
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Measurement

Master’s Thesis

Single machine scheduling
minimizing the weighted number
of tardy jobs assuming strongly
correlated instances

Bc. Lukáš Hejl
Open Informatics, Computer Engineering

January 2020
Supervisor: doc. Ing. Přemysl Šůcha, Ph.D.

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

434736Personal ID number:Hejl LukášStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Measurement

Open InformaticsStudy program:

Computer EngineeringBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Singlemachine schedulingminimizing the weighted number of tardy jobs assuming strongly correlated
instances

Master’s thesis title in Czech:

Rozvrhování na jednom stroji s minimalizací váženého počtu zpožděných úloh pro silně korelované
instance

Guidelines:
This thesis addresses a scheduling problem of minimizing the weighted number of tardy jobs on a single machine. The
stress is put on strongly-correlated problem instances, i.e. instances where weight of a job equals its processing time plus
a constant which is the same for all jobs. The aim is to make an attempt to improve algorithm described in [1] for
strongly-correlated instances. The particular objectives of the thesis are:
1) Review the existing works in the scheduling domain and analyze results described in [1].
2) Based on [1], devise an scheduling algorithm for 1|wi = pi + K|sum wi Uj where K is a constant.
3) Implement the scheduling algorithm.
4) Compare the devised algorithm with results published in [1].

Bibliography / sources:
[1] P. Baptiste, Federico Della Croce, Andrea Grosso, Vincent T'Kindt:
Sequencing a single machine with due dates and deadlines: an ILP-based approach to solve very large instances. J.
Scheduling 13(1): 39-47 (2010).
[2] Muminu O. Adamu, Aderemi O. Adewumi: A survey of single machine scheduling to minimize weighted number of tardy
jobs In: Journal of Industrial & Management Optimization. 10, 12(4):1465-1493 (2014).
[3] Michael L. Pinedo: Scheduling: Theory, Algorithms, and Systems (3rd ed.). Springer Publishing Company, Incorporated.
2008.

Name and workplace of master’s thesis supervisor:

doc. Ing. Přemysl Šůcha, Ph.D., Department of Control Engineering, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: __________Date of master’s thesis assignment: 21.04.2019

Assignment valid until:
by the end of winter semester 2020/2021

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
Head of department’s signaturedoc. Ing. Přemysl Šůcha, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Acknowledgement / Declaration

First of all, I would like to express
my gratitude to my supervisor doc. Ing.
Přemysl Šůcha, Ph.D. for his support
and guidance.

My thanks also go to Ing. Antonín
Novák for his valuable suggestions and
comments.

Last but not least, I would like to
thank my family for their support
throughout my study.

I declare that the presented work
was developed independently and that
I have listed all sources of information
used within it in accordance with the
methodical instructions for observing
the ethical principles in the preparation
of university theses.

In Prague, 7. 1. 2020

. .

v

Abstrakt / Abstract

V této práci se zaměřujeme na silně
korelované instance problému mini-
malizace váženého součtu zpožděných
úloh s termínem dokončení, které jsou
zpracovávané jedním strojem. Pro
tyto instance představujeme vylepšení
algoritmu představeného v článku Bap-
tiste et al. [1]. Hlavním vylepšením je
nový ILP model pro silně korelované
instance využívající dekompozici podle
počtu zpožděných úloh. Dále jsme
představili těsnější horní a dolní meze
pro nekorelované, slabě korelované a
silně korelované instance. Společně tyto
vylepšení umožňují vyřešit do optima
silně korelované instance až do veli-
kosti 5 000 úloh a také výrazně zkrátit
dobu výpočtu u nekorelovaných a slabě
korelovaných instancí.

Klíčová slova: rozvrhování na jed-
nom stroji, vážený počet zpožděných
úloh, silně korelované instance, celo-
číselné lineární programování, metoda
větví a mezí

Překlad titulu: Rozvrhování na jed-
nom stroji s minimalizací váženého po-
čtu zpožděných úloh pro silně korelo-
vané instance

In this thesis, we focus on strongly
correlated instances of the problem
minimizing the weighted sum of the
number of tardy jobs with deadlines
on a single machine. We introduce
improvements to the algorithm pro-
posed by Baptiste et al. [1]. The main
improvement is a new ILP model for
strongly correlated instances, with de-
composition according to the number of
tardy jobs. Other introduced improve-
ments are a tighter lower bound and
upper bound for non-correlated, weakly
correlated, and strongly correlated in-
stances. These all our improvements
allow solving strongly correlated in-
stances to the optimum for up to 5, 000
jobs, and significantly reduced the com-
putational time on non-correlated and
weakly correlated instances.

Keywords: single machine schedul-
ing, weighted number of tardy jobs,
strongly correlated instances, integer
linear programming, branch and bound

vi

Contents /

1 Introduction .1
2 Literature review3
3 Scheduling overview5
3.1 Definition of scheduling

problems. .5
3.2 Common parameters of job.5

3.2.1 Processing time5
3.2.2 Deadline .6
3.2.3 Due date6
3.2.4 Release time.6
3.2.5 Weight .6
3.2.6 Completion time6

3.3 Graham notation.6
3.3.1 Field α .7
3.3.2 Field β .7
3.3.3 Field γ .7

3.4 Examples of usage prob-
lems 1||

∑
Uj , 1||

∑
wjUj a

1|d̃j |
∑
wjUj .8

3.4.1 Example showing the
differences between all
tree problems9

3.5 Problem 1||
∑
Uj9

3.5.1 Description of Moore-
Hodgson algorithm9

3.5.2 Example 10
3.5.3 Connection with prob-

lem 1||
∑
wjUj 12

3.6 Problem 1|pi = 1|
∑
wjUj 12

3.6.1 Description of the al-
gorithm 12

3.6.2 Example 13
3.6.3 Special case 1|pj =

1|
∑
Uj 14

3.7 Problem 1||
∑
wjUj 15

3.7.1 The algorithm for solv-
ing problem 1||

∑
wjUj . . 15

3.7.2 Limitations of the al-
gorithm 16

3.7.3 Example 16
3.7.4 Special case 1|dj =

d|
∑
wjUj 18

4 Preliminaries . 19
4.1 ILP model . 20

4.1.1 Upper bound 21
5 Improved algorithm 23

5.1 Improved ILP model 23
5.1.1 Model reformulation 23
5.1.2 Problem decomposition . . 24

5.2 Improved lower bound 25
5.3 Improved upper bound 26

6 Experiments . 27
6.1 Instances generation 27
6.2 Comparison of ILP models 28
6.3 Comparison of full algorithms . 30

6.3.1 Strongly correlated in-
stances with deadlines . . . 30

6.3.2 Strongly correlated in-
stances without dead-
lines . 32

6.3.3 Weakly correlated in-
stances with deadlines . . . 34

6.3.4 Non-correlated in-
stances with deadlines . . . 35

6.4 Comparison of individual
improvements 36
6.4.1 ILP model improvement . 37
6.4.2 Upper bound improve-

ment . 37
6.4.3 Lower bound improve-

ment . 38
6.5 Upper and lower bounds. 40
6.6 The heaviest strongly corre-

lated instances 41
7 Conclusion . 43
7.1 Future work . 43

References . 44
A Content of the attached CD 47

vii

Tables / Figures

3.1. The instance of problem
1||
∑
Uj . 10

3.2. The instance of problem
1|pi = 1|

∑
wjUj 13

3.3. The instance of problem
1||
∑
wjUj . 17

3.4. Example of dynamic pro-
graming table for problem
1||
∑
wjUj . 17

6.1. The original ILP model on
non-correlated instances 28

6.2. The original ILP model on
strongly correlated instances
with C = 20 . 29

6.3. The original ILP model on
strongly correlated instances
with C = 0 . 29

6.4. Our new ILP model on
strongly correlated instances
with C = 20 . 30

6.5. The original algorithm on
strongly correlated instances
with deadlines 31

6.6. Detailed results for the orig-
inal algorithm on strong-
ly correlated instances with
deadlines . 31

6.7. Our improved algorithm on
strongly correlated instances
with deadlines 32

6.8. Detailed results for our im-
proved algorithm on strong-
ly correlated instances with
deadlines . 32

6.9. The original algorithm on
strongly correlated instances
without deadlines 33

6.10. Detailed results for the orig-
inal algorithm on strongly
correlated instances without
deadlines . 33

6.11. Our improved algorithm on
strongly correlated instances
without deadlines 33

6.12. Detailed results for our im-
proved algorithm on strongly

3.1. Partial schedule of the exam-
ple of problem 1||

∑
Uj 11

3.2. Optimal schedule of the ex-
ample of problem 1||

∑
Uj 11

3.3. Partial schedule of the
example of problem
1|pi = 1|

∑
wjUj 14

3.4. Optimal schedule of
the example of problem
1|pi = 1|

∑
wjUj 14

3.5. Tree of the recursive relation . . 17
3.6. Optimal schedule of the ex-

ample of problem 1||
∑
wjUj . . 18

viii

correlated instances without
deadlines . 34

6.13. The original algorithm on
weakly correlated instances 35

6.14. Our improved algorithm on
weakly correlated instances 35

6.15. The original algorithm on
non-correlated instances 36

6.16. Our improved algorithm on
non-correlated instances 36

6.17. Strongly correlated instances
and new ILP model 37

6.18. Detailed results strongly cor-
related instances and new
ILP model . 37

6.19. Strongly correlated instances
and the improved upper
bound. 38

6.20. Detailed results correlated
instances and the improved
upper bound. 38

6.21. Strongly correlated instances
and the improved lower
bound. 39

6.22. Detailed results correlated
instances and the improved
lower bound.. 39

6.23. Gaps of both bounds for the
original algorithm 40

6.24. Gaps of both bounds for our
improved algorithm 41

6.25. The original algorithm on
strongly instances with two
due dates . 42

6.26. Our improved algorithm on
strongly instances with two
due dates . 42

ix

Listings /

3.1. Moore-Hodgson algorithm 10
3.2. The algorithm for problem

1|pi = 1|
∑
wjUj 13

3.3. The algorithm for problem
1|pj = 1|

∑
Uj 15

3.4. Dynamic programming for
problem 1||

∑
wjUj 16

x

Chapter 1
Introduction

In this thesis, we deal with a special case of instances of the problem minimizing the
weighted sum of the number of tardy jobs with deadlines that are strongly correlated.
The problem is formally defined by a set of jobs N = {1, . . . , n}, where each job is
defined using four integer parameters: processing time pj , weight wj , due date dj and
deadline d̄j . Jobs are scheduled on a single machine without preemption. The solution
to the problem is a schedule, where the completion time of job j ∈ N is denoted as Cj .
The goal is to find a schedule minimizing

∑
wjUj where Uj = 1 if the job is tardy, i.e.,

Cj > dj . In Graham’s scheduling notation, the problem is denoted as 1|d̃j |
∑
wjUj and

is known to be NP-hard.
It is well-known that certain classes of instances of 1||

∑
wjUj and 1|d̃j |

∑
wjUj

are significantly harder to solve than the others. The same phenomenon is observed,
e.g., with Knapsack Problem [2]. Potts and Van Wassenhove [3] defined three classes
of instances for 1||

∑
wjUj regarding the relation between the weights and processing

times as: (i) strongly correlated, (ii) weakly correlated, and (iii) uncorrelated. Strongly
correlated instances are those where wj = pj + 20. For weakly correlated instances,
an integer weight wj is drawn from the uniform distribution wj ∼ [pj , pj + 20], while
uncorrelated instances does not have any specific relation between pj and wj . Strongly
correlated instances were observed as significantly harder to find an optimal schedule
for, compared to uncorrelated or weakly correlated instances. The results in the paper
of Baptiste et al. [1] show that their state-of-the-art algorithm for 1|d̃j |

∑
wjUj and

1| |
∑
wjUj problems can solve uncorrelated instances with up to 30, 000 and 50, 000

jobs, respectively. In contrast, the same algorithm is not able to solve strongly correlated
instances with just 200 jobs to optimum (4.5% of instances were not solved to optimum
within one hour).

Based on our experiments, the limiting factor for solving uncorrelated and correlated
instances by the algorithm published in [1] is not the same. The principal limiting factor
in the case of uncorrelated instances is the memory limit. It is caused by the quadratic
size of the ILP (Integer Linear Programming) model used inside the algorithm. On
the other hand, strongly correlated instances are significantly harder to solve than
uncorrelated ones for several different reasons. For these instances, the size of memory
is not limiting, but the CPU time grows enormously with the size of the instance.
Another reason why strongly correlated instances are harder lies in a certain job’s
dominance property used in the above-mentioned algorithm. The property states that
if a certain conditions for a pair of jobs are met, then it can be concluded that the two
jobs are either both early or both tardy. Thus, the property can significantly reduce
the number of jobs in the lower bound calculation depending on for how many pairs of
jobs the conditions are satisfied. However, for the case of strongly correlated instances,
the conditions of job’s dominance property translates to the requirement that the jobs
have to have the identical processing times and weights, which is far more restrictive
than the original version for uncorrelated instances. For this reason, it is not possible
to significantly reduce the number of jobs involved in the lower bound calculation, and,

1

1. Introduction .
hence, the ILP model used inside the algorithm tends to be larger. Therefore, even
smaller instances remain intractable for the algorithm.

The third reason is similar to the previous one. The algorithm uses variable-fixing
techniques from Integer Linear Programming to a priori decide whether some job is
early or tardy [4]. The technique requires the knowledge of upper and lower bounds
on the objective function. Even though the gap between the bounds is mostly narrow,
the variable-fixing technique does reduce far less jobs than in the case of uncorrelated
instances.

Lastly, we note that an empirical evidence suggests the higher complexity of strongly
correlated instances as well. The same ILP model employed inside the algorithm of [1]
used just alone with a state-of-the-art solver can handle uncorrelated instances to size
up to 5, 000 jobs, wheres for the strongly correlated it is less than 200 jobs.

In this thesis, we suggest several improvements of the algorithm by Baptiste et al. [1]
proposed for problems 1||

∑
wjUj and 1|d̃j |

∑
wjUj . We particularly focus on strongly

correlated instances; however, the results demonstrate significant improvement con-
cerning the other two classes as well. This thesis presents improvements of the lower
and upper bounds, described in sections 5.2 and 5.3 respectively. The new bounds,
besides other things, allow to reduce more decision variables using variable-fixing tech-
niques, and thus the algorithm is less memory demanding. Furthermore, we reformulate
the ILP model of [1] for strongly correlated instances (Section 5.1). The reformulated
model together with our problem decomposition allows to transform instances having
wj = pj + 20 to instances with wj = pj for which an empirical evidence suggests that
are much easier to solve. These improvements led to a more efficient algorithm capable
of solving larger problem instances than ever before as it is documented in Section 6.

The thesis is structured as follows. The next section provides an overview of existing
work addressing problems 1||

∑
wjUj and 1|d̃j |

∑
wjUj . Section 3 introduces some basic

notions regarding scheduling and tree different scheduling problems that are related to
the one tackled in this thesis. Section 4 summarizes the important parts of the algorithm
proposed by Baptiste et al. [1]. The core of the thesis, i.e., the improvements of the
algorithm, are described in Section 5, while their assessments can be found in Section 6.
The last section concludes the work.

2

Chapter 2
Literature review

The problem of minimizing the weighted number of tardy jobs on a single machine
is studied for many years now. It is known that this problem is NP-hard. For the
deadline-free variant, i.e., 1||

∑
wjUj , Karp [5] proved that the problem is NP-hard

even if all jobs have a common due date. Besides that, [6] proves that if the job’s
processing times or weights are equal to a constant, then the problem can be solved in
polynomial time. The problem 1|d̃j |

∑
wjUj remains NP-hard even if all jobs have the

same weight, e.g., wi = 1 [7].
A related deadline-free variant of the problem 1||

∑
wjUj is studied in more papers.

Authors in papers [8] and [9] propose dynamic programming-based algorithms with
pseudopolynomial time complexity. The few subsequent papers use branch-and-bound
based algorithms to find the exact solution. Villarreal et al. [10] reduce the size of
the problem instances by the application of a dominance theorem. This approach en-
abled solving instances having up to 50 jobs. Tang in [11] introduces some new job’s
dominance rules. The algorithm can solve instances of up to 85 jobs. Authors of [3]
propose an algorithm for solving linear relaxation of 1||

∑
wjUj with time complex-

ity O(n · logn). Their algorithm can solve instances with 1, 000 jobs. M’Hallah and
Bulfin [12] show an algorithm that can solve instances having up to 2, 500 jobs. The
algorithm uses Knapsack problem to compute a bound on the objective function of
1||
∑
wjUj .

Only a few papers study exact algorithms for the problem 1|d̃j |
∑
wjUj . One of the

first exact algorithms for this problem is introduced in paper [13]. The algorithm is
based on the branch-and-bound with dynamic programming for computing bounds and
can solve instances up to 300 jobs. The state-of-the-art algorithm is introduced by
Baptiste et al. [1]. The algorithm is capable to solve very large instances. It is based
on a branch-and-bound technique that uses variable-fixing techniques to reduce the
problem size. The authors also introduce methods for computing very tight lower and
upper bound. The lower bound is based on a transformation to the maximum profit
flow problem; the upper bound computation uses a dominance theorem for reducing
jobs set. The algorithm solves uncorrelated instances for both problems 1|d̃j |

∑
wjUj

and 1| |
∑
wjUj up to 30, 000 and 50, 000 jobs respectively.

Recent research papers addressing the single machine total number of (weighted)
tardy jobs problem concentrate on more specific variants of this problem with the addi-
tional job’s characteristics. The authors of paper [14] focus on a periodic maintenance
(PM) problem modeled as 1|PM |

∑
Uj . For this problem, they present an exact al-

gorithm based on an improved branch-and-bound method with effective lower bound
and several dominance properties. They also show that this problem is NP-hard in a
strong sense. Wang et al. [15] developed two different heuristic algorithms for the prob-
lem 1|pj,r = (1 + p[1] + p[2] + ...+ p[r−1])a|

∑
Uj , denoting a single machine scheduling

problem with time dependent learning effect. Both heuristics are capable find near-
optimal solutions. The authors also show an exact branch-and-bound algorithm for
which they present lower bound and two dominance properties. Paper [16] focuses on

3

2. Literature review .
two problems 1|cos, prec|

∑
wjUj and Qm|cos, p = 1|

∑
wjUj , where cos means com-

mon operation scheduling, i.e., situation when jobs share operations. They propose for
both problem formulations using the set cover problem with an exponential number
of constraints, and use the branch-and-cut method to solve these formulations. Zhao
and Yuan [17] present an improved algorithm with time complexity O(n · logn) for a
problem dealing with a trade-off between the number of tardy jobs and start time of
a machine, denoted as 1||#(

∑
Uj , A). They also present a new algorithm for solving

problem 1||
∑
Uj , with time complexity O(n · logn). The authors in paper [18] address

single machine scheduling problem with machine unavailability periods and a common
due date denoted as 1, hm−1|nr−a, dj = d|

∑
wjUj . They use binary multiple knapsack

problem to formulate the problem, and show that some large instances can be easily
solved with an off-the-shelf-solver for binary multiple knapsack problem. They also
developed a heuristic based on variable neighborhood search technique for instances
that are difficult for an off-the-shelf solver.

4

Chapter 3
Scheduling overview

This chapter focuses on introducing the reader to scheduling problems. The first part
of the chapter summarizes the most basic concepts. In the next part, the reader is ac-
quainted with Graham’s notation [19]. Several uses of problem 1|d̃j |

∑
wjUj and related

problems are presented in Section 3.4. The rest of the section focuses on problems re-
lated to problem 1|d̃j |

∑
wjUj , algorithms that solve these problems, and demonstrating

how they work on examples.

3.1 Definition of scheduling problems
This section, with a definition of scheduling problems, is based on book [20]. To define a
scheduling problem, we introduce two sets. Set of n jobs J = {J1, J2, ..., Jn}; these jobs
Ji are each defined by several parameters such as processing time, deadline, and many
others. These most basic parameters are summarized and described in Section 3.2.
The second set is set of m machines P = {P1, P2, ..., Pm}. These machines can be
dedicated to specific jobs, or allow the execution of all jobs, which are called parallel
machines. These machines can also have different processing speeds of jobs and many
other parameters. Part of these parameters is listed in Section 3.3.

In the definition of a scheduling problem, Blazewicz [20] defines a set of additional
resources R, which we have excluded from the definition since, in this thesis, we consider
only the two sets J and P defined above.

In scheduling, we deal with assigning jobs from set J to set of machines P and time
points so that all constraints specified by parameters of jobs from set J can be met.
All jobs from set J must be completed, making scheduling different from planning.
Furthermore, it is also assumed that each machine processes at most one job at a time,
and likewise, each job can be processed by only one machine at a time.

The outcome of scheduling is a schedule in which it is determined which jobs from set
J are processed on which machine from set P , including the time points when the job
processing starts and completed. In cases where we are not trying to find only a feasible
schedule, but a feasible schedule that minimizes (or maximizes) a certain function, e.g.,∑
wjUj , then this function is denoted as an objective function.
The following section describes the basic parameters of jobs.

3.2 Common parameters of job
In this section, we describe the most common parameters of jobs based on book [21].

3.2.1 Processing time
The processing time of job Ji is denoted as pi, and it is one of the most common param-
eters of a job, which models the time needed to process the specific jobs. Processing
time may be arbitrary for each job. There are also scheduling problems in which jobs
have a common processing time or unit processing time.

5

3. Scheduling overview .
3.2.2 Deadline

The deadline for job Ji is denoted as d̃i. It is a date to which job Ji must be completed.
If the job is placed in the schedule so that it is not completed before its deadline, it
means that this schedule is infeasible. Therefore, it is sometimes called a hard deadline.
For these reasons, it is also necessary to ensure that deadline d̃i of job Ji is not less
than processing time pi. Otherwise, it would not be possible to find the schedule in
which the job is completed before its deadline.

3.2.3 Due date

The due date of job Ji is denoted as di. It is a date to which job Ji can be completed,
but if it is not completed to this date, the schedule is still feasible. Therefore, it is
sometimes called a soft deadline. The due date is often incorporated into a objective
function. For example, if we try to minimize the number of jobs that are completed
before its due date.

3.2.4 Release time

The release time of job Ji is denoted as ri. When using the release time parameter, it
is not considered that all jobs are ready to proceed from the beginning (at the time 0).
The time when the job is ready to proceed is specified as ri, which may be arbitrary
for each job. A job cannot run before its release time, because it is not ready yet, and
such a schedule is not acceptable, which is similar to the deadline.

3.2.5 Weight

We denote the weight of job Ji as wi. This parameter is usually a part of the objective
function, e.g.,

∑
wjUj .

3.2.6 Completion time

The completion time of job Ji is denoted as Ci. Compared to the previous parameters
of jobs, completion time is not a parameter that would typically be specified for each
job in advance. This parameter depends on the position of a job in a schedule. Their
positions determine the time when a job is completed. The completion time is also
affected by other jobs and their parameters. This parameter often appears in the
objective function, such as minimizing the schedule length, minimizing the sum of jobs
completion times, and many more.

3.3 Graham notation

This section, which describes Graham notation, is based on book [20]. Graham notation
is a form of notation of scheduling problems. It is one of the most commonly used forms
for scheduling problems.

Graham notation is composed of three fields α, β and γ, which are separated by
the character |. Each problem which is described by this notation is in the form of
α|β|γ. The first field α describes machine properties. The second field β describes the
properties of the jobs, and the last field γ describes the used objective function.

6

. 3.3 Graham notation

3.3.1 Fieldα
This field of the notation, denoted as α, defines the parameters of machines. These
parameters are the type of machine and its count. This field is divided into two other
subfields. The first subfield denotes the type of machine, which includes:

. ∅ - denotes a single machine,. P - denotes parallel machines that are identical,. Q - denotes parallel machines, where each has its speed, and this speed determines
the time needed to process the job,. R - denotes parallel machines, where each job is processed with different speeds on
each machine. This relationship is defined using a matrix that determines the speed
of a particular job on a particular machine.

Also, several other types of machines are used, but these are not listed because they
are not related to the scheduling problems in this thesis.

The second subfield shows the number of used machines:

. ∅ - denotes that the number of machines is not fixed,. 1 - denotes single machine,. k - denotes a fixed number of machines equal to k.

3.3.2 Fieldβ
This field denoted as β, defines parameters of jobs and their relationships between them.
A list of several used parameters of jobs:

. Preemption - ∅ denotes that jobs must be processed without interruption, while pmtn
denotes that the job can be interrupted while it is processing and then can be resumed
at a later time,. Release time - ∅ denotes that jobs are ready at the beginning of a schedule, while rj

denotes that jobs are ready only after a defined time has elapsed,. Processing time - ∅ denotes that jobs have arbitrary processing times, while, for
example, pj = 1 denotes that all jobs have a processing time equal to 1,. Deadline - ∅ denotes jobs that do not have a deadline, while dj denotes that jobs are
constrained by deadlines.

The list includes only the essential parameters we encounter in this thesis, others
that determine, for example, dependencies between jobs, we have omitted for keeping
this subsection simple.

3.3.3 Field γ
This field defines what objective function is used in the scheduling problem. ∅ or − are
used to define problems where we only need to find an acceptable solution. There is a
large number of objective functions, but only a few examples are given:

. ∑Uj - denotes maximizing the number of early jobs,. ∑wjUj - denotes maximizing the weighted sum of early jobs,. Cmax - denotes minimizing the completion time of the last job in the schedule,. ∑Cj - denotes minimizing the sum of completion times for all jobs,. ∑wjCj - denotes minimizing the weighted sum of completion times of jobs.

In case that objective function contains Uj , it is assumed that jobs have a due date,
then the due date is not listed in the field β unless it has additional constraints.

7

3. Scheduling overview .

3.4 Examples of usage problems 1||
∑
Uj , 1||

∑
wjUj

a 1|d̃j|
∑
wjUj

In this section, we show some examples of using scheduling problems 1||
∑
Uj ,

1||
∑
wjUj and 1|d̃j |

∑
wjUj . These examples show possible uses of problems and also

demonstrate differences between these problems.
Book [21] presents an example of using the problem 1||

∑
Uj in a situation, where

a student is preparing for exams. This student was devoting to other activities and
was not preparing for exams. The student is in the situation when he/she is unable
to prepare for all the exams. This student is trying to plan preparation for exams
and maximize the number of exams, which he/she will pass. This problem can be
formulated using the problem 1||

∑
Uj , where each exam is represented by one job Ji.

The time required to prepare for the exam is represented by processing time pi of job
Ji, and a due date di of job Ji represents the date of exam i.

The following examples illustrate the use of the problem 1|d̃j |
∑
wjUj in several areas

of industry.
One of possible applications of this problem, according to the paper [13], can be

found in the logistics of supplied products. Suppose we have two different types of
transport. One of them may be, for example, road transport, which is cheaper but
even slower. Another type of transport can be, for example, air transport, which is
faster, but significantly more expensive than road transport. We have contracted the
date with the customer by which the product will be delivered. Our goal is to create
a schedule of product manufacturing to minimize shipping costs, and all products will
be delivered on time.

This problem can be formulated using the problem 1|d̃j |
∑
wjUj , where each pro-

duced product is represented by one job Ji. The time required to produce the product
is represented by the processing time pi of job Ji. The due date di of job Ji represents
the date by which a product must be produced to be able to be delivered on time
by road. The deadline d̃i for job Ji represents the date by which the product must
be produced in order to be able to be delivered on time but using more expensive air
transport. The difference in the cost of shipping a product by air transport instead of
road transport is expressed as weight wi of job Ji.

Paper [13] mentions another possible use of the problem 1|d̃j |
∑
wjUj , this time in

the field of agriculture in crops harvesting. Suppose we have one harvester that is used
to harvest crops in different areas. The harvester always harvests the entire area. After
harvesting of this area is finished, it begins to harvest the next area. Harvested crops
are then sold in two markets, local and foreign. In the local market, the crop is sold
at a lower price, while when the crop is exported abroad, it is sold at a higher price.
Exported abroad takes time, so in this case, it is necessary to take into account ripening
or spoilage of the crop during transport.

This problem can be formulated using the problem 1|d̃j |
∑
wjUj„ where each har-

vested area is represented by one job Ji. The time needed for harvesting the area with
a harvester is represented by processing time pi of job Ji. The date by which the crop
must be harvested in order to be exported to the foreign market is represented by due
date di of job Ji. The deadline d̃i for job Ji represents the date by which the crop must
be harvested in order to be sold on the local market. Weight wi of job Ji represents
the difference in the price when we are selling a crop on a foreign market compared to
the local market.

8

. 3.5 Problem 1||
∑
Uj

In the following subsection we present an example showing the differences between
problems 1||

∑
Uj , 1||

∑
wjUj and 1|d̃j |

∑
wjUj .

3.4.1 Example showing the di�erences between all tree problems
Based on the above example from book [21], we have created a similar example, also
coming from the student environment, in which in three different variations, we demon-
strate the differences between the individual problems. Again, as in the original exam-
ple, the student solves the problem of lacking time to complete all assignments due to
too many activities.

In the first variant, all assignments are awarded the same number of points for their
submission on time, submitting all assignments is not mandatory and the student tries
to maximize the number of assignments. This problem can be formulated as problem
1||
∑
Uj , where each assignment i is represented as one job Ji. The deadline for sub-

mitting an assignment for receive points is modeled as due date di of job Ji. The time
required to complete an assignment is represented by processing time pi of job Ji.

In another variant, it is considered that all assignments are awarded by a different
number of points for submitting on time. Submission of assignments is again not
mandatory, but this time the student tries to maximize the gain of point for assignments.
This problem can be formulated as problem 1||

∑
wjUj , where each assignment i is

represented as one job Ji whose parameter processing time pi, and due date di are
assigned in the same sense as in the previous case. A new parameter of job Ji is weight
wi, which is used for modeling points for assignments.

In the last variant, it is again considered that the assignments are awarded by a
different number of points for submitting on time. Also, it is mandatory to submit an
assignment to some date (e.g., before the end of a semester). The students receive points
only for submitting on time. Once again, the student tries to maximize the gain of point
for the assignments. This problem can be formulated as problem 1|d̃j |

∑
wjUj , where

each assignment i is represented as one job Ji whose parameters the processing time pi,
due date di, and weight wi are assigned as in the previous case. A new parameter of
job Ji is the deadline d̃i, which is used to represent the date until the assignment must
be submitted in order to complete the course.

3.5 Problem 1||
∑
Uj

The 1||
∑
Uj problem can be seen as a simplification of the problem 1|d̃j |

∑
wjUj that

occurs by removing deadlines d̃i for all jobs and weight wi from the objective function.
If only deadlines d̃i are removed, the complexity of new problem 1||

∑
wjUj is still NP-

hard, which was proved in paper [5]. If only weight wi is removed from the objective
function, the complexity of new problem 1|d̃j |

∑
Uj is also NP-hard, which was proved

in paper [7]. Only after removing both deadlines and weights, new problem 1||
∑
Uj

become solvable in polynomial time. One algorithm that solves problem 1||
∑
Uj is the

Moore-Hodgson algorithm, which solves this problem with O(n · logn) time complexity.
This algorithm is described in the following subsection.

3.5.1 Description of Moore-Hodgson algorithm
The algorithm first orders all jobs in the instance according to their due dates from the
earliest to the latest (d1 ≤ d2 ≤ ... ≤ dn). These jobs are processed sequentially from
the job with the earliest due date to the job with the latest due date. The algorithm
maintains two variables. Variable S represents a set of jobs that can be completed

9

3. Scheduling overview .
before their due date. The second variable t determines the current time point in the
constructed schedule. During the processing of each job, this job is inserted in set S,
and variable t is increased by its processing time. A check follows to determine if the
last added job will be completed before its due date. If this job succeeds in completing
before its due date, the algorithm continues processing to the next job. Otherwise,
the algorithm iterates through all the jobs in set S and selects job Jk with the longest
processing time. It removes job Jk from set S and also subtracts its processing time
from t. This step replaced job Jk with the currently processed job. The algorithm
continues processing to the next job until all jobs are processed. At the end of the
algorithm, we get a set S containing the maximum number of jobs to be completed
before their due date [22].

The algorithm described in the previous paragraph can be expressed as pseudocode
as follows:

1 Sort J = {J_1, J_2, ..., J_N} by due dates in ascending order
2 Let S be an empty set and t := 0
3 For i := 1 to N
4 Add J_i to set S
5 t := t + p_i
6 If t > d_i
7 Find job J_j in S with the largest p_j
8 Remove J_j from set S
9 t := t - p_j

3.1. Moore-Hodgson algorithm for problem 1||
∑
Uj taken from book [22].

In order to create a schedule from the obtained set S, we must first order all jobs
from set S according to their due dates from the earliest to the latest. According to
this order, jobs are subsequently placed to the schedule. The remaining jobs expressed
as N \S, are jobs that are tardy because they are not completed before their due date.
These jobs can be placed in the schedule after the jobs from set S. We can choose their
order arbitrary because these jobs cannot be completed before their due date (in terms
of placement after jobs from set S), and there are no other constraints.

For a better understanding of the algorithm, we will show how the Moore-Hodgson
algorithm works on a simple example in the following subsection.

3.5.2 Example

The operation of the above algorithm is demonstrated on a simple instance of this
problem with five jobs. These jobs and their parameters are listed in Table 3.1. Since
the algorithm initially orders jobs in the instance from the earliest due date to the
latest, the jobs in Table 3.1 are ordered in this manner.

job pi di

J1 1 2
J2 4 7
J3 3 8
J4 3 8
J5 2 9

Table 3.1. The instance with five jobs of problem 1||
∑
Uj

10

. 3.5 Problem 1||
∑
Uj

The algorithm first process job J1 because it proceeds from the job with the earliest
due date to the job with the latest due date. It adds this job to set S = ∅ and adds
processing time p1 = 1 to variable t = 0. After this step, set S = {J1} and variable
t = 1. The next step is to check if the job being processed will be completed before its
due date, which is d1 = 2. Since t ≤ 2, J1 is completed before its due date, and the
algorithm can continue processing other jobs. In the same way, it processes the other
two jobs J2 and J3. After processing these jobs, set S = {J1, J2, J3} and variable t = 8.
Figure 3.1 shows a partial schedule based on set S.

Figure 3.1. Partial schedule of the example of problem 1||
∑
Uj created from S.

When the algorithm is processing job J4, the job is again added to S, and variable t is
increased by processing time p4 = 3, so t = 11. By checking if job J4 will be completed
before its due date (d4 = 8), it is found that t > 8, therefore job J4 would not be able to
complete before its due date and would be flagged as tardy. In this case, the algorithm
selects job J2 from set S = {J1, J2, J3, J4} because it has the greatest processing time
(p2 = 4). It removes this job from S and decreases value of t from 11 to 7 (p2 = 4).
After this step, job J4 will be completed before its due date d4 = 8.

Subsequently, the algorithm processes the last job J5. This job is added to S, and
variable t = 7 is increased by processing time p5 = 2 to t = 9. The next check shows
that job J5 can be completed before its due date d5 = 9 because of t ≤ 9. Thus, the
algorithm ends and returns set S = {J1, J3, J4, J5} containing jobs, that are early.

To create the schedule, we order jobs from set S = {J1, J3, J4, J5} by due dates from
the earliest to the latest. This gives the following order of jobs J1, J3, J4, J5. In this
order, we put the jobs into the schedule. We place the remaining job J2 behind these
jobs. The created schedule, with the maximum value of

∑
Uj , is shown in Figure 3.2.

Figure 3.2. The final schedule of the example of problem 1||
∑
Uj created from S.

It is good to note that removing job J2 from set S allowed not only job J4 but also
job J5 to be added to set S. If job J2 remained in set S, the total number of early jobs
would be only 3, compared to the optimal 4.

11

3. Scheduling overview .
3.5.3 Connection with problem 1||

∑
wjUj

Problem 1||
∑
Uj is related to problem 1||

∑
wjUj . Both of these problems share so-

lutions space. This means that if we consider an instance of problem 1||
∑
wjUj and

create an instance of problem 1||
∑
Uj by merely omitting the weight of the jobs, it is

possible to say that a feasible solution to the first problem is also a feasible solution
to the second problem and vice versa. This is because the problems differ only in the
objective function. Moreover, if we do not consider the deadlines, any permutation of
jobs in the schedule is a feasible solution.

There is the same connection between problems 1|d̃j |
∑
Uj and 1|d̃j |

∑
wjUj , which

also share the solution space. Also, these two problems differ only in the objective
function, which, as in the previous case, does not impose any constraints on jobs.
Adding the deadline parameter means that any permutation of jobs in the schedule is
no longer a feasible solution, and also that both 1|d̃j |

∑
Uj and 1|d̃j |

∑
wjUj problems

are NP-hard, as demonstrated in papers [7] and [5].
We use the fact that the above pairs of problems share a solution space to determine

the maximum number of early jobs for a given instance, as described in later Section 5.2.

3.6 Problem 1|pi = 1|
∑
wjUj

One of the further simplifications of problem 1|d̃j |
∑
wjUj is problem 1|pi = 1|

∑
wjUj ,

which does not include deadlines compared to the original problem, but only due dates
and all jobs have unit processing time.

After removing the deadlines for all jobs and restricting the job processing time to
pi = 1, this problem can be solved in polynomial time. In contrast, the original problem
1|d̃j |

∑
wjUj is NP-hard, as demonstrated in paper [5].

The algorithm solving problem 1|pi = 1|
∑
wjUj with time complexity O(n · logn) is

described in the following subsection.

3.6.1 Description of the algorithm
The algorithm first orders all jobs in the instance according to their due dates from the
earliest to the latest (d1 ≤ d2 ≤ ... ≤ dn). The algorithm maintains two variables. It
uses variable S to register a set of jobs that can be completed before its due date. The
second variable is t, which holds the current time point in the constructed schedule and
it is initialized to 1. The algorithm proceeds jobs from the job with the earliest due
date to the job with the latest due date. During the processing of each job Ji, the job
is checked if it satisfies the condition di ≥ t alternatively, if this job could be completed
before its due date if the algorithm adds it to set S. If job Ji meets this condition, it is
inserted into set S, and variable t is increased by 1, which corresponds to the processing
time of each job. If a job cannot be added to set S because it would not be completed
before its due date (would be marked as a tardy job), then the algorithm will try to find
a job Jk ∈ S that satisfies the condition wk < wi. If the algorithm does not find any
such job Jk, then job Ji is not added to set S, and the algorithm continues to process
other jobs. Otherwise, Jk ∈ S with the smallest wk is selected and removed from S
and replaced by job Ji. The algorithm then continues processing the next job, until
all jobs are processed. After the algorithm processes all jobs, we get set S containing
jobs that will be completed before their due dates and maximizing the weighted sum∑
wjUj [22].
The algorithm described in the previous paragraph can be expressed as pseudocode

as follows:

12

. 3.6 Problem 1|pi = 1|
∑
wjUj

1 Sort J = {J_1, J_2, ..., J_N} by due dates in ascending order
2 Let S be an empty set and t := 1
3 For i := 1 to N
4 If d_i >= t
5 Add J_i to set S
6 t := t + 1
7 Else if there exists a job J_k in set S with w_k < w_i
8 Find job J_k in set S with the smallest w_k
9 Remove J_i from set S

10 Add J_i to set S

3.2. The algorithm for problem 1|pi = 1|
∑
wjUj taken from book [22].

If we want to create a schedule from the obtained set S, we must first order all jobs
from S according to their due dates from the earliest to the latest. Subsequently, we
will place these jobs in the schedule according to this order from the earliest due date
to the latest. Remaining jobs that are not included in set S are jobs that are tardy
because they are not completed before their due date. These jobs can be placed in the
schedule after the jobs from set S in arbitrary order.

For better understanding of the algorithm, we will show how the algorithm works on
a simple example in the following subsection.

3.6.2 Example

The operation of the above-described algorithm for problem 1|pi = 1|
∑
wjUj is demon-

strated on a simple instance of this problem with five jobs. These jobs and their param-
eters are listed in Table 3.2. Jobs in Table 3.2 are ordered from the earliest due date
to the latest to skip the step when the algorithm initially performs ordering of jobs in
the instance.

job pi di wi

J1 1 1 2
J2 1 2 5
J3 1 3 3
J4 1 3 4
J5 1 4 3

Table 3.2. The instance with five jobs of problem 1|pi = 1|
∑
wjUj .

The algorithm firstly initializes variable S to ∅ and variable t to 1. Then the algorithm
first processes job J1 because it has the earliest due date d1 = 1. The algorithm first
performs testing of condition d1 ≥ t if job J1 is completed before its due date. The job
satisfies the condition d1 ≥ t, therefore, it is added to S, and variable t is increased by
processing time p1 = 1 of job J1. After this step, S = {J1} and variable t = 2. The
algorithm then continues to process the next job. It will process two other jobs J2 and
J3, in the same way as described above. After processing these jobs, set S = {J1, J2, J3}
and variable t = 4. Based on the current state of set S, we can calculate the value of
the objective function

∑
wjUj = 10. Figure 3.3 shows a partial schedule created based

on S.

13

3. Scheduling overview .

Figure 3.3. Partial schedule created from S with the current value of the objective func-
tion 10.

When processing J4, there is a change, when testing of the condition d4 ≥ t, it is found
that job J4 does not meet this condition and would not be completed before its due
date d4 = 3. In this case, the algorithm iterates through set S = {J1, J2, J3} from which
it selects job J1 because it has the smallest weight w1, for which w1 < w4 also holds.
This job is removed from set S = {J1, J2, J3} and replaced by job J4. Subsequently,
the algorithm continues to process job J5, which is the last job. Based on the testing of
condition d5 ≥ t, this job will be completed before its due date. Therefore it is inserted
into set S = {J2, J3, J4}, and the value of variable t = 4 is increased by 1. After the
algorithm is finished, variable t = 5 and set S = {J2, J3, J4, J5}. Also, the algorithm
returns set S = {J2, J3, J4, J5}.

After completing the algorithm, we have a set S = {J2, J3, J4, J5} of jobs that are
early. To create a schedule, we order this set by due dates from the earliest to the
latest. This gives us the following order of jobs J2, J3, J4, J5. And we put the jobs
into the schedule in this order. Subsequently, we place the remaining job J1 into the
schedule after the jobs from set S. The resulting schedule with the maximum value of
the objective function

∑
wjUj = 15 is presented in Figure 3.4.

Figure 3.4. The final schedule created from S with the value of the objective function 15.

3.6.3 Special case 1|pj = 1|
∑
Uj

By removing the weights from problem 1|pj = 1|
∑
wjUj , we obtain problem 1|pj =

1|
∑
Uj , which is a special case of problem 1||

∑
Uj differing in fixed processing times

pi = 1.
For this problem, we can use the original algorithm presented in the previous Sub-

section 3.6.1, or we can use the algorithm described in this subsection for problem
1|pi = 1|

∑
wjUj . This algorithm should be modified by omitting the else branch on

line 7 because the all jobs do not have a weight parameter (or all jobs have the same
weight), so this part is redundant.

This modified algorithm is written using the pseudocode as follows:

14

. 3.7 Problem 1||
∑
wjUj

1 Sort J = {J_1, J_2, ..., J_N} by due dates in ascending order
2 Let S be an empty set and t := 1
3 For i := 1 to N
4 If d_i >= t
5 Add J_i to set S
6 t := t + 1

3.3. The reduced algorithm for problem 1|pj = 1|
∑
Uj based on book [22].

The modified algorithm has the same time complexity as the original variant for
problem 1|pi = 1|

∑
wjUj , which is O(n · logn) because only redundant parts of the

algorithm are removed.
Assuming that jobs are already ordered by due date from the earliest to the latest,

it would be possible to remove the ordering of the input on line 2. After removing this
line and assuming that jobs are ordered by the due date, then the algorithm would have
time complexity only O(n).

3.7 Problem 1||
∑
wjUj

Jobs of problem 1||
∑
wjUj do not have deadlines opposed to jobs of problem

1|d̃j |
∑
wjUj , which is defined in Section 1. By removing the deadlines, each permu-

tation of jobs in the schedule is a feasible solution, differing only by the value of the
objective function. This omission of the deadlines do not affect the complexity class,
so the problem 1||

∑
wjUj is also NP-hard, as shown in paper [5].

This problem is also very close to the problem 1|d̃j |
∑
wjUj , at least by being for-

mulated using the same ILP model, and the algorithm presented in paper [1] solves
instances for both of these problems.

The algorithm for solving the problem 1||
∑
wjUj with pseudo-polynomial time and

space complexity O(n
∑
pi) is described in the next subsection.

3.7.1 The algorithm for solving problem 1||
∑
wjUj

The authors of paper [8] presented this algorithm. The algorithm only works under the
assumption that jobs J1, J2, ..., Jn are ordered according to the due date on the earliest
to the latest (d1 ≤ d2 ≤ ... ≤ dn). The algorithm uses a method of dynamic program-
ming, which is based on the function fj(t), where j = 0, 1, ..., n and t = 0, 1, ...,

∑n
j=0 pj .

This function fj(t) represents the optimal value for jobs J1, J2, ..., Jj , with a constraint
on processing time to a maximum of t. The initial values are defined as follows: fj(t) = 0
when j = 0∨t = 0 and fj(t) = −∞ when t < 0. The following recursive relation defines
the function:

fj(t) =
{
−∞ if t > dj ,
max{fj−1(t), fj−1(t− pj) + wj} otherwise. (1)

15

3. Scheduling overview .
This described algorithm can be written as pseudocode as follows:

1 Sort J = {J_1, J_2, ..., J_N} by due dates in ascending order
2 Let P be the sum of all p_i
3 Let T and W be (N+1)x(P+1) matrices
4 For t := 0 to P
5 T[0][t] = 0
6 For i := 1 to N
7 T[i][0] = 0
8 For i := 1 to N
9 For t := 1 to P

10 T[i][t] := T[i - 1, t]
11 W[i][t] := 0
12 If t > d_i
13 T[i][t] := negative infinity
14 Else if T[i - 1, j - p_i] + w_i > T[i - 1, t]
15 T[i][t] := T[i - 1, j - p_i] + w_i
16 W[i][t] := 1
17 Let S be an empty set
18 Let M be an index of the maximal element in the last row of T
19 For i := N to 0
20 If W[N][M] = 1
21 Add J_i to set S
22 M := M - p_i

3.4. The algorithm for problem 1||
∑
wjUj created from recursive relation (1).

3.7.2 Limitations of the algorithm
The algorithm described in Subsection 3.7.1, which is based on the principle of dynamic
programming, has one major limitation. The runtime of this algorithm not only depends
on the size of a problem but also on the sum of processing time of all jobs. Thus, if
the processing time of jobs is chosen improperly, the runtime and memory consumption
of the algorithm can be extremely large, even for small instances. For example, if a
processing time of jobs is uniformly selected from range 1 − 10, then approximately
0.5GB of RAM will be needed to store this table for 5, 000 jobs. On the contrary, if
processing times of jobs are uniformly selected from range 10, 000− 100, 000, the same
amount of memory will be needed for instances with 50 jobs.

Despite this limitation, the dynamic programming with pseudo-polynomial time and
memory complexity is the best option if there is no other exact algorithm, or it has a
better time complexity for given job parameters.

3.7.3 Example
The tree created from the recursive relation above is shown for a simple instance with
five jobs. These jobs and their parameters are listed in Table 3.3. Since the algorithm
requires ordering jobs by due date from the earliest to the latest, the jobs in Table 3.3
are ordered like that.

We compute the value of the recursive function for f5(8), which we intentionally
selected because, for j = 5 and t = 8, the function returns the optimal value for
these arguments, for the instance in Table 3.3. In Figure 3.5, the same subtrees f3(5)
can be observed. These subtrees are computed twice, although they have the same
result. For larger instances, this occurs considerably more often, and through dynamic
programming, these repeated computations of the same subtrees are eliminated.

16

. 3.7 Problem 1||
∑
wjUj

job pi di wi

J1 1 4 2
J2 3 4 5
J3 2 5 4
J4 2 7 3
J5 3 6 7

Table 3.3. The instance with five jobs of problem 1||
∑
wjUj .

Figure 3.5. Tree of the recursive relation (1) for f3(5). The red numbers next to the nodes
represent the optimal value of the corresponding subtree. The numbers next to the arrows

represent the increment to the objective function.

Using the previously described algorithm for the instance listed in Table 3.3, we
obtain two values for each position in the dynamic programming table. Both values
are shown in Table 3.4. The first is the value of the objective function, and the second
is the binary information if the job at the index j is early (1) or tardy (0). This
information is represented as a subscript. For the example given in Table 3.3, the
result is in Table 3.4, where the subscript indicates whether the job is early or not.
Since computing the Table 3.4 is only applying a recursive relation (1), we do not
describe the creation of Table 3.4.

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10 t = 11
j = 0 00 00 00 00 00 00 00 00 00 00 00 00
j = 1 00 21 21 21 21 −∞0 −∞0 −∞0 −∞0 −∞0 −∞0 −∞0
j = 2 00 20 20 51 71 −∞0 −∞0 −∞0 −∞0 −∞0 −∞0 −∞0
j = 3 00 20 41 61 71 91 −∞0 −∞0 −∞0 −∞0 −∞0 −∞0
j = 4 00 20 41 61 71 91 101 121 −∞0 −∞0 −∞0 −∞0
j = 5 00 20 40 71 91 111 131 141 161 −∞0 −∞0 −∞0

Table 3.4. Data computed by Algorithm 3.4 for the example of problem 1||
∑
wjUj .

We create set of early S jobs from Table 3.4 as follows. In the row with index j = 5,
we select the maximum value, which is 16 at position (j = 5, t = 8). The subscript, it

17

3. Scheduling overview .
1, which determines that job J5 is early and therefore belongs to set S. Therefore, it
decrements index j and subtracts the processing time p5 = 3 from t. Then, we continue
at position (j = 4, t = 5). At this position, there is a value 1 in the subscript again, so
J4 is added to set S, and we continue to position (j = 3, t = 3). The situation is again
the same, and job J3 is added to set S, and we continue to position (j = 2, t = 1).
At this position, it is in subscript a value 0, so J2 is tardy and does not belong to set
S. Therefore, only index j is decremented, and index t remains the same. So when
processing the last job J1, we move to position (j = 1, t = 1). According to value 1 in
the subscript, job J1 is early and thus belongs to set S. The resulting set of early jobs
is S = {J1, J3, J4, J5}.

As in the previous examples, we create a schedule from set S by ordering the jobs
in set S = {J1, J3, J4, J5} from the earliest to the latest due date which is J1, J3, J4, J5.
In this order, we insert them into the schedule and put J2 at the end of the schedule.
The resulting schedule is shown in Figure 3.6.

Figure 3.6. The final schedule created from S with the value of the objective function 16.

3.7.4 Special case 1|dj = d|
∑
wjUj

If we add the constraint that all jobs have a common due date d, then we get a problem
denoted as 1|dj = d|

∑
wjUj . This problem is equivalent to the 0/1 knapsack problem.

The common due date d corresponds to the backpack capacity, processing time pi of
job Ji corresponds to the weight of the item in the 0/1 knapsack problem. Weight wi of
the job Ji corresponds of the increase to the objective function when placing the item
in the knapsack.

Based on this context, it is possible to use the knowledge from the 0/1 knapsack
problem for the problem 1|dj = d|

∑
wjUj , for example, it is possible to use some

approximation algorithms.

18

Chapter 4
Preliminaries

An advantageous property of the problem 1|d̃j |
∑
wjUj ensures that the solution can be

expressed by a set of early jobs E ⊆ N with the meaning that each j ∈ E is completed
before due date dj in the corresponding schedule (i.e., Uj = 0 ⇐⇒ j ∈ E). If job j
exceeds the due date in the solution, then j ∈ N \E and the job is called tardy job. Set
E defines for each job its maximum completion time Dj ≥ Cj as

f(x) =
{
dj if j ∈ E,
d̃j if j ∈ N\ E.

The schedule can be constructed by sequencing jobs N in a non-decreasing order of
their maximum completion times Dj .

In this thesis, we improve the algorithm presented by the authors of [1]. Their
algorithm is based on three essential components, which are a ILP model of the problem,
an algorithm computing the upper bound to the objective function based on maximum
profit flow problem, and a heuristic algorithm for computing the lower bound to the
objective function. Additionally, their algorithm exploits two fundamental theorems
capturing the structure of problem 1|d̃j |

∑
wjUj .

The first theorem is the dominance theorem [1]. It states that in an optimal schedule
a job must be early (or tardy) if another job is early (or tardy) provided that certain
conditions hold:

Theorem 1. Let pi ≤ pj , di ≥ dj , d̃i ≤ d̃j and wi ≥ wj , and at least one inequality is
strict. Then,

. if job i is tardy, then job j must be tardy too,. if job j is early, then job i must be early too.

The second theorem is the reduction theorem [1], which is important for reducing the
size of an instance. When the algorithm decides that job i is early or tardy, it implies
that Di = di for early jobs and Di = d̃i tardy jobs. Then, the theorem defines a reduced
problem defined by set N ′ = N \ {i} as

p′j = pj , w
′
j = wj , j ∈ N ′

d′j =
{

min{dj , Di − pi} if dj ≤ Di,
dj − pi if dj > Di

j ∈ N ′,

d̃′j =
{

min{d̃j , Di − pi} if d̃j ≤ Di,
d̃j − pi if d̃j > Di

j ∈ N ′.

The theorem allows removing job i from N and solve the reduced problem only,
without loosing the optimal solution:

Theorem 2. There exists a feasible schedule with early set E if and only if there exists

19

4. Preliminaries .
a feasible schedule with early set E′ = E \ {i} for the reduced problem.

Therefore, a job that is identified as early or tardy in the algorithm is excluded from
N by Theorem 2. Proofs of both theorems can be found in [1].

The algorithm proposed in [1] is a branch-and-bound algorithm with very efficient
solution space pruning. Every partial solution of the branch-and-bound algorithm is
processed in the following way:

. (Upper bound z̄). The algorithm solves the LP relaxation of the problem using a
transformation to a maximum profit flow problem. The flow problem is called relaxed
problem and its solution defining the upper bound on the objective function of the
original problem is denoted by z̄.. (Lower bound z). The heuristic uses the dominance theorem (Theorem 1) to trans-
form the relaxed solution to a feasible solution. The jobs that are not decided by
Theorem 1 are resolved by the ILP formulation described in Section 4.1.. (Fixing of decisions). Subsequently, the algorithm uses variable upfixing techniques
from [1] and bounds z̄ and z to decide whether i ∈ E or i ∈ N \ E.. (Branching). The algorithm selects job i for which it cannot decide whether it is
early or tardy and recursively branches with i ∈ E and i ∈ N \ E.

In the rest of this section, we summarize the key parts of the algorithm proposed
in [1]. In the subsequent section, we describe improvements allowing to solve signifi-
cantly larger instances not only for strongly correlated class of instances but also for
uncorrelated and weakly correlated classes.

4.1 ILP model

In the paper [1], the authors introduce a ILP formulation of the problem 1|d̃j |
∑
wjUj .

Their ILP model decides whether job i is in E or N \E, therefore, it introduces binary
variable xi which equals one if i ∈ E and zero otherwise. The ILP formulation is

max
x

∑
i∈N

wixi, (2)

subject to

∑
i∈Bt

pi +
∑
i∈Ct

pixi ≤ t, t ∈ T (3)

xi ∈ {0, 1}, i ∈ N. (4)

Instead of minimizing the weighted number of tardy jobs, the objective (2) maximizes
the weighted number of early jobs. To ensure that all jobs are completed before their
deadlines with the jobs belonging to set E completed before their due dates, the ILP
model contains constraints (3). The constraints are defined over a set of time points
T =

{
t : t = di ∨ t = d̃i, ∀i ∈ N

}
. For each t ∈ T , the constraints define sets of jobs

Bt =
{
i ∈ N : d̃i ≤ t

}
and Ct =

{
i ∈ N : di ≤ t ∧ d̃i > t

}
, i.e., the set of jobs that must

be completed before t and the set of jobs that will be early if they are scheduled before
t, respectively. The term

∑
i∈Bt

pi in (3) represents the sum of processing times of jobs
that must be completed within the time t. Conversely,

∑
i∈Ct

pixi represents the sum
of processing times of jobs that can be completed within the time t, i.e., before their

20

. 4.1 ILP model

due dates. These jobs may not be completed within time t because their deadlines are
after t ∈ T .

As it is pointed out by [1], and our experiments confirm this also, the issue with this
ILP formulation is that for large instances it encounters the lack of memory needed
to solve it. This is because the constraints (3) contain a large number of non-zero
coefficients, where the number increases in the worst-case with O(n2). For example,
Gurobi ILP solver consumes approximately 8 GB of memory for an instance containing
9, 000 jobs.

The size of ILP model affects all kinds of instances, but for strongly correlated in-
stances its computational complexity becomes a significant problem. For example,
Gurobi is unable to solve up to the optimality instances with 200 jobs in a time limit
of 1 hour.

4.1.1 Upper bound

The LP relaxation of the ILP formulation (2)–(4) is a crucial part of the algorithm
presented by [1] and it is used across the whole algorithm. In addition to being used
as an upper bound, it is the basis for the lower bound calculation and is applied to
reducing jobs using the variable-fixing technique.

The LP relaxation can be obtained from the ILP formulation by omitting the integer
constraint of the xi variables. Such LP relaxation suffers from the same issue with the
model size as the original model. Therefore, the authors of [1] presented a compact
linear relaxation formulated as the maximum profit flow problem. The main advantage
of this formulation is memory complexity, which is O(n) compared to O(n2) of the
LP relaxation. This formulation allowed solving the relaxation even for instances with
50, 000 jobs, which would not possible with the LP model.

The maximum profit flow problem is defined on directed graph G = (V,A), where V
is the set of nodes and A is the set of edges. The graph G contains nodes that represent
every job i ∈ N and nodes that represent every time point t ∈ T , i.e., V = N ∪ T . In
the flow problem, time point tm ∈ T is used to denote the last time point. The set of
edges A is given by three subsets defined as

Ad = {(i, tk) : i ∈ N, tk ∈ T , tk = di}, (5)
Ad̃ = {(i, tk) : i ∈ N, tk ∈ T , tk = d̃i}, (6)
AT = {(tk, tk+1) : tk ∈ T \ {tm}. (7)

Ad is a set of edges between nodes representing jobs i and its due dates di represented
by time point tk = di. The same applies to the set Ad̃, where the edges lead to nodes
tk = d̃i representing deadlines. Edges between two nodes representing successive time
points corresponds to set AT .

In a solution, each edge (i, d) ∈ A = Ad ∪Ad̃ ∪AT is associated with a flow yi,d

representing a portion of a processing time executed in a specific time interval defined by
G. The problem relaxation can be expressed as the maximum profit flow in G = (V,A)
as

max
y

∑
(i,di)∈Ad

wi

pi
yi,di , (8)

subject to

21

4. Preliminaries .

yi,di + yi,d̃i
= pi, i ∈ N, (9)

yt1,t2 −
∑

(i,t1)∈Ad∪Ad̃

yi,t1 = 0, (10)

ytk,tk+1 − ytk−1,tk
−

∑
(i,tk)∈Ad∪Ad̃

yi,tk
= 0, k ∈ {2, . . . ,m− 1}, (11)

ytm−1,tm +
∑

(i,tm)∈Ad∪Ad̃

yi,tm =
∑
i∈N

pi, (12)

ytk,tk+1 ≤ tk, (tk, tk+1) ∈ AT , (13)
yi,d ≥ 0, (i, j) ∈ A. (14)

Each node representing job i ∈ N is a source of flow in G. The requested inflow of
source i equals to processing time pi, which is defined by constraints (9). Conversely,
the node representing the largest time point tm is a sink in G. The requested outflow
equals the sum of all jobs processing times, which is stated by the constraint (12). The
constraints (13) sets edge capacity between two different time points to the value of the
time point from which the edge arises and thus defines the capacity of the machine to
be one. Finally, constraints (10) – (11) ensure that Kirchhoff’s law applies for nodes
representing time points, and non-negativity of flow is provided by constraints (14).

The formulation can be solved with a maximum profit (min cost) flow algorithm. We
will denote the values of variables in an optimal relaxed solution as ŷi,d.

22

Chapter 5
Improved algorithm

In this chapter, we build on the algorithm introduced by [1]. Their algorithm is a
state-of-the-art algorithm for solving both problems 1|d̃j |

∑
wjUj and 1||

∑
wjUj . The

algorithm allows for the problem 1|d̃j |
∑
wjUj to solve uncorrelated instances up to

30, 000 jobs and weakly correlated instances up to 5, 000 jobs. On the other hand,
strongly correlated instances are very difficult for the original algorithm. For example, in
case of strongly correlated instances the original algorithm cannot solve some instances
with just 200 jobs within one hour time limit.

We introduce three enhancements of the algorithm that enables solving strongly
correlated instances of up to 10, 000 jobs compared to the original algorithm, which
cannot solve all instance of the size of 200 jobs. The most significant enhancement is
a modified ILP formulation, which allows performing a decomposition by the number
of early jobs and a method for efficient solution of this decomposed model. The other
two improvements relate to the computation of the lower bound and upper bound.

5.1 Improved ILP model
In the available literature, strongly correlated instances are referred to as instances
where ∀i ∈ N : wi = pi + 20. In this thesis, we use this name for instances that meet
wi = pi + C, where C ≥ 0. We have performed extensive experiments to investigated
whether the C value affects the complexity of an instance, measured in terms of the
time needed to solve an instance with the ILP solver. Our experiments with ILP
formulation (2)–(4) revealed an anomaly that occurs for C = 0. Instances where C = 0
(i.e., wi = pi) are significantly easier than instances that have C > 0, such as the widely
used C = 20 (i.e., wi = pi + 20). The time needed for solving instances with C = 0
is comparable to uncorrelated instances. In contrast, the same ILP solver is not able
to solve some instances having 200 jobs with C = 20 to optimum within one hour.
With this observation, we propose simple but yet powerful reformulation of the original
model.

5.1.1 Model reformulation

The difference between instances with C = 0 and instances with C > 0 is that in the
second case the weight parameter of the job is the same as the execution time of the job
(wi = pi). Thus, the objective function in this case can be written as max

∑
i∈N pixi.

Base on that, we created a new ILP model for strongly correlated instances. This new
ILP model is based on expressing solution for strongly correlated instances with C > 0,
similarly to strongly correlated instances with C = 0.

The new ILP model takes over constraints (3) and (4) from the original ILP model.
In addition, we introduce variable e, which specifies the number of early jobs via
constraint (17). Using variable e, one can reformulate the original objective func-
tion for strongly correlated instances as max

∑
i∈N wixi = max

∑
i∈N (pi + C)xi =

23

5. Improved algorithm .
maxC · e+

∑
i∈N pixi. Then, the new formulation is stated as

max
e∈{0,...,n}

max
x

C · e+
∑
i∈N

pixi, (15)

subject to

∑
i∈Bt

pi +
∑
i∈Ct

pixi ≤ t, t ∈ T, (16)

∑
i∈N

xi = e, (17)

xi ∈ {0, 1}, i ∈ N. (18)

The advantage of the new ILP model is that it allows decomposition according to
variable e. If we select some specific value of variable e, then the objective function can
be written as max

∑
i∈N pixi + C · e. The expression C · e is a constant and therefore

only max
∑

i∈N pixi can to be considered. The constant expression C · e is added after
the solution is found. Thus, for each value of e and C > 0, we have a ILP model very
similar to the one with C = 0. The decomposed ILP model differs in that it has one
extra constraint (17) to limit the number of early jobs.

Our experiments confirm that if we decompose according to variable e and select a
specific number of early jobs, the ILP solver for this selected number of early jobs is
able to find a solution even for instances with 5, 000 jobs.

When decomposing the new ILP model according to variable e, up to n ILP models
with different numbers of early jobs (variable e) may emerge. We need to solve in the
worst case all of them to ensure that the optimal solution for the original model is found.
In order to reduce the number of ILP models introduced by the decomposition, we have
created a technique that accurately estimates the candidate range of the number of early
jobs. This technique is described in the following subsection.

5.1.2 Problem decomposition
This subsection describes decomposition of the reformulated model based on fixing the
number of early jobs e. This approach is based on an observation that LP relaxation
of the original ILP model, even for instances with 5, 000 jobs, has a very low number
of non-integer values in the optimal solution. The same property holds for the relaxed
problem, described in Section 4.1.1, where the majority of ŷi,d are equal to pi or to
zero. Therefore, the number of early jobs (having ŷi,d = pi) or partly early (having
0 < ŷi,d < pi) provides a very accurate estimate on the number of early jobs e = |E|
in the optimal solution, and we utilize this information to solve the decomposed ILP
model faster.

First, it is required to solve the relaxed problem (8) – (14). Then, we denote by e
the number of early jobs having ŷi,d = pi in the relaxed solution. We denote by ē the
maximum number of early jobs. For computing the maximum number of early jobs,
we use problem 1|d̃j |

∑
Uj , which is a relaxation of the problem 1|d̃j |

∑
wjUj , and it is

easy to solve it using ILP solver. This ensures that no more than ē early jobs can be.
With the values e and ē, we define a set K = {e, e + 1, . . . , ē} of likely candidates

for the number of early jobs |E| in an optimal solution. Subsequently, for each ek ∈ K,
we solve the modified ILP model with the constraint

∑
i∈N xi = ek. Since it is not

guaranteed that the number of early jobs of the optimal solution will fall within set K,

24

. 5.2 Improved lower bound

one additional ILP model is solved separately. This model have replaced constraint (17)
with the boundary constraint

∑
i∈N xi ≤ e− 1. This ensures that the optimal solution

is not omitted even with a poor choice of K. The optimal solution is then obtained as
the maximum over all optimal solutions of ILP models with a fixed value of ek and the
one model with the boundary constraints. We note that since the relaxed solution has
typically a small number of non-integer values, the size of K is typically very small.

The efficiency of the decomposition algorithm is further improved by using the max-
imum value of the objective function of ILP models solved with previous values of
ek ∈ K (including the boundary case) as the cut up parameter, i.e., the solver is told to
search only for solutions with objectives better than the cut up. Hence, often it is not
needed to thoroughly solves model with boundary condition as they are quickly cut off
by an existing solution within K. Our experiments demonstrated that in most cases,
the number of early jobs is indeed within the set K. Only in a very few rare cases, the
optimal number of early jobs lies outside of K.

5.2 Improved lower bound

The tightness of the lower bound (and upper bound as well) has a crucial impact on the
size of set N . The lower bound is used in the variable fixing technique which together
with the reduction theorem (Theorem 2) allows to reduce size of jobs N which has to
be solved. When it comes to solving strongly correlated instances of large sizes, the
original algorithm of [1] fixes significantly fewer variables than in the case of uncorrelated
instances. The smaller number of fixed variables results in extensive branching in the
branch-and-bound method and the explosion of run time. Hence, the goal is to improve
the lower bound in order to fix more variables and to prevent extensive branching.

The heuristic computing the lower bound proposed in [1] is based on the solution
of the relaxed problem (8) – (14). According to the solution, the set of job N is split
into a set of jobs L that will be optimally scheduled by (2) – (4), and the other jobs
N \L are scheduled heuristically using the information from the solution of the relaxed
problem. The quality of the heuristics depends on the jobs selected into set L. In [1],
they propose that all jobs with 0 < ŷj,d < pj are inserted into set L. Furthermore, they
include all jobs j that are tardy (i.e., ŷj,d = 0) for which there is no job i dominating
the job j by the dominance Theorem 1. Similarly, their set L includes all jobs j that
are early (i.e., ŷj,d = pj) for which there is no job i that is dominated by job j according
to the same theorem.

Our approach uses the same structure but has three main differences. The first one
is that the jobs in set L are scheduled by the decomposed ILP model from Section 5.1.
The second one is a different definition of L. We have carried out several experiments to
investigate which jobs must be in L in order to find a tighter lower bound. The results
showed that the heuristics provides much tighter bound if the rule for adding early
jobs to set L is modified to the following: set L includes all jobs j that are early (i.e.,
ŷj,d = pj) for which there is no job i dominating the job j by the dominance theorem.
In the other words, the condition was reversed. Set L also includes all jobs j that are
tardy (i.e., ŷj,d = 0) for which there is no job i dominating the job j by the dominance
theorem and all jobs with 0 < ŷj,d < pj , which is the same with the original heuristic.
The last difference is that we do not use the additional local search. In the original
heuristics, the local search neighborhood is defined as

∑
i∈N |x̄i − x̃i| = 2, where x̄i

represents an original solution, and x̃i represents a new solution. This neighborhood

25

5. Improved algorithm .
allows swapping only for pairs of jobs, which one of them is early and other is tardy.
In our improved heuristic, this local search led only rarely to an improvement.

This adjustment leads to an improvement in the lower bound heuristic, which is
significantly tighter than the original one. Modifying this rule increases the size of set
L by approximately by 13%. The increase of the CPU time introduced by the larger
job set L is compensated by leaving out the additional local search.

5.3 Improved upper bound
An another way to reduce the number of jobs with Theorem 2 and the variable fixing
technique is to improve the upper bound. In paper [1], the authors use continuous
relaxation of the ILP model as the upper bound. This relaxation is calculated using
the formulation as a maximum profit flow problem. Although this upper bound is
relatively tight, we present its improvement by a limited branching procedure.

In our approach, we first solve the problem relaxation (8) – (14). Then we tight up
the upper bound obtained from the problem relaxation by branching on a selected job.
In every node of this branch and bound procedure, we select job i = argi′∈N max{pi′ :
0 < ŷi′,d < pi′}, i.e., a job with maximal processing time that has non-integer variable
value. For this job we assume two cases: (i) the job is early (ŷi,d = pi), and (ii) is
tardy (ŷi,d = 0). For each case, we solve the relaxed problem while fixing the flow yi,d

accordingly, and apply the procedure for each branch again. The branching is repeated
up to a small fixed depth of the branching tree. Finally, from all solutions in leaves
of the limited branching tree, the algorithm selects the one with the highest objective
value. This solution is then used as a new upper bound z̄.

The limited branch-and-bound procedure selects jobs with the smallest deadline for
instances with deadlines and the largest due date for instances without deadlines for two
reasons. First, it is computationally cheap rule, and second, one can expect that the
job with the earliest deadline(resp. the latest due date) can have the most significant
impact on the objective function. Even though this method has increased computational
complexity over solving just single relaxation, overall, it paid off. The main reason is
the same as in lower bound computation. Tighter lower and upper bounds we provide
to the variable fixing technique, the fewer nodes it is necessary to explore in the main
branch-and-bound method. Especially for strongly correlated instances, a large number
of explored nodes leads to time outs.

26

Chapter 6
Experiments

To compare the performance of the improved algorithm for all classes of instances with
the original algorithm, we present the results of several performed experiments. All
experiments are performed on a computer containing two Intel Xeon E5-2690 v4 CPUs
with 512GB RAM running CentOS Linux 7. Both algorithms are implemented in C++
with Gurobi 8.1.1 ILP solver. For solving the minimum cost flow problem (maximum
profit flow problem) our algorithm uses a dual ascent method RelaxIV [23], specifically
its implementation in the MCFClass project [24], which proved to be the most suitable
for implementation of both algorithms. The source code of our algorithm is available
on the attached CD.

The algorithm was tested with the following parameters. The maximum depth of
the branch and bound tree in the improved procedure computing the upper bound was
8. The threshold for solving instances directly by the ILP solver was 1.4 · 107 non zero
elements in the ILP matrix of constraints, which is the same as used by Baptiste [1],
and it corresponds to instances with approximately 4, 000 jobs.

This section has six parts. First, we describe the way we generate benchmark in-
stances. Then we benchmark ILP problem formulations, i.e., ILP formulation from [1]
and the formulation from Section 5.1. Our algorithm is compared with the algorithm
published in [1] in Section 6.3.1, and individual improvements used in our algorithm
are benchmarked in the subsequent section. The last section presents the experimental
results on the heaviest problem instances defined in [1].

6.1 Instances generation
To compare the results of our experiments with the paper [1], we generate instances
using the same method. For each job i, the processing time pi is an integer randomly
drawn from the interval [1, 100]. The weight for each job is created based on the instance
type as follows:

. In the case of non-correlated instances, for each job i, the weight wi is an integer
randomly drawn from interval [1, 100];. In the case of weakly correlated instances, for each job i, the weight wi is an integer
randomly drawn from interval [pi, pi + 20];. In the case of strongly correlated instances, each job i has its weight wi = pi + 20 if
the C = 20 or wi = pi if C = 0, which is specified for each experiment. The value of
C = 20 is chosen for the comparability of results with paper [1].

Let us denote P =
∑

i∈N pi. Furthermore, we define a set of parameters D =
{0.1, 0.3, 0.5, 0.7, 0.9} which is used to create pairs (u, v) ∈ D ×D that meet the con-
dition u < v, which are used for generating due dates. Then, for each job i, and the
selected pair (u, v) due date di is an integer randomly drawn from interval [P · u, P · v].
For instances in which jobs contain deadlines, a deadline d̄i is an integer randomly
drawn from interval [di, P · 1.1].

27

6. Experiments .
The benchmark instances are created such the for a given n there are always 20

randomly generated instances for each pair (u, v), i.e., 200 instances for the given n.
All generated instances are guaranteed to be feasible. Feasibility of each generated
instance assuming deadlines is tested by omitting the objective function and solving the
feasibility problem by the earliest deadline first rule. Infeasible instances are disregarded
as in paper [1].

All the experiments described below assume time limit 3600 seconds to solve one
problem instance. The ILP solver is allowed to use only one physical CPU core. The
reason why we limit the number of CPU cores is that in paper [1] the algorithm was
benchmarked on a computer with a single core as well.

6.2 Comparison of ILP models
The following experiments analyse the runtime required to solve the original ILP
model (2)–(4) depending on the size of the instance and its type. In the experiment, we
focus on three different types of instances, which are non-correlated instances, strongly
correlated instances with a constant C = 20, and strongly correlated instances with
a constant C = 0; all cases without deadlines. We present only results on instances
without deadlines since results on instances with deadlines are very similar. The last ex-
periment shows the performance of the ILP model proposed in this thesis and compares
it with the original one.

The results related to the original ILP model are summarized in tables 6.1 – 6.3. This
data is primarily used to demonstrate the difficulty of strongly correlated instances
versus non-correlated instances. In each table, the unsolved column indicates the
number of instances that are not solved to the optimum within the time limit. The
avg and max columns indicate the average and maximum runtime required to solve an
instance to the optimum. Instances that are not solved to the optimum within the time
limit are also included in these columns. These instances have the runtime equal to the
time limit.

CPU Time
n avg [s] max [s] unsolved [-]
50 0.02 0.12 0

100 0.04 0.16 0
150 0.07 0.22 0
200 0.11 0.31 0
250 0.16 0.37 0
500 0.61 1.29 0

1000 2.84 5.90 0
2000 11.70 23.84 0
3000 27.04 61.93 0
4000 48.63 126.78 0
5000 77.62 206.10 0

Table 6.1. Result computed using the original ILP model for non-correlated instances.

Table 6.1 contains the measured results for non-correlated instances. The results
concerning strongly correlated instances with C = 20 and C = 0 are shown in tables 6.2
and 6.3, respectively.

28

. 6.2 Comparison of ILP models

CPU Time
n avg [s] max [s] unsolved [-]
50 0.03 0.31 0

100 1.42 221.72 0
150 32.18 3600.00 1
200 174.81 3600.00 6
250 444.72 3600.00 22
500 579.14 3600.00 30

1000 1153.90 3600.00 63
2000 1123.90 3600.00 61
3000 1328.78 3600.00 72
4000 1642.63 3600.00 90
5000 1586.28 3600.00 86

Table 6.2. Result computed using the original ILP model for strongly correlated instances
with C = 20..

When comparing the results in tables 6.1 and 6.2, we can observe a very significant
difference in the runtime required to solve the instance to the optimum between strongly
correlated instances with C = 20 in Table 6.2 and non-correlated instances in Table 6.1.
We can also observe that for non-correlated instances, all instances up to 5, 000 jobs,
are solved within the time limit. In contrast, for strongly correlated instances with
C = 20, it can be seen that even instances with 150 jobs are not all solved within the
time limit.

CPU Time
n avg [s] max [s] unsolved [-]
50 0.01 0.09 0

100 0.03 0.13 0
150 0.05 0.16 0
200 0.09 0.23 0
250 0.13 0.33 0
500 0.42 1.21 0

1000 1.87 5.19 0
2000 7.45 12.68 0
3000 16.19 28.39 0
4000 28.97 74.33 0
5000 45.55 76.11 0

Table 6.3. Result computed using the original ILP model for strongly correlated instances
with C = 0..

Conversely, if we compare the results in tables 6.2 and 6.3, we can observe that
strongly correlated instances with C = 0 show an anomaly. This anomaly is that
these instances are significantly easier to solve than other strongly correlated instances
with C > 0. Even if we compare the results in Table 6.3 with the measured data for
non-correlated instances in Table 6.1, we can observe that strongly correlated instances
with C = 0 are even easier to solve to the optimum than non-correlated instances in the
sense of runtime. The average runtime required to find the optimal solution for strongly
correlated instances with C = 0 is, on average, about 60% of the time required for non-
correlated instances. These observed anomalies for strongly correlated instances with

29

6. Experiments .
C = 0 are crucial for the development of the improved ILP model, which is explained
in detail in Section 5.1.

The property of the studied problem illustrated in Table 6.3 was used to propose
the improved ILP model, described in Section 5.1. Therefore, the next experiment
demonstrates the capabilities of the improved ILP model without using other parts of
the algorithm. This experiment was performed on strongly correlated instances with
C = 20, which are the same as the instances used to measure the results for the
original ILP model in Table 6.2. The results of this experiment are in Table 6.4. The
table shows that our modified ILP model can solve all these instances to optimum
within 3, 600 seconds. On the contrary, the original ILP model does not solve all these
instances to the optimum within the time limit, even for the instances with 150 jobs.
When we compare results in tables 6.2 and 6.4, we can see that the maximum run times
for solved instances from size 100 to 3, 000 are significantly smaller for our improved
ILP model.

CPU Time
n avg [s] max [s] unsolved [-]
50 0.10 0.40 0

100 0.17 1.17 0
150 0.28 1.42 0
200 0.37 3.00 0
250 0.48 1.80 0
500 1.82 11.65 0

1000 9.01 64.01 0
2000 46.79 423.79 0
3000 153.44 1173.26 0
4000 285.79 2567.63 0
5000 432.04 3022.05 0

Table 6.4. Result computed using our new ILP model for strongly correlated instances
with C = 20.

6.3 Comparison of full algorithms
The next set of experiments focuses on comparing the original algorithm and our im-
proved algorithm. The experiments are primarily focused on strongly correlated in-
stances with C = 20 with and without deadlines. Nevertheless, we also provide experi-
mental results on weakly and non-correlated correlated instances with deadlines.

In each table presented in this section, the column “Nodes” indicates the number
of visited nodes in the branch-and-bound method. The column CPU time indicates
the runtime required to solve an instance. Column “root-GAP” indicates the relative
difference between the objectives of the upper bound and lower bound algorithms. The
value is computed as UB−LB

LB · 100. Average and maximum values of this indicator are
in percentages. The column Unsolved indicates the number of instances that are not
solved to the optimum within the time limit of 3, 600 seconds. In tables 6.6 and 6.8
column “Red. prob. size” indicates the size of the reduced instance, i.e., the number of
jobs after the application of the reduction theorem in the root node.

6.3.1 Strongly correlated instances with deadlines
The first part of the experiments is focused on strongly correlated instances with dead-
lines. Tables 6.5 and 6.7 summarize the results of experiments focused on the relation-

30

. 6.3 Comparison of full algorithms

ship between the size of the instance and the time required to find the optimal value for
both algorithms. On the other hand, tables 6.6 and 6.8 demonstrate the relationship
between a pair of parameters (u, v) and the time required to find the optimal value for
the largest instances for which our improved algorithm is able to solve the most of the
instances within the time limit 3, 600 seconds.

CPU Time Nodes root-GAP
n unsolved [-] avg [s] max [s] avg [-] max [-] avg [%] max [%]

1000 18 330.91 3600.00 1.00 1.00 0.0284 0.1196
2000 29 558.35 3600.00 1.00 1.00 0.0140 0.0789
3000 47 867.64 3600.00 1.00 1.00 0.0092 0.0345
4000 44 849.17 3600.00 1.00 1.00 0.0066 0.0299
5000 47 875.12 3600.00 1.06 7.00 0.0053 0.0239
6000 49 918.11 3600.00 5.96 477.00 0.0044 0.0150
7000 68 1249.09 3600.00 42.23 2236.00 0.0038 0.0215
8000 71 1318.14 3600.00 60.98 1921.00 0.0033 0.0132
9000 97 1775.35 3600.00 114.42 1987.00 0.0031 0.0135

10000 103 1870.18 3600.00 141.26 2696.00 0.0027 0.0103

Table 6.5. Results for the strongly correlated instances with C = 20 and deadlines solved
using the original algorithm.

Red. prob. size CPU Time Nodes root-GAP
u v unsolved [-] avg [-] max [-] avg [s] max [s] avg [-] max [-] avg [%] max [%]

0.1 0.3 8 268.28 5241 1487.76 3600.00 7.75 98.00 0.0115 0.0150
0.1 0.5 16 217.18 4257 2893.31 3600.00 1.10 3.00 0.0057 0.0088
0.1 0.7 16 248.00 3056 2990.03 3600.00 1.00 1.00 0.0040 0.0083
0.1 0.9 4 62.72 2222 743.56 3600.00 1.00 1.00 0.0024 0.0052
0.3 0.5 1 64.00 5213 224.44 3600.00 25.90 477.00 0.0049 0.0097
0.3 0.7 2 142.37 4256 377.63 3600.00 1.15 4.00 0.0038 0.0070
0.3 0.9 0 37.63 2757 7.64 16.61 1.00 1.00 0.0025 0.0053
0.5 0.7 1 120.20 4811 247.01 3600.00 18.70 353.00 0.0034 0.0062
0.5 0.9 0 149.00 3054 9.49 16.52 1.00 1.00 0.0029 0.0048
0.7 0.9 1 192.35 4168 200.28 3600.00 1.00 1.00 0.0037 0.0052

Table 6.6. Detailed results for the strongly correlated instances with C = 20 and deadlines
with 6, 000 jobs, solved using the original algorithm.

From the results in tables 6.5 and 6.7, it can be seen that the original algorithm has a
problem to solve to optimum all strongly correlated instances with 1, 000 jobs. On the
other hand, the algorithm with improvements presented by us can solve to optimum
instance having up to 5, 000 jobs and the most of the instances with 6, 000 jobs. For the
remaining sizes of instances, the improved algorithm solves significantly more instances
than the original algorithm.

Comparing the results in tables 6.6 and 6.8, it is apparent that instances with a
pair of parameters (0.1, 0.3) and (0.1, 0.5) are the most difficult instances, because the
most unresolved instances come from these two pairs of parameters, and also for these
pairs, the instance sizes are the least reduced (see column “Red. prob. size”). This
is consistent with the result in the Baptiste et al. paper, where this was observed for
non-correlated and weakly correlated instances.

31

6. Experiments .
CPU Time Nodes root-GAP

n unsolved [-] avg [s] max [s] avg [-] max [-] avg [%] max [%]
1000 0 1.57 16.15 1.00 1.00 0.0255 0.1087
2000 0 3.93 46.52 1.00 1.00 0.0133 0.0604
3000 0 7.38 48.37 1.00 1.00 0.0090 0.0357
4000 0 14.33 332.31 1.00 1.00 0.0067 0.0297
5000 0 17.53 94.21 1.05 5.00 0.0053 0.0239
6000 10 218.03 3600.00 20.84 1165.00 0.0045 0.0176
7000 32 598.27 3600.00 55.66 1540.00 0.0038 0.0148
8000 38 733.45 3600.00 89.36 1128.00 0.0033 0.0172
9000 64 1189.44 3600.00 140.18 1444.00 0.0030 0.0122

10000 68 1255.93 3600.00 164.66 2007.00 0.0027 0.0103

Table 6.7. Results for the strongly correlated instances with C = 20 and deadlines solved
using the algorithm with all improvements.

Red. prob. size CPU Time Nodes root-GAP
u v unsolved [-] avg [-] max [-] avg [s] max [s] avg [-] max [-] avg [%] max [%]

0.1 0.3 4 214.90 5392 844.67 3600.00 96.75 1165.00 0.0113 0.0176
0.1 0.5 4 119.40 4707 808.24 3600.00 68.75 464.00 0.0066 0.0107
0.1 0.7 0 182.40 3666 42.55 308.54 1.00 1.00 0.0042 0.0077
0.1 0.9 0 59.42 2363 9.24 16.27 1.00 1.00 0.0024 0.0052
0.3 0.5 1 63.60 5213 221.73 3600.00 22.15 406.00 0.0045 0.0087
0.3 0.7 0 142.37 4115 18.99 36.62 1.00 1.00 0.0034 0.0063
0.3 0.9 0 38.28 2757 8.53 20.14 1.00 1.00 0.0024 0.0051
0.5 0.7 1 120.20 4811 196.16 3600.00 14.70 275.00 0.0032 0.0062
0.5 0.9 0 149.00 3054 11.49 18.50 1.00 1.00 0.0029 0.0048
0.7 0.9 0 192.35 4168 18.70 31.28 1.00 1.00 0.0037 0.0052

Table 6.8. Detailed results for the strongly correlated instances with C = 20 and deadlines
with 6, 000 jobs, solved using the algorithm with all improvement.

These pairs of parameters also have their root-GAP larger than the other pairs, and
as a consequence of this, there is little ability to reduce the instance size by the variable
fixing technique. This also leads to a large number of nodes being visited in the branch-
and-bound method because the instances cannot be reduced to the size, which is solved
directly using the ILP solver. These experiments also show that the variables fixing
technique is not as effective with strongly correlated instances as with non-correlated
instances as will be shown in Subsection 6.3.4.

6.3.2 Strongly correlated instances without deadlines

The second part of the experiments is focused on strongly correlated instances without
deadlines. As in the previous experiments, tables 6.9 and 6.11 summarize the results
of experiments analyzing the relationship between the instance size and time required
to find the solution. Tables 6.10 and 6.12 demonstrate the relationship between a pair
of parameters (u, v) and the time required to find the solution for the largest instances
that our improved algorithm is able to solve within the time limit.

When we compare the results in tables 6.9 and 6.11 with the tables from the previous
subsection, it can be observed that instances without deadlines are easier to solve to
the optimum than instances with deadlines even for the original ILP model. This can

32

. 6.3 Comparison of full algorithms

CPU Time Nodes root-GAP
n unsolved [-] avg [s] max [s] avg [-] max [-] avg [%] max [%]

1000 0 0.51 6.38 1.00 1.00 0.0228 0.0848
2000 1 23.74 3600.00 1.00 1.00 0.0121 0.0395
3000 2 55.38 3600.00 1.00 1.00 0.0077 0.0319
4000 0 13.23 1176.60 1.00 1.00 0.0058 0.0183
5000 1 41.49 3600.00 1.00 1.00 0.0046 0.0177
6000 21 389.15 3600.00 42.27 574.00 0.0037 0.0125
7000 61 1090.58 3600.00 193.48 3389.00 0.0033 0.0135
8000 75 1341.55 3600.00 224.56 2358.00 0.0028 0.0114
9000 79 1433.09 3600.00 288.55 1875.00 0.0025 0.0110

10000 80 1453.85 3600.00 277.75 1556.00 0.0022 0.0100

Table 6.9. Results for the strongly correlated instances with C = 20 and without deadlines,
solved using the original algorithm.

Red. prob. size CPU Time Nodes root-GAP
u v unsolved [-] avg [-] max [-] avg [s] max [s] avg [-] max [-] avg [%] max [%]

0.1 0.3 3 144.16 5961 549.05 3600.00 65.90 499.00 0.0081 0.0125
0.1 0.5 6 292.74 5999 1091.57 3600.00 92.80 412.00 0.0053 0.0098
0.1 0.7 2 226.47 5811 370.88 3600.00 36.50 444.00 0.0037 0.0062
0.1 0.9 2 39.32 5998 366.30 3600.00 55.10 574.00 0.0023 0.0051
0.3 0.5 0 176.15 5191 11.40 23.84 1.00 1.00 0.0039 0.0085
0.3 0.7 2 220.67 5657 367.89 3600.00 34.50 388.00 0.0031 0.0059
0.3 0.9 2 90.10 5517 366.05 3600.00 39.75 419.00 0.0025 0.0048
0.5 0.7 2 162.85 5743 372.75 3600.00 45.10 451.00 0.0036 0.0061
0.5 0.9 1 125.17 5656 186.19 3600.00 25.40 487.00 0.0020 0.0048
0.7 0.9 1 157.26 5750 209.47 3600.00 26.60 475.00 0.0025 0.0050

Table 6.10. Detailed results for the strongly correlated instances with C = 20 and without
deadlines with 6, 000 jobs, solved using the original algorithm.

CPU Time Nodes root-GAP
n unsolved [-] avg [s] max [s] avg [-] max [-] avg [%] max [%]

1000 0 0.59 1.53 1.00 1.00 0.0218 0.0830
2000 0 2.40 41.45 1.00 1.00 0.0118 0.0377
3000 0 4.18 12.80 1.00 1.00 0.0076 0.0319
4000 0 7.44 22.34 1.00 1.00 0.0058 0.0183
5000 0 10.15 38.47 1.00 1.00 0.0045 0.0177
6000 21 392.34 3600.00 32.97 421.00 0.0037 0.0125
7000 61 1105.89 3600.00 162.75 2409.00 0.0033 0.0135
8000 75 1358.59 3600.00 201.24 1501.00 0.0028 0.0114
9000 79 1430.10 3600.00 236.11 1285.00 0.0025 0.0092

10000 80 1447.29 3600.00 226.62 1110.00 0.0022 0.0100

Table 6.11. Results for the strongly correlated instances with C = 20 and without dead-
lines, solved using the algorithm with all improvements.

be seen from a smaller number of instances remaining unsolved within a given time
limit by both the original and the improved algorithm. This is because the absence of
deadlines makes the ILP model smaller than in the case with deadlines.

33

6. Experiments .
Red. prob. size CPU Time Nodes root-GAP

u v unsolved [-] avg [-] max [-] avg [s] max [s] avg [-] max [-] avg [%] max [%]
0.1 0.3 3 144.16 5961 552.74 3600.00 50.10 398.00 0.0081 0.0125
0.1 0.5 6 292.74 5999 1090.10 3600.00 83.30 321.00 0.0052 0.0098
0.1 0.7 2 226.47 5811 376.10 3600.00 36.45 357.00 0.0037 0.0062
0.1 0.9 2 39.32 5998 369.31 3600.00 40.30 421.00 0.0023 0.0051
0.3 0.5 0 176.15 5191 11.01 31.03 1.00 1.00 0.0039 0.0085
0.3 0.7 2 220.67 5657 370.72 3600.00 27.55 316.00 0.0031 0.0059
0.3 0.9 2 90.10 5517 369.46 3600.00 24.85 269.00 0.0025 0.0048
0.5 0.7 2 162.85 5743 371.01 3600.00 32.00 317.00 0.0036 0.0061
0.5 0.9 1 125.17 5656 189.23 3600.00 16.75 314.00 0.0020 0.0048
0.7 0.9 1 157.26 5750 223.74 3600.00 17.35 290.00 0.0025 0.0050

Table 6.12. Detailed results for the strongly correlated instances with C = 20 and without
deadlines with 6, 000 jobs, solved using the algorithm with all improvement.

From the tables, we can see that the improved algorithm solved all instances of
up to 6, 000 jobs and also reduced the average time required to solve an instance for
instances of up to this size. In contrast, for instances bigger than 6, 000 jobs, the
number of solved instances is the same. This is most likely because some instances
after reduction have almost the same size as the original instances, which can be seen
in Table 6.12. As a result, the branch-and-bound method searches a large number of
nodes. Also, improved lower bound and upper bound for strongly correlated instances
without deadlines improve root-GAP only slightly. Also, when comparing Table 6.12
and Table 6.8, we can observe that the maximum size of the reduced instance is smaller
for instances with deadlines, compared to instances without deadlines.

It should also be pointed out that the original algorithm uses the ILP solver for
instances having approximately less than 4, 000 jobs. Thus, if an optimal solution is
not found for these instances within the time limit, this is not due to the algorithm
itself, but because the ILP solver is not able to find the optimal solution within the
time limit. It is the same for instances with or without deadlines.

6.3.3 Weakly correlated instances with deadlines

In this subsection, we present results comparing the original algorithm to the algorithm
with improvement lower bound and upper bound on weakly correlated instances with
deadlines. Both improved lower bound and improved upper bound work for all types
of instances. For the weakly correlated instances, the original ILP model was used
because, although the improved ILP model allows solving this type of instance, it needs
to be solved several times due to decomposition according to the number of early jobs
e. In the case of weakly correlated instances, solving the improved ILP module requires
more time than the original ILP model.

When we compare the result from tables 6.13 and 6.14, we can observe that in the
case of weakly correlated instances, both algorithms solved all instances up to the
size of 15, 000 jobs. In particular, we can see that our improved algorithm achieves
a significant decrease in root-GAP compared to the original algorithm. As a result,
both the average time required to solve an instance, and the average number of visited
nodes significantly decrease. A decrease in the number of visited nodes is particularly
noticeable on instances with a large number of jobs.

34

. 6.3 Comparison of full algorithms

CPU Time Nodes root-GAP
n unsolved [-] avg [s] max [s] avg [-] max [-] avg [%] max [%]

1000 0 1.19 10.85 1.00 1.00 0.0115 0.0783
2000 0 2.83 22.47 1.00 1.00 0.0059 0.0468
3000 0 5.65 57.17 1.00 1.00 0.0038 0.0263
4000 0 9.79 89.65 1.00 1.00 0.0031 0.0220
5000 0 12.95 138.93 1.00 1.00 0.0023 0.0155
6000 0 20.29 212.91 1.03 3.00 0.0020 0.0142
7000 0 24.51 251.34 1.03 3.00 0.0016 0.0120
8000 0 33.12 576.17 1.05 3.00 0.0016 0.0089
9000 0 44.38 1033.08 1.12 13.00 0.0013 0.0117

10000 0 45.27 282.67 1.07 7.00 0.0010 0.0069
15000 0 114.13 2606.64 1.79 101.00 0.0007 0.0044

Table 6.13. Results for the weakly correlated instances with deadlines solved using the
original algorithm.

CPU Time Nodes root-GAP
n unsolved [-] avg [s] max [s] avg [-] max [-] avg [%] max [%]

1000 0 0.99 7.61 1.00 1.00 0.0061 0.0696
2000 0 2.27 21.44 1.00 1.00 0.0034 0.0463
3000 0 4.09 30.63 1.00 1.00 0.0024 0.0190
4000 0 6.39 77.99 1.00 1.00 0.0019 0.0155
5000 0 9.36 183.25 1.00 1.00 0.0015 0.0116
6000 0 12.60 172.04 1.03 3.00 0.0014 0.0142
7000 0 14.98 90.71 1.01 3.00 0.0011 0.0106
8000 0 19.40 254.58 1.04 3.00 0.0011 0.0089
9000 0 23.72 253.51 1.03 3.00 0.0009 0.0098

10000 0 25.01 209.48 1.04 3.00 0.0007 0.0066
15000 0 53.31 535.42 1.11 7.00 0.0005 0.0042

Table 6.14. Results for the weakly correlated instances with deadlines solved using the
algorithm with improved upper bound and lower bound.

6.3.4 Non-correlated instances with deadlines

In this subsection, we present the results for comparing the original algorithm to the
algorithm that contains improved lower bound and improved upper bound on non-
correlated instances with deadlines.

When we compare the results from the tables 6.15 and 6.16, we can see that the
results for non-correlated instances are similar to those for weakly correlated instances
in the previous subsection. Again, we can see that root-GAP is smaller for our algorithm
with improvement lower bound and upper bound than the original algorithm. Smaller
root-GAP leads to a significant decrease in both the average time required to solve an
instance and the average number of visited nodes.

Both algorithms can solve uncorrelated instances of up to 30, 000 jobs. In comparison
to weakly correlated instances, the number of resolved instances is doubled.

When we compare the results for non-correlated, weakly correlated, and strongly
correlated instances, there are significant differences in the difficulty of solving these
instances, that are depending on the type of instance. For strongly correlated instances,
our algorithm can solve all instances of up to 5, 000 jobs. In contrast to non-correlated

35

6. Experiments .
CPU Time Nodes root-GAP

n unsolved [-] avg [s] max [s] avg [-] max [-] avg [%] max [%]
1000 0 0.62 5.06 1.00 1.00 0.0251 0.1303
2000 0 1.32 14.70 1.00 1.00 0.0109 0.0728
3000 0 1.81 8.65 1.00 1.00 0.0060 0.0312
4000 0 3.22 17.68 1.00 1.00 0.0046 0.0189
5000 0 4.66 31.23 1.00 1.00 0.0035 0.0198
6000 0 6.48 35.76 1.00 1.00 0.0032 0.0161
7000 0 9.30 64.25 1.00 1.00 0.0026 0.0158
8000 0 11.21 101.15 1.00 1.00 0.0021 0.0108
9000 0 14.88 159.75 1.00 1.00 0.0018 0.0104

10000 0 18.92 162.12 1.00 1.00 0.0018 0.0105
15000 0 40.04 633.84 1.02 3.00 0.0011 0.0068
20000 0 68.15 557.69 1.09 7.00 0.0009 0.0054
25000 0 116.49 1057.36 1.41 53.00 0.0007 0.0042
30000 0 163.75 822.44 1.25 13.00 0.0005 0.0037

Table 6.15. Results for the non-correlated instances with deadlines solved using the original
algorithm.

CPU Time Nodes root-GAP
n unsolved [-] avg [s] max [s] avg [-] max [-] avg [%] max [%]

1000 0 0.75 4.12 1.00 1.00 0.0102 0.0942
2000 0 1.41 6.04 1.00 1.00 0.0049 0.0604
3000 0 2.36 7.80 1.00 1.00 0.0024 0.0143
4000 0 3.96 18.33 1.00 1.00 0.0021 0.0162
5000 0 5.33 22.21 1.00 1.00 0.0017 0.0147
6000 0 7.67 30.15 1.00 1.00 0.0017 0.0146
7000 0 9.95 39.38 1.00 1.00 0.0014 0.0118
8000 0 11.81 60.25 1.00 1.00 0.0011 0.0103
9000 0 14.23 62.63 1.00 1.00 0.0011 0.0086

10000 0 18.33 105.97 1.00 1.00 0.0010 0.0057
15000 0 36.04 151.86 1.01 3.00 0.0006 0.0058
20000 0 61.88 318.09 1.02 3.00 0.0006 0.0047
25000 0 95.27 566.45 1.17 29.00 0.0004 0.0037
30000 0 132.90 605.11 1.04 3.00 0.0004 0.0037

Table 6.16. Results for the non-correlated instances with deadlines solved using the algo-
rithm with improved upper bound and lower bound.

instances, both our and the original algorithm can solve all instances of up to 3, 0000
jobs. Differences in difficulty between types of instances are mainly due to the reduction
of the size of instances by variable-fixing techniques. For strongly correlated instances,
fewer jobs can be reduced then for non-correlated and weakly correlated instances.

6.4 Comparison of individual improvements
Next, experiments focus on comparing each algorithm enhancement with the original
algorithm on strongly correlated instances with C = 20. The identical instances with
deadlines, used in the previous section, are utilized for this experiment.

36

. 6.4 Comparison of individual improvements

6.4.1 ILP model improvement
When we compare the results from the tables 6.17 and 6.5, we can see that the improved
ILP allows solving all instances up to 5, 000 jobs. For the remaining instance sizes, It
increases the number of resolved instances by more than 27 instances for each instance
size. From Table 6.18, it can also be observed that even for the improved ILP approach,
instances with a pair of parameters (0.1, 0.3) and (0.1, 0.5) are some of the most difficult
instances.

CPU Time Nodes root-GAP
n unsolved [-] avg [s] max [s] avg [-] max [-] avg [%] max [%]

1000 0 2.16 27.70 1.00 1.00 0.0290 0.1196
2000 0 5.14 38.66 1.00 1.00 0.0144 0.0789
3000 0 9.51 71.71 1.00 1.00 0.0096 0.0357
4000 0 18.22 396.51 1.00 1.00 0.0072 0.0309
5000 0 21.50 135.03 1.06 7.00 0.0056 0.0246
6000 10 225.18 3600.00 19.46 847.00 0.0047 0.0176
7000 34 645.68 3600.00 70.31 2019.00 0.0041 0.0215
8000 40 786.65 3600.00 108.10 1839.00 0.0036 0.0172
9000 68 1252.85 3600.00 151.71 1842.00 0.0033 0.0135

10000 72 1337.61 3600.00 184.90 2553.00 0.0029 0.0115

Table 6.17. Results for the strongly correlated instances with C = 20 and with deadlines
solved using the algorithm with the improved ILP model.

Red. prob. size CPU Time Nodes root-GAP
u v unsolved [-] avg [-] max [-] avg [s] max [s] avg [-] max [-] avg [%] max [%]

0.1 0.3 4 241.45 5392 870.99 3600.00 79.65 847.00 0.0120 0.0176
0.1 0.5 4 119.45 4707 838.81 3600.00 71.55 452.00 0.0068 0.0107
0.1 0.7 0 182.40 3666 38.74 80.56 1.00 1.00 0.0046 0.0083
0.1 0.9 0 59.42 2363 11.97 19.68 1.00 1.00 0.0024 0.0052
0.3 0.5 1 64.05 5213 225.01 3600.00 22.40 407.00 0.0049 0.0097
0.3 0.7 0 142.37 4256 26.82 146.65 1.30 7.00 0.0038 0.0070
0.3 0.9 0 37.63 2757 9.81 23.47 1.00 1.00 0.0025 0.0053
0.5 0.7 1 120.20 4811 198.04 3600.00 14.70 273.00 0.0034 0.0062
0.5 0.9 0 149.00 3054 12.17 19.23 1.00 1.00 0.0029 0.0048
0.7 0.9 0 192.35 4168 19.48 31.94 1.00 1.00 0.0037 0.0052

Table 6.18. Detailed results for the strongly correlated instances with C = 20 and with
deadlines with 6, 000 jobs, solved using the algorithm with the improved ILP model.

6.4.2 Upper bound improvement
In this subsection, we benchmark the improved upper bound. The common reason for

not solving instances within the time limit is caused by the ILP solver, which is unable
to solve the original ILP model. Therefore, to better demonstrate the actual effect of
the improved upper bound, the improved ILP model is also used in this experiment, and
the results are compared with the results from the previous subsection, which describes
the effect of the improved ILP model.

When we compare results from tables 6.19 and 6.17, it can be observed that the
tighter upper bound leads to a significant decrease in the average number of visited

37

6. Experiments .
CPU Time Nodes root-GAP

n unsolved [-] avg [s] max [s] avg [-] max [-] avg [%] max [%]
1000 0 2.35 26.72 1.00 1.00 0.0258 0.1087
2000 0 5.22 46.95 1.00 1.00 0.0133 0.0604
3000 0 9.09 53.50 1.00 1.00 0.0091 0.0357
4000 0 18.10 397.19 1.00 1.00 0.0069 0.0307
5000 0 21.99 137.00 1.05 5.00 0.0054 0.0246
6000 10 224.09 3600.00 16.95 636.00 0.0045 0.0176
7000 33 619.98 3600.00 55.72 1288.00 0.0039 0.0148
8000 38 742.92 3600.00 69.95 792.00 0.0034 0.0172
9000 64 1197.32 3600.00 116.41 1165.00 0.0031 0.0127

10000 69 1287.62 3600.00 136.38 1605.00 0.0028 0.0115

Table 6.19. Results for the strongly correlated instances with C = 20 and with deadlines
solved using the algorithm with the improved upper bound and improved ILP model.

nodes. This is caused by a smaller root-GAP, which leads to a reduction of more jobs
in instances and also to more frequent termination of the branch-and-bounds method
because there is no better solution between the lower and upper bound. It is also
possible to see that that the average time needed to solve an instance is reduced, even
though the computation of the improved upper bound itself requires more time than
the original upper bound. The other consequence of an improved upper bound is a few
more solved instances than without this improvement.

Red. prob. size CPU Time Nodes root-GAP
u v unsolved [-] avg [-] max [-] avg [s] max [s] avg [-] max [-] avg [%] max [%]

0.1 0.3 4 214.90 5392 872.22 3600.00 67.90 636.00 0.0113 0.0176
0.1 0.5 4 119.40 4707 830.46 3600.00 60.80 402.00 0.0066 0.0107
0.1 0.7 0 182.40 3666 39.89 84.51 1.00 1.00 0.0045 0.0083
0.1 0.9 0 59.42 2363 12.50 19.70 1.00 1.00 0.0024 0.0052
0.3 0.5 1 64.05 5213 223.66 3600.00 20.90 381.00 0.0045 0.0087
0.3 0.7 0 142.37 4115 21.69 39.49 1.00 1.00 0.0034 0.0063
0.3 0.9 0 38.28 2757 10.19 24.06 1.00 1.00 0.0024 0.0051
0.5 0.7 1 120.20 4811 197.63 3600.00 13.95 260.00 0.0032 0.0062
0.5 0.9 0 149.00 3054 12.74 20.15 1.00 1.00 0.0029 0.0048
0.7 0.9 0 192.35 4168 19.93 32.53 1.00 1.00 0.0037 0.0052

Table 6.20. Detailed results for the strongly correlated instances with C = 20 and with
deadlines with 6, 000 jobs, solved using the algorithm with the improved upper bound and

improved ILP model.

When we compare the results in tables 6.20 and 6.18 containing more detailed infor-
mation for instances with 6, 000 jobs, we can see that the improved upper bound results
in a better reduction in instance size for some pair of parameters (u, v) than without
this improvement, e.g., (0.1, 0.3).

6.4.3 Lower bound improvement

This subsection analyses the algorithm with the improved lower bound and also with
the improved ILP model. The structure of the presented tables is the same as in the
previous subsection.

38

. 6.4 Comparison of individual improvements

CPU Time Nodes root-GAP
n unsolved [-] avg [s] max [s] avg [-] max [-] avg [%] max [%]

1000 0 1.72 16.98 1.00 1.00 0.0288 0.1196
2000 0 3.86 38.87 1.00 1.00 0.0143 0.0789
3000 0 7.37 68.66 1.00 1.00 0.0095 0.0357
4000 0 13.96 332.87 1.00 1.00 0.0070 0.0299
5000 0 16.79 92.25 1.06 7.00 0.0055 0.0239
6000 10 216.26 3600.00 26.48 1997.00 0.0047 0.0176
7000 33 618.86 3600.00 77.28 3196.00 0.0040 0.0215
8000 40 773.41 3600.00 150.09 2461.00 0.0035 0.0172
9000 67 1246.16 3600.00 204.26 2614.00 0.0032 0.0135

10000 71 1309.17 3600.00 248.40 3557.00 0.0028 0.0103

Table 6.21. Results for the strongly correlated instances with C = 20 and with deadlines
solved using the algorithm with the improved lower bound and improved ILP model.

When we evaluate data present in tables 6.21 and 6.17 for the improved lower bound,
it can be observed that the improved lower bound has a smaller root-GAP compared to
the results without this improvement. As a result of smaller root-GAP, the average time
required to solve the instance is smaller than without this improvement, and also, the
number of solved instances is slightly higher than without this improvement. This only
small increase in the number of solved instances is because the original lower bound is
relatively tight.

We can also see that there is an increase in the average number of nodes visited.
When we compare tables 6.22 and 6.18, it can be observed that this happens only for
parameters (u, v) for which not all instances are solved. The increase in the number
of nodes visited is because the improved lower bound omits the local search, which in
some cases reduces the time required to calculate the lower bound. Secondly, it is also
because the improved lower bound has a different set of jobs that are solved using the
ILP solver, then original lower bound. Although this set of jobs has a bigger size, in
some cases, the ILP solver finds the optimal solution faster.

Red. prob. size CPU Time Nodes root-GAP
u v unsolved [-] avg [-] max [-] avg [s] max [s] avg [-] max [-] avg [%] max [%]

0.1 0.3 4 241.45 5392 836.95 3600.00 140.00 1997.00 0.0120 0.0176
0.1 0.5 4 119.45 4707 796.11 3600.00 78.95 529.00 0.0068 0.0107
0.1 0.7 0 182.40 3666 41.89 308.74 1.00 1.00 0.0043 0.0077
0.1 0.9 0 59.42 2363 8.67 16.09 1.00 1.00 0.0024 0.0052
0.3 0.5 1 64.00 5213 221.95 3600.00 23.90 437.00 0.0049 0.0097
0.3 0.7 0 142.37 4256 23.51 130.99 1.30 7.00 0.0038 0.0070
0.3 0.9 0 37.63 2757 8.09 18.73 1.00 1.00 0.0025 0.0053
0.5 0.7 1 120.20 4811 196.32 3600.00 15.60 291.00 0.0034 0.0062
0.5 0.9 0 149.00 3054 10.90 18.10 1.00 1.00 0.0029 0.0048
0.7 0.9 0 192.35 4168 18.25 30.18 1.00 1.00 0.0037 0.0052

Table 6.22. Detailed results for the strongly correlated instances with C = 20 and with
deadlines with 6, 000 jobs, solved using the algorithm with the improved lower bound and

improved ILP model.

When we compare the results in tables 6.17, 6.19 and 6.21, it can be seen that
the most important improvement is the improvement of the ILP model, which allows

39

6. Experiments .
instances up to 5, 000 to be solved to the optimum. Another very import improvement
is the improvement of upper bound heuristic, which allows solving more instances than
without this improvement.

6.5 Upper and lower bounds
In this section, we focus on comparing the original lower bound and upper bound with
their improved variants. Therefore, in this experiment, we made a comparison between
the original algorithm that uses the improved ILP model and our algorithm with all
improvements. It should be noted that the improved ILP model does not affect the
quality of found bounds but allows us to perform this experiment on instances with a
bigger number of jobs and ensure that all instances are resolved to the optimum.

To achieve a fair comparison, it is necessary to ensure that the same instances are
solved to the optimum using both algorithms. Therefore, in this experiment assumes
instances with 4, 000 jobs. The results for strongly correlated instances are summa-
rized in tables 6.23 and 6.24. Column “root-UB-GAP” indicates the relative difference
between the upper bound and optimal value, which is computed as root−UB−OP T

OP T · 100.
In the same way, column “root-LB-GAP” indicates the relative difference between the
lower bound and the optimal value, which is computed as OP T−root−LB

OP T . Values in both
columns are in percentages.

root-LB-GAP root-UB-GAP
u v avg [%] max [%] avg [%] max [%]

0.1 0.3 0.0001478 0.0009857 0.0167 0.0299
0.1 0.5 0.0011834 0.0127308 0.0102 0.0208
0.1 0.7 0.0004803 0.0096056 0.0072 0.0117
0.1 0.9 0.0003891 0.0077826 0.0045 0.0082
0.3 0.5 0.0000317 0.0006339 0.0075 0.0147
0.3 0.7 0 0 0.0051 0.0103
0.3 0.9 0 0 0.0044 0.0069
0.5 0.7 0 0 0.0059 0.0100
0.5 0.9 0 0 0.0040 0.0081
0.7 0.9 0 0 0.0042 0.0075

Table 6.23. Detailed results for the strongly correlated instances with C = 20, and dead-
lines having 4, 000 jobs, solved using the algorithm with improved ILP model.

When we compare the results from the tables 6.23 and 6.24, we can see that for all
pairs of parameters (u, v), our improved algorithm always finds a better upper bound
than the original algorithm. On average, the most significant improvement is achieved
for the pair of parameters (0.1, 0.3).

In the case of lower bound, the situation is a bit more complicated. The original
lower bound is very tight and often finds an optimal solution. In the tables, this case is
denoted by value 0, as can be observed, i.e., in the last five rows in both tables. From
the results, we can see that the improved lower bound, in most cases, finds the same or
better solution than the original lower bound. In the case of parameters (0.1, 0.5), it
even found an optimal solution for all instances compared to the original lower bound.
On the other hand, for the parameters (0.3, 0.5), we can see that the original lower
bound found a better solution. On average, the improved lower bound is tighter than
the original one.

40

. 6.6 The heaviest strongly correlated instances

root-LB-GAP root-UB-GAP
u v avg [%] max [%] avg [%] max [%]

0.1 0.3 0.0000491 0.0009822 0.0157 0.0297
0.1 0.5 0 0 0.0100 0.0207
0.1 0.7 0.0000241 0.0004834 0.0071 0.0117
0.1 0.9 0.0000388 0.0003890 0.0043 0.0081
0.3 0.5 0.0000320 0.0006405 0.0067 0.0141
0.3 0.7 0 0 0.0048 0.0103
0.3 0.9 0 0 0.0044 0.0069
0.5 0.7 0 0 0.0057 0.0098
0.5 0.9 0 0 0.0039 0.0076
0.7 0.9 0 0 0.0041 0.0075

Table 6.24. Detailed results for the strongly correlated instances with C = 20, and dead-
lines having 4, 000 jobs, solved using the algorithm with all improvements.

6.6 The heaviest strongly correlated instances
The authors of the paper [1] point out the special type of strongly correlated instances
(pi = wi +20) that have only two possible due dates for all the jobs. According to their
results, these instances prove to be the heaviest correlated instances. They also give
an example of such instance with 200 jobs, that none of the ILP solvers was able to
solve within 3, 600 seconds. However, current ILP solvers are more efficient, therefore
ILP solver Gurobi 8.1.1 can solve their attached instance in less than 7 seconds with
the original ILP model.

We performed experiments for this kind of instance. We generated strongly correlated
instances of 200 jobs without deadlines, where the first half of the jobs have one common
due date, and the second half of the jobs have a common second due date. For each
pair of parameter (u, v) it was generated 20 instances which is together 200 instances.

Instances with 200 jobs were all solved by the original algorithm within 3, 600 seconds
except two instances. Based on this observation, we perform the next experiment
comprising also larger instances than 200 jobs and having two due dates. The largest
instances have 5, 000 jobs since instances having less then or 4, 0000 are solved directly
by an ILP formulation. In this experiment, we compared the original ILP model with
our improved ILP models on this strongly correlated instances.

The results are summarized in tables 6.25 and 6.26. From the results, it can be seen
that the original model cannot solve all instances within the time limit of 3, 600 seconds,
even for instance with 150 jobs. On the other hand, our improved ILP model has no
problem solving all 5, 000 instances within the same time limit. Moreover, it can also
be observed that our improved ILP model has relatively small differences between avg
and max CPU time, indicating a relatively stable run time for these strongly correlated
instances compare to the original ILP model.

41

6. Experiments .
CPU Time

n unsolved [-] avg [s] max [s]
50 0 0.01 0.13

100 0 0.14 24.18
150 1 26.71 3600.00
200 2 36.33 3600.00
250 3 54.05 3600.00
500 2 36.04 3600.00

1000 13 234.09 3600.00
2000 15 283.02 3600.00
3000 12 216.05 3600.00
4000 11 198.25 3600.00
5000 11 198.10 3600.00

Table 6.25. Results for the strongly correlated instances with C = 20 and with two due
dates, solved using the original ILP model.

CPU Time
n unsolved [-] avg [s] max [s]
50 0 0.06 0.11

100 0 0.06 0.13
150 0 0.07 0.17
200 0 0.05 0.11
250 0 0.06 0.10
500 0 0.06 0.10

1000 0 0.08 0.25
2000 0 0.09 0.21
3000 0 0.11 0.57
4000 0 0.14 0.84
5000 0 0.15 0.30

Table 6.26. Results for the strongly correlated instances with C = 20 and with two due
dates solved using the improved ILP model.

42

Chapter 7
Conclusion

The goal of this thesis was to extent results published in paper [1], where the au-
thors present an algorithm for problem 1|d̃j |

∑
wjUj . We focus on strongly correlated

instances that are very difficult for their algorithm. Our goal was to achieve better
results for this type of instances.

Based on the experiments in Section 6.2, we found an anomaly for strongly correlated
instances with C = 0. This type of strongly correlated instances can be solved even
faster than non-correlated instances using an ILP solver. Based on this anomaly, we
created a modified ILP model with the decomposition according to the number of early
jobs. This improved ILP model allows solving strongly correlated instances of up to
5, 000 jobs, as is shown in the experiments in Section 6.2.

We also introduced improvements for both lower bound and upper bound, which are
tighter than in paper [1]. Their improvements make it possible to solve a bigger number
of instances, which is caused by reducing more jobs using variable-fixing techniques. The
experiments in sections 6.3.3 and 6.3.4 confirmed that these improved bounds are also
useful for non-correlated and weakly correlated instances. For these types of instances,
improved bounds reduce the number of visited nodes in the branch-and-bound method.

In Section 6.3, we described results of many experiments comparing the original
algorithm from paper [1] with the algorithm that contained all our improvements. The
original algorithm had a problem to solve all instances with 150 jobs to the optimum
before the time limit. In contrast, our improvements made it possible to solve all
instances of up to 5, 000 jobs. For instances with 6, 000 jobs, our improved algorithm
solved 190 instances to optimum out of a total of 200.

It should be mentioned that we initially dealt with a possible use of machine learning
for strongly correlated instances of problem 1|d̃j |

∑
wjUj . We based our research on

paper [25], which uses decision diagrams and deep reinforcement learning to achieve
relatively tight bounds for both maximum independent set problem and maximum
cut problem. Our experiments led to the fact that the use of decision diagrams and
machine learning would not perform well for problem 1|d̃j |

∑
wjUj . We think that

this was because problem 1|d̃j |
∑
wjUj has very few infeasible solutions besides a huge

number of feasible solutions, but also because of its objective function.

7.1 Future work
One option is to explore methods and results for Knapsack problem presented by
Pisinger in paper [26]. In paper [26], Pisinger presents an algorithm that allows solving
strongly correlated instances of Knapsack problem up to 100, 000 items. Before Pisinger
introduced its algorithm, strongly correlated instances were considered more difficult
than uncorrelated instances for general Knapsack problem solvers.

43

References

[1] Philippe Baptiste, Federico Della Croce, Andrea Grosso, and Vincent T’kindt.
Sequencing a single machine with due dates and deadlines: an ILP-based approach
to solve very large instances. Journal of Scheduling. 2010, 13 (1), 39–47.

[2] Silvano Martello, and Paolo Toth. Knapsack Problems: Algorithms and Computer
Implementations. New York, NY, USA: John Wiley & Sons, Inc., 1990. ISBN 0-
471-92420-2.

[3] Chris N Potts, and LN Van Wassenhove. Algorithms for scheduling a single ma-
chine to minimize the weighted number of late jobs. Management Science. 1988,
34 (7), 843–858.

[4] J. T. Linderoth, and M. W. P. Savelsbergh. A Computational Study of Search
Strategies for Mixed Integer Programming. INFORMS Journal on Computing.
1999, 11 (2), 173-187.

[5] Richard M Karp. Reducibility among combinatorial problems. 1972.
[6] Danny Hermelin, Shlomo Karhi, Michael Pinedo, and Dvir Shabtay. New algo-

rithms for minimizing the weighted number of tardy jobs on a single machine.
Annals of Operations Research. 2018, 1–17.

[7] Eugene L Lawler. Scheduling a single machine to minimize the number of late jobs.
1983,

[8] Eugene L Lawler, and J Michael Moore. A functional equation and its application
to resource allocation and sequencing problems. Management Science. 1969, 16
(1), 77–84.

[9] Sartaj K Sahni. Algorithms for scheduling independent tasks. Journal of the ACM
(JACM). 1976, 23 (1), 116–127.

[10] Francisco J Villarreal, and Robert L Bulfin. Scheduling a single machine to mini-
mize the weighted number of tardy jobs. IIE Transactions. 1983, 15 (4), 337–343.

[11] Guochun Tang. A new branch and bound algorithm for minimizing the weighted
number of tardy jobs. Annals of Operations Research. 1990, 24 (1), 225–232.

[12] Rym M’Hallah, and RL Bulfin. Minimizing the weighted number of tardy jobs on
a single machine. European Journal of Operational Research. 2003, 145 (1), 45–56.

[13] AMA Hariri, and CN Potts. Single machine scheduling with deadlines to minimize
the weighted number of tardy jobs. Management Science. 1994, 40 (12), 1712–1719.

[14] Ming Liu, Shijin Wang, Chengbin Chu, and Feng Chu. An improved exact al-
gorithm for single-machine scheduling to minimise the number of tardy jobs with
periodic maintenance. International Journal of Production Research. 2016, 54 (12),
3591-3602.

[15] Zhenyou Wang, Cai-Min Wei, and Linhui Sun. Solution algorithms for the num-
ber of tardy jobs minimisation scheduling with a time-dependent learning effect.
International Journal of Production Research. 2017, 55 (11), 3141-3148.

44

. .
[16] ”Claudio Arbib, Giovanni Felici, and Mara Servilio”. ”Common operation schedul-

ing with general processing times: A branch-and-cut algorithm to minimize the
weighted number of tardy jobs”. ”Omega”. ”2019”, ”84” ”18 - 30”.

[17] ”Qiulan Zhao, and Jinjiang Yuan”. ”A note on single-machine scheduling to trade-
off between the number of tardy jobs and the start time of machine”. ”Operations
Research Letters”. ”2019”, ”47” (”6”), ”607 - 610”.

[18] ”Y. Laalaoui, and R. M’Hallah”. ”A binary multiple knapsack model for single ma-
chine scheduling with machine unavailability”. Computers & Operations Research.
”2016”, ”72” ”71 - 82”.

[19] Ronald L Graham, Eugene L Lawler, Jan Karel Lenstra, and AHG Rinnooy Kan.
Optimization and approximation in deterministic sequencing and scheduling: a sur-
vey. 1979.

[20] J. Blazewicz, K.H. Ecker, E. Pesch, G. Schmidt, and J. Weglarz. Handbook
on Scheduling: From Theory to Applications. Springer Berlin Heidelberg, 2007.
ISBN 9783540322207.

[21] J.Y.T. Leung. Handbook of Scheduling: Algorithms, Models, and Performance
Analysis. CRC Press, 2004. ISBN 9780203489802.

[22] P. Brucker. Scheduling Algorithms. Springer Berlin Heidelberg, 2007. ISBN 978-
3540695165.

[23] Dimitri P Bertsekas, and Paul Tseng. RELAX-IV: A faster version of the RELAX
code for solving minimum cost flow problems. 1994.

[24] Antonio Frangioni, and Claudio Gentile. The MCFClass project. 2001.
http://www.di.unipi.it/optimize/Software/MCF.html.

[25] Quentin Cappart, Emmanuel Goutierre, David Bergman, and Louis-Martin
Rousseau. Improving optimization bounds using machine learning: decision dia-
grams meet deep reinforcement learning. In: Proceedings of the AAAI Conference
on Artificial Intelligence. 2019. 1443–1451.

[26] David Pisinger. A fast algorithm for strongly correlated knapsack problems. Dis-
crete Applied Mathematics. 1998, 89 (1-3), 197–212.

45

http://www.di.unipi.it/optimize/Software/MCF.html

Appendix A
Content of the attached CD

. DP_2020_Hejl_Lukas.pdf — This thesis in PDF file,. source_code.zip — Source files of implemented algorithms,. source_text.zip — Source files of the thesis.

47

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Listings
	Introduction
	Literature review
	Scheduling overview
	Definition of scheduling problems
	Common parameters of job
	Processing time
	Deadline
	Due date
	Release time
	Weight
	Completion time

	Graham notation
	Field $alpha $
	Field $�eta $
	Field $gamma $

	Examples of usage problems $ 1||sum {U_j} $, $ 1||sum {w_j U_j} $ a $ 1|mathaccent "707E {d}_j|sum {w_j U_j} $
	Example showing the differences between all tree problems

	Problem $ 1||sum {U_j} $
	Description of Moore-Hodgson algorithm
	Example
	Connection with problem $ 1||sum {w_j U_j} $

	Problem $ 1|p_i=1|sum {w_j U_j} $
	Description of the algorithm
	Example
	Special case $ 1|p_j=1|sum {U_j} $

	Problem $ 1||sum {w_j U_j}$
	The algorithm for solving problem $ 1||sum {w_j U_j}$
	Limitations of the algorithm
	Example
	Special case $1|d_j=d|sum {w_j U_j}$

	Preliminaries
	ILP model
	Upper bound

	Improved algorithm
	Improved ILP model
	Model reformulation
	Problem decomposition

	Improved lower bound
	Improved upper bound

	Experiments
	Instances generation
	Comparison of ILP models
	Comparison of full algorithms
	Strongly correlated instances with deadlines
	Strongly correlated instances without deadlines
	Weakly correlated instances with deadlines
	Non-correlated instances with deadlines

	Comparison of individual improvements
	ILP model improvement
	Upper bound improvement
	Lower bound improvement

	Upper and lower bounds
	The heaviest strongly correlated instances

	Conclusion
	Future work

	References
	Content of the attached CD

