𝑊𝑖 − 2. 𝐼𝑆𝑙𝑖 . 𝐼𝐵𝐶𝑖

− 2. 𝐼𝐵𝐶𝑖 . 𝐼𝐵𝑊𝑖) 

(15) 

Where: 

𝛥𝑃𝐵𝐿𝐿𝑖  is the power losses for n number of lines of Case B. 

Therefore, the total losses of S. S1 for Case B will be: 

𝛥𝑃𝐵𝑇 = ∑ 𝛥𝑃𝐵𝐿𝐿𝑖

𝑛

𝑖=1

 (16) 

Similarly, from equations (6), (12), and (13), and Fig. 2: 

                                                                       𝛥𝑉𝐵𝐿𝐿𝑖 = 𝐼𝐵𝑆𝑆𝑖 ∙ 𝑍𝐿𝐿𝑖 (17) 

                                                                        𝛥𝑉𝐵𝐿𝐿𝑖 = (𝐼𝑆𝐿𝑖 + 𝐼𝐵𝑊𝑖 − 𝐼𝐵𝐶𝑖) ∙
𝑍𝐿𝐿𝑖 

(18) 

Where: 

𝛥𝑉𝐵𝐿𝐿𝑖  is the voltage drop of n number of lines of Case B. 

In the same vein, considering Case C: 

The synchronous condenser is installed into the bus bar which supplies power to all sections of 

the MV transmission lines and the wind machine is connected to the end of the transmission lines 

as shown in Fig. 2, Applying Kirchhoff’s current law: 
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                                                                       𝐼𝐶𝑆𝑆 =  𝐼𝑆𝑆 −  𝐼𝐶𝑊 + 𝐼𝐶𝐶 (19) 

Where:  

𝐼𝐶𝑊 : wind plant line current  

𝐼𝐶𝐶 : synchronous condenser line current  

𝐼𝐶𝑆𝑆 :  total substation line current of Case C. 

From equation (19) and the vector directions of the wind power plants and synchronous 

condenser parameters in Fig. 2: 

  𝐼𝐶𝑆𝑆𝑖 =  𝐼𝑆𝑙𝑖 − 𝐼𝐶𝑊𝑖+𝐼𝐶𝐶𝑖 (20) 

Where: 

𝐼𝐶𝑊𝑖   is a constituent of the wind plants line current going through n number of lines. 

𝐼𝐶𝐶𝑖 is a constituent of the of synchronous condenser line current going through n number of 

lines. 

𝐼𝐶𝑆𝑆𝑖  is the new line current supplied to n number of power lines of Case C.   

From equation (5), (19) and (20), the power losses for n number of lines of Case C is written as: 

   𝛥𝑃𝐶𝐿𝐿𝑖 = 3(𝐼2
𝐶𝑆𝑆𝑖 ∙ 𝑅1𝐿𝐿𝑖) (21) 

𝛥𝑃𝐶𝐿𝐿𝑖 = 3 ∙ 𝑅1𝐿𝐿𝑖(𝐼2
𝑆𝐿𝑖 + 𝐼2

𝐶𝑊𝑖 + 𝐼2
𝐶𝐶𝑖 − 2. 𝐼𝑆𝑙𝑖. 𝐼𝐶𝑊𝑖 + 2. 𝐼𝑆𝑙𝑖 . 𝐼𝐶𝐶𝑖

− 2. 𝐼𝐶𝐶𝑖 . 𝐼𝐶𝑊𝑖) 

(22) 

Where: 

𝛥𝑃𝐶𝐿𝐿𝑖  is the power losses for n number of lines of Case C. 

Therefore, the total losses of S. S1 for Case C will be: 

𝛥𝑃𝐶𝑇 = ∑ 𝛥𝑃𝐶𝐿𝐿𝑖

𝑛

𝑖=1

 (23) 

Similarly, from equations (6), (19), and (20), and Fig. 2: 

                                                                       𝛥𝑉𝐶𝐿𝐿𝑖 = 𝐼𝐶𝑆𝑆𝑖 ∙ 𝑍𝐿𝐿𝑖 (24) 
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                                                                        𝛥𝑉𝐶𝐿𝐿𝑖 = (𝐼𝑆𝐿𝑖 − 𝐼𝐶𝑊𝑖 + 𝐼𝐶𝐶𝑖) ∙
𝑍𝐿𝐿𝑖 

(25) 

Where: 

𝛥𝑉𝐶𝐿𝐿𝑖  is the voltage drop of n number of lines of Case C. 

6. Case Study 

 

Figure 3. Scheme of the proposed wind plant integrated power system. 

This section examines the efficacy of the wind power plant and the synchronous condenser. Two 

operative criteria were utilized: the first is the wind farm ability to generate active power and the 

second is the capability of the synchronous condenser to produce reactive power. The parameters 

of the wind plant are of the capacity P=9MW and the power factor = 0.9. And that of the 

synchronous condenser is S= 3.125 MVA. Fig. 3 represents the scheme of the proposed wind plant 

integrated system. The parameters of the Benchmark Case are applied in the methodology. Values 

were measured during four steps of load application, the first step is the benchmark case parameter 

of loads values, while steps 2 - 4 are increased in various percentage values of active, reactive and 

apparent power as presented in Table 5 and Table 6 for load 1 and 2 respectively. The active power, 

reactive power and apparent power values are measured and obtained as shown in Table 5, for load 

1. The measured parameter values for load 2 are presented in Table 6. 
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Table 5. Calculated values of reactive, active and apparent power for various steps for load 1 as 

stated before in the text 

Steps Active 

power 

𝑃1 

(MW) 

Rate 

increase 

% 𝑃1 

Reactive 

power 

𝑄1 

(MVar) 

Rate 

increase 

% 𝑄1 

Apparent 

power 𝑆1 

MVA 

Rate 

increase 

% 𝑆1 

1 10 0 % 4 0% 10.77 0% 

2 12 20% 5 25% 13 20.71% 

3 14 40% 6 50% 15.232 41.43% 

4 16 60% 7 75% 17.464 62.15% 

 

Table 6. Calculated values of reactive, active and apparent power for various steps for load 2 as 

stated before in the text. 

Steps Active 

power 

𝑃1 

(MW) 

Rate 

increase 

% 𝑃1 

Reactive 

power 

𝑄1 

(MVar) 

Rate 

increase 

% 𝑄1 

Apparent 

power 𝑆1 

MVA 

Rate 

increase 

% 𝑆1 

1 12 0% 6 0% 13.416 0% 

2 14 16.67% 7 16.67% 15.652 16.67% 

3 16 33.33% 8 33.33% 17.889 33.33% 

4 18 50% 9 50% 20.125 50% 

 

7. Results and Discussion 

In this section, load 1 simulations are executed at several active power levels of 0%, 20%, 40%, 

and 60%, while the reactive power levels are 0%, 25%, 50%, and 75% respectively, as depicted in 

Table 5. The apparent power levels are 0%, 20.71%, 41.43%, and 62.15% For load 2, active, 

reactive and apparent power, levels are of 0%, 16.67%, 33.33%, and 50%, implying that the same 

level of increment was used for the various steps. The percentage of sending voltage deviation 

from the nominal voltage of 33 kV for different steps in Case A, B and C is presented in Fig. 4. It 

shows that the differences between Case A, B and C are very small and unremarkable. It also 

depicts that the load increase in each step brought about an increase in the sending voltage 

deviation from the nominal voltage value of 33 kV. Equally, Fig. 5 shows that the deviation of 

receiving voltage in Case B and C is lower than that of Case A owing to the power injected onto 

the grid at the end of the 33 kV MV transmission lines. It can be noticed that deviations in Case B 

and C are very close to each other. 



                                                                                                                                                                 Contributions  

178 
 

 

Figure 4. Percentage of sending voltage deviation from the nominal voltage of 33 kV for different 

steps of Case A, B and C. 

 

Figure 5. Percentage of receiving voltage deviation from the nominal voltage of 33 kV for 

different steps in Case A, B and C. 

 The performance of the wind plant and the synchronous condenser as regards to the percentage 

of allowed additional voltage drop for different steps in Case B and C, as well as for Case A is 

plotted in Fig. 6; it shows that the percentage of allowed additional voltage drops of the lines before 

the voltage drop exceeds 3.3 kV, which is 10% of the nominal voltage. Here, the maximum allowed 

voltage drop is 3.3kV and visibly the safety margin of Case B and C is higher than that of Case A. 

Meanwhile, the achievable voltage drops in steps 3 and 4 did not exceed 3.3 KV, going by 1% for 

step 3 and 12 % for step 4. Fig. 7 shows the power losses for the different steps in Case A, B and 

C. In this analysis, the power losses for Case B and C is lower than that of Case A. In addition, 

power losses in Case B is less than in case C, which means that using the wind power plants to 

inject active power at the start point of the 33 MV transmission line and the synchronous condenser 
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to produce reactive power at the consumer end of the power line, is more effective than what is 

obtained by the reverse positioning. 

From Fig 8, it is observed that the percentage of power losses reduction for different steps in Case 

B and C compared with Case A decreases for all Cases and steps, but reduction in Case B is higher. 

It is observable that the reduction in all steps was generally the same in each Case. The apparent 

power is the percentage increase in load, as the load increases the results becomes more favorable. 

 

Figure 6. Percentage of allowed additional voltage drop for different steps of Case A, B and C. 

 

 

Figure 7. Power losses for different steps in Case A, B and C. 
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Figure 8. Percentage of power losses reduction for different steps of Case B and C compared with 

Case A. 

The sending power factor for different steps of Case A, B and C is plotted in Fig. 9. In this analysis, 

the sending power factor for Case B and C is higher than that of Case A, ranging between 0.97 and 

0.93 whereas the result for Case A is between 0.86 and 0.83. Note that the sending power factor 

for Case C is higher than that of Case B. The receiving power factor for different steps of Case A, 

B and C is shown in Fig. 10. The result here is like that gotten in Fig. 9, were the power factor for 

Case B and C is higher than that of Case A, the power factor values recorded for Case B and C 

range between 0.99 and 0.95, whereas the values observed for Case A are between 0.88 and 0.87. 

It can be seen in Fig. 10, that the sending power factor as regards to Case C is higher than that of 

Case B. 

In power systems such as the proposed scheme, active power and a little amount of reactive power 

is needed. But with low power factor the reactive power is higher than usually needed. low power 

factor in the circumstance of Case A imply that reactive power is higher than active power. Hence, 

low power factor means dealing with high amount of reactive power. Therefore, low power factor 

drawback is the drawback of excessive reactive power. Hence, with low power factor the amount 

of apparent power in the network is increased, although the power [KW] is still the same. This 

associates some significant losses both on the transmission line and on the consumer side as is the 

situation for Case A, but the reverse is the situation for Case B and C were the losses on both the 

transmission line and the consumer side of the scheme are minimized due to the installation of the 

wind plant for active power regulation and synchronous condenser for reactive power generation. 

In addition, the voltage drop of the proposed MV transmission lines and distributors increases as 

power factor values decreases. In order to keep up with the voltage at the receiving end, Type-3 

wind plants for active power control only and synchronous condensers for reactive power control 

only must be installed into the proposed scheme. The 33kV transmission line voltage is also 

maintained owing to the observed power factor standing for both Case B and C. 
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Figure 9. Sending power factor for different steps of Case A, B and C. 

 

Figure 10. Receiving power factor for different steps of Case A, B and C. 

 

    In Fig. 11, the percentage of voltage drop reduction for different steps of Case B and C compared 

with Case A is presented. It is vividly clear that the voltage drop is reduced in Case B and C as 

compared with Case A and the performance of the various Case situations is the same for all steps. 

Additionally, it could be noticed that the percentage of reduction of voltage drop is approximately 

the same for all steps (that is 20%) but with corresponding small decrease as we move from step 

1- 4. On the contrary for Case A, the percentage of voltage drop steadily increases as we move 

from step 1 – 4. A Voltage drop performance analysis is required to ensure that the end of the 

power lines has enough power to drive the final load. The issue of voltage drop only gets worse as 

more loads are connected onto the power lines. As the length of power lines increases or as the 

current increases, so does the voltage drop. Note that leaving some margin for future loads will 

ensure that electricity consumers gets reliable power system as expected. The resulting measured 

and modelled percentage of voltage drop and power losses reduction for different steps in Case B 
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and C compared with Case A is graphically illustrated in Fig. 12, it shows the general comparison 

of Case B and C with Case A, where it is observed that the methodologies used in Case B and C 

are better than that used in Case A. Results for Case B and C showed the same performance of 

voltage drop, which is about 20%. But as regards to the power losses on the proposed scheme, 

Case B showed better performance than Case C.  The losses reduction for Case B is about 70%, 

but it is 50% for Case C. Overall, the performance of Case B is seen to be the best-Case situation 

observed. 

 

Figure 11. Percentage of voltage drop reduction for different steps of Case B and C compared 

with Case A. 

 

Figure 12. Percentage of voltage drop and power losses reduction for different steps in Case B 

and C compared with Case A. 
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8. Conclusions 

From the analysis of a normal power system, it is observed that when additional generation 

sources of active and reactive power are spread along the network, the proposed scheme attained 

stability. Conclusively, in traditional power system, like that of Case A in the design model, the 

limitation of increasing load, creates issues for the regulation of voltage level and this brings about 

increase in the voltage drop of the MV power line, sometimes more than the allowed ratio of 10% 

from nominal voltage value and this increases the power losses too. All these issues cause 

instability, power losses and are harmful to loads. In this model, the Type-3 renewable wind power 

plant has been used to generate active power and the synchronous condenser to produce reactive 

power, by choosing different points on the proposed scheme to separately connect both the wind 

renewable source and the synchronous condenser. The network is kept stable and power losses are 

equally reduced, even when the loads are increased implying that the proposed scheme can absorb 

more load. Hence, it can be posited that the Type-3 wind plant and the synchronous condenser 

scheme is economical. It is worth mentioning that the proposed technique of this paper can be 

applied to different loads deployment in any power systems in order to establish stability to 

preserve acceptable security performances of electricity grids. This research paper establishes an 

effective application of the synchronous condenser technology for the deployment of reactive 

power and the wind power plant for the deployment of active power in a modern electricity 

scheme. This methodology could effectively simulate the effect of anticipated synchronous 

condenser on a power grid with participating wind plants, thereby generating useful information 

for managers, engineers and researchers in the electricity industry. This information can improve 

modern electricity growth plans and can be used to formulate new electricity development 

strategies and action plans. It is important for electricity managers to develop management 

strategies and development plans, which allow electricity resources to be utilized more effectively 

in a sustainable manner. It aids to improve power system security by providing adequate active 

and reactive power for stability of the electricity grid and minimization of power system losses. 

Therefore, the proposed methodology is likely to bring significant technical and financial benefits 

to power system operators. 
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Abstract: The synchronous condenser nowadays contributes an essential share of resources for 

generating reactive power to ensure voltage stability in modern power systems. Such resource has 

to be taken care of by owners of electricity infrastructures. In any case, real projects, experiments 

and simulation results have shown need to use the synchronous condenser for enhancing power 

quality of the grid. Hence, traditional generators are being retrofitted to synchronous condensers 

in order for them to serve a better purpose of voltage stabilization after they are retired and new 

synchronous condensers are installed by electricity utility managers to serve same purpose too. 

This paper presents the synchronous condenser technology. It discusses the experience and lessons 

learnt from the use of the synchronous condenser in real projects. It also provides an outlook on 

the development of the use of the technology in modern power grid using two simulation study 

scenarios. These developments include Scenario One: utilizing only the synchronous condenser 

for voltage regulation on a power grid. And Scenario Two: Installing the synchronous condensers 

with Type-3 wind farm for voltage support on an electricity network, such contextualization is 

towards voltage stability in modern power grids.  
 

Index Terms: Electricity network, modern power grid, renewable energy resource, synchronous 

condenser, wind power  

 

1. Introduction 
Many electricity utility authorities now face the issue of rising electricity prices, growing 

demand for electricity, compliance with international greenhouse gas commitments and lack of 

grid resilience, reliability, and availability. A possible solution could be the synchronous condenser 

(SC) technology, a rebirth technology that is becoming very significant again as one of the most 

effective means to maintain grid quality, fault ride-through and fault support, which is essential to 

maintain electricity supply. Synchronous condensers help to increase the transmission capacity of 

individual transmission lines, intersystem or interstate long-distance transmission lines. They are 

responsible for correction of electrical power flow along circuits with different voltage values in 

multi-contour electrical grids to obtain positive technical or commercial effects [1] – [5]. 

Synchronous condensers can provide strong dynamic reactive power demand for electricity 

transmission systems, and its operation characteristics are related to excitation parameters. The 

force excitation voltage ratio and low excitation voltage ratio of the synchronous condenser can 

affect dynamic reactive response and power grid voltage. The dynamic characteristic of reactive 

power is mainly related to the parameters of synchronous condensers. [6] – [8].  

The voltage supporting ability of large capacity synchronous condenser has been payed more 

attention to by electrical engineers. The accuracy and the precision of the synchronous condenser 

electrical parameter is directly related to the stability of power system and the estimate of the 

synchronous condenser’s dynamic voltage supporting ability [9] - [11]. Power systems which 

transmits large active power does not provide reactive power for Alternating Current (AC) 

electricity systems, so the dynamic reactive reserve and the voltage stability decline significantly 

as the power system feeds back to the AC system [7], [12], [13], [14]. The inherent reactive power 

output characteristic of the synchronous condenser coincides with the dynamic reactive power 

demand of the power grid during fault situation. When the system has serious voltage drop in fault 

situation, the synchronous condenser will enter the strong excitation state, providing considerable 

supply of reactive power to the system in a short time, thereby improving the system voltage, 
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helping to quickly restore the power and system voltage, and on the long run preventing voltage 

collapse [7], [15]. 

Electricity utility authorities around the world are considering the utilization of synchronous 

condensers as part of their overall power transmission solution. More interesting reason is its 

practical applications in power networks with high penetrations of renewable power sources. Such 

electricity systems magnify the benefits provided by the synchronous condenser. The increasing 

penetration of renewable power sources such as solar and wind power generators in today’s energy 

mix is unfortunately reducing the resilience and stability of electricity networks. This is owing to 

the fact that these renewable energy resources are inherently intermittent and variable. Moreover, 

they lack the ability to support or tolerate the faults that do happen on electricity networks. SCs 

can play a significant role in compensating these shortcomings and soon, it is expected that they 

will help to alleviate many power systems challenges and enhance the reliability of electric-power 

systems. The synchronous condenser has also been utilized in this present time by electrically 

placing it near HVDC installations in order to increase power network short circuit MVA, the 

technology has been used to support and provide auxiliary services to the electricity grid for almost 

as long as power systems have been in existence [1], [15] – [16]. New challenges of the modern 

power grids can be solved by new built synchronous condensers or conversion of existing/retired 

power plants to synchronous condenser units, this new business model in the electricity industry 

ensures profitable growth by generation of reactive power [17]. Fig. 1. shows a synchronous 

generator working as a synchronous condenser, it can be of the range value between 5 - 1.500 

MVAr (+/-). 

The rest of the paper is organized as follows: in Section II, the synchronous condenser 

technology is presented. Section III, gave practical usage of the synchronous condenser technology 

in modern grid. In Section IV, two simulation scenarios were presented. The first scenario has a 

power system with only the synchronous condenser employed for reactive power production, 

While the second scenario has a synchronous condenser installed network with implanted wind 

farm, these models helps in improving the power system voltage stability. Finally, Section V 

concludes the paper. 

 

 
Fig. 1. Synchronous generator working as synchronous condenser 5….1.500 MVAr (+/-) [17]. 



                                                                                                                                                                 Contributions  

190 
 

2. The Synchronous Condenser Technology  

    Synchronous condensers were used at the dawn of electricity grids as the primary plant to 

regulate voltage, and hundreds of them were built and installed on the electricity network. 

Thereafter, new power electronics technology emerged such that Static VAr Compensators (SVCs) 

and STATCOMs, with their lower costs, replaced synchronous condensers in electricity networks. 

Despite that, today synchronous condensers offer more significant benefits to the electricity grid. 

Hence their more recent renaissance [18] - [19]. Synchronous condensers were once widely 

applied as a means of providing reactive power compensation in power grid prior to the 

introduction of power electronic-based devices. The application of synchronous condensers on the 

power system is well understood, it is fundamentally a rotating VAR generator. A synchronous 

motor or generator can be applied as a synchronous condenser where the field voltage is regulated 

in order to generate or absorb reactive power. Advantages of using the synchronous condenser 

include being a long standing, well known and understood technology. It is a very robust solution, 

it can have a high overload capability, and can provide good reactive power support under low 

voltage conditions. Synchronous condensers are a source of short circuit availability which can be 

a major advantage in weak power systems and they are not sources of harmonics. Disadvantages 

of the synchronous condenser technology can include higher level of losses, mechanical wear, and 

a slower response time than with power electronic technologies [20] - [22]. 

    Many transmission entities around the world are considering the use of new synchronous 

condensers or power plants retrofitted as synchronous condensers to be part of their overall 

transmission solution. Synchronous condensers can provide many benefits to a power system. 

They have useful characteristics with regard to voltage support, especially when considering use 

of their short-term overload capability. They can provide rotating inertia to a power system and 

can also increase system short circuit strength. These traits can be helpful as systems adapt to 

higher penetrations of renewable power sources, such as wind or solar. Power system challenges 

and the effectiveness of synchronous condenser solution can be more pronounced in smaller grids 

such as island power systems. Synchronous condensers can not only help with system inertia and 

short circuit strength, but also support the use of existing and even possible future DC links. 

Although they have existed for many years and were once considered obsolete, the value and 

usefulness of the synchronous condenser is again resurfacing [15]. 

    Conventional synchronous condensers are often overlooked as solutions for voltage regulation 

and stability problems primarily since such units have high operating losses and large maintenance 

requirements. An alternative to the conventional synchronous condenser is the High Temperature 

Superconductor Dynamic Synchronous Condenser (HTS DSC) which is a synchronous condenser 

featuring as a rotor wound with HTS wire; allowing the device to overcome these deficiencies of 

conventional SCs. The HTS DSC machine also is capable of running with a very high field current 

(up to 2.0 p.u.) for a period of time on the order of tens of seconds. This allows the machine to 

deliver up to 3.0 times rated output during a transient low voltage event. One possible solution to 

wind farm integration challenges (such as: Ability of the wind farm to regulate voltage with a 
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defined amount of leading and lagging reactive capability; Ability of the individual turbines within 

the wind farm to survive, or ride through, transient low voltage events such as system faults; 

Ensuring that the installation of the wind farm does not result in a reduction in system stability or 

post-fault voltage performance such that utility performance standards are compromised; And 

ensuring that the installation of the wind farm does not result in a violation of utility flicker 

standards) is the HTS Dynamic Synchronous Condenser. The SuperVAR machine concept shown 

in Fig. 2, is a dynamic synchronous condenser (DSC) with rotor windings comprised of high 

temperature superconductor wire. Like a conventional synchronous condenser, the HTS DSC 

machine adds system inertia and is a reactive power support device that injects or absorbs reactive 

power in order to hold voltages stable at the point where the device is connected to the power 

system. However, unlike a conventional synchronous condenser, the HTS DSC machine has very 

low real power losses and requires very little maintenance [23]. While conventional synchronous 

condensers have been widely used in the power grid, their relatively low efficiency has limited 

their potential applications, and their useful lifetime has been limited by field winding insulation 

degradation caused by field current heating during cyclic operation [24]. The field current of a 

conventional machine must be increased by three times between no-load and full-load and this 

causes significant field winding heating leading to premature failure [23]. 

 

 

Fig. 2. The HTS Dynamic Synchronous Condenser Concept [24]. 

3. Practical Usage of the Synchronous Condenser Technology in Modern Power Grid  

 

This section aims to establish the practical applications of the synchronous condensers in modern 

power grids. Here, five projects utilizing the synchronous condenser technology is analyzed. These 

include: the next-generation synchronous condenser installation at the VELCO granite substation; 

innovative reuse of the Ensted deactivated power plant; conversion of two retired units at 

Huntington Beach station to synchronous condensers; turnkey delivery of synchronous condenser 

solutions for the Bjæverskov, Fraugde and Herslev substations; and the Georgia Black Sea HVDC 

station. 
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A. Granite Substation 

    Vermont Electric Power Company, USA commissioned a Synchronous Condenser based 

reactive power device in the Granite substation as part of its Northwest Vermont Reliability 

Project. The reactive power device consisted of four +25/-12.5 MVAr synchronous condensers 

and four 25MVAr shunt capacitor banks. This synchronous condenser based reactive power device 

was chosen over Static Var Compensators and STATCOM owing to its merits over these devices. 

As for the Granite Substation, the synchronous condenser afforded the smallest base nameplate 

rating and still met the overload and low voltage requirements. Though maintenance is required, 

it is considered by VELCO to be on par with static device alternatives. The synchronous condenser 

technology was best suited to handle the local harmonic concerns and appears advantageous from 

a long-term life of product support standpoint. A picture of the condenser hall at Granite Substation 

is shown in Fig. 3. The units were commissioned in November of 2008 [20]. 

 

 
Fig. 3. Granite Substation Condenser Hall [20]. 

B. Ensted power plant 

    Converting power plants to synchronous condensers has enabled the innovative reuse of the 

Ensted deactivated power plant in order to ensure electricity grid stability in Denmark. The plant 

which was commissioned in 1979, is a former steam power plant located at the head of Aabenraa 

Fjord in the south of Denmark. Its Unit 3, formerly fired by coal and oil, had been Denmark’s 

largest combined heat and power unit. Ensted was equipped with a total electrical capacity of 626 

MW and a heat capacity of 76 MJ/s. The operator had mothballed the power production by 1 

January 2013 due to expected lower electricity consumption and a rising share of energy 

production from renewable energy sources, mainly wind power plants. The Ensted power plant 

now contributes to the stability of the national Danish electricity grid when required. The 

rebuilding of the Ensted plant was associated with low investments and low risks: Components 

from the original manufacturer, the reuse of equipment and the smooth integration of the solution 

were conducted with minimal effort. The project was completed within the very narrow, 

challenging time frame of five months [25]. It started operation in 2012, with Generator rating of: 

1500 MVA, 27 kV, 1500 rpm, and Reactive Power ability of between: -450 … +850 MVAr [17]. 

The outcome of this project is the innovative reuse of a deactivated power plant; improved grid 

stability due to the generation of reactive power and short circuit power through conversion of the 

generator into a synchronous condenser; As well as Low investment and operational costs [25]. 
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C. Huntington Beach station 

    The units 3 and 4 steam turbine generators at the Huntington Beach Generating Station, in 

California, USA, has been converted to synchronous condensers [26]. Faced with a critical 

shortfall in voltage support after the loss of the San Onofre nuclear plant, the California 

Independent System Operator converted two retired units at its Huntington Beach station to 

synchronous condensers. The experience offers lessons for other electricity utility authorities 

looking to deal with impending plant retirements and changing grids. Two retired generators at the 

Huntington Beach plant were converted to synchronous condensers to provide voltage support to 

the Southern California grid after the unexpected retirement of the San Onofre Nuclear Generating 

Station. The conversion from generators to synchronous condensers has the plant not only 

stabilizing the grid and keeping the lights on in times of high demand, but also keeping the air just 

a little bit cleaner in the process [27]. 

 The four natural gas fired steam units that make up the Huntington Beach Generating Station 

are located in Huntington Beach, California and owned by AES Southland Holdings, LLC. Units 

3 and 4 had been retired since 1995. The operating units are of great regional significance as they 

generate enough power to light nearly a half-million Californian homes and businesses. The power 

supply of 400,000 homes in Southern California was challenged by the decommissioning of the 

San Onofre nuclear power plant in Southern California. To maintain grid reliability, it was decided 

that bringing unit 3 and 4 of Huntington Beach out of retirement to serve as synchronous 

condensers would be a good option. To do so, however, the application needed not only to comply 

with California’s strict environmental regulations, but also meet a short time schedule [26], [28]. 

The effect of this work is improved grid reliability due to the conversion of the two generators to 

synchronous condensers. No emissions thanks to synchronous condensers which use no fuel. 

Hence, further innovative use of shut down units [28]. 

D. Bjæverskov, Fraugde and Herslev substations 

    The Danish transmission system operator placed three orders for turnkey delivery of 

synchronous condenser solutions for the Bjæverskov, Fraugde and Herslev substations. At the end 

of February 2015, the synchronous condenser solutions of Fraugde and Herslev were handed over 

to the client’s full satisfaction. In May 2015 Bjæverskov substation had been successfully 

completed and was passed over to the Danish Transmission System Operator. The solutions help 

stabilize the transmission system. The scope of delivery for the synchronous condenser solutions 

included a synchronous generator with brushless excitation, a generator step-up transformer and 

the electrical auxiliary systems, such as control and safety systems, voltage regulators and startup 

systems. They feature high efficiency, low noise emissions and low installation and 

commissioning costs [29]. 

Each synchronous condenser solution can deliver more than 900 MVA of short-circuit power and 

+215/-150 MVAr of reactive power. The startup time is designed so that the generators can reach 

up to 3,000 rpm within 10 minutes and be synchronized with the transmission grid. Since the 

synchronous condensers are designed for continuous operation and the provision of short-circuit 

currents when voltage dips occur in the grid, they have a minimum availability of 98 percent. 

These are important projects for the transmission system operator in Denmark for stabilizing the 

transmission network, Denmark is one of the few countries to include a large share of wind energy 

in its energy mix, which is why the country need synchronous condenser solutions to help stabilize 

her electricity transmission system and to support higher wind power generation in the country 
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[29]. 

  Bjæverskov substation 250 MVAr synchronous condenser solution started operation in 2013, 

providing the transmission system with a short-circuit power of more than 800 MVA in addition 

to reactive power control. The installation of this stand-alone synchronous condenser solution 

enabled the transmission system operator in Denmark to operate the transmission network without 

the need for a large thermal power plant. This makes the installation an economically and 

environmentally advantageous investment enabling the infeed of large amounts of renewable 

energy into the transmission network. Fraugde and Herslev substations synchronous condenser 

solution is capable of delivering more than 900 MVA of short-circuit power and +150/-75 MVAr 

of reactive power. The projects are running in trial operation as of August 2014 [30]. 

E. Georgia Black Sea HVDC station 

The Black Sea Transmission Network Project (BSTN) was started in 2009, to create an 

asynchronous interconnection between the 500 kV network of Georgia and the 400 kV network of 

Turkey [30]. Three 60 MVAr synchronous condensers were installed at the Georgia Black Sea 

HVDC station in June 2012. This synchronous condenser solution supports the transmission 

network between Georgia and Turkey with the required short-circuit power in order to operate the 

newly installed HVDC back-to-back station [31]. The Project was successfully completed in 2013, 

providing 700MW capacity interconnection between the Georgian and Turkish electricity grids 

through rehabilitation/construction of 500kV Gardabani-Akhaltsikhe-Zestaponi overhead line and 

construction of 400kV interconnection line from Akhaltsikhe to Turkish border, as well as the 

construction of a new 500/400/220kV substation with HVDC back to back plant in Akhaltsikhe. 

Through this transmission infrastructure Georgia having abundance of renewable power sources, 

such as hydro and wind is able to export or wheel eco-friendly electricity to the emerging, 

demanding markets of Turkey as well as of other countries of eastern or central Europe and Asia 

[30], [32], [33]. 

 

4. Simulation Studies 
Two simulation studies were conducted. First simulation study is a synchronous condenser 

installed on a 33kV power line connected to a 132KVA substation as shown in Fig 5. And the 

second simulation study is a power network installed with synchronous condenser and embedded 

with wind farm on a 33kV line, connected to a 50KVA substation as presented in Fig. 7. 

MATLAB/Simulink software package is used to accomplish both simulation task. both 

methodologies is to achieve voltage stability in the networks. 

 

A. First Simulation Study: 33kV Medium Voltage Model with Synchronous Condenser 

Connected 

    For this simulation study, a three phase 33 kV power line was used for the simulation study. 

And a 33 kV 50 Hz load is joined to the three-phase 33 kV electricity power line, a synchronous 

condenser is placed at the terminating end of the three-phase power system. The performance of 

the complete system was monitored in real time with the implementation in MATLAB/Simulink 

software. The dynamic response of the synchronous condenser on the system shows that the 

voltage drop before installing the synchronous condenser on the network is positive (the value is 

between 0.3 kV and 0.56 kV), whereas the voltage drop after installation of the synchronous 

condenser on the network is negative, which imply that power flow is in the opposite direction. 
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Fig. 4, Shows the schematic diagram of the proposed 33 kV MV electric-power system network 

without the installation of the synchronous condenser equipment. Fig. 5, depicts the synchronous 

condenser equipment installed at the terminal end of the 33 kV MV power system network. While 

Fig. 6, represents the graphical illustration of the voltage difference between the sending voltage 

(Us) and the receiving voltage (Ur), that is (Us-Ur) on the 33kV electric-power system network 

without and with the synchronous condenser connected at the terminal end of the network under 

study. The voltage at the sending and receiving ends of the network is measured in three steps 

increment of the inductive load (4, 7 AND 10 MVars, for step 1, 2 and 3. The reactive power and 

active power ratings are constant, having values of 0.5MVar and 30 MVA respectively. Results 

obtained shows that the synchronous condenser can supply reactive power for stabilizing voltage 

on the grid line. 
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Fig. 4. Schematic diagram of the proposed 33 kV MV electric-power system network without 

installation of the synchronous condenser equipment. 
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Fig. 5. Schematic diagram of the synchronous condenser equipment installed at the terminal end 

of the 33 kV MV power system network. 
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Fig. 6. voltage difference (Us-Ur) values of the 33kV electric-power system network without and 

with the synchronous condenser connected at the terminal end of the network. 

 

B. Second Simulation Study: 33kV Medium Voltage Model with Synchronous Condenser and 

Wind Farm Connected 

    For the other simulation study, a 33kV power line is connected to a 50 MVA substation. For 

this scenario three cases were examined. That is Case A, B, and C, with the location of the SC and 

wind farm altered in each Case. Case A; This is the point of reference case.  Case B; is a wind 

farm connected to the power network at the busbar of the main substation and the synchronous 

condenser is installed at the consumer load ends of the network. the wind farm is modelled as a 

Type-3 wind generator for producing active power only and the synchronous condenser is 

modelled for reactive power generation, Case C; this is the state when the wind farm is joined to 

the power network at the busbar close to the consumer loads and the synchronous condenser is 

placed at the main substation bus, the synchronous condenser is placed at the substation for 

producing reactive power only and the Type-3 wind generator is placed at the consumer 

transformer load ends for producing active power only. Four steps values were monitored. The 

first step is the point of reference case value parameter of loads, while steps 2 - 4 are increased in 

20% for each step levels of active, reactive and apparent power, for load 1 and 2 respectively. The 

schematic diagram of the second simulation model with its point of reference (Case A), Case B, 

and Case C is presented in Fig. 7. 
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Fig. 7. Schematic diagram of the simulation model with the synchronous condenser and wind farm 

connected, showing its point of reference (Case A), Case B, and Case C. 

 

 

The behavior of the second simulation study monitored in real time with the help of 

MATLAB/Simulink software shown in Fig. 8, reveals that the differences between Case A, B and 

C is not that remarkable. That is the load increase in each step brought about an increase in the 

sending voltage deviation from the nominal voltage value of 33 kV. While, Fig. 9, shows that the 

deviation in receiving voltage in Case B and C is lower than that of Case A as a result of the power 

injected onto the grid at the end of the transmission lines. It can be seen that deviation in Case B 

and C are very close. 

Fig. 10, is a graphical representation of the percentage of voltage drop reduction for different steps 

of Case B and C compared with Case A. It is clear that the voltage drop is reduced in Case B and 

C as compared with Case A and the performance of the various Case situations is the same for all 

steps. Furthermore, the percentage of reduction of voltage drop is approximately the same for all 

steps (that is 20%) but with corresponding small decrease as it is monitored from step 1- 4. But 

considering Case A, the percentage of voltage drop steadily increases as it is observed from step 1 

– 4. Table 1, 2, and 3 tabulates the measured voltage values for Case A, B and C respectively. 

Hence, the results imply that the synchronous condenser have been used to supply reactive power 

to stabilize the network voltage. 

 

 

Table 1. Measured values of voltage for Case A 
Step Line 𝑈𝑠  (kV) 𝑈𝑟  (kV) 𝛥𝑉 (kV) 

1 

1 32.57 31.077 1.493 

2 32.57 30.017 2.553 

2 

1 32.484 30.679 1.805 

2 32.484 29.543 2.941 

3 

1 32.399 30.287 2.112 

2 32.399 29.081 3.318 

4 

1 32.314 29.903 2.411 

2 32.314 28.63 3.683 
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Table 2. Measured values of voltage for Case B 

Step Line 𝑈𝑠  (kV) 𝑈𝑟  (kV) 𝛥𝑉 (kV) 

1 

1 32.567 30.608 1.959 

2 32.567 30.608 1.959 

2 

1 32.481 30.176 2.305 

2 32.481 30.176 2.305 

3 

1 32.395 29.753 2.642 

2 32.395 29.753 2.642 

4 

1 32.31 29.338 2.972 

2 32.31 29.338 2.972 

 

 

 

Table 3. Measured values of voltage for Case C 

Step Line 𝑈𝑠  (kV) 𝑈𝑟  (kV) 𝛥𝑉 (kV) 

1 

1 32.567 30.611 1.956 

2 32.567 30.611 1.956 

2 

1 32.481 30.179 2.302 

2 32.481 30.179 2.302 

3 

1 32.395 29.755 2.64 

2 32.395 29.755 2.64 

4 

1 32.31 29.341 2.969 

2 32.31 29.341 2.969 
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Fig. 8. Percentage of sending voltage deviation from nominal voltage 33 kV for different steps in 

Case A, B and C. 

 

 
Fig. 9. Percentage of receiving voltage deviation from nominal voltage 33 kV for different steps 

in Case A, B and C. 

 

 

Fig. 10. Percentage of voltage drop reduction for different steps in Case B and C compared with 

Case A. 
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5. Conclusion 

The synchronous condenser technology has proven to be a solid and efficient way to provide 

reactive power. The technology has successfully demonstrated its potential in addressing a variety 

of issues facing the modern grid. It allowed the retrofitting of old synchronous generators to 

synchronous condensers and it is one of the enabling technologies used in modern power projects. 

This study has been carried out based on the synchronous condenser technology application for 

wind energy systems. The performance of the synchronous condenser technology with the 

proposed systems is demonstrated for voltage stability by connecting actual loads to the system 

without and with the SC. And thereafter with a wind farm. The two simulation scenarios studied 

emphasis the fact that the synchronous condenser is able to supply reactive power for stabilizing 

voltage in modern electricity grid network. Further research will be to calculate power losses on 

the proposed electricity networks.  

 

References 

[1] Power Engineering International. An old tool rediscovered to address new grid challenges, 1st 

December, 2017. Vol. 25, Issue 11. [Online] Available from: 

https://www.powerengineeringint.com  

[2] J. Jia, G. Yang, A. H. Nielsen, and P. R. Hansen, “Impact of VSC Control Strategies and 

Incorporation of Synchronous Condensers on Distance Protection under Unbalanced Faults,” 

IEEE Transactions on Industrial Electronics, Year: 2018, ( Early Access )  

[3] D. N. Pinchuk, et al 2009 Power Technology and Engineering 43 60-63. 

[4] L. Chubraeva and S. Timofeev, Modern Reactive Power Generators, 2018 IOP Conf. Ser.: 

Mater. Sci. Eng. 313 012006 [Online] Available from: http://iopscience.iop.org 

[5] F. O. Igbinovia, G. Fandi, Z. Muller, J. Svec, and J. Tlusty, “Optimal Location of the 

Synchronous Condenser in Electric-Power System Networks”. IEEE 17th International 

Scientific Conference on Electric Power Engineering (EPE), 16-18 May 2016, Prague, Czech 

Republic 

[6] F. Shixiong, et al, “Influence of Synchronous Condenser Exciter Limit on Voltage Stability of 

HVDC,” 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), May 31-

June 2 2018, pp. 210 – 215. 

[7] F. Shixiong, et al “Influence of Synchronous Condenser Transient Parameters on Voltage 

Stability of HVDC,” 13th IEEE Conference on Industrial Electronics and Applications 

(ICIEA), May 31-June 2 2018, pp. 2015 – 2020. 

[8] F. O. Igbinovia, G. Fandi, Z. Müller, J. Švec, and J. Tlusty, “Cost Implication and Reactive 

Power Generating Potential of the Synchronous Condenser”. IEEE 2nd International 

Conference on Intelligent Green Building and Smart Grid (IGBSG), 27-29 June 2016, Prague, 

Czech Republic 

[9] H. Rui, Z. JingHong, Z. Shouzhen, S. Chao, Z. Junfeng and X. xianyong, “Step identification 

of synchronous generator parametersbased on sensitivity analysis,” Electric Power Automation 

Equipment, 2012, pp. 1006 – 6047. 

[10] Z. Shouzhen, S. Shande, J. Lianwei, Z. Fengquan, and J. jianmin, “Establ ishing the 

Excitation System Dynamic Parameters for Large Synchronous Generators,” Proceedings of 

the CSEE, Vo l. 17 No. 3, May. 1997. 

[11] A. Wang; Z. Zheng; and J. Zheng, “Parameter identification of synchronous condenser 

based on sensitivity analysis of parameters,” China International Electrical and Energy 

Conference (CIEEC), Beijing, China, 25-27 Oct. 2017, pp. 725 – 730. 



                                                                                                                                                                 Contributions  

201 
 

[12] H. Cai, D. Liu, C. Liu, M. Han, K. Wang, “Dynamic voltage stability analyses on UHVDC 

accessing to Jiangxi power grid”, Modern Electric Power, 2011, 06: 17-22. 

[13] J. Tu, et al, “DC transmission impact analysis on AC/DC interconnected system self-

organized criticality”, Automation of Electric Power Systems, vol.15, no.3, pp.40-59, 2012. 

[14] Y. Shu, et al, “Security evaluation of UHV synchronized power grid”, Proceedings of the 

CSEE, vol.27, no.34, 2017, pp.1-6. 

[15] P. E. Marken, A. C. Depoian, J. Skliutas, and M. Verrier, “Modern synchronous condenser 

performance considerations,” IEEE Power and Energy Society General Meeting, 24-29 July, 

2011. San Diego, CA, USA 

[16] J. Liston, "Typical Synchronous Condenser Installations," General Electric Company 

Review, vol. 14, Jan. 1911. pp. 234-241. 

[17] A. Deecke, “Usage of existing power plants as synchronous condenser,” 

[18] Think Grid, “Synchronous condensers for better grid stability,” 16th March, 2016. [Online] 

Available from: http://www.think-grid.org 

[19] F. O. Igbinovia, G. Fandi, J. Švec, Z. Müller, and J. Tlusty, “Comparative Review of 

Reactive Power Compensation Technologies,” IEEE 16th International Scientific Conference 

on Electric Power Engineering (EPE), 20-22 May 2015, Kouty nad Desnou, Czech Republic, 

[20] P. E. Marken, M. Henderson, D. LaForest, J. Skliutas, J. Roedel, and T. Campbell, 

“Selection of Synchronous Condenser Technology for the Granite Substation,” IEEE PES 

T&D, 19-22 April 2010, pp. 1 – 6. 

[21] F. O. Igbinovia, G. Fandi, Z. Muller, and J. Tlusty, “Progressive Usage of the Synchronous 

Machine in Electrical Power Systems,” Indian Journal of Engineering, April 2018, Vol. 15, pp. 

117-126. 

[22] P. M. Dusane, D. Minh-Quan, F. O. Igbinovia, and G. Fandi, “Analysis of the Synchronous 

Machine in its Operational Modes: Motor, Generator and Compensator,” 19th International 

Student Conference on Electrical Engineering. (CD-ROM) May 14th, 2015, Prague, Czech 

Republic. [Online] Available from: radio.feld.cvut.cz ISBN 978-80-01-05728-5. 

[23] M. Ross and S. Kalsi, “Applications of Superconducting Synchronous Condensers in Wind 

Power Integration,” IEEE/PES Transmission and Distribution Conference and Exhibition, 21-

24 May 2006pp. 272 – 277. 

[24] S. S. Kalsi, K. Weeber, H. Takesue, C. Lewis, H-W. Neumueller and R. D. Blaugher, 

‘Development Status of Rotating Machines Employing Superconducting Field Windings’, 

Proceedings of the IEEE, No. 10, October 2004, pp. 1688-1704. 

[25] Siemens, “Reactivating instead of discontinuing: Converted plant stabilizes the Danish 

grid,” [Online] Available from:  https://www.energy.siemens.com 

[26] Siemens, “Siemens Energy converts U.S. steam turbine generators to synchronous 

condensers,” 2013-Aug-21, [Online] Available from:  https://www.siemens.com 

[27] C. Davidson and W. Wirta, “AES Uses Synchronous Condensers for Grid Balancing,” 

Power, 2014, [Online] Available from:  http://www.powermag.com 

[28] Siemens, “Huntington Beach Generating Station: Converting generators to synchronous 

condensers ensures California’s grid stability,” [Online] Available from:  

https://www.energy.siemens.com 

[29] Siemens, “Synchronous condenser solutions for Denmark,” Power Transmission Solutions, 

Issue 15/06, [Online] Available from: http://www.ptd.siemens.de 
[30] GSE, Black Sea Transmission Network Project (BSTN), [Online] Available from: 

http://www.gse.com.ge 



                                                                                                                                                                 Contributions  

202 
 

[31] The stable way - Synchronous condenser solutions, [Online] Available from: 

https://www.siemens.com 

[32] Siemens, “Georgia now exporting green energy to Turkey,” 2013-Dec-13, [Online] Available 

from: https://www.siemens.com 

[33] K. Sekhniashvili, Transmitting Power Along the Black Sea, TD World, Aug 08, 2017, 

[Online] Available from: http://www.tdworld.com 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                                                                 Contributions  

203 
 

Paper Four 

Progressive Usage of the Synchronous Machine in Electrical 

Power Systems 
 

Famous O. Igbinovia, Ghaeth Fandi, Zdenek Muller, Josef Tlusty 

 

Contributor Statement of Contribution 

Famous O. Igbinovia (Candidate) Simulation and modelling (25%); Result interpretation 

and discussion (25%); Paper writing and review (25%). 

Ghaeth Fandi Simulation and modelling (25%); Result interpretation 

and discussion (25%); Paper writing and review (25%). 

Zdenek Muller Simulation and modelling (25%); Result interpretation 

and discussion (25%); Paper writing and review (25%). 

Josef Tlusty Simulation and modelling (25%); Result interpretation 

and discussion (25%); Paper writing and review (25%). 

 

 

Published in:  

Indian Journal of Engineering  

April 2018  

Tamilnadu, India  

 

 

 

 

Copyright © 2018 Discovery Publication  

The layout has been revised. 



                                                                                                                                                                 Contributions  

204 
 

Abstract: In traditional electric-power systems, synchronous generator based center electric-

power plants have been the main origin of dynamic reactive power sustenance, but owing to the 

steady growth in the number of renewable power generating plants across the globe and the 

concurrent dismantling of these rotating synchronous machines principally driven by the demand 

to decrease carbon emission and reliance on fossil fuels, the need for grid-stabilizing systems is 

increasing. Also, traditional electric-power generating units are approaching the end of their useful 

operational life and utility authorities are faced with a difficult resolution of retiring electric-power 

plants. One way of resolving these issues is the refurbishment of these machines, that is the 

electric-power plants to synchronous condensers. This paper presents a brief assessment of the 

synchronous machine and the motivation for this research work. It discusses the importance of the 

synchronous machine in electrical power systems, and the progressive trend in the use of the 

synchronous machine in electric-power networks. It stresses the need for the use of the 

synchronous machine for reactive power compensation purposes, with a vivid description given 

with MATLAB/Simulink simulation model. When the synchronous condenser is connected to the 

power system model at the terminating end of the network and switched ON, the medium voltage 

(MV) electrical power network simulation model effectively allows the control of reactive power, 

which improves voltage stability and power flow control of the proposed network. 

 

Keywords: synchronous machine; refurbished synchronous machine; synchronous motor; 

synchronous generator; synchronous condenser; reactive power compensator; electrical power 

systems. 

1. Introduction 

A machine is a device using mechanical power and having various parts, each with a well-defined 

purpose and jointly performing a specific task. In usual term, it is a semi or fully automated piece 

of equipment that magnifies human physical and/or mental ability in carrying-out one or more task. 

And, from systems frame of reference, it is a purposefully efficient set of components whose 

interconnections and inner mechanism are clearly understood. The behavior of a correctly 

functioning machine is absolutely predictable: its current state controls its next state, and the same 

inputs every time produces the same outputs. [1], [2], [3], [4], [5], [6], [7], and [8]. Synchronous 

means happening at the same time; contemporaneous; coinciding in time; simultaneous, happening, 

existing, or arising at exactly the same time, recurring or operating at exactly the same periods, 

requiring or designating synchronism, having the same period; also, having the same period and 

phase [9] and [10]. 

Synchronous machines are rotating electrical machines with Direct Current (DC) field winding on 

the rotor, and Alternating Current (AC) armature winding on the stator; it works as a generator 

when it changes mechanical energy to electrical energy. Also, it can function as motor when it 

changes electrical energy to mechanical energy [11] and [12]. It supplies vital part of the energy in 

an electrical power system, and usually comprises of a few kVA to a few hundred MVA, the largest 

are normally rated 1500 MVA. This machine plays significant part in electric power systems, in 

that they impose the frequency of sinusoidal voltages and currents, they supply energy buffer, 

through the kinetic energy deposited in their rotating masses. And they can supply or absorb reactive 

power, which is needed to control voltage in electrical networks [13]. A synchronous machine is an 

AC rotating machine whose speed under steady state situation is proportional to the frequency of 

the current in its armature. The magnetic field generated by the armature currents rotates at the same 
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speed as that generated by the field current on the rotor, which is rotating at synchronous speed, 

and a steady torque result is produced. Synchronous machines are often utilized as generators 

mainly for sizeable power systems, such as turbine and hydroelectric generators in electrical grid 

power supply. Because the rotor speed is proportional to the frequency of excitation, synchronous 

motors can be utilized in circumstances where constant speed drive is essential. Since the reactive 

power produced by a synchronous machine can be modified by controlling or regulating the 

magnitude of the rotor field current, unloaded synchronous machines are as well frequently inserted 

in power systems exclusively for power factor rectification or for regulation of reactive kVA flow. 

Such machines, known as synchronous condensers, can be made cheaper with the production of 

bigger dimensions of the device [14], [15], and [16]. 

This research paper emphasizes the need for the refurbishment of the synchronous machine to 

synchronous condenser for reactive power control purposes, a clear illustration is established with 

the MATLAB/Simulink simulation of a 33 kV MV electrical power network supply. Simulation 

results obtained with the Synchronous condenser installed onto the network, shows that, the 

synchronous condenser when switched ON effectively allows the regulation of reactive power 

which improves voltage stability and power flow control of the proposed electrical network model. 

2. Motivation for this Research Work 

Nowadays, renewable energy generating plants are being added promptly to power system 

networks worldwide, this is principally motivated by the need to minimize carbon emission and 

over-reliance on fossil fuels. Many countries have set goal to realize its electricity generation from 

renewable power sources. This has led to the continual displacement of traditional electric-power 

plants by renewable power generating plants as hitherto being accomplished in some countries, 

center Conventional Power Plants (CPPs) are even then being taken out of the electric-power grid 

network with the desired result of least or non CPPs attached to the grid in the near future [17], 

[18], [19], [20], and [21]. 

Traditional electric-power plants are being replaced by renewable power generating plants, 

nevertheless as an alternative to dismantling these traditional power plants, the refurbishment of 

these machines to synchronous condenser by de-clutching their turbine shaft from the rotor shaft 

can be one of the practical solution to the much-needed problem of dynamic reactive power 

provision in large-scale renewable power integrated electric-power systems. Also, every power 

plant will one day get to the end of their useful operational life and utility authorities are confronted 

with a difficult resolution of retiring the plants, the option is still to refurbish these existing electric-

power plants to synchronous condensers. Refurbishment of conventional power plants in existence 

or operation at this current time to synchronous condensers can be one of the straightforward 

method to realize a cost-effective approach to tackle dynamic voltage control issues in electric-

power systems. This methodology can reduce or even keep away utility authorities from installing 

new infrastructure that or else would be required to continue dependable and steady functioning 

of large-scale renewable integrated electric-power systems. Nonetheless, in addition to the 

dynamic reactive power provision gotten from the equipment, refurbished Synchronous 

Condensers (SCs) can as well provide more services such as short term overloading, inertia etc. It 

is of benefit to know that the operating and maintenance cost estimate of synchronous condensers 

is on the high side as compared to its Flexible Alternating Current Transmission Systems (FACTS) 

technology counterparts [20], and [21]. 
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3. Importance of the Synchronous Machine in Electrical Power Systems 

The synchronous machine is a significant electro-mechanical energy converter. Synchronous 

generators normally function together or in parallel, to form a big power system providing 

electrical energy to consumers. For these applications, synchronous machines are built in big units, 

their rating spanning tens to hundreds of megawatts. For high-speed machines, the prime movers 

are normally steam turbines utilizing fossil or nuclear energy resources. Low-speed machines are 

frequently driven by hydro-turbines that use water power for generation. Smaller synchronous 

machines are occasionally employed for private generation and as standby units, with diesel 

engines or gas turbines as prime movers. In a big generator, the rotor is magnetized by a coil 

wrapped around it. Figure 1, shows a two-pole rotor, it will be of note that salient-pole rotors 

usually have more than two poles. When intended for use as a generator, big salient-pole machines 

are driven by water turbines. Figure 2, displays the three-phase voltage gotten at the terminating 

ends of the generator and the equation given portrays the speed of the machine, its number of poles, 

and the frequency of the voltage outcome. 

 

 

Figure 1. Schematic cross section of a salient-pole synchronous machine  [22]. 
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Figure 2. A three-phase voltage waveform gotten at the terminating ends of a salient-pole 

synchronous machine used as a generator [22]. 

Where in figure 2; f = electrical frequency in Hz, p = number of poles of the machine and RPM = 

speed of the revolving field in revolutions per minute (rpm). 

Synchronous machines can also be utilized as motors, but they are normally built in very big 

dimensions. The synchronous motor functions at an exact synchronous speed, and consequently is 

a constant-speed motor; it has variable power factor attributes, and thus fits for power factor 

correction applications. A synchronous motor functioning without mechanical load is called a 

compensator or synchronous condenser. It acts correctly as a variable capacitor when the field is 

over-excited, and as a variable inductor when the field is under-excited. It is frequently utilized in 

critical locations in electrical power system network for reactive power control [23].  

4. Progressive Trend in the Use of the Synchronous Machine in Transmission and 

Distribution Networks 

Electrical power utility authorities always make sure that grid reliability, efficiency, and security 

is their main concern. But as grid network progresses and load profiles undergo changes, 

transmission and distribution networks are also being overstretched, which then make the need for 

voltage support and grid management much more demanding. Universally, electric power utilities 

are facing numerous new grid challenges and conditions, these includes: Transformations in 

generation mix; Reduction in conventional or traditional generation; A rise in renewable and 

distributed generation; Environmental and regulatory policy alterations, and driving the retirement 

of traditional generating stations. These problems have operational effect on electrical 

infrastructure, particularly producing an overall deficiency in: Reactive compensation support; 

Voltage support; System inertia; and Low short circuit strength. This has raised renewed interest 

and necessity for synchronous condensers in fragile grid applications, most especially in support 

of renewable generation and High Voltage Direct Current (HVDC) Systems. The synchronous 

condenser provides electricity utility authorities an easy and dependable solution to address 

reactive power compensation and voltage support requirements. It supply’s power system 

operators with proven robust and reliable solution, which can deliver both steady state and dynamic 

support to electric power systems efficiently. Synchronous condensers have been utilized 

conventionally in electric power applications to sustain electrical networks that has insufficient 
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power factor and to regulate or control voltage in a network. The function of the synchronous 

condenser has been relatively fulfilled by static devices such as static VAR compensators (SVCs) 

and static synchronous compensators (STATCOMs). These static devices have the benefit of 

quicker responses. In some grid fault conditions, the synchronous condenser supply higher reactive 

power, and, more significantly, the kinetic energy accumulated in the rotor gives inertial support 

to the power grid during fault situations. The inertial support ability and fast response time become 

more significant as the grid-connection prerequisites, such as low voltage ride-through become 

more inflexible. Synchronous condenser devices are capable of providing real power during fault 

conditions in electrical grid networks, the real power is supplied by the rotating mass inertial 

response [15], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35] and [36]. 

As renewable energy sources are being added rapidly to power systems globally, traditional power 

plants are therefore being displaced by renewable power generation. Gas and steam power 

production plants are in the same vein being retired and some advancing towards the end of their 

functional life, power plant owners faces a difficult resolution between refurbishing and 

dismantling/retiring their plants. Dismantling/retiring a power production unit can decrease a 

plant’s reactive power ability, perhaps resulting in shortfalls that directly have an effect on the 

local system’s reliability. If a unit is dismantled/retired, the challenge will be to keep in good 

condition grid voltage at or near the plant interconnection point, in order to make sure that there is 

grid reliability. Nevertheless, there is possibly a more economical and beneficial solution: which 

is converting existing synchronous generators into synchronous condensers. A recent 

refurbishment from generator to synchronous condenser has the plant not only stabilizing the grid 

and keeping the lights on in situations of high demand, but as well keeping the air cleaner in the 

process.  [37], [38], [39], and [40]. 

Synchronous machines that are designed solely to provide reactive power sustenance are called 

synchronous condensers. Synchronous condensers have all of the response speed and 

controllability benefits of generators without the requirement to construct the rest part of the power 

plant, such as fuel handling equipment and boilers. Because they are rotating machines with 

moving parts and auxiliary structures, they may need notably more maintenance than static 

substitutes. They also consume or use-up real power, equivalent to about 3% of the machine’s 

reactive power grading. The synchronous condenser supports voltage regulation, by drawing-up 

leading current when line voltage sags, which increases generator excitation thereby restoring the 

electrical power line voltage, this is illustrated in Figure 3, showing the curves with and without 

(w/o) the synchronous condenser connected to an electrical power line. The ability of a 

synchronous condenser can be improved by substituting the copper wound iron field rotor with an 

ironless rotor of high temperature superconducting wire, which have to be cooled to liquid nitrogen 

boiling point of 77oK (-196oC). Synchronous machines, be it motor or generator with controllable 

field has reactive power abilities. Active power is the energy made available to run a motor, heat 

an apartment, or light-up an electric bulb, reactive power provides the main purpose of regulating 

voltage. If voltage on the system is not adequate, active power cannot be supplied in an electrical 

grid network. Reactive power is utilized to supply the voltage levels essential for active power to 

do beneficial tasks. Reactive power is necessary to move active power all through transmission 

and distribution networks to the electricity consumer. Reactive power (VAR) is a prerequisite to 

keep in good condition the voltage to convey active power (watts) through electrical transmission 

lines. Motor loads and other loads need reactive power to convert or change the flow of electrons 

into beneficial work. When there is not enough reactive power, the voltage sags down and it is not 
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feasible to push the power required by loads through electrical power lines [13], [14], [15], [23], 

[41] and [42]. 

 

Figure 3. Illustration of the curves obtained with and without (w/o) the synchronous condenser 

connected to an electrical power line [41]. 

5. Methodology 

5.1. Description of Method 

The research model under study consists of a 132 kV high voltage (HV) alternating current (AC) 

power supply system source linking a three phase 33 kV medium voltage (MV) power line network 

with the aid of a 132/33 kV HV/MV transformer. The 33 kV MV power line network is then linked 

to the MV side of the 132/33 kV HV/MV transformer. Thereafter, a 33 kV 50 Hz load is joined to 

the three phase 33 kV MV electric-power system, with a synchronous condenser placed at the 

terminating end of the three-phase power line network via a 33/25 kV MV transformer. The 

schematic diagram of the proposed model without and with the synchronous condenser installed 

on the proposed power system network are presented in Figure 4 and Figure 5 respectively. 

132kV
AC 33kV

132/33

33 KV 

Load

33kV
3 Ph Line

 

Figure 4. Schematic diagram of the proposed 33 kV MV power system network without the 

synchronous condenser installed on the network. 
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Figure 5. Schematic diagram of the proposed 33 kV MV power system network with the 

synchronous condenser placed at the extreme end of the network. 

To validate the model, three sets of datas have been analyzed, data 1, 2, and 3. With different 

values of inductive loads of 4, 7 and 10 MVARs, an active power of 30 MW and a capacitive 

load of 0.5 MVAR joined to the electric-power system network. The results of both measured 

and calculated values of the power factor  (Cos φ) gotten from the network is 0.99, 0.97 and 0.95 

for Data 1, 2, and 3 respectively. The power factor of the network is measured and caculated in 

order to test the validity of the proposed electric-power system network.  

5.2. Voltage measurement and direction of power flow  

The voltage values measured at the sending and receiving ends of the 33 kV MV electric-power 

system network for the three sets of data’s 1, 2 and 3, with their direction of power flow is obtained. 

The results of the voltage values obtained and power flow direction observed when the 

synchronous condenser is switched OFF on the proposed network shows that for data 1 Sending 

Voltage (Us) is 32.95, while Receiving Voltage (Ur) is 32.39, therefore Voltage Difference for data 

1= 0.56 Volts ; In the same vein for data 2 - Sending Voltage (Us) is 32.00, while Receiving 

Voltage (Ur) is 31.70, hence Voltage Difference for data 2 = 0.30 Volts; Also, considering data 3 

- Sending Voltage (Us) is 31.70, while Receiving Voltage (Ur) is 31.30, hence Voltage Difference 

for data 3 = 0.40 Volts. It can be seen that large voltage differences were gotten from the electric-

power system and the direction of power flow observed is positive (+), which means that power 

flowed from the voltage sending (Us) end to the voltage receiving (Ur) end of the power line. While 

the voltage values documented and the power flow directions monitored with the synchronous 

condenser switched ON for data 1 is Sending Voltage (Us) is 32.70, and Receiving Voltage (Ur) is 

33.10, therefore Voltage Difference for data 1= - 0.40 Volts ; for data 2 - Sending Voltage (Us) is 

32.65, while Receiving Voltage (Ur) is 32,95, hence Voltage Difference for data 2 = - 0.30 Volts; 

Equally, for data 3 - Sending Voltage (Us) is 32.20, while Receiving Voltage (Ur) is 32.40, and 

Voltage Difference for data 3 = - 0.20 Volts, but unlike the previous situation when the 

synchronous condenser is switched OFF, in this case with the synchronous condenser switched 

ON, small voltage differences were gotten from the network and the direction of power flow 

monitored is negative (-), this means that power flows from the receiving (Ur) end to the sending 

(Us) end of the proposed 33 kV MV electric-power system network.  
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6. Simulation Results and Discussion 

6.1. Simulation 

MATLAB/Simulink software program has been utilized for the simulation of the proposed 

electric-power system network, two scenarios were considered, first is the Case when the 

synchronous condenser is switched OFF on the 33 kV MV electric-power system network, which 

resulted in large voltage differences on the power line. The second scenario is the Case with the 

synchronous condenser switched ON as regards to the 33 kV MV electric-power line, which gave 

rise to a small voltage difference on the proposed electric-power system network. 

6.2. Results and Analysis 

To start with, power factor for data 1, 2, and 3 were measured and thereafter calculated, this has 

been done as formerly expressed to test the authenticity or validity of the proposed electric-power 

system under consideration. It was noticed that the measured and calculated values of the power 

factor gotten were the same for the three sets of data monitored. Simulation model results for the 

voltage values gotten at the beginning end of the 33 kV medium voltage (MV) electric-power 

system network with the Synchronous Condenser switched OFF and ON is recorded and a clear 

and vivid explicit details is presented with a 3D diagram in Figure 6, large voltage differences 

were noticed on the 33 kV medium voltage (MV) network as compared to the readings recorded 

at the terminating end of the power line and the direction of power flow is from the voltage sending 

(Us) end of the network to the voltage receiving (Ur) end of the power line for data’s 1, 2, and 3 

monitored.  At the beginning end of the electric-power line, results show that the scheme uses up 

reactive power, when the synchronous condenser is switched OFF. And reactive power is injected 

into the 33 kV medium voltage (MV) electric-power system network, when the synchronous 

condenser is switched ON as regards to the proposed network. Also, it is seen that the voltage 

profile is better when the synchronous condenser is switched ON. 

 

Figure 6, Voltage values at the beginning end of the 33 kV MV electric-power system network 

when the Synchronous Condenser is swithced OFF and ON.  
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The Synchronous Condenser is equally switched OFF and ON at the terminating end of the line as 

seen in Figure 7. Results gotten shows that when the synchronous condenser is switched OFF, the 

electric-power line uses up reactive power. But reactive power is injected onto the 33 kV medium 

voltage (MV) power line network, when the synchronous condenser is switched ON. Here, the 

results depict a small voltage difference on the power line as compared to larger values recorded 

at the starting point of the proposed electric-power system network and the observed power flow 

direction movement is from the receiving voltage (Ur) end of the proposed electric-power model 

to the sending voltage (Us) end of the network. It is also observed that the system experiences drop 

in voltage values during the whole time when the synchronous condenser was switched OFF, but 

a better voltage profile is observed when the synchronous condenser is switched ON. This has 

been illustrated in Figure 7. 

 

Figure 7, Voltage values at the terminating end of the 33 kV MV electric-power system network 

with the synchronous condenser swithed OFF and ON. 

 

The graphical illustration of the differences in voltage values gotten at the beginning and 

terminating end of the 33 kV MV electric-power line with the synchronous condenser switched 

OFF and ON is shown in Figure 8, the noticed directions of power flow for data 1, 2, and 3 is also 

displayed. Large voltage difference values are noticed and the direction of power flow is from 

sending voltage (Us) end to the receiving voltage (Ur) end of the electric-power line, which imply 

positive (+) direction of power flow for the scenario when the synchronous condenser is switched 

OFF. Also, the obtained voltage difference values for the observed data’s 1, 2 and 3, when the 

synchronous condenser is switched ON as regards to the electric-power system network is small 

and the directions of power flow is from the receiving voltage (Ur) terminating ends to the sending 

voltage (Us) ends of the proposed network under study, which means that the monitored power flow 

direction is negative (-). This imply that the case with the synchronous condenser switched ON as 

regards to the 33 kV medium voltage (MV) electric-power system network gave more favorable 

result for enhanced voltage stability and power flow control as compared with the scenario when 

the synchronous condenser is switched OFF. Also, the monitored voltage difference reduces as we 

observe data 1 through 3 for both switched OFF and ON situations. 
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Figure 8, The observed directions of power flow, and the obtained difference in voltage values at 

the beginning and end terminals of the 33 kV MV power line when the synchronous condenser is 

swithced OFF and ON. 

7. Conclusion 

Globally, renewable power generating plants are being added continuously to the electricity grid 

network and many power plants are also getting to the end of their useful operational life time. 

Thus, electric-power plant utility authorities and other stakeholders in the industry are faced with 

the difficult decision between dismantling or retiring these plants. The authors of this paper suggest 

that these rotating synchronous machines should be refurbished to synchronous condensers 

exclusively for reactive power compensation on the electric-power grid network. The reactive 

power of a synchronous condenser can be effortlessly regulated by means of its excitation and 

when placed across electric-power system line, ideally at the receiving terminating end, makes it 

a good strategy for achieving voltage stability and power flow control in power lines; Synchronous 

condensers make available active compensation in electric-power lines: the reactive power 

absorbed or supplied utilizing these devices are by itself with little or no direct human control so 

as to maintain voltage of the bus bar to which it is connected in an electrical grid network.  

This research have been able to establish the fact that the synchronous condenser technology 

allows the regulation or control of reactive power which improves voltage stability and power flow 

control of electrical power networks. And the authors therefore posit that instead of dismantling 

and/or retiring power plants, same should be refurbished to synchronous condensers and utilized 

specifically for reactive power control and probably other applications in electrical power systems; 

Future research will be; How to sustain stable voltage and ascertain the direction of power flow in 

a consederably extensive electric-power system network with many branches and also to develop 

an appropriate control scheme for optimal reactive power compensation in ensuring voltage 

stability and power flow control in electrical power lines by utilizing the synchronous condenser 

technology. 
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Abstract: The objective of this study is to examine the cost implication and reactive power 

generating potential of the synchronous condenser. Universally, increase in electricity demand 

constitutes new issues for power generation, transmission and distribution. Synchronous condenser 

solutions are being initiated globally to be instrumental in the best usage of power resources and 

offer grid systems support for todays and future sustainable, stable and reliable electrical grid 

network. This research x-rays the cost implication of the synchronous condenser in today’s 

challenging environment. A vivid description of the reactive power generating potential of the 

synchronous condenser is shown with MATLAB/Simulink environment simulation of a medium 

voltage (MV) power system network. It is observed that the synchronous condenser is cost-

effective as compared to other reactive power generating equipment’s and sources. Furthermore, 

MATLAB/Simulink simulation results of the MV electric-power network shows an effective 

scheme for reactive power generation. 

 

Keywords: reactive power; reactive power generation; power flow control; synchronous 

condenser; cost implication 

 

1. Introduction 

All around the globe, utility authorities are facing many grid issues and market environment 
undergo changes including: Adjustments in generation mix; Reduction in conventional generation; 
Rise in renewable and distributed generation; Environmental and regulatory policy amendment; 
And managing the retirement of conventional coal power generating stations. These issues have 
operational consequences on electrical infrastructure, particularly in bringing about a substantial 
shortage in: Reactive power sustenance; Voltage support/ fortification; System inertia; And Low 
short circuit ratios on electrical power network. Synchronous Condenser devices are invented and 
designed to proffer a highly dependable and cost-effective solution to tackle reactive power 
generation and voltage support conditions, furnishing power system operators an optimized way 
out for cost, performance and operational resilience. Synchronous Condensers are traditionally 
designed to furnish power system operators with a proven, robust and reliable solution for reactive 
power generation. Reactive power Q and real power P are linked by the relation below, where S is 
the apparent power [1], [2], [3], [4], [5], [6] and [7].  

                                           S2 = P2 + Q2                           (1) 
Equipment’s which accumulates energy by means of a magnetic field created by the movement of 
current are said to consume reactive power; and equipment’s which accumulates energy by means 
of electric fields are said to generate reactive power. The movement of Reactive Power on an 
electrical network will influence Voltage levels. Dissimilar to system frequency, which is steady 
across a network, voltages encountered at points across an electric-power system network produce 
a 'voltage profile', which is distinctly connected to the existing real and reactive power provision 
and need. Hence, the exigency to control voltage levels on a local level to satisfy the diverse 
requirements of power system networks. Without suitable infusion of reactive power at proper 
positions, the voltage profile of a power system grid network will go beyond statutory planning and 
operational boundary lines. This brings about the necessity to make use of reactive power 
generating devices in order to control voltage levels [6]. Reactive power (VARs) is essential to 
support voltage level in electric-power grid network in order to supply active power (watts) through 
electric-power systems. Motor loads and other loads need reactive power to change the movement 
of electrons into beneficial work. When there is shortage of reactive power, the voltage drops down 
and it is not feasible to send the power required by loads through electric-power systems. Reactive 
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power does not supply beneficial work, it is vitally important for AC electrical power system 
networks, motors, and numerous kind of consumer loads. For motor loads, adequate VAR levels 
are required to escape voltage drops that impede the change and movement of watts to meet up with 
load requirements. Consequently, actual or practical electric-power system networks need both real 
and reactive power to work correctly [2], [8], [9], [10], [11], and [12]. 

       The electrical power-system designer and operator utilizes variety of devices and sources 
obtainable for generating reactive power, these include; capacitor banks; Reactors; Conventional 
generators; Inductors; Synchronous condensers; power electronics control devices such as Static 
VAR Compensators  (SVCs), Flexible  AC  Transmission Systems (FACTS), and Static 
Synchronous Compensators (STATCOMs); Unified Power Flow controller (UPFC); switching 
converter inside Distributed Energy Resources (DER); Synchronous generators; and FACTS 
controllers. DER are proficient in supplying reactive power counting on their grid-coupling 
converter. Internal Combustion Engines (ICEs) with synchronous generators can generate reactive 
power side by side with real power. Batteries, Fuel Cells (FCs), and renewable energy resources 
like photovoltaic (PV) normally give rise to Direct Current (DC), and make use of inverters in order 
to link Alternating Current (AC) power system grids, while micro-grids (MCs) utilize DC 
internally. All these devices are occasionally proficient in supplying reactive power based on the 
abilities of their power electronics and do offer dynamic voltage regulation [2], [7], [9], [10], [13], 
[14] and [15]. The aim of this research is to investigate the cost implication of using the synchronous 
condenser, and the reactive power generation ability of the device by installing the equipment on a 
three-phase 33 kV MV electric-power distribution network. 

 

2. Methodology  

This research paper is made up of two sections: 

Section 1: This section deals with the analysis of the cost implication of using synchronous 
condensers: The authors used research materials mainly from secondary sources in order to 
investigate the cost implication of using the device. Scholarly research publications were consulted 
to have a rich and well-structured paper, these data’s were further edited as tabulated in Table I. and 
II. 

Section 2: This section has to do with the simulation and analysis of the synchronous condensers 
reactive power generation potential in electrical power grid networks; The research model consists 
of a 132 kV high voltage (HV) alternating current (AC) power supply source connecting a three-
phase 33 kV medium voltage (MV) electric-power system network with the aid of a 132/33 kV 
HV/MV transformer. The 33 kV MV power system network is connected to the MV side of the 
132/33 kV HV/MV transformer. A 33 kV 50 Hz load is attached to the three-phase 33 kV MV 
power system. Thereafter, a synchronous condenser is installed at the beginning of the network 
terminal of the three-phase electric-power system network via a 33/25 kV MV transformer, the 
scheme is modeled using Matlab/Simulink environment. 

A. Cost Implication of the Synchronous Condenser in Today’s Challenging Environment 

It can be seen in Table I. that costs favors capacitors/reactors. Generators have exceptionally 
high capital costs since they are designed to provide real power, instead of reactive power. To a 
greater extent the incremental cost of reactive power provision from generators is high. However, 
it is hard to unambiguously split-up reactive power costs from real power costs. Operating costs for 
generators are high as well since generators can be associated with real-power losses. Also, since 
generators have different uses, they undergo opportunity costs when called on at the same time to 
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supply high levels of reactive and real power. Synchronous condensers have the same features as 
generators; however, since they are built exclusively to supply reactive support, synchronous 
condensers capital costs are not as high as generators and they experience no opportunity cost. 
SVCs and STATCOMs are high cost equipment’s too, in spite of the fact that their operating costs 
are lower than those for synchronous condensers and generators. Power system operators can obtain 
reactive power sources either using mandates/authorization or purchases/acquisition. It might be 
feasible to establish competitive markets for securing these services, on condition that the reactive 
power provisions are not geographically confined. It is a widespread opinion that the position 
constraints on reactive power resources are adequately challenging that competitive markets cannot 
be established for this service. Some power system operators pay generators their embedded costs 
for reactive power resources. Notwithstanding, deciding the embedded costs of generator to supply 
reactive power sustenance leads to uncertainty. This is so since; the same equipment is utilized to 
supply both real and reactive power. Queries such as what percentages, for instance, of the exciter, 
generator stator, generator rotor, turbine assembly, and step-up transformer should be allocated to 
each operation is difficult to answer. In the same vein, there is further uncertainty in deciding the 
embedded costs of synchronous condensers [16], [17], and [18]. 

Synchronous machines are costly to procure in the first instance, and the equipment has internal 
losses, which present a continual operating cost. Normally, the mean cost for a synchronous 
condenser is between $10 to $40 per kVAR and the maintenance cost ranges from about $0.4 to 
$0.8/kVAR per year. The SuperVAR is a High Temperature Superconductor (HTS) Dynamic 
Synchronous Condenser equipment, that is meant to operate continually, this equipment cost 
between $1 million and $1.2 million. A SuperVAR is rated at 10 MVA, however its first model 
shown at the Tennessee Valley Authority (TVA) in Gallatin, TN was 8 MVA [19], [20], [21], [22] 
and [23]. Reactive power generating equipment’s/sources vary in their capital and  operating costs, 
as presented in Table I [7], [15] and [24]. 

 

Table 1. Cost Comparison of Reactive Power Generating Equipments and Sources  

Reactive Power 

Generating 

Equipment’s and 

Sources 

Investment Cost 

Capital 

Cost 

(per 

kVAR) 

Operating 

Cost 

Opportunity 

Cost 

Capacitors/Reactors $10-30 
Very 

Low 
No 

Synchronous 

Generators 

Difficult         

to 

separate 

High Yes 

STATCOM $50-100 Moderate No 

Static VAR      

compensators 
$40-100 Moderate No 

Synchronous 

condensers 
$10-40 High No 
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Distributed Energy 

Resources (DER) - 

Inverter 

$40-90 High Yes 

Distributed Energy 

Resources (DER) – 

Synchronous 

Generator 

$25-40 High Yes 

 

 

The cost benefit comparison between capacitor banks and a Small Generator Retrofitted to 
Synchronous Condenser, with both rated 5.0 MVAR is tabulated in Table 2. it shows that the files 
separate until after the text has been formatted and styled. synchronous condenser come first on 
precise economic terms as against capacitor banks. Moreover, there are additional advantages from 
using synchronous condenser equipment’s that are difficult to quantify. Capacitors are situated all 
through utility’s service territory and consequently maintenance is extra costly as when compared 
to a single synchronous generator sited at a substation. The power system operator cannot be certain 
that its capacitors are functioning, as they are too widely scattered for the monitoring of their status. 
Unpredicted occurrences, for instance lightning could stop capacitor timers from operating, without 
the knowledge of utility operator. The unpredictability on the status of the capacitors could be 
avoided by putting in place more costly control systems for the capacitors or alternatively having 
one synchronous condenser that can easily be reached or assessed in order to control reactive power 
flow/movement. Besides, synchronous condenser equipment’s can dynamically make available 
reactive power and regulate its output depending on power system circumstances [2], [7], [8], [9], 
[10], [11], [12], [15], [24] and [25]. 

Synchronous condensers may deliver extra indirect advantages such as: reduced losses, saved 
line capacity, and increased transfer capability; as compared to capacitor banks. This is as a result 
of the fact that injected reactive power from a synchronous condenser equipment is practically 
constant when voltage is low. But substantially low, that is by voltage squared, for capacitor banks. 
This meaning that capacitors are least worthwhile when most required. Over time, it has been seen 
that the more shunt capacitors are connected to an electrical power system, the more the possibilities 
for voltage collapse as the output of shunt capacitors decreases as the square of the measured 
voltage. Most capacitors that are installed by power system operators in order to keep away from 
power factor penalties normally in summer seasons are not actually required for the remaining 
period of the year. At present, utility authorities normally turns off half of its fixed capacitor banks 
throughout the duration of winter season, this is done to keep away from leading Power Factor 
costs. 

Synchronous condenser devices could assist utility authority’s place a limit on installing 
capacitors that function only just for one third period of the year [7], [15], [24] and [25]. 
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Table II COST BENEFIT COMPARISON BETWEEN CAPACITORS AND 
SYNCHRONOUS CONDENSERS 

Costs and Benefits 

($/year) 

Capacitor 
Banks (5.0 

MVAR) 

Small Generator 
Retrofitted to 
Synchronous 

Condenser (5.0 
MVAR) 

Capital Cost $22,000 $50,000 

Technology Life 
Time 

10 
years 

20 years 

Preventive 
Maintenance Cost 

$6,000 $3,500 

Cost of Voltage 
Regulator 

Maintenance 
$6,600 $3,300 

Annual Cost in 
Present Value 

$14,800 $9,300 

Saving from 
Avoided Power 
Factor Penalties 

$29,200 $29,200 

Annual Benefit in 
Present Value 

$29,200 $29,200 

Net Annual Saving 
in Present Value 

$14,400 $19,900 

Net Annual Saving 
in Present Value 

($/MVAR) 
$2,880 $3,980 

 

 

 

B. Validity Test Results, Voltage Measurements and Directions of Power Flow of the Three-phase 
33 kV MV Electric-power System Network, 

The parameters for the proposed grid network has an Active Power (P) of 30 MW and a 
Capacitive Reactive Power (QC) of 0.5 MVAR. Three sets of data’s were analyzed, data 1, 2, and 
3. With varying values of Inductive Reactive Power (QL) loads of 4, 7 and 10 MVARs. Measured 
and calculated values of power factors of load for the three data’s were obtained to test the validity 
of the system. Results for the validity test are shown in Table III. The schematic diagram for the 
proposed network, when the synchronous condenser is installed at the beginning of the network 
terminal is illustrated in Fig. 1. 
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Fig. 1. Schematic diagram of the synchronous condenser placed at the beginning terminal of the 

33 kV MV power system network. 

Table III VALUES OF POWER FACTOR ( cos  ) FOR THE 33 kV 50 Hz LOADS 

33 kV 50 Hz load cos  

Set of Data’s 
Active Power P 

(MW) 

Inductive 

Reactive Power 

QL (MVAR) 

Capacitive 

Reactive Power 

QC (MVAR) 

Measured 

Value 

Calculated 

Value 

1 30 4 0.5 0.99 0.99 

2 30 7 0.5 0.97 0.97 

3 30 10 0.5 0.95 0.95 

 

 
Data 1; 

𝑐𝑜𝑠 𝜑 =
𝑃

𝑆
=

𝑃

√𝑃2 + 𝑄2
=

30

√302 + 3.52
= 0.99 

 
Data 2; 

𝑐𝑜𝑠 𝜑 =
𝑃

𝑆
=

𝑃

√𝑃2 + 𝑄2
=

30

√302 + 6.52
= 0.97 

 
Data 3; 

𝑐𝑜𝑠 𝜑 =
𝑃

𝑆
=

𝑃

√𝑃2 + 𝑄2
=

30

√302 + 9.52
= 0.95 

 

Table IV. and V. shows the voltage values obtained without and with the synchronous condenser 
installed at the terminal of the beginning of the three-phase 33 kV MV electric-power system 
network. The voltage at the sending and receiving ends of the network is measured for the three set 
of data’s, 1, 2 and 3, with directions of their power flow also determined. Table IV. illustrate the 
results of voltage values and power flow directions obtained without the synchronous condenser 
connected to the network, it can be seen that large voltage differences were experienced by the 
network and the direction of power flow is positive (+), which means that power flows from the 
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voltage sending (Us) terminal to the voltage receiving (Ur) terminal of the network. Table 5. clearly 
show the voltage values and power flow directions observed when the synchronous condenser is 
installed at the beginning terminal of the proposed grid network, larger voltage differences were 
experienced by the 33 kV MV network and the directions of power flow is still positive (+), this 
also imply that power flows from the voltage sending terminal (Us) end of the proposed power grid 
system to the voltage receiving (Ur) terminal of the network. Implying that installation of the 
synchronous condenser at the beginning of the network terminal has significantly increased the 
reactive power generated by the power system grid network. 

 
TABLE IV. VOLTAGE VALUES OBTAINED AND POWER FLOW DIRECTIONS WITHOUT 
THE SYNCHRONOUS CONDENSER CONNECTED TO THE THREE-PHASE 33 kV MV 
ELECTRIC-POWER SYSTEM NETWORK 

Set of 
Data’s 

Sending 
Voltage 

(Us) 

Receiving 
Voltage 

(Ur) 

Voltage 
Difference 

(Us-Ur) 

Power 
Flow 

Directions 

1 32.90 32.35 0.55 + 

2 32.74 31.70 1.04 + 

3 32.45 30.98 1.47 + 

 

 
TABLE V. VOLTAGE VALUES OBTAINED AND POWER FLOW DIRECTIONS WITH THE 
SYNCHRONOUS CONDENSER INSTALLED AT THE BEGINNING TERMINAL OF THE 
THREE-PHASE 33 kV MV ELECTRIC-POWER SYSTEM NETWORK 

Set of Data’s 
Sending Voltage 

(Us) 
Receiving 

Voltage (Ur) 
Voltage Difference 

(Us-Ur) 
Power Flow 

Direction 

1 32.70 31.90 0.80 + 

2 32.10 31.25 0.85 + 

3 31.40 29.60 1.80 + 

 

3. SIMULATION RESULTS AND DISCUSSION  

MATLAB/Simulink environment is used for the simulation of the proposed system network as 

shown in Fig. 2. two scenarios were studied, first is the situation without the synchronous 

condenser connected to the 33 kV MV power system network, which resulted in large voltage 

differences on the network. The second situation is the scenario with the synchronous condenser 

installed at the beginning terminal of the 33 kV MV electric-power system network, which resulted 

in larger voltage differences on the proposed power system network. Implying that the 

synchronous condenser, has the potentials to produce or generate reactive power. 



                                                                                                                                                                 Contributions  

225 
 

 

Fig. 2. MATLAB/Simulink simulation model of the proposed 33 kV MV electric-power system 
network, with the synchronous condenser installed at the beginning terminal of the network. 

      

Simulation results for the voltage values obtained at the beginning terminal of the 33 kV medium 
voltage (MV) electric-power system network without and with the synchronous condenser installed 
at the beginning terminal of the network is graphically illustrated with a three-dimensional diagram 
in Fig. 3., there were large voltage differences experienced by the 33 kV medium voltage (MV) 
network and the direction of power flow is from the voltage sending (Us) terminal of the network 
to the voltage receiving (Ur) terminal of the electric-power system for the three set of data’s 
observed. The differences between sending and receiving voltage (Us-Ur) values becomes more as 
the values of inductive reactive power (QL) loads (measured in MVAR) increases. Furthermore, it 
is observed that reactive power is being used without the synchronous condenser connected to the 
network. And reactive power is being injected onto the electric-power system grid as the 
synchronous condenser is connected to the network. Thus, insinuating that the synchronous 
condenser has the potential to generate reactive power onto an electric-power system network. The 
direction of power flow without and with the synchronous condenser device connected onto the 
network is from voltage sending (Us) terminal to voltage receiving (Ur) terminal of the network, 
this is to say that power flow is in the positive (+) direction, as illustrated in Fig. 3. 
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Fig. 3. Voltage values and power flow directions at the beginning terminal of the 33 kV MV electric-
power system network without and with the synchronous condenser Installed. 

 

 

Fig. 4. Voltage values and power flow directions at the terminal end of the 33 kV MV power system 
network without and with the synchronous condenser installed. 

 

The results obtained at the terminal end of the 33 kV medium voltage (MV) power system network 
without and with the Synchronous Condenser installed is graphically illustrated in Fig. 4., with a 
three-dimensional diagram. Fig. 4., shows the values of the voltage differences (Us-Ur) between the 
sending voltage (Us) and receiving voltage (Ur), which becomes even larger as the synchronous 
condenser is installed at the beginning of the 33 kV medium voltage (MV) power system network. 
Here, the result vividly depicts a gradual increase in the voltage difference on the power system 
network as values of inductive reactive power (QL) loads increases. Hence, it implies that the values 
of the voltage differences obtained are significantly larger when the synchronous condenser is 
installed onto the electric-power grid as compared to voltage difference values obtained without the 
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synchronous condenser installed on the network. Fig. 4., also present the directions of power flow 
of the network, the power flow direction is from the voltage sending (Us) terminal to the voltage 
receiving (Ur) terminal, this is to say that power flow direction is positive (+). It can also be seen in 
Fig. 4., that without the synchronous condenser installed on the network, the electric-power network 
is using reactive power. But with the synchronous condenser installed, there is injection of reactive 
power onto the power system network, which imply that the synchronous condenser do have the 
potential to generate or supply reactive power to an electric-power system network. 

     Graphical illustration of the comparison of the voltage differences (Us-Ur) between the sending 
voltage (Us) and receiving voltage (Ur) at the beginning and end terminals of the 33 kV MV power 
system network without and with the synchronous condenser connected is shown in Fig. 5. The 
observed directions of power flow for data 1, 2, and 3 is also illustrated. Large voltage differences 
is observed and the direction of power flow is from the sending voltage (Us) terminal to the 
receiving voltage (Ur) terminal ends of the power system network, which imply a positive (+) 
direction of power flow for the scenario without the synchronous condenser installed on the electric-
power system network. The obtained voltage differences for the observed data’s 1, 2 and 3, when 
the synchronous condenser is installed at the beginning of the power system network is much more 
larger, as compared to the scenario without the installation of the synchronous condenser equipment 
and the directions of power flow is same for both scenarios, this is to say that power flow is still 
from the sending voltage (Us) terminal to the receiving voltage (Ur) terminal of the network, 
implying that the observed power flow directions are positive (+)  in both situation, without and 
with the synchronous condenser. It can be seen in Fig. 5., that reactive power is being used for the 
scenario without the synchronous condenser installed to the network. And reactive power is being 
injected onto the electric-power system as the synchronous condenser is installed onto the network. 
All the results so far obtained further goes on to buttress the point that synchronous condenser 
devices has the potential to generate or produce reactive power on an electric-power grid network. 

 

 
Fig. 5. Differences in voltage values and the observed directions of power flow at the beginning 
and end terminals of the 33 kV MV electric-power system network without and with the 
synchronous condenser installed at the beginning terminal of the network. 
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4. Conclusion  

This research paper has shown that the synchronous condenser triumph on precise economic 
points as compared to other reactive power generating equipment’s and sources. Results of 
MATLAB/Simulink modeling of medium voltage power system components, that is transmission 
line, distribution line and loads of the proposed 33 kV MV electric-power system network, with 
synchronous condenser installed at the beginning of the network shows that the synchronous 
condenser device is able to generate or produce reactive power onto an electric-power grid network. 
Several concerns need to be met in the future, in order for the synchronous condenser to become 
widely integrated as a reactive power generating/producing equipment, these includes; The overall 
costs of retrofitting synchronous condenser devices for generating or producing reactive power need 
to be reduced; Also, a suitable position for installing the Synchronous condenser equipment on an 
electric-power system networks need to be investigated for its optimal use. 
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Abstract: In this paper, authors focus on the use of the synchronous condenser device for voltage 

stability and power flow control on a three-phase 33 kV Medium Voltage (MV) electric-power 

system network. Matlab/Simulink is used for the simulation of the proposed system model. To test 

the validity of the system, measured and calculated power factor values were obtained. Two 

scenarios were studied; Firstly, is the scenario with the synchronous condenser located at the 

terminal end of the 33 kV MV network (position 1). And secondly, is the scenario with the 

synchronous condenser placed at the beginning of the 33 kV MV power Line (position 2). 

Simulation results obtained from the study are compared in order to determine the most appropriate 

location for situating the synchronous condenser device. It is observed that the locations of the 

synchronous condenser equipment have different impacts on the electric-power system network. 

However, the proposed study of the simulation model base on the location of the synchronous 

condenser at the terminal end of the 33 kV MV electric-power system network (position 1) 

demonstrate a more effective and suitable scheme of the electric-power network concerning issues 

of voltage stability and power flow control. 

Keywords: reactive power; reactive power compensation; synchronous condenser; voltage 

stability; Power flow control; electric-power system networks 

1. Introduction 

Nowadays, voltage stability and instability has come to be an important area of study in the 
operation and control of electric-power systems following several voltage instability occurrence in 
many parts of the world, non-success in discovering voltage instability or taking perfect control of 
the situation may result in wide-ranging electric-power system failure. Consequently, to sustain the 
reliability of an electric-power system, it is very important that voltage stability is correctly and 
promptly sustained at all time. Voltage instability is accountable for several system break-down and 
power-cuts, and is now given appreciable care in many electric-power system networks. Thus, 
making voltage stability a critical topic as regards to electric-power system security [1], [2], [3], 
[4], [5], [6], [7] and [8]. Electric-power systems are used under growing increased over-stretched 
circumstances than they normally had previously. There are several elements accountable for this, 
these include: continuous increase in interconnections; utilization of recently developed 
technologies; large volume of transmitted electric-power over- stretching power-lines; 
environmental stress on power-lines; growth in electric-power utilization in bulky load localities, 
that is areas where it is not practicable or cheap to situate additional generating plants; novel system 
loading methods owing to the windows of opportunities in the electricity market, that is electricity 
trade deregulation; increasing utilization of induction machines; and huge penetration of wind 
generators and localized clumsy regulations or control in electric-power systems. In these over-
stretched circumstances electric-power systems can display different kind of unsteady actions, 
specifically, voltage instability. If generators are located near loads, its excitation can be utilized to 
retain the stable voltage situation. But over lengthy connections the voltage variations are difficult 
to manage and needs reactive power compensation, this is a means to strengthen the voltage stability 
of power-lines [9], [10], and [11]. 

Moreover, attraction in the practicability to regulate power flows (that is active power flow) in 
electric-power systems has grown. This is as a result of several rationality, arising both from the 
utilization aspect such as power system operation and from the technological aspect such as 
emergence of present-day system constituents like semiconductor structured equipment’s and 
synchronous condenser devices. In several nations of the world, the operations of electric-power 
systems have been modified as a result of increasing usage of power-system network and profitable 
operations of the electric-power trade. In profit oriented situations electric-power transmitted 
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volume is considered as a product, for making use of power lines, payments have to be made, and 
electric-power network managers rely on these profitable payments. Accompanied by the profitable 
reliance on the electric network comes the need to be capable of regulating the electric-power 
system as much as conceivable. The new constituents that are becoming practicable are to a great 
extent as a result of advances in the conceptual structure of power electronics devices and associated 
technologies such as the synchronous condenser device. The principal rationale why power flow is 
significant in the present-day scheme of things are inclusive of; overload reduction, contractual 
needs, loss alleviation and autonomous electric-power projects [12], [13], [14], [15], [16], and [17]. 

This study brings out some interesting features about the synchronous condenser performance and 

their impact when used in an electric-power system network; it focuses on the optimization of 

reactive power using synchronous condenser device for voltage stability and power flow control 

in an electric-power system. And thereafter presented and discussed the results of the comparison 

obtained when the synchronous condenser is placed at the terminal end and beginning of the 

proposed 33kV medium voltage (MV) electric-power system network. Matlab/Simulink is used 

for the simulation of the system model. 

2. Methodology 

To evaluate the effectiveness of the synchronous condenser for voltage stability and control of 
power flow in an electric-power system network, the schematic diagram is modeled using 
Matlab/Simulink software program. Parameters of the system are given in Table 1. The system has 
an Active Power (P) of 30 MW, a Capacitive Reactive Power (QC) equal to 0.5 MVAR, and varying 
Inductive Reactive Power (QL) of 4, 7 and 10 MVAR, a load of 33 kV 50 Hz is connected to the 
network. To test the validity of the power system, both measured and calculated power factor (

) values of the system were obtained. And to evaluate the effect of the synchronous condenser 

on the network, two possible scenarios of the proposed network were analyzed; Firstly, with the 
synchronous condenser installed at the terminal end of the system network (position 1,  as seen in 
Fig. 2.). And secondly, with the synchronous condenser installed at the beginning of the terminal 
of the network (position 2, as seen in Fig. 3.). Three sets of data’s were analyzed for each study; 
data 1, 2, and 3, as tabulated in Table 1. The synchronous condenser allow for the input of reactive 
power on the electric-power network, which help in the voltage stability and power flow control of 
the system. Voltage stability and power flow control is very significant most especially for sensitive 
loads in electric-power systems. The schematic diagram of the electric-power system network 
without the synchronous condenser installed is shown in Fig. 1. 

 

132kV
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132/33

33 KV 
Load

33kV
3 Ph 
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Fig. 1. Schematic diagram of the proposed 33 kV MV electric-power system network without the 
installation of the synchronous condenser equipment. 
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Fig. 2. Schematic diagram of the synchronous condenser equipment installed at the terminal end of 
the 33 kV MV power system network (Position 1). 
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Fig. 3. Schematic diagram of the synchronous condenser equipment placed at the beginning of the 
33 kV MV power system network (Position 2). 

 

TABLE 1. VALUES OF POWER FACTOR OF LOAD ( ) FOR THE 33 kV 50 Hz LOADS 

33 kV 50 Hz load  

Set of 

Data’s  

Active 

Power 

P 

(MW) 

Inductive 

Reactive 

Power 

QL 

(MVAR) 

Capacitive 

Reactive 

Power QC 

(MVAR) 

Measured 

Value 

Calculated 

Value 

1 30 4 0.5 0.99 0.99 

2 30 7 0.5 0.97 0.97 

3 30 10 0.5 0.95 0.95 

 

 

 

 

cos

cos
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A. Calculated Power Factor of load ( ) Values 

Both measured and calculated  values are tabulated in table 1. The power factor of load 

calculation for data 1, 2, and 3, is done as follows; 

Data 1; 

𝑐𝑜𝑠 𝜑 =
𝑃

𝑆
=

𝑃

√𝑃2 + 𝑄2
=

30

√302 + 3.52
= 0.99 

 

Data 2; 

𝑐𝑜𝑠 𝜑 =
𝑃

𝑆
=

𝑃

√𝑃2 + 𝑄2
=

30

√302 + 6.52
= 0.97 

 

Data 3; 

𝑐𝑜𝑠 𝜑 =
𝑃

𝑆
=

𝑃

√𝑃2 + 𝑄2
=

30

√302 + 9.52
= 0.95 

 

A. Voltage Values and Directions of Power Flow with the Synchronous Condenser Placed at 

the End of the 33 kV MV line (Position 1) 

      When the synchronous condenser is installed at the end of the three-phase 33 kV MV electric-

power system network linked to a 132/33 kV HV/MV transformer source. The observed voltage 

values at the sending and receiving end of the network is measured for the three set of data’s, 1, 2 

and 3, the voltage values and directions of power flow are shown in Table 2 and 3,. Table 2., shows 

the results of the voltage values and power flow direction obtained without the synchronous 

condenser connected to the end terminal of the network, there was generally large voltage 

difference (Us-Ur) in the network and the direction of power flow is positive (+), which insinuate 

that voltage flows from the voltage sending (Us) terminal to the voltage receiving (Ur) terminal of 

the network. While Table 3. depicts the voltage values and power flow direction with the 

synchronous condenser connected to the end terminal of the 33 kV MV network, in this case, small 

voltage differences were observed on the network and the direction of voltage flow is negative (-

), this insinuating that power flows from the voltage receiving (Ur) end of the network terminal to 

the voltage sending  (Us)  terminal end of the 33 kV MV network. 

 

TABLE 2. VOLTAGE VALUES OBTAINED AND POWER FLOW DIRECTIONS 

OBSERVED WITHOUT (W/O) THE SYNCHRONOUS CONDENSER CONNECTED TO THE 

END TERMINAL OF THE 33 kV MV POWER SYSTEM NETWORK 
Set of Data’s Sending Voltage  

(Us) 

Receiving Voltage  

(Ur) 

Voltage Difference 

(Us-Ur) 

Power Flow 

Direction 

1 32.95 32.39 0.56 + 

2 32.00 31.70 0.30 + 

3 31.70 31.30 0.40 + 

 

 

cos

cos
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TABLE 3. VOLTAGE VALUES OBTAINED AND POWER FLOW DIRECTIONS 

OBSERVED WITH THE SYNCHRONOUS CONDENSER CONNECTED TO THE END 

TERMINAL OF THE 33 kV MV POWER SYSTEM NETWORK 
Set of Data’s Sending Voltage  

(Us) 

Receiving Voltage  

(Ur) 

Voltage Difference 

(Us-Ur) 

Power Flow 

Direction 

1 32.70 33.10 - 0.40 - 

2 32.65 32,95 - 0.30 - 

3 32.20 32.40 - 0.20 - 

 

B. Voltage Values and Directions of Power Flow with the Synchronous Condenser Placed at 

the Beginning of the 33 kV MV line (Position 2) 

      Table 4 and 5 show the voltage values obtained when the synchronous condenser is installed 

at the beginning of the three-phase 33 kV MV electric-power system network. The voltage at the 

sending and receiving end of the network is measured for the three set of data’s, 1, 2 and 3 as done 

earlier in the previous scenario. The directions of power flow are shown in Table 4 and 5. Table 

4, illustrate the results of voltage values and power flow direction obtained without the 

synchronous condenser connected to the beginning terminal of the network, large voltage 

difference (Us-Ur) is observed on the network and the direction of power flow is positive (+), which 

imply that power flows from the voltage sending (Us) terminal to the voltage receiving (Ur) 

terminal of the network. Table 5., clearly show the voltage values obtained and the power flow 

directions observed when the synchronous condenser is connected at the beginning of the power 

line, larger voltage differences (Us-Ur) is observed, as compared to the situation, when the 

synchronous condenser was not installed at the beginning terminal of the network and the direction 

of power flow is also positive (+), meaning that power flows from the voltage sending terminal 

(Us) to the voltage receiving  (Ur)  terminal of the network. Suggesting that installing the 

synchronous condenser at the beginning of the network terminal has no significant positive 

influence on the voltage profile of the whole network. Furthermore, it is observed that the direction 

of power flow remains the same, meaning that there was no change in the direction of power flow 

on the 33 kV MV power line as seen in Table 4 and 5. 

 

 

TABLE 4. VOLTAGE VALUES OBTAINED AND POWER FLOW DIRECTIONS WITHOUT 

THE SYNCHRONOUS CONDENSER CONNECTED TO THE BEGINNING TERMINAL OF 

THE THREE-PHASE 33 kV MV ELECTRIC-POWER SYSTEM NETWORK 

 
Set of 

Data’s 

Sending 

Voltage 

(Us) 

Receiving 

Voltage  

(Ur) 

Voltage 

Difference 

(Us-Ur)   

Power 

Flow 

Directions 

1 32.90 32.35 0.55 + 

2 32.74 31.70 1.04 + 

3 32.45 30.98 1.47 + 
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TABLE 5. VOLTAGE VALUES OBTAINED AND POWER FLOW DIRECTIONS WITH THE 

SYNCHRONOUS CONDENSER INSTALLED AT THE BEGINNING TERMINAL OF THE 

THREE-PHASE 33 kV MV ELECTRIC-POWER SYSTEM NETWORK 
Set of Data’s Sending Voltage 

(Us) 

Receiving 

Voltage (Ur) 

Voltage Difference 

(Us-Ur)   

Power Flow 

Direction 

1 32.70 31.90 0.80 + 

2 32.10 31.25 0.85 + 

3 31.40 29.60 1.80 + 

 

3. Simulation Results and Discussion 

MATLAB/Simulink is used for the simulation of the system model, The model consist of a 132 
kV high voltage (HV) alternating current (AC) power supply source connecting a three-phase 33 
kV medium voltage (MV) electric-power system network with the aid of a 132/33 kV HV/MV 
transformer. The 33 kV MV power system network is connected to the MV side of the 132/33 kV 
HV/MV transformer. A 33 kV 50 Hz load is attached to the three-phase medium voltage line. Two 
scenarios were studied; Scenario 1, when the synchronous condenser is located at the end terminal 
of the 33 kV MV power-system network. Scenario 2, when the location of the synchronous 
condenser is changed and installed at the beginning of the 33 kV MV electric-power Line. The 
proposed system MATLAB/Simulink simulation model is shown in Fig. 4.  

 

 

Fig. 4. MATLAB/Simulink simulation of the 33 kV MV power system network. 
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A.Simulation Results and Analysis with the Synchronous Condenser Placed at the End Terminal 

of the 33 kV MV line (Position 1) 

Firstly, the power factor ( ) values for data 1, 2, and 3 were measured and thereafter 

calculated, this is done as earlier stated to test the validity of the proposed power system. It was  

observed that the measured and calculated values of the power factors obtained were the same for 

the three sets of data’s observed; this is presented in Table 1, simulation results for the voltage 

values obtained at the beginning terminal of the 33 kV medium voltage (MV) power system 

without and with the Synchronous Condenser Connected at the end terminal of the network is 

tabulated in table 2 and 3. And graphically illustrated with a three-dimensional (3D) diagram in 

Fig. 5., large voltage difference (Us-Ur) is observed on the 33 kV medium voltage (MV) network 

and the direction of power flow is from the voltage sending (Us) terminal to the voltage receiving 

(Ur) terminal of the power line for data’s 1, 2, and 3 observed.  At the beginning terminal of the 

line, the scheme uses up reactive power when the synchronous condenser is not connected to the 

end terminal of the network. And reactive power is injected onto the 33 kV medium voltage (MV) 

network when the synchronous condenser is installed at the end terminal of the network. 

 

 
Fig. 5. Voltage values at the beginning terminal of the 33 kV MV power system network without 

and with the Synchronous Condenser connected at the end terminal of the network. 

 

      Fig. 6. illustrates the voltage values obtained at the terminal end of the 33 kV medium voltage 

(MV) power system network without and with the Synchronous Condenser Installed at the end 

terminal of the network. Results shows that when the synchronous condenser is not installed onto 

the end terminal of the electrical network, the power line uses up reactive power. But reactive 

power is injected into the 33 kV MV network, when the synchronous condenser is installed onto 

the terminal end of the network. Here, the results depict a small voltage difference on the power 

line and the observed power flow direction movement is from the receiving voltage (Ur) terminal 

end of the proposed scheme to the sending voltage (Us) terminal end of the power system network, 

this is tabulated in table 3. 

 

cos
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Fig. 6. Voltage values at the terminal end of the 33 kV MV power system network without and 

with the synchronous condenser installed at the end terminal of the network. 

 

 

      Furthermore, Fig. 7. vividly show the graphical illustration of the differences in voltage (Us–

Ur) values obtained at the beginning and end terminals of the 33 kV MV power-line without and 

with the synchronous condenser connected at the end terminal of the 33 kV MV power system 

network, and the observed directions of power flow for data 1, 2, and 3 is shown. Large voltage 

differences (Us-Ur) is observed and the direction of power flow is from the sending voltage (Us) 

terminal ends to the receiving voltage (Ur) terminal ends of the power line, which imply positive 

(+) directions of power flow for the situation without the synchronous condenser connected at the 

terminal end of the electric-power system network. The obtained voltage difference (Us–Ur) for 

the observed data’s 1, 2 and 3, when the synchronous condenser is connected at the terminal end 

of the power system network is small and the directions of power flow is from the receiving voltage 

(Ur) terminal end to the sending voltage (Us) terminal end of the network under study, which means 

that the observed power flow direction is negative (-). This suggest that the situation with the 

synchronous condenser connected at the end terminal of the 33 kV MV electric-power system 

network gave a favourable result for enhanced voltage stability and power flow control compared 

with the situation without the synchronous condenser installed onto the network.  
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Fig. 7. The observed directions of power flow, and the obtained voltage difference (Us-Ur) values 

at the beginning and end terminals of the 33 kV MV electric-power system network without and 

with the synchronous condenser connected at the terminal end of the network. 

 

C. Simulation Results and Analysis with the Synchronous Condenser Placed at the Beginning of 

the 33 kV MV Power-line (Position 2) 

 

Simulation results for the voltage values obtained at the beginning terminal of the 33 kV MV 

power system network without and with the Synchronous Condenser Connected at the beginning 

of the network is tabulated in Table 4 and graphically illustrated with a three-dimensional (3D) 

diagram in Fig. 8., there were large voltage difference observed on the 33 kV MV network and the 

direction of power flow is from the voltage sending (Us) terminal of the network to the voltage 

receiving (Ur) terminal of the power line for the three set of data’s observed. The difference 

between sending and receiving voltages (Us-Ur) becomes larger as values of inductive reactive 

power (QL) increases. Moreso, it is observed that reactive power is being used without the 

synchronous condenser connected to the beginning terminal of the network. And reactive power 

is being injected onto the network as the synchronous condenser is connected to the beginning 

terminal of the network. The direction of power flow without and with the synchronous condenser 

device connected onto the beginning terminal of the network is from the voltage sending (Us) 

terminal to the voltage receiving (Ur) terminal of the network, that is positive (+) direction, as can 

be seen in Fig. 8. and Table 4. 
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Fig. 8. Voltage values at the beginning terminal of the 33 kV MV power system network without 

and with the Synchronous Condenser Connected at the beginning of the network terminal. 

      The results obtained at the terminal end of the 33 kV MV electric-power system network 

without and with the Synchronous Condenser Installed at the beginning of the network is shown 

in Table 5 and graphically illustrated in Fig. 9., with a 3D diagram. From Fig. 9., it is seen that the 

values of the voltage difference (Us-Ur) between the sending voltage (Us) and receiving voltage 

(Ur) becomes even larger as the synchronous condenser is installed at the beginning of the 33 kV 

MV electric-power system network. Indicating that the result vividly shows a gradual increase in 

the voltage difference (Us-Ur) on the power system network as values of inductive reactive power 

(QL) increases. Hence, implying that the values of the voltage difference (Us-Ur) obtained is 

significantly larger when the synchronous condenser is connected at the beginning terminal of the 

electric-power system network as compared to the voltage difference values obtained without the 

synchronous condenser installed at the beginning terminal of the network. Fig. 9., and Table 5, 

further shows that the direction of power flow without and with the synchronous condenser device 

connected onto the network at the beginning of the line is from the voltage sending (Us) terminal 

to the voltage receiving (Ur) terminal, that is positive (+) direction. It can as well be seen in Fig. 

9., that without the synchronous condenser connected at the beginning of the system network, the 

power system is using reactive power. But with the synchronous condenser connected at the 

beginning of the network terminal, there is injection of reactive power onto the power system 

network. 

 
Fig. 9., Voltage values at the terminal end of the 33 kV MV power system network without and 

with the synchronous condenser installed at the beginning of the network terminal. 
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   Graphical illustration of the comparison of the voltage differences (Us-Ur) between the sending 

voltage (Us)  and receiving voltage (Ur) at the beginning and end terminals of the 33 kV MV 

electric-power system network without and with the synchronous condenser connected to the 

beginning of the network is shown in Fig. 10., and tabulated in table 4 and 5. Also, the observed 

directions of power flow for data 1, 2, and 3 is illustrated. Large voltage differences (Us-Ur) is 

observed and the direction of power flow is from sending voltage (Us) terminal ends to the 

receiving voltage (Ur) terminal ends of the electric-power system network, which indicate positive 

(+) directions of power flow for the situation without the synchronous condenser connected to the 

beginning terminal of the electric-power system network. The obtained voltage difference (Us-Ur) 

for the observed data’s 1, 2 and 3, when the synchronous condenser is connected at the beginning 

of the power system network is much larger and the directions of power flow is still from the 

sending voltage (Us) terminal ends to the receiving voltage (Ur) terminal ends of the proposed 

network, indicating that the observed power flow direction is positive (+) for both situations, 

without and with the synchronous condenser installed at the beginning of the network. This 

implying that with the synchronous condenser connected at the beginning of the terminal of the 33 

kV MV electric-power system network, a negative impact is observed on the voltage stability and 

power flow control of the proposed electric-power system. 

 

 
Fig. 10. The observed directions of power flow, and the obtained voltage difference (Us-Ur) values 

at the beginning and end terminals of the 33 kV MV power line without and with the synchronous 

condenser connected to the beginning terminal of the network. 

 

4. Conclusion 

 
This research paper made a comparative analysis of the synchronous condenser on different 

positions in an electrical grid for voltage stability and power flow control. First, the synchronous 
condenser is placed at the end of the 33 kV MV electric-power line (Position 1) and thereafter, the 
synchronous condenser is placed at the beginning of the 33 kV MV electric-power line (Position 
2). Results shows that the Synchronous condenser has a positive impact on the voltage stability and 
power flow control of the power system network when placed at position 1, compared to its location 
at position 2. The proposed analysis shows the efficiency of the synchronous condenser in voltage 
stability and power flow control. However, to obtain optimal behaviour of the electric-power system 
network, the synchronous condenser has to be placed at the end of a power network to avoid large 
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values of voltage difference (Us-Ur) between sending voltage (Us) and receiving voltage (Ur). 
Moreover, a change in the direction of flow of power is observed, when the synchronous condenser 
is located at the end of the electrical power system, that is to say that power flows from the receiving 
voltage (Ur) terminals to the sending voltage (Us) terminals. In conclusion, locating the synchronous 
condenser at the terminal end of an electric-power system network seems to be a good solution to 
voltage stability and power flow control in power lines. Additional analysis should be made to 
optimize reactive power compensation in a much larger electric-power system network with many 
nodes using the proposed analysis. However, the proposed method allows selecting a good location 
for placing the synchronous condenser for better system performance. 
 

References 

 

[1] Custem TV, Vournas CD (1998) Voltage stability of the electric power systems. Kluwer 

Academic, Norwell. 

[2] C.W. Taylor, Power System Voltage Stability, McGraw-Hill Education, New York (1994) 

[3] Haoyu Yuan, Fangxing L, Hybrid voltage stability assessment (VSA) for N−1 contingency, 

Electric Power Systems Research, Volume 122, May 2015. Pp 65–75. 

[4] Berizzi A (2004) The Italian 2003 blackout. In: IEEE power engineering society general 

meeting, Denver, CO, pp 1673–1679 

[5] Ohno T, Imai S (2006) The 1987 Tokyo blackout. In: IEEE PES power systems conference 

and exposition, Atlanta, GA, pp 314–318 

[6] U.S. Canada Power System Outage Task Force (2004) Final report on the Aug 14 2003 

blackout in the United States and Canada: causes and recommendations 

[7] Andersson G, Donalek P, Farmer R, Hatziargyriou N, Kamwa I, Kundur P (2005) causes 

of the 2003 major grids blackouts in North America and Europe.Recommended means to improve 

system dynamic performance. IEEE Trans Power System 20(4): 1922–1928  

[8] S.D. Naik, M.K. Khedkar, S.S. Bhat (2015), Effect of line contingency on static voltage 

stability and maximum loadability in large multi bus power system, International Journal of 

Electrical Power and Energy Systems, Volume 67,  2015, pp 448 – 452 

[9] J. Hossain and H. R. Pota (2014), Robust Control for Grid Voltage Stability: High 

Penetration of Renewable Energy, Power Systems, [Online]. Available from: 

http://www.springer.com ISBN: 978-981-287-115-2, Springer.  2014 

[10] Omelkhir Yahyaqu, Raouia Aquini, Khadija Ben Kilani, Mohamed Elleuch (2011), 

Enhancement of Voltage Stability in Ultra High Voltage Electric Network by Static Var 

Compensation. 8th International Multi-Conference on Systems, Signals & Devices, [Online]. 

Available from: http://ieeexplore.ieee.org, 2011 

[11] Sally Hunt and Graham Shuttleworth (1996), Unlocking the grid. IEEE Spectrum, pages 

20-25, July 1996. 

[12] Avinash. R, Savyasachi. G. K, Gowtham. N, Rakshith. P (2015), Optimal Location of 

STATCOMS using FVSI, International Advanced Research Journal in Science, Engineering and 

Technology. Vol. 2, Issue 6, June 2015. ISSN (Online) 2393-8021, ISSN (Print) 2394-1588. 

[13] Manisha Jaswani, Satyadharma Bharti, S.P.Dubey (2015), A Study of Reactive Power 

Compensation in Transmission System. International Journal of Advanced Engineering Research 

and Studies. E-ISSN2249–8974 [Online]. Available from: 

http://www.technicaljournalsonline.com 

[14] Famous. O. Igbinovia, Ghaeth Fandi, Jan Švec, Zdenek Müller, Josef Tlusty (2015), 

“Comparative Review of Reactive Power Compensation Technologies,” 16th International 



                                                                                                                                                                 Contributions  

244 
 

Scientific Conference on Electric Power Engineering (EPE). May 20th to May 22nd, 2015, IEEE. 

DOI:10.1109/EPE.2015.7161066, pp 2-7. 

[15] M. Nambiar and Z. KonstantinovicM (2015), Impact of usingsynchronous condensers for 

power system stability and improvement of short-circuit power in mining projects. Mining 

Engineering, 2015, Vol. 67, no. 1, pp. 38-44. 

[16] Arnim Herbig (2000), On Load Flow Control in Electric Power Systems, Doctoral 

Dissertation, Royal Institute of Technology, Department of Electric Power Engineering, Electric 

Power Systems. ISSN 1100-1607, Stockholm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                                                                 Contributions  

245 
 

Paper Seven 

Comparative Review of Reactive Power Compensation 

Technologies 
 

Famous. O. Igbinovia, Ghaeth Fandi, Jan Švec, Zdenek Müller, Josef Tlusty 

 

Contributor Statement of Contribution 

Famous. O. Igbinovia (Candidate) Paper writing and review (20%); Discussion (20%).  

Ghaeth Fandi Paper writing and review (20%); Discussion (20%). 

Jan Švec Paper writing and review (20%); Discussion (20%). 

Zdenek Müller Paper writing and review (20%); Discussion (20%). 

Josef Tlusty Paper writing and review (20%); Discussion (20%). 

 

 

 

Published in:  

16th International Scientific Conference on Electric Power Engineering (EPE) 

May 2015  

Kouty nad Desnou, Czech Republic  

 

 

 

Copyright © 2015 IEEE  

The layout has been revised.  

 



                                                                                                                                                                 Contributions  

246 
 

Abstract: The quality of electrical power in a network is a major concern which has to be 

examined with caution in order to achieve a reliable electrical power system network. Reactive 

power compensation is a means for realising the goal of a qualitative and reliable electrical power 

system. This paper made a comparative review of reactive power compensation technologies; the 

devices reviewed include Synchronous Condenser, Static Var Compensator (SVC) and Static 

Synchronous Compensator (STATCOM). These technologies were defined, critically examined 

and compared, the most promising technology is recommended for the realisation of an effective, 

efficient, sustainable, qualitative and reliable electrical power network. 

Keywords: Reactive power compensation; synchronous condenser; static Var compensator; static 

synchronous compensator; reactive power compensation technology 

1. Introduction  

There is a heightening concern in power efficiency and energy savings among policy makers, 

economics and academics from the aspect of technology, economic, policy and human behavior 

point of view. Thus, the needs to further promote and explore energy efficient, reliable and 

sustainable technology such as synchronous condenser for reactive power compensation in 

electrical power systems [1]. 

       Reactive power (Q) is an expression used for the un-real power from inductive loads like 

motor or capacitive loads, which normally is not so much common. It is widely calculated in units 

of VARs, that is volt-amps reactive. In order to maintain the most advantageous circumstances for 

a power system from engineering and economical point of view, it is very important to always 

apply the most advantageous reactive power compensation technology in an electrical power 

system [2], [3]. Reactive power compensation is defined as the administration of reactive power 

to ameliorate the production of Alternating Current (AC) in an electrical network. The idea of 

reactive power compensation encompasses an extensive and divergent field of both system and 

consumers problems, mostly connected with power quality matters, since most power quality 

issues can be resolved with appropriate control of reactive power [4].  

     The basic function of any electric power system is to convey electricity reliably and at a well 

synchronized frequency and voltage. Reliable and efficient Power Systems has accomplished these 

goals through technological advancement. Reactive power compensation is an effective technique 

to enhance the electric power network, there is need for regulated reactive power compensation 

which can be done either with synchronous condensers, Static Var Compensators (SVCs) or Static 

Synchronous Compensators (STATCOM) [1], [4], [5]. 

      There are different technologies for reactive power compensation, these includes; Capacitor 

Bank, Series Compensator, Shunt Reactor, Static Var Compensator (SVC), Static Synchronous 

Compensator (STATCOM), and Synchronous Condenser. But for the purpose of this paper, three 

different reactive power technologies are reviewed as possible sources for reactive power 

compensation. The technologies investigated includes; Synchronous Condenser, Static Var 
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Compensator (SVC) and Static Synchronous Compensator (STATCOM). The most promising 

technology is recommended for reactive power compensation in electrical power networks. 

    2. Synchronous Condensers  

A. Definition and Overview 

A synchronous condenser is a synchronous device that produces reactive power which leads real 

power by 90 degrees in phase [6]. It is a piece of equipment similar to a synchronous motor, whose 

shaft is not linked to anything but spins freely without constraint. Its objective is not to convert 

electric power to mechanical power or vice versa, but to regulate situations on the electric power 

transmission grid. Its field is regulated by a voltage regulator to either give rise to or assimilate 

reactive power as needed to modify the grids voltage, or to enhance power factor. The quantity of 

reactive power from a synchronous condenser can be steadily regulated. Reactive power from a 

synchronous condenser can build-up reactive current as voltage reduces. Nevertheless, 

synchronous machines have higher energy losses. Most synchronous condensers linked to 

electrical grids are rated between 20 Mvar and 200 Mvar and a great number of them are hydrogen 

cooled. There is no eruption threat as long as the hydrogen concentration is kept in good condition 

of above 70%, typically above 91% [7].  

      Synchronous condensers were once extensively utilized as a means of supplying reactive 

power compensation before the introduction of power electronic based devices. A number of 

synchronous condensers were used in electrical power systems beginning in the late 1920’s to the 

end of late 1970’s. Synchronous condensers have been relevant in the scheme of things in voltage 

and reactive power control for more than 50 years. Practically, a synchronous condenser is merely 

a synchronous machine linked to the power system. After the unit is synchronized, the field current 

is regulated to either generate or draw-up reactive power as needed by AC power systems. The 

device can provide incessant reactive power control when used with the right automatic exciter 

circuit. Synchronous condensers have been used at both distributions and transmission voltage 

levels to ameliorate stability and to support voltages within preferred boundaries under varying 

load states and emergency circumstances [4], [8].  

      However, synchronous condensers are infrequently used today because they need considerable 

foundations and a significant quantity of starting and protective gadgets. They also represent a part 

in short-circuit current, and they cannot be adjusted fast enough to balance speedy load changes. 

Furthermore, their losses are much higher than those related with static compensators, and the cost 

is much higher when likened with static compensators. Their merit lies in their high temporary 

over-load ability [4]. Synchronous condensers provide sustenance for network voltage by 

maintaining efficient and reliable operation of electrical power grids through reactive power 

compensation and extra short circuit power ability [9]. Synchronous condensers are well accepted 

technology for supplying reactive power and remedying power factor issues in industrial settings. 

Reliable Power Systems Synchronous Condensers are precisely designed to meet the requirements 

of hybrid renewable power systems. When compared with diesel generators, they help the diesels 
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in controlling voltage. In high wind and/or solar times, the diesel generators are turned off, and the 

Synchronous Condenser handles voltage regulation on its own [10]. Synchronous condenser 

solutions are being initiated worldwide to play a part in the optimal use of energy resources and 

offer grid support for now and the future, in order to attain a reliable, secure, efficient, effective 

and sustainable electrical power supply [11]. The capacity of a synchronous condenser operation 

is depicted in figure 1. 

 

 

Fig 1 Synchronous Condenser Reactive Power Capacity [12]. 

B. Types of Synchronous Condensers 

Conventional/Traditional Synchronous Condenser: This is a synchronous motor without any 

mechanical load. Its field is regulated by a voltage regulator to give rise to or to draw-up reactive 

power to support an electrical power system voltage or to keep a systems power factor at a 

specified level. Synchronous condensers installation and operation are identical to big electric 

motors. After the unit is synchronized, the field current is regulated either to give rise to or to draw-

up reactive power as needed by AC system. The machine can supply uninterrupted reactive power 

regulation when used with the appropriate automatic exciter. A rise in the equipments field 

excitation brings about the provision of magnetizing power (kVArs) to an electrical power system. 

Its major merit is the effortlessness in the regulation of the amount of correction. [5], [13]. A 

single-phase scheme with a synchronous condenser is shown in figure 2. 
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Fig 2 Single phase diagram with a synchronous condenser connected to grid [13]. 

Superconducting Synchronous Condenser (SuperVAR): 

      Only the field windings of the superVAR make use of high-temperature superconductor 

winding, which is made-cold with a cryocooler subsystem to about 35–40 K. The cryocooler 

module is laid in a stationary frame and helium gas is used to cool the rotor of the equipment. The 

stator winding is normal copper winding. Nevertheless, the winding is not placed in normal iron 

core teeth, since the iron core saturates owing to the high magnetic field, typically 1.5–2.0 T, built 

in by the field winding. Exclusively, the stator yoke (that is the back iron) uses magnetic iron to 

supply magnetic shielding and to convey flux between adjacent poles. The omission of iron in 

many of the magnetic circuits in this machine brings about a very low synchronous reactance 

(typically 0.3–0.5 p.u.). It is asserted that this Synchronous Condenser machines are more durable 

than conventional/traditional machines in the course of transient system faults, whereas, transient 

and sub-transient reactances are much the same to those of traditional machines. The lower 

synchronous reactance of the superVAR permits the operation of these machines at lower load 

angles than traditional machines [3], [14], [15].  

      SuperVAR synchronous condensers act as reactive power shock-absorbers of an electrical 

power system grid, effectively producing or drawing-up reactive power (VARs), and base on the 

voltage level of a transmission system.  SuperVAR machines also react immediately to secure 

grids and electricity consumers in case of voltage sags and surges, which is recognized in the 

power industry as voltage transients, which can be given rise to by lightning storms, short circuits 

brought about by tree branches fleetingly touching lines, animals making contact with transmission 

elements, and other sources.  SuperVAR machines and Dynamic-VAR (D-VAR) systems 

immediately stabilizes voltage and supply utilities with economical techniques to actively improve 

the reliability and maximize the power of transmission grids [14]. The conceptual diagram of a 

Dynamic Synchronous Condenser (DSC) can be seen in figure 3. (a) and (b). 
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Fig 3. Conceptual diagram of a DSC [15]. (a) Superconducting field winding in cryocooler, (b) 

DSC model picture. 

    3. Static VAR Compensator (SVC) 

A. Definition and overview 

A Static Var Compensator (SVC) is a thyristor-controlled (since it is thyristor controlled, thus it is 

called static) generator of reactive power, either lagging or leading, or both. This piece of 

equipment is also called a static reactive compensator. An SVC is a high voltage device that 

regulates effectively the network voltage at its coupling end. Its major function is to keep the 

network voltage constantly at a set reference point. Some other control characteristics of SVC are: 

voltage control, reactive power control, damping of power oscillations, and unbalance control. The 

design and configuration of an SVC device is all the time modified to the particular project 
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specifications. An SVC is one of the regulators founded on Power Electronics and other static 

devices known as Flexible Alternating Current Transmission Systems (FACTS) regulator, which 

is used to improve the ability and the flexibility of a transmission network.  [16], [17], [18].  

      Static Var Compensator is a shunt-linked static VAR producer or assimilator whose output is 

regulated to exchange capacitive or inductive current so as to keep in good condition or regulate 

specific parameters of an electrical power system, typically bus voltage. SVC is founded on 

thyristors without gate turn-off ability. The operating concept and features of thyristors achieved 

variable reactive impedance SVC includes two main parts and their fusion:  Thyristor-controlled 

Reactor (TCR) and Thyristor-switched Reactor (TSR); and Thyristor-switched capacitor. The 

objectives of SVC design are reactive and load imbalance compensation, and with the use of 

traditional quantities in its regulator, it may be utilized in collaborative compensation methods for 

smart grids [19], [20]. 

B.Types of Static Var Compensator (SVC) 

Thyristor-controlled Reactor (TCR): TCR is defined as a shunt-linked thyristor-controlled 

inductor whose effective reactance is regulated in a continuous manner by partial conduction 

regulation of the thyristor valve. A thyristor-controlled reactor (TCR) is one of the traditional SVC 

used in the field of power quality enhancement. With the TCR type of SVC put together with fixed 

capacitors, when operating the system with a small reactive power, almost 100% reactive power 

is produced at the reactor unit and the general system reactive power is decreased. It can draw-up 

sustained reactive power at the primary frequency of the power system network, but it delivers 

appreciable odd harmonics which could cause many unpleasant consequences, such as; over 

currents, extra losses, and noises to telecommunication systems [18], [21], [22]. One-line diagram 

to compensate reactive power and voltage flicker enhancement in power system comprising 

Electric Arc Furnace (EAF) with a thyristor regulated reactor compensation, and fixed capacitor 

(TCR/FC) is shown in figure 4. [23]. TCR is also illustrated in figure 5 and 6. [19]. 

 

Fig 4 Configuration of a TCR/FC connected to an EAF [23]. 
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Thyristor-Switched Reactor (TSR): This is defined as a shunt-linked, thyristor-switched inductor 

whose effective reactance is differed in a stepwise appearance by full-conduction or zero-

conduction management of the thyristor valve. Thyristor Switched Reactors are shunt 

compensators that can draw-up reactive power. The TSRs operating principle is simple; it has a 

delay of one half cycles and does not generate harmonics. The most general design of an SVC is 

made-up of a fixed shunt capacitor (FC) and a TCR. Filters are conventionally used to draw-up 

harmonic produced by SVC design and large industrial loads [24], [25]. A typical TSR can be seen 

in figure 5. [19]. 

 

Fig 5. Static VAR Compensators (SVC): TCR/TSR, TSC, FC and Mechanically Switched Resistor 

[19]. 

Thyristor-Switched Capacitor (TSC): TSC is defined as a shunt-linked, thyristor-switched 

capacitor whose effective reactance is differed in a stepwise way by full-conduction or zero-

conduction operation of the thyristor valve. It has similar composition and same operational mode 

as TSR, but the reactor is substituted by a capacitor. The reactance can only be either fully 

connected or fully disconnected zero due to the features of capacitor [24], [26]. The reactive power 

of a TSC is modified in steps decided by the number of banks of the capacitor. [21]. A typical TSC 

is illustrated in figure 5 and 6. 

Thyristor-Controlled Reactor and Thyristor-Switched Reactor (TCR/TSR) Combined: TCR and 

TSR are both made-up of a shunt-linked reactor regulated by two parallel, reverse-controlled 

thyristors. TCR is regulated with thorough firing angle input to function in a continuous way, while 

TSR is regulated without firing angle control which brings about a step change in reactance. TSC 

has the same make-up and same operational mode as TSR, but the reactor is substituted by a 

capacitor. The reactance can only be either fully connected or fully disconnected zero due to the 

features of capacitor. With non-identical combinations of TCR/TSR, TSC and fixed capacitors, an 
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SVC can meet various requirements to draw-up or produce reactive power from or to the 

transmission line, The TSR system provides stepped variation of current and TCR provides 

consistent variation of current [19], [21], [26], [27]. 

      To make-up for the limitations of the TSC, variable reactors are linked in parallel so that the 

general network reactive power can be fine-tuned continuously. The combined type has the merits 

of both the TCR and TSC, it is normally suited to a capacitor in a substation for power system 

transmission lines, which must regulate reactive power for both the leading and lagging phases, 

usually it is standing by at zero (0) VAR state, and must modify reactive power speedily when a 

fault happens on the line. Appropriate Static Var Compensator (SVC) technology combinations 

are normally selected base on several factors such as the responsibility, minimum adjustment 

width, operating efficiency and economy. The diagram of an SVC combined technology is shown 

in figure 5 and 6. [19], [21]. 

 

Fig. 6. Structure of SVC Device, TCR and TSC Combined, (a)TCR and (b) TSC [28]. 

      4.Static Synchronous Compensator (STATCOM) 

Static synchronous compensators (STATCOMs) are part of FACTS device lineage. Their primary 

aim is to provide a fast acting, precise, and adjustable quantity of reactive power to an AC power 

system network to which they are linked. STATCOMs accomplish this by modifying the 

magnitude and polarity (phase) of the reactive constituent of the current flowing into and out-of 

their AC side. This allows STATCOMs to regulate the quantity and direction of movement of the 

reactive power swapped with the AC power systems. They are frequently applied for dynamic 
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power factor correction, such as dynamic reactive power compensation, in industrial machinery 

working with large arbitrary peaks of reactive power needed. STATCOMs multiply the power 

factor of machinery, reduces voltage variations at machinery input, which prevents harm to the 

plant, and minimizes equipments operating costs [29].  

      STATCOMs can be used for voltage compensation at the receiver end of AC transmission 

system lines [29].  Figure 7 shows a Single Machine Infinite Bus (SMIB) system, with STATCOM 

connected at the middle of the transmission line [30]. 

 

Fig. 7. STATCOM installed in a Single Machine Infinite Bus (SMIB) system.[30]. 

 

5. Technology Comparison and Selection  

Here, three technologies have been examined, selection of the preferred technology will be made 

base on the following yardsticks; Control Coordination, Harmonics, Low-Voltage Ride-Through, 

Maintainability, Availability of Spare-parts, and Overload Duty-Cycle [5], [8], [31], [32]. 

Control Coordination: Examining the three technologies, both SVC and STATCOM applications 

stands for a notable risk of control coordination, making control coordination a challenge in SVC 

and STATCOM devices. And a plus for synchronous condensers compared to the other two 

technologies. 

Harmonics: Both SVC and STATCOM technologies have the potential to produce harmonics, 

while the synchronous condenser does not. In addition to not producing harmonics, a synchronous 
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condenser can act as a sink for harmonics in a network were harmonics do occur. This attribute 

benefits the synchronous condenser. 

Low-Voltage Ride-Through: Looking at low-voltage ride-through, the SVC performance is less 

appealing than synchronous condenser or STATCOM. Synchronous condensers are a long-

standing answer as reactive power sources that can and do ride-through low-voltage situations. 

Maintainability: One of the demerits normally connected with synchronous condensers is 

maintainability due to friction and wear. Static devices do require maintenance of auxiliary cooling 

systems, valve replacements, and control system upgrades. They also need special training of 

maintenance personnel who may not be used to working on such devices. Assessing the three 

technologies, the anticipated maintenance and up-keep costs for synchronous condenser 

technologies, and that of static technologies are even. In some situation, synchronous condenser 

maintenance may be simpler than that of an SVC and a STATCOM. Thus, there is no defined 

advantage in maintenance as regard the technologies reviewed. 

Availability of Spare-Parts: One of the difficulties connected with maintaining older equipment 

has to do with capability to obtain needed spare parts. Advancements in technology are normally 

regarded as positive in terms of cost, performance or both. On the other hand, old technology is 

occasionally regarded as obsolete or ineffective, when in fact it may not be. Considering 

availability of spare-parts; particularly beyond twenty to thirty year window, there is greater 

certainty of parts and support for synchronous condenser-based reactive power device. 

Overload Duty-Cycle: The synchronous condenser is well suited to manage overload duty. 

Depending on the design of the machine, and ceiling of the excitation system, the occasional 

overload rating of a synchronous condenser can be twice nameplate or more, for several seconds. 

This type of duty-cycle favours the synchronous condenser over SVC and STATCOM 

technologies.  

6. Conclusion  

All three technologies are capable of supporting power system networks. Using the criteria’s listed 

above, this review suggest that the synchronous condenser technology is the most adequate and 

the best solution for reactive power correction in power system network. It is the most effective 

device to improve power systems performance; it helps to increase reliability and the quality of 

power delivery in a network. Synchronous condensers will be used on a much wider scale in the 

future as grid performance and reliability becomes an issue of more importance to policy makers, 

economics and academics, since having better grid controllability will allow utilities to reduce 

investment, most especially on a long-term basis. Further research should be on comparing 

experimental and simulation results for the three reactive power compensation technologies on a 

grid setup and the authors are planning to do further studies in this area of concern.  
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