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Časově synchronizovaný datalogger a grafické
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Supervisor: Ing. Michal Janošek, Ph.D.
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Annotation
This thesis describes the development of the time-synchronous datalogger for geomag-
netic observatories. The thesis also describes the development of software for data
acquisition, processing and visualization. The developed datalogger is based on the
Raspberry Pi computer and uses the MySQL database as its main storage medium.
The datalogger implements a filtration of raw data and uses a signal from GNSS/GPS
receiver to achieve accurate timestamping. The device is equipped with a backup
power system and implements both hardware and software tools to ensure the correct
functionality during the short-term and the long-term power outages.
The developed software contains complete solution for datalogging. Two client pro-
gram for data revision and analysis were also developed as a part of the project.

Keywords
datalogger, time synchronous, GNSS receiver, data processing, software, graphical in-
terface, geomagnetic stations, geomagnetism

Anotace
Tato práce popisuje vývoj časově synchronńıho dataloggeru pro geomagnetické obser-
vatoře a softwaru pro záznam, zpracováńı a zobrazeńı geomagnetických dat. Vytvořený
datalogger je založen na poč́ıtači Raspberry Pi a jako hlavńı médium pro ukládáńı dat
využ́ıvá MySQL databázi.
Zař́ızeńı filtruje př́ıchoźı data a s využit́ım GNSS/GPS přij́ımače je označuje přesnými
časovými značkami. Datalogger je vybaven záložńım napájeńım a hardwarovými
a softwarovými nástroji, které zajǐst’uj́ı správnou funkci zař́ızeńı při krátkodobých
i dlouhodobých výpadćıch napájeńı.
Vytvořený software obsahuje kompletńı programové vybaveńı pro datalogger a také
dvě varianty prezentačńıho programu s grafickým rozhrańım pro zobrazeńı a analýzu
dat.

Kĺıčová slova
datalogger, časově synchronńı, GNSS přij́ımač, zpracováńı dat, software, prezentačńı
software, geomagnetické observatoře, geomagnetismus
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Chapter 1

Introduction

The measurement of the magnetic field is used in various scientific, industrial and
even medical applications. A typical application of the magnetic measurement is the
geomagnetism - measurement of Earth’s magnetic field. As described in Chapter 2.1
geomagnetic data serve for various global and local needs.

This thesis is focused on the logging and processing of geomagnetic data - the ac-
quisition of data with the help of a magnetometer and magnetic sensor is therefore
not covered, only briefly mentioned in Chapter 2.2.3.

Geomagnetic observatories (both permanent and temporary) are often placed in lightly
populated locations and used for obtaining long-term magnetic data. Distant locations
and large datasets comes with the need for a convenient and reliable device for the
data acquisition and data storing (datalogger).

The main purpose of the developed datalogger device is to collect data from a sensor
and to store them. It can be also used for various data processing (such as filtration,
calibration of sensor offsets, etc.) and to display the actual data to the observatory
staff in a graphical user interface.

1.1 Objectives of the Thesis

The goal of this thesis is to develop a time-synchronous datalogger with GUI (graph-
ical user interface) for geomagnetic observatories/repeat stations - specifically for the
station Dobruska/Polom.

Developed data-loger is based on previously created dataloggers. These devices were
developed for the MAGLAB research group of Measurement Department at the FEE
CTU in Prague and were described in bachelor thesis by Andrey Albershteyn [4] and
Viktor Fúra [8].

The developed datalogger is based on the Raspberry Pi platform such as device cre-
ated by Andrey Albershteyn [4] but introduces different solutions for data processing,
timestamping, storing and mainly, is precisely synchronized with GPS signal to pro-
vide UTC-time-aligned sampling.

In this project, a client-server SQL database is used for the data storing. The de-
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1.1. OBJECTIVES OF THE THESIS

veloped system also implements filtering of received data, calculation of value of the
magnetic field in physical units and a precise sample rate using GPS. The datalogger
is constructed to be able to handle the unexpected power or communications outages
(both short-term and long-term ones) and implements a solution for a regular backup
of the obtained data.

A client software with GUI (implemented in both MATLAB and LabView) for the data
processing and analysis is developed as part of the project. It accesses the database
and processes geomagnetic data for visualization and further analysis.

The datalogger is designed to be placed at the geomagnetic station Dobruska/Polom
as an alternative logging device to the current PC logger. Stored data will be used
for MAGLAB researches and for seismological measurements as well - more detail on
Seismological station Dobruska/Polom in Chapter 2.1.3.

The current datalogger at the POLOM station is implemented as a desktop PC with
LINUX system and simply saves the 206-Hz ASCII data to files which need to be
postprocessed afterwards. These data, because of their size, cannot be kept for more
than few years backwards, moreover, the system is not reliable due to its dependency
on local power. Also, it is asynchronous, so precise timestamps need to be generated
by postprocessing. See Figure 1.1 - current ”simple PC logger”.

- 11 -



1.1. OBJECTIVES OF THE THESIS

1.1.1 Description of the Developed System

The developed system consist of the Raspberry Pi based datalogger and a client soft-
ware for data processing and revision. The structure of the system is shown in the
Figure 1.1.

Figure 1.1: Diagram of developed system.

The developed datalogger is connected to the magnetic sensor using RS232 interface
as a secondary device (the magnetometer streams data). The device reads raw data
(including sensor temperature) and implements data filtration and sample rate con-
version (from 206.5 Hz to 10 Hz for txt log files and to 5 Hz for the MySQL database).

Filtered data (but uncorrected in matter of offsets, orthogonalization, etc.) are then
stored to the MySQL database and also to the plain text log file. The reason for sav-
ing the uncorrected data is to be able to apply different methods of correction during
analysis and not to lose any information i.e. by wrongly applied coefficients or further
calibrations of the device.

The client GUI software (running on a separate PC station) is connected to the MySQL
database and enables to load stored data. Loaded data are then corrected (offset and
gain correction, orthogonalization, temperature drift correction) and visualized. The
client software serves for the data revision and a further analysis.

- 12 -



1.2. AVAILABLE SOLUTIONS

1.2 Available Solutions

As already mentioned, the developed datalogger shares hardware and software simi-
larities with the datalogger [4] and further improves used technologies and their im-
plementation.

Besides dataloggers developed by MAGLAB ([4] and [8]) there are third-party so-
lutions as well. This chapter describes logging devices with parameters similar to the
developed datalogger and their differences.

1.2.1 Data Recorder for Observatory Magnetometer

The device developed by Andrey Albershteyn [4] (Figure 1.2) is based on Raspberry
Pi and has serial (RS232) interface for magnetic sensor. Device implements data pro-
cessing and filtration (using Gaussian filter).

In comparison with the developed datalogger it uses only a plain text files to store data
instead of SQL database. It does not implement precise time stamping of measured
data and although it contains a backup battery, it is does not implement any hardware
or software methods to securely handle the long-term power outages.

1.2.2 Low-power Datalogger for 1s INTERMAGNET Data

An open source datalogger based on Raspberry Pi computed developed by Achim
Morschhauser et. al. from GFZ German Research Center for Geosciences (Postam,
Germany) [6] shares similarities with A. Albershteyn’s datalogger and with the devel-
oped datalogger.

The device (Figure 1.3) aims to offer low-power device with emphasis on modularity
and flexibility. Data-logging software is implemented in C++ using object-oriented
approach. Developing team is currently implementing precise timestamping.

Figure 1.2: MagLab datalogger developed
by A. Albershteyn; source: [4].

Figure 1.3: Low-pawer datalogger based
on Raspberry Pi computer; source: [6].

The main advantage of the developed datalogger over the Morschhauser’s device is
the use of the MySQL database for the data storing and its sample rate variability

- 13 -



1.2. AVAILABLE SOLUTIONS

(Morschhauser’s device is designed to provide only 1 Hz data). The Morschhauser’s
device also does not implement backup battery as a part of the datalogger and it does
not implement any methods to safely handle power failures [7].

1.2.3 Portable Datalogger for Vector Magnetometer

The device was developed by Viktor Fúra and described in [8]. This device (Figure
1.4) was built with emphasis on portability and durability. Device contains GPS mod-
ule for precise timestamping but it does not implement any data processing. Data are
stored only in plain text file on a SD card.

This device is a portable datalogger for short-term measurements and it’s not designed
to be an observatory datalogger such as the developed device.

Figure 1.4: Portable datalogger devel-
oped by V.Fúra; source: [8].

Figure 1.5: Avisaro datalogger with
RS232 interface; source: [12].

1.2.4 Commercial Solutions

The main reason for researchers developing their own devices for magnetic data logging
is the lack of commercial solutions with suitable parameters and flexibility. Common
commercial solution often lacks data processing (such as filtering), precise timestamp-
ing, portability or possibility of customization.

As an example of portable commercial logging device using RS232 interface we can
use Avisaro Data Logger Box 2.0 [12] - simple portable logger for recording RS232
data on a SD card (Figure 1.5).

The Avisaro datalogger is only a simple device for data recording. It is not designed to
be placed at geomagnetic observatory as a datalogger system. It does not implement
any power backup system and it lacks precise sample rate support.

- 14 -



Chapter 2

Theory

In this part of the thesis the theoretical principles and used methods are described.
This chapter also briefly describes history of geomagnetic research and the purpose of
geomagnetic observatories.

2.1 Geomagnetism

History of geomagnetism and its practical use is very long as is described in IAGA
Guide [1]. The first definite mention of usage of a simple compass (magnetized steel
needle) in Europe comes from the year 1190. But at the same time the compass was
probably already commonly used for the navigation in China.

In the 15th century the magnetic declination (an angle on the horizontal plane be-
tween the magnetic north and the geodetic north) was described. Discovery of the
magnetic inclination (an angle between the Earth’s magnetic field lines and the hori-
zontal plane) followed in 1600.

In the 17th and 18th century the continuing research of the Earth’s magnetic field
alongside with the the discovery of new measurement methods (e.g. Coulomb’s rela-
tive method allowing to measure intensity of the horizontal component of the magnetic
field) led to the discovery that Earth’s magnetic field varies not only with place but
also with the time.

Figure 2.1: Illustration of the magnetic declination and inclination.
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2.1. GEOMAGNETISM

At the beginning of the 19th century Alexander von Humboldt laid the foundation of
modern geomagnetism with his long-term measurements. He initiated a building of
magnetic observatories all over the world.

Nowadays there is over 150 INTERMAGNET (the global network of observatories
monitoring the Earth’s magnetic field) permanent observatories and numerous of tem-
porary or private geomagnetic stations serving both science and commercial uses.

2.1.1 Geomagnetic Field

The magnetic field of the Earth is a vector field and it is observable all over the globe,
see Chapter 2. in IAGA Guide [1]. According to the Hydromagnetic Dynamo Theory
[13], the main part of field is created by electrokinetic currents running close to the
surface of the Earth’s outer liquid core (at the depth about 2 900 km). The field on
the Earth’s surface varies at the different locations - at the equator the field’s value is
about 30 µT and about 60 µT in the polar areas.

The slow changes of the geomagnetic field (changes over periods of a year or more)
are called secular variations. As is described in [1] these variations have dimensions
of thousands of kilometers and are caused mainly by the inhomogeneity of the electric
currents inside the Earth.

The smaller anomalies of geomagnetic field are mostly of crustal origin (the crust
is the outermost solid shell of the Earth). Crustal anomalies can have dimension from
hundred of kilometers to few meters and are caused by remanent magnetization, boul-
ders containing big amount of magnetite (rock mineral - one of the main iron ores), etc.

Short-term variations and anomalies are mostly caused by the particle radiation from
the Sun. Interaction of the solar wind (the flow of the particles from Sun) with the
Earth’s magnetic field creates magnetospheric and ionospheric currents and leads to
magnetic storms at the Earth’s surface.

Last common type of geomagnetic field variations are regular variations. These vari-
ations are related to the rotation and the orbital movement of the Earth, Moon and
most importantly the Sun. As is described in [1] there are two important periodic
variations: solar daily variation and lunar daily variation (the lunar magnetic effect is
significantly smaller than the solar magnetic effect). The regular solar daily variation
is also a function of the geomagnetic latitude, solar activity and the time of the year.

2.1.2 Geomagnetic Observatories

As was described, the main purpose of geomagnetic observatories is to monitor the
variations of the geomagnetic field. The observatories are typically placed in low pop-
ulated areas without large magnetic anomalies and far enough from the man-made
magnetic disturbances.
In the Czech Republic there is one official INTERMAGNET observatory in the south-
ern Bohemia near Budkov [14].

Geomagnetic data are used to study the geological structure of the Earth’s crust
and core. There are also many applications of geomagnetism in geology, seismology.

- 16 -



2.1. GEOMAGNETISM

The precise geomagnetic data are also needed for research into current systems in the
ionosphere and magnetosphere.

Observatories fulfill global and local needs for geomagnetic data. In the global scale, it
is important to monitor secular variations and magnetic storms that affect large areas.
From a local point of view geomagnetic observatories are important for measurement
of local variations because local magnetic anomalies can lead to communicational in-
terferences and even power failures. Geomagnetic observatories also often serve as
facilities for calibration of magnetic instruments.

2.1.3 Geomagnetic Station Dobruska/Polom

The geomagnetic station Dobruska/Polom is part of the measurement station Polom
located in the Orlické hory Mountains. Station was founded in 1974 in the area of
the Military Geodetical Institute at Polom and its main task was to monitor seismic
activity for military purposes [16].

Figure 2.2: Location of the Dobruska/Polom station, source: [16].

Nowadays Polom station still serves as a military measurement station but it is also
a place of multiple collaborations with scientific institutes such as Institute of Geo-
physics of the Czech Academy of Science or Czech Hydrometeorological Institute [16].

Seismological station Dobruska/Polom (DPC) is still the most important part of the
Polom station. The station DPC is equipped with modern seismometers and provides
very precise seismic data thanks to very low level of the seismic noise in the area. The
station is also part of the Federation of Digital Seismic Network - network of about
200 selected high-quality broadband stations used among others for fast location of
potentially damaging earthquakes [15].

Polom station also serves as a place for geodetic, geophysical (Polom is used as a
GPS reference station) and hydro-meteorological measurements (in cooperation with
the Czech Hydrometeorological Institute). Even an astronomical observations of ex-
tremely bright meteors are conducted at the station by automatic bolide camera (in
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cooperation with the Astronomical Institute of the Czech Academy of Sciences) [16].

Figure 2.3: Measurement station at the Dobruska/Polom, source: [16].

Geomagnetic station Dobruska/Polom is a cooperation between the MAGLAB re-
search group and the Institute of Geophysics of the Czech Academy of Science. Local
geomagnetic data are used for research of magnetism conducted by the MAGLAB and
the Institute of Geophysics. Local geomagnetic data are used for the research of mag-
netism and also as a referential data for the elimination of a geomagnetic reference in
a seismic data.

Figure 2.4: Bolide camera installed
at the DPC station, source: [16].

Figure 2.5: Geomagnetic station at the
Dobruska/Polom.

In the Figure 2.5 we can see the sensor head in a non-magnetic hut, surrounded by
white bricks for basic passive temperature stabilization.
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2.2 Instruments for Measurement of the Geomag-

netic Field

Magnetometers used to measure the Earth’s magnetic filed fall into two categories
[11]: instruments for measuring the temporal changes in the field (variometers) and
instruments for measuring the absolute value of the magnetic field at a specific time
instant

In the last two centuries, there have been a rapid development of the instruments
for magnetic measurement. Classical magnetometers based on the observation of the
magnet in the changing magnetic field were replaced by modern instruments such as
fluxgates magnetometers. Currently the most commonly used magnetometers in mod-
ern magnetic observatories are the triaxial fluxgate variometer and the declination-
inclination magnetometer in conjunction with an Overhauser magnetometer for abso-
lute observations.

This chapter aims to briefly describe the most significant historical instruments and
the most widely used instruments in modern geomagnetic observatories.
Variometer installed at the Dobruska/Polom observatory is of fluxgate type and is
described in the Chapter 2.2.3.

2.2.1 Historical Magnetometers

The torsion magnetometers are a classical magnetometers commonly used since the
19th century. As is described in [1] on page 54, torsion magnetometers are based on the
observation of a magnet in a changing magnetic field. The magnet is suspended by a
thin fibre and the torque of the magnetic field on the suspended magnet is compensated
by the torque of the suspension fibre.

2.2.1.1 Declinometer

The Declinometer is a classical instrument for declination measurement. This instru-
ment employs a magnet suspended from a long torsionless fibre so it is free to align
itself in the direction of the horizontal magnetic field (as described in [11] on page 26).
The system with the magnet is placed on top of a non-magnetic theodolite.

The principle of a declination measurement is quite simple as is shown in the Fig-
ure 2.6. To calculate the declination D, we need to take the theodolite reading A
of magnetic meridian and the theodolite reading B of an azimuth mark with known
azimuth AZ : D = A− (B − AZ).
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Figure 2.6: Theoretical principle of the declinometer.

2.2.1.2 Torsion Variometers

As is described in [1] in Chapter 4.4, torsion magnetometers with suspended and bal-
anced magnets were the most common type of variometer for more than a hundred
years.

The main principle is shown in the Figure 2.7: the light beam from the lamp (placed at
the focal distance of the lens L) goes through the lens L to the variometer mirror VM
(attached to the suspended magnet), reflects from there back through the lens L and
a cylindrical lens CL and focuses at the photo-paper wrapped around rotating drum
D where it forms a sharp spot. The light spot draws the magnetogram at the moving
photo-paper. The base-line of the magnetogram is produced by another light beam
reflecting from a fixed mirror FM and drawing a straight line on the photo-paper.

Figure 2.7: Main principle of the torsion variometer. Source: [1]

The analog form of recording was the main shortcoming of the classical torsion variome-
ter but the introduction of the phototransformers helped to overcome this difficulty.

The Torsion Photoelectric Magnetometer (TPM) uses a classical suspended magnet
system as a detector but it implements phototransformer as a recorder as is described
in [11] in Chapter 4.7.3. The light beam is reflected onto a pair of fototransformers
which transform the angle of deviation into a voltage. The voltage output is then
amplified and also fed to a negative feedback winding which acts to keep the mirror
stationary. The current in the negative feedback circuit is a measure of the strength
of the magnetic field component [11].
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2.2.2 Modern Instruments

In this chapter, the most common modern instruments for measuring magnetic varia-
tions and absolute value of the magnetic field are described.

2.2.2.1 Fluxgate Magnetometers

The fluxgate mechanism is based on the non-linear characteristics of ferromagnetic
materials in the sensing elements of the instrument. All fluxgate sensors uses an easily
saturable core made of a material with high permeability. Around the core there are
two windings: an excitation coil and a pick-up coil.

The fluxgate sensor principle will be described for a sensor with a linear twin core
(Figure 2.8) which is the most common type of fluxgate. Described function applies
also for a ring core fluxgate sensor and for race-track fluxgate sensor (Figure 2.9).

Figure 2.8: Twin core fluxgate sensor
schema. Source: [26].

Figure 2.9: Race-track fluxgate sensor.
Source: [25]

As is shown in the Figure 2.8 the excitation winding of the sensor is placed around
each core. The cores are wound so they are excited in opposite directions which means
that the induced voltage produced by the excitation winding is canceled by the phase
reversal. The output signal is obtained from a pick-up winding encircling both cores.

As is described in [11] Chapter 4.2.2, when the excitation current I is zero, the core
is not saturated and its relative permeability µr is maximum. The core concentrates
the the ambient magnetic field to be measured, producing a magnetic flux. When the
current I is fed into the excitation winding it creates a magnetic field, the core is sat-
urated. It causes the drop of the core permeability (close to permeability of vacuum)
and collapse of the flux.

The core is saturated alternatively in opposing directions by sine or square excita-
tion signal (or other shapes for power saving). After the collapse, the flux recovers in
the next half cycle of excitation waveform and it is once again at a high level until the
core is saturated in the opposite direction.

The pick-up coil detect these flux changes. In the absence of an external magnetic field,
the saturations are symmetrical and the output signal has only odd harmonics. The
presence of an external magnetic filed (to be measured) disturbs this symmetry and
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causes creating even harmonics with a dominant second harmonic [11]. The pick-up
coil will detect even harmonics in output signal (odd harmonics are canceled thanks to
the phase reversal of the opposite winding of the excitation coils) which are a measure
of the measured magnetic field.
The triaxial fluxgate sensor employs three fluxgate sensors orthogonal to each other
which allows to measure vector value of magnetic field.

The fluxgate sensors are currently the most common type of magnetic variometers.
The fluxgate sensor can be also employed to conduct an absolute magnetic measure-
ments. The instrument called Declination-Inclination Magnetometer (DIM) consist of
the fluxgate sensor mounted on top of the non-magnetic theodolite and is commonly
used to measure magnetic declination and inclination. The principle of measurement
is described in [11] in Chapter 4.3.

2.2.2.2 Overhauser Magnetometer

The Overhauser magnetometer is a proton magnetometer with high sensitivity, lower
power consumption and no DC polarization [11]. It is a very common instrument for
absolute measurement of the magnetic field.

Function of a proton magnetometer is based on the principle that protons are spinning
on an axis aligned with the magnetic field. Standard proton precision magnetometer
uses a solenoid to create a strong magnetic field around a fluid rich in hydrogen atoms.
That causes that protons contained in the fluid are aligned in the direction of the field.
When the field is interrupted, protons start to realign themselves with am ambient
field. During the realignment protons precess at an angular frequency ω directly pro-
portional to the magnetic intensity of ambient B field [11]: ω = γpB, where γp is a
gyromagnetic constant.

Magnetic dipoles are produced by the spin of charged particles precessing around
the magnetic field direction [11]. Created magnetic field is detected and the value of
magnetic intensity B is determined.

The Overhauser magnetometer uses free radical fluid and it aligns protons with a
low power radio-frequency (RF) field instead of a magnetic field created by solenoid.
The RF polarization also allows for concurrent measurement with maximum practical
rate of 5 readings per second [11] (Chapter 4.4.3 Overhauser magnetometers).

Figure 2.10: High precision Overhauser magnetometer GEM GSM-19. Source: [24]
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2.2.3 Magnetometer at the Dobruska/Polom Station

The magnetometer installed at the Dobruska/Polom station was manufactured at the
CTU using low-noise high-stability fluxgate sensors [5]. As is described in [19] race-
track fluxgate sensors with planar oval core (cut by pico-second UC-laser) were used.
The triaxial sensor head is made from MACOR machinable ceramics and it is further
fixed on a marble plate.

The sensor at the Dobruska/Polom station is oriented in ”UVZ” orientation: the
two horizontal axes are oriented ±45◦ from the local meridian. This means that both
horizontal axes are measuring roughly the same magnetic field [5].

Figure 2.11: Fluxgate variometer installed at Dobruska/Polom station. Source: [19].

The electronics uses 24-bit 200 Hz A/D converter with simultaneous sampling and all
digital processing is done in FPGA. The noise performance of the complete measure-
ment system is below 6 pT/

√
Hz @; 1Hz [19]. FPGA also serves for streaming the data

to the serial line.

- 23 -



2.3. SAMPLE RATE CONVERSION AND LOW-PASS FILTERING

2.3 Sample Rate Conversion and Low-Pass Filter-

ing

The sample rate conversion and filtering is an important part of the magnetic data
processing. It is common to sample magnetic data with fast rate and then use a
digital filter to improve the signal and to convert the sample rate. With a use of
suitable low-pass filter we can achieve an improvement of signal resolution, decrease
of the bandwidth and also the noise and the aliasing reduction. Analog filters should
be used at minimum, because they will always add instability, noise and temperature
dependence of their transfer function.

The commonly used low-pass filters are described in following chapters. Considered
filters are compared in Chapter 2.3.5 and selection of the most suitable filter is dis-
cussed.

2.3.1 Successive Sample Averaging with Decimation

The Successive Sample Averaging (also called Boxcar filtering or Moving Average
filter) is a basic low-pass filter. It provides the noise reduction and can be also used for
a signal decimation. As is described in [10] in the Successive Sample Averaging (SAS)
implementation every output sample represents an average value of M consecutive
input samples.

Figure 2.12: SAS filter with decimation.

The frequency characteristic of Successive Sample Averaging have very sharp nulls at
the frequency sample rate

number of averaged samples
and its harmonics - as is shown in the Figure 2.13.

Figure 2.13: Frequency characteristic of Successive Sample Averaging.
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2.3.2 Gaussian Low-Pass Filter

The Gaussian filter is a common low-pass filter for magnetic data processing and is
even recommended by INTERMAGNET. In the principle, it is similar to the Succes-
sive Sample Averaging. The main difference is that Gaussian filter uses multiplication
of input samples with coefficients given by Gaussian distribution function, instead of
assigning the same weight for every input sample as the Successive Sample Averaging
does (basically the Successive Sample Averaging is Gaussian filter with all coefficients
equal to 1.0). In turn, this filter has a sharper roll-off.

As is explained in IAGA Guide [1], 7.1 Sapmpling rate (pages 139-141) the Gaussian
filter can be described with the Fourier transform pair of functions f(t) and F (ω).

f(t) = e

(
− t2

2 · τ 2
)

(2.1)

F (ω) = τ · e

(
−ω

2τ 2

2

)
(2.2)

Functions f(t) and F (ω) have the shape of the Gaussian distribution.

Figure 2.14: Magnitude response of a Gaussian filter.

The Gaussian filter provides better rejection in stop band, wider transition band and
higher steepness of transition band comparing to Successive Sample Averaging.
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2.3.3 Low-pas FIR filter

The Finite Impulse Response (FIR) filter is a digital filter with finite duration of its
impulse response. The FIR filter difference equation is defined as:

y[n] =
N∑
i=0

bi · x[n− i] (2.3)

where N is number of filter coefficients, x[n− i] is the input delayed by i samples, bi
is the i-th coefficient of the filter and y[n] is the filtered output at discrete time n.

The output of the FIR filter depends only on the input values which leads to its
finite impulse response [17].

FIR filters are simple to design and are guaranteed to be BIBO (bounded input -
bounded output) stable. One of the main advantages of a FIR filter is its constant
delay on all frequencies. The group delay τ of a FIR filter with symmetrical coefficients
is defined as:

τ =
N − 1

2
(2.4)

where N is number of filter coefficients and τ is a delay of the signal in samples.

In the case of FIR filter with 276 coefficients (selected FIR filter) the delay of sig-
nal is 137.5 samples.

The main disadvantage of a FIR filter is a need for high order of the filter when
the steepness of transition band is required.
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2.3.4 Low-pas IIR filter

Unlike the FIR filter, the output of an Infinite Impulse Response (IIR) depends on
both input and output values. The feedback loop of the filter is responsible for the
infinite impulse response [17]. The general equation for an IIR filter is:

y[n] =
1

a0

(
P∑
i=0

bi · x[n− i]−
Q∑

j=1

aj · y[n− j]

)
(2.5)

where P is the number feedforward coefficients of the filter, x[n − i] is the input de-
layed by i samples, bi is the i-th feedforward coefficient of the filter, Q is the number
of feedback coefficients, y[n− j] is the output of the filter delayed by j samples, aj is
the j-th feedback coefficient of the filter and y[n] is the filtered output at discrete time
n.
In the most IIR filter designs the coefficient a0 is equal to 1 (a0 = 1).

An IIR filter is commonly used for high-speed applications because it requires sig-
nificantly lower number of coefficients (which means fewer multiplication operations)
than FIR filter of similar filtering properties.
The main disadvantage of an IIR filter is its nonlinear phase. This leads to the differ-
ent delay for each frequency component. Also, the filter stability is not not guaranteed
(as shown in the Figure 2.15.)

Figure 2.15: Example of a group delay of an IIR filter.

The group delay τ of an IIR filter is defined as [18]:

τ(Ω) = −d(Φ(Ω))

dΩ
(2.6)

where Ω is the frequency, Φ(Ω) is the phase spectrum (defined as a normalized con-
tinuous function of Ω) and τ is the delay of signal in samples.
There are some options for IIR filter delay compensation[18] but the compensation is
never full and therefore it is not very suitable for ”on the fly” filtering.
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2.3.5 Filter Selection

As already mentioned, this project requires using a low-pass filter for data smoothing
and noise reduction.

The primary purpose of the developed datalogger is the processing and storing of
the geomagnetic data.
Most of the geomagnetic field variations have very low frequencies (lower than 1 Hz)
and geomagnetic signal often suffers from a man-made magnetic noise (such as 50 Hz
noise caused by the power distribution system).

Based on the data from long-term measurements, geomagnetic signal in Dobruska/Polom
station suffers from the strong white noise. It is mainly caused by the full-filed con-
figuration, which is implemented at the time instead of a true variometer - the A/D
converter dominates the noise floor, and leads to flat spectrum of recorded signal.
Long-term geomagnetic signal from Dobruska/Polom and its spectrum are shown in
the Figure 2.16.

Figure 2.16: Spectrum density of the long-term geomagnetic data from Do-
bruska/Polom (March 2018).

Based on the long-term geomagnetic data, the required properties of the low-pass filter
were set as follows:

Required parameters:

1. steep roll-off

2. cut-off frequency at circa 3 Hz

3. efficient filtration of the 50 Hz noise

4. predictable delay of the filter

5. reasonable processing power requirements

Predictable delay of the filter is required to achieve a precise sample rate: with use of
the GPS it is necessary to be able to determine the delay of the signal so it can be

- 28 -



2.3. SAMPLE RATE CONVERSION AND LOW-PASS FILTERING

compensated and timestamps are synchronized.

The processing power is an important filter parameter because of HW limitation of
the Raspberry Pi computer - data processing will be running ”on the fly” and each
filter iteration have to be finished before the arrival of the new data sample.

To select the most suitable low-pass filter a series of Matlab simulations with real
long-term Dobruska/Polom data was conducted.

2.3.5.1 Tested Filters

At the first round of the filter selection following low-pass filters were compared: Suc-
cessive Sample Averaging (theory in Chapter 2.3.1), Gaussian filter (theory in Chapter
2.3.2), FIR filter (theory in Chapter 2.3.3) and IIR filter (theory in Chapter 2.3.4).

Tested Successive Sample Averaging filter has following parameters:

Parameter Value

Output sample rate 10 Hz
Number of averaged samples 30

Table 2.1: SAS filter parameters.

The Gaussian filter was described by following parameters:

Parameter Value

Output sample rate 10 Hz
Cut-off frequency 2 Hz

Table 2.2: Gaussian filter parameters.

Coefficients of Gaussian filter were computed in MATLAB with use of following script:

function [ Ci ]= gaus sCoe f f s ( inputPer iod , outputPeriod , cutOfFreq )
%Generate Gaussian F i l t e r C o e f f i c i e n t s
% i n p u t s :
% input per iod . . . o r i g i n a l sample per iod [ sec ]
% output per iod . . . sample per iod a f t e r f i l t e r i n g [ sec ]
% cut−o f f f requency . . . cut−o f f p o i n t (−3 dB) [ Hz ]
% output :
% C . . . f u l l array o f Gaussian c o e f f i c i e n t s

dt = inputPer iod ; %o r i g i n a l sample per iod
valuesTime = outputPeriod ; %data per iod a f t e r f i l t e r i n g
omega = 2∗pi∗ cutOfFreq ;
tau = 0.83255461/ omega ;
tmax = sqrt (−2∗ log ( 0 . 0 1 )∗ tau ˆ 2 ) ;
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t = 0 : dt : f loor ( tmax/dt )∗ dt ;
f = exp(−(( t / tau ) . ˆ 2 ) . / 2 ) ;
imax = length ( f )−1;
k = f (1)+2∗sum( f ( 2 : end ) ) ;
C = (1/k ) . ∗ f ;
Ci = [ f l i p (C( 2 : end ) ) ,C ] ;

end

Tested IIR filter can be re-created with MATLAB designfilt function:

i i r F i l t = d e s i g n f i l t ( ’ l o w p a s s i i r ’ , ’ F i l t e rOrde r ’ , 6 , . . .
’ PassbandFrequency ’ ,2 , ’ PassbandRipple ’ , 0 . 1 , . . .
’ SampleRate ’ , 2 0 6 . 5 ) ;

The IIR filter than have following parameters:

Parameter Value

Number of filter coefficients 7
Cut-off frequency (-3 dB) 2.2 Hz
Passband frequency 2 Hz
Passband ripple 0.1
Attenuation of 50 Hz noise -190 dB
Filter delay frequency dependent

Table 2.3: IIR filter parameters.

The last of tested filters was the FIR filter. It can be re-created with MATLAB
designfilt function:

f i r F i l t=d e s i g n f i l t ( ’ l o w p a s s f i r ’ , ’ PassbandFrequency ’ , 2 ∗ 2 / 2 0 6 . 5 , . . .
’ StopbandFrequency ’ , 4∗2/206 .5 , ’ PassbandRipple ’ , 0 . 3 , . . .
’ StopbandAttenuation ’ ,70 , ’ DesignMethod ’ , ’ e q u i r i p p l e ’ ) ;

The FIR filter had following parameters:

Parameter Value

Number of filter coefficients 276
Cut-off frequency (-3 dB) 2.5 Hz
Passband frequency 2 Hz
Stopband frequency 4 Hz
Passband ripple 0.3
Attenuation of 50 Hz noise -80 dB
Filter delay 137.5 samples

Table 2.4: FIR filter parameters.

2.3.5.2 Filter Comparison

The Successive Sample Averaging as a simple form of low-pass filter is not efficient
enough for purposes of this project as can be seen in comparison of the spectral density
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of filtered signal (Figure 2.18).

Figure 2.17: Filter comparison - magnitude response.

Even though required processing power is very low and the filter has only a small
delay, SAS filter is not suitable for this project. As can be seen in the Figure 2.17
the magnitude response of the SAS filter does not meet the demands set by project
requirements.

Figure 2.18: Filter comparison - spectral density of signal.

The Gaussian filter’s biggest advantages are its constant delay and low number of
coefficients. As was described in Chapter 2.3.2 it is very common filter for the pro-
cessing of magnetic data. Despite its qualities the Gaussian filter is not suitable for
this project: because of its gradual roll-off. As is shown in Figure 2.17 and in Table
2.5, although cut-off frequencies of Gaussian, IIR and FIR filters are similar, roll-off
of the Gaussian filter is not steep enough.

The Gaussian filter is very useful in processing of signal with 1/f attenuation of
the specter where its effective steepness is increased. As is shown in the Figure 2.16,
typical geomagnetic data that will be processed by the developed datalogger has very
flat spectrum without 1/f attenuation.
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Parameter Gauss Filter IIR filter FIR filter

Number of filter coefficients 83 7 276
Cut-off frequency (-3 dB) 2 Hz 2.2 Hz 2.5 Hz
Passband frequency - 2 Hz 2 Hz
Stopband frequency - - 4 Hz
Passband ripple - 0.1 0.3
Attenuation of 50 Hz noise -80 dB -190 dB -80 dB
Filter delay constant frequency dependent 137.5 samples

Table 2.5: Comparison of the Gaussian, the IIR and the FIR filter with similar filtra-
tion abilities.

After elimination of the SAS and the Gaussian filter as not suitable enough it was
necessary to decide between IIR and FIR filter and select the most suitable filter for
thesis requirements.

The IIR filter seems to be more suitable than the FIR filter. As is shown in Fig-
ure 2.17 it has steeper roll-off and greater signal attenuation in lower frequencies. And
although the feedback loop of IIR filter requires more processing power than strictly
feedforward loop of same number of coefficients, the extremely low number of IIR filter
coefficients (almost 40 times less than FIR filter of similar filtering quality) results into
very low processing power requirements.

Despite all of its qualities the main disadvantage of the IIR filter is its delay. As
was described in Chapter 2.3.4 the group delay of IIR filter depends on the signal
spectrum and it is not constant nor predictable.

Although the spectrum of geomagnetic signal from Dobruska/Polom seems to be very
stable through long-term measurements, assumption of constant delay (even based on
the long-term measurements) would lead to phase distortion of higher-frequency com-
ponents of interest, which would then render the recorded data useless for comparison
with other stations.

This project aims to deliver precise sample rate of the filtered data with the use
of GPS module. In the light of this goal the IIR filter is not suitable.

After thorough discussion the FIR filter was selected as the most suitable filter for
data processing. Magnitude response of selected filter is shown in the Figure 2.19 and
its parameters are stated in Table 2.5. The selected filter’s roll-off is not as steep as
the IIR filter’s but the FIR filter is still efficient enough to process signal data with
required quality.

The delay of the FIR filter is constant (137.5 samples) which will enable to imple-
ment precise sample rate.

The number of FIR filter coefficients was determined as compromise between filter
roll-off and processing power requirements. The selected FIR filter was tested and
it is able to process geomagnetic data ”on the fly” without affecting the datalogger
performance.
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List of parameters selected FIR filter can be found in the Chapter 2.3.5.1 in the
Table 2.4.

Figure 2.19: Magnitude response of the selected FIR filter.
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2.4 Data Correction based on Sensor Calibration

As described in the Chapter 1.1.1 recorded raw geomagnetic data from the magne-
tometer are filtered (signal filtering is described in the Chapter 2.3) and then stored
into the database (the database structure is described in the Chapter 3.2.1) without
any data correction. The reason to store uncorrected data is to be able to work with
original data and to change parameters of correction in the view of the needs of various
experiments.

The data correction (such as orthogonalization and temperature drift compensation)
is therefore implemented in the Client software (Chapter 3.3). In this chapter, imple-
mented methods of data correction are described.

2.4.1 Orthogonalization, Offset and Sensitivity Correction

The triaxial fluxgate sensor consist of 3 sensors that are orthogonal in theory. In the
case of real sensor that is not true because the sensors are not perfectly located. To
transform non-orthogonal coordinate system of sensor to orthogonal coordinate system
the transformation called orthogonalization is needed.

There are other necessary corrections and transformations as well. The triaxial flux-
gate sensor suffers from offset that needs to be compensated. The magnetometer
output is also in engineering units ([EU]) so it needs to be transformed to Tesla unit
with the use of the sensitivity coefficients.

To transform non-orthogonal sensor data we will use orthogonalization as is described
in [2]. This transformation also implements the offset and sensitivity correction:

B = P · S−1 · (F− o) + C0 (2.7)

where:

• B . . . orthogonalized and corrected sensor output [T]

• S . . . sensitivity matrix [eu/T]

• P . . . orthogonalization matrix [-]

• F . . . raw data from magnetometer [eu]

• o . . . offsets of magnetometer [eu]

• C0 . . . compensation field in variometer mode [T]

The equation (2.7) in matrix form:Bx

By

Bz

 =

p11 p12 p13
p21 p22 p23
p31 p32 p33

 ·
 1

Sx
0 0

0 1
Sy

0

0 0 1
Sz

 ·
Fx − ox
Fy − oy
Fz − oz

+

Cx

Cy

Cz

 (2.8)
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Calibration parameters and orthogonalization matrix were recorded by scalar calibra-
tion (similarly as in [19]):

P =

 1 0 0
−0.002625330292398 1.000003446173634 0
0.004190527854485 0.007839927070293 1.000039596867103

 (2.9)

Axis X Y Z

Orientation North-South -45◦ Z (vertical) East-West -45◦

Offset [eu] 3434.5 -85.1 2585.3
Sensitivity [eu/T] −1.227934 · 1011 1.216069 · 1011 1.222938 · 1011

Compensation field [T] 0 0 0

Table 2.6: Parameters of used magnetometer.

Sensitivity parameter for axis X has negative value because this sensor has an opposite
orientation than other sensors in triaxial fluxgate sensor.

As described in [4] if we are interested in the absolute value of intensity of the magnetic
field (and not only in the variation), we need to add applied compensation field C0

(Cx, Cy, Cz are values of compensation field) to orthogonalized geomagnetic data.

In the case of Polom/Dobruska sensor there is a zero compensation field currently,
as the sensors runs in ”full-field” mode. The offset coils, although implemented in the
sensor head, will be utilized after temperature stabilization of the sensor head will be
finished.

2.4.2 Numerical Correction of Temperature Drifts

The variometer sensor (and its electronics) at the Dobruska/Polom station is oper-
ating at ambient temperatures only with a passive temperature stabilization by non-
magnetic bricks in sensor vicinity. The season and diurnal changes of temperature
causes a temperature drifts which need to be corrected to improve the measurement.

As is described in [5] the temperature drift in a fluxgate magnetometer is caused by
multiple effects: by the temperature of the excitation tank capacitor, by the dimen-
sional expansion of the feedback/pick-up coil or due to the expansion of the triaxial
holder material and its base.

To obtain the temperature coefficients of the sensor the long-term measurement at
Dobruska/Polom station and Budkov observatory was conducted. Readings were then
compared and the actual variometer drifts in all three axes were determined [5].

To obtain compensated values we will use following equations:BX

BY

BZ

 =

Bx − α ·∆θ
By − β ·∆θ
Bz − γ ·∆θ

 (2.10)
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where ∆θ [◦C] is the temperature delta, α, β, γ [T ·K−1] are drift constants, Bx, By, Bz [T]
are orthogonalised and corrected geomagnetic values (obtained from Equation 2.7) and
BX , BY , BZ [T] are final compensated values.

The calibration of sensor sensitvities, orthogonalities and offsets was conducted at
reference temperature θ0 = 4.5 ◦C. The temperature delta ∆θ from Equation 2.10 can
be computed as difference between actual temperature θ and reference temperature
θ0:

∆θ = θ − θ0 (2.11)

The calculated values of drift constants α, β and γ [T ·K−1] were following:

α = 1.2 nT ·K−1, β = −3.2 nT ·K−1, γ = 1.8 nT ·K−1 (2.12)

Figure 2.20: Long-term temperature measurement at Polom/Dobruska and the differ-
ence between long-term Polom/Dobruska scalar values without (blue) and after (red)
temperature compensation. DPC station March 2018.
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Chapter 3

Development of the Datalogger

Development of the datalogger was split into 3 part: assembly of the datalogger hard-
ware; developing the software for datalogger (programs for data acquisition, data pro-
cessing and also for device control) and developing the Client software (an application
with graphical interface for data correction and analysis).

3.1 Hardware Development

The key component of the developed datalogger is a mini Linux computer Raspberry
Pi 2B equipped with several interface ports including RS232 interface for connecting
to the magnetic sensor.

Figure 3.1: Detail of data-logger structure.

The Rapberry Pi 2B is a single board computer with 900MHz Broadcom BCM2837
Arm7 Quad Core Processor and 1GB RAM. It has an ethernet port, 4 USB ports and
40 GPIO pins. Used Raspberry Pi is running Raspbian GNU/Linux 9 (stretch) OS
and has the 4.14.71-v7+ version of kernel.
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It was not necessary to use specialized RTOS (real-time OS) to achieve constant sam-
ple rate of filtered and processed data (the optimization of datalogger application was
efficient enough). Thanks to use of the regular OS, the device is more flexible and
more accessible for users.

The device is also equipped with a backup battery and power control system for a
case of power failure. In the case of short-term power failure datalogger is powered
from the battery and measurement is uninterrupted.

In the case of long-term power failure the monitoring software and the power con-
trol circuit will turn off the device after the capacity of the battery is depleted. The
control circuit will turn on the datalogger again after the power supply is restored.

Figure 3.2: Diagram of device’s hardware.

Developed datalogger implements Global Navigation Satellite System (GNSS) receiver
to achieve precise sample rate by the use of PPS signal.

3.1.1 Power and Backup System

Datalogger is primary powered by the external regulated 13.8 V DC power supply
(Fusion PS101). This voltage is then converted with DC/DC converter (Meanwell 15
W Single Output DC-DC Converter SD-15 series) to 5 V required by Raspberry Pi.

Backup battery (12V 2.3Ah Westinhouse WA1223E) is connected as parallel device
to the 13.8 V power supply and is constantly charged. In case of short-term power
failure the battery provides the backup power supply.
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Figure 3.3: Scheme of power and backup circuit.

The developed datalogger is equipped with an analog brownout circuit to control the
power source and to prevent depletion of the battery below the recommended voltage
limit.

The circuit (Figure 3.3) cuts off the battery in the case of battery voltage dropping
below 11.6 V. The voltage 11.6 V was set as a limit value to prolong the life cycle of
the battery.
In the case of power supply restoration (that means the battery voltage will be at least
12.8 V) the circuit turns-on the power supply and the datalogger is running again.

The analog control circuit consist of an operational amplifier used as the voltage com-
parator with voltage reference. On the imput of the comparator the voltage divider
(dividing by four) is implemented. The hysteresis of comparator is set by resistors to
thresholds 2.9 V (11.6 before divider) and 3.2 V (12.8 V before divider).
The output of the comparator controls transistors.

3.1.2 Interfaces of Datalogger

The developed device has 4 USB ports for optional external memory devices (two ex-
ternal and two internal - inside the device box) , one LAN port for ethernet connection
and the serial port for geomagnetic sensor connection.

The datalogger will be operated as a listener device to maintain the original struc-
ture of the data acquisition system. To achieve that, the device has both input and
output serial port and can only read from the serial line (TX wire is not connected).

The serial interface is implementing MAX 3232 MAXIM line driver/receiver connected
to Raspberry Pi GPIO pins dedicated to serial communication (implementation is sim-
ilar to the example in [3] on page 286).

Device is also equipped with multichannel AD converter (MCP3008) connected to
the Raspberry Pi’s SPI interface. Purpose of this AD converter is to measure backup
battery voltage. Data from the converter are periodically read by the program moni-
toring the power of battery and this information is used for fail-safe shutting down of
the device (Chapter 3.2.8.1).
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Figure 3.4: Serial communication interface and AD converter wiring.

3.1.3 GNSS Reciever

To achieve the precise sample rate of geomagnetic data the datalogger is equipped
with a GNSS (global navigational satellite system) receiver Navilock NP-8004P. This
receiver is based on u-blox 8 chipset and can generate precise PPS signal. The GNSS
receiver was set to generate PPS signal with 10 Hz frequency (required sample rate of
processed geomagnetic data).

The PPS signal is used to trigger the callback function of the datalogger applica-
tion that selects and timestamps filtered data (detail description of timestamping is
in chapters 3.2.5.3 and 3.2.5.4).

GNSS receiver has a MD6 connector which allows to access the pin 6 with the PPS
signal. The pin 6 is connected to the Raspberry Pi’s GPIO port to serve as the inter-
rupt trigger. As is shown in the Figure 3.6 a pull-up resistor is used. The PPS signal
is accessible (alongside with 3 currently unused GPIO pins, GND pin, 3.3V pin and
5V pin) from 10 pin connector.
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Figure 3.5: Interconnection of the Raspberry Pi and the GNSS receiver.

The frequency of the PPS signal can be set in the GNSS evaluation software u-center
(downloadable from Navilock Driver Disk or ublox website).
To set PPS signal parameters the Configuration view window needs to be selected.
Then it is possible to set the frequency,

Figure 3.6: Setup of the PPS signal in u-center software.
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3.2 Software Development

This chapter is dedicated to the description of programs and scripts created during the
development of the datalogger. It also describes errors and challenges that occurred
during the development and solutions resolving these problems.

All programs were written with the speed limitation in mind - every operation such
as reading and parsing of geomagnetic data or filtering and saving of data to database
has to be finished before new data arrives to avoid overflowing of internal buffers
and enable real-time data display. Because of this limitation, every part of code was
speed-tested and optimized to be as time effective as possible.

Figure 3.7: Datalogger application structure.

Developed software consist of datalogger application, system and battery monitoring
script and data backup scripts. The structure and dependency of programs is shown
in the Figure 3.7.

Datalogger application is the main software that reads, filters, converts and stores
geomagnetic data. It is written in Python an executed on the Raspberry Pi. Applica-
tion is thoroughly described in chapters 3.2.2, 3.2.3, 3.2.4, 3.2.5 and 3.2.6.

System and battery monitoring script periodically checks the system status, status
of the datalogger application and backup battery voltage. It launches thedatalogger
application and closes it in the case of upcoming power failure (it also correctly shuts
down the system). Program saves value of battery voltage and system status info
into MySQL database (table DeviceStatus) and program also deletes old data from
database. Program implementation is described in Chapter 3.2.8.

Backup scripts are responsible for regular backup of saved data to the backup memory
(Chapter 3.2.7).

All developed software can be found on attached CD. The Folder structure of the
CD is described in the Chapter 9.

- 42 -



3.2. SOFTWARE DEVELOPMENT

3.2.1 SQL Database

The SQL database is used as the main data storage system for this project. It was
decided to use database because of its organized structure which allows advanced data
selections.

3.2.1.1 Stored Data and Database Design

The database serves to store 5 Hz data from the sensor with timestamps alongside
with the location info, sensor parameters and processing methods details.

Stored magnetic field data are filtered and down-sampled but they are not processed
in terms of offset and gain calibration or orthogonalization (this part of processing is
done in the Client software). Storing of uncorrected data (filtered and decimated raw
data) and the sensor parameters brings the possibility of method changes and further
data analysis.

Figure 3.8: Model of the database in crow-feet notation.

The model of the database is shown in the Figure 3.8. The database contains tables
for storing geomagnetic data and additional information as described before and it
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also implements table for storing the data about datalogger device (such as status,
battery voltage, etc).

Location and sensor details (such as sample rate, offset and gain values, etc.) are
stored to provide complete information about the measurement setup.

The main table of the database is the table Data. It contains data from the sensor and
foreign keys from tables containing information about location, sensor parameters, etc.

Timestamp in unix time (multiplied by 10 and then converted to integer) is used
as a primary key. Datatype of timestamp x10 is unsigned bigint.
Data from the sensor are multiplied by 100 and saved as integers to minimize the size
of database.

Table Data is created with following SQL code:

drop table i f exists ‘ Data ‘ ;
create table ‘ Data ‘ (
‘ TimeStampx10 ‘ b i g i n t unsigned not NULL,
‘Xx100 ‘ int not NULL,
‘Yx100 ‘ int not NULL,
‘ Zx100 ‘ int not NULL,
‘Tempx100 ‘ int not NULL,
‘ Location ‘ int not NULL,
‘ SensorType ‘ int not NULL,
‘ ProcessingMethod ‘ int not NULL,
pr imatry key ( ‘ TimeStampx10 ‘ ) ,
foreign key ( ‘ Location ‘ ) r e f e r e n c e s Locat ion ( ‘ LocationID ‘ ) ,
foreign key ( ‘ SensorType ‘ ) r e f e r e n c e s Sensor ( ‘ SensorID ‘ ) ,
foreign key ( ‘ ProcessingMethod ‘ ) r e f e r e n c e s P r o c e s s i n g ( ‘ MethodID ‘ )
) ;

The table DeviceStatus stores information about datalogger status (status of the de-
vice, baterry voltage, datalogger app status). Unix timestamp is used as the primary
key similarly to the Data table, but because of larger intervals between records (min-
utes instead of 0.1 second) there is no need for preserving values on the right side of
decimal point. Timestamp is therefore rounded to whole seconds and saved as un-
signed Integer.

The size of the database is mainly effected by number of records in the table Data.
One record line has size of 27 bytes. The data is kept only for 3 months and starts to
be owerwritten.

It was determined during the testing that the whole database containing 3 months
of data with 5 Hz sample rate will have circa 4.3 GB. Size of used external USB flash
drive is 64 GB.
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3.2.1.2 MySQL Database Implementation

For implementation of designed database was chosen the MySQL - an open-source
relational database management system. An open-source fork of the MySQL called
MariaDB was used because of its support on the Raspberry Pi platform.

The MySQL server runs on the Raspberry Pi computer and it is stored on the ex-
ternal USB drive to reduce wear-out of system SD card. USB drive is auto mounted
and its directory is /media/db/.

The MySQL database was moved to the new directory with use of following code:

sudo sys t emct l stop mariadb
sudo rsync −av / var / l i b /mysql /media/db
sudo mv / var / l i b /mysql / var / l i b /mysql . bak

After the database was moved, the MySQL configuration file /etc/mysql/my.cnf was
edited and old directory (/var/lib/mysql) was changed to the new one (/media/d-
b/mysql). Then the database was restarted.

Data from the magnetometer are uploaded from Python datalogger application (detail
description of implementation is in the Chapter 3.2.6.2). Data are filtered and deci-
mated but not corrected and compensated. Processing of data is done in the client
software (Chapter 3.3).
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3.2.2 Datalogger Application

The datalogger application consist of three separate processes interconnected by the
Multiprocessing [20] library. It was necessary to use a multiprocessing and to divide the
application to multiple parts because of the speed requirement. Sample rate of incom-
ing geomagnetic data in combination with relatively long time needed for data filtering
and saving would cause too big workload for a single process running on Raspberry Pi.

The multi process parallelism was chosen instead of the threading parallelism because
multiprocessing uses separate memory spaces and it allows better use of CPU.

Figure 3.9: Datalogger application structure.

The three processes of datalogger application are: Main process, Data Processing pro-
cess and Data Saving process. Processes are connected by two pipelines.
Application is started with launch of the main process main.py - other processes and
pipelines are then created automatically.

As is shown in the Figure 3.9: Main process reads and parses data from the sen-
sor. Parsed data are then sent by pipeline to dataProcess.py to be filtered and stored
into buffers.

The dataProcess.py implements an asynchronous callback function triggered by PPS
signal, that is selecting and timestamping data from buffers to create data with re-
quired sample rate. These data are then send by second pipeline to dataSaver.py to
be saved to the database and also to the plain text file.
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3.2.3 Connection and Synchronization of Processes

All 3 processes of the datalogger application are run as separate processes which leads
to necessity of the process connection and synchronization.

The datalogger application starts with the launch of main.py process. This process
launches dataProcess.py and creates simplex pipeline between main.py and dataPro-
cess.py.
The process dataProcess.py launches dataSaver.py process and creates simplex pipeline
between these two processes.

Processes are connected with simplex pipelines instead of duplex pipelines to make
the connection faster.

3.2.3.1 Process Synchronization during Closing

While the process synchronization is not needed during the program execution it is
necessary during the closing of the application. To close all connections (database, log
file, pipelines) properly, processes are synchronized and if main.py receives the closing
signal (signal SIGUSR1) it will send signals to other processes which will lead to safe
close of the whole application.

Figure 3.10: Diagram of proces synchronization during closing.

The process main.py implements a signal handler and detects signal SIGUSR1. If this
signal is received, the method doCleaning is called. Cleaning method sets the end
flag for dataProcess.py (flag is implemented as manager.Event() from Multiprocessing
library [20]).
Then last two datasets are send to pipeline and pipeline is closed. Then the main
process is terminated.

The data processing process checks end flag periodically during the execution of its
main loop. If the flag is set, doCleanup method is called. This method will send last
dataset to dataSaver.py - but this dataset contains only zeros. Then the receiving
end of pipeline between main.py and dataProcess.py is closed. The sending end of
pipeline between dataProcess.py and dataSaver.py is closed as well. The process is
then terminated.
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When the dataSaver.py process receives zero dataset (these values were chosen be-
cause it is impossible to receive zero dataset during regular run) the cleanup method
is called. This method closes log files, database connection and pipeline. Process
dataSaver.py is then terminated.

3.2.4 Receiving Data from Sensor

The purpose of the main.py process is to read geomagnetic data from sensor via serial
connection, parse it and to send it through pipeline to dataProcess.py.

The process contains one main loop in which data are read from serial connection
and then parsing method is called. Data from the sensor are in string format and need
to be converted to integer format to be filtered.

During the implementation of the process the parsing error occurred from time to
time. Received data from the magnetometer were missing some bytes and it resulted
into receiving two lines merged together. This merge was causing that the false data
were received and the whole measure was influenced.

After thorough debugging it came to be clear this error was caused by slow method for
reading a line from serial connection. Originally the method readline from PySerial
library [21] was used but it was not fast enough.
To resolve this problem the wrapper to a PySerial connection was used. The solution
was implemented as python class and was taken from GitHub forum post by user
skoehler [23]. Implemented class uses basic PySerial connection but implements read-
line function in a faster way.

Class implementation has two functions - constructor init and function readline:

class ReadLine :
def i n i t ( s e l f , s ) :

s e l f . buf = bytearray ( )
s e l f . s = s

def r e a d l i n e ( s e l f ) :
i = s e l f . buf . f i n d (b”\n” )
i f ( i >= 0 ) :

r = s e l f . buf [ : i +1]
s e l f . buf = s e l f . buf [ i +1: ]
return r

while ( 1 ) :
i = max(1 , min(2048 , s e l f . s . i n w a i t i n g ) )
data = s e l f . s . read ( i )
i = data . f i n d (b”\n” )
i f ( i >= 0 ) :

r = s e l f . buf + data [ : i +1]
s e l f . buf [ 0 : ] = data [ i +1: ]
return r
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else :
s e l f . buf . extend ( data )

During the serial connection initialization, the serial port is opened at first and then
the wrapper object is constructed. To read new line from connection class function
readline is called (it is a different method than the PySerial readline method):

portRXTX = s e r i a l . S e r i a l ( ”/dev/ttyAMA0” , baudrate =115200 , . . .
. . . t imeout =1, e x c l u s i v e=True )

r l = ReadLine (portRXTX)
rcv = r l . r e a d l i n e ( )

After implementing the wrapper class the parsing problem was resolved and did not
occur any more.

3.2.5 Data Processing

The process dedicated to filtering and timestamping received geomagnetic data is
called dataProcess.py. This process consist of initialization part, main loop (data are
periodically read from the pipeline, added to buffers and then filtered) and callback
function for selecting and timestamping filtered data to achieve required new sample
rate.

The callback function is interrupt driven and is called asynchronously - after its exe-
cution process returns to the last point before the interrupt and continues its run.

3.2.5.1 Initialization

During the initialization part of the process the filter and filtration parameters (filter
coefficients, filter delay, original sample rate, new sample rate, etc.) are loaded from
json file. The parameters of implemented filter are described in Chapter 2.3.5.1 in
Table 2.4.

Buffers for received and filtered data are also created. There is one buffer for each
type of value (such as X component of geomagnetic field, temperature value, etc.).
Buffers are initially filled with zeros so it is necessary to wait with the time stamping
and sending of data until buffers are filled with real values.
Buffers are implemented as circular: the newest value is always at the zero index and
the oldest value is always at the last index.

Initialization part of code also implements GPIO library set-up. GPIO interface of
Raspberry Pi is used for triggering interrupt driven callback.

3.2.5.2 Main Loop and Filtering

In the main loop of process geomagnetic data are read from pipeline (data are already
parsed by main.py process) and added to buffers. Method doFiltering is then called
to filter data in buffers.
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Implementation of data read and buffer filling:

dataSample = pipelineFromMain . recv ( )
completeRead = 0 # s e t semaphore

#adding data to r o l l i n g FIFO b u f f e r
#s h i f t by one to the r i g h t ( from index 0 to index 1)
buffX = np . concatenate ( ( [ dataSample [ 0 ] ] , buffX [ : −1 ] ) )
buffY = np . concatenate ( ( [ dataSample [ 1 ] ] , buffY [ : −1 ] ) )
buf fZ = np . concatenate ( ( [ dataSample [ 2 ] ] , buf fZ [ : −1 ] ) )
buffTemp = np . concatenate ( ( [ dataSample [ 3 ] ] , buffTemp [ : −1 ] ) )
d o F i l t e r i n g ( )

completeRead = 1 #r e s e t semaphore

Filtering method implements FIR filter by its definition (equation 2.3) and corrects
multiplication error of the filter. Each type of value is filtered separately and then
added to dedicated buffer:

#f i l t e r v a l u e s
x f i l t = np .sum(b∗buffX [ 0 : countOfCoefs ] ) / mult ipError
y f i l t = np .sum(b∗buffY [ 0 : countOfCoefs ] ) / mult ipError
z f i l t = np .sum(b∗buffZ [ 0 : countOfCoefs ] ) / mult ipError
t e m p f i l t = np .sum(b∗buffTemp [ 0 : countOfCoefs ] ) / mult ipError
prev iousValues =[ b u f f X f i l t [ dataPoint ] , b u f f Y f i l t [ dataPoint ] , . . .

. . . b u f f Z f i l t [ dataPoint ] , bu f fTempf i l t [ dataPoint ] ]

#i n s e r t f i l t e r e d data to c i r c u l a r b u f f e r
b u f f X f i l t = np . concatenate ( ( [ x f i l t ] , b u f f X f i l t [ : −1 ] ) )
b u f f Y f i l t = np . concatenate ( ( [ y f i l t ] , b u f f Y f i l t [ : −1 ] ) )
b u f f Z f i l t = np . concatenate ( ( [ z f i l t ] , b u f f Z f i l t [ : −1 ] ) )
bu f fTempf i l t = np . concatenate ( ( [ t e m p f i l t ] , bu f fTempf i l t [ : −1 ] ) )

During the implementation of dataProcess.py the speed problem occurred - roll of
buffer (using NumpPy [22] function roll) was too slow. This implementation of cir-
cular buffer also caused problems when interrupt handler was called during the roll -
if the interrupt was triggered at the moment right after the roll and before the new
value was inserted to the buffer, there was the oldest value at the zero index - instead
of the required newest value.

After debugging of the process and identifying the cause of problems the roll method
was replaced with more efficient method concatenate (also from NumPy library).

The semaphores readyBuff and completeRead indicating that new data are being added
were also implemented. As is discussed in following chapter 3.2.5.3 these semaphores
are used to control data selection during execution of the interrupt callback function.
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3.2.5.3 Interrupt Driven Callback

As is shown in the Figure 3.9 the interrupt driven callback is used to select, timestamp
and send filtered data to pipeline. The method interruptCallback is triggered by PPS
signal from GNSS receiver (connected to GPIO pin - see Chapter 3.1.3).
To set up the callback the add event detect function from GPIO library is used. Im-
plementation of this function is done in similar way as is described in the example
code in [3](in the Chapter 9.12 Programming with Interrupts).

During the development of the datalogger application the goal was to implement pre-
cise sample rate. To achieve it the GNSS receiver with PPS signal is connected to the
Raspberry Pi. The PPS signal is used as the trigger for data selection and timestamp-
ing. Precise frequency of signal ensures that the time delta between samples is constant
- under the condition the data selection and timestamping is done immediately after
signal is received.

Figure 3.11: Visualization of interrupt driven callback with PPS signal.

The interrupt driven callback was chosen as the best solution for minimizing latency
between receiving of the PPS signal (time pulse) and the execution of the timestamp-
ing method. The interrupt callback is called asynchronously and executed immediately
after the signal is received.

Because the callback is an asynchronous function it can be called in any moment
of process execution. If the callback is called during the adding the new values to the
buffer or filtering, selected data can contain mixture of the new and older data values.
To prevent that the semaphores are implemented.
The completeRead semaphore is set before data are added to buffers and filtered and
unset after completion of this part of program.
If the callback is triggered and completeRead semaphore is set, instead of newest data
values (which are in that moment not fully updated) the latest complete set of data
values is selected.

This solution was selected because it does not delay timestamping and the maxi-
mal time difference between the timestamp of the PPS pulse the timestamp of the
selected dataset is equal to the period of original geomagnetic signal.

Another solution was also tested during the development: in case of triggering the
callback while completeRead semaphore is set the selection and timestamping was
skipped and resumed after semaphore were unset. This solution was not used because
it was causing the delay of timestamping.
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The second semaphore readyBuff is implemented to prevent selecting and timestamp-
ing values before buffers are filled and filter stabilized.

Figure 3.12: Process diagram of interrupt callback.

3.2.5.4 Timestamping Principle

The PPS signal triggering the callback function has the same frequency as is the
requested frequency of filtered and decimated output data (10 Hz). Each time the
callback function is triggered, filtered data are selected and timestamped. Precise
PPS signal and immediate execution of the callback function means that the sample
rate of output signal is constant.

The downsampling is implemented as simple select of the right value from the buffer
with filtered data. The right value has to have the same timestamp as the time pulse
(PPS signal).

Because of the delay of the used FIR filter the newest value is not the right one -
the value that belongs to the current time pulse is not in the buffer yet. To solve
this problem each time the callback is triggered, the function is not selecting data
values belonging to the current time pulse - it is selecting data values belonging to the
previous time pulse that already has belonging data in buffers.

Implemented timestamping method is shown on the Figure 3.13. Shown example
has the filter delay 7 samples, original sample rate 1 samples per second and time
pulse period 5 seconds. Desired new sample rate is 0.2 sample per second (one sample
each 5 seconds).

These values were chosen instead of the real filter parameters to make the exam-
ple more accessible and straightforward. the proper timestaming implementation and

- 52 -



3.2. SOFTWARE DEVELOPMENT

real filter and timestamping parameters are described in the following chapter - Chap-
ter 3.2.5.5.

Figure 3.13: Timestamping and data selection visualization.

To timestamp values correctly, constants delayInPulses and dataPoint needs to be
determined:

delayInPulses = ceil

(
delay

sampesPerPulse

)
(3.1)

delayInPulses = ceil

(
7

5

)
= 2

The constant delayInPulses describes how many time pulses needs to pass after re-
ceiving the value, before the value is ready in the buffer with filtered data. We will
use this constant to determine the time pulse in the past for which we are selecting
data.

= round(delayInPulses · samplesPerPulse− delay) (3.2)

dataPoint = round(2 · 5− 7) = 3

The constant dataPoint describes the position of the required value in the buffer with
filtered data (constant is the index in the array of buffer).

In the shown example there are two time pulses before the buffer is full: time pulse at
time t0 and t5. During these pulses no timestamping is done.

When time pulse at time t10 comes, the first timestamp will be made: we will select
data value with timestamp T = t0. Value of T is determined by following equation:

T = tcurrent − delayInPulses · samplesPerPulse (3.3)

T = t10 − 2 · 5 = t0

To determine where in the buffer with filtered data is the value belonging to the time
t0 we will use constant dataPoint. Because dataPoint = 3 we will select the value 3
samples older than the newest data value in the buffer.

To sum up the whole timestamping and selection process from example: when time
pulse in t10 comes we will select the value belonging to time t0 with timestamp t0 and
send it to pipeline.
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3.2.5.5 Timestamping Implementation

Similarly to the timestamping method example in previous chapter we will use equa-
tions 3.1, 3.2 and 3.3 to determine timestamping constants. To determine the filter
delay we will use Equation 2.4.

Timestamping constants are computed with following part of dataProcess.py code:

delaySamples = ( countOfCoefs −1)/2
pu l s ePer iod = 1/sampleRateNew
samplesPP = sampleRate/sampleRateNew
de lay InPu l s e s = int (np . c e i l ( delaySamples /samplesPP ) )
dataPoint=int (np . round( de l ay InPu l s e s ∗samplesPP−delaySamples ) )

Timestamping itself is part of interruptCallback method in dataProcess.py and is ex-
ecuted every time the callback function is triggered by the PPS signal:

pulseTime = time . time ( )
#data timestamp = pulseTimestamp−delayOfSystem ( in unix time )
realTimestampx10 = int (round( pulseTime − . . .

. . . ( pu l s ePer iod ∗ de lay InPu l s e s ) , 1 )∗10 )
# realTimestamp = timestampRound ( realTimestamp )

#i f c a l l b a c k i s not i t e r r u p t i n g f i l l i n g b u f f e r s wi th new data
i f ( completeRead == 1 ) :

Xx100 = int (round( b u f f X f i l t [ dataPoint ] , 2 )∗1 0 0 )
Yx100 = int (round( b u f f Y f i l t [ dataPoint ] , 2 )∗1 0 0 )
Zx100 = int (round( b u f f Z f i l t [ dataPoint ] , 2 )∗1 0 0 )
tempx100 = int (round( bu f fTempf i l t [ dataPoint ] , 2 )∗1 0 0 )

#e l s e use p r e v i o u s data ( from l a s t f i l t e r i n g )
else :

Xx100 = int (round( prev iousValues [ 0 ] , 2 )∗ 1 0 0 )
Yx100 = int (round( prev iousValues [ 1 ] , 2 )∗ 1 0 0 )
Zx100 = int (round( prev iousValues [ 2 ] , 2 )∗ 1 0 0 )
tempx100 = int (round( prev iousValues [ 3 ] , 2 )∗ 1 0 0 )
completeRead = 1

dataToSend = [ realTimestampx10 , Xx100 , Yx100 , Zx100 , tempx100 ]
sendPipeEnd . send ( dataToSend )

Value of the timestamp is in Unix time and it is multiplied by 10 and then rounded and
converted to Integer datatype. Data values (X,Y,Z and temperature) are multiplied
by 100 and then rounded and converted to Integer as well.
Reason for multiplication and conversion into Integer data type is to reduce size of
record in the MySQL database (and to preserve requested decimal place values).

The PPS signal is synchronized to the precise clock of the GNSS receiver. It means
the 10 Hz time pulse comes every 0.1 seconds of UTC time - for example in 12:03:05.1,
12:03:05.2, 12:03:05.3, etc.
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But the previously described timestamp of selected data is created from the system
time. System time of Raspberry Pi is synchronized when it is connected to the internet
(the device is connected to the internet permanently) but it is not as precise as the
GNSS time.

Because the relatively small difference between system time and ”real” time of PPS
signal (the time of the GNSS receiver), it was possible to implement a simple solution
to synchronize timestamps. At the moment of timestamping the system time is read
but it is rounded to 1 digit to the right of the decimal point. This correction ensures
that timestamps has the precise 0.1 second interval synchronized with GNSS clock.

Implemented synchronization is part of conversion of Unix timestamp to integer:

r e a l t ime = pulseTime − ( pu l s ePer iod ∗ de lay InPu l s e s )
realTimestampx10 = int (round( rea l t ime , 1 )∗1 0 )

The system time is synchronized with the use of the native systemsuncd deamon
service that implements NTP (network time protocol) client. The status of the NTP
synchronization is periodically checked by the System and Battery Monitor script and
logged to the DeviceStatus table in the MySQL database (implementation is described
in the Chapter 3.2.8.2).

3.2.6 Data Saving

The purpose of the third process called dataSaver.py is to save filtered and decimated
data to the MySQL database and to the plain text logfile.

As is described in the Chapter 1.1.1 the 5 Hz data are stored in the MySQL database
and the 10 Hz data are stored in the txt logfiles.

Filtered data has 10 Hz sample rate (same as the frequency of the PPS signal). Pro-
cess dataSaver.py saves every record into the log-file and every even record into the
MySQL database (with this simple decimation the 5 Hz sample rate is achieved).

The database is the main source for further processing and analysis of recent data.
Plain text logfiles serves as a data backup in the case of the database malfunction or
in the when the analysis of archive data is requested.

The client programs can download data both from MySQL database and logfiles.

3.2.6.1 Process Description

Before the main loop of process is entered, the database connection is created. To
connect to the MySQL database the mysql.connector python library is used. After the
database connector initialization, the txt logfile is created.

In the main loop, processed datasets are received via pipeline and after the value
check (in the case of zero dataset the closing method is called as is described in the
Chapter 3.2.3) saved to the MySQL database and to the logfile.
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The main loop is also periodically creating new logfiles. To limit the size of each
logfile, new file is created every 12 hours.

3.2.6.2 MySQL Database Connection

The mysql.connector python library is used to connect to the MySQL database:

#connect to mysql da tabase
mydb = mysql . connector . connect ( host=” l o c a l h o s t ” , . . .

. . . u se r=”maglab” , passwd=” pass ” , database=” data logge r ” )
mycursor = mydb . cu r so r ( )

#upload data to MySQL database every 0.2 second
i f (round( data [ 0 ] % 2) == 0 . 0 ) :

try :
s q l = ” i n s e r t i n to Data ( TimeStampx10 , Xx100 , Yx100 , Zx100 , . . .
. . . Tempx100 , Location , SensorType , ProcessingMethod ) . . .
. . . va lue s (%s ,%s ,%s ,%s ,%s ,%s ,%s ,%s ) ”
va l = ( data [ 0 ] , data [ 1 ] , data [ 2 ] , data [ 3 ] , data [ 4 ] , 1 , 1 , 1 )
mycursor . execute ( sq l , va l )
mydb . commit ( )

except Exception as e :
print ( ” dataSaver : unable to i n s e r t data ” )
print ( e )

Alongside with the processed dataset of geomagnetic data other parameters are saved
to the database as well. Parameters of location, type of sensor and used processing
method are inserted to the database to provide detailed information about measure-
ment. These parameters are stored in the saving process as constants.

Structure of inserted data is dependent on the database structure (Chapter 3.2.1).

3.2.6.3 Log-files Format

Filtered data are in dataSaver.py process saved both to the MySQL database and to
the plain text logfile. The logfile is located on RAM disk (RAM disk setup is described
in the Chapter 3.2.7.1) and stores 12 hours data. After creating a new logfile the old
one is compressed and moved to the USB flash disk (directory /media/txt/ ).

Name of the logfile has always the same format: logFile YYYY-MM-DD hh-mm.txt .

Each dataset is saved to the logfile as one line in the following format:

Unix timestamp x10 [ s ec ] ; X value x100 [EU ] ; Y value x100 [EU] ; Z
value x100 [EU ] ; temperature x100 [EU] ;

Saved data has the same format as the data in the MySQL database.
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Example of records in log-file:

15774396920;-549535605;-137551439;211047558;375636609;
15774396921;-549322076;-137499583;210965397;375490644;
15774396922;-549322068;-137499424;210965331;375490370;

Implementation of log-file set-up and data saving process:

#c r e a t e f i r s t l o g f i l e
f i l e P a t h = ’ /home/ pi /ramDisk/ ’
f i l ename = f i l e P a t h+’ l o g F i l e ’+str ( datet ime . datet ime . now( . . .

. . . ) ) [ : 1 6 ] . r e p l a c e ( ’ ’ , ’ ’ ) . r e p l a c e ( ’ : ’ , ’− ’ )+ ’ . txt ’

fp = open( f i l ename , ’w ’ )
logCreate = time . time ( )

#w r i t e data to log− f i l e
l i n e = str ( data [0 ] )+ ’ ; ’+str ( data [1 ] )+ ’ ; ’+str ( data [2 ] )+ ’ ; ’ . . .

. . . + str ( data [3 ] )+ ’ ; ’+str ( data [4 ] )+ ” ;\n”

fp . wr i t e ( l i n e )

#c r e a t e new log− f i l e
currTime = time . time ( )
i f ( currTime − l ogCreate > l ogPer iod ) :

f i l ename = f i l e P a t h+’ l o g F i l e ’+str ( datet ime . datet ime . now ( . . .
. . . ) ) [ : 1 6 ] . r e p l a c e ( ’ ’ , ’ ’ ) . r e p l a c e ( ’ : ’ , ’− ’ )+ ’ . txt ’

fp = open( f i l ename , ’w ’ )
logCreate = currTime
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3.2.7 Backup Systems

The developed datalogger uses several backup systems to ensures data are safely saved
in the case of application, computing or power malfunction.

To understand the data backup procedures we need to explain how data are stored.

3.2.7.1 Data Storing

The Raspberry Pi is using SD card as the storage medium. Use of SD card comes
with the risk of the wear-out and data lost. To minimize the unnecessary wear-out of
SD card caused by frequent write operations, the MySQL database is moved to the
external USB flash drive (description in the Chapter 3.2.1.2) and the logfile that is
written to is located in the RAM disk and then moved to another external USB flash
drive.

The following shell commands were used to create a 200 MB RAM disk in directory
/temp/log accessible via symbolic link from directory /home/pi/ramDisk.

#c r e a t e a backup copy o f f s t a b f i l e
sudo cp −p / etc / f s t a b / e tc / f s t a b . save
#c r e a t e a d i r e c t o r y
sudo mkdir /tmp/ log
#e d i t f s t a b as superuser
sudo nano / e tc / f s t a b

To the fstab file was added the following line:

tmpfs /tmp/ log tmpfs nodev , nosuid , s i z e =200M 0 0

And finally the disk was mounted and the symbolic link was created:

sudo mount /tmp/ log
ln −s /tmp/ log / /home/ pi /ramDisk

The RAM disk is used as a temporary storage for the logfile before its completion and
closing. Logfile is closed after the given period of time (12 hours) and the new logfile
is immediately created. After the new logfile is created the old one is compressed and
moved to the external USB flash drive that is auto-mounted to directory /media/txt/.
Compression and moving of the logfile is done by the bash script logFileMove.sh. This
script is called by cron scheduler every 12 hours.

Implementation of logFileMove.sh script:

#!/ bin / bash
RAMDISKDIR=”/home/ pi /ramDisk/”
NEWDIR=”/media/ txt / data ”

o l d F i l e s =( ‘ f i n d $RAMDISKDIR −type f −name ” ∗ . tx t ” −mtime +1 ‘)
gz ip ${ o l d F i l e s [ ∗ ] }
mv $RAMDISKDIR∗ . gz $NEWDIR
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3.2.7.2 Data Backup

To ensure the memory of Raspberry Pi in will not become full and to prevent data loss
in case of device malfunction, the backup of stored data is implemented as described
previously. The backup medium is a USB flash drive.

Data from the MySQL database are backed up every 30 days in the form of mysql-
dump file. This file is created by script dbBackup.sh and stored on the external USB
flash drive alongside with compressed txt logfiles (directory /media/txt/ ).
Name of the sql file is in format: mysqlBackup YYYY-MM-DD.sql.

Implementation of the MySQL database backup:

#!/ bin / bash

TARGETDIR=”/media/ txt /dbBackup/”
DATE=‘date +%Y−%m−%d ‘

mysqldump −h l o c a l h o s t −umaglab −ppassw . . .
. . . −−s i n g l e−t r a n s a c t i o n −−r o u t i n e s −−t r i g g e r s . . .
. . . −−a l l−databases > ”$TARGETDIR”mysqlBackup ”$DATE” . s q l

3.2.8 System and Battery Monitor

Apart of the hardware brownout circuit that ensures that datalogger turns off in the
case of low battery voltage and turns on the device in the case of restoring the power
supply, developed device has also a software battery monitoring and system control.

Battery monitoring feature is part of System and Battery Monitor program. This
program is periodically called bycron scheduler (every 5 minutes).

3.2.8.1 Battery Monitoring

The monitoring program measures the battery voltage with AD converter connected
to Raspberry Pi’s SPI interface. Value of the voltage is stored into MySQL database
and it is also used for determination of the next actions.
Implementation of voltage reading with use of Adafruit MCP3xxx library:

import adafruit mcp3xxx . mcp3008 as MCP
from adafruit mcp3xxx . ana l og in import AnalogIn

#INITIATE ADC
# c r e a t e the s p i bus
s p i=bus io . SPI ( c l o ck=board .SCK,MISO=board .MISO,MOSI=board .MOSI)
# c r e a t e the cs ( ch ip s e l e c t )
cs = d i g i t a l i o . Dig i ta l InOut ( board .D5)
# c r e a t e the mcp o b j e c t
mcp = MCP. MCP3008( spi , c s )
# c r e a t e an analog input channel on pin 0
chan = AnalogIn (mcp , MCP. P0)
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#v o l t a g e d i v i d e r v a l u e
d i v i d e r =0.136
measure = [ ]
for i in range ( 5 ) :

measure . append ( chan . vo l t age / d i v i d e r )
vo l tage = round(sum( measure )/ len ( measure ) , 3 ) #[V]

3.2.8.2 System Status

Depending on the battery voltage level the device status is determined. In the case
of low voltage (less than 11.65 V) the datalogger application is terminated (closing
signal SIGUSR1 is sent by stop.sh script), log-files and database are backed up and
the device is set to shutdown.

#b a t e r r y v o l t a g e l e v e l s
lowVoltage = 11.65
highVoltage = 12 .8

devStatus = 0 ;
appStatus = 0 ;
#power OK
i f ( vo l t age > lowVoltage ) :
#i f power i s ok and l o g g e r app i s not running − s t a r t again
i f ( count < 1 ) :

subproces s . check output ( ”/home/ pi / l o g g e r /run . sh” , s h e l l =1)
appStatus = 1

else :
#check NTP s y n c h r o n i z a t i o n
ntpStatus=subproces s . check output ( ” t imeda t e c t l ” , s h e l l=True )
ntpStatus = ntpStatus . decode ( encoding=’ utf−8 ’ )
ntpStatus = ntpStatus . s p l i t ( ’\n ’ )
ntp = ntpStatus [ 5 ] [ 1 8 : ]
i f ( ntp == ’ no ’ ) :

appStatus = 3
else :

appStatus = 0

#b a t t e r y powered
i f ( vo l t age < highVoltage ) :

devStatus = 1

#power from e x t e r n a l power source
else :

devStatus = 0
#LOW power
else :

devStatus = 2
appStatus = 2
#stop l o g g e r app
subproces s . check output ( ”/home/ pi / l o g g e r / stop . sh” , s h e l l =1)
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#c r e a t e mysql da tabase backup
subproces s . check output ( ”/home/ pi / l o g g e r /dbBackup . sh” , s h e l l =1)
#compress and move a l l t x t l o g f i l e s
subproces s . check output ( ” gz ip /home/ pi /ramDisk /∗ . tx t ” , s h e l l =1)
subproces s . check output ( ”mv /home/ pi /ramDisk /∗ . gz . . .

. . . /media/ txt / data ” , s h e l l=True )

The monitoring script uploads following data to the database: timestamp (in unix
time), device status (tiny integer), battery voltage in millivolts (integer) and status of
logger application (tiny integer).

The script also checks whether the NTP (network time protocol) is synchronized.
The NTP synchronization is needed to maintain precise timestamping.
If the NTP is not synchronized the script changes the datalogger app status.

The device status and the datalogger app status can have following values:

Value Device Status Logger App Status
0 powered from external power source running properly
1 battery powered app restarted
2 battery voltage critically low app closed
3 — running but no NTP synchronization

Table 3.1: Values and meaning of System Status and Logger App Status.

In the case of a long-term power failure the battery is eventually disconnected by the
brownout circuit. After the power supply is restored the datalogger application is
launched during next cron execution and data logging continues.

To determine whether the datalogger application is already running or not, the fol-
lowing code is used:

runningApps = subproces s . check output ( ’ ps aux | grep . . .
. . . ”main . py” ’ , s h e l l=True )

apps = output . decode ( encoding=’ utf−8 ’ )
apps = out . s p l i t ( ’\n ’ ) [ : −1 ]
count = 0
for i in apps :

i f ( i . f i n d ( ’ python3 . / main . py ’ ) > 0 ) :
count += 1

During the regular datalogger app execution 3 instances of main.py are running
(main.py and 2 sub-processes dataProcess.py and dataSaver.py).

3.2.8.3 Database Cleanup

Apart of the saving device status to the MySQL database, the System and Battery
monitoring program also deletes old data from the database.
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In the table Data any record older than 90 days is deleted, in the DeviceStatus table
any record older than 180 days is deleted:

#timestamp 90 days b e f o r e
dataThreshold = int ( ( timestamp −(90∗24∗60∗60))∗10)
#timestamp 365 days b e f o r e
s tatusThresho ld = int ( timestamp−(180∗24∗60∗60))

#d e l e t e geomagnetic data o l d e r than 90 days from DB
s q l = ” d e l e t e from Data where TimeStampx10 < %s ”
va l = ( dataThreshold )
mycursor . execute ( sq l , va l )
mydb . commit ( )
#d e l e t e gsystem s t a t u s i n f o o l d e r than 180 days from DB
s q l = ” d e l e t e from DeviceStatus where TimeStamp < %s ”
va l = ( statusThresho ld )
mycursor . execute ( sq l , va l )
mydb . commit ( )
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3.3 Client Software

As described in previous chapters filtered and decimated geomagnetic data are stored
in the database without any data correction. The correction (such as orthogonaliza-
tion, temperature compensation, etc.) is done by the client program that is designed
for the data visualization and analysis.

The reason for implementing the data correction and compensation in the client pro-
gram instead of as a part of the datalogger, was to enable more flexible data analysis.
Methods used for correction can change and improve during the time and without
original raw data it would be impossible to re-calculate data in a new way.

Two client programs were created: one implemented in MATLAB and the second
one in LabView. The MATLAB client is primarily designed for processing and ana-
lyzing of archive data.
The LabView client is designed to serve as a ”dashboard” - to visualize pseudo-live
(with delay) data from geomagnetic observatory.

The LabView was selected as the platform for client program because of its easy
accessibility for first-time users. The goal was to make client program as easy under-
standable as possible, so even user without the knowledge of MATLAB or any other
data analysis tool can use it.

The MATLAB client was originally intended only as a testing platform for correc-
tion and compensation methods but during the development it has proved to be an
useful tool for more detailed data analysis. It was transformed into proper client
program with GUI. Because of its flexible structure additional functions and analysis
method can be easily added.

Both client programs with configuration files and example logfiles are attached on
the CD with software (structure of the CD is described in the Chapter 9).
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3.3.1 MATLAB Client

The MATLAB datalogger client program implements MySQL database connection,
data correction and data visualization. Client program also enables to analyze txt
logfiles with historical data.

Figure 3.14: MATLAB client program for data analysis.

3.3.1.1 Program Structure

The MATLAB client program is started by running the script main.m. This script con-
tains initialization function and callback functions of GUI. Data correction and com-
pensation is implemented as a separate function dataCorrection.m to make its editing
(and possible replacing with another correction method) easier and more straightfor-
ward.

Data correction method can be edited or replaced, but it needs to implement following
interface:

function [B,X,Y, Z , temp]= dataCorrAlt ( dataX , dataY , dataZ , dataTemp)
%DATA CORRECTION AND COMPENSATION of raw f i l t e r e d data
% Input :
% dataX . . . X a x i s raw data [EU]
% dataY . . . Y a x i s raw data [EU]
% dataZ . . . Z a x i s raw data [EU]
% dataTemp . . . temperature [EU]
% Output :
% F . . . t o t a l f i e l d [nT]
% X . . . X a x i s f i e l d i n t e n s i t y [nT]
% Y . . . Y a x i s f i e l d [nT]
% Z . . . Z a x i s f i e l d [nT]
% temp . . . temperature [ C e l s i u s degree ]
end
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The implementation of the default correction method is described in the Chapter
3.3.1.5.

The structure of the main script of client program is shown on Figure 3.3.1.1. During
program initialization the GUI is created. After selecting the data source (MySQL
database or txt logfiles), data are loaded and corrected. Then it is possible to set the
default (maximal) time interval of datasets. This interval is then used during plotting
of default dataset (total value of field F).
It is possible to set offset for each dataset. Default value of offset is 0, client app
also implements function that automatically sets the offsets equal to mean values of
datasets.

Figure 3.15: Matlab client program structure - main script.

3.3.1.2 Graphical User Interface

The GUI of MATLAB client consist of 4 main parts - figures and 3 control panels:
data loading and offsets control panel, time interval selection panel and dataset visu-
alization control panel.

Data loading control panel (Figure 3.3.1.2) enables to select the source of data (txt
files or MySQL database), to load data and to set the offset for each dataset.

When logfiles are selected as the datasource dialog windows will appear to guide the
user through the loading mode selection (log single logfile or all logfiles in folder) and
the directory selection.

User can also choose between 3 options of offset: Zeros, Means and Custom.
Zeros and Means options sets the values of offsets to zeros or mean values of each
dataset. Custom option enables to change offsets manually.
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Figure 3.16: Matlab client GUI - data source selection and offset control.

Time interval selection panel (Figure 3.3.1.2) enables user to select desired time in-
terval for displayed data. This part of GUI embody text label with currently selected
time interval (bold text), static text label with default/maximal time interval and
controls to set the new interval.

There are two possible ways to set the time - with slider (the left slider is control-
ling beginning of interval and the right slider is controlling the end of interval) or with
text fields (there is currently set time in this fields so it is easy to edit it).

Data input from UI controls is checked and corrected so it is impossible to set time
interval outside the default interval or e.g. set the beginning later in the time than
end of interval. This check is done by function updateTime.

Unless the checkbox auto update is selected it is necessary to press the Update Time
button to update time interval.

Figure 3.17: Matlab client GUI - time in-
terval selection.

Figure 3.18: Matlab client GUI - time
data selection.

Dataset selection panel (Figure 3.3.1.2) consist of 3 columns of check boxes. Each col-
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umn controls one figure. It is possible to display any combination of datasets in any
figure. If there is no dateset selected in figure column, this figure will not be displayed.
Based on this selection one, two or three figures will be created in figure area.

Similarly to time interval selection the button Update data has to be pressed to update
datasets in figures - unless the checkbox auto update is selected.

Selection of dataset is processed in callback function selectData and the data visu-
alization is done by function plotData.

3.3.1.3 Database Connection

To establish connection to the MySQL database the MATLAB Database Toolbox and
the mysql-connector-java-5.1.48 connector are used.

Database connection is implemented in dedicated function:

function connect2DB (˜ , ˜ )
s ta tusLabe l = f i n d o b j ( ’Tag ’ , ’ s t a tu sLabe l ’ ) ;
s ta tusLabe l . S t r ing = ’ Status : Connecting to the DB. ’ ;
conn = database ( ’ da ta logge r ’ , ’ maglab ’ , ’ password ’ , . . .

’ com . mysql . jdbc . Dr iver ’ , . . .
’ jdbc : mysql : / / 1 0 . 4 2 . 0 . 1 1 : 3 3 0 6 / data logge r ’ ) ;

loadedDB = 1 ;
f i g = f i n d o b j ( ’Tag ’ , ’ c l i e n t ’ ) ;
setappdata ( f i g , ’ loadedDB ’ , loadedDB ) ;
setappdata ( f i g , ’dbConn ’ , conn ) ;

end

This function is called during the data loading process (unless the database connection
has been already created):

t ry
i f ( loadedDB )

conn = getappdata ( f i g , ’dbConn ’ ) ;
else

s ta tusLabe l . S t r ing = ’ Status : Connecting to the DB. ’ ;
s ta tusLabe l . ForegroundColor = [ 0 . 4 4 6 0 .674 0 . 1 8 8 ] ;
connect2DB ( )
conn = getappdata ( f i g , ’dbConn ’ ) ;

end
data = s e l e c t ( conn , ’ s e l e c t ∗ from Data ’ ) ;
% parse data
s ta tusLabe l . S t r ing = ’ Status : Pars ing data . ’ ;
timeDecim = datet ime ( double ( t ab l e2a r ray ( data ( 2 : end , . . .

. . . 1 ) ) ) . / 1 0 , ’ ConvertFrom ’ , ’ pos ixt ime ’ , ’ TimeZone ’ , . . .

. . . ’ Europe/ Zurich ’ , ’ Format ’ , ’ yyyy−MM−dd HH:mm: s s . SSSSSS ’ ) ;
dataX = double ( t ab l e2a r ray ( data ( 2 : end , 2 ) ) ) . / 1 0 0 ;
dataY = double ( t ab l e2a r ray ( data ( 2 : end , 3 ) ) ) . / 1 0 0 ;
dataZ = double ( t ab l e2a r ray ( data ( 2 : end , 4 ) ) ) . / 1 0 0 ;
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dataTemp = double ( tab l e2a r ray ( data ( 2 : end , 5 ) ) ) . / 1 0 0 ;
connStatus = 1 ;

catch error
disp ( error )
s ta tusLabe l . S t r ing=’ERROR: Unable to connect to database . ’ ;
s t a tu sLabe l . ForegroundColor = [ 0 . 6 3 5 0 .078 0 . 1 8 4 ] ;

end

3.3.1.4 Data from Logfiles

MATLAB client also enables to load data from .txt logfiles instead of database. Be-
cause of this function client can be used also for analysis of historical data or data
from another measurement stations.

If the logfiles are selected as the datasource the user has to decide whether to load
single logfile or all logfiles in the folder (there has to be only logfile in selected folder).

t ry
s ta tusLabe l . S t r ing = ’ Status : Loading data from l o g f i l e . ’ ;
s t a tu sLabe l . ForegroundColor = [ 0 . 4 4 6 0 .674 0 . 1 8 8 ] ;

loadType=ques td lg ( ’ Load s i n g l e TXT l o g f i l e or a l l l o g f i l e s . . .
. . . in the f o l d e r ? ’ , ’ Load l o g f i l e s ’ , ’ S i n g l e f i l e ’ , . . .
. . . ’ Folder ’ , ’ S i n g l e f i l e ’ ) ;

switch loadType
case ’ S i n g l e f i l e ’
[ f i l e , path ] = uiget f i l e ( ’ ∗ . tx t ’ ) ;

fp = fopen ( [ path , f i l e ] , ’ r ’ ) ;
formatSpec = ’%f ;% f ;% f ;% f ;% f ; ’ ;
data = fscanf ( fp , formatSpec , [ 5 Inf ] ) ;
data = data ’ ;

case ’ Folder ’
path = u i g e t d i r ;
[ ˜ , f i l e s ] = system ( [ ’ l s ’ ,path ] ) ;
f i l e s = f i l e s ( 1 : end−1);
f i l e s = s t r s p l i t ( f i l e s ) ;
fNames = sort ( f i l e s ) ;

formatSpec = ’%f ;% f ;% f ;% f ;% f ; ’ ;
data = [ ] ;
for i =1: length ( fNames )

fp = fopen ( [ path , f i l e s e p , fNames{ i } ] , ’ r ’ ) ;
partData = fscanf ( fp , formatSpec , [ 5 Inf ] ) ;
partData = partData ’ ;

data = v e r t c a t ( data , partData ) ;
end
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otherw i s e
return ;

end

After loading the data are edited (datastamps are converted from the Unix time to
datetime format and data are divided by 100 to get actual values in double data type)
and saved.

3.3.1.5 Data Correction

MATLAB client implements offset adjustment, sensitivity correction, orthogonaliza-
tion, field compensation and thermal drift compensation.

Correction parameters are load from text file. By default, the file corrDetails.txt is
placed in the same directory as dataCorrection.m function and is used. If this file is not
found, a dialog box is displayed and user can manually select the file with correction
parameters.

t ry
info = importdata ( ’ c o r r D e t a i l s . txt ’ ) ;

catch
[ f i l e , path ] = uiget f i l e ({ ’ ∗ . tx t ’ } , ’ S e l e c t F i l e with . . .

. . . Cor rec t ion Parameters ’ ) ;
info = importdata ( [ path , f i l e ] ) ;

end

corrParams = info . data ;

%o f f s e t s [EU]
O = corrParams ( 1 : 3 ) ;
%s e n s i t i v i t y [T/EU]
S = [ corrParams ( 4 ) , 0 , 0 ; 0 , corrParams ( 5 ) , 0 ; 0 ,0 , corrParams ( 6 ) ] ;
%o r t h o g o n a l i z a t i o n matrix
P = [ corrParams ( 7 : 9 ) ’ ; corrParams ( 1 0 : 1 2 ) ’ ; corrParams ( 1 3 : 1 5 ) ’ ] ;
%compensation f i e l d [T]
C = corrParams ( 1 6 : 1 8 ) ;

tempOff = corrParams ( 1 9 ) ; %temperature o f f s e t [C]
tempGain = corrParams ( 2 0 ) ; %temperature gain [C/EU]
refTemp = corrParams ( 2 1 ) ; %rederence temp [C]
tempDri f ts = corrParams ( 2 2 : 2 4 ) ; %temp d r i f t c o n s t a n t s [nT]

The file with correction parameters contains following values, each on separate line:

#offX [EU] ; of fY [EU ] ; o f fZ [EU ] ;
#gainX [T/EU] ; gainY [T/EU] ; gainZ [T/EU] ;
#orthoA11 ; orthoA12 . . . orthoA32 , orthoA33 ;
#Cx [T ] ; Cy [T ] ; Cz [T ] ;
#tempOff [C ] ; tempGain [C/EU] ; refTemp [C ] ;
#tempDriftX [nT ] ; tempDriftY [nT ] ; tempDriftZ [nT ] ;
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Data correction is implemented as is described in Chapter 2.4.1: with use of equation
2.7, orthogonalization matrix 2.9 and correction parameters 2.6:

%% o f f s e t s , s e n s i t i v i t y and o r t h o g o n a l i z a t i o n

%o f f s e t s [EU]
O = [3 .434531398 e +03; −85.12483;2.585290932 e +03] ;

%s e n s i t i v i t y [T/EU]
S = [−8.143760169520512 e−12 ,0 ,0 ; 0 ,8 .223217597027799 e−12 ,0; . . .

. . . 0 ,0 ,8 .177029416045621 e−12] ;

%o r t h o g o n a l i z a t i o n matrix
P = [ 1 , 0 , 0 ; −0.002625330292398 ,1 .000003446173634 ,0 ; . . .

. . . 0 .004190527854485 ,0 .007839927070293 ,1 .000039596867103 ] ;

%compensation f i e l d
C = [ 0 ; 0 ; 0 ] ;

ortoX = zeros ( length ( dataX ) , 1 ) ;
ortoY = zeros ( length ( dataY ) , 1 ) ;
ortoZ = zeros ( length ( dataZ ) , 1 ) ;

for i =1: length ( dataX )
F = [ dataX ( i ) ; dataY ( i ) ; dataZ ( i ) ] ;
B = P∗S∗(F−O) ;

ortoX ( i ) = B(1)+C( 1 ) ;
ortoY ( i ) = B(2)+C( 2 ) ;
ortoZ ( i ) = B(3)+C( 3 ) ;

end

Corrected geomagnetic data are then compensated for thermal drift. Compensation
is implemented according to theory in Chapter 2.4.2:

%% temperature d r i f t compensation

%trans foramt ion from EU to C e l s i u s degree
temperature = dataTemp∗6.648 e−5 − 2 .599 e2 ;

%temperature o f c a l i b r a t i o n
refTemp =4.7;

%temperature d e l t a
tempDelta = temperature−refTemp ;

%temperature d r i f t c o n s t a n t s [nT/K]
o f f D r i f t s = [1 . 2243 ; −3 . 2482 ; 1 . 8257 ]∗1 e−9;

X = ortoX − o f f D r i f t s ( 1 ) . ∗ tempDelta ; % [T]
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Y = ortoY − o f f D r i f t s ( 2 ) . ∗ tempDelta ; % [T]
Z = ortoZ − o f f D r i f t s ( 3 ) . ∗ tempDelta ; % [T]

X = X∗1 e9 ; %convers ion from [T] to [nT]
Y = Y∗1 e9 ; %convers ion from [T] to [nT]
Z = Z∗1 e9 ; %convers ion from [T] to [nT]

B = sqrt (X.ˆ2+Y.ˆ2+Z . ˆ 2 ) ; % [nT]

Whole correction and compensation process is implemented as function dataCorrec-
tion.m that is called by client program.
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3.3.2 LabView Client

The LabView Client program was developed as an more accessible and portable (in
an executable form) client for data visualization and analysis. It enables to to analyze
current geomagnetic data in pseudo real-time (new data are periodically loaded from
database) and it is intended to be run 24/7 as a dashboard software to display the
variometer output and health status.

It was implemented in the LabView 8.6 to be compatible with all Windows OS (this
version is compatible with the old devices with the Windows XP and also with the
new devices with the Windows 10).

Figure 3.19: labView Client for data analysis.

3.3.2.1 Program Structure

The client program can operate in two modes depending on its data source: real-time
data (datas ource is the MySQL database) or archive data (data source is the txt
logfile). To swith between modes it is necessary to tun program again.

As is shown in the Figure 3.3.2.1, user chooses data source at the beginning of the
program execution, right after offsets are loaded from file.

If the archive data mode is selected, user selects directory of txt logfile, raw data
are loaded, corrected and visualized.
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Figure 3.20: Structure of the LabView Client.

In the case of real-time data mode the database connection is created, limited amount
of archive data (last 5 hours) is loaded from database, corrected and visualized.
Then new data are downloaded periodically, corrected and added to the circular buffer
with archive data.

Figure 3.21: LV Client - main loop for acquisition of new data.
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3.3.2.2 Database Connection

To connect to the MySQL database the collection of LabView VIs called LabSQL [27]
is used. This VIs enable to connect to the database and to execute SQL query with
the use of Windows ODBC API. That means that PC that is running the LV Client
need to have installed proper MySQL drivers and the DSN (data source name) needs
to be set in the ODBC Data Source Administrator.

To set up the ODBC source the user have to open ODBC manager and add a new User
DSN. After selecting the driver (in our case the MySQL ODBC Unicode Driver), the
MySQL Connector/ODBC window appears and it is necessary to fill in all connection
parameters.
After the setup, the name of the DSN is used as a parameter for LabSQL Conncection
Create VI.

Figure 3.22: Setup of the ODBC. Figure 3.23: ODBC - connection details.

Database connection is created at the beginning of program execution. Archive data
from database (limited amount of data up to the current time) are loaded in one SQL
query and then the update loop is entered. In this loop new data are periodically
downloaded from database and analyzed.

Figure 3.24: MySQL database connection and SQL query execution.
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3.3.2.3 Data Correction

Similarly to the MATLAB client the LabView Client implements correction and com-
pensation of data according to the Chapter 2.4.
Data correction procedures are implemented in a separate VI called correctData.vi

Correction parameters are load from the corrDetails.txt. It is a plain file only with
correction parameters - each parameter on one line. Parameters are in the file in
following order:

of fX [EU] ; of fY [EU] ; o f fZ [EU ] ;
gainX [T/EU] ; gainY [T/EU] ; gainZ [T/EU] ;
orthoA11 ; orthoA12 . . . orthoA32 , orthoA33 ;
Cx [T ] ; Cy [T ] ; Cz [T ] ;
tempOff [C ] ; tempGain [C/EU] ; refTemp [C ] ;
tempDriftX [nT ] ; tempDriftY [nT ] ; tempDriftZ [nT ] ;

The output of data correction and compensation method contains array of processed
datasets: X,Y and Z values without offset (in nT), temperature (in Celsius degrees),
total value of geomagnetic field FF and computed value of declination D.

3.3.2.4 Graphical User Interface

The GUI of LV client program consists of 4 charts (Figure 3.3.2.4 + chart with the
voltage of the battery) and control panel (Figure 3.3.2.4).

Figure 3.25: LabView Client - charts. Figure 3.26: Control panel.

The first chart displays X, Y and Z component of geomagnetic field without offsets
(which can be customized in control panel) in nT. The second chart displays total
value of geomagnetic filed F and temperature (this chart has two scales - on the left
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side there is a scale for F in nT, on the right side there is a scale for temperature
in Celsius degree). The third chart displays value of declination D that is computed
from obtained data.

The control panel consist of status label (indicating the status of data loading and
processing), editable field for directory of logfile (if this field is empty a dialog window
will appear), control buttons (Stop button to stop whole program and Reset Data but-
ton to clear all data in charts), newest/latest values and editable fields with currently
used offset values.

Latest values of time, geomagnetic field, temperature and declination are the newest
data in the MySQL database and are updated every loop execution.

User can edit the offset of each field component (X, Y and Z) and the offset to-
tal value of geomagnetic field F . The offsets are implemented to make data more
readable and clear.
The default values of offsets are loaded at the start of the program from file dataOff-
sets.txt. Edited offset values can be saved to the default file with press of Save Offsets
button and will be used in the next run of the program.
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Device Testing

During the development of the datalogger it was necessary to test it. In the early stages
of development the simulated data were used (both artificial and historical data). To
simulate data stream with parameters similar to the real sensor the Sensor Simulator
was developed.

Later in the development - after solving all errors and bugs that occurred, real ge-
omagnetic sensor was used for testing as well.

4.1 Datalogger with Simulated Data

To test the datalogger with various datasets with various parameters the sensor sim-
ulator was developed.

The simulator consist of Raspberry Pi 3 computer, serial connection interface (us-
ing MAX 3232 Maxim similarly as datalogger) and a Python script.

The simulator is connected to the datalogger’s serial port and act in the same way as
the real magnetometer. This setup enables to test the performance of the datalogger
in controlled situations (with various types of signal, various signal frequencies, etc.).

Used hardware setup is shown on Figure 4.1. During the device testing the Arbitrary
Waveform/Function Generator (Keithley 3390) was used for PPS signal simulation.

Figure 4.1: Datalogger in setup with data simulator and function generator.

The simulator enables to generate both artificial and historical data. Artificial data
such as step and ramp signals were used to debug datalogger software.
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Historical data (from long-term measurement at Polom/Dobruska station) were used
to test device performance.

4.1.1 Sensor Simulator

As described, the sensor simulator is the Raspberry Pi 3 computer with a hardware
serial interface. From the datalogger point of view, the simulator appears to be the
same as the real magnetometer.

Figure 4.2: Sensor simulator with serial connection interface.

The wiring of serial interface circuit is similar to datalogger interface (see Chapter
3.1.2). It implements MAX 3232 Maxim line drive/receiver connected to the Rasp-
berry Pi GPIO. Simulator also implements few minor additional hardware functions:
the simulation is controlled with mechanical switch and the running simulation is sig-
nalized with LED.

The simulator script is implemented in Python and uses Python’s time library to
achieve desired sample rate (206.5 Hz).

In its initialization phase it sets GPIO pins and loads names of all data files in ded-
icated folder ./data/. Then the first data file is loaded and simulator is ready to
transmit data.

import s e r i a l
import time
import datet ime
import subproces s
import RPi .GPIO as GPIO

#i n i t i a t e GPIO pins
try :

GPIO. setmode (GPIO.BCM)
GPIO. setwarn ings ( Fa l se )
GPIO. setup (18 ,GPIO.OUT)
GPIO. setup (17 , GPIO. IN , pul l up down=GPIO.PUD UP)
GPIO. output (18 ,GPIO.LOW)

except Exception as e :
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print ( ” unable to i n i t i a t e GPIO pins ” )
print ( e )

#load a l l data f i l e names
l s=subproces s . check output ( [ ” l s ” , . . .

. . . ” . / data /” ] ) . decode ( ” utf−8” ) [ : −1 ]
f i l eNames = l s . s p l i t ( ”\n” )
f i l e I n d e x = 0
maxFileIndex = len ( f i l eNames )
print ( maxFileIndex )

#open f i r s t data f i l e
fp = open( ’ . / data / ’+f i l eNames [ f i l e I n d e x ] , ’ r ’ )

#open s e r i a l por t
try :

portRXTX = s e r i a l . S e r i a l ( ”/dev/ ttyS0 ” , baudrate =115200 , . . .
. . . t imeout =0.002)

print ( ” s imula to r ready ” )
except Exception as e :

print ( ” unable to open s e r i a l port ” )
print ( e )

During the execution of the main loop of the program the status of the switch is
checked and if the switch is on, the simulator is activated. To achieve precise sample
rate program sends data and then waits in short sleeps until the next transmission.
This solution deals with possibility of uneven transmission times. Interval between
transmissions is 0.00484 sec which means the sample rate is 206.5 Hz.

#s i m l u l a t o r loop−s i m u l a t o r w i l l s t a r t a f t e r turn ing s w i t c h ON
while ( 1 ) :

#s e t timestamp
t i c = time . time ( )

#check s w i t c h s t a t u s
i n p u t s t a t e = GPIO. input (17)

#i f s w i t c h i s ON −> run s i m u l a t o r
i f ( i n p u t s t a t e == False ) :

i f ( l ed == 0 ) :
l ed = 1
GPIO. output (18 ,GPIO.HIGH)
print ( ” running ” )

l i n e = fp . r e a d l i n e ( )
# l i n e example : ”−5493236;−1374885;+2110060;+3755107;”

#i f i t s end o f the f i l e
i f ( l i n e == ’ ’ ) :

f i l e I n d e x += 1
i f ( f i l e I n d e x == maxFileIndex ) :
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f i l e I n d e x = 0

fp = open( ’ . / data / ’+f i l eNames [ f i l e I n d e x ] , ’ r ’ )
l i n e = fp . r e a d l i n e ( )

data = l i n e [ : −1 ] #remove ”\n”

#send data
print ( ” sending data ” )
try :

portRXTX . wr i t e ( bytes ( str ( data)+ ’\ r\n ’ , ’ ut f−8 ’ ) )
except Exception as e :

print ( ” unable to send data − wait ing 5 secons ” )
print ( e )
l ed = 0
GPIO. output (18 ,GPIO.LOW)
time . s l e e p (5 )

#v a r i a b l e wai t to make f requency p r e c i s e
while ( time . time ()− t i c < 0 . 0 0 4 8 2 ) :

time . s l e e p (0 . 00002 )

#i f s w i t c h i s OFF
else :

i f ( l ed == 1 ) :
l ed = 0
GPIO. output (18 ,GPIO.LOW)
print ( ” stopped ” )

time . s l e e p ( 0 . 5 )

4.1.2 Test Results

Sensor simulator was crucial in the debugging process during the datalogger appli-
cation development. It helped to solve problems with data filtering and application
speed.
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4.2 Laboratory Tests

Later in the development of the datalogger the simulator was replaced with proper
fluxgate variometer and the function generator was replaced with GNSS receiver.

The purpose of laboratory measurements was to test device in its final setup. The
goal was to not only test datalogger application and its performance but also to test
device’s hardware and overall performance of the datalogger.

4.2.1 Measurement Setup

During the laboratory measurements the developed device was debugged and tested in
its final setup: datalogger connected to the fluxgate variometer and the GNSS receiver
(with PPS signal).

Figure 4.3: Datalogger in setup with fulxgate variometer and GNSS receiver.

Variometer and GNSS receiver were tested separately at first (with use of function
generator and simulated data) to resolve eventual problems. After separate testing
the device was tested in final setup.

4.2.2 Long-term Measurement Test

To thoroughly test performance of datalogger app, MySQL database and also client
programs long-term measurement tests were conducted.

During these tests both real sensor data and simulated historical data were used to
detect and eliminate bottlenecks and bugs in applications.

After several code modifications (such as change of read method for serial connec-
tion described in Chapter 3.2.4) programs were optimized and stable performance of
datalogger was achieved.

An example of long-term data is shown in the Figure 4.2.2. Offsets of shown data
were following:

Xoff = 44 781 nT Yoff = −11 489 nT Zoff = 17 339 nT Foff = 49 376 nT
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Figure 4.4: Example of long-term data in MATLAB client program.

4.2.3 Device Performance Test

Performance tests of the device were focused on the usage of the CPU, the power
consumption and the battery performance during failure of main power source.

As is shown in Table 4.2.3 datalogger application uses 71% of device’s CPU and circa
5.5% of its memory.
The highest usage of CPU has the main.py process (reading raw data from sensor)
followed by the dataSaver.py process (saving filtered data to txt log-files and to the
MySQL database). The dataProcess.py process (filtration and processing of raw data)
has the lowest CPU consumption.

Process Name CPU Usage Memory Usage
main.py 38% 2.1%
dataProcess 8% 1.6%
dataSaver.py 25% 1.7%
Sum 71% 5.4%

Table 4.1: Datalogger application - CPU and memory usage.
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To measure device’s power consumption an ammeter placed between power source and
DC/DC converter was used. From obtained values of current the power consumption
was computed.

Device Stata Current [mA] Power [W]
Idle state 240 1.2
Active logging 260 1.3

Table 4.2: Power consumption of datalogger device.

To measure the performance of backup battery a main source power failure was simu-
lated. The device continued in data logging until the level of battery voltage dropped
bellow set threshold (11.65 V for device monitor program and 11.6 V for analog
brownout circuit). Then the datalogger application was stopped, data were saved
and device was turned off (software shutdown is followed by the battery cut-off by the
brownout circuit).
Power source was restored shortly after shutdown of the system.

Figure 4.5: Battery voltage level during the failure of the main power source.

As is shown in Figure 4.2.3 the datalogger battery can safely operate as a backup
power source for 5.5 hours (then the voltage drops bellow 11.65 V and device is turned
off).
The average battery voltage decrease during measurement was 150 mV per hour.

- 83 -



Chapter 5

Conclusions

The goal of the thesis was to develop a time-synchronous datalogger with GUI for
geomagnetic observatories/repeat stations. Device is supposed to be based on the
Raspberry Pi platform and implements a MySQL database as a storage for filtered
and timestamped data. Data from the MySQL database are accessed and processed
with developed client program. The device should also supposed to implement backup
solutions.
These goals was completed.

The required hardware of datalogger was created. The developed device consist of
Raspberry Pi 2B, power circuit with backup battery and multiple communication in-
terfaces (serial connection, connection to GNSS receiver).

Figure 5.1: Logical scheme of the developed datalogger.

The datalogger application receives raw data from the magnetometer, process them
(filtration and sample rate conversion) and saves filtered (but uncorrected and uncom-
pensated) data to the MySQL database and also to plain text logfiles. Timestamping
is implemented as an interrupt driven callback triggered by the PPS signal from the
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GNSS receiver.

Both MySQL database and archive of compressed log-files are located on external USB
flash rives (to reduce wear-out of the system SD card) and are periodically backed-up
by scripts called by cron scheduler.

The power source failure prevention is implemented both on software and hardware
level. The device monitor program monitors battery voltage, the status of the device
and it also controls the performance of the datalogger.
The analog brownout circuit prevents critical discharge of the backup battery.

To achieve more flexibility in the data processing, the correction and compensation of
filtered data is implemented not on the datalogger but as a separate Client program
for PC stations.
Two client program were created - the MATLAB client and the LabView client. Both
clients enables to review and analyze current data from MySQL database and histori-
cal data from logfiles. LabView client also implements ”Live mode” enabling to review
data in pseudo real-time (with delay).

All parts of the thesis assignment were achieved.The developed device is fully func-
tional and ready for a deployment at the geomagnetic observatory Polom/Dobruska.
The observatory is currently under the construction and the deployment of the device
is planned after the stabilization of the sensor head is finished.

Although the datalogger is complete, there are still ways to further improve the device
and its functions. For example, there is an opportunity to improve device performance
by implementing critical parts of the code as an extension module in C programming
language. Another possible improvement of the datalogger is to implement synchro-
nization of the system time with the time of the GNSS receiver (it would be more
flexible than the current NTP synchronization).
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[19] JANOŠEK, M.; PETRUCHA, V.; VLK, M. Low-noise magnetic observatory var-
iometer with race-track sensors. IOP Conference

[20] Multiprocessing Python Library. Multiprocessing Python Library. [seen
11.11.2019] Source: https://docs.python.org/3.7/library/multiprocessing.html

[21] PySerial. Python Serial Library. [seen 11.11.2019] Source:
https://pyserial.readthedocs.io/en/latest/

[22] NumPy. Python package for scientific computing. [seen 11.11.2019] Source:
https://numpy.org/

- 87 -



BIBLIOGRAPHY

[23] User skoehler on Github forum. Fast Readline method for Py-
Serial. Class wrapper to a pyserial object speed improve-
ment for reading from serial connection. [seen 11.11.2019] Source:
https://github.com/pyserial/pyserial/issues/216#issuecomment-369414522

[24] GEM GSM-19 Overhauser Magnetometer . Cost Effective and
High Precision Overhauser Magnetometer. [seen 11.11.2019] Source:
http://www.gemsys.ca/rugged-overhauser-magnetometer/

[25] BUTTA, Mattia. Orthogonal fluxgates. Principles and Applications, 2012, 19-44.
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