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Abstract

We investigate (non-)Abelian T-duality from the perspective of
Poisson�Lie T-plurality. We show that sigma models related by dual-
ity/plurality are given not only by Manin triples obtained from decom-
positions of Drinfel'd double, but also by their particular embeddings,
i.e. maps that relate bases of these decompositions. This allows us to
get richer set of dual or plural sigma models than previously thought.
That's why we ask how T-duality is de�ned and what should be the
�canonical� duality or plurality transformation.
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1 Introduction

The notion of (non-)Abelian T-duality [1, 2, 3] of sigma models relies on the
presence of symmetries of the sigma model backgrounds. Whenever there
is such a symmetry, one may gauge it to arrive at a model related to the
original one by T-duality. This technique, extended to RR �elds in [4, 5], is
used frequently to generate new supergravity solutions, see e.g. [6, 7] and
references therein. Non-Abelian T-duality, however, does not preserve the
symmetries, and it may not be possible to return back to the initial model.
Poisson�Lie T-duality, introduced in the seminal paper [8] by Klim£ík and
�evera, treats both models equally and o�ers a remedy to this issue.

The algebraic structure underlying Poisson�Lie T-duality is the Drin-
fel'd double, a Lie group D that decomposes into two Lie subgroups G and
G̃ of equal dimension. In case of (non-)Abelian T-duality the former rep-
resents group of symmetries of the initial sigma model, while the latter is
Abelian. There are also Drinfel'd doubles where both G and G̃ are non-
Abelian. In such a case the symmetry of the initial model is replaced by the
so-called Poisson�Lie symmetry (or generalized symmetry), see [9], and the
full Poisson�Lie T-duality transformation applies. Nevertheless, the presence
of symmetries remains crucial if one wants to dualize a particular background
[10]. Recently (Poisson�Lie) T-duality also appears as an important tool in
the study of integrable models and their deformations [11, 12, 13].

Since duality exchanges roles of G and G̃ , we may understand it in terms
of Drinfel'd double as a switch between decompositions (G |G̃ ) and (G̃ |G ) of
D . The authors of [8] mention the fact that a Drinfel'd double D can have
other decompositions (K|K̃), (K̃|K), . . . beside (G |G̃ ) and (G̃ |G ). All these
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decompositions can be used to construct mutually related sigma models. The
transformation of the initial model constructed by decomposition (G |G̃ ) to a
model constructed by (K|K̃) was later denoted Poisson�Lie T-plurality [14].
Examples of sigma models related by Poisson�Lie T-plurality were studied
e.g. in [14, 15], and decompositions of low-dimensional Drinfel'd doubles
were classi�ed in [16, 17, 18].

The goal of this paper is to show, using simple examples, that sigma
models related by Poisson�Lie T-duality/plurality are given not only by the
algebraic structure of decompositions of Lie algebra of the Drinfel'd double
into Manin triples, but also by the particular embedding of Manin triples,
i.e. maps that relate bases in various decompositions. For this purpose we
shall consider the simplest possible case of Drinfel'd double accomodating
plurality, i.e. a four-dimensional semi-Abelian Drinfel'd double.

After summarizing Poisson�Lie T-plurality in section 2 we identify trans-
formations that yield equivalent sigma model backgrounds. In section 3 we
develop examples of dual/plural models whose geometric properties depend
on the choice of matrices transforming bases of Manin triples, and, in sec-
tion 4, we show that nonequivalent models can be obtained even if we do
not change the Manin triple at all. We study this �Poisson�Lie T-identity�
further in section 5 trying to identify what the �canonical� duality/plurality
should be.

2 Poisson�Lie T-plurality of sigma models

Let M be n-dimensional (pseudo-)Riemannian target manifold and consider
sigma model on M given by Lagrangian

L = ∂−φ
µFµν(φ)∂+φ

ν , φµ = φµ(x+, x−), µ = 1, . . . , n (1)

where tensor F = G + B de�nes metric and torsion potential of the target
manifold. Assume that there is a d-dimensional Lie group G with free action
on M that leaves the tensor invariant. The action of G is transitive on its
orbits, hence we may locally consider M ≈ (M /G ) × G = N × G , and
introduce adapted coordinates

xµ = {sδ, ga}, δ = 1, . . . , n− d, a = 1, . . . , d (2)

where sδ label the orbits of G and are treated as spectators and ga are group
coordinates [19, 20]. Dualizable sigma model on N × G is given by tensor
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�eld F de�ned by n× n matrix E(s) as

F(s, g) = E(g) · E(s) · ET (g), E(g) =

(
1 0
0 e(g)

)
(3)

where e(g) is d × d matrix of components of right-invariant Maurer�Cartan
form (dg)g−1 on G .

Using non-Abelian T-duality one can �nd dual sigma model on N × G̃ ,
where G̃ is Abelian subgroup of semi-Abelian Drinfel'd double D that splits
into subgroups G and G̃ . The necessary formulas will be given in the following
subsection as a special case of Poisson�Lie T-plurality. In papers [21, 22,
23], non-Abelian T-duals of sigma model in �at torsionless four-dimensional
background were constructed. The groups G were then subgroups of the
Poincaré group [24].

2.1 Poisson�Lie T-plurality with spectators

For certain Drinfel'd doubles several decompositions may exist. Suppose
that D = (G |G̃ ) splits into another pair of subgroups Ĝ and Ḡ . Then we can
apply the full framework of Poisson�Lie T-plurality [8, 14] and �nd sigma
model on N × Ĝ .

The 2d-dimensional Lie algebra d of the Drinfel'd double D is equipped
with an ad-invariant non-degenerate symmetric bilinear form 〈., .〉. Let d =
g ⊕ g̃ and d = ĝ ⊕ ḡ be two decompositions (Manin triples (d, g, g̃) and
(d, ĝ, ḡ)) of d into subalgebras that are maximally isotropic with respect to
〈., .〉. The pairs of mutually dual bases Ta ∈ g, T̃ a ∈ g̃ and T̂a ∈ ĝ, T̄ a ∈ ḡ,
a = 1, . . . , d, satisfying

〈Ta, Tb〉 = 0, 〈T̃ a, T̃ b〉 = 0, 〈Ta, T̃ b〉 = δba, (4)

〈T̂a, T̂b〉 = 0, 〈T̄ a, T̄ b〉 = 0, 〈T̂a, T̄ b〉 = δba

are related by transformation(
T̂
T̄

)
= C ·

(
T

T̃

)
(5)

where C is an invertible 2d× 2d matrix. Due to ad-invariance of the bilinear
form 〈., .〉 the algebraic structure of d is given both by

[Ti, Tj] = fkijTk, [T̃ i, T̃ j] = f̃ ijk T̃
k, [Ti, T̃

j] = f jkiT̃
k + f̃ jki Tk (6)
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and

[T̂i, T̂j] = f̂kijT̂k, [T̄ i, T̄ j] = f̄ ijk T̄
k, [T̂i, T̄

j] = f̂ jkiT̄
k + f̄ jki T̂k. (7)

Given the structure constants F k
ij of d = g ⊕ g̃ and F̂ k

ij of d = ĝ ⊕ ḡ, the
matrix C has to satisfy equation1

Cp
aC

q
bF

r
pq = F̂ c

abC
r
c .

To preserve the bilinear form 〈., .〉 and thus (4), C also has to satisfy

Cp
aC

q
bBpq = Bab

where Bab are components of matrix B that can be written in block form as

B =

(
0d 1d
1d 0d

)
.

In other words, C is an element of O(d, d) but, unlike the case of Abelian
T-duality, not every element of O(d, d) is allowed in (5).

For the following formulas it will be convenient to introduce d×d matrices
P,Q,R, S as (

T

T̃

)
= C−1 ·

(
T̂
T̄

)
=

(
P Q
R S

)
·
(
T̂
T̄

)
. (8)

To accommodate the spectator �elds we have to extend these to n×nmatrices

P =

(
1 0
0 P

)
, Q =

(
0 0
0 Q

)
, R =

(
0 0
0 R

)
, S =

(
1 0
0 S

)
.

It is also advantageous to introduce block form of E(s) as

E(s) =

(
Eαβ(s) Eαb(s)
Eaβ(s) Eab(s)

)
, α, β = 1, . . . , n− d, a, b = 1, . . . , d.

The sigma model on N × Ĝ related to (3) via Poisson�Lie T-plurality is
given by tensor F̂(s, ĝ) that is calculated as

F̂(s, ĝ) = Ê(ĝ) · Ê(s, ĝ) · ÊT (ĝ), Ê(ĝ) =

(
1 0
0 ê(ĝ)

)
(9)

1Conditions on C's are more restrictive than those for �NATD group� investigated in
[25] (We are grateful to D. Osten for bringing our attention to this paper) but as said in
the Introduction, our main goal is to present dependence of geometrical properties of the
Poisson�Lie plural sigma models on matrices C.
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where

Ê(s, ĝ) = (1+ Ê(s) · Π̂(ĝ))−1 · Ê(s), Π̂(ĝ) =

(
0 0

0 b̂(ĝ) · â−1(ĝ)

)
, (10)

matrices b̂(ĝ) and â(ĝ) are submatrices of the adjoint representation

adĝ−1(T̂ ) = b̂(ĝ) · T̄ + â−1(ĝ) · T̂ ,

and the matrix Ê(s) is obtained by formula

Ê(s) = (P + E(s) · R)−1 · (Q+ E(s) · S). (11)

Therefore, it is necessary that

det (P + E(s) · R) = det (P + Eab(s) ·R) 6= 0. (12)

These formulas reduce to formulas for Poisson�Lie T-duality if we choose
P = S = 0d and Q = R = 1d. Furthermore, for a semi-Abelian Drinfel'd
double the well-known Buscher rules for non-Abelian T-duality are restored.
If there are no spectators, i.e. if n = d, the plurality is called atomic.

2.2 Equivalence of transformation matrices

Tensors F , F̂ are expressed by formulas (3) and (9) in particular bases of
subalgebras g, ĝ of Manin triples (d, g, g̃) and (d, ĝ, ḡ). However, both initial
and dual/plural tensor do not depend on the choice of bases in g or ĝ. Their
geometric properties are thus independent as well.

Let us consider automorphisms of both Manin triples given by linear
transformations of g and ĝ that preserve their algebraic structure. Let A and
B be d× d matrices that transform bases Ta and T̂a. Transformations (5) of
the form(

T ′

T̃ ′

)
=

(
A 0
0 A−T

)
·
(
T

T̃

)
,

(
T̂ ′

T̄ ′

)
=

(
B 0
0 B−T

)
·
(
T̂
T̄

)
(13)

then preserve the algebraic structure (6), (7) and duality (4) of bases (T, T̃ )

and (T̂ , T̄ ).
Transformations (13) induce changes in matrices E(s) and Ê(s) that are

used in construction of background tensors. We have

E ′(s) = A · E(s) · AT , Ê ′(s) = B · Ê(s) · BT
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where

A =

(
1 0
0 A

)
, B =

(
1 0
0 B

)
.

If the relation of bases in Manin triples is written as in (8), then it is easy to
check that (

T ′

T̃ ′

)
=

(
P ′ Q′

R′ S ′

)
·
(
T̂ ′

T̄ ′

)
where (

P ′ Q′

R′ S ′

)
=

(
APB−1 AQBT

A−TRB−1 A−TSBT

)
. (14)

Therefore, matrices (
P Q
R S

)
and

(
P ′ Q′

R′ S ′

)
de�ne transformations between sigma model backgrounds F and F̂ in various
coordinates. That's why, from the perspective of Poisson�Lie T-plurality,
they can be considered equivalent.

3 Sigma models with two-dimensional target

space

In this section we shall consider atomic Poisson�Lie T-plurality of sigma
models whose target space is a two-dimensional solvable Lie group G with
generators T1, T2 satisfying

[T1, T2] = T2. (15)

The trace fkik of the structure constants is not zero since f 2
12 = 1 and it

is known that this leads to mixed gauge and gravitational anomaly [26] in
the dual model. Yet, it is worth considering such groups in the context of
integrable models [27] and generalized supergravity [28]. We parametrize the
elements g ∈ G as g = eg1T1eg2T2 . Since there are no spectators, the matrix
E(s) is constant. Choosing it in the form

E(s) =

(
α β
γ 0

)
,
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we �nd that the background tensor F(g1, g2) calculated according to the
formula (3) is given by

F(g1, g2) =

(
1 0
0 eg1

)
·
(
α β
γ 0

)
·
(

1 0
0 eg1

)
=

(
α eg1β

eg1γ 0

)
. (16)

One can verify that F is invariant with respect to G and its symmetric part
G is �at metric. Since the target manifold is two-dimensional, the torsion
H = dB of all the backgrounds discussed in this section vanishes. Therefore,
the B-�eld can be eliminated by a gauge transformation and the only relevant
part of F is the metric G.

3.1 Poisson�Lie T-plurality

In order to �nd Poisson�Lie T-dual or plural models associated to (16), we
embed G into four-dimensional Drinfel'd double D = (G |G̃ ) with G̃ Abelian.
The algebraic structure of four-dimensional Drinfel'd doubles was studied
in [17], where it was shown that for such Drinfel'd double there are two
nonequivalent Manin triples:

• Semi-Abelian triple d = g ⊕ g̃ with dual basis (T1, T2, T̃
1, T̃ 2) and Lie

brackets (only nontrivial brackets are displayed)

[T1, T2] = T2, [T1, T̃
2] = −T̃ 2, [T2, T̃

2] = T̃ 1, (17)

or

• Type B non-Abelian triple d = ĝ ⊕ ḡ with dual basis (T̂1, T̂2, T̄
1, T̄ 2)

and Lie brackets

[T̂1, T̂2] = T̂2, [T̄ 1, T̄ 2] = T̄ 1,

[T̂1, T̄
1] = T̂2, [T̂1, T̄

2] = −T̂1 − T̄ 2, [T̂2, T̄
2] = T̄ 1. (18)

Map relating both bases

T̂1 = −T1 + T2, T̂2 = T̃ 1 + T̃ 2,

T̄ 1 = T̃ 2, T̄ 2 = T1 (19)
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mentioned in the paper [17] preserves (4) and transforms Lie brackets (17)
into (18). However, there are two di�erent classes of linear maps (5) given
by matrices

C1 =


−1 b2 b2b3 b3
0 0 b1b2 b1
0 0 b1b2 − 1 b1

1 1
b1
− b2

(
1
b1
− b2

)
b3 −b3

 , b1, b2, b3 ∈ R, b1 6= 0 (20)

or

C2 =


1 b2 −b2b3 b3
0 b1 −b1b3 0
0 b1 1− b1b3 0

−1 −b2 b2(b1b3−1)
b1

1
b1
− b3

 , b1, b2, b3 ∈ R, b1 6= 0 (21)

that do the same and that de�ne much richer set of decompositions2. Note
that detC1 = −1 and detC2 = 1. We will show that using these two maps to
generate models �plural� to (1) with F given by (16) one gets substantially
di�erent models.

The �rst one, obtained from (9)�(11) and (20), is given by background3

F̂(ĝ1, ĝ2) =

 e−ĝ1 (b3+β)(b3−γ)
b1(β+γ+b1eĝ1 (α−b2(β+γ)))

−−b3−β−b1e
ĝ1 (α−b2(β+γ))

β+γ+b1eĝ1 (α−b2(β+γ))
b3−γ−b1eĝ1 (α−b2(β+γ))
β+γ+b1eĝ1 (α−b2(β+γ))

b1eĝ1

β+γ+b1eĝ1 (α−b2(β+γ))


with nonzero (b1 6= 0) scalar curvature

R̂ = − 4b1e
ĝ1

β + b1eĝ1(α− b2(β + γ)) + γ
.

The other one, obtained using (21), is given by

F̂(ĝ1, ĝ2) =

 α+b2(β+γ)

(b1eĝ1 (b3−β)−1)(b1eĝ1 (b3+γ)−1)
b1eĝ1 (b3−β)
b1eĝ1 (b3−β)−1

− b1eĝ1 (b3+γ)

b1eĝ1 (b3+γ)−1
0

 .

2One can simplify these matrices by (13), (14) and choose e.g. b1 = 1, b2 = b3 = 0 for
C1 and b2 = 0 for C2. To get the map (19) one has to choose b1 = b2 = 1, b3 = 0.

3We assume that elements of Ĝ are parametrized as ĝ = eĝ1T̂1eĝ2T̂2 .
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This is a background with �at metric, so indeed, using Poisson�Lie T-
plurality with two di�erent maps (20) and (21) we get two di�erent sigma
models. This essential di�erence of curvature properties of the backgrounds
remains true for any choice of b1, b2, b3.

Similar results are obtained if we consider plural sigma models on Ḡ .
In that case we use transformations between bases of semi-Abelian Manin
triple and a �dual� to type-B Manin triple, i.e. the matrices (20) and (21)
are multiplied from the left by the exchange matrix

D0 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 . (22)

3.2 Poisson�Lie T-duality

Maybe surprisingly, we observe the same phenomenon for Poisson�Lie T-
duality as well. Dual sigma models can be obtained by exchange of Manin
triples (d, g, g̃) and (d, g̃, g) mediated by the matrix (22). On the other hand,
there are more general maps between bases of the semi-Abelian Manin triple
and its dual. Linear maps on d that switch the roles of Ta and T̃ a in (17) and
meanwhile preserve the duality of the bases (4) are given by automorphisms
(5) where the matrix C is either

D1 =


0 0 1 0
0 0 − b2

b1
1
b1

1 b2 −b2b3 b3
0 b1 −b1b3 0

 , b1, b2, b3 ∈ R, b1 6= 0 (23)

or

D2 =


0 0 −1 0
0 b1 b1b3 0
−1 b2 b2b3 b3
0 0 b2

b1
1
b1

 , b1, b2, b3 ∈ R, b1 6= 0 (24)

with determinants of D1 and D2 equal to ±1. Note that D1 is equal to the
exchange matrix (22) for b1 = 1, b2 = b3 = 0. Inserting each of these matrices
into (9)�(11) one gets again two di�erent �dual� models.
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The �rst model, obtained using (23) and parametrization g̃ = eg̃1T̃
1
eg̃2T̃

2
,

has �at background

F̃(g̃1, g̃2) =

(
0 1

b1(b3+γ)+g̃2
1

b1(β−b3)−g̃2
α+b2(β+γ)

(b1(b3−β)+g̃2)(b1(b3+γ)+g̃2)

)
, (25)

while background obtained using (24) is given by tensor

F̃(g̃1, g̃2) =

(
1

α−(β+γ)(b2+b1g̃2)
b1(b3+β)

(β+γ)(b2+b1g̃2)−α
b1(b3−γ)

(β+γ)(b2+b1g̃2)−α − b21(b3+β)(b3−γ)
(β+γ)(b2+b1g̃2)−α

)
(26)

with nonzero scalar curvature

R̃ =
4

(β + γ)(b1g̃2 + b2)− α
.

One can see that once more we get two di�erent Poisson�Lie T-dual sigma
models no matter what the parameters b1, b2 and b3 are.

It is well known that (non-)Abelian T-duality is induced by matrix D0

that is a special case of D1. In fact, dualizing F using D0 we get tensor

F̃ ′(g̃1, g̃2) =

(
0 1

γ+g̃2
1

β−g̃2 −
α

(β−g̃2)(γ+g̃2)

)
that can be brought to the form (25) by coordinate transformation

g̃1 = g̃′1 −
b2g̃
′
2

b1
, g̃2 =

g̃′2
b1

+ b3.

Alternatively, it can be obtained by gauging the (non-)Abelian isometry and
introduction of Abelian Lagrange multipliers. We shall investigate whether
the duality induced by matrix D2 can be obtained in a similar way.

Matrix D2 can be transformed by automorpisms (13), (14) to the form

D′2 =


0 0 −1 0
0 1 0 0
−1 0 0 0
0 0 0 1

 . (27)

Up to the change of sign necessary for being an automorphism of semi-
Abelian Manin triple, matrixD′2 acts by switching T1 ↔ T̃1. One may suspect
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that this can actually be Buscher duality with respect to one-dimensional
subgroup4 of isometry group G . This subgroup is generated by left-invariant
vector �eld V1 = ∂g1 − g2 ∂g2 that together with V2 = ∂g2 satis�es (15).

To check our suspicion we have to �nd adapted coordinates {s1, h1} such
that V1 becomes V ′1 = ∂h1 and F becomes independent of h1. Suitable
transformation of coordinates is given by

g1 = h1, g2 = s1 e−h1 . (28)

Tensor (16) is then transformed to the form

F ′(s1, h1) =

(
0 γ
β α− (β + γ)s1

)
. (29)

Treating s1 as spectator we may dualize F ′ with respect to h1. Buscher rules
that follow from (9)�(11) give tensor

F̃(s1, h̃1) =

(
βγ

(β+γ)s1−α
γ

(β+γ)s1−α
β

α−(β+γ)s1
1

α−(β+γ)s1

)
(30)

and subsequent change of coordinates

s1 = b1g̃2 + b2, h1 = b1b3g̃2 − g̃1
restores (26).

Alternative formulation of duality given by matrix (27) follows from gauge
invariant parent action

S[h1, s1, A−, A+, h̃1] =
1

2π

∫
D−h1 (α− s1(β + γ))D+h1+

+D−h1 β ∂+s1 + ∂−s1 γ D+h1 + h̃1(∂−A+ − ∂+A−)

where
D±h1 = ∂±h1 + A±h1.

Integrating out gauge �elds A+ and A− we obtain sigma model with back-
ground tensor (30) that can be brought to the form (26) by coordinate trans-
formation.

One may also ask why Buscher duality with respect to V2 is not included
in (23) or (24). The reason is that change of bases

T ′1 = T1, T ′2 = ±T̃2, T̃ ′1 = T̃1, T̃ ′2 = ±T2
is not an automorphism of the Manin triple given by (15) and [T̃1, T̃2] = 0.

4Dualities of this form are called factorised in [25].
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4 Sigma models with four-dimensional target

space

One can also ask if there are some �Poisson�Lie identities� preserving the
structure of semi-Abelian Manin triple, i.e. Poisson�Lie T-pluralities gener-
ated by automorphisms of d = g⊕ g̃ that preserve both Lie brackets (17) and
duality of the basis (4). The answer is positive, and the mappings can have
two possible forms given by matrices

I1 =


1 b2 −b2b3 b3
0 b1 −b1b3 0
0 0 1 0
0 0 − b2

b1
1
b1

 , b1, b2, b3 ∈ R, b1 6= 0 (31)

and

I2 =


−1 b2 b2b3 b3
0 0 b2

b1
1
b1

0 0 −1 0
0 b1 b1b3 0

 b1, b2, b3 ∈ R, b1 6= 0. (32)

Using (31) in atomic Poisson�Lie T-plurality transformation of the model
given by (16) we get a sigma model in �at background. The example, how-
ever, is not particularly illuminating since the condition (12) is not satis�ed
for (32) and plural background cannot be calculated. For further investiga-
tion we focus on sigma models in four-dimensional target space and introduce
spectator �elds.

In the papers [22], [23] Poisson�Lie T-duality with spectators was used to
study non-Abelian T-duals of sigma models in �at Minkowski space. Given
the metric η = diag(−1, 1, 1, 1) in coordinates {t, x, y, z}, we consider Killing
vectors

T1 := K3 = z∂t + t∂z, T2 := L2 +K1 = x∂t + (t+ z)∂x − x∂z

satisfying [T1, T2] = T2. These vectors generate a solvable two-dimensional
group G of symmetries of the background η. The coordinates {s1, s2, g1, g2}
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given by5

t =
1

2
e−g1

√
|s1|
(
sgn(s1) + e2g1

(
g22 + 1

))
,

x = −eg1g2
√
|s1|,

y = s2, (33)

z = −1

2
e−g1

√
|s1|
(
sgn(s1) + e2g1

(
g22 − 1

))
are adapted to the action of G . After the transformation of coordinates (33)
the �at metric acquires the simple form

F(s1, s2, g1, g2) =


− 1

4s1
0 0 0

0 1 0 0
0 0 s1 0
0 0 0 e2g1s1

 (34)

from which one gets E(s) by setting g1 = 0. The group G can be embedded
into semi-Abelian Drinfel'd double with algebraic structure (17) allowing to
�nd dual/plural backgrounds6.

Inserting matrices (31) and (32) into (9)�(11) one gets two di�erent sigma
models on N × G related to the original model in background (34) by
Poisson�Lie T-plurality. The �rst, obtained using (31), is given by back-
ground

F(s1, s2, g1, g2) =


− 1

4s1
0 0 0

0 1 0 0
0 0 (b22 + 1) s1 b1e

g1(b2s1 − b3)
0 0 b1e

g1(b3 + b2s1) b21e
2g1s1

 (35)

that is �at and torsionless for any values7 of b1, b2, b3. The second back-
5The action of G is not free and transitive for t + z = 0, i.e. for s1 = 0. We have to

restrict our calculations to coordinate patches with s1 6= 0.
6For further details concerning the process of �nding the adapted coordinates see [22]

where this particular case was denoted S2,20.
7Note that (31) reduces to identity matrix for b1 = 1, b2 = b3 = 0. Consequently, (35)

reduces to (34).
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ground, obtained using (32), is given by tensor

F(s1, s2, g1, g2) =


− 1

4s1
0 0 0

0 1 0 0

0 0
b23
s1

+ s1
eg1 (b3−b2s1)

b1s1

0 0 eg1 (b3+b2s1)
b1s1

e2g1

b21s1

 . (36)

Similarly to the previous case, the torsion vanishes. However, the symmetric
part of (36), i.e. the metric, has vanishing scalar curvature but nontrivial
Ricci tensor. Using transformation of coordinates

s1 =
3u4

b21
+

6u2z3
b1
− 2uv + z23 , s2 = z4,

g1 =
1

2
ln

(
3u2

b21
+

6z3
b1
− 2v

u
+
z23
u2

)
, g2 =

b1b3√
3u2

b21
+ 6z3

b1
+

z23−2uv
u2

− b1uz3 − u3

one can bring this background to a pp-wave in the Brinkmann form

ds2 = 2
z23
u2
du2 + 2dudv + dz23 + dz24

identi�ed in [22, 23] to be one of the gauged WZW models considered in
[29, 30]. We see that we again get two di�erent sigma models, this time
produced by Poisson�Lie T-pluralities that do not change the Manin triple.

5 Poisson�Lie T-dualities and pluralities gen-

erated by Poisson�Lie identities

Comparing transformation matrices (23), (24) that generate Poisson�Lie T-
dualities and (31), (32) that generate Poisson�Lie identities one may notice
that they are related by canonical duality matrix (22) that exchanges gener-
ators Ta and T̃ a. Indeed, it is easy to check that

D1 = D0 · I1, D2 = D0 · I2. (37)

That means that all Poisson�Lie T-dualities described in subsection 3.2 can
be obtained by canonical non-Abelian T-duality of sigma models generated
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by Poisson�Lie identities of the initial model. Writing (5) as(
T̃
T

)
= D0 ·

(
T

T̃

)
= D0 · I ·

(
T

T̃

)
we verify that this holds not only for the four-dimensional semi-Abelian Drin-
fel'd double, but for general Drinfel'd double (G |G̃ ).

One can try to obtain similar relation for Poisson�Lie T-pluralities de-
scribed in subsection 3.1. However, question then is what is the �canonical
Poisson�Lie T-plurality�. Motivated by equations (37) we can de�ne it for
Manin triples (d, g, g̃) and (d, ĝ, ḡ) with (17) and (18) by

C0 =


−1 0 0 0
0 0 0 1
0 0 −1 1
1 1 0 0

 , (38)

i.e. by the matrix C1 with b1 = 1, b2 = b3 = 0. Relabeling b1 → 1
b1
, b2 →

−b2, b3 → −b3 in I1 and b2 → −b2, b3 → −b3 in I2 we then have

C1 = C0 · I1, C2 = C0 · I2

and all Poisson�Lie T-pluralities from subsection 3.1 can be obtained by
Poisson�Lie T-plurality of sigma models generated by (38) and Poisson�Lie
identities of the initial model. Unfortunately, the choice (38) is by far not
unique, and, as opposed to duality, we can hardly call it �canonical� Poisson�
Lie T-plurality.

We have obtained similar results for Poisson�Lie T-pluralities of sigma
models embedded in six-dimensional Drinfel'd doubles.

6 Conclusion

The examples presented in sections 3 and 4 prove that families of sigma mod-
els related by Poisson�Lie T-plurality may depend not only on the algebraic
structure of Manin triple but also on the way how the given Manin triple is
embedded in the Drinfel'd double.

This holds for the Poisson�Lie T-duality as well, so we may ask what
should be considered as �true� T-duality. Is it only the procedure introduced
in [1, 2, 3] that uses gauging of initial sigma model and is alternatively
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described in [8] as an exchange of dual bases Ta and T̃ a of the isotropic
subalgebras of Manin triple? Or can we admit any linear transformation
of bases of the Drinfel'd double that give decompositions isomorphic to the
Manin triple obtained by the exchange?

Possible answer to the question above follows from expressions (3) and
(9) of both initial and dual/plural tensor. Namely, from these expressions we
can see that tensors F and F̂ depend both on algebraic structure of Manin
triple and bilinear forms E(s), Ê(s). Poisson�Lie identity does not change
the initial Manin triple (only its embedding in the Drinfel'd double) but
changes the bilinear form E(s) according to the formula (11). Subsequent
canonical duality or plurality then changes the Manin triple and produce
Poisson�Lie T-dual/plural tensor. Moreover, it turns out that non-canonical
dualities may be hidden canonical dualities with respect to subgroups of the
initial group of isometries.
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