Bc. Anastasiia Koltakova 2019/2020

5. Návrh distribučních prvků

Strategy: Single arrangement, cooling Primary air volume flow rate q_{v.PRI}

Easy Product Finder

Date: 16.11.2019 / CZ Project 1 Position.03

DID632-LR-4-Z-ML/1200x900x598/LE

Input Data

Distance x

Installation height hinst

Room temperature t_{r.c.}

Room temperature t_{r,h} Water flow temperature tw.s.h

Primary air temperature t_{PRI,c}

Relative humidity of the air ϕ_p

Water return temperature tw,r,c

Primary air temperature t_{PRI,h}

Water return temperature tw,r,h

Water flow temperature $t_{w,s,c}$

Perforated metal, circular holes Induced air grille For 4-pipe systems Heat exchanger 4 Nozzle variant Z Small

Arrangement of casings and connections ML Casing middle, water connection left

1200 Total length Nominal length 900 Width of front frame 598 Air control blades LE

28 m³/h

1,6 m

3,0 m

18,0 °C

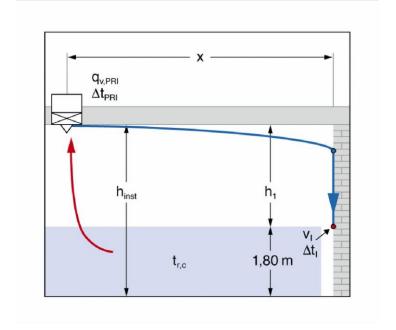
26,0 °C

16,0 °C

18,0 °C

20,0 °C 20,0 °C

50,0 °C


40,0 °C

45

With air control blades 1

Total amount

Functional diagram

Results

Distance h₁ 1,2 m Height of occupied area hocc 1,8 m Total thermal output – cooling $\Phi_{t,c}$ -577 W Thermal output - primary air Φ_{PRI,c} -75 W Thermal output - water $\Phi_{w,c}$ -502 W Dew point t_{dp} 13,2 °C Water flow rate q_{v,w,c} 216 l/h Pressure drop, water side $\Delta p_{w,c}$ 5,4 kPa Total thermal output – heating $\Phi_{t,h}$ 766 W Thermal output - primary air Φ_{PRI,h} 0 W Thermal output - water $\Phi_{w,h}$ 766 W Water flow rate q_{v,w,h} 66 l/h Pressure drop, water side $\Delta p_{w,h}$ 0,2 kPa Throw distance Is 0,7 m Velocity at I v_I 0,20 m/s Temperature difference at I Δt_I -2,12 K Velocity at I_s v_s N.A. m/s Temperature difference at I_s Δt_s N.A. K Air density p 1,2 kg/m3 *)

Notes *)

Air density ρ All aerodynamic, acoustic and capacity calculations are based on this air density value.

Acoustic results

	Δp_t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	111	19	22	< 15	< 15	< 15	< 15	< 15	< 15	< 15	15	18

Description

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot,

Date: 16.11.2019 / CZ Project 1 Position.03

DID632-LR-4-Z-ML/1200x900x598/LE

noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

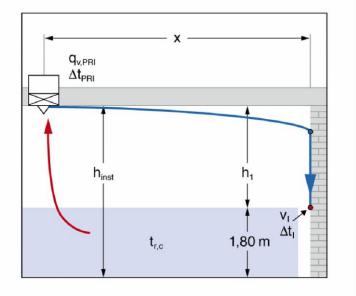
Date: 16.11.2019 / CZ Project 1 Position.03

DID632-LR-4-M-ML/1200x900x598/LE

Induced air grilleLRPerforated metal, circular holesHeat exchanger4For 4-pipe systemsNozzle variantMMedium

Arrangement of casings and connections ML Casing middle, water connection left

Total length 1200
Nominal length 900
Width of front frame 598


Air control blades LE With air control blades
Total amount 1

i otal amount

Input Data

Strategy: Single arrangement, cooling			
Primary air volume flow rate q _{v,PRI}	28 m³/h		
Distance x	1,3 m		
Installation height h _{inst}	3,0 m		
Primary air temperature t _{PRI,c}	18,0 °C		
Room temperature t _{r,c}	26,0 °C		
Relative humidity of the air φ _p	45		
Water flow temperature t _{w,s,c}	16,0 °C		
Water return temperature tw,r,c	18,0 °C		
Primary air temperature t _{PRI,h}	20,0 °C		
Room temperature t _{r,h}	20,0 °C		
Water flow temperature tw,s,h	50,0 °C		
Water return temperature tw.r.h	40,0 °C		

Functional diagram

Results

Nesulis	
Distance h ₁	1,2 m
Height of occupied area hocc	1,8 m
Total thermal output – cooling Φ _{t,c}	-395 W
Thermal output - primary air Φ _{PRI,c}	-75 W
Thermal output - water $\Phi_{w,c}$	-320 W
Dew point t _{dp}	13,2 °C
Water flow rate q _{v,w,c}	138 l/h
Pressure drop, water side Δp _{w,c}	2,4 kPa
Total thermal output – heating $\Phi_{t,h}$	399 W
Thermal output - primary air Φ _{PRI,h}	0 W
Thermal output - water Φ _{w,h}	399 W
Water flow rate q _{v,w,h}	34 l/h
Pressure drop, water side Δp _{w,h}	0,1 kPa
Throw distance I _s	0,7 m
Velocity at I v _I	0,17 m/s
Temperature difference at I Δt ₁	-1,58 K
Velocity at I _s v _s	N.A. m/s
Temperature difference at I _s Δt _s	N.A. K
Air density ρ	1,2 kg/m³ *)

Notes *)

Air density p

All aerodynamic, acoustic and capacity calculations are based on this air density value.

Acoustic results

		Δp_t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
		[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
	Active part	56	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15

Description

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot,

Date: 16.11.2019 / CZ Project 1 Position.03

DID632-LR-4-M-ML/1200x900x598/LE

noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

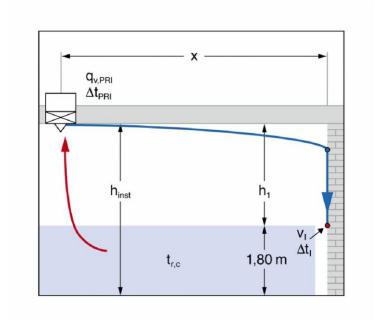
Date: 16.11.2019 / CZ Project 1 Position.03

DID632-LR-4-Z-LL-AH/1500x1200x598/LE

Induced air grilleLRPerforated metal, circular holesHeat exchanger4For 4-pipe systemsNozzle variantZSmallArrangement of casings and connectionsLLCasing left side, Water connections left sideExtract air spigotAHExtract air, spigot at the rear

Extract air spigot AH
Total length 1500
Nominal length 1200
Width of front frame 598
Air control blades LE

Air control blades LE With air control blades
Total amount 1


Input Data

Strategy: Single arrangement, cooling	
Primary air volume flow rate q _{v,PRI}	28 m³/h
Distance x	1,6 m
Installation height hinst	3,0 m
Primary air temperature t _{PRI,c}	18,0 °C
Room temperature t _{r,c}	26,0 °C
Relative humidity of the air φ _p	45
Water flow temperature tw,s,c	16,0 °C
Water return temperature tw,r,c	18,0 °C
Primary air temperature t _{PRI,h}	20,0 °C
Room temperature t _{r,h}	20,0 °C
Water flow temperature t _{w,s,h}	50,0 °C
Water return temperature tw,r,h	40,0 °C

Results

Vesuits	
Distance h ₁	1,2 m
Height of occupied area hocc	1,8 m
Total thermal output – cooling $\Phi_{t,c}$	-577 W
Thermal output - primary air Φ _{PRI,c}	-75 W
Thermal output - water Φ _{w,c}	-502 W
Dew point t _{dp}	13,2 °C
Water flow rate q _{v,w,c}	216 l/h
Pressure drop, water side $\Delta p_{w,c}$	7,0 kPa
Total thermal output – heating $\Phi_{t,h}$	768 W
Thermal output - primary air Φ _{PRI,h}	0 W
Thermal output - water $\Phi_{w,h}$	768 W
Water flow rate q _{v,w,h}	66 l/h
Pressure drop, water side $\Delta p_{w,h}$	0,3 kPa
Throw distance I _s	0,6 m
Velocity at I v _I	0,16 m/s
Temperature difference at I Δt _I	-2,30 K
Velocity at I _s v _s	N.A. m/s
Temperature difference at I _s Δt _s	N.A. K
Air density ρ	1,2 kg/m³ *)
All delibity p	i,∠ kg/iii

Functional diagram

Notes *)

All aerodynamic, acoustic and capacity calculations are based on this air density value.

Acoustic results

	Δpt	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	59	< 15	17	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15

Description

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For

Date: 16.11.2019 / CZ Project 1 Position.03

DID632-LR-4-Z-LL-AH/1500x1200x598/LE

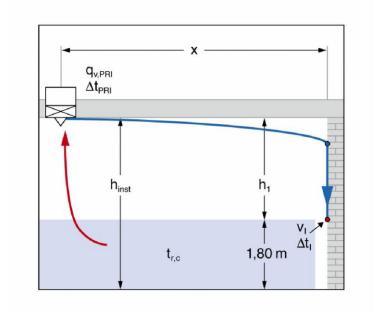
installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

Date: 16.11.2019 / CZ Project 1 Position.03

DID632-LR-2-Z-LL-AH/1500x1200x598/LE

Extract air, spigot at the rear

With air control blades



Induced air grille Perforated metal, circular holes For 2-pipe systems Heat exchanger 2 Nozzle variant Ζ Small Arrangement of casings and connections LL Casing left side, Water connections left side

Extract air spigot AΗ Total length 1500 Nominal length 1200 Width of front frame 598 Air control blades LE

Total amount 1

Functional diagram

Input Data

Strategy: Single arrangement, cooling Primary air volume flow rate q_{v.PRI} 36 m³/h Distance x 1,6 m Installation height hinst 3.0 m Primary air temperature t_{PRI,c} 18,0 °C 26,0 °C Room temperature t_{r,c} Relative humidity of the air φ_D 45 16,0 °C Water flow temperature tw,s,c Water return temperature $t_{w,r,c}$ 18,0 °C

Results

Distance h₁ 1,2 m Height of occupied area hocc 1,8 m Total thermal output – cooling $\Phi_{t,c}$ -751 W Thermal output - primary air Φ_{PRI,c} -96 W Thermal output - water $\Phi_{w,c}$ -655 W Dew point t_{dp} 13,2 °C Water flow rate q_{v,w,c} 282 l/h Pressure drop, water side $\Delta p_{w,c}$ 11,3 kPa Throw distance Is 0,8 m Velocity at I vi 0,21 m/s Temperature difference at I Δt_{l} -2,33 K Velocity at Is vs N.A. m/s Temperature difference at I_s Δt_s N.A. K Air density p 1,2 kg/m³

Acoustic results

	Δp _t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	98	17	22	< 15	< 15	< 15	< 15	< 15	< 15	< 15	16	19

Description

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

Date: 16.11.2019 / CZ Project 1 Position.03

DID632-LR-4-M-LL-AH/1500x1200x598/LE

Induced air grille Heat exchanger Nozzle variant М Arrangement of casings and connections LL Extract air spigot AΗ Total length 1500 Nominal length 1200 Width of front frame 598 Air control blades

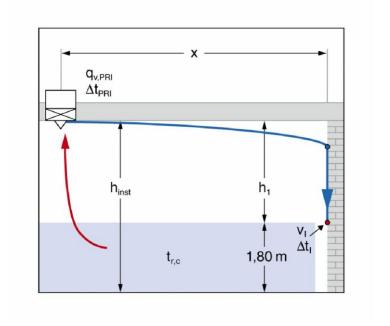
LE 1

Perforated metal, circular holes

For 4-pipe systems Medium

Casing left side, Water connections left side

Extract air, spigot at the rear


With air control blades

Input Data

Strategy: Single arrangement, cooling	
Primary air volume flow rate q _{v,PRI}	44 m³/h
Distance x	1,3 m
Installation height hinst	3,0 m
Primary air temperature t _{PRI,c}	18,0 °C
Room temperature t _{r,c}	26,0 °C
Relative humidity of the air φ _p	45
Water flow temperature tw,s,c	16,0 °C
Water return temperature tw,r,c	18,0 °C
Primary air temperature t _{PRI,h}	20,0 °C
Room temperature t _{r,h}	20,0 °C
Water flow temperature tw,s,h	50,0 °C
Water return temperature tw.r.h	40,0 °C

Total amount

Functional diagram

Posulte

1,2 m
1,8 m
-671 W
-118 W
-553 W
13,2 °C
238 l/h
8,3 kPa
914 W
0 W
914 W
79 l/h
0,3 kPa
1,0 m
0,22 m/s
-1,85 K
N.A. m/s
N.A. K
1,2 kg/m³ *)

Notes *)

Air density p All aerodynamic, acoustic and capacity calculations are based on this air density value.

Acoustic results

	Δpt	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	77	< 15	16	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15

Description

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For

Date: 16.11.2019 / CZ Project 1 Position.03

DID632-LR-4-M-LL-AH/1500x1200x598/LE

installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

Date: 16.11.2019 / CZ Project 1 Position.03

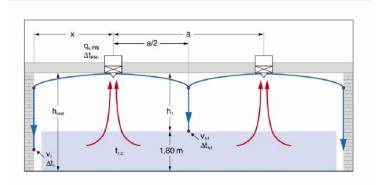
DID632-LR-2-M-LL/1500x1200x598/LE

Induced air grille Perforated metal, circular holes Heat exchanger For 2-pipe systems 2

Nozzle variant М Medium

Arrangement of casings and connections LL Casing left side, Water connections left side

Total length 1500 Nominal length 1200 Width of front frame 598


LE With air control blades Air control blades 1

Total amount

Input Data

Strategy: Arrangement in rows, cooling	
Primary air volume flow rate q _{v,PRI}	44 m³/h
Distance a *)	2,0 m
Distance x	1,3 m
Installation height hinst	3,0 m
Primary air temperature t _{PRI,c}	18,0 °C
Room temperature t _{r,c}	26,0 °C
Relative humidity of the air φ _p	45
Water flow temperature tw,s,c	16,0 °C
Water return temperature ture	18 0 °C

Functional diagram

Results

Distance h₁	1,2 m
Height of occupied area hocc	1,8 m
Total thermal output – cooling $\Phi_{t,c}$	-671 W
Thermal output - primary air Φ _{PRI,c}	-118 W
Thermal output - water Φ _{w,c}	-553 W
Dew point t _{dp}	13,2 °C
Water flow rate q _{v,w,c}	238 l/h
Pressure drop, water side $\Delta p_{w,c}$	8,3 kPa
Throw distance I _s	1,0 m
Velocity at h ₁ v _{h1}	0,14 m/s
Temperature difference at h ₁ Δt _{h1}	-0,79 K
Velocity at I v _I	0,22 m/s
Temperature difference at I Δt _I	-1,85 K
Velocity at I _s v _s	N.A. m/s
Temperature difference at I _s Δt _s	N.A. K
Air density ρ	1,2 kg/m³

Notes *)

Distance a Distance a < 3,5 m is not recommended for comfort zones, and least of all for the area right below induction units. If necessary, leave more space between the units

Acoustic results

	Δpt	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	77	< 15	16	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15

Description

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

Date: 18.11.2019 / CZ Project 1 Position.02

DID632-LR-4-Z-LL-AV/1200x900x598/LE

With air control blades

Induced air grille LR Perforated metal, circular holes
Heat exchanger 4 For 4-pipe systems
Nozzle variant Z Small

Arrangement of casings and connections LL Casing left side, Water connections left side Extract air spigot AV Extract air, spigot at the front

Total length 1200
Nominal length 900
Width of front frame 598
Air control blades LE

Total amount 1

Input Data

Strategy: Arrangement in rows, cooling	
Primary air volume flow rate q _{v,PRI}	22 m³/h
Distance a *)	2,5 m
Distance x	1,5 m
Installation height h _{inst}	3,0 m
Primary air temperature t _{PRI,c}	18,0 °C
Room temperature t _{r,c}	26,0 °C
Relative humidity of the air φ _p	45
Water flow temperature tw,s,c	16,0 °C
Water return temperature t _{w,r,c}	18,0 °C
Primary air temperature t _{PRI,h}	20,0 °C
Room temperature t _{r,h}	20,0 °C
Water flow temperature tw,s,h	50,0 °C
Water return temperature tw,r,h	40,0 °C

Functional diagram X Q_{v,PRI} Al_{v,PRI} Al_{v,PRI} h_{roat}

1.80 m

Notes *)

Air density p

All aerodynamic, acoustic and capacity calculations are based on this air density value.

Results

Distance h ₁	1,2 m
Height of occupied area hocc	1,8 m
Total thermal output – cooling $\Phi_{t,c}$	-447 W
Thermal output - primary air Φ _{PRI,c}	-59 W
Thermal output - water Φ _{w,c}	-389 W
Dew point t _{dp}	13,2 °C
Water flow rate q _{v,w,c}	167 l/h
Pressure drop, water side $\Delta p_{w,c}$	3,4 kPa
Total thermal output – heating $\Phi_{t,h}$	503 W
Thermal output - primary air Φ _{PRI,h}	0 W
Thermal output - water Φ _{w,h}	503 W
Water flow rate q _{v,w,h}	43 l/h
Pressure drop, water side $\Delta p_{w,h}$	0,1 kPa
Throw distance I _s	0,5 m
Velocity at h ₁ v _{h1}	N.A. m/s
Temperature difference at h ₁ Δt _{h1}	N.A. K
Velocity at I v _I	0,16 m/s
Temperature difference at I Δt	-2,14 K
Velocity at I _s v _s	0,23 m/s
Temperature difference at I _s Δt _s	-1,60 K
Air density ρ	1,2 kg/m³ *)

Acoustic results

	Δp _t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	69	< 15	18	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15

Date: 18.11.2019 / CZ Project 1 Position.02

DID632-LR-4-Z-LL-AV/1200x900x598/LE

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

Date: 18.11.2019 / CZ Project 1 Position.02

DID632-LR-2-Z-LL-AV/1500x1200x598/LE

Induced air grille LR Perforated metal, circular holes
Heat exchanger 2 For 2-pipe systems
Nozzle variant Z Small

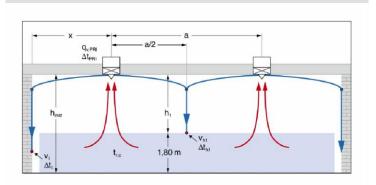
Arrangement of casings and connections LL Casing left side, Water connections left side Extract air spigot AV Extract air, spigot at the front

Total length 1500

Nominal length 1200

Width of front frame 598

Air control blades LE


Air control blades LE With air control blades

Total amount 1

Input Data

Strategy: Arrangement in rows, cooling	
Primary air volume flow rate q _{v,PRI}	28 m³/h
Distance a *)	1,4 m
Distance x	0,8 m
Installation height h _{inst}	3,0 m
Primary air temperature t _{PRI,c}	18,0 °C
Room temperature t _{r,c}	26,0 °C
Relative humidity of the air φ _p	45
Water flow temperature t _{w,s,c}	16,0 °C
Water return temperature twice	18,0 °C

Functional diagram

Results

Distance h ₁	1,2 m
Height of occupied area hocc	1,8 m
Total thermal output – cooling Φ _{t,c}	-577 W
Thermal output - primary air Φ _{PRI.c}	-75 W
Thermal output - water Φ _{w.c}	-502 W
Dew point t _{dp}	13,2 °C
Water flow rate q _{v,w,c}	216 l/h
Pressure drop, water side Δp _{w,c}	7,0 kPa
Throw distance I _s	0,6 m
Velocity at h ₁ v _{h1}	0,13 m/s
Temperature difference at h ₁ Δt _{h1}	-1,12 K
Velocity at I v _I	0,19 m/s
Temperature difference at I Δt ₁	-2,72 K
Velocity at I _s v _s	N.A. m/s
Temperature difference at I _s Δt _s	N.A. K
Air density ρ	1,2 kg/m³

Acoustic results

	Δp_t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	59	< 15	17	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15

Description

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

Date: 18.11.2019 / CZ Project 1 Position.02

DID632-LR-4-M-LL-AV/1500x1200x598/LE

Induced air grille Heat exchanger 4 Nozzle variant М Arrangement of casings and connections LL Extract air spigot AVTotal length 1500 Nominal length 1200 Width of front frame 598

Total amount 1

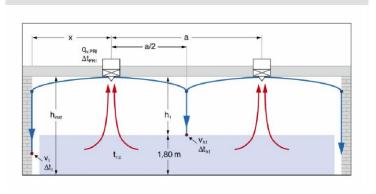
Air control blades

Perforated metal, circular holes

For 4-pipe systems Medium

Casing left side, Water connections left side

Extract air, spigot at the front


With air control blades

Input Data

Strategy: Arrangement in rows, cooling	
Primary air volume flow rate q _{v,PRI}	50 m³/h
Distance a *)	3,0 m
Distance x	1,0 m
Installation height h _{inst}	3,0 m
Primary air temperature t _{PRI,c}	18,0 °C
Room temperature t _{r,c}	26,0 °C
Relative humidity of the air φ _p	45
Water flow temperature t _{w,s,c}	16,0 °C
Water return temperature t _{w,r,c}	18,0 °C
Primary air temperature t _{PRI,h}	20,0 °C
Room temperature t _{r,h}	20,0 °C
Water flow temperature tw,s,h	50,0 °C
Water return temperature twrb	40.0 °C

Functional diagram

LE

Notes *)

Air density p

All aerodynamic, acoustic and capacity calculations are based on this air density value.

Results

Distance h ₁	1,2 m
Height of occupied area hocc	1,8 m
Total thermal output – cooling $\Phi_{t,c}$	-770 W
Thermal output - primary air Φ _{PRI,c}	-134 W
Thermal output - water Φ _{w,c}	-637 W
Dew point t _{dp}	13,2 °C
Water flow rate q _{v,w,c}	274 l/h
Pressure drop, water side $\Delta p_{w,c}$	10,7 kPa
Total thermal output – heating Φ _{t,h}	1 146 W
Thermal output - primary air Φ _{PRI,h}	0 W
Thermal output - water $\Phi_{w,h}$	1 146 W
Water flow rate q _{v,w,h}	99 l/h
Pressure drop, water side $\Delta p_{w,h}$	0,5 kPa
Throw distance I _s	1,1 m
Velocity at h ₁ v _{h1}	0,13 m/s
Temperature difference at h ₁ Δt _{h1}	-0,72 K
Velocity at I v _I	0,26 m/s
Temperature difference at I Δt _I	-1,99 K
Velocity at I _s v _s	N.A. m/s
Temperature difference at I _s Δt _s	N.A. K
Air density ρ	1,2 kg/m³ *)

Acoustic results

	Δp _t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	99	15	19	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15

Date: 18.11.2019 / CZ Project 1 Position.02

DID632-LR-4-M-LL-AV/1500x1200x598/LE

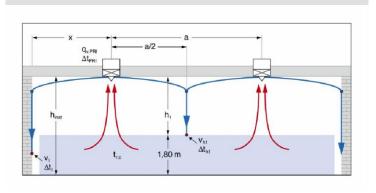
Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

Date: 19.11.2019 / CZ Project 1 Position.01

DID632-LR-4-M-LL-AV/1200x900x598/LE

With air control blades

Induced air grille LR Perforated metal, circular holes
Heat exchanger 4 For 4-pipe systems
Nozzle variant M Medium
Arrangement of casings and connections LL Casing left side, Water connections left side
Extract air spigot AV Extract air, spigot at the front
Total length 1200


Total length 1200
Nominal length 900
Width of front frame 593
Air control blades LE

Total amount 1

Input Data

Strategy: Arrangement in rows, cooling	
Primary air volume flow rate q _{v,PRI}	50 m³/h
Distance a *)	3,0 m
Distance x	1,0 m
Installation height h _{inst}	3,0 m
Primary air temperature t _{PRI,c}	18,0 °C
Room temperature t _{r,c}	26,0 °C
Relative humidity of the air φ _p	45
Water flow temperature t _{w,s,c}	16,0 °C
Water return temperature tw,r,c	18,0 °C
Primary air temperature t _{PRI,h}	20,0 °C
Room temperature t _{r,h}	20,0 °C
Water flow temperature tw,s,h	50,0 °C
Water return temperature twee	40.0 °C

Functional diagram

Notes *)

Air density p

All aerodynamic, acoustic and capacity calculations are based on this air density value.

Results

Distance h ₁	1,2 m
Height of occupied area hocc	1,8 m
Total thermal output – cooling Φ _{t,c}	-746 W
Thermal output - primary air Φ _{PRI,c}	-134 W
Thermal output - water Φ _{w,c}	-612 W
Dew point t _{dp}	13,2 °C
Water flow rate q _{v,w,c}	263 l/h
Pressure drop, water side $\Delta p_{w,c}$	7,8 kPa
Total thermal output – heating Φ _{t,h}	1 079 W
Thermal output - primary air Φ _{PRI,h}	0 W
Thermal output - water $\Phi_{w,h}$	1 079 W
Water flow rate q _{v,w,h}	93 l/h
Pressure drop, water side $\Delta p_{w,h}$	0,4 kPa
Throw distance I _s	1,3 m
Velocity at h ₁ v _{h1}	0,17 m/s
Temperature difference at h ₁ Δt _{h1}	-0,64 K
Velocity at I v _I	0,33 m/s
Temperature difference at I Δt _I	-1,78 K
Velocity at I _s v _s	N.A. m/s
Temperature difference at I _s Δt _s	N.A. K
Air density ρ	1,2 kg/m³ *)

Acoustic results

	Δp _t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	180	23	24	17	17	17	17	17	15	< 15	18	20

Description

Date: 19.11.2019 / CZ Project 1 Position.01

DID632-LR-4-M-LL-AV/1200x900x598/LE

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

Date: 19.11.2019 / CZ Project 1 Position.02

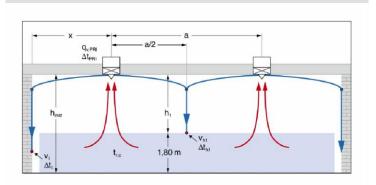
DID632-LR-2-M-LL-AV/1200x900x598/LE

Induced air grilleLRPerforated metal, circular holesHeat exchanger2For 2-pipe systemsNozzle variantMMedium

Arrangement of casings and connections LL Casing left side, Water connections left side

Extract air spigot AV Extract air, spigot at the front Total length 1200

Nominal length 900
Width of front frame 593
Air control blades LE Witl


Air control blades LE With air control blades

Total amount 1

Input Data

Strategy: Arrangement in rows, cooling	
Primary air volume flow rate q _{v,PRI}	50 m³/h
Distance a *)	3,0 m
Distance x	1,0 m
Installation height h _{inst}	3,0 m
Primary air temperature t _{PRI,c}	18,0 °C
Room temperature t _{r,c}	26,0 °C
Relative humidity of the air φ _p	45
Water flow temperature t _{w,s,c}	16,0 °C
Water return temperature t _{w.r.c}	18,0 °C

Functional diagram

Results

Distance h₁	1,2 m
Height of occupied area hocc	1,8 m
Total thermal output – cooling $\Phi_{t,c}$	-746 W
Thermal output - primary air Φ _{PRI,c}	-134 W
Thermal output - water Φ _{w,c}	-612 W
Dew point t _{dp}	13,2 °C
Water flow rate q _{v,w,c}	263 l/h
Pressure drop, water side $\Delta p_{w,c}$	7,8 kPa
Throw distance I _s	1,3 m
Velocity at h ₁ v _{h1}	0,17 m/s
Temperature difference at h ₁ Δt _{h1}	-0,64 K
Velocity at I v _I	0,27 m/s
Temperature difference at I Δt ₁	-1,78 K
Velocity at I _s v _s	N.A. m/s
Temperature difference at I _s Δt _s	N.A. K
Air density ρ	1,2 kg/m³

Acoustic results

	Δp_t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	180	23	24	17	17	17	17	17	15	< 15	18	20

Description

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

Date: 19.11.2019 / CZ Project 1 Position.04

DID632-LR-2-Z-LL-AV/2100x1800x598/LE

Extract air, spigot at the front

 Induced air grille
 LR
 Perforated metal, circular holes

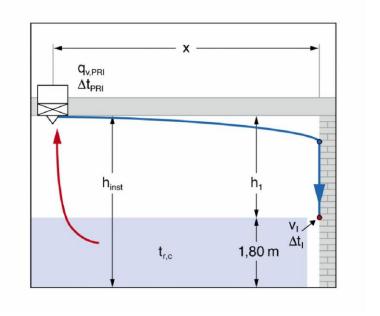
 Heat exchanger
 2
 For 2-pipe systems

 Nozzle variant
 Z
 Small

 Arrangement of casings and connections
 LL
 Casing left side, Water connections left side

Extract air spigot AV
Total length 2100
Nominal length 1800
Width of front frame 598
Air control blades LE

Air control blades LE With air control blades
Total amount 1


Input Data

Strategy: Single arrangement, cooling Primary air volume flow rate q_{v.PRI} 58 m³/h Distance x 0,8 m Installation height hinst 3.0 m Primary air temperature t_{PRI,c} 18,0 °C 26,0 °C Room temperature t_{r,c} Relative humidity of the air φ_D 45 16,0 °C Water flow temperature tw,s,c Water return temperature $t_{w,r,c}$ 18,3 °C

Result	s
--------	---

Distance h₁ 1,2 m Height of occupied area hocc 1,8 m Total thermal output – cooling $\Phi_{t,c}$ -1 189 W Thermal output - primary air Φ_{PRI,c} -155 W Thermal output - water $\Phi_{w,c}$ -1 034 W Dew point t_{dp} 13,2 °C Water flow rate q_{v,w,c} 387 l/h Pressure drop, water side $\Delta p_{w,c}$ 28,7 kPa Throw distance Is 1.2 m Velocity at I vi 0,29 m/sTemperature difference at I Δt_{l} -3,01 K Velocity at Is vs N.A. m/s Temperature difference at I_s Δt_s N.A. K Air density p 1,2 kg/m³

Functional diagram

Acoustic results

	Δp _t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	104	19	24	< 15	< 15	< 15	< 15	< 15	< 15	< 15	17	20

Description

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

Date: 19.11.2019 / CZ Project 1 Position.05

DID632-LR-4-G-LL-AV/1800x1200x598/LE

For 4-pipe systems

Perforated metal, circular holes

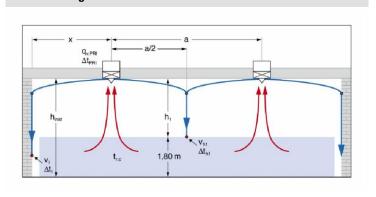
Extract air, spigot at the front

Casing left side, Water connections left side

Induced air grille Heat exchanger 4 Nozzle variant G Arrangement of casings and connections LL Extract air spigot AVTotal length 1800 Nominal length 1200 Width of front frame 598 Air control blades

1200 598 LE With air control blades

Large


Input Data

Strategy: Arrangement in rows, cooling	
Primary air volume flow rate q _{v,PRI}	70 m³/h
Distance a *)	3,0 m
Distance x	1,0 m
Installation height h _{inst}	3,0 m
Primary air temperature t _{PRI,c}	18,0 °C
Room temperature t _{r,c}	26,0 °C
Relative humidity of the air φ _p	45
Water flow temperature t _{w,s,c}	16,0 °C
Water return temperature t _{w,r,c}	18,0 °C
Primary air temperature t _{PRI,h}	20,0 °C
Room temperature t _{r,h}	20,0 °C
Water flow temperature tw,s,h	50,0 °C
Water return temperature t _{w,r,h}	40,0 °C

Total amount

Functional diagram

1

Notes *)

Air density p

All aerodynamic, acoustic and capacity calculations are based on this air density value.

Results

Distance h ₁	1,2 m
Height of occupied area hocc	1,8 m
Total thermal output – cooling $\Phi_{t,c}$	-756 W
Thermal output - primary air Φ _{PRI,c}	-187 W
Thermal output - water $\Phi_{w,c}$	-568 W
Dew point t _{dp}	13,2 °C
Water flow rate q _{v,w,c}	244 l/h
Pressure drop, water side $\Delta p_{w,c}$	8,7 kPa
Total thermal output – heating $\Phi_{t,h}$	957 W
Thermal output - primary air Φ _{PRI,h}	0 W
Thermal output - water Φ _{w,h}	957 W
Water flow rate q _{v,w,h}	82 l/h
Pressure drop, water side $\Delta p_{w,h}$	0,4 kPa
Throw distance I _s	1,4 m
Velocity at h ₁ v _{h1}	0,13 m/s
Temperature difference at h ₁ Δt _{h1}	-0,52 K
Velocity at I v _I	0,26 m/s
Temperature difference at I Δt _I	-1,45 K
Velocity at I _s v _s	N.A. m/s
Temperature difference at I _s Δt _s	N.A. K
Air density ρ	1,2 kg/m³ *)

Acoustic results

	Δp _t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	47	23	23	19	23	22	18	< 15	< 15	< 15	16	18

Description

Date: 19.11.2019 / CZ Project 1 Position.05

DID632-LR-4-G-LL-AV/1800x1200x598/LE

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

Date: 19.11.2019 / CZ Project 1 Position.07

DID632-LR-2-M-LL-AV/1800x1200x598/LE

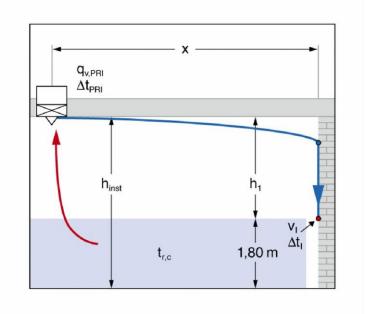
Medium

For 2-pipe systems

With air control blades

Perforated metal, circular holes

Extract air, spigot at the front


Casing left side, Water connections left side

Induced air grille Heat exchanger 2 Nozzle variant М Arrangement of casings and connections LL Extract air spigot ΑV Total length 1800 Nominal length 1200 Width of front frame 598 Air control blades LE

Total amount 1

Functional diagram

Input Data Strategy:

Strategy: Single arrangement, cooling Primary air volume flow rate q_{v.PRI} 60 m³/h Distance x 2,0 m Installation height hinst 3.0 m Primary air temperature t_{PRI,c} 18,0 °C 26,0 °C Room temperature t_{r,c} Relative humidity of the air φ_D 45 16,0 °C Water flow temperature tw,s,c Water return temperature tw.r.c 18,0 °C

Results

Distance h₁ 1,2 m Height of occupied area hocc 1,8 m Total thermal output – cooling $\Phi_{t,c}$ -915 W Thermal output - primary air Φ_{PRI,c} -161 W Thermal output - water $\Phi_{w,c}$ -754 W Dew point t_{dp} 13,2 °C Water flow rate q_{v,w,c} 324 l/h Pressure drop, water side $\Delta p_{w,c}$ 14,6 kPa Throw distance Is 1,4 m Velocity at I vi 0,23 m/sTemperature difference at I Δt_{I} -1,63 K Velocity at Is vs N.A. m/s Temperature difference at I_s Δt_s N.A. K Air density p 1,2 kg/m³

Acoustic results

	Δp _t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	143	21	23	15	18	17	16	< 15	< 15	< 15	< 15	17

Description

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

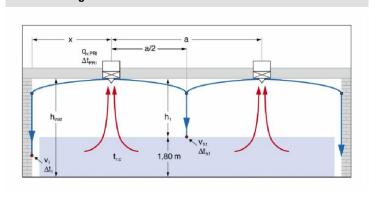
Date: 20.11.2019 / CZ Project 1 Position.03

DID632-LR-4-Z-LL-AV/1200x900x598/LE

Induced air grille Perforated metal, circular holes Heat exchanger 4 For 4-pipe systems Small Nozzle variant Z

Casing left side, Water connections left side Arrangement of casings and connections LL Extract air, spigot at the front Extract air spigot AV

Total length 1200 Nominal length 900 Width of front frame 598 Air control blades LE


With air control blades 1

Total amount

Input Data

Strategy: Arrangement in rows, cooling	
Primary air volume flow rate q _{v,PRI}	22 m³/h
Distance a *)	2,3 m
Distance x	1,0 m
Installation height h _{inst}	3,0 m
Primary air temperature t _{PRI,c}	18,0 °C
Room temperature t _{r,c}	26,0 °C
Relative humidity of the air φ _p	45
Water flow temperature t _{w,s,c}	16,0 °C
Water return temperature t _{w,r,c}	18,0 °C
Primary air temperature t _{PRI,h}	20,0 °C
Room temperature t _{r,h}	20,0 °C
Water flow temperature tw,s,h	50,0 °C
Water return temperature tw,r,h	40,0 °C

Functional diagram

Notes *)

Air density p

All aerodynamic, acoustic and capacity calculations are based on this air density value.

Results

1,2 m
1,8 m
-447 W
-59 W
-389 W
13,2 °C
167 l/h
3,4 kPa
504 W
0 W
504 W
43 l/h
0,1 kPa
0,5 m
N.A. m/s
N.A. K
0,18 m/s
-2,37 K
0,23 m/s
-1,60 K
1,2 kg/m³ *)

Acoustic results

	Δp _t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	69	< 15	18	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15

Date: 20.11.2019 / CZ Project 1 Position.03

DID632-LR-4-Z-LL-AV/1200x900x598/LE

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

Strategy: Arrangement in rows, cooling Primary air volume flow rate q_{v,PRI}

Easy Product Finder

Date: 20.11.2019 / CZ Project 1 Position.04

DID632-LR-4-M-LL-AV/1200x900x598/LE

With air control blades

Input Data

Distance a *)

Installation height hinst

Room temperature t_{r,h}

Primary air temperature t_{PRI,c} Room temperature t_{r.c}

Relative humidity of the air ϕ_{p}

Water flow temperature t_{w,s,c}

Water return temperature tw,r,c

Primary air temperature t_{PRI,h}

Water flow temperature tw.s.h

Water return temperature tw,r,h

Distance x

Induced air grille Perforated metal, circular holes Heat exchanger For 4-pipe systems 4 Medium Nozzle variant М Arrangement of casings and connections LL Casing left side, Water connections left side Extract air spigot ΑV Extract air, spigot at the front Total length

1200 Nominal length 900 Width of front frame 598 Air control blades LE

1

29 m³/h

1,7 m

0,8 m

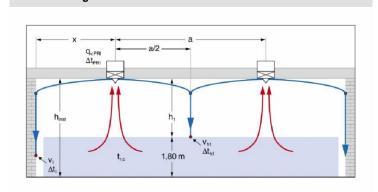
3,0 m 18,0 °C

26,0 °C

16,0 °C

18,0 °C

20.0 °C


20,0 °C

50.0 °C 40,0 °C

45

Total amount

Functional diagram

Notes *)

Air density p

All aerodynamic, acoustic and capacity calculations are based on this air density value.

Results

Distance h ₁	1,2 m
Height of occupied area hocc	1,8 m
Total thermal output – cooling $\Phi_{t,c}$	-417 W
Thermal output - primary air $\Phi_{PRI,c}$	-78 W
Thermal output - water $\Phi_{w,c}$	-339 W
Dew point t _{dp}	13,2 °C
Water flow rate q _{v,w,c}	146 l/h
Pressure drop, water side $\Delta p_{w,c}$	2,7 kPa
Total thermal output – heating $\Phi_{t,h}$	425 W
Thermal output - primary air $\Phi_{PRI,h}$	0 W
Thermal output - water $\Phi_{w,h}$	425 W
Water flow rate q _{v,w,h}	37 l/h
Pressure drop, water side $\Delta p_{w,h}$	0,1 kPa
Throw distance I _s	0,7 m
Velocity at h ₁ v _{h1}	0,12 m/s
Temperature difference at h ₁ Δt _{h1}	-0,71 K
Velocity at I v _I	0,20 m/s
Temperature difference at I Δt _I	-1,80 K
Velocity at I _s v _s	N.A. m/s
Temperature difference at I _s Δt _s	N.A. K
Air density ρ	1,2 kg/m³ *)

Acoustic results

	Δp _t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	60	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15

Date: 20.11.2019 / CZ Project 1 Position.04

DID632-LR-4-M-LL-AV/1200x900x598/LE

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

Date: 20.11.2019 / CZ Project 1 Position.04

DID632-LR-4-M-LL-AV/1200x900x598/LE

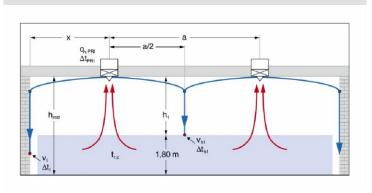
 Induced air grille
 LR
 Perforated metal, circular holes

 Heat exchanger
 4
 For 4-pipe systems

 Nozzle variant
 M
 Medium

 Arrangement of casings and connections
 LL
 Casing left side, Water connections left side

 Extract air spigot
 AV
 Extract air, spigot at the front


Extract air spigot AV
Total length 1200
Nominal length 900
Width of front frame 598
Air control blades LE

Air control blades LE With air control blades Total amount 1

Input Data

Strategy: Arrangement in rows, cooling	
Primary air volume flow rate q _{v,PRI}	40 m³/h
Distance a *)	1,6 m
Distance x	0,8 m
Installation height h _{inst}	3,0 m
Primary air temperature t _{PRI,c}	18,0 °C
Room temperature t _{r,c}	26,0 °C
Relative humidity of the air φ _p	45
Water flow temperature t _{w,s,c}	16,0 °C
Water return temperature t _{w,r,c}	18,0 °C
Primary air temperature t _{PRI,h}	20,0 °C
Room temperature t _{r,h}	20,0 °C
Water flow temperature tw,s,h	50,0 °C
Water return temperature tw,r,h	40,0 °C

Functional diagram

Notes *)

Air density ρ

All aerodynamic, acoustic and capacity calculations are based on this air density value.

Results

Distance h₁	1,2 m
Height of occupied area hocc	1,8 m
Total thermal output – cooling $\Phi_{t,c}$	-610 W
Thermal output - primary air Φ _{PRI,c}	-107 W
Thermal output - water Φ _{w,c}	-503 W
Dew point t _{dp}	13,2 °C
Water flow rate q _{v,w,c}	216 l/h
Pressure drop, water side $\Delta p_{w,c}$	5,4 kPa
Total thermal output – heating $\Phi_{t,h}$	769 W
Thermal output - primary air Φ _{PRI,h}	0 W
Thermal output - water Φ _{w,h}	769 W
Water flow rate q _{v,w,h}	66 l/h
Pressure drop, water side $\Delta p_{w,h}$	0,2 kPa
Throw distance I _s	1,0 m
Velocity at h ₁ v _{h1}	0,19 m/s
Temperature difference at h ₁ Δt _{h1}	-0,76 K
Velocity at I v _I	0,28 m/s
Temperature difference at I ∆t₁	-1,91 K
Velocity at I _s v _s	N.A. m/s
Temperature difference at I _s Δt _s	N.A. K
Air density ρ	1,2 kg/m³ *)

Acoustic results

	Δp _t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	115	16	20	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15

Date: 20.11.2019 / CZ Project 1 Position.04

DID632-LR-4-M-LL-AV/1200x900x598/LE

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

Date: 20.11.2019 / CZ Project 1 Position.05

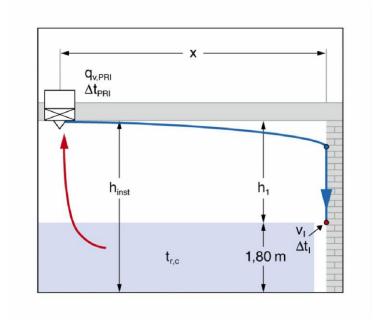
DID632-LR-4-M-LL-AV/1200x900x598/LE

Perforated metal, circular holes

Induced air grille LR
Heat exchanger 4
Nozzle variant M
Arrangement of casings and connections LL
Extract air spigot AV
Total length 1200
Nominal length 900
Width of front frame 598
Air control blades LE

4 For 4-pipe systems
M Medium
LL Casing left side, Water connections left side
AV Extract air, spigot at the front
1200
900
598
LE With air control blades

Input Data Strategy:


Strategy: Single arrangement, cooling	
Primary air volume flow rate q _{v,PRI}	43 m³/h
Distance x	1,3 m
Installation height h _{inst}	3,0 m
Primary air temperature t _{PRI,c}	18,0 °C
Room temperature t _{r,c}	26,0 °C
Relative humidity of the air φ _p	45
Water flow temperature t _{w,s,c}	16,0 °C
Water return temperature tw,r,c	18,0 °C
Primary air temperature t _{PRI,h}	20,0 °C
Room temperature t _{r,h}	20,0 °C
Water flow temperature t _{w,s,h}	50,0 °C
Water return temperature tw,r,h	40,0 °C

Total amount

Results	
Distance h₁	1,2 m
Height of occupied area hocc	1,8 m
Total thermal output – cooling Φ _{t,c}	-654 W
Thermal output - primary air Φ _{PRI,c}	-115 W
Thermal output - water $\Phi_{w,c}$	-538 W
Dew point t _{dp}	13,2 °C
Water flow rate q _{v,w,c}	231 l/h
Pressure drop, water side $\Delta p_{w,c}$	6,1 kPa
Total thermal output – heating $\Phi_{t,h}$	871 W
Thermal output - primary air Φ _{PRI,h}	0 W
Thermal output - water $\Phi_{w,h}$	871 W
Water flow rate q _{v,w,h}	75 l/h
Pressure drop, water side $\Delta p_{w,h}$	0,2 kPa
Throw distance I _s	1,1 m
Velocity at I v _I	0,27 m/s
Temperature difference at I Δt ₁	-1,70 K
Velocity at I _s v _s	N.A. m/s
Temperature difference at I _s Δt _s	N.A. K
Air density ρ	1,2 kg/m³ *)

Functional diagram

1

Notes *)

All aerodynamic, acoustic and capacity calculations are based on this air density value.

Acoustic results

	Δpt	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	133	18	21	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15	15

Description

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For

Date: 20.11.2019 / CZ Project 1 Position.05

DID632-LR-4-M-LL-AV/1200x900x598/LE

installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

Date: 21.11.2019 / CZ Project 1 Position.01

DID632-LR-4-G-LL-AV/1500x1200x598/LE

Heat exchanger 4 F
Nozzle variant G L
Arrangement of casings and connections LL C
Extract air spigot AV E
Total length 1500
Nominal length 1200
Width of front frame 598

Total amount 1

Induced air grille

Air control blades

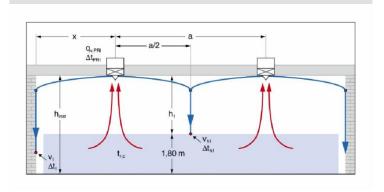
LR Perforated metal, circular holes

For 4-pipe systems

Large

Casing left side, Water connections left side

Extract air, spigot at the front


With air control blades

Input Data

67 m³/h
2,5 m
1,3 m
3,0 m
18,0 °C
26,0 °C
45
16,0 °C
18,0 °C
20,0 °C
20,0 °C
50,0 °C
40,0 °C

Functional diagram

LE

Notes *)

Distance a

Distance a < 4 m is not recommended for comfort zones, and least of all for the area right below induction units. If necessary, leave more space between the units or arrange them differently.

Air density ρ

All aerodynamic, acoustic and capacity calculations are

based on this air density value.

Results

Distance h₁	1,2 m
Height of occupied area hocc	1,8 m
Total thermal output – cooling Φ _{t,c}	-719 W
Thermal output - primary air Φ _{PRI.c}	-179 W
Thermal output - water Φ _{w,c}	-539 W
Dew point t _{dp}	13,2 °C
Water flow rate q _{v,w,c}	232 l/h
Pressure drop, water side $\Delta p_{w,c}$	8,0 kPa
Total thermal output – heating $\Phi_{t,h}$	873 W
Thermal output - primary air Φ _{PRI,h}	0 W
Thermal output - water $\Phi_{w,h}$	873 W
Water flow rate q _{v,w,h}	75 l/h
Pressure drop, water side $\Delta p_{w,h}$	0,3 kPa
Throw distance Is	1,3 m
Velocity at h ₁ v _{h1}	0,14 m/s
Temperature difference at h ₁ Δt _{h1}	-0,55 K
Velocity at I v _I	0,24 m/s
Temperature difference at I Δt ₁	-1,35 K
Velocity at I _s v _s	N.A. m/s
Temperature difference at I _s Δt _s	N.A. K
Air density ρ	1,2 kg/m³ *)

Acoustic results

	Δp _t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	43	21	22	18	22	21	17	< 15	< 15	< 15	15	17

Description

Date: 21.11.2019 / CZ Project 1 Position.01

DID632-LR-4-G-LL-AV/1500x1200x598/LE

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

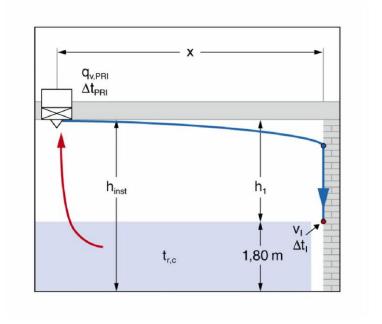
Date: 21.11.2019 / CZ Project 1 Position.02

DID632-LR-4-G-LL-AV/1500x1200x598/LE

Induced air grille Heat exchanger For 4-pipe systems Nozzle variant G Large Casing left side, Water connections left side Arrangement of casings and connections LL Extract air spigot AVTotal length 1500 Nominal length 1200 Width of front frame 598

Air control blades LE Total amount 1

Extract air, spigot at the front


Perforated metal, circular holes

With air control blades

Input Data

Strategy: Single arrangement, cooling	
Primary air volume flow rate q _{v,PRI}	60 m³/h
Distance x	1,6 m
Installation height hinst	3,0 m
Primary air temperature t _{PRI,c}	18,0 °C
Room temperature t _{r,c}	26,0 °C
Relative humidity of the air φ _p	45
Water flow temperature tw,s,c	16,0 °C
Water return temperature t _{w,r,c}	18,0 °C
Primary air temperature t _{PRI,h}	20,0 °C
Room temperature t _{r,h}	20,0 °C
Water flow temperature tw,s,h	50,0 °C
Water return temperature tw,r,h	40,0 °C

Functional diagram

Results

Distance h ₁	1,2 m
Height of occupied area hocc	1,8 m
Total thermal output – cooling Φ _{t,c}	-626 W
Thermal output - primary air Φ _{PRI,c}	-161 W
Thermal output - water $\Phi_{w,c}$	-465 W
Dew point t _{dp}	13,2 °C
Water flow rate q _{v,w,c}	200 l/h
Pressure drop, water side $\Delta p_{w,c}$	6,1 kPa
Total thermal output – heating $\Phi_{t,h}$	668 W
Thermal output - primary air Φ _{PRI,h}	0 W
Thermal output - water $\Phi_{w,h}$	668 W
Water flow rate q _{v,w,h}	57 l/h
Pressure drop, water side $\Delta p_{w,h}$	0,2 kPa
Throw distance I _s	1,2 m
Velocity at I v _I	0,20 m/s
Temperature difference at I Δt _I	-1,24 K
Velocity at I _s v _s	N.A. m/s
Temperature difference at I _s Δt _s	N.A. K
Air density ρ	1,2 kg/m³ *)

Notes *)

Air density p All aerodynamic, acoustic and capacity calculations are based on this air density value.

Acoustic results

	Δpt	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	35	18	20	15	19	18	< 15	< 15	< 15	< 15	< 15	< 15

Description

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For

Date: 21.11.2019 / CZ Project 1 Position.02

DID632-LR-4-G-LL-AV/1500x1200x598/LE

installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

Date: 24.11.2019 / CZ Project 1 Position.01

DID632-LR-4-G-LL-AV/1200x900x598/LE

For 4-pipe systems

Perforated metal, circular holes

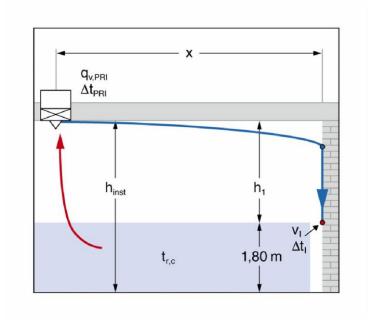
Casing left side, Water connections left side

Induced air grille LR
Heat exchanger 4
Nozzle variant G
Arrangement of casings and connections LL
Extract air spigot AV
Total length 120
Nominal length 900
Width of front frame 598
Air control blades LE

AV Extract air, spigot at the front 1200 900 598 LE With air control blades 1

Large

Input Data


Strategy: Single arrangement, cooling	
Primary air volume flow rate q _{v,PRI}	45 m³/h
Distance x	1,6 m
Installation height hinst	3,0 m
Primary air temperature t _{PRI,c}	18,0 °C
Room temperature t _{r,c}	26,0 °C
Relative humidity of the air φ _p	45
Water flow temperature tw,s,c	16,0 °C
Water return temperature tw.r.c	18,0 °C
Primary air temperature t _{PRI,h}	20,0 °C
Room temperature t _{r,h}	20,0 °C
Water flow temperature t _{w,s,h}	50,0 °C
Water return temperature tw,r,h	40,0 °C

Total amount

Results

results	
Distance h₁	1,2 m
Height of occupied area hocc	1,8 m
Total thermal output – cooling $\Phi_{t,c}$	-457 W
Thermal output - primary air Φ _{PRI,c}	-120 W
Thermal output - water Φ _{w,c}	-337 W
Dew point t _{dp}	13,2 °C
Water flow rate q _{v,w,c}	145 l/h
Pressure drop, water side $\Delta p_{w,c}$	2,6 kPa
Total thermal output – heating $\Phi_{t,h}$	421 W
Thermal output - primary air Φ _{PRI,h}	0 W
Thermal output - water $\Phi_{w,h}$	421 W
Water flow rate q _{v,w,h}	36 l/h
Pressure drop, water side $\Delta p_{w,h}$	0,1 kPa
Throw distance I _s	1,0 m
Velocity at I v _I	0,19 m/s
Temperature difference at I Δt _I	-1,12 K
Velocity at I _s v _s	N.A. m/s
Temperature difference at I _s Δt _s	N.A. K
Air density ρ	1,2 kg/m³ *)

Functional diagram

Notes *)

All aerodynamic, acoustic and capacity calculations are based on this air density value.

Acoustic results

	Δpt	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	35	< 15	18	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15

Description

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For

Date: 24.11.2019 / CZ Project 1 Position.01

DID632-LR-4-G-LL-AV/1200x900x598/LE

installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

Date: 24.11.2019 / CZ Project 1 Position.02

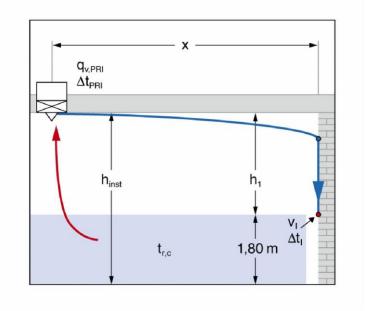
DID632-LR-2-G-LL-AV/1200x900x598/LE

With air control blades

Induced air grille LR Perforated metal, circular holes
Heat exchanger 2 For 2-pipe systems
Nozzle variant G Large
Arrangement of casings and connections LL Casing left side, Water connections left side
Extract air spigot AV Extract air, spigot at the front

Total length 1200
Nominal length 900
Width of front frame 598
Air control blades LE

Total amount 1


Input Data

Strategy: Single arrangement, cooling Primary air volume flow rate q_{v.PRI} 55 m³/h Distance x 1,6 m Installation height hinst 3,0 m Primary air temperature t_{PRI,c} 18,0 °C 26,0 °C Room temperature t_{r,c} Relative humidity of the air ϕ_p 45 16,0 °C Water flow temperature $t_{\text{w,s,c}}$ Water flow rate $q_{v,w,c}$ 190 l/h

Results

1,2 m
1,8 m
-589 W
-147 W
-441 W
13,2 °C
18,0 °C
4,3 kPa
1,2 m
0,22 m/s
-1,18 K
N.A. m/s
N.A. K
1,2 kg/m³

Functional diagram

Acoustic results

	Δp _t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	52	19	22	15	18	18	15	< 15	< 15	< 15	< 15	15

Description

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

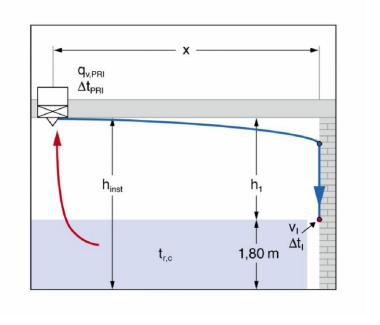
Date: 10.12.2019 / CZ Project 1 Position.01

DID632-LR-4-G-LL-AV/1200x900x598/LE

Induced air grille Perforated metal, circular holes Heat exchanger For 4-pipe systems Nozzle variant G Large Casing left side, Water connections left side Arrangement of casings and connections LL Extract air spigot AVExtract air, spigot at the front Total length 1200 Nominal length 900

Nominal length 900
Width of front frame 598
Air control blades LE
Total amount 1

With air control blades


Input Data

Strategy: Single arrangement, cooling	
Primary air volume flow rate q _{v,PRI}	50 m³/h
Distance x	1,7 m
Installation height hinst	3,0 m
Primary air temperature t _{PRI,c}	18,0 °C
Room temperature t _{r,c}	26,0 °C
Relative humidity of the air φ _p	45
Water flow temperature tw,s,c	16,0 °C
Water return temperature tw,r,c	18,0 °C
Primary air temperature t _{PRI,h}	20,0 °C
Room temperature t _{r,h}	20,0 °C
Water flow temperature t _{w,s,h}	50,0 °C
Water return temperature tw,r,h	40,0 °C

Results

Nesults	
Distance h₁	1,2 m
Height of occupied area hocc	1,8 m
Total thermal output – cooling $\Phi_{t,c}$	-526 W
Thermal output - primary air Φ _{PRI,c}	-134 W
Thermal output - water Φ _{w,c}	-393 W
Dew point t _{dp}	13,2 °C
Water flow rate q _{v,w,c}	169 l/h
Pressure drop, water side $\Delta p_{w,c}$	3,5 kPa
Total thermal output – heating $\Phi_{t,h}$	511 W
Thermal output - primary air Φ _{PRI,h}	0 W
Thermal output - water Φ _{w,h}	511 W
Water flow rate q _{v,w,h}	44 l/h
Pressure drop, water side $\Delta p_{w,h}$	0,1 kPa
Throw distance I _s	1,1 m
Velocity at I v _I	0,20 m/s
Temperature difference at I Δt _I	-1,14 K
Velocity at I _s v _s	N.A. m/s
Temperature difference at I _s Δt _s	N.A. K
Air density ρ	1,2 kg/m³ *)

Functional diagram

Notes *)

All aerodynamic, acoustic and capacity calculations are based on this air density value.

Acoustic results

	Δpt	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	43	16	20	< 15	16	16	< 15	< 15	< 15	< 15	< 15	< 15

Description

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For

Date: 10.12.2019 / CZ Project 1 Position.01

DID632-LR-4-G-LL-AV/1200x900x598/LE

installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

Strategy: Single arrangement, cooling Primary air volume flow rate q_{v.PRI}

Easy Product Finder

Date: 24.11.2019 / CZ Project 1 Position.04

DID632-LR-4-M-LL-AV/1200x900x598/LE

Medium

For 4-pipe systems

With air control blades

Input Data

Distance x

Results

Installation height hinst

Room temperature t_{r,c}

Primary air temperature t_{PRI,c}

Relative humidity of the air φ_D

Water flow temperature tw,s,c

Water return temperature $t_{\text{w,r,c}}$

Primary air temperature t_{PRI,h} Room temperature t_{r.h}

Water flow temperature tw.s.h

Water return temperature tw,r,h

Induced air grille Heat exchanger 4 Nozzle variant М Arrangement of casings and connections LL A۷ Extract air spigot Total length 1200 Nominal length 900 Width of front frame 598

Total amount 1

27 m³/h

1,2 m

3.0 m

45

18,0 °C 26,0 °C

16,0 °C

18,0 °C 20,0 °C

20.0 °C

50,0 °C

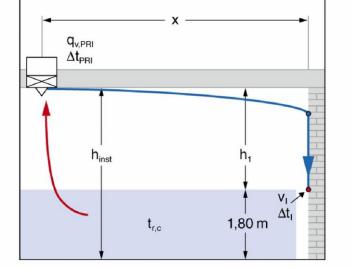
40,0 °C

N.A. K

1,2 kg/m3 *)

Air control blades

Functional diagram


LE

Perforated metal, circular holes

Extract air, spigot at the front

Casing left side, Water connections left side

Distance h₁ 1,2 m Height of occupied area hocc 1.8 m Total thermal output – cooling $\Phi_{t,c}$ -373 W Thermal output - primary air $\Phi_{\text{PRI,c}}$ Thermal output - water $\Phi_{\text{w,c}}$ -72 W -300 W Dew point t_{dp} 13,2 °C Water flow rate qv,w,c 129 l/h Pressure drop, water side $\Delta p_{w,c}$ 2.1 kPa Total thermal output – heating $\Phi_{t,h}$ 373 W Thermal output - primary air $\Phi_{PRI,h}$ 0 W Thermal output - water $\Phi_{w,h}$ 373 W Water flow rate $q_{v,w,h}$ 32 l/h Pressure drop, water side Δp_{w.h} 0,1 kPa Throw distance Is 0,7 m Velocity at I v 0,17 m/s Temperature difference at I Δt_I -1,58 K Velocity at I_s v_s N.A. m/s

Notes *)

Air density p All aerodynamic, acoustic and capacity calculations are based on this air density value.

Acoustic results

Air density p

Temperature difference at I_s Δt_s

	Δpt	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	52	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15

Description

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For

Date: 24.11.2019 / CZ Project 1 Position.04

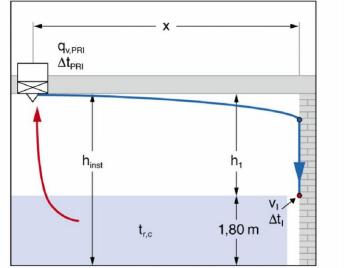
DID632-LR-4-M-LL-AV/1200x900x598/LE

installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

Date: 10.12.2019 / CZ Project 1 Position.01

DID632-LR-2-Z-LL-AV/2100x1800x598/LE

Induced air grille Perforated metal, circular holes 2 For 2-pipe systems Heat exchanger Nozzle variant Ζ Small


Arrangement of casings and connections LL Casing left side, Water connections left side Extract air spigot A۷ Extract air, spigot at the front

Functional diagram

Total length 2100 Nominal length 1800 Width of front frame 593 Air control blades LE

With air control blades Total amount 1

Input Data	
Strategy: Single arrangement, cooling	
Primary air volume flow rate q _{v,PRI}	60 m³/h
Distance x	1,6 m
Installation height hinst	3,0 m
Primary air temperature t _{PRI,c}	18,0 °C
Room temperature t _{r,c}	26,0 °C
Relative humidity of the air φ _p	45
Water flow temperature tw,s,c	16,0 °C
Water return temperature tw,r,c	18,4 °C

Results

Distance h₁ 1,2 m Height of occupied area hocc 1,8 m Total thermal output – cooling $\Phi_{t,c}$ -1 217 W Thermal output - primary air $\Phi_{PRI,c}$ -161 W Thermal output - water $\Phi_{w,c}$ -1 057 W Dew point t_{dp} 13,2 °C Water flow rate q_{v,w,c} 379 l/h Pressure drop, water side $\Delta p_{w,c}$ 27,7 kPa Throw distance Is 1.2 m Velocity at I vi 0,25 m/sTemperature difference at I Δt_{I} -2,52 K Velocity at Is vs N.A. m/s Temperature difference at I_s Δt_s N.A. K Air density p 1,2 kg/m3

Acoustic results

		Δp _t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
		[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active	part	111	20	25	< 15	< 15	< 15	< 15	< 15	15	< 15	18	21

Description

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

Date: 24.11.2019 / CZ Project 1 Position.05

DID632-LR-4-M-LL-AV/1200x900x598/LE

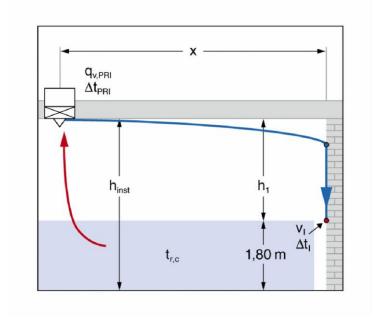
Induced air grille Heat exchanger Nozzle variant М Arrangement of casings and connections LL Extract air spigot AVTotal length 1200 Nominal length 900 Width of front frame 598

Air control blades LE Total amount 1

Perforated metal, circular holes

For 4-pipe systems Medium

Casing left side, Water connections left side


Extract air, spigot at the front

With air control blades

Input Data

Strategy: Single arrangement, cooling	
Primary air volume flow rate q _{v,PRI}	40 m³/h
Distance x	1,5 m
Installation height hinst	3,0 m
Primary air temperature t _{PRI,c}	18,0 °C
Room temperature t _{r,c}	26,0 °C
Relative humidity of the air φ _p	45
Water flow temperature tw,s,c	16,0 °C
Water return temperature t _{w,r,c}	18,0 °C
Primary air temperature t _{PRI,h}	20,0 °C
Room temperature t _{r,h}	20,0 °C
Water flow temperature t _{w,s,h}	50,0 °C
Water return temperature tw,r,h	40,0 °C

Functional diagram

Results

Distance h₁	1,2 m
Height of occupied area hocc	1,8 m
Total thermal output – cooling $\Phi_{t,c}$	-610 W
Thermal output - primary air Φ _{PRI,c}	-107 W
Thermal output - water Φ _{w,c}	-503 W
Dew point t _{dp}	13,2 °C
Water flow rate q _{v,w,c}	216 l/h
Pressure drop, water side $\Delta p_{w,c}$	5,4 kPa
Total thermal output – heating $\Phi_{t,h}$	769 W
Thermal output - primary air Φ _{PRI,h}	0 W
Thermal output - water $\Phi_{w,h}$	769 W
Water flow rate q _{v,w,h}	66 l/h
Pressure drop, water side $\Delta p_{w,h}$	0,2 kPa
Throw distance I _s	1,0 m
Velocity at I v _I	0,24 m/s
Temperature difference at I Δt _I	-1,65 K
Velocity at I _s v _s	N.A. m/s
Temperature difference at I _s Δt _s	N.A. K
Air density ρ	1,2 kg/m³

Notes *)

Air density p All aerodynamic, acoustic and capacity calculations are based on this air density value.

Acoustic results

	Δpt	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	115	16	20	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15

*)

Description

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For

Date: 24.11.2019 / CZ Project 1 Position.05

DID632-LR-4-M-LL-AV/1200x900x598/LE

installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

Date: 24.11.2019 / CZ Project 1 Position.06

DID632-LR-2-Z-LL-AV/1200x900x598/LE

Extract air, spigot at the front

With air control blades

 Induced air grille
 LR
 Perforated metal, circular holes

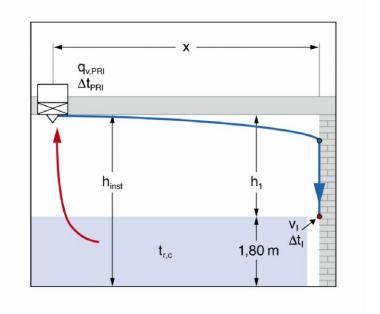
 Heat exchanger
 2
 For 2-pipe systems

 Nozzle variant
 Z
 Small

 Arrangement of casings and connections
 LL
 Casing left side, Water connections left side

Extract air spigot AV
Total length 1200
Nominal length 900
Width of front frame 598
Air control blades LE

Total amount 1


Input Data

30 m³/h
1,6 m
3,0 m
18,0 °C
26,0 °C
45
16,0 °C
18,0 °C

Results

Distance h ₁	1,2 m
Height of occupied area hocc	1,8 m
Total thermal output – cooling Φ _{t,c}	-614 W
Thermal output - primary air Φ _{PRI,c}	-80 W
Thermal output - water $\Phi_{w,c}$	-533 W
Dew point t _{dp}	13,2 °C
Water flow rate q _{v,w,c}	229 l/h
Pressure drop, water side Δp _{w,c}	6,0 kPa
Throw distance I _s	0,7 m
Velocity at I v _I	0,22 m/s
Temperature difference at I Δt ₁	-2,11 K
Velocity at I _s v _s	N.A. m/s
Temperature difference at I _s Δt _s	N.A. K
Air density ρ	1,2 kg/m³

Functional diagram

Acoustic results

	Δp _t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	128	21	24	< 15	< 15	< 15	16	16	< 15	< 15	17	20

Description

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

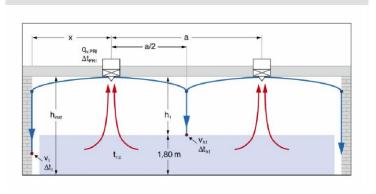
Date: 24.11.2019 / CZ Project 1 Position.07

DID632-LR-4-M-LL-AV/1500x1200x598/LE

Induced air grille Heat exchanger 4 Nozzle variant М Arrangement of casings and connections LL Extract air spigot AVTotal length 1500 Nominal length 1200 Width of front frame 598 Air control blades LE

Total amount 1 Perforated metal, circular holes For 4-pipe systems Medium

Casing left side, Water connections left side


Extract air, spigot at the front

With air control blades

Input Data

50 m³/h
1,4 m
0,7 m
3,0 m
18,0 °C
26,0 °C
45
16,0 °C
18,0 °C
20,0 °C
20,0 °C
50,0 °C
40,0 °C

Functional diagram

Notes *)

Air density $\boldsymbol{\rho}$ All aerodynamic, acoustic and capacity calculations are based on this air density value.

Results

Distance h₁	1,2 m
Height of occupied area hocc	1,8 m
Total thermal output – cooling $\Phi_{t,c}$	-770 W
Thermal output - primary air Φ _{PRI,c}	-134 W
Thermal output - water Φ _{w,c}	-637 W
Dew point t _{dp}	13,2 °C
Water flow rate q _{v,w,c}	274 l/h
Pressure drop, water side $\Delta p_{w,c}$	10,7 kPa
Total thermal output – heating $\Phi_{t,h}$	1 146 W
Thermal output - primary air Φ _{PRI,h}	0 W
Thermal output - water Φ _{w,h}	1 146 W
Water flow rate q _{v,w,h}	99 l/h
Pressure drop, water side $\Delta p_{w,h}$	0,5 kPa
Throw distance I _s	1,1 m
Velocity at h ₁ v _{h1}	0,19 m/s
Temperature difference at h ₁ Δt _{h1}	-0,86 K
Velocity at I v₁	0,28 m/s
Temperature difference at I Δt _i	-2,14 K
Velocity at I _s v _s	N.A. m/s
Temperature difference at I _s Δt _s	N.A. K
Air density ρ	1,2 kg/m³ *)

Acoustic results

	Δp _t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	99	15	19	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15

Description

Date: 24.11.2019 / CZ Project 1 Position.07

DID632-LR-4-M-LL-AV/1500x1200x598/LE

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

Date: 24.11.2019 / CZ Project 1 Position.08

DID632-LR-2-M-LL-AV/1500x1200x598/LE

Heat exchanger 2
Nozzle variant M
Arrangement of casings and connections LL
Extract air spigot AV
Total length 1500
Nominal length 1200
Width of front frame 598

Induced air grille

Air control blades

Total amount 1

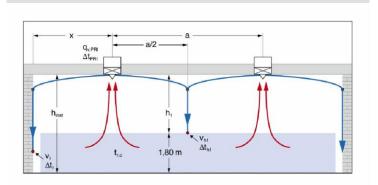
Perforated metal, circular holes

For 2-pipe systems

Medium

Casing left side, Water connections left side

Extract air, spigot at the front


With air control blades

Input Data

Strategy: Arrangement in rows, cooling	
Primary air volume flow rate q _{v,PRI}	55 m³/h
Distance a *)	1,6 m
Distance x	0,8 m
Installation height h _{inst}	3,0 m
Primary air temperature t _{PRI,c}	18,0 °C
Room temperature t _{r,c}	26,0 °C
Relative humidity of the air φ _p	45
Water flow temperature tw,s,c	16,0 °C
Water return temperature tw,r,c	18,0 °C

Functional diagram

LE

Results

Distance h₁	1,2 m
Height of occupied area hocc	1,8 m
Total thermal output – cooling $\Phi_{t,c}$	-845 W
Thermal output - primary air Φ _{PRI,c}	-147 W
Thermal output - water Φ _{w,c}	-698 W
Dew point t _{dp}	13,2 °C
Water flow rate q _{v,w,c}	300 l/h
Pressure drop, water side $\Delta p_{w,c}$	12,7 kPa
Throw distance I _s	1,2 m
Velocity at h ₁ v _{h1}	0,18 m/s
Temperature difference at h ₁ Δt _{h1}	-0,83 K
Velocity at I v _I	0,27 m/s
Temperature difference at I Δt _I	-2,08 K
Velocity at I _s v _s	N.A. m/s
Temperature difference at I _s Δt _s	N.A. K
Air density ρ	1,2 kg/m³

Acoustic results

	Δp_t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	120	18	21	< 15	16	15	< 15	< 15	< 15	< 15	< 15	< 15

Description

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

Date: 24.11.2019 / CZ Project 1 Position.09

DID632-LR-4-G-LL-AV/1500x1200x598/LE

Heat exchanger Nozzle variant G Arrangement of casings and connections LL Extract air spigot AVTotal length 1500 Nominal length 1200 Width of front frame 598 Air control blades LE

Induced air grille

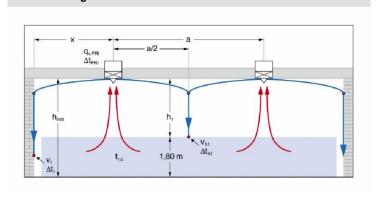
Total amount 1

For 4-pipe systems 4

Large

Casing left side, Water connections left side

Extract air, spigot at the front


Perforated metal, circular holes

With air control blades

Input Data

Strategy: Arrangement in rows, cooling	
Primary air volume flow rate q _{v,PRI}	75 m³/h
Distance a *)	2,0 m
Distance x	1,0 m
Installation height h _{inst}	3,0 m
Primary air temperature t _{PRI,c}	18,0 °C
Room temperature t _{r,c}	26,0 °C
Relative humidity of the air φ _p	45
Water flow temperature t _{w,s,c}	16,0 °C
Water return temperature tw,r,c	18,0 °C
Primary air temperature t _{PRI,h}	20,0 °C
Room temperature t _{r,h}	20,0 °C
Water flow temperature tw,s,h	50,0 °C
Water return temperature twrb	40.0 °C

Functional diagram

Notes *)

Air density ρ All aerodynamic, acoustic and capacity calculations are based on this air density value.

Results

Distance h ₁	1,2 m
Height of occupied area hocc	1,8 m
Total thermal output – cooling Φ _{t,c}	-815 W
Thermal output - primary air Φ _{PRI,c}	-201 W
Thermal output - water Φ _{w,c}	-614 W
Dew point t _{dp}	13,2 °C
Water flow rate q _{v,w,c}	264 l/h
Pressure drop, water side $\Delta p_{w,c}$	10,0 kPa
Total thermal output – heating $\Phi_{t,h}$	1 084 W
Thermal output - primary air Φ _{PRI,h}	0 W
Thermal output - water Φ _{w,h}	1 084 W
Water flow rate q _{v,w,h}	93 l/h
Pressure drop, water side $\Delta p_{w,h}$	0,5 kPa
Throw distance I _s	1,5 m
Velocity at h ₁ v _{h1}	0,17 m/s
Temperature difference at h ₁ Δt _{h1}	-0,58 K
Velocity at I v _I	0,26 m/s
Temperature difference at I Δt ₁	-1,46 K
Velocity at I _s v _s	N.A. m/s
Temperature difference at I _s Δt _s	N.A. K
Air density ρ	1,2 kg/m³ *)

Acoustic results

	Δp _t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	54	25	24	20	25	24	21	< 15	< 15	< 15	19	21

Date: 24.11.2019 / CZ Project 1 Position.09

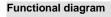
DID632-LR-4-G-LL-AV/1500x1200x598/LE

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

Date: 24.11.2019 / CZ Project 1 Position.11

DID632-LR-2-G-LL-AV/1500x1200x598/LE

With air control blades


Induced air grille Perforated metal, circular holes Heat exchanger For 2-pipe systems 2 Nozzle variant G Large Arrangement of casings and connections Casing left side, Water connections left side LL Extract air spigot ΑV Extract air, spigot at the front Total length 1500

Total length 1500
Nominal length 1200
Width of front frame 598
Air control blades LE

Total amount 1

Input Data

Strategy: Arrangement in rows, cooling	
Primary air volume flow rate q _{v,PRI}	85 m³/h
Distance a *)	2,4 m
Distance x	1,2 m
Installation height h _{inst}	3,0 m
Primary air temperature t _{PRI,c}	18,0 °C
Room temperature t _{r,c}	26,0 °C
Relative humidity of the air φ _p	45
Water flow temperature t _{w,s,c}	16,0 °C
Water return temperature tw,r,c	18,0 °C

Results

Distance h₁	1,2 m
Height of occupied area hocc	1,8 m
Total thermal output – cooling $\Phi_{t,c}$	-924 W
Thermal output - primary air Φ _{PRI,c}	-228 W
Thermal output - water Φ _{w,c}	-696 W
Dew point t _{dp}	13,2 °C
Water flow rate q _{v,w,c}	299 l/h
Pressure drop, water side $\Delta p_{w,c}$	12,6 kPa
Throw distance I _s	1,8 m
Velocity at h ₁ v _{h1}	0,19 m/s
Temperature difference at h ₁ Δt _{h1}	-0,56 K
Velocity at I v _I	0,28 m/s
Temperature difference at I Δt _I	-1,40 K
Velocity at I _s v _s	N.A. m/s
Temperature difference at I _s Δt _s	N.A. K
Air density ρ	1,2 kg/m³

Acoustic results

	Δp _t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	70	29	26	23	27	27	25	17	< 15	< 15	23	25

Description

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

Strategy: Arrangement in rows, cooling Primary air volume flow rate $q_{v,PRI}$

Easy Product Finder

Date: 24.11.2019 / CZ Project 1 Position.13

DID632-LR-4-Z-LL-AV/1500x1200x598/LE

Perforated metal, circular holes

With air control blades

Input Data

Distance a *)

Installation height hinst

Room temperature t_{r,h}

Primary air temperature $t_{PRI,c}$ Room temperature $t_{r,c}$

Relative humidity of the air ϕ_{p}

Water flow temperature t_{w,s,c}

Water return temperature tw,r,c

Primary air temperature t_{PRI,h}

Water flow temperature tw.s.h

Water return temperature tw,r,h

Distance x

Heat exchanger 4 For 4-pipe systems

Nozzle variant Z Small

Arrangement of casings and connections LL Casing left side, Water connections left side

Extract air spigot AV Extract air, spigot at the front

Total length 1500

Total length 1500
Nominal length 1200
Width of front frame 598
Air control blades LE

Induced air grille

Total amount 1

33 m³/h

2,0 m

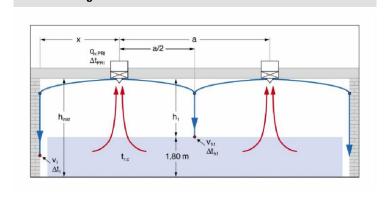
0,8 m

3,0 m 18,0 °C

26,0 °C

16,0 °C

18,0 °C


20.0 °C

20,0 °C

50,0 °C 40,0 °C

45

Functional diagram

Notes *)

Air density p

All aerodynamic, acoustic and capacity calculations are based on this air density value.

Results

1000110	
Distance h ₁	1,2 m
Height of occupied area hocc	1,8 m
Total thermal output – cooling $\Phi_{t,c}$	-691 W
Thermal output - primary air Φ _{PRI,c}	-88 W
Thermal output - water Φ _{w,c}	-602 W
Dew point t _{dp}	13,2 °C
Water flow rate q _{v,w,c}	259 l/h
Pressure drop, water side $\Delta p_{w,c}$	9,7 kPa
Total thermal output – heating $\Phi_{t,h}$	1 053 W
Thermal output - primary air Φ _{PRI,h}	0 W
Thermal output - water Φ _{w,h}	1 053 W
Water flow rate q _{v,w,h}	91 l/h
Pressure drop, water side $\Delta p_{w,h}$	0,4 kPa
Throw distance I _s	0,7 m
Velocity at h ₁ v _{h1}	0,13 m/s
Temperature difference at h ₁ Δt _{h1}	-1,05 K
Velocity at I v _I	0,23 m/s
Temperature difference at I Δt _I	-2,76 K
Velocity at I _s v _s	N.A. m/s
Temperature difference at I _s Δt _s	N.A. K
Air density ρ	1,2 kg/m³ *)

Acoustic results

	Δp _t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	82	15	21	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15	16

Date: 24.11.2019 / CZ Project 1 Position.13

DID632-LR-4-Z-LL-AV/1500x1200x598/LE

Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

Date: 01.12.2019 / CZ Project 1 Position.01

DID632-LR-4-U-LL-AV/1500x900x598/LE

With air control blades

 Induced air grille
 LR
 Perforated metal, circular holes

 Heat exchanger
 4
 For 4-pipe systems

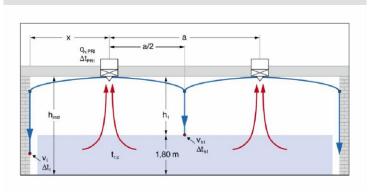
 Nozzle variant
 U
 Extra large

 Arrangement of casings and connections
 LL
 Casing left side, Water connections left side

Arrangement of casings and connections LL Casing left side, Water connections left side Extract air spigot AV Extract air, spigot at the front 1500

Total length 1500
Nominal length 900
Width of front frame 598

LE


Total amount 1

Air control blades

Input Data

Strategy: Arrangement in rows, cooling	
Primary air volume flow rate q _{v,PRI}	125 m³/h
Distance a	5,0 m
Distance x	3,0 m
Installation height h _{inst}	3,0 m
Primary air temperature t _{PRI,c}	18,0 °C
Room temperature t _{r,c}	26,0 °C
Relative humidity of the air φ _p	45
Water flow temperature t _{w,s,c}	16,0 °C
Water return temperature t _{w,r,c}	18,0 °C
Primary air temperature t _{PRI,h}	20,0 °C
Room temperature t _{r,h}	20,0 °C
Water flow temperature tw,s,h	50,0 °C
Water return temperature tw,r,h	40,0 °C

Functional diagram

Notes *)

Air density p

All aerodynamic, acoustic and capacity calculations are based on this air density value.

Results

Distance h₁	1,2 m
Height of occupied area hocc	1,8 m
Total thermal output – cooling $\Phi_{t,c}$	-994 W
Thermal output - primary air Φ _{PRI,c}	-335 W
Thermal output - water Φ _{w,c}	-659 W
Dew point t _{dp}	13,2 °C
Water flow rate q _{v,w,c}	284 l/h
Pressure drop, water side $\Delta p_{w,c}$	8,9 kPa
Total thermal output – heating $\Phi_{t,h}$	1 195 W
Thermal output - primary air Φ _{PRI,h}	0 W
Thermal output - water Φ _{w,h}	1 195 W
Water flow rate q _{v,w,h}	101 l/h
Pressure drop, water side $\Delta p_{w,h}$	0,4 kPa
Throw distance I _s	2,6 m
Velocity at h ₁ v _{h1}	0,16 m/s
Temperature difference at h ₁ Δt _{h1}	-0,34 K
Velocity at I v _I	0,29 m/s
Temperature difference at I Δt _I	-0,80 K
Velocity at I _s v _s	N.A. m/s
Temperature difference at I _s Δt _s	N.A. K
Air density ρ	1,2 kg/m³ *)

Acoustic results

	Δp _t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Active part	89	40	31	31	36	37	37	29	21	< 15	36	37

Date: 01.12.2019 / CZ Project 1 Position.01

DID632-LR-4-U-LL-AV/1500x900x598/LE

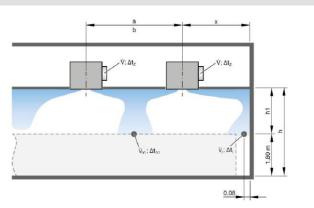
Active chilled beams of Type DID632, with twoway air discharge and high thermal output, providing high thermal comfort levels. For installation flush with the ceiling, preferably in rooms with a height up to 4.0 m. The units consist of a casing with suspension points, a spigot, noncombustible nozzles, and a horizontal heat exchanger. Nozzles in four sizes to optimise induction based on demand.

Date: 05.11.2019 / CZ Project 1 Position.02

Connection ZH
Damper blade for volume flow rate balancing M
Nominal size 300
Total amount 1

DLQ-ZH-M/300

Horizontal, supply air, with plenum box


With damper blade

Input Data

Results

Distance (h₁ + x) I 2,7 m Effective air velocity v_{eff} 4,3 m/s Throw distance Is 5,9 m Velocity at h₁ v_{h1} 0,15 m/s Temperature difference at h₁ Δt_{h1} -0,43 K Velocity at I v_I 0,25 m/sTemperature difference at I Δt_I -0,43 K Thermal output – cooling Φ_c -542 W

Schematic side view

Acoustic results

	Δp_t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
damper blade position open	30	32	35	32	36	30	25	17	< 15	< 15	24	26
damper blade position 45°	42	34	34	33	37	32	30	23	16	< 15	28	30
damper blade position closed	93	41	38	35	40	35	36	34	26	21	35	37

Description

Ceiling diffusers with square diffuser face. Supply air and extract air variants for comfort zones. Diffuser face with fixed air control blades for horizontal four-way air discharge. For installation into all types of suspended ceilings. Ready-to-install component which consists of the galvanised sheet steel diffuser face with fixed air control blades, a diffuser front frame with perimeter seal and connecting frame, opposed action blades, butterfly damper or a plenum box. Diffuser face suitable for central screw fixing. Sound power level of the air-regenerated noise measured according to EN ISO 5135.

Date: 26.12.2019 / CZ Project 1 Position.01

LVS/100

Nominal size Total amount 100 1

Input Data

Strategy: General Volume flow q_v

50 m³/h

Results

Gap width s -4,5 mm

Acoustic results

	Δp_t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
General	53	23	31	17	23	20	18	16	< 15	< 15	16	19

Description

Circular disc valves as extract air devices, preferably for small rooms. For installation into walls and suspended ceilings. Ready-to-install component which consists of a valve casing with cross bar, a valve disc with threaded spindle, and an installation subframe. The valve disc can be turned for volume flow rate balancing. The valve setting can be fixed with a lock nut. Spigot suitable for ducts to EN 1506 or EN 13180. Sound power level of the air-regenerated noise measured according to EN ISO 5135.

Date: 10.12.2019 / CZ Project 1 Position.02

LVS/100

Nominal size Total amount 100 1

Input Data

Strategy: General Volume flow q_v

80 m³/h

Results

Gap width s 5,0 mm

Acoustic results

	Δp _t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Gener	al 41	25	30	19	25	23	19	16	< 15	< 15	18	19

Description

Circular disc valves as extract air devices, preferably for small rooms. For installation into walls and suspended ceilings. Ready-to-install component which consists of a valve casing with cross bar, a valve disc with threaded spindle, and an installation subframe. The valve disc can be turned for volume flow rate balancing. The valve setting can be fixed with a lock nut. Spigot suitable for ducts to EN 1506 or EN 13180. Sound power level of the air-regenerated noise measured according to EN ISO 5135.

Date: 26.12.2019 / CZ Project 1 Position.01

LVS/100

Nominal size Total amount 100 1

Input Data

Strategy: General Volume flow q_v

80 m³/h

Results

Gap width s 5,0 mm

Acoustic results

	Δp _t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
General	41	25	30	19	25	23	19	16	< 15	< 15	18	19

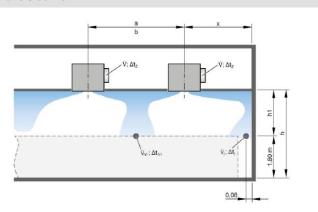
Description

Circular disc valves as extract air devices, preferably for small rooms. For installation into walls and suspended ceilings. Ready-to-install component which consists of a valve casing with cross bar, a valve disc with threaded spindle, and an installation subframe. The valve disc can be turned for volume flow rate balancing. The valve setting can be fixed with a lock nut. Spigot suitable for ducts to EN 1506 or EN 13180. Sound power level of the air-regenerated noise measured according to EN ISO 5135.

Date: 06.12.2019 / CZ Project 1 Position.01

Connection ZH
Damper blade for volume flow rate balancing M
Nominal size 250
Total amount 1

DLQ-ZH-M/250


Horizontal, supply air, with plenum box With damper blade

Input Data

Results

Distance (h₁ + x) I 2,7 m Effective air velocity v_{eff} 3,7 m/sThrow distance Is 4,3 m Velocity at h₁ v_{h1} 0,12 m/s Temperature difference at h₁ Δt_{h1} -0,32 K Velocity at I v_I 0,15 m/sTemperature difference at I Δt_I -0,25 K Thermal output – cooling Φ_c -251 W

Schematic side view

Acoustic results

	Δpt	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
damper blade position open	14	22	30	21	27	22	< 15	< 15	< 15	< 15	15	18
damper blade position 45°	15	22	31	22	27	21	< 15	< 15	< 15	< 15	< 15	16
damper blade position closed	31	24	28	22	30	23	15	< 15	< 15	< 15	16	19

Description

Ceiling diffusers with square diffuser face. Supply air and extract air variants for comfort zones. Diffuser face with fixed air control blades for horizontal four-way air discharge. For installation into all types of suspended ceilings. Ready-to-install component which consists of the galvanised sheet steel diffuser face with fixed air control blades, a diffuser front frame with perimeter seal and connecting frame, opposed action blades, butterfly damper or a plenum box. Diffuser face suitable for central screw fixing. Sound power level of the air-regenerated noise measured according to EN ISO 5135.

Date: 06.12.2019 / CZ Project 1 Position.02

DLQ-AH-M/250

Connection AH
Damper blade for volume flow rate balancing M
Nominal size 250
Total amount 1

Horizontal, extract air, with plenum box With damper blade

Input Data

Strategy: Extract air Volume flow q_v

120 m³/h

Acoustic results

	Δpt	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
damper blade position open	15	26	30	24	32	23	16	< 15	< 15	< 15	18	22
damper blade position 45°	17	26	27	26	32	22	16	< 15	< 15	< 15	18	22
damper blade position closed	26	26	27	25	32	24	17	< 15	< 15	< 15	18	22

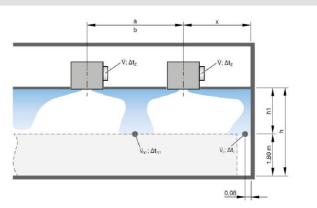
Description

Ceiling diffusers with square diffuser face. Supply air and extract air variants for comfort zones. Diffuser face with fixed air control blades for horizontal four-way air discharge. For installation into all types of suspended ceilings. Ready-to-install component which consists of the galvanised sheet steel diffuser face with fixed air control blades, a diffuser front frame with perimeter seal and connecting frame, opposed action blades, butterfly damper or a plenum box. Diffuser face suitable for central screw fixing. Sound power level of the air-regenerated noise measured according to EN ISO 5135.

Date: 04.12.2019 / CZ Project 1 Position.02

DLQ-ZH-M/250

Connection ZH
Damper blade for volume flow rate balancing M
Nominal size 250
Total amount 1


Horizontal, supply air, with plenum box With damper blade

Input Data

Results

Distance (h₁ + x) I 3,0 m Effective air velocity v_{eff} 3,7 m/sThrow distance Is 4,3 m Velocity at h₁ v_{h1} 0,10 m/sTemperature difference at h₁ Δt_{h1} -0,30 K Velocity at I v_I 0,13 m/s Temperature difference at I Δt_I -0,21 K Thermal output – cooling Φ_c -253 W

Schematic side view

Acoustic results

	Δpt	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
damper blade position open	14	22	30	21	28	22	< 15	< 15	< 15	< 15	16	18
damper blade position 45°	16	22	31	22	27	21	< 15	< 15	< 15	< 15	< 15	17
damper blade position closed	31	24	29	22	30	23	15	< 15	< 15	< 15	16	19

Description

Ceiling diffusers with square diffuser face. Supply air and extract air variants for comfort zones. Diffuser face with fixed air control blades for horizontal four-way air discharge. For installation into all types of suspended ceilings. Ready-to-install component which consists of the galvanised sheet steel diffuser face with fixed air control blades, a diffuser front frame with perimeter seal and connecting frame, opposed action blades, butterfly damper or a plenum box. Diffuser face suitable for central screw fixing. Sound power level of the air-regenerated noise measured according to EN ISO 5135.

Date: 05.12.2019 / CZ Project 1 Position.03

DLQ-AH-M/250

Connection AH
Damper blade for volume flow rate balancing M
Nominal size 250
Total amount 1

Horizontal, extract air, with plenum box With damper blade

Input Data

Strategy: Extract air Volume flow q_v

175 m³/h

Acoustic results

	Δp_t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
damper blade position open	32	37	37	35	41	35	31	25	16	< 15	30	31
damper blade position 45°	36	37	35	36	41	35	31	25	16	< 15	30	32
damper blade position closed	54	38	35	35	41	35	32	25	16	< 15	30	32

Description

Ceiling diffusers with square diffuser face. Supply air and extract air variants for comfort zones. Diffuser face with fixed air control blades for horizontal four-way air discharge. For installation into all types of suspended ceilings. Ready-to-install component which consists of the galvanised sheet steel diffuser face with fixed air control blades, a diffuser front frame with perimeter seal and connecting frame, opposed action blades, butterfly damper or a plenum box. Diffuser face suitable for central screw fixing. Sound power level of the air-regenerated noise measured according to EN ISO 5135.

Date: 26.12.2019 / CZ Project 1 Position.01

LVS/100

Nominal size Total amount 100 1

Input Data

Strategy: General Volume flow q_v

44 m³/h

Results

Gap width s -4,5 mm

Acoustic results

	Δp _t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
General	41	20	31	15	20	17	15	< 15	< 15	< 15	< 15	16

Description

Circular disc valves as extract air devices, preferably for small rooms. For installation into walls and suspended ceilings. Ready-to-install component which consists of a valve casing with cross bar, a valve disc with threaded spindle, and an installation subframe. The valve disc can be turned for volume flow rate balancing. The valve setting can be fixed with a lock nut. Spigot suitable for ducts to EN 1506 or EN 13180. Sound power level of the air-regenerated noise measured according to EN ISO 5135.

Date: 26.12.2019 / CZ Project 1 Position.01

LVS/100

Nominal size Total amount 100 1

Input Data

Strategy: General Volume flow q_v

60 m³/h

Results

Gap width s 5,0 mm

Acoustic results

	Δp _t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
General	23	18	29	< 15	19	16	< 15	< 15	< 15	< 15	< 15	< 15

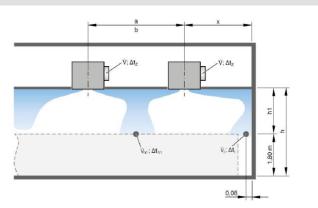
Description

Circular disc valves as extract air devices, preferably for small rooms. For installation into walls and suspended ceilings. Ready-to-install component which consists of a valve casing with cross bar, a valve disc with threaded spindle, and an installation subframe. The valve disc can be turned for volume flow rate balancing. The valve setting can be fixed with a lock nut. Spigot suitable for ducts to EN 1506 or EN 13180. Sound power level of the air-regenerated noise measured according to EN ISO 5135.

Date: 15.10.2019 / CZ Project 1 Position.04

DLQ-ZH-M/250

Connection ZH
Damper blade for volume flow rate balancing M
Nominal size 250
Total amount 1


Horizontal, supply air, with plenum box With damper blade

Input Data

Results

Distance (h₁ + x) I 2,7 m Effective air velocity v_{eff} 3,9 m/s Throw distance Is 4,6 m Velocity at h₁ v_{h1} 0,10 m/sTemperature difference at h₁ Δt_{h1} -0,27 K Velocity at I v_I 0,16 m/sTemperature difference at I Δt_I -0,25 K Thermal output – cooling Φ_c -271 W

Schematic side view

Acoustic results

	Δp_t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
damper blade position open	16	24	32	24	30	24	< 15	< 15	< 15	< 15	18	20
damper blade position 45°	18	24	33	24	30	23	< 15	< 15	< 15	< 15	16	19
damper blade position closed	36	27	30	25	32	25	18	< 15	< 15	< 15	18	21

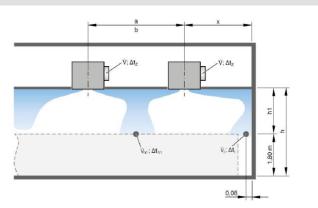
Description

Ceiling diffusers with square diffuser face. Supply air and extract air variants for comfort zones. Diffuser face with fixed air control blades for horizontal four-way air discharge. For installation into all types of suspended ceilings. Ready-to-install component which consists of the galvanised sheet steel diffuser face with fixed air control blades, a diffuser front frame with perimeter seal and connecting frame, opposed action blades, butterfly damper or a plenum box. Diffuser face suitable for central screw fixing. Sound power level of the air-regenerated noise measured according to EN ISO 5135.

Date: 10.12.2019 / CZ Project 1 Position.01

DLQ-ZH-M/250

Connection ZH
Damper blade for volume flow rate balancing M
Nominal size 250
Total amount 1


Horizontal, supply air, with plenum box With damper blade

Input Data

Results

Distance (h₁ + x) I 2,9 m Effective air velocity v_{eff} 2.9 m/s Throw distance Is 3,6 m Velocity at h₁ v_{h1} 0,12 m/s Temperature difference at h₁ Δt_{h1} -0,39 K Velocity at I v_I 0,11 m/sTemperature difference at I Δt_I -0,22 K Thermal output – cooling Φ_c -201 W

Schematic side view

Acoustic results

	Δp_t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
damper blade position open	9	16	25	< 15	21	15	< 15	< 15	< 15	< 15	< 15	< 15
damper blade position 45°	10	15	26	15	21	< 15	< 15	< 15	< 15	< 15	< 15	< 15
damper blade position closed	20	17	23	15	23	16	< 15	< 15	< 15	< 15	< 15	< 15

Description

Ceiling diffusers with square diffuser face. Supply air and extract air variants for comfort zones. Diffuser face with fixed air control blades for horizontal four-way air discharge. For installation into all types of suspended ceilings. Ready-to-install component which consists of the galvanised sheet steel diffuser face with fixed air control blades, a diffuser front frame with perimeter seal and connecting frame, opposed action blades, butterfly damper or a plenum box. Diffuser face suitable for central screw fixing. Sound power level of the air-regenerated noise measured according to EN ISO 5135.

Date: 10.12.2019 / CZ Project 1 Position.02

DLQ-AH-M/250

Connection AH
Damper blade for volume flow rate balancing M
Nominal size 250
Total amount 1

Horizontal, extract air, with plenum box With damper blade

Input Data

Strategy: Extract air Volume flow q_v

150 m³/h

Acoustic results

	Δp_t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
damper blade position open	24	33	34	31	38	30	25	17	< 15	< 15	25	28
damper blade position 45°	27	32	32	32	38	29	25	17	< 15	< 15	25	28
damper blade position closed	40	33	32	31	38	31	26	18	< 15	< 15	25	28

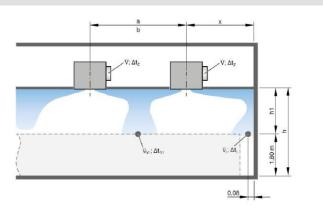
Description

Ceiling diffusers with square diffuser face. Supply air and extract air variants for comfort zones. Diffuser face with fixed air control blades for horizontal four-way air discharge. For installation into all types of suspended ceilings. Ready-to-install component which consists of the galvanised sheet steel diffuser face with fixed air control blades, a diffuser front frame with perimeter seal and connecting frame, opposed action blades, butterfly damper or a plenum box. Diffuser face suitable for central screw fixing. Sound power level of the air-regenerated noise measured according to EN ISO 5135.

Date: 30.11.2019 / CZ Project 1 Position.01

DLQ-ZH-M/250

Connection ZH
Damper blade for volume flow rate balancing M
Nominal size 250
Total amount 1


Horizontal, supply air, with plenum box With damper blade

Input Data

Results

Distance (h₁ + x) I 2,7 m Effective air velocity v_{eff} 2,2 m/s Throw distance Is 2,9 m Velocity at h₁ v_{h1} 0,11 m/s Temperature difference at h₁ Δt_{h1} -0,47 K Velocity at I v_I 0,1 m/sTemperature difference at I Δt_I -0,25 K Thermal output – cooling Φ_c -151 W

Schematic side view

Acoustic results

	Δpt	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
damper blade position open	5	< 15	19	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15
damper blade position 45°	6	< 15	20	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15
damper blade position closed	11	9	15	< 15	15	< 15	< 15	< 15	< 15	< 15	< 15	< 15

Description

Ceiling diffusers with square diffuser face. Supply air and extract air variants for comfort zones. Diffuser face with fixed air control blades for horizontal four-way air discharge. For installation into all types of suspended ceilings. Ready-to-install component which consists of the galvanised sheet steel diffuser face with fixed air control blades, a diffuser front frame with perimeter seal and connecting frame, opposed action blades, butterfly damper or a plenum box. Diffuser face suitable for central screw fixing. Sound power level of the air-regenerated noise measured according to EN ISO 5135.

Date: 11.12.2019 / CZ Project 1 Position.03

DLQ-AH-M/250

Connection AH
Damper blade for volume flow rate balancing M
Nominal size 250
Total amount 1

Horizontal, extract air, with plenum box With damper blade

Input Data

Strategy: Extract air Volume flow q_v

150 m³/h

Acoustic results

	Δp_t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
damper blade position open	24	33	34	31	38	30	25	17	< 15	< 15	25	28
damper blade position 45°	27	32	32	32	38	29	25	17	< 15	< 15	25	28
damper blade position closed	40	33	32	31	38	31	26	18	< 15	< 15	25	28

Description

Ceiling diffusers with square diffuser face. Supply air and extract air variants for comfort zones. Diffuser face with fixed air control blades for horizontal four-way air discharge. For installation into all types of suspended ceilings. Ready-to-install component which consists of the galvanised sheet steel diffuser face with fixed air control blades, a diffuser front frame with perimeter seal and connecting frame, opposed action blades, butterfly damper or a plenum box. Diffuser face suitable for central screw fixing. Sound power level of the air-regenerated noise measured according to EN ISO 5135.

Date: 26.12.2019 / CZ Project 1 Position.01

LVS/100

Nominal size Total amount 100

Input Data

Strategy: General Volume flow q_v

43 m³/h

Results

Gap width s 5,0 mm

Acoustic results

Ī		Δp _t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
		[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
ſ	General	12	< 15	27	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15	< 15

Description

Circular disc valves as extract air devices, preferably for small rooms. For installation into walls and suspended ceilings. Ready-to-install component which consists of a valve casing with cross bar, a valve disc with threaded spindle, and an installation subframe. The valve disc can be turned for volume flow rate balancing. The valve setting can be fixed with a lock nut. Spigot suitable for ducts to EN 1506 or EN 13180. Sound power level of the air-regenerated noise measured according to EN ISO 5135.

Date: 26.12.2019 / CZ Project 1 Position.01

LVS/100

Nominal size Total amount 100 1

Input Data

Strategy: General Volume flow q_v

67 m³/h

Results

Gap width s 5,0 mm

Acoustic results

	Δp _t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
General	29	20	29	15	21	19	15	< 15	< 15	< 15	< 15	15

Description

Circular disc valves as extract air devices, preferably for small rooms. For installation into walls and suspended ceilings. Ready-to-install component which consists of a valve casing with cross bar, a valve disc with threaded spindle, and an installation subframe. The valve disc can be turned for volume flow rate balancing. The valve setting can be fixed with a lock nut. Spigot suitable for ducts to EN 1506 or EN 13180. Sound power level of the air-regenerated noise measured according to EN ISO 5135.

Date: 26.12.2019 / CZ Project 1 Position.01

LVS/100

Nominal size Total amount 100 1

Input Data

Strategy: General Volume flow q_v

50 m³/h

Results

Gap width s 5,0 mm

Acoustic results

	Δp_t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
General	16	< 15	28	< 15	15	< 15	< 15	< 15	< 15	< 15	< 15	< 15

Description

Circular disc valves as extract air devices, preferably for small rooms. For installation into walls and suspended ceilings. Ready-to-install component which consists of a valve casing with cross bar, a valve disc with threaded spindle, and an installation subframe. The valve disc can be turned for volume flow rate balancing. The valve setting can be fixed with a lock nut. Spigot suitable for ducts to EN 1506 or EN 13180. Sound power level of the air-regenerated noise measured according to EN ISO 5135.

Date: 26.12.2019 / CZ Project 1 Position.01

LVS/100

Nominal size Total amount 100 1

Input Data

Strategy: General Volume flow q_v

75 m³/h

Results

Gap width s 5,0 mm

Acoustic results

	Δp _t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
General	36	23	30	18	24	21	18	< 15	< 15	< 15	16	18

Description

Circular disc valves as extract air devices, preferably for small rooms. For installation into walls and suspended ceilings. Ready-to-install component which consists of a valve casing with cross bar, a valve disc with threaded spindle, and an installation subframe. The valve disc can be turned for volume flow rate balancing. The valve setting can be fixed with a lock nut. Spigot suitable for ducts to EN 1506 or EN 13180. Sound power level of the air-regenerated noise measured according to EN ISO 5135.

Date: 11.12.2019 / CZ Project 1 Position.02

DLQ-AH-M-L/250

Connection AH
Damper blade for volume flow rate balancing M
Accessories L
Nominal size 250
Total amount 1

Horizontal, extract air, with plenum box With damper blade With lip seal

Input Data

Strategy: Extract air Volume flow q_v

75 m³/h

Acoustic results

	Δp_t	LWA	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	LWNC	LWNR
	[Pa]	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
damper blade position open	6	< 15	21	< 15	19	< 15	< 15	< 15	< 15	< 15	< 15	< 15
damper blade position 45°	7	< 15	15	< 15	19	< 15	< 15	< 15	< 15	< 15	< 15	< 15
damper blade position closed	10	12	17	< 15	19	< 15	< 15	< 15	< 15	< 15	< 15	< 15

Description

Ceiling diffusers with square diffuser face. Supply air and extract air variants for comfort zones. Diffuser face with fixed air control blades for horizontal four-way air discharge. For installation into all types of suspended ceilings. Ready-to-install component which consists of the galvanised sheet steel diffuser face with fixed air control blades, a diffuser front frame with perimeter seal and connecting frame, opposed action blades, butterfly damper or a plenum box. Diffuser face suitable for central screw fixing. Sound power level of the air-regenerated noise measured according to EN ISO 5135.

Date: 05.01.2020 / CZ Project 1 Position.01

LVC/200/BC0/V0/70-375m3/h

Nominal size
Control component
Operating mode
Signal voltage range
Vmin
Vmax
Unit
Total amount

BC0 BC0 | volume flow;not contaminated air;no safety function V Variable 0 0-10 V DC 70 375 m³/h

Input Data

Strategy: Operating values to calculate

 $\begin{array}{ll} \mbox{Volume flow } q_{V} & 375 \ \mbox{m}^{3} \mbox{/h} \\ \mbox{Static differential pressure } \Delta p_{st} & 130 \ \mbox{Pa} \\ \end{array}$

Results

Notes *)

System The sound pressure level of air-regenerated noise is attenuation for air- calculated based on system attenuation values achieved regenerated noise under real conditions. These system attenuation values $\Delta L_1 \hspace{1cm} \text{are the combined correction values for change of direction, distribution in the ductwork, end reflection and}$

room attenuation.

Acoustic results

	L _{W,A} [dB(A)]	63Hz	125Hz	250Hz [dB]	500Hz	1kHz [dB]	2kHz [dB]	4kHz	8kHz [dB]	L _{W,NC}	L _{W,NR} [dB]
Air-regenerated noise, sound power level	53	58	55	50	50	47	46	39	30	46	48
Case-radiated noise, sound power level	38	32	26	29	34	34	33	26	23	33	36

Description

Circular VAV terminal units for variable air volume systems with low airflow velocities, suitable for supply or extract air, available in four nominal sizes. Measurement and control of low volume flow rates based on a new measurement principle. Plastic nozzle with damper blade for measuring the differential pressure upstream and downstream of the damper blade (effective pressure). The relation between damper blade position and differential pressure is stored as a characteristic relationship in the Easy or Compact controller. This results in high control accuracy even in case of unfavourable upstream conditions. Commissioning ready device, consisting of the mechanical components and the electronic control components. Units are equipped with a plastic nozzle with integral damper blade. The averaging differential pressure sensor is resistant to dust and pollution. Position of the damper blade indicated externally at shaft extension. Indicated Damper blade open at delivery, thereby air flow also given without control function.

Date: 02.01.2020 / CZ Project 1 Position.14

LVC/125/BC0/V0/30-120m³/h

Nominal size Control component Operating mode Signal voltage range Vmin Vmax Unit Total amount

BC0 BC0 | volume flow;not contaminated air;no safety function ٧ Variable 0 0-10 V DC 30 Vmin 120 m³/h

Input Data

Strategy: Operating values to calculate

Volume flow qv 120 m³/h Static differential pressure Δp_{st} 121 Pa

Results

Airflow velocity v 2,81 m/s Static differential pressure, minimum 7 Pa Air-regenerated noise L_{p,A} 45 dB(A) Case-radiated noise L_{p,A} 26 dB(A) System attenuation for air 8 dB *) System attenuation for case-radiated 9 dB *) Volume flow rate tolerance [±%] Δq_ν

Notes *)

System The sound pressure level of air-regenerated noise is attenuation for air-calculated based on system attenuation values achieved regenerated noise under real conditions. These system attenuation values are the combined correction values for change of ΔL_1 direction, distribution in the ductwork, end reflection and

room attenuation.

Acoustic results

	L _{W,A}	63Hz	125Hz	250Hz	500Hz	1kHz	2kHz	4kHz	8kHz	L _{W,NC}	$L_{W,NR}$
	[dB(A)]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]	[dB]
Air-regenerated noise, sound power level	53	59	56	54	52	45	41	32	28	48	49
Case-radiated noise, sound power level	35	30	26	28	29	32	28	25	23	30	32

Description

Circular VAV terminal units for variable air volume systems with low airflow velocities, suitable for supply or extract air, available in four nominal sizes. Measurement and control of low volume flow rates based on a new measurement principle. Plastic nozzle with damper blade for measuring the differential pressure upstream and downstream of the damper blade (effective pressure). The relation between damper blade position and differential pressure is stored as a characteristic relationship in the Easy or Compact controller. This results in high control accuracy even in case of unfavourable upstream conditions. Commissioning ready device, consisting of the mechanical components and the electronic control components. Units are equipped with a plastic nozzle with integral damper blade. The averaging differential pressure sensor is resistant to dust and pollution. Position of the damper blade indicated externally at shaft extension. Indicated Damper blade open at delivery, thereby air flow also given without control function.

Date: 02.01.2020 / CZ Project 1 Position.10

LVC/200/BC0/V0/70-350m³/h

Nominal size Control component Operating mode Signal voltage range Vmin Vmax Unit Total amount

BC0 BC0 | volume flow;not contaminated air;no safety function ٧ Variable 0 0-10 V DC 70 350 m³/h

Input Data

Strategy: Operating values to calculate

Volume flow qv 350 m³/h Static differential pressure Δp_{st} 215 Pa

Results

Airflow velocity v 3,16 m/s Static differential pressure, minimum 8 Pa Air-regenerated noise L_{p,A} 50 dB(A) Case-radiated noise $L_{p,A}$ 35 dB(A) System attenuation for air 8 dB *) System attenuation for case-radiated 9 dB *) Volume flow rate tolerance [±%] Δq_ν

Notes *)

System The sound pressure level of air-regenerated noise is attenuation for air-calculated based on system attenuation values achieved regenerated noise under real conditions. These system attenuation values are the combined correction values for change of ΔL_1

direction, distribution in the ductwork, end reflection and

room attenuation.

Acoustic results

	L _{W,A} [dB(A)]	63Hz [dB]	125Hz [dB]	250Hz [dB]	500Hz [dB]	1kHz [dB]	2kHz [dB]	4kHz [dB]	8kHz [dB]	L _{W,NC} [dB]	L _{W,NR} [dB]
Air-regenerated noise, sound power level	57	58	57	53	54	52	52	45	37	52	55
Case-radiated noise, sound power level	44	32	28	31	38	38	39	33	30	39	42

Description

Circular VAV terminal units for variable air volume systems with low airflow velocities, suitable for supply or extract air, available in four nominal sizes. Measurement and control of low volume flow rates based on a new measurement principle. Plastic nozzle with damper blade for measuring the differential pressure upstream and downstream of the damper blade (effective pressure). The relation between damper blade position and differential pressure is stored as a characteristic relationship in the Easy or Compact controller. This results in high control accuracy even in case of unfavourable upstream conditions. Commissioning ready device, consisting of the mechanical components and the electronic control components. Units are equipped with a plastic nozzle with integral damper blade. The averaging differential pressure sensor is resistant to dust and pollution. Position of the damper blade indicated externally at shaft extension. Indicated Damper blade open at delivery, thereby air flow also given without control function.