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Preface 

 
 

This thesis work is a case study on local dairy industry 

called Company A dairy located in České Budějovice, a city of 

Czech Republic. The entire work is divided into seven chapters. 

The first chapter introduces the thesis to the readers in 

terms of motivation behind the project, followed by a brief 

background of the dairy with which the collaboration of this 

project has been carried out. The second chapter gives a brief 

literature review of energy analysis. It also gives a detailed 

description of the process production of milk powder along with 

its energy efficiency studies. A brief description of methodology 

followed in the present work to perform the energy study of the 

milk dairy is presented in the third chapter followed by 

description of the current state of base scheme. The fourth chapter 

provides a detailed picture of the modeling and simulation of the 

milk powder plant followed by its mass and enthalpy analysis. In 

the analysis, different sections of the plant are located which 

showed us where we can do improvisation. Thus, to improve this 

aspect of the plant, a few strategies are devised and discussed in 

the last part of this section in order to make the overall plant more 

energy efficient. Chapter five include six sigma methodology 

with the help of which we can improve the quality and also 

optimize the efficiency of plant. Chapter six state the economic 

study for the work and comparison of base and final scheme in 
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term of capital and profit. The final chapter summarizes the entire 

thesis work and provides suggestion on future scopes of the 

project. 
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Chapter 1: Introduction  

 

 

Production of milk powder is a process associated with high energy 

consumption and relatively low energy utilization. Consumption of fossil 

fuels results in the emission of greenhouse gases which can be significantly 

reduced by making the industrial sector more energy efficient [1]. Several 

scientific and engineering methods are being continuously developed for the 

identification of potential energy saving strategies for the large-scale 

industries. One such method is the basic energy analysis, the conventional 

approach to study various energy consumption processes [7]. The mass and 

enthalpy analysis are able to distinguish the different qualities of energy such 

as heat quality which is dependent on the heat source temperature [8]. Due to 

these benefits of mass and enthalpy analysis, which provides a much clearer 

picture of the process flow has proved to be a better tool to solve the 

purpose. 

 

Czech Republic is now one of the largest producers of milk [3] 

Which is useful to vegetarian population around Europe and thus it is the 

largest consumer of its own dairy products such as butter, cheese, milk 

powder etc. as these are the only acceptable sources of animal protein for the 

vegetarians [5]. Substantial amounts of fresh water and energy are consumed 

during milk processing which in turns affects the sustainability of the plant. 

Thus, the motivation behind this work was to study the energy efficiency at 

milk processing plant followed by proposing retrofits to improve the plant’s 
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sustainability. So, we can optimize the plant by mass and enthalpy analysis 

and six sigma methodology.  

 

           In our work, we have made a case study on the fictive Company A 

Dairy, located in Czech Republic, as our fictive Company A is considered 

one of the largest food brands in Czech Republic with unparalleled 

production of milk and milk products over the past many years. It works on 

the basis of collection of milk from around villagers [5]. 
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Chapter 2: Energy analysis  

2.1 Literature review 

All rational human activity is characterized by continuous striving for 

progress and development. The tendency to search for the best solution under 

defined circumstances are called optimization—in the broad sense of the 

word. In this sense, optimization has always been a property of rational 

human activity. However, in recent decades, the need for methods that lead 

to an improvement of the quality of industrial and practical processes has 

grown stronger, leading to the rapid development of a group of optimum-

seeking mathematical methods, which are now collectively called methods of 

optimization. Clearly, what brought about the rapid development of these 

methods was progress in computer science, which made numerical solutions 

of many practical problems possible [9]. 

 

In mathematical terms, optimization is seeking the best solution 

within imposed constraints. Process engineering is an important area for 

application of optimization methods. Most technological processes are 

characterized by flexibility in the choice of some parameters; by changing 

these parameters, it is possible to correct process performance and 

development. There are also decisions that need to be made in designing a 

new process or new equipment. Thanks to these decisions (controls) some 

goals can be reached. For example, it may be possible to achieve a 

sufficiently high concentration of a valuable product at the end of a tubular 

reactor at minimum cost; or in another problem, to assure both a relatively 

low decrease of fuel value and a maximum amount of work delivered from 
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an engine. How to accomplish a particular task is the problem of control in 

which some constraints are represented by transformations of the system’s 

state and others by boundary conditions of the system. If this problem can be 

solved, then usually a number of solutions may be found to satisfy process 

constraints. Therefore, it is possible to go further and require that a defined 

objective function (process performance index) should be reached in the best 

way possible, for example, in the shortest time, with the least expenditure of 

valuable energy, minimum costs, and so on. [9]. 

In Thermodynamics with respect to Carnot engine, Energy analysis can be 

defined as  

 

                                                    qs 

                     Carnot engine  

                                                                                         Work 

                                                  q1 

 

 

                                  

                                         Figure 1- Carnot engine energy 

 

p1, T1 

Surrounding 

p0, t0 
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We use Carnot engine because Carnot efficiency is the maximum efficiency 

that can be achieved by the 2nd law of Thermodynamics. 

 

Efficiency of Carnot engine can be given by the equation: -                                

η
 = (1−

t0

𝑡1
)
                                                                                                 (1) 

Now efficiency can also be defined in general as the ration between work 

obtain and heat given, so we can rewrite equation 1 as, 

η
 = (1− 

𝑡0

𝑡1
)
 =   

work obtain 

 Heat given
                                                                          (2) 

(1 −  
𝑡0

𝑡1
) =  

𝑊𝑚𝑎𝑥

𝑄
                                                                                       (3) 

𝑄 (1 −
𝑡0

𝑡1
)  = 𝑊𝑚𝑎𝑥                                                                                    (4) 

So, from equation 4 we get maximum work Wmax that is the energy.  
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2.2 Energy dependence on temperature 

Now, in this section we will learn how energy depend on 

temperature. For that let us consider two system S1 and S2 at temperature T1 

and T2 respectively and T1 is greater than T2. Now we need to know in 

which system energy will be more [10]. 

 

          q                                                                                       q 

                      Carnot engine                            Carnot engine 

                                Wmax                                                                                                            Wmax           

      q2                                                                                          q2                          

                                                                                     

 

         System 1                                                                             System 2  

                     Figure 2 -Carnot engine energy comparison between different temperatures   

We know that the maximum work which can be defined by equation 4 i.e.  

𝑞 (1 −
𝑡0

𝑡1
)  = 𝑊𝑚𝑎𝑥 .  Maximum work for system 1 and system 2 can be 

defined as  

𝑞 (1 −
𝑡0

𝑡1
)  = 𝑺𝒚𝒔𝒕𝒆𝒎 𝟏                               𝑞 (1 −

𝑡0

𝑡2
)  = 𝑺𝒚𝒔𝒕𝒆𝒎 𝟐 

Suppose the values for t0 = 100 K, t1 = 300K, t2 = 200K. now put there 

given values in system 1 and system 2.  

 t1 

Surrounding 

 t0 

 t2 

Surrounding 

 t0 
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𝑞 (1 −
100

300
)  = 𝑺𝒚𝒔𝒕𝒆𝒎 𝟏                               𝑞 (1 −

100

200
)  = 𝑺𝒚𝒔𝒕𝒆𝒎 𝟐 

0.67q = system 1 = 67%                                   0.5q = system 2 = 50% 

So, from above calculation we get to know that system 1 has more 

potential then system 2, so mathematically we found that system has higher 

temperature has higher energy considering surrounding temperature same. 

This implies that energy at higher temperature levels can be better utilized to 

increase efficiency. 

 

2.3 Milk powder production process 

Milk drying is an energy-intensive process needing hot air as a 

heating medium helping contemporary heat and mass transfer between the 

milk and the drying air. For dairy products, the most popular tool for 

dehydration is spray drying after evaporation, reason actuality, and easy 

maintenance of food properties as they do not involve critical heat treatments 

and provide storage of powders at ambient temperature [12]. The modern 

drying operation usually takes place in three back to back stages: i) Spray 

chamber (first stage), where drying happens within a few seconds; ii) internal 

stationary fluid bed (second stage), at the conical base of the spray chamber 

equipped for better control of particle agglomeration and drying [13]; iii) 

external fluid bed (third stage), to bring the particles moisture content to the 

aspired level and to cool the outfeed product stream. The water molecules 

present in the milk escape as vapor when sufficient energy is imparted into 

milk by heating it at a certain temperature. The rate at which the vaporization 

takes place depends on a few factors such as, milk temperature, surrounding 

temperature, pressure above the surface of the milk and the heat transfer rate. 
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2.3.1 Process Description 

Milk powder production requires the tender removal of water from 

milk at a minimum cost and following strict hygiene requirements while 

maintaining all the needed natural properties of the milk – appearance, taste, 

solubility, nutritional content [14]. During the process, water present in the 

milk is separated by boiling the milk under decreased pressure at low 

temperature in a process called evaporation. The resulting thick milk is then 

sprinkled in a small droplet into hot air to remove additional moisture 

through producing the powder.  

Roughly, 9 kg of skim milk powder (SMP) or 13 kg of whole milk 

powder (WMP) can be prepared from 100 L of entire milk [14]. The 

traditional process for milk powder production begins with taking the raw 

milk collected at the dairy factory and pasteurizing and parting it into skim 

milk and cream employing a radial cream separator. If whole milk powder is 

to be produced, a part of the cream is added back to the skim milk to 

standardize the fat content as per requirement. 

There are two divisions in milk powder production: First, it is the 

evaporation section and second the spray drying section. The milk at 

temperature 4-7 °C with about 9-12 % solids is drawn to the pasteurization 

unit in order to prevent the microbiological contamination. and then to multi 

effect evaporators, each followed with a feed preheater. Because of 

preheating a controlled denaturation of the whey proteins in the milk 

simultaneously with killing bacteria, inactivating yeasts and producing 

natural antioxidants thereby allowing heat stability [14]. The steam, which is 

supplied in the first stage is produced with the help of boiler. The pressure in 

the five stage ranges from about 28.5 kpa in 1st stage to around 9.5 kpa in 
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the last stage with a variation of about (9.5) kpa between any two nearby 

stages. The vapor generated in the first and second effect is divided into two 

parts, one part is sent to preheater to preheat the incoming milk and the 

second part is sent to the next stage, (Figure 4). Condensate from the all three 

stages and from preheater, gets settled in the condensate tank. In first stage 

we get big amount as correlated to other stages, the rich milk leaving the 

evaporation section has a temperature of about 40-45 °C and solid content of 

round 49 % [12]. 

A part of the milk leaving the three stages evaporation process at 

temperature 42 °C and is supplied to the scraped surface heat exchanger 

where it is heated to 75°C before being provided to the spray dryer. In the 

spray dryer, atomization of the milk concentrate from the evaporator into 

minute droplets takes place. All this is done inside a comprehensive drying 

chamber in a flow of hot air at a temperature of 180-230 °C using either a 

series of high-pressure nozzles or a spinning disk atomizer. The milk 

droplets are moderated by evaporation before they touch the temperature of 

the air so they never touch the temperature of the air. The concentrated milk 

may be heated earlier to atomization to decrease its viscosity and to improve 

the energy possible for drying. The atomized particles come in touch with 

hot air and water in it gets evaporated leaving a fine powder of about 5 % 

moisture content with a mean particle size of < 0.2 mm diameter which is 

received in the cellar. Sometimes an additional drying takes place in a 

fluidized bed by which hot air is driven to remove some more water content 

to give a result with a moisture content of 2-5 %. Some quantity of dried 

output product may also get directed with the exhaust air which is then 

removed in a high-efficiency cyclone separator and transferred back to the 

chamber. The milk powder produced is then received at the base of the dryer 

in bags or cellar and sent for a storehouse. 
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2.4 Energy Utilization in Drying   

Transforming a liquid into dry powder requires to remove of 

practically all water contained in the food product to be processed During the 

drying process, the product is undergoing significant changes of its physical 

properties (mainly its structure), starting with water like liquid and finishing 

as dry powder at the end of the process. Therefore, one method of water 

removal is not optimal through the whole process [21]. 

• Because the drying is extremely energy intensive operation, 

there are methods that can be used to minimize the energy 

consumption like [22]: 

• Minimizing the water content of the feed before drying 

(concentrating the product to be dried) 

• Maximizing the temperature of the drying gas and minimizing 

the outlet temperature of the drying gas on output from the 

dryer 

• Using multi-stage drying process 

• Utilizing the heat in the discharge drying gas to preheat 

incoming drying gas 

• Utilizing direct heat wherever possible 

• Reducing radiation and convection heat loss   
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2.4.1 Minimizing the water content of the feed before drying 

Minimizing the water content of the dried food product before drying 

is the most important method to improve the energy utilization during drying 

[22]. While the steam consumption is approx. 0.10 - 0.20 kg/kg of 

evaporated water in the evaporator, it is 2.0 – 2.5 kg/ kg of evaporated water 

in conventional one-stage spray dryer – it is in other words 20 times higher 

comparing with the evaporator. This means that the evaporator is able to 

remove more water at low energy consumptions, so the solids content in the 

dried product should be increased before drying. On the other hand, the 

viscosity of the feed influences the atomization of the drying product in the 

spray dryer. The viscosity of concentrated milk increases with increased 

content of proteins, crystallized lactose and overall solid content. An increase 

in the solid content will require an increase in the outlet drying gas 

temperature because the evaporation becomes slower due to the smaller 

average diffusion coefficient – bigger temperature difference between the 

particle and drying gas will be necessary [21].  

To concentrate the dried product before drying (increasing its solids 

content), the mechanical separation processes such as settling, centrifuging, 

filtration, reverse osmosis etc., or thermal processes such as evaporation can 

be selected. However, the mechanical separation processes are far more 

energy efficient than thermal processes, there are food products when 

mechanical separation is not possible (for example milk powder production) 

and evaporation should be considered [22].  
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2.4.2 Temperature and moisture content of the drying gas 

Unlike evaporators where the latent heat of the evaporated water can 

be reused as heating medium for the next effect at lower pressure, the latent 

heat in evaporated water from the dryer is not easily reused apart from 

preheating applications. The vapor is carried in a drying gas stream, which 

reduces the thermal potential. Therefore, it is important to minimize the 

volume of inlet drying gas to input the heat and carry over the vapors that are 

generated during drying. If large quantities of drying gas exit the dryer, an 

equally large quantity of heat is lost. The higher the inlet drying gas 

temperature is, the lower the quantity of drying gas will be required which 

increase the efficiency of the dryer [22].    

• The outlet temperature of the drying gas is determined by 

many factors, the most important are [21]: 

• Moisture content in the final powder – the lower residual 

moisture content of the powder is wanted, the lower the 

relative humidity and higher outlet temperature of the drying 

gas will be achieved 

• Temperature and moisture content of the drying gas – the 

higher amount of moisture in the inlet drying gas, the outlet 

temperature has to be increased to compensate the extra 

moisture 

• Solids content in the concentrate (feed) – the higher solid 

content of the concentrate, the higher outlet temperature of the 

drying air 

• Atomization – finer spray will result lower outlet temperature 

of the drying air 
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• Viscosity of the concentrate – influences the atomization 

The overall drying efficiency can be expressed by the approximated 

by formula 5 [21] or [19]: 

𝜼 =
𝑻𝒊 − 𝑻𝒐

𝑻𝒊 − 𝑻𝒂
 

(

5) 

where Ti is drying gas inlet temperature, To is drying gas outlet 

temperature and Ta is ambient temperature.  

From formula 5 we can see, that the only possibility of increasing the 

efficiency of spray drying process is by increasing ambient temperature by 

preheating the drying air sucked by fan to the drying air heater or by 

increasing the inlet temperature or decreasing the outlet temperature [21, 19]. 

The overall drying efficiency (5) in case of classic spray dryers operated on 

skim milk (inlet/outlet temperature 200/90 °C) will be around 56 % and it 

can be as well the indicator of the dryer performance [21].  

2.4.3 Using multi-stage drying process 

From previous discussion in chapter 2.4.2, the particle temperature is 

given by the surrounding air temperature (outlet drying air temperature). As 

the last water is the most difficult to remove by the drying, the outlet drying 

air temperature has to be high enough to ensure driving force capable to 

remove the last moisture [21].  

As mentioned in previous chapter, the residual moisture content in 

powder has a big effect on outlet drying air temperature. The lower the 

residual moisture content of the powder, the higher outlet drying air 

temperature and the lower overall drying efficiency.  

To increase the overall drying efficiency, we can reduce the outlet 

drying air temperature. It may be appropriate to use two or more stages of 
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drying. The first stage of drying would remove the bulk of the water and 

because the residual moisture of the powder would be higher, the outlet 

drying air temperature would be lower. To reach the wanted low residual 

moisture of the powder, a second and much smaller dryer would be used as 

the final stage [22]. On the other hand, the residual moisture of milk powder 

should not be lower than 8 – 10 %, because the powder would get sticky. 

The calculations presented in literature shows that skim milk powder 

with 3.5% residual moisture requires 1595 Kcal/kg of the powder while for a 

powder with 6% residual moisture it is only 1250 Kcal/kg powder [21]. 

New installations for milk powder production are usually designed as 

two or three stage dryers where the spray dryer system is equipped with fluid 

bed conveyor dryer operating with much lower temperature of drying air or 

with fluid bed bottom of the drying chamber (two stage drying process). The 

spray dryer with fluid bed bottom can be completed with vibrio fluid bed 

conveyor (three stage drying process) – see Fig. 4. The advantage of the two-

stage drying are [20]: 

• higher capacity/kg drying air 

• better economy 

• better product quality (good solubility, high bulk density, low 

free fat) 

• less powder emissions 
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Figure 3 -Single stage spray drying system – GEA Niro spray dryer with pneumatic conveying 

system [20] 

 

 

  
 

Figure  3(a) -Two-stage drying system: GEA Niro spray dryer with a VIBRO FLUIDIZER; 

 



 

 

 

 16 

 

 

 
Figure  3(b) -Two-stage drying system: GEA Niro fluidized spray dryer with integrated fluid bed; 

 
 

 

 

 
Figure  3(c) -Three-stage drying system: GEA Niro multi stage dryer [20] 

 

 

 

2.4.4 Recuperative heating of inlet drying air 

Heat can be saved by using outlet drying air and vapor from 

evaporated moisture mixture to preheat the inlet drying air [22]. It is also 

possible to use the recuperated heat to heat water for CIP or air for heating 
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rooms [21]. Other option is using a heat pump to increase low potential 

energy from exhausted air to preheat water for CIP or inlet drying air [23]. 

There are 2 main different recuperating systems [21]: 

• Air to air system 

• Air – liquid – air system 

In the air to air recuperator (Fig. 4), the drying air is preheated by 

means of the output air passing counter currently over the heat transfer 

surface of the recuperator. Because the temperature to which the air can be 

preheated depends upon the temperature of the output air from the dryer, this 

type of recuperator is most beneficial in one stage drying installations where 

the temperature of outgoing air is high [21]. 

 
Figure 4 -Air to air heat recuperator [21] 

 

Air – liquid – air heat recuperator (Fig. 5) is more flexible regarding 

the installation. This system is divided in two heat exchangers in between 

which a heat transfer liquid is circulated. Due to the higher heat transfer 

coefficient for air-liquid than for air-air, this system seems to be more 

efficient than the air to air heat recuperator despite the fact that two heat 

transfer surfaces are needed [21]. 
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Figure 5 -Air liquid air heat recuperator [21] 

 

Positive effect of heat recuperation on drying economy is confirmed 

by Walmsley et al. [28]. Their study indicates for air liquid air heat 

recuperator with finned tubes the IRR up to 71 %. The energy savings of Air 

to air heat recuperators depends on the drying air temperatures where the 

highest values (more than 50 %) were investigated at high drying air 

temperatures [24]. We can obtain more energy savings using not only the 

heat recuperator but the recirculation of exhaust air [25].  

Another study presented that using heat recuperation we can 

significantly increase the overall efficiency of the dryer (up to 70 %) and the 

heat recuperator is able to preheat the cold air before heater about 30 – 35 °C 

[26].  

As mentioned before the heat recuperation depends on the output 

temperature from the dryer and should be as high as possible [24]. Therefore, 

it is the best method for one stage drying system where the output air 

temperature is quite high. But there are the methods how to use heat 
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recuperation for drying systems where the temperature of outgoing air is 

lower. One of this method is using heat pump. The output air from the dryer 

passing through the heat exchanger where the circulating liquid is heated up 

by the warm exhausted air. The circulating liquid flows through the 

evaporator of the heat pump and the inlet drying air is heated in condenser of 

the heat pump (Fig. 6) [23]. Another more academic method is using liquid 

sorption process [29]. 

            Figure 6 - Schematic diagram of the heat recovery system using heat pump [23] 
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Figure 7 - Schematic diagram of the heat recovery system using liquid sorption process [29] 

 

The efficiency of the heat recuperation system is significantly 

influenced by deposition of sticky milk dust on heat transfer surface [27]. To 

reduce the possibility of dust fouling on heat transfer surface of the heat 

recuperator, the filter (bag filter) should be installed prior to the heat 

recuperator. As the dust deposits cannot be completely avoided even the fine 

filters are installed prior the heat recuperator, it would be necessary to clean 

the heat recuperator surfaces. This can be done by means of built in CIP [21].    

2.4.5 Direct heat utilization 

It is suitable for drying system where the inlet drying air is heated 

directly by the combustion gases from the gas or oil burner [22]. This is not 

possible for milk powder production.  

2.4.6 Thermal insulation 

Drying equipment’s are large and operates at quite high temperatures. 

It is connected with a large potential for high heat loss from convection and 

radiation. Good insulation of the dryer is the way to ensure energy efficiency 

[22]. 
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2.5 Energy Utilization in Evaporator    

As mentioned in previous chapter, the milk should be concentrated 

before entering spray dryer to minimize water content in dried milk because 

the steam consumption per kg of evaporated water in evaporator is much 

lower than in the spray dryer. In case of milk powder manufacturing process, 

the thermal process of water evaporation on falling film evaporators is 

mostly used.  

In falling film evaporator (Fig. 8), the milk will flow downwards 

through the boiling tube forming a thin film, from which the 

boiling/evaporation will take place because the heat applied by heating 

steam. Heating steam will condense and flow downwards on the outer 

surface of the boiling tubes. The concentrated liquid and vapors leave the 

boiling section (so called calandria) at the bottom part from the main 

proportion of concentrated liquid is discharged. The remains part enters 

tangentially the subsequent separator together with the vapors. The 

concentrate is discharged by the pump and the vapors leaves the separator 

from the top. The heating steam is collected as condensate at the bottom part 

of the boiling section [21].  

  
Figure 8 - – a) Falling film recirculation evaporator; b) evaporation in a falling film evaporator 

tube [21] 
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Because milk, due to the protein content, is a heat sensitive product, 

the boiling section is operated under vacuum – the boiling/evaporation takes 

place at lower temperature to keep the nutritional value of milk damaged by 

the heat as low as possible. The vacuum is created by vacuum pump and 

maintained by condensing the vapors by cooling water circuit. Vacuum 

pump is used to evacuate incondensable gases from milk [21]. 

 

2.5.1 Number of evaporator effects 

As vapor from the evaporated milk contains almost all the applied 

energy by supplied by heating steam, it is obvious to utilize this vapor to 

evaporate more water by condensing the vapor in another added calandria to 

the evaporator (second effect). This second effect where the boiling 

temperature is lower works as condenser for vapors from the first effect so 

the energy in vapors is utilized as it condenses [21]. To obtain a temperature 

difference in the second effect between the product and vapors, the boiling 

section of the 2nd effect is operated under higher vacuum to lower the boiling 

temperature. 3rd effect or more can be added, but the amount of effects is 

limited by the lowest obtainable vacuum and is decided from amount and 

temperature of the cooling water condensing the vapors from the last effect. 

The practical limit (due to the viscosity and lactose crystallization) of boiling 

temperature for milk in the last effect is about 45 °C [20].  

We can see (Fig. 9) that 1kg of heating steam is able to evaporate 2 

kg of water using second effect and applying a third effect, 1 kg of heating 

steam is able to evaporate 3 kg of water [21]. The more effects of the 

evaporator the better is the utilization of the energy in heating steam.  
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Figure 9 -Principle of multi effect evaporator [21] 

 

By dividing given total temperature difference between the first and 

last effect in multi-effect evaporators requires an enormous heat transfer area 

of the calandrias and consequently an expensive installation. The total heat 

transfer area can be reduced only by increasing the temperature difference 

between heating medium and boiling temperature of the product. It can be 

done by increasing the temperature of the first effect heating section 

resulting higher boiling temperature which will increase the fouling 

formation on the tubes. So, it is not recommended using boiling temperature 

of the milk in first effect higher than 66 – 68°C in 20h operation [20].   

Dividing the total temperature difference (from 66°C to 45°C = 

21°C) between each effect means, that in a three-effect evaporator, each 

effect will have a big ΔT corresponding to a relatively small heat transfer 

area and low investment costs. By increased number of effects, however the 

heating steam consumption goes down, the available ΔT becomes smaller in 

each effect resulting that higher heat transfer area is required and investment 

costs go up [21]. We can see that the design of multi-effect evaporator is 
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usually the task for optimization between investment costs, operational costs 

done by steam consumption and product quality because more added effects 

increases the residence time where the product is exposed to heat [21].   

Nowadays in milk powder processing the 5th up to 7th effect 

evaporators are designed so the modern evaporator with 15m long tubes in 

calandria can work with quite low temperature difference between heating 

media and product (up to 5°C) but for better economy, the vapor 

recompression is used – in a 7-effect evaporator with mono thermal-

compression, we can evaporate 9kg of water using only 1kg of heating steam 

[20]. 

 

2.5.2 Vapor recompression 

Another way of saving energy during evaporation process is by using 

vapor recompression. Thermo-compressor or mechanical vapor compressor 

can be used. 

Thermo compressor will increase the temperature and pressure level 

of the vapor – compress the vapor exiting the evaporator from a lower 

pressure to a higher pressure by using heating steam of higher pressure than 

that of the vapor. Thermo-compressor (TVR) operate at very high steam flow 

velocities and have no moving parts. The construction is simple, dimensions 

are small, and the investment cost is low. The principle of the thermo-

compressor shows the figure 10. The best efficiency in the thermo-

compressor (the best suction rate and thereby a good economy) is obtained 

when the temperature difference (pressure difference) between the boiling 

section and heating section of the evaporator is low. A thermo-compressor, 

which have been designed for a higher heating steam pressure, can draw a 

larger amount of vapor from the separator than one built for a lower pressure. 
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New designed thermo-compressors can operate with an efficiency of 1:3 

[21]. 

 

 
                    Figure 10 -Thermo-compressor [21] 

 

 

As mentioned in previous chapter, by adding 2nd effect means that of 

1kg heating steam can evaporate 2kg of water. Using thermo-compressor in 

two-effect evaporator (Fig. 11) by means of 1kg heating steam can evaporate 

4kg of water, so the saving of steam is as great as that obtained by addition 

of two effects in multi-effect evaporation [21].  
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Figure 11 - Two-effect evaporator with thermo-compressor [21] 

 

As an alternative to the TVR, the mechanical vapor compressor 

(MVR) has during the last 15 years found extensive use in evaporators in the 

dairy industry. The applied energy is usually electricity. The usage of MVR 

according to the TVR is profitable if the price of the electricity/kW < 3x 

(price/kg steam) [20, 21].    
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2.6 Energy Efficiency Studies 

In a milk powder making plant, there are several streams of them 

some need cooling and some demand heating. The individual stream can 

have different start and end temperatures, different heat capacities and flow 

models. When a process stream needs to be heated over a certain temperature 

limit, it is brought in indirect contact with another process stream which 

requires to be cooled over a similar temperature interval using a heat 

exchanger. This is more beneficial than using chilled water to cool one 

stream and steam to heat the other [2]. A number of heat recovery issues are 

there which are specific to the building dairy industry. Heat exchangers 

occasionally signal leaks, and heat recovery might result in corruption 

between two streams. This is not pleasant in milk processing and the likely 

solution is to isolate by pressure differential double plate heat exchangers or 

intermediate circuits in those types of cases. Also, many waste streams might 

have the tendency to carry contaminants therefore concerning the heat 

recovery equipment by destroying their surfaces. In the recovery of gas from 

waste gas streams, there is also the chance of contaminants making a fire 

hazard. There is also a risk of condensation because of the presence of any 

moisture provided by waste gas streams on lowering temperature badly. 

Large heat exchangers use back pressure on boilers and spray dryers and 

hence the capacity of original equipment to resist this back pressure should 

be observed. In this situation, the use of condensate at an optimal level 

should help in the restoration of the condensate. It can lead to advantages 

such as preservations of the cost of water treatment, by replacing the lost 

condensate, heat, to pre-warm new boiler feed water, and wastewater, 

because due to less condensate the wastewater produced is likewise shorter 

[50].  
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Chapter 3: Description of the current 
state 
 

In our thesis we are assuming fictive milk processing company which 

are producing typical dairy products as a pasteurized milk filled in plastic 

bottles, UHT processed milk packed in Tetrapacks, sweet cream, butter, 

cheese, yogurts and desserts. In the past, our company also produced milk 

powder.  

Because the production of yogurt, cheese and some bottled milk has 

moved to a new location and demand for milk powder increased, the 

company decided to use new free capacity in production to resume 

production of skim milk powder for bigger food producers. 

For this purpose, our company has an older 3 effect evaporator for 

increasing the concentration of the milk to by dried and older one stage spray 

dryer to produce milk powder. The company has also the necessary capacity 

in energies (mainly in steam) and due to the free capacity in production 

enough capacity in pasteurization station. Company has necessary warehouse 

capacity to store the milk powder and transport technology. 

 

Because the technology for milk powder manufacturing in our 

company is quite old, the company will do the necessary reconstructions to 

be able to operate their milk powder technology. The company would like to 

know, if there exist some ways to reduce the energy consumption and what 

will be the effect on economy.  
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Our task is to find the ways to reduce energy consumption in current 

state of milk powder technology in our fictive company with minimum 

investment requirements to keep the expected capacity of the processed milk 

to be dried. 

 

Expected capacity of the milk powder technology: 12,000 kg/h 

Processed product:     skim milk 

Dry matter content:     9% 

Temperature of skim milk in daily storage tank: 5°C 

Final moisture content in skim milk powder:  5 % 

Operation:      20 h/day 5days/week 

Cleaning and sanitation:    4 h/day 

Available energy sources:    steam 16 bar 

       Natural gas 

       Electric energy 

 

3.1 Description of the current state of milk powder 
technology 

The layout of the current milk powder production line can be seen in 

the process flow diagram of the current state – see appendix 1. 

Pasteurized skim milk is pumped from daily storage tank to the feed 

tank of the evaporator. From the feed tank, the milk is pumped through the 

milk preheaters PR03, PR02 and PR01 where the processed milk is 

preheated by condensing vapors from evaporator effects. Because the 

temperatures in these preheaters are ideal for bacteria to grow it is necessary 

the repasteurization of the processed skim milk before entering the first 

effect. For this purpose, a plate pasteurizer with holding section is installed 

prior the evaporator. Pasteurizer is heated by steam from boiler room.  

From preheaters the milk is led through the steam heated plate 

pasteurizer PA01 and holding section directly to the first effect of the 

evaporator to be concentrated. 
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To minimize the water content in milk before drying, the 3-effect 

falling film evaporator which operates under vacuum conditions is installed. 

First effect of the evaporator (EF01) is heated by steam. Concentrated milk is 

pumped by the pump to the next effect. Vapors withdrawal from first effect 

are used to heat up second effect and milk preheater PR01. Condensate from 

the heating steam is mainly returned to the boiler room. Second effect 

(EF02) is heated by part of vapors from first effect. Concentrated milk from 

second effect is pumped to the last third effect. Vapors from second effect 

are used to heat up third effect and milk preheater PR02. Third effect (EF03) 

is heated by part of vapors from previous effects. Concentrate from third 

(last) effect is led to the feed storage tank of the spray dryer. Vapors from 

last effect are partly used to heat up milk preheater PR03 and the rest is 

condensed in vapor condenser CHE01. Condensates from second and third 

effect, from milk preheaters and from vapor condenser are collected in 

condensate tank to be drain. Vapor condenser creates necessary vacuum in 

heating sections of evaporator calandrias together with vacuum pump VP01. 

Incondensable vapors from boiling sections of calandrias are sucked by 

vacuum pump to create necessary low-pressure condition for milk boiling. 

Vapor condenser is cooled by cooling water circuit equipped by 

cooling tower. Concentrate to be dried is stored in double feed tanks. From 

feed tanks, the concentrate is pumped and led through the concentrate 

preheater to the atomizing device of the spray dryer. Spray dryer is equipped 

with rotary atomizer driven by electric drive. Atomizing device is cooled by 

cooling air. Drying air is sucked through fine filter by fan blower and is led 

through the calorifier to the drying chamber of the spray dryer (SD01). 

Calorifier is used to heat up the drying air. Steam air heater is installed to 

heat up drying air. Milk powder is collected partly on bottom part of the 
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drying chamber, the rest is separated from drying air on outlet by cyclone 

separate and bag filter.  

                                          
                                                                        Evaporator 

No of effects: 3 

Type Falling film – vacuum 

Producer GEA Niro 

Calandria 1: 1st effect 

Number of tubes 116 

Diameter of the tubes 48 mm 

Length of the tubes 5 m 

Calandria 2: 2nd effect 

Number of tubes 226 

Diameter of the tubes 48 mm 

Length of the tubes 5 m 

Calandria 3: 3rd effect 

Number of tubes 113 

Diameter of the tubes 48 mm 

Length of the tubes 5 m 

Heating medium Saturated steam 

  
Cooling water inlet temperature 10-25 °C 

Cooling water outlet temperature Up to 43°C 

Cooling water flowrate Up to 250 m3/h 

                               Table 1. Technical parameters of the evaporator 
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                                                                    Dryer 

No of stages: 1 

Type Spray dryer 

Producer GEA Niro 

Atomizing device Rotary atomizer  

Rotary atomizer driven by Electric drive 

Fines recirculation No 

Amount of cooling air for atomizing device  

Dimensions of drying chamber  

Drying air heater Steam heater 

Heating medium Steam 16 bar / 220 °C 

                                     Table 2. Technical parameters of the dryer 
 

4.2 Mass and enthalpy balance of the current state 
technology 

To study the opportunities to save the energy it is necessary deeply 

analyze the current state of the technology. For this purpose, mass and 

enthalpy balance model in excel was prepared.  

 

Figure 12 shows simplified balancing scheme of the milk powder 

technology in the current state. 
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Figure 12 -Balancing scheme of the current state of milk powder technology 
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3.1 Evaporation mass and enthalpy balance – the 

methodology 

In this section, the balance of mass and energy discussed, by taking 

the flowrate, inlet temperature and dry matter content of skimmed milk, 

followed by replacing the device with the different type of equipment which 

were studied in our work. The methodology was prepared with a help of 

some publications, mainly [32], [20] and [21]. 

  

Flow rate of skimmed milk (Msm) kg/h (given parameter) 

Skimmed milk inlet temperature (Tsm) °C      (given parameter) 

Dry matter content of inlet skimmed milk (Ssm) %    (given parameter) 

Concentrated dry matter content after evaporation section (Scm) % (given 

parameter) 

Total amount of evaporated water (W) 

𝑊 = 𝑀𝑠𝑚 ∗ (1 − (
𝑆𝑠𝑚

𝑆𝑐𝑚
)) 𝐾𝑔/ℎ (5)

 

Total amount of concentration (Mcm) 

𝑀𝑐𝑚 =  𝑀𝑠𝑚 − 𝑊 𝑘𝑔/ℎ (6) 

Cooling water in (Tcool in) °C        (given parameter) 
 

Cooling water out (Tcool out) °C     (given parameter) 
 

Flowrate of cooling water (Mcool) m
3/h        (given parameter) 
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Number of effects (N)     (given parameter) 

Vapor withdrawal for milk preheater from 1st effect (O1) kg/h

 (optimized parameter) 

Vapor withdrawal for milk preheater from 2nd effect (O2) kg/h

 (optimized parameter) 

Vapor withdrawal for milk preheater from 3rd effect (O3) kg/h

 (optimized parameter) 

With reference to our base scheme we do not have thermo-compressor in 

base scheme, so vapor from 2nd effect to thermo-compressor will be zero. 

Vapor from 2nd effect to thermocompressor (Y) kg/h 

Loss to condensation (X) 

𝑋 = [(𝑊 − (3 ∗ 𝑂3) − (2 ∗ 𝑂2) − (1 ∗ 𝑂1) − (2 ∗ 𝑌)]
𝐾𝑔

ℎ
(7) 

Evaporated water 1st   effect (W1)  

𝑊1 = (𝑋 + 𝑂3 + 𝑂2 + 𝑂1 + 𝑌) 𝑘𝑔/ℎ (8) 

Evaporated water 2nd   effect (W2) 

𝑊2 = (𝑋 + 𝑂3 + 𝑂2 + 𝑌)
𝑘𝑔

ℎ
  (9) 

Evaporated water 3rd   effect (W3) 

𝑊3 =  (𝑋 + 𝑂3)
𝐾𝑔

ℎ
  (10) 

Total amount of Evaporated water (W) 

𝑊 = (𝑊1 + 𝑊2 + 𝑊3)𝑘𝑔/ℎ  (11) 
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Flowrate concentration of milk from first effect (Mm1) 

𝑀𝑚1 =  (𝑀𝑠𝑚 − 𝑊1)𝑘𝑔/ℎ  (12) 

 

Flowrate concentration of milk from second effect (Mm2)  

𝑀𝑚2 =  (𝑀𝑚1 − 𝑊2)𝑘𝑔/ℎ (13) 

Flowrate concentration of milk from third effect (Mm3) 

𝑀𝑚3 = (𝑀𝑚2 − 𝑊3)𝑘𝑔/ℎ (14) 

Dry matter content after first effect (Sm1) 

𝑆𝑚1 =  [(
𝑀𝑠𝑚

𝑀𝑚1
) ∗ 𝑆𝑠𝑚] % (15) 

Dry matter content after second effect (Sm2)  

𝑆𝑚2 =  [(
𝑀𝑠𝑚

𝑀𝑚2
) ∗ 𝑆𝑠𝑚]  % (16) 

Dry matter content after third effect (Sm3)  

𝑆𝑚3 =  [(
𝑀𝑠𝑚

𝑀𝑚3
) ∗ 𝑆𝑠𝑚]  % (17) 

 

 

It was predicted that the boiling point elevation, BPE, would present 

some significant effect on the film flow. The boiling point elevation was 

calculated based on typical dry basis of skim milk composition [11]. 
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Figure 13 shows that the BPE increased up to about 1 K at about 43% total 

solids. 

  

                              Figure 13 -The calculated boiling point elevation of milk. 

 

 

 

Boiling point elevation for 1st effect (dTB1) °C (calculated according 

dry matter content) 

Boiling point elevation for 2nd effect (dTB2) °C (calculated according 

dry matter content) 
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Boiling point elevation for 3rd effect (dTB3) °C (Calculated according 

dry matter content) 

Boiling temperature of milk in 1st effect (Tm1) °C 

Boiling temperature of milk in 2nd effect (Tm2) 

𝑇𝑚2 =  (𝑇𝑠2 − 𝑑𝑇2𝑒𝑓𝑓𝑒𝑐𝑡) °𝐶 (18) 

Boiling temperature of milk in 3rd effect (Tm3) 

𝑇𝑚3 =  (𝑇𝑠3 − 𝑑𝑇3𝑒𝑓𝑓𝑒𝑐𝑡) °𝐶 (19) 

Vapor temperature of 1st effect (Tv1) 

𝑇𝑣1 = (𝑇𝑚1 − 𝑑𝑇𝑏_1) °𝐶 (20) 

Vapor temperature of 2nd effect (Tv2)  

𝑇𝑣2 =  (𝑇𝑚2 − 𝑑𝑇𝑏2) °𝐶      (21) 

 

Vapor temperature of 3rd effect (Tv3) 

𝑇𝑣3 =  (𝑇𝑚3 − 𝑑𝑇𝑏3) °𝐶  (22) 

 Overall temperature difference (dToverall)  

𝑑𝑇𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =  (𝑇𝑚1 − 𝑇𝑚3) ℃  (23) 

 

Temperature difference between 1st effect (dT1effect) ℃ (optimized 

value) 
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Temperature difference between 2nd effect (dT2effect) ℃        (optimized value) 

Temperature difference between 3rd effect (dT3effect) ℃        (optimized value) 

Temperature drop between effects 1 and 2 (dT1,2) ℃  (assuming 1°C) 

Temperature drop between effects 2 and 3 (dT2,3) ℃  (assuming 1°C) 

Heating steam temperature of 1st effect (Ts1) 

𝑇𝑠1 = (𝑇𝑚1 + 𝑑𝑇1𝑒𝑓𝑓𝑒𝑐𝑡 ) ℃ (24) 

Heating vapor temperature of 2nd effect (Ts2) 

𝑇𝑠2 = (𝑇𝑣1 − 𝑑𝑇1,2) ℃ (25) 

Heating vapor temperature of 3rd effect (Ts3) 

𝑇𝑠3 = (𝑇𝑣2 − 𝑑𝑇2,3) ℃ (26) 

Latent heat for 1st effect r1 = 2338.71 kJ/kg (from steam table: r_LG = h”-h’) 

Latent heat for 2nd effect r2 = 2363.28 kJ/kg 

Latent heat for 3rd effect r3 = 2394.55 kJ/kg 

Heat power 1st effect (QE1) 

𝑄𝐸1 = [
𝑟1∗𝑊1

3600
] 𝐾𝑤 (27) 

Heat power 2nd effect (QE2) 

𝑄𝐸2 = [
𝑟2∗𝑊2

3600
] 𝐾𝑤 (28) 
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Heat power 3rd effect (QE3) 

𝑄𝐸3 = [
(𝑟3∗𝑊3)

3600
] 𝐾𝑤 (29) 

Overall heat transfer coefficient 1st K1 2900 W/(m2k) 

Overall heat transfer coefficient 2nd K2 1900 W/(m2k) 

Overall heat transfer coefficient 3rd K3 1300 W/(m2k) 

Necessary heat transfer area A1 (Calandria 2) 

𝐴1 = [
𝑄𝐸1∗1000

𝐾1∗𝑑𝑇1𝑒𝑓𝑓𝑒𝑐𝑡
] 𝑚2 (30) 

 

Necessary heat transfer area A2 (Calandria 1) 

𝐴2 = [
𝑄_𝐸2∗1000

𝐾2∗𝑑𝑇2𝑒𝑓𝑓𝑒𝑐𝑡
] 𝑚2 (31) 

 

Necessary heat transfer area A3 (Calandria 3)  

𝐴3 =  [
𝑄𝐸3∗1000

𝐾3∗𝑑𝑇3𝑒𝑓𝑓𝑒𝑐𝑡
] 𝑚2 (32) 
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Necessary amount of heating steam for evaporators (Msteam ev) 

  

𝑀𝑠𝑡𝑒𝑎𝑚 , 𝑒𝑣 = (𝑾𝟏 − 𝒀)𝒌𝒈/𝒉  (33) 

 

Necessary amount of heating steam for Pasteurization (Msteam pas.) 

𝑀𝑠𝑡𝑒𝑎𝑚𝑝𝑎𝑠=  [(
𝑄𝑝𝑎𝑠

𝑟𝑠𝑡𝑒𝑎𝑚,𝑝𝑎𝑠𝑡.
) ∗ 3600] (34) 

 

 

3.2 Dryer  

In this section, the balance of mass and energy in dryer section will 

be discuss, by taking the flowrate, inlet temperature and dry matter content 

of concentrated milk coming from evaporation section. The methodology 

was prepared with a help of some publications, mainly [30], [31], [20] and 

[21]. 

Flow rate of concentrate from evaporator station – FEED (Mcm) 

Total solids of skim milk concentrate from evaporator (Scm)  % 

Total solids of powder from spray dryer (Smpsd)  % 

Flow rate of powder from spray dryer (Mpsd) kg/h 
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𝑀𝑝𝑠𝑑 = 𝑀𝑐𝑚 ∗ (
𝑆𝑐𝑚

𝑆𝑚𝑝𝑠𝑑
)

𝑘𝑔

ℎ𝑟
(35) 

Amount of evaporated moisture from spray dryer (Wsd) kg/h 

𝑊𝑠𝑑 = (𝑀𝑐𝑚 − 𝑀𝑝𝑠𝑑)𝑘𝑔/ℎ (36) 

 

Ambient air temperature - sucking air to the heater (Ta) ℃ (given value) 

Ambient air relative humidity (RHa) % (given value) 

Inlet air temperature to the drying chamber (T1) ℃ (given value) 

Outlet air temperature from drying chamber (T2) ℃    (calculated value) 

Temperature of the milk concentrate - feed temperature (Tf) ℃ (given value) 

Milk powder temperature at output from dryer (Tp) ℃ (assumed value) 

Cooling air rate to cool atomizing device (ambient) (Ac) kg/h (given 

value from technical description of used atomizing device) 

Total heat to remove moisture from feed (QTE) kW 

𝑄𝑇𝐸 = [(
𝑊𝑠𝑑

3600
) ∗ (𝑟 + (

𝐶𝑣2

1000
) ∗ (𝑇2 − 𝑇𝑓)]                                               (37) 
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Total heat in outcoming product (QPR) kW 

𝑄𝑝𝑟 = [(
𝑀𝑝𝑠𝑑

3600
) ∗ (𝑇𝑝 − 𝑇𝑓) ∗ (

𝐶𝑝𝑠

1000
) ∗ (

𝑆𝑚𝑝𝑠𝑑

100
) + (

𝐶𝑝𝑚

1000
) ∗ (1 − (

𝑆𝑚𝑝𝑠𝑑

100
))] (38) 

Heat loss of the drying chamber (Qloss) kW 

𝑄𝑙𝑜𝑠𝑠 =
𝑘 ∗ 𝐴𝑑𝑐 ∗ (𝑇2 − 𝑇𝑎)

1000
  𝑘𝑊 (39) 

Total necessary heat input (Qin) kW 

𝑄𝑖𝑛 = (𝑄𝑡𝑒 + 𝑄𝑝𝑟 + 𝑄𝑐𝑜 + 𝑄𝑡𝑟 + 𝑄𝑟𝑓 + 𝑄𝑙𝑜𝑠𝑠) (40) 

Drying air flow rate (Mda) kg/h 

𝑀𝑑𝑎 = [
𝑄𝑖𝑛

𝑇1 ∗ (
𝐶𝑎1

1000)
∗ (𝑇2 ∗ (

𝐶𝑎2

1000
)) + (𝑌𝑎 ∗ ((𝑇1 ∗ (

𝐶𝑣1

1000
)

− (𝑇2 ∗ (
𝐶𝑣2

1000
)) ∗ 3600                                                        (41) 

Exhaust air absolute humidity (Y2) kg/kg d.a 

𝑌2 =
𝑀𝑣𝑎 − 𝑀𝑣𝑝  

𝑀𝑑𝑟𝑦
 (42) 
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Calorifier heat duty (Qcal) Kw 

 

Amount of steam to heat the drying air (MSteam) Kg/h 

𝑀𝑠𝑡𝑒𝑎𝑚 = (
𝑄𝑐𝑎𝑙

2360
) ∗ 3600 (39) 

 

 

 

 

 

3.2.1 Results summary from balancing model – evaporator 
 

 

 
Sl. No. Condition Value 

01. Incoming milk temperature 5 °C 

02. Incoming milk solid concentration 9 % 

03. Milk flow rate 12000 kg/h 

04. Concentrate dry matter content 49 % 

05. Cooling water in 25 °C 

06. Cooling water out 31.3 °C 

07. Cooling water flowrate 210 m3/h 

08. Vapor withdrawal from 1st effect for preheater 1 193.8 kg/h 

09. Vapor withdrawal from 2nd effect for preheater 2 408.2 kg/h 

10. Vapor withdrawal from 3rd effect for preheater 3 633.0 kg/h 
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11. Milk temperature after preheater 1 60.8 °C 

12. Milk temperature after preheater 2 51.4 °C 

13. Milk temperature after preheater 3 31.3 °C 

14. Milk temperature after pasteurizer 72 °C 

15. boiling point elevation 1st effect 0.2 °C 

16. boiling point elevation 2nd effect 0.4 °C 

17. boiling point elevation 3rd effect 1.15 °C 

18. Milk boiling temperature in 1st effect 71 °C 

19. Milk boiling temperature in 2nd effect 61.8 °C 

20. Milk boiling temperature in 3rd effect 42.4 °C 

21. Temperature difference 1st effect 12 °C 

22. Temperature difference 2nd effect 8 °C 

23. Temperature difference 3rd effect 15 °C 

24 Overall heat transfer coefficient for 1st effect 2900 W/m2K 

25.. Overall heat transfer coefficient for 2nd effect 2100 W/m2K 

26. Overall heat transfer coefficient 3rd effect 900 W/m2K 

          Table 3. Process requirements for milk powder production in evaporation section 

 

 
Sl. No. Process condition Value 

01. Temperature of milk leaving the evaporators 42.4 °C 

02. Solid concentration of milk leaving the evaporators 49 % 

03. Total amount of evaporated water 9795.918 Kg/h 

04. Loss to condensation 2295.55 Kg/h 

05. Dry matter content after 1st effect 12.75 % 

06. Dry matter content after 2nd effect 21.04 % 
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07. Dry matter content after 3rd effect 49 % 

08. Vapor temperature 1st effect 70.8 °C 

09. Vapor temperature 2nd effect 61.4 °C 

10. Vapor temperature 3rd effect 41.25 °C 

11. Heating steam temperature 1st effect 83 °C 

12. Heating vapor temperature 2nd effect 69.8 °C 

13. Heating vapor temperature 3rd effect 60.4 °C 

14. Necessary amount of heating steam for evaporators 3530.56 kg/h 

15. Necessary amount of heating steam for pasteurizer 237.57 kg/h 

16. Necessary amount of heating steam for CIP 1900 kg/h 

17. Pressure in Calandria 1 31 kPa 

18. Pressure in Calandria 2 21 kPa 

19. Pressure in Calandria 3 9.5 kPa 

20. Total power of installed pumps 12.7 kW 

21. Total power of vacuum pumps 2x5.5 kW = 11 kW 

                            Table 4. Mass and energy balance of base scheme 
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Calandria   1 2 3 

Length of tube L m 5 5 5 

Diameter of tube D mm 48 48 48 

Number of tubes NT  226 116 113 

Heat transfer area of one 

tube 

A_1tb m2 0.75398 0.75398 0.75398 

Total heat transfer area A_eff m2 170.4 87.5 85.2 

Reserve in heat transfer area A_res m2 26.3 21.6 2.0 

Heat transfer area check   OK OK OK 

                               Table 5. Evaporators heat transfer areas 

 

 

  



 

 

 

 48 

 

 

3.2.2 Results summary from balancing model – spray 
drying 

 

 
Sl. No. Condition Value 

01. Total solids of powder from spray dryer 95 % 

02. Ambient air temperature - sucking air to the heater 20 ℃ 

03. Ambient air relative humidity 50 % 

04. Inlet air temperature to the drying chamber 200 ℃ 

05. Outlet temperature from drying chamber 94.6 ℃ 

06. Temperature of the milk concentrate - feed temp. 60°C 

07. Milk powder temperature at output from dryer 80 °C 

08. Cooling air rate to cool atomizing device (ambient) 100 Kg/h 

09. Surface of drying chamber 230.04 m2 

10. Drying air flowrate 27000 kg/h 

 

        Table 6. Process requirements for milk powder production in dryer section  
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Sl. No. Process condition Value 

01. Total Heat to remove moisture from feed 760.46 KW 

02. Total heat in outcoming product 8.86 KW 

03. Heat of atomizing device cooling air 2.11 KW 

04. Heat loss of the drying chamber 59.87 KW 

05. Total necessary heat input 831.30 KW 

06. Drying air flow rate 27000 kg/hr 

07. Theoretical amount of air 26898 kg/hr 

08. Exhaust air absolute humidity 0.04715 kg/kg d.a 

09. Theoretical heat duty to heat up drying air from ambient 

temperature 

1395 kW 

10 Calorifer efficiency 98 % 

11. Calorifer heat duty 1423.51 KW 

12. Overall drying efficiency 0.586 KW 

13. Amount of steam to heat the drying air 2171.45 kg/hr 

14. Specific steam consumption 

(classic spray dryer: 2.0 – 2.5 kg/kg) 

2.03 kg steam/ kg evaporated 

moisture 

15. Specific air amount for drying 

(classic spray dryer: 15-30 m3/kg powder) 

24.84 m3/kg of the powder 

16. Amount of steam to preheat the feed before dryer 76.5 kg/h 

17. Total power duty – electric energy (fans, pumps, atomizing 

device) 

100 kW 

                                         Table 7.  Mass and energy balance of dryer section 

 

 



 

 

 

 50 

 

 

Energy balance of the current state is summarized in following table 

together with the costs for energies (cost of steam 500 CZK/GJ, cost of 

electric energy 2540 CZK/MWh). 

 

  Current state 

Total Heat consumption kg/h GJ/day GJ/year CZK/year 

  for evaporators: 3530,56 161,2 38684    19 342 095,10  

  for pasteuriser: 237,57 10,8 2603      1 301 532,62  

  for dryer: 2171,45 84,5 20288    10 144 152,57  

  for dryer feed preheater: 76,50 3,0 715          357 396,31  

  for CIP: 1900 17,3 4164      2 081 822,40  

Total steam consumption: 7916,09 276,9 66454    33 226 999,00  

 

Total Electric consumption kW MWh/day MWh/year CZK/year 

  evaporator 23,7 0,57 136,5          346 740,48   

  dryer 100 2,00 480,0      1 219 200,00  

Total Electric energy consumption 
  2,57 616,5      1 565 940,48   

 

Total energy costs CZK/year      34 792 939,48   
             Table 8. Energy and cost evaluation of the current state (base scheme) 
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Chapter 4: Improving energy 
efficiency by process integration 
 

In this section, the simulation of the normal performance of the milk 

powder plant which was discussed in previous chapter by its mass and 

enthalpy analysis. With our analysis, first, we will analysis the area where 

the heat loss is relatively more will be determined which will be followed by 

improving strategies through the mass enthalpy balance to make the entire 

plant much more energy efficient. 

4.1 Energy analysis of base Scheme 

We need to find the amount of heat loss in each part of the plant, 

mass and energy analysis of the base Scheme was performed with the help of 

the equations that we have explained and the outcome are given in previous 

chapter. From our results, we can assume that we can propose some idea to 

make plat more efficient and optimize and then we can do the mass and 

enthalpy balance of the new scheme with the help of same equations and 

then compare the results of two schemes.  

4.1.1 Energy Efficiency Opportunities 

 

Various opportunities exist within the diary processing industry to 

reduce energy consumption while maintaining or enhancing production. As 

part of the dairy industry’s aggressive move to reduce the carbon footprint 

and energy consumption of the industry as a whole, energy efficiency 

improvements to dairy processing facilities are key to attaining this goal. 

The most effective method to improving energy efficiency in a dairy 

processing facility is to implement energy saving techniques across various 
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levels of production. At the component and equipment level, energy 

efficiency can be improved by preventative maintenance, proper loading and 

operation, energy efficient choices for new equipment, and the replacement 

of older components and equipment with higher efficiency models when 

feasible.  

At the process level, process control, optimization, and integration 

can ensure maximum efficiency. In addition, implementation of new or 

alternate process systems can improve efficiency and reduce operating costs.  

On the facilities level, efficient lighting, heating, and cooling can 

reduce energy loads, and implementation of combined heat and power or 

process integration systems can improve efficiency.  

Finally, on the organizational level, a strong company commitment to 

energy management, augmented by energy monitoring, target setting, 

employee involvement and continuous improvement, is essential to the long-

term success of energy efficiency improvements and its associated cost 

benefits [17].  

The following subchapters in this Energy Guide discuss some of the 

most pertinent energy efficiency measures applicable to the dairy processing 

industry. This guide focuses on measures that are proven, cost effective, and 

available for implementation today [17].  

Based on the energy expenditure, we can primarily on the following 

major areas of opportunity for energy efficiency: steam systems, motor and 

pump systems, refrigeration systems, compressed air systems, building 

facilities, self-generation, pasteurization processes, evaporation processes, 

and drying processes. As such, the measures described that, collectively, 
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account for over 90% of the energy used in the dairy processing industry 

[17]. 

We primarily on reducing energy usage, the dairy industry consumes 

significant amounts of energy in the form of stream and water in CIP and 

other systems. Given water’s rising importance as a resource, as well as the 

energy use associated with heating and pumping water, this guide includes a 

chapter on basic water efficiency measures applicable to the dairy processing 

industry [17].  

 

4.1.2 Strategies to improve energy efficiency 

 

4.1.2.1 First strategy  

To overcome the quantity of heat loss in the equipment and how to 

improve the energy efficiency of the plant, several strategies that have the 

potential to enhance the present condition were analyzed. It was recognized 

that use of steam can be compensate with the help of introducing TVR 

(Thermal Vapor Recompression) or MVR (Mechanical Vapor 

Recompression). It is considered as our first strategy. 

 

4.1.2.2 Second strategy 

As we already discussed in the previous chapter that dairy industry 

consumes significant amount of water in the form of CIP (Cleaning in 

Process). Clean-in-place (CIP) is a process of cleaning the interior surfaces 

of milk powder plant’s pipes, vessels, process equipment, filters and 

associated fittings, without disassembling the plant. In our base scheme we 

use CIP from external first by heating the water and then mixed with CIP 

liquid. It was recognized that use of water from different source and heating 
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it could be compensating by the heat available in part of condensates, which 

we received from all three effects and are not returned back to the boiler. 

4.1.2.3 Third strategy  

To overcome the quantity of heat loss in the dryer section and how to 

improve the efficiency of the dryer, some strategies that have potential to 

enhance the present condition were analyzed and it was recognized that we 

can regenerate the hot air, which is coming out of dryer (from cyclone 

separator and bag filter) and use its energy to heat up the incoming air and 

save our steam. Our company operates one stage drying where the output air 

temperature from the dryer is relatively high, so the heat regeneration system 

is possible. 

Other opportunities are using the heat in condensates from evaporator 

to preheat the inlet air to the dryer or using part of vapors from the 

evaporator for the same thing. However, we are using the heat in condensates 

for CIP water preheating (strategy 2) so that it will be not enough heat for 

preheating the drying air. Similar with the vapors from evaporators. Great 

amount of vapors are used to preheat incoming milk before evaporation and 

we have practically no reserve to use the vapors to preheat the drying air.  

Another problem is to substitute the steam drying air heater by 

indirect natural gas heater. But the efficiency of indirect gas heater is much 

lower and direct gas heater with greater efficiency is not possible in dairy 

industry. It will bring only the effect to reduce the maintain costs for high-

pressure steam so this opportunity will not be further discussed.    
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4.2 Optimized process flow diagram 

After implementing all three above mentioned strategies in our base 

scheme, we will optimize our base scheme and will be able reduce energy 

and this will lead to a certain percentage of reduction in direct operating cost 

which will be further explained in following economy section. The 

optimized process flow diagram (PFD) after implementing all three 

strategies is available in the appendix to this work. 

 

 

4.2.1 Outcomes with first strategy  

 

First strategy is about introducing of vapor recompressor so it could 

recompress the vapor and we will be able to save out steam, in order to serve 

this purpose, we will use TVR (thermal vapor recompression) instead of 

MVR (mechanical vapor recompression) because MVR is way too expensive 

as compare TVR and is better for new designed evaporators.  Therefore, we 

will introduce TVR as shown in figure 14 as it will take the steam from 

second effect and recompress it and fed it to first effect (mono thermal vapor 

recompression). The details are shown in table 11 and by comparing table we 

can see that we are able to save sufficient amount of steam i.e. “1369 kg/h” 

with the help of TVR. 

On the other side, using TVR in our evaporator will cause the 

decrease of temperatures of milk preheaters so the installed pasteurization 

unit will not have enough power to heat up the milk to necessary 

pasteurization temperature, which will increase the investment costs. To 

implement TVR, new reconnections of evaporator callandrias will be 
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necessary. Due to the lower vacuum according to base scheme, new vacuum 

pumps will be purchased and installed. 

 

 

            Figure 14 - Balancing scheme of the improved system according 1st strategy. 
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To select the proper TVR we will need information about necessary 

suction steam rate MS, motive steam rate MM, suction vapor pressure ps and 

discharge vapor pressure pd.  

 

Suction vapor flow rate MS [kg/h] 2022.057 

Motive steam flow rate MM [kg/h] 2161.439 

Discharge vapor flow rate 

MD=MS+MM 

MD [kg/h] 4183.496 

Entertainment ratio  

R=MS/MM 

R [-] 0.95 

Suction vapor pressure ps [bar] 1.18 

Discharge vapor pressure pd [bar] 1.285 

Compression ratio C=pd/ps C [-] 1.1 

Expansion ratio 

E = pm/ps 

E [-] 1.67 

Motive steam pressure pm [bar] 1.97 

Selected type 

DN motive steam / 

DN suction nozzle / 

DN discharge nozzle  

- - 5“ 

DN80/ DN125/ 

DN125 

TVR Efficiency   1:1.94 

                                Table 9. Details about TVR (1st Scheme) [33]. 
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Sl. No. Condition Value 

01. Incoming milk temperature 5 °C 

02. Incoming milk solid concentration 9 % 

03. Milk flow rate 12000 kg/h 

04. Concentrate dry matter content 49 % 

05. Cooling water in 25 °C 

06. Cooling water out 31.2 °C 

07. Cooling water flowrate 70 m3/h 

08. Vapor withdrawal from 1st effect for preheater 1 193.04 kg/h 

09. Vapor withdrawal from 2nd effect for preheater 2 346.4 kg/h 

10. Vapor withdrawal from 3rd effect for preheater 3 632.3 kg/h 

11. Milk temperature after preheater 1 52.8 °C 

12. Milk temperature after preheater 2 43.4 °C 

13. Milk temperature after preheater 3 26.3 °C 

14. Milk temperature after pasteurizer 72 °C 

15. boiling point elevation 1st effect 0.2 °C 

16. boiling point elevation 2nd effect 0.4 °C 

17. boiling point elevation 3rd effect 1.15 °C 

18. Milk boiling temperature in 1st effect 68 °C 

19. Milk boiling temperature in 2nd effect 58.8 °C 

20. Milk boiling temperature in 3rd effect 42.4 °C 

21. Temperature difference 1st effect 12 °C 

22. Temperature difference 2nd effect 8 °C 

23. Temperature difference 3rd effect 15 °C 
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24 Overall heat transfer coefficient for 1st effect 2900 W/m2K 

25.. Overall heat transfer coefficient for 2nd effect 2100 W/m2K 

26. Overall heat transfer coefficient 3rd effect 900 W/m2K 

                  Table 10.Mass and energy balance of base scheme with TVR 

 

 

 
 

 

 
Sl. No. Process condition Value 

01. Temperature of milk leaving the evaporators 42.4 °C 

02. Solid concentration of milk leaving the evaporators 49 % 

03. Total amount of evaporated water 9795.918 Kg/h 

04. Loss to condensation 989.7 Kg/h 

05. Dry matter content after 1st effect 13.8 % 

06. Dry matter content after 2nd effect 28.2 % 

07. Dry matter content after 3rd effect 49 % 

08. Vapor temperature 1st effect 67.8 °C 

09. Vapor temperature 2nd effect 58.4 °C 

10. Vapor temperature 3rd effect 41.25 °C 

11. Heating steam temperature 1st effect 80 °C 

12. Heating vapor temperature 2nd effect 66.8 °C 

13. Heating vapor temperature 3rd effect 57.4 °C 

14. Pressure in Calandria 1 28.5 kPa 
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15. Pressure in Calandria 2 18 kPa 

16. Pressure in Calandria 3 9.5 kPa 

17. Necessary amount of heating steam for evaporators 2161.4 kg/h 

18. Necessary amount of heating steam for pasteurizer 406.5 kg/h 

19. Necessary amount of heating steam for CIP 1900 kg/h 

20. Total power of installed pumps 12.3 kW 

21. Total power of vacuum pumps 2x8 kW = 16 kW 

                                   Table 11.Mass and energy balance of strategy 1 

                                                 

 

Calandria   1 2 3 

Length of tube L m 5 5 5 

Diameter of tube D mm 48 48 48 

Number of tubes NT  116 226 113 

Heat transfer area of one 

tube 

A_1tb m2 0.75398 0.75398 0.75398 

Total heat transfer area A_eff m2 87.5 170.4 85.2 

Reserve in heat transfer area A_res m2 9.4 14.5 5.3 

Heat transfer area check   OK OK OK 

                                Table 12. Evaporators heat transfer areas 
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                                 Table 13.Total energy consumption balance of strategy 1 

 

 

4.2.2 Outcomes with second strategy 

 

Our second strategy is to save energy to heat up the water for CIP 

purpose and use heat in rest of condensates, which we are receiving from all 

three effects and collecting in condensate tank. Condensates from live 

heating steam are returned to the boiler. The total value of available 

condensates from all three effect is 9796 kg/hr. To heat the liquids for CIP 

1900 kg/hr of life steam is needed. A plate heat exchanger will be installed to 

the condensate line to preheat the water for CIP purpose. The heated CIP 

water will be accumulated in new installed accumulation tank. Available 

amount of condensates and its temperature is not able to heat up the water for 

CIP to the needed temperature. But the preheating of CIP water can slightly 

reduce the live steam consumption from 1900 kg/hr. to 1422 kg/hr.  
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Flowrate of CIP water/liquids [kg/hr] 12979 

Flowrate of condensates [kg/hr] 9795 

Condensates - inlet temperature [°C] 55 

Condensates – outlet temperature [°C] 30 

CIP water inlet temperature [°C] 10 

CIP water outlet temperature [°C] 28.8 

CIP water required temperature [°C] 85 

Amount of steam needed for heating CIP water from 

28.8 to 85°C 

[kg/hr] 1422 

                                    Table 14. CIP preheater balance 

 

The optimized process flow diagram after implementing first and 

second strategies as in figure 15. Evaluated energy consumption and energy 

cost savings are summarized in following table 15. 
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                    Figure 15 -Balancing scheme of the improved system according to 2nd strategy. 
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                                         Table 15. Total energy consumption balance of strategy 2 

 

4.2.3 Outcomes with third strategy 

 

In third and final strategy we plant to save energy in dryer section by 

regeneration.  By using the energy of the hot air which is coming out from 

cyclone separator and bag filter to heat the incoming air in the dryer. Mass 

and energy balance of dryer section with regeneration is shown in table 7 and 

by comparing the result with table 5 we can see that we are able to save 

sufficient amount of steam i.e. “422.49 kg/h” with the help of regeneration. 

In our study we are assuming using air to air regeneration where the 

outcoming drying air from bag filter will be connected to the recuperation 

unit. Incoming air will be sucked through the recuperation unit to be 

preheated by outcoming air and will be led through the steam calorifer to the 

drying chamber.  

To use the new recuperation unit, complete reconstruction of air 

ducts will be necessary. Because the recuperation unit will significantly 

increase the pressure loss, we have to use new fans – it will significantly 

increase the electric consumption of both fans. 
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In our study we used simplified calculation of regeneration unit based 

on efficiency of recuperation according to the formula 

𝜖 =
𝑇𝑜𝑢𝑡 − 𝑇𝑎

𝑇𝑖𝑛 − 𝑇𝑎
 

where Tout is a temperature of preheated air leaving the recuperation 

unit, Ta is ambient air temperature and Tin is temperature of the outcoming 

air from bag filter entering the recuperation unit. 

However typical dry efficiency of recuperation unit reported by 

manufacturers is 72 – 75 %, we are assuming for our calculation 

recuperation unit efficiency only 55 %. It is because the possibility of fouling 

creation by sticky dust particles contained in outcoming air. Our recuperation 

unit can preheat the incoming air to the dryer about 35°C (although this 

value is rather optimistic), which is consistent with the values published in 

literature [26]. Because the outcoming air from dryer goes through the 

cyclone separator and bag filter, we are assuming for our calculation that the 

air temperature will drop to the 85 °C. The balance of recuperation unit is 

summarized in the following table 15. Scheme of the technology which 

combines strategy 1, strategy 2 and heat recuperation (strategy 3) is in the 

figure 16.  
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Assuming efficiency of the recuperation ε [%] 55 

Ambient air temperature Ta [°C] 20 

Assuming temperature of outcoming air from bag filter 

entering the recuperation unit Tin 

[°C] 85 

Temperature of preheated drying air leaving the recuperation 
unit Tout 

[°C] 55.75 

Absolute humidity of preheated air [Kg/kg] 0.0074 

Specific enthalpy of preheated air at temp. Tout [kJ/kg] 75.541 

Drying air flowrate [kg/h] 27000 

Drying air temperature leaving steam heater [°C] 200 

Specific enthalpy of drying air leaving steam heater [kJ/kg] 226.476 

Theoretic Heat power of steam heater [kW] 1123.6 

Real heat power of steam heater [kW] 1146.5 

Amount of steam to heat up the drying air [kg/h] 1748.96 

                                     Table 16.  Balance of the recuperation unit 
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             Figure 16 -Balancing scheme of the improved system according to 3rd strategy. 
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                                      Table 17.  Total energy consumption balance of strategy 3 

 

Evaluated energy consumption and energy cost savings for optimized 

scheme (Strategy 1+2+3) are summarized in following table 18. 

 

 

                                       Table 18. Total energy consumption balance for strategy (1+2+3) 
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               Figure 17 -. Comparison of base and final process flow diagram 
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Chapter 5: Other Consideration 

 

 

Apart from energy analysis we could use consider other methodology 

for optimization of manufacturing plant, like Six Sigma.  

 

Six Sigma-based structure using define-measure-analyze-improve 

control (DMAIC) the methodology is selected through the utilization of 

design of experiments tool to concentrate on customer’s demands to improve 

the quality aspect of milk powder production process in milk powder 

manufacturing company [18]. 

 

The integrity of Six Sigma plays the best role for facilitating any 

dairy company to define the problem and minimize its goal through a well-

organized procedure. 

 

Six Sigma has been examined to be a well-organized, commanding 

system to continuously enhance the processes and produce new products by 

using efficient scientific and statistical tools and methods. So, after 

optimizing plant with mass and enthalpy analysis we can use a Six Sigma-

based structure using DMAIC methodology to advance the quality aspect of 

the milk powder production process in the company. 
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We need to study to see the possible area in which Six Sigma 

DMAIC approach can help to improve the quality of milk powder production 

process. This case can assist managers of the company to apply the Six 

Sigma method to discuss complex problems in other processes, where 

problems individually are not clear. 

 

Basically, in six sigma we focus on variation and defects, we can 

eliminate the defects but we cannot eliminate the variation but we can 

minimize the variation, for example in the production of milk powder we 

face problems regarding the Ph. of milk and milk powder is 6 to 7. Which we 

can explain in the following illustration below  
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                                          Figure 18 -Explanation for LSL AND USL in histogram 

 

So, if we consider LSL (lower specific limit) as 6 and USL (upper 

specific limit) as 7. So, in first case we see we have lots of variation and 

some values are out of the limits. So, after using six sigma we can control 

variation (figure 11) within the limits and ideally try to eliminate them. It’s 

one example to show how we can implement six sigma in the process to 

optimize and improve the process quality of the process and similarly we can 

use six sigma methodology in other problem in our process by Defining –

Measuring – Analyzing –Improving and Controlling (DMAIC).  
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Chapter 6: Economy 
 

 

In the previous chapter we have discussed some ways how to 

optimize the milk powder production line by making changes in process flow 

diagram. In this chapter, we will discuss economy aspect of our optimized 

process flow diagram and compare it with base scheme.  

Because the current milk powder technology has been shut down for 

longer time, putting the technology back into operation will require some 

investments whose exact scope we cannot determine. For this reason, the 

economic evaluation of the proposed strategies will be carried out only from 

the perspective of necessary investments for proposed strategies accepting 

some amount of investments to repair the current evaporator.  

  

6.1 Fixed capital investments 

In this section, we will calculate fixed capital investments for each 

proposed strategy as a change of necessary total investment costs to put the 

current state into the operation and for proposed improvement.  
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6.1.1 Fix capital investments to install TVR 

 

Fix capital investments for new proposed TVR installation to the 

evaporator are mainly connected with purchasing the thermo-compressor ant 

its cost for installation. As commented before, after application TVR, the 

outlet temperature from milk preheaters will be lower and current 

pasteurization unit for milk repasteurization will not have enough power to 

heat up the milk to required temperature. Therefore, the new pasteurization 

unit have to be purchased together with new vacuum pumps due to the 

slightly lower pressure in the effects. Finally, some amount of investments 

for evaporator renovation, reposition of the effects and its cleaning are 

considered too. Necessary investments are summarized in table 19. 

 

 

Equipment Pieces CZK/piece CZK total 

Thermo-compressor 1       750 000,00 Kč        750 000,00 Kč  

New pasteurizer 1    2 500 000,00 Kč     2 500 000,00 Kč  

vacuum pump 2          85 000,00 Kč        170 000,00 Kč  

Installations 1       600 000,00 Kč        600 000,00 Kč  

Evaporator reposition, cleaning and assembly 1    2 800 000,00 Kč     2 800 000,00 Kč  

subtotal        6 820 000,00 Kč  

Project and engineering (10 %)           682 000,00 Kč  

Total investment cost        7 502 000,00 Kč  

Total investment cost including TAX        9 077 420,00 Kč  

               Table 19. Fix capital investments for TVR installation according strategy 1 scheme 
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6.1.2 Fix capital investments to utilize the heat in 

condensates to preheat CIP liquids 

 

Assumed fix capital investments for utilization the heat in 

condensates from evaporator effects to preheat the water for CIP are 

summarized in table 20. Investments counting with purchasing new plate 

heat exchanger (with quite large heat transfer area), accumulation tanks for 

preheated CIP water accumulation, necessary pumps and costs for assembly 

and installation. 

 

 

Equipment Pieces CZK/piece CZK total 

Heat exchanger 1       550 000,00 Kč        550 000,00 Kč  

Warm water accumulator 4       120 000,00 Kč        480 000,00 Kč  

Pumps 2          42 000,00 Kč           84 000,00 Kč  

Installations 1       250 000,00 Kč        250 000,00 Kč  

       

subtotal        1 364 000,00 Kč  

Project and engineering (10%)           136 400,00 Kč  

Total investment cost        1 500 400,00 Kč  

Total investment cost including TAX        1 815 484,00 Kč  

      Table 20. Fix capital investments for utilization heat in condensates to preheat CIP liquids 
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6.1.3 Fix capital investments for drying air regeneration 

 

Finally, the fix capital investments cost for drying air regeneration 

proposed as 3rd strategy are summarized in table 21. The investments 

counting with purchasing the cleanable air to air recuperation unit applicable 

in food processing industry together with necessary materials to rebuild air 

ducts. Because of higher pressure loses in air ducts, it is necessary to change 

the current fans with bigger one. The last part of the fix capital investments 

are the costs for assembly and installation of the recuperation unit, new air 

ducts and fans. 

 

           

Equipment Pieces CZK/piece CZK total 

Heat recuperation unit 1    2 320 000,00 Kč     2 320 000,00 Kč  

Air ducts and other materials 1       120 000,00 Kč        120 000,00 Kč  

Fans 2       320 000,00 Kč        640 000,00 Kč  

Installations 1       750 000,00 Kč        750 000,00 Kč  

       

subtotal        3 830 000,00 Kč  

Project and engineering (10%)           383 000,00 Kč  

Total investment cost        4 213 000,00 Kč  

Total investment cost including TAX        5 097 730,00 Kč  

                           Table 21.Fix capital investments for drying air heat regeneration 
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6.2 Methodology of economical evaluation 

 

The first step of our economical evaluation is the cash flow 

estimation. Cash flow means the balance of money (incomes and 

expenditures) on project account. Clear annual cash flow is annual incomes 

and expenditures excluding fix capital investments. 

 

𝐶𝐹 = ∑(𝐼𝑛𝑐𝑜𝑚𝑒𝑠 − 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠) − 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠 

 

where CF express annual profit of the project (cash flow) and in our 

study it is the change of operational expenditures before and after project 

realization excluding investments. 

 

Simple payback period SPP is one of the indicator of economic 

efficiency of the project but it does not include the effect of time value of 

money. This parameter is suitable indicator of project profitability only for 

very simple projects. 

 

𝑆𝑃𝑃 =
𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠

𝐶𝐹
 

To reflect the time value of money (effect of inflation and effect of 

other possible investment opportunities) we are using discount factor to 

recalculate our project cash flow with respecting time value of the money. 

Discount rate r is usually set by company management and it is equal to the 

profitability of other investment opportunity. Using discount rate we are able 
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to recalculate future cash flows of the project to the present time. Discount 

rate is usually set as minimal acceptable profitability of the invested capital. 

 

The sum of annual project cash flow discounted by constant discount 

rate r to the present time represents the other economic indicator - Net 

Present Value NPV: 

𝑁𝑃𝑉 =  ∑
𝐶𝐹𝑡

(1 + 𝑟)𝑡

𝑡𝐿

𝑡=1

− 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠 

where NPV is net present value, r is discount rate, CFt is cash flow in 

year t and tL is the lifetime of the project (evaluation time of the project).  

NPV is the main indicator for the decision about project 

implementation. Only from the economical point of view, we should 

recommend the proposed strategy with the highest positive value of NPV. 

 

Another indicator of project profitability is Real Payback Period 

RPP. It is similar indicator as SPP but with reflecting time value of money. 

RPP can be calculated from condition 

∑
𝐶𝐹𝑡

(1 + 𝑟)𝑡
− 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 𝐼𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠 = 0

𝑅𝑃𝑃

𝑡=1

 

The last evaluated indicator of economic profitability of the proposed 

project is Internal Rate of Return IRR, which can be calculated from: 

∑
𝐶𝐹𝑡

(1 + 𝐼𝑅𝑅)𝑡
− 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡𝑠 = 0

𝑡𝐿

𝑡=1
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where IRR is Internal Rate of Return, CFt is cash flow in year t and tL 

is the lifetime of the project (evaluation time of the project). In other words, 

it is the value of discount rate where the NPV is directly equal to zero. Next 

to the NPV, IRR is the second important parameter for decision about project 

implementation. 

 

Our economy evaluation is carried out without considering the way 

of financing and does not reflect the annual increases in energy prices. 

 

6.3 Project cash flow estimation 

 

Our project cash flow represents the change of operating 

expenditures comparing the current state and state after proposed strategy to 

reduce energy consumption implementation together with depreciations of 

investment costs and income tax. 

 

Depreciation of investments: 

 Duration:    10 years 

 Depreciation rate in 1st year:  5.5% 

 Depreciation rate in year 2-10: 10.5% 

 Income Tax rate:   19 % 
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Our cash flow is estimated by the save of money connected with 

savings of energy in steam and electric energy. But new equipment will 

require some annual maintenance, annual revisions and other costs, we are 

assuming this operating cost as 2% from investments.  

 

6.4 Results of economical evaluation 

In this chapter, the results of economical evaluation of all proposed 

strategies to reduce the energy consumption of milk powder technology will 

be presented and discussed according evaluated economic profitability 

indicators. 

 

 

6.4.1 Economic evaluation of 1st strategy 

 

Strategy 1 represents the evaporator optimization by installing thermal vapor 

recompression (TVR). 

 

 

Parameter Unit Value 

Capital Investments CZK 9 077 420 

Change of Incomes from selling the product CZK/year 0 

Change of costs on raw materials CZK/year 0 

Change of personal costs CZK/year 0 

Change of costs on energies CZK/year 6 502 922.92 

Change of other operational costs (maintenance and other 

costs) 

CZK/year -181 548.48 

Total profit before TAX CZK/year 6 321 374.52 

Depreciations – year 1 CZK/year 499 258.10 

Depreciations – year 2-10 CZK/year 953 129.10 

Change of Income TAX – year 1  CZK/year -1 106 202.12 

Change of Income TAX – year 2-10 CZK/year -1 019 966.63 
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Change of Income TAX – year 10-next CZK/year -1 201 061.16 

Project lifetime tL years 15 

Discount rate % 8 

Simple payback period SPP years 1.44 

Real Payback Period RPP years 2 

Net Present Value NPV CZK 35 885 104.46 

Internal Rate of Return IRR % 58 

                                Table 22.  Economic evaluation of 1st strategy 

   

 

                                   Figure 19 - Economic evaluation graph for 15 years after 1st strategy 
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6.4.2 Economic evaluation after (1st + 2nd) strategy 

 

Strategy 2 represents the evaporator optimization by installing 

thermal vapor recompression (TVR) together with the utilization of heat in 

condensates to preheat the water for CIP. 

Parameter Unit Value 

Capital Investments CZK 10 892 904 

Change of Incomes from selling the product CZK/year 0 

Change of costs on raw materials CZK/year 0 

Change of personal costs CZK/year 0 

Change of costs on energies CZK/year 7 026 599.87 

Change of other operational costs (maintenance and 

other costs) 

CZK/year -217 858.08 

Total profit before TAX CZK/year 6 808 741.79 

Depreciations – year 1 CZK/year 599 109.72 

Depreciations – year 2-10 CZK/year 1 143 754.92 

Change of Income TAX – year 1  CZK/year -1 179 830.09 

Change of Income TAX – year 2-10 CZK/year -1 076 347.50 

Change of Income TAX – year 10-next CZK/year -1 293 660.94 

Project lifetime tL years 15 

Discount rate % 8 

Simple payback period SPP years 1.59 

Real Payback Period RPP years 3 

Net Present Value NPV CZK 37 675 686.61 

Internal Rate of Return IRR % 52 

                                       Table 23. Economic evaluation of 2nd strategy 
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                         Figure 20 -Economic evaluation graph for 15 years after (1st + 2nd) strategy 

 

6.4.2 Economic evaluation after (1st + 2nd +3rd) strategy 

 

Strategy 3 represents the evaporator optimization by installing 

thermal vapor recompression (TVR) together with the utilization of heat in 

condensates to preheat the water for CIP and drying air regeneration. 

 
Parameter Unit Value 

Capital Investments CZK 15 990 634 

Change of Incomes from selling the product CZK/year 0 

Change of costs on raw materials CZK/year 0 

Change of personal costs CZK/year 0 

Change of costs on energies CZK/year 8 340 384.44 

Change of other operational costs (maintenance and 

other costs) 

CZK/year -319 812.68 

Total profit before TAX CZK/year 8 020 571.76 

Depreciations – year 1 CZK/year 879 484.87 

Depreciations – year 2-10 CZK/year 1 679 016.57 

Change of Income TAX – year 1  CZK/year -1 356 806.51 
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Change of Income TAX – year 2-10 CZK/year -1 204 895.49 

Change of Income TAX – year 10-next CZK/year -1 523 908.63 

Project lifetime tL years 15 

Discount rate % 8 

Simple payback period SPP years 1.99 

Real Payback Period RPP years 3 

Net Present Value NPV CZK 41 617 361.38 

Internal Rate of Return IRR % 42 

                                      Table 24. Economic evaluation of 3rd strategy 

 

 
 
              Figure 21 -Economic evaluation graph for 15 years after (1st + 2nd +3rd) strategy 

 

 

 

 

6.5 What – If analysis 

 

From the economical evaluation presented in previous chapter, we 
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was evaluated at strategy 3. Therefore, the strategy 3 is the optimal case for 

reducing energy consumption that brings the highest energy savings, money 

savings and has greatest NPV value.  

To study the effect of capital investment costs, cash flow and 

discount rate on NPV, what-if analysis was done. What-if analysis should 

tell us if the optimal strategy will be profitable, if the investment costs will 

be higher than assumed or money savings lower than assumed etc. 

 

A) Effect of discount rate on NPV for optimized strategy 3: 

 

 
                            Figure 22 -Effect of discount rate on NPV for optimized strategy 3 
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B) Effect of amount of investment on NPV for optimized strategy 3: 

 

 

 
                         Figure 23 -Effect of amount of investment on NPV for optimized strategy 3 

 

 

 

C) Effect of amount of cash-flow on NPV for optimized strategy 3: 
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                         Figure 24 - Effect of amount of cash-flow on NPV for optimized strategy 3 

 

 

Chapter 7: Summary 

 

With this report we can improve or optimize the milk powder 

production plant or any other plant with the help of six sigma and energy 

analysis. Firstly we create a model of a milk powder plant of Company A  

and then after mass and enthalpy balance with the help of MS-excel software 

by which we get to know the performance of process flow diagram under 

normal operation, then we can examine where we can improve the efficiency 

of the plant in order to make overall efficiency of plant better. On the basis 

of values, we get by mass and enthalpy balance, we proposed three strategies 

and if we implement those strategies it can lead to important improvement in 

overall efficiency of the plant. Then we try to explain how we can implement 

six sigma methodology in food processing industry and benefits of six sigma 

which can improve the quality of the product. 

The overall approach of improving energy efficiency and quality of 

the product can lead to huge profit to the company if company implement the 

recommended changes in process flow diagram for energy efficiency and six 

sigma for quality improvement rejection control also it is beneficial to the 

environment. 
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