
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 8, 2020

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Adapting the Conflict-based Search Algorithm for Alternative Objectives

 Student: Berker Katipoglu

 Supervisor: doc. RNDr. Pavel Surynek, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2020/21

Instructions

The task is to adapt the Conflict-based Search (CBS) algorithm for optimal multi-agent path finding (MAPF)
for different objectives other than the sum-of-cost. While the sum-of-costs objective focuses on minimizing
the overall cost of actions performed by agents it is sometimes more reasonable to use different objectives
such as the makespan (the time when the last agent arrives to its goal). One possible direction is to adapt
and evaluate the CBS algorithm for the makespan objective. The specific tasks for the student are as
follows:

1. Study relevant materials concerning the CBS algorithm.
2. Suggest adaptations of CBS for alternative objective and analyze theoretically soundness of the adapted
algorithm.
3. Evaluate the new algorithm experimentally on a relevant set of benchmarks.
4. Compare the original version of CBS using the sum-of-cost objective and the modified version and
discuss impact of different objectives on the performance of the algorithm.

References

[1] Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, David Tolpin, Oded Betzalel, Solomon Eyal Shimony: ICBS:
Improved Conflict-Based Search Algorithm for Multi-Agent Pathfinding. IJCAI 2015: 740-746

[2] Guni Sharon, Roni Stern, Ariel Felner, Nathan R. Sturtevant: Conflict-based search for optimal multi-agent
pathfinding. Artif. Intell. 219: 40-66 (2015)

[3] Ariel Felner, Jiaoyang Li, Eli Boyarski, Hang Ma, Liron Cohen, T. K. Satish Kumar, Sven Koenig: Adding Heuristics to
Conflict-Based Search for Multi-Agent Path Finding. ICAPS 2018: 83-87

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Bachelor’s thesis

Adapting the Conflict-Based Search

Algorithm for Alternative Objectives

Berker Katipoglu

Supervisor: doc. RNDr. Pavel Surynek, Ph.D.

9th January 2020

Acknowledgements

I would like to thank my supervisor for providing feedback on my thesis and
also I would like to thank my parents for their support and encouragement.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 9th January 2020 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2020 Berker Katipoglu. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Katipoglu, Berker. Adapting the Conflict-Based Search Algorithm for Altern-
ative Objectives. Bachelor’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2020.

Abstrakt

Hledáńı cesty pro v́ıce agent̊u (MAPF) je d̊uležitým typem problému plánováńı
v umělé inteligenci. Existuje mnoho aplikaćı MAPF a každá aplikace má své
vlastńı priority, což dává MAPF mnoho r̊uzných variaćı. S rostoućım zájmem
vědc̊u o toto téma byly vyvinuty nové algoritmy pro řešeńı r̊uzných variaćı
MAPF v posledńıch letech. Konfliktńı vyhledáváńı (CBS) je jedńım z těchto
algoritmů, který je v současné době nejmoderněǰśım řešeńım řešeńı instanćı
MAPF pomoćı objektivńı funkce součtu náklad̊u. V tomto článku budeme
diskutovat o tom, jak přizp̊usobit CBS pro objektivńı funkci značky makespan,
emprické srovnáńı obt́ıžnosti řešeńı instanćı MAPF s CBS v rámci součtu
náklad̊u a objektivńıch funkćı značky a zp̊usoby, jak zlepšit chováńı CBS
pomoćı objektivńı funkce značkypanpan. Experimentálńı výsledky ukazuj́ı,
že řešeńı usnadňuje řešeńı než řešeńı součtu náklad̊u, a je možné upravit al-
goritmus pro objektivńı funkci tak, aby se dosáhlo lepš́ıho výkonu.

Kĺıčová slova Umělá inteligence, hledáńı cest s v́ıce agenty, vyhledáváńı
založené na konfliktech, objektivńı funkce, makespan

ix

Abstract

The Multi-Agent Path Finding (MAPF) is an important type of planning
problem in artificial intelligence. There are many applications of MAPF and
each application has its own priorities, which gives MAPF many different
variations. With the increasing interest of researchers on this topic, new al-
gorithms developed for solving different variations of MAPF in the recent
years. Conflict Based Search (CBS) is one of those algorithms, which is cur-
rently the state-of-art for solving MAPF instances with sum-of-cost objective
function. In this paper, we will discuss how to adapt CBS for makespan object-
ive function, emprical comparison of the difficulty of solving MAPF instances
with CBS under sum-of-costs and makespan objective functions, and ways
to improve the behaviour of CBS with makespan objective function. Experi-
mental results show that solving makespan is easier than solving sum-of-costs,
and it is possible to adjust the algorithm for the objective function to obtain
better performance.

Keywords Artificial Intelligence, Multi-Agent Path Finding, Conflict Based
Search, Objective Function, Makespan

x

Contents

Introduction 1

1 Path Finding Problem 3

2 Multi Agent Path Finding 7

2.1 MAPF definition . 7

2.2 Type of conflicts . 8

2.3 Agent behavior at target vertex 9

2.4 Objective functions . 10

3 Conflict Based Search 13

3.1 Definitions . 13

3.2 High-level . 14

3.3 Low-level . 14

3.4 Optimality . 15

4 Contributions 19

4.1 CBS with makespan . 19

4.2 Improvements on high-level . 21

4.3 Improvements on low-level . 21

5 Experiments 25

5.1 Dataset . 25

5.2 Setup . 25

5.3 Implementation . 26

5.4 Results . 26

Conclusion 35

Bibliography 37

xi

A Acronyms 39

B Contents of enclosed USB 41

xii

List of Figures

1.1 a) The town of Königsberg. (b) Schematic representation of the
area. (c) Euler’s graph representation of the problem. 3

1.2 Visualization of shortest path finding algorithms. (a) Dijkstra. (b)
Greedy Best-First Search. (c) A*. 4

2.1 Visualization of MAPF instances with many agents. 8
2.2 Visualization of common conflict types. (a) Edge conflict. (b) Ver-

tex conflict. (c) following conflict. (d) Cycle conflict. (e) Swapping
conflict. 10

2.3 Running example with makespan objective function. 11

3.1 (i) visualization of MAPF instance, (ii) example of CT. 15

4.1 Visualization of a MAPF instance where sum-of-costs and makespan
optimal solutions differ. 20

4.2 Example of A* expansion in 2D and 3D search 22
4.3 Example MDDs for 4 time steps 23

5.1 Maps used in experiments. (a) Empty, (b) Random, (c) Room, (d)
Maze, (e) lak303d. 26

5.2 Success rate in 8x8 empty grid. 27
5.3 Average runtime (sec) in 8x8 empty grid. 28
5.4 Success rate in 32x32 random obstacle grid. 29
5.5 Success rate in 32x32 room grid. 31
5.6 Success rate in 32x32 maze grid. 31
5.7 Average runtime (sec) in 32x32 room grid. 32
5.8 Average runtime (sec) in 32x32 maze grid. 32
5.9 Success rate in 194x194 DAO-lak303d map. 33

xiii

List of Tables

5.1 Average High Level Node Expansion in 8x8 Empty Grid. 27
5.2 Average High Level Node Expansion in 32x32 Random Grid. . . . 30
5.3 Average High Level Node Expansion in 32x32 Maze Grid. 30
5.4 Average Low Level Node Expansion (in thousands) in 32x32 Ran-

dom Grid. 30
5.5 Average Low Level Node Expansion (in thousands) in 32x32 Maze

Grid. 30

xv

Introduction

Planning is an important topic in artificial intelligence, which focuses on find-
ing sequence of actions for an agent to make it reach its goal state. MAPF
is a cooperative planning problem for multiple agents, and it aims to find a
path for each agent on a given graph such that agents will be able to follow
their path without colliding with each other. [1]. There are many applications
of MAPF such as robotics [2], video games, vehicle routing [3], aviation [4].
With the emerging new technologies interest in MAPF has been increasing
among research groups.

There are two main approaches of solving MAPF problems, coupled and
decoupled. Solvers using decoupled approach plan each agent separately. This
makes decoupled solvers relatively fast, however optimality and completeness
of the solution is not guaranteed. On the other hand it is possible to obtain an
optimal solution with a coupled solver, but with usually significant computa-
tional expenses. CBS algorithm combines coupled and decoupled approaches
and guarantees to provide optimal solution.

MAPF has many variations depending on the set of assumptions of the
agent behavior, and problem objectives. Two common variations for object-
ives are minimizing sum-of-costs and minimizing makespan. Sum-of-costs fo-
cuses on total cost of agent paths in a solution, whereas makespan focuses on
the maximum cost of agent paths. CBS algorithm works with sum-of-costs
objective fucntion. In this paper we will investigate how to adapt CBS al-
gorithm for makespan objective function and suggest improvements to obtain
solutions faster. Also background knowledge will be provided regarding to
pathfining problem, MAPF and CBS algorithm.

1

Chapter 1

Path Finding Problem

Graphs in computer science are abstraction of real-world problems. They are
used to simplify the problem so that it can be represented and manipulated
by a computer. Idea of graphs were introduced in 18th century by Swiss
mathematician Leonhard Euler. He used graphs to solve the seven briges of
Königsberg problem. Königsberg was situated by the river Pregel and it was
connected by seven bridges. The problem was whether it is possible to take
a walk through the town in such a way that each bridge would be crossed
exactly once. Graph theory was born with this problem and it is now one of
the major areas of mathematical research.

Figure 1.1: a) The town of Königsberg. (b) Schematic representation of the
area. (c) Euler’s graph representation of the problem.

3

1. Path Finding Problem

Formally, we define a graph G as an ordered pair G = (V,E) where, V is a
set of nodes (vertices) and E is a set of edges (links) between the vertices such
that E ⊆ {(u, v)|u, v ∈ V }. Graphs are used in many real world problems such
as social networking, transportation, biology, simulations, robotics, artificial
intelligence etc. In some of those problems it is important to find a path
between two given vertices. For example if the problem is about moving
a robot from point A to point B, then in the graph representation of this
problem, first we need to find a path from A to B in order to program our
robot. In graph theory a path p is defined as a sequence of distinct vertices
connected by edges. Formally for a graph G = (V,E), p = (V1, ..., Vn) is a
path such that Vi 6= Vj , ∀i 6= j ∧ (Vi, Vi+1) ∈ E.

1.0.1 Path finding algorithms

Depending on the graph there may be more than one path between two ver-
tices, and some of those may be better than others. Again referring to our
robotics example, if we want to move our robot from vertex A to vertex B and
if it is important to find the shortest path in that particular problem, then
the results are comparable and some of them may be better than others. This
problem is usually referred as the shortest path problem and it is a well stud-
ied optimization problem in computer science. There are various algorithms
to solve the shortest path problem like Greedy Best-First Search (GBFS),
Dijkstra, Floyd-Warshall, A*. Among these algorithms, A* is a widely used
due to its flexibility and adaptability for wide range of context.

Figure 1.2: Visualization of shortest path finding algorithms. (a) Dijkstra.
(b) Greedy Best-First Search. (c) A*.

A* is a combination of Dijkstra’s and GBFS algorithms. Dijkstra’s al-
gorithm favors nodes that are close to the source node, whereas GBFS al-
gorithm favors nodes that are close to the goal node. In the standard termin-
ology, g(n) is the exact cost of the path from the starting node to any node n

4

(which is used by Dijkstra), and h(n) represents the heuristic estimated cost
from node n to the goal node (which is used by GBFS). A* balances the two
as it moves from the starting point to the goal and it favors nodes with the
lowest f(n) = g(n) + h(n) value. [5]

In A*, we need to keep track of several information about the nodes. First
one is the nodes to be examined. For this purpose a set called OPEN can be
used. OPEN will contain all the nodes to be examined. At the beginning of
the algorithm OPEN only contains the source node. Second information to
keep track of is the nodes that are already examined. This can be realized by
another set called CLOSED. At the beginning, CLOSED is an empty set.
We also need to keep track of g value of each node. We can use a map to keep
track of this information. Finally, we need to keep track of the parent node
for each node. Again using a map will be convenient for this purpose.

Algorithm will run in a loop, while OPEN set is not empty. In each
iteration a node N with lowest f(N) value will be removed from OPEN for
examination. If N is the target node, then algorithm calculates the path using
the parent mapping and returns it. Otherwise, N is added to CLOSED and
each neighbor of N will be examined. For a neighbor N ′ of N , first we check
if it is already in CLOSED. If so, we ignore this neighbor. Else we calculate
g(N ′) and save it to a variable called cost. Then we check if N ′ is already in
OPEN . If it is in OPEN and cost value is less than g(N ′), then we update
the g(N ′) value with the new cost value. If it is not in OPEN , we save the
cost value in g(N ′), we map N as parent of N ′ and add N ′ to OPEN . If loop
ends, then it means there is no path between source and target.

5

1. Path Finding Problem

Algorithm 1 A*

Input: G(V,E), Source, Target

1: OPEN ← {Source}
2: CLOSED ← {}
3: G V ALUES ← empty map
4: PARENTS ← empty map
5: while OPEN not empty do
6: N ← best node from OPEN // lowest f(N) value
7: if N = Target then
8: return find path(N)
9: end if

10: Insert N to CLOSED
11: for each neighbor N ′ of N do
12: if N ′ in CLOSED then
13: continue
14: end if
15: COST ← G V ALUES[N] + cost(N,N ′)
16: if N ′ in OPEN and COST<G V ALUES[N ′] then
17: G V ALUES[N ′]← COST
18: else
19: G V ALUES[N ′]← COST
20: Insert N ′ to OPEN
21: end if
22: end for
23: end while

6

Chapter 2

Multi Agent Path Finding

MAPF is an extension of path finding problem with k agents instead of 1.
Each agent will have a start and a goal location and the goal of the problem
is again finding a path for each agent from its start to goal location. The
important point is that these paths should be collision free. Usually there also
exists an objective function, which needs to be optimized. Optimal MAPF is
NP-Complete because it is a generalization of sliding puzzle problem. [6]

2.1 MAPF definition

In classical Multi-Agent Path Finding (MAPF), problem with k agents is
defined by a tuple (G, s, t), where:

• G = (V,E) is a an undirected graph,

• s : [1, ..., k]→ V is a mapping for each agent to its source vertex,

• t : [1, ..., k]→ V is a mapping for each agent to its target vertex.

Time is considered to be discrete and edge weights are considered to be
1. In every time step each agent will be located in one of the vertices and
they can perform a single action. An action is a function a : V → V such
that a(v) = v′. Which means, if an agent is at vertex v and performs action
a then it will be in vertex v′ in the next time step. Agents can either wait in
their current vertex v or can move to an adjacent vertex v′ in the graph (i.e.
(v, v′) ∈ E).

A plan for an agent is a sequence of actions such that execution of these ac-
tions on source vertex of that agent will end up at its target vertex. More form-
ally, πi = (a1, ..., an) is a single-agent plan, iff t(i) = an(an−1(...(a1(s(i))))).
A solution to MAPF problem is a set of collision-free, k single-agent plans,
one for each agent. [1]

7

2. Multi Agent Path Finding

Figure 2.1: Visualization of MAPF instances with many agents.

[7]

2.2 Type of conflicts

For a MAPF solution to be valid, there should be no conflicts between any two
single-agent plans within that solution. Conflict is a restriction based on the
environment and problem description. Common types of conflicts are listed
below.

8

2.3. Agent behavior at target vertex

2.2.1 Vertex conflict

Vertex conflict occurs between two single-agent plans πi and πj iff according
to these plans agents i and j are occupying the same vertex at the same time
step. Formally, there exist a vertex conflict between πi and πj iff, there exists
a time step t such that πi[t] = πj [t].

2.2.2 Edge conflict

Edge conflict occurs between two single-agent plans πi and πj iff according to
these plans agents i and j are traversing the same edge at the same time step
and in the same direction. Formally, there exist an edge conflict between πi
and πj iff, there exists a time step t such that πi[t] = πj [t] and πi[t + 1] =
πj [t+ 1].

2.2.3 Swapping conflict

Swapping conflict occurs between two single-agent plans πi and πj iff according
to these plans agents i and j are traversing the same edge at the same time
step and in the opposite direction. Formally, there exist a swapping conflict
between πi and πj iff, there exists a time step t such that πi[t] = πj [t+ 1] and
πi[t+ 1] = πj [t].

2.2.4 Following conflict

Following conflict occurs between two single-agent plans πi and πj iff according
to these plans agent i is occupying a vertex which was occupied by agent j in
the previous time step. Formally, there exist a following conflict between πi
and πj iff, there exists a time step t such that πi[t+ 1] = πj [t].

2.2.5 Cycle conflict

Cycle conflict occurs between a set of single-agent plans πi, πi+1, ..., πj iff ac-
cording to these plans each agent is occupying a vertex which was occupied by
another agent in the previous time step in a rotational pattern. Formally, there
exist a cycle conflict between πi, πi+1, ..., πj iff, there exists a time step t such
that πi[t+ 1] = πi+1[t] and πi+1[t+ 1] = πi+2[t] and ... and πj−1[t+ 1] = πj [t]
and πj [t+ 1] = πi[t].

2.3 Agent behavior at target vertex

In a MAPF solution different agents may end up at their target vertex at
different time steps. This situation may or may not cause further conflicts
according to how agent behavior is defined, therefore problem definition should

9

2. Multi Agent Path Finding

Figure 2.2: Visualization of common conflict types. (a) Edge conflict. (b)
Vertex conflict. (c) following conflict. (d) Cycle conflict. (e) Swapping conflict.

[1]

include the agent behavior at the target location. There are two main behavior
types.

2.3.1 Stay at target

In the stay at target type, whenever an agent reaches at its target location it
will keep staying there until the end of whole planning. That is to say, it will
occupy that vertex and if any other agent is planned to pass that vertex, that
will cause a vertex conflict. Formally, if agents are assumed to stay at target,
then single-agent plans πi and πj will have a vertex conflict if there exists a
time step t >= |πi| such that πj [t] = πi[|πi|].

2.3.2 Disappear at target

In the disappear at target type, whenever an agent reaches at its target loca-
tion it will disappear from the graph and is assumed that it will not occupy
any vertex. That will avoid this an agent to have any conflicts with another
agent after it reaches the target vertex.

2.4 Objective functions

To be able to talk about an optimal solution, there should be an evaluation cri-
teria to determine which solution is better than the other. Objective functions
are used for this purpose. There are two main objective functions, makespan
and sum of costs, and the goal is to minimize them. However, it is possible
to introduce new objective functions according to the problem definition. For
example if there is a strict time limit for the planning, maximum number of
agents reaching target within a given makespan can be used as an objective

10

2.4. Objective functions

function. Or one problem may be focus on the total number of non-waiting
actions (which also referred as sum-of-fuel).

2.4.1 Makespan

In makespan objective function, criteria is when the whole planning finishes.
This is determined by the longest single-agent plan in the solution. Formally,
for a MAPF solution π = {π1, ..., πk}, the makespan is defined asmax1≤i≤k|πi|.

Figure 2.3: Running example with makespan objective function.

[8]

11

2. Multi Agent Path Finding

2.4.2 Sum of costs

In sum of costs objective function, criteria is the sum of single-agent plan
lengths. Formally, for a MAPF solution π = {π1, ..., πk}, the sum of costs is
defined as

∑
1≤i≤k |πi|. Sum of costs objective function is known as flowtime

as well.

While calculating sum of costs, it is important to specify the agent behavior
at target location and how it effects the plan length. If the agent behavior
is stay at target, then the common assumption is, agents plan ends if it is
staying at its target location and not moving to any other adjacent vertex.
For example, if an agent reaches its target vertex at time t and afterwards it
needs to move again from its target vertex due to a conflict at time t′ and
comes back to the target vertex at t′′ and stays there until the whole plan
finishes, then this agent’s plan length is t′′.

12

Chapter 3

Conflict Based Search

There are two main approaches to solve a MAPF problem, decoupled and
coupled approach. In decoupled approach, paths are planned separately. For
example in HCA* algorithm, single-agent paths are saved in global reserva-
tion table. During planning each agent must avoid the location and time
steps in the global reservation table, which were reserved by previous agents.
[9] Although decoupled algorithms run relatively fast, optimality and com-
pleteness is not always guaranteed. On the other hand, coupled approaches
usually return optimal solution. In this approach, MAPF problem is treated
as a single-agent problem and can be solved by an A*-based algorithm that
searches the state space. Main issue is the state space grows exponentially
with the number of agents. [7]

Conflict based search (CBS) is an algorithm which combines both coupled
and decoupled algorithms. CBS guarantees optimal solution while performing
single-agent searches for path finding, like decoupled algorithms. CBS is a
two-level algorithm, on the high level, a search is performed on a constraint
tree (CT), whose nodes have the information about constraints on time and
location for each agent plan. According to these constraints, in each tree
node, low-level search is performed to find the single-agent plans for the agents
subjected to the constraint of that node. Unlike A*-based search algorithms
where state space grows exponential with the number of agents, high level of
CBS is exponential with the conflicts encountered during the solving process.
[10]

3.1 Definitions

In CBS, the term path is used only for a single agent. A solution is the set
of k paths for a given k agents. A constraint is a tuple (ai, v, t), where agent
ai is restricted to be at vertex v at time step t. During the execution of the
algorithm, agents are linked with set of constraints. A consistent path for an

13

3. Conflict Based Search

agent is a path that satisfies all of the constraints for that agent. Similarly, a
consistent solution is a set of k consistent paths for given k agents. A conflict
is a tuple (ai, aj , v, t), where agent ai and agent aj are planned to occupy the
vertex v at time step t. A solution is valid if there are no conflicts between
any of the paths within that solution. [10]

3.2 High-level

At the high level, CBS searches for a valid solution in a constraint tree (CT). A
CT is a binary tree, and each node N in CT contains the following information:

• A set of constraints (N.constraints). At root, constraints set is empty.
Every child node will inherit the constraints set from its parent and add
a new constraint for the given agent.

• A solution (N.solution). A set of k paths, one for each agent. Each
path should be consistent with the constraints of the node and all of its
predecessors.

• A total cost value (N.cost), is the sum of path lengths of that node’s
solution. It is also referred as the f-value of the node.

At the high-level, algorithm performs a best-first search, where nodes are
ordered according to their total cost value, until it finds the goal node which
is a node with valid solution. When a node N is expanded during the search,
first a validation is performed to check if the solution (N.solution) is valid or
not. If it is a valid solution, then N is a goal node and N.solution is returned.
If a conflict is encountered during the validation, then N is declared as a
non-goal node.

To be able to solve a conflict C = (ai, aj , v, t), at least one of the two con-
straints (ai, v, t) and (aj , v, t) should be added to N.constraints. To guarantee
optimality, both options should be investigated. Therefore, node N is split
into two child nodes. Each child node inherits the constraints from N , one
of them adds the constraint (ai, v, t) and the other one adds the constraint
(aj , v, t). Then low-level search is invoked for both of the child nodes and
paths for agent ai and aj will be updated in the related child node.

3.3 Low-level

At the low-level, CBS is searching for a consistent and optimal path for a given
agent and its associated constraints. This search is performed in a decoupled
manner, i.e., ignoring other agents. The search is three dimensional, two for

14

3.4. Optimality

Figure 3.1: (i) visualization of MAPF instance, (ii) example of CT.

[10]

spatial dimensions and another dimension of time. For the search, any single-
agent path finding algorithm can be used. In order to satisfy all constraints,
whenever a state x is generated with g(x) = t, and if there exists a constraint
(ai, x, t), then this state is discarded.

3.4 Optimality

If there are solutions to a MAPF instance, CBS returns the optimal one for
that. In order to prove the optimality of CBS, first we will provide some
supporting claims.

Definition 1

Let CV (N) be the set of all solutions for a node N in a constraint tree,
that are: (1) consistent with the set of constraints of N and (2) also valid,
such that they don’t have any conflicts. If N is not a goal node, then solution
at the node N (N.solution)will not be in CV (N) because it is not valid.

Definition 2

For any solution p ∈ CV (N), node N permits the solution p.

For example, root node in CT does not have any constraints. Any valid
solution will satisfy the empty set of constraints. Therefore, we can say that
the root node in CT permits all valid solutions.

15

3. Conflict Based Search

Algorithm 2 CBS - High Level

Input: MAPF Instance

1: R.constraints = ∅
2: R.solution = find individual paths using low-level()
3: R.cost = SOC(R.solution)
4: insert R to OPEN
5: while OPEN not empty do
6: N ← best node from OPEN // lowest solution cost
7: if N has no conflict then
8: return N.solution
9: end if

10: C ← first conflict (ai, aj , v, t) in N
11: for each agent ai in C do
12: A← new node
13: A.constraints← N.constraints+ (ai, v, t)
14: A.solution← N.solution
15: Update A.solution by invoking low-level(ai, A.constaints)
16: A.cost = SOC(A.solution)
17: Insert A to OPEN
18: end for
19: end while

The objective function used in CBS is sum of costs. Let minCost(CV (N))
be the minimum cost over all solutions in CV (N).

Lemma 1

The cost of a node N in the CT is a lower bound on minCost(CV (N)).

Proof

For each node N in CT , paths for the associated agent is calculated by
using an optimum path finding algorithm. That is to say, for a node N , the
solution N.solution contains the shortest paths that satisfy N.constraints for
each agent. Solution may not be valid, however it makes a lower bound on
the set of valid solutions for N , since no agent can reach to its goal with a
shorter path satisfying the constraints.

Lemma 2

At all time steps, there exists a CT node N in OPEN , which permits a
valid solution p.

Proof

We are going to prove this lemma by induction. For the base case only
root node is in OPEN , which does not have any constraints. We know that
root node permits all valid solutions. Assuming this is true for the first i
expansion cycles.In cycle i + 1 node N , which permits the optimal solution

16

3.4. Optimality

p, had collisions and needed to be expanded to N ′1 and N ′2 with the new
constraints. Any valid solution must satisfy either one the new constraints set.
Any valid solution from V S(N) is either in V S(N ′1) or V S(N ′2). Therefore,
at all times there is at least one CT node in OPEN that permits the optimal
solution.

Theorem 1
CBS returns the optimal solution.
Proof
Let’s assume a goal node G is chosen for expansion in the high-level expan-

sion cycle, with a cost of c(G). We know that at that point, all valid solutions
are permitted by the nodes in OPEN (lemma 2). Let p be a valid solution
with the cost of c(p) and let N(p) be the node that permits p in OPEN , with
the cost of c(N(p)). c(N(p)) ≤ c(p) (lemma 1). High-level in CBS expands
the nodes of CT in a best-first manner. Therefore c(G) ≤ c(N(p)) ≤ c(p).
[10]

17

Chapter 4

Contributions

Optimal solution for a MAPF instance depends on the objective function
defined for that problem. CBS algorithm is used with sum of costs objective
function and it returns the optimal solution for that. This chapter will focus on
how to adapt CBS for makespan objective function and possible improvements
on the algorithm to find the optimal solution faster.

4.1 CBS with makespan

First thing to clarify is weather an optimal solution for a MAPF instance
may differ between makespan and sum of costs objective functions or not. As
discussed previously, makespan for a MAPF instance is the time until the last
agent reaches its destination, whereas sum of costs is the sum of each path
length in the solution. The figure 4.1, visualization of a MAPF instance with
two agents a1 and a2, and two optimal solutions for sum of costs (denoted
as ξ) and makespan (denoted as µ). This example proves that it is possible
to have MAPF instances where sum of costs and makespan optimal solutions
differ.

Intuitively, in order to adapt CBS algorithm for makespan objective func-
tion, we can change the total cost value for a CT node. In the original CBS,
total cost value of a CT node is given as the sum of path lengths of that node’s
solution. If we change this function definition from sum of path lengths to
maximum of the path lengths, this will make the nodes in OPEN to get sorted
by the longest path length in their solution. During the expansion cycle in the
high-level of CBS, whenever we get a node from OPEN , we will know that
there is no other node in OPEN with a better solution in terms of makespan
objective function.

We need to discuss if changing the objective function will effect the op-
timality of CBS or not. Referring back to section 3.4, lemma 1 will hold since
changing cost function does not affect the low-level search of CBS. Therefore

19

4. Contributions

Figure 4.1: Visualization of a MAPF instance where sum-of-costs and
makespan optimal solutions differ.

[11]

the cost of a node N in the CT is still a lower bound on minCost(CV (N)).
Lemma 2 will hold because changing total cost function does not affect the
if a node N permits a valid solution or not. Since lemma 1 and lemma 2
holds, and CBS expands the nodes of CT in a best-first manned in high-level
no matter what the cost function is, it holds that CBS returns the optimal
solution for makespan objective function as well.

We will formally prove CBS with makespan objective function will return
optimal solution too. Referring back to the definitions in section 3.4 proof of
CBS returning optimal solution is as follows.

Lemma 1
The cost of a node N in the CT is a lower bound on minCost(CV (N)).
Proof
For each node N in CT , paths for the associated agent is calculated by

using an optimum path finding algorithm in decoupled manner since makespan
is a minimization task. That is to say, for a node N , the solution N.solution
contains the shortest paths that satisfy N.constraints for each agent. Since
during the calculation of the paths, other agents are ignored no agent can
reach to its goal with a shorter path satisfying only its own constraints. That
is to say for a given constraint set N.constraints, agent N cannot reach its
target location faster.

Lemma 2
At all time steps, there exists a CT node N in OPEN , which permits a

valid solution p.

20

4.2. Improvements on high-level

Proof

We are going to prove this lemma by induction. For the base case only
root node is in OPEN , which does not have any constraints. We know that
root node permits all valid solutions. Assuming this is true for the first i
expansion cycles.In cycle i + 1 node N , which permits the optimal solution
p, had collisions and needed to be expanded to N ′1 and N ′2 with the new
constraints. Any valid solution must satisfy either one the new constraints set.
Any valid solution from V S(N) is either in V S(N ′1) or V S(N ′2). Therefore,
at all times there is at least one CT node in OPEN that permits the optimal
solution.

Theorem 1

CBS with makespan objective function returns the optimal solution.

Proof

Let’s assume a goal node G is chosen for expansion in the high-level expan-
sion cycle, with a cost of c(G). We know that at that point, all valid solutions
are permitted by the nodes in OPEN (lemma 2). Let p be a valid solution
with the cost of c(p) and let N(p) be the node that permits p in OPEN , with
the cost of c(N(p)). c(N(p)) ≤ c(p) (lemma 1). High-level in CBS expands
the nodes of CT in a best-first manner. Therefore c(G) ≤ c(N(p)) ≤ c(p).

4.2 Improvements on high-level

At high-level, CBS performs an expansion cycle on a priority queue. Nodes in
the queue are sorted by their total cost function and the node with lowest cost
value will be removed from the queue in each turn. However, the algorithm
makes no distinctions between two nodes with equal cost value. That is to
say, algorithm work similar to BFS within same cost value nodes. This may
increase the number of nodes expanded until a goal node is found since CT
grows exponentially with the number of conflicts and goal nodes are the leaf
nodes of a CT . More conflicts resolved, greater the chance is to find a goad
node, that is why we may increase the possibility to find a goal node faster by
using DFS for the nodes with same cost value.

4.3 Improvements on low-level

Each time a conflict occurs between two agents, low-level CBS is invoked for
each agent to find a new optimal path with the new constraints. So, except
for the root node, for each node in CT low-level is invoked once. Although
there are no restrictions for the algorithm to be used in low-level, usually A* is
used. This procedure seems to be efficient, since A* is one of the fastest path
finding algorithms. However when searching for a path in three dimensions,

21

4. Contributions

two for spatial dimensions and one dimension for time, number of expanded
nodes might increase dramatically.

To have a better understanding of this situation, let’s focus on the example
in figure 4.2, where we will demonstrate three dimensional A* search. In this
example, we assume there is one agent with source node as A1 and target
node as B5. As heuristic value, we will use the manhattan distance. Before
we start, we can see that target node is located on the right and bottom of
the source node. So ideally, agent should move right and bottom directions to
be able to reach the target. However there are some obstacles, which forces
the agent to move in opposite direction.

Figure 4.2: Example of A* expansion in 2D and 3D search

At the beginning, first node to be expanded will be the source node, A1,
with g = 0, h = 5 and f = 5. After processing A1, A1 and B1 will be added
to OPEN . A1 will have g = 1, h = 5 and f = 6, and B1 will have g = 1,
h = 4 and f = 5. So after expansion of a node N , a copy of that node N ′ will
be added to OPEN . f value of N ′ will be one more than f value of N since h
value will remain same and g value will increase by one. Because of the higher
f value, copied node will be added at the end of queue, and algorithm will
keep expanding nodes with lower f values. This pattern will continue until

22

4.3. Improvements on low-level

agent will come across an obstacle, which forces it to move opposite direction
of the target node. In this example, when node B3 is expanded, successors
will be B3 with g = 4, h = 2, f = 5 and A3 with g = 4, h = 3 and f = 7. We
know that for the shortest path, we supposed to expand A3, however since
agent moved opposite direction, f value of A3 is higher than all the previous
duplicate nodes (each with f = 6). This situation repeats each time agent is
forced to move opposite direction by either an obstacle or a constraint.

To lower the number of expanded nodes in low-level CBS, we will build
a multi-value decision diagram (MDD), and perform DFS on that MDD.
MDD is a directed acyclic graph, which contains all paths for a given agent
and a given maximum path length. Nodes at depth t of MDD for an agent a,
corresponds to all the nodes that agent a can occupy at time step t. In figure
4.3 an example of MDDs for two agents with 4 time steps. Since searching
path is two dimensional on MDD, it will return the path faster. However it is
computationally costly to build MDDs, and also the length of the path should
be known prior to constructing MDD. [12]

Figure 4.3: Example MDDs for 4 time steps

Choosing wrong path lengths may result in not returning the optimal
solution for the MAPF instance. Since our objective function is makespan,
we only care about the longest path in the solution. That is to say, path
lengths of other agents, which have shorter path length in the solution, does
not effect the quality of the solution. Using this information, at the beginning
of the algorithm we will use A* on two dimensions, to find minimum paths

23

4. Contributions

for each agent in a decoupled manner. After finding all the paths, we will use
the longest path length to construct all MDDs. We save this value in each
node as threshold value, and if low-level CBS fails to return a path for a new
CT node, we increase the threshold value of that node and add it to OPEN .
If during the expansion cycle in high-level, a node has bigger threshold value
than the depth of already constructed MDDs, then we construct new MDDs
with this threshold value.

24

Chapter 5

Experiments

In this chapter we will discuss the experimental results of CBS, CBS with
makespan (CBS MS), CBS MS with high-level improvements (CBS MS HL)
and CBS MS with both high-level and low-level improvements (CBS MS HLLL).
We will focus on three metrics, success rate, average runtime and average num-
ber of node extension in high level and low-level. Success rate is the ratio of
successfully solved instances to total number of instances in a given time limit.
Average runtime will be calculated for successfully solved instances by all solv-
ers among different number of agents. Similarly average number of nodes will
also be calculated among successfully solved instances by all solvers for all
given number of agents.

5.1 Dataset

For the experiments 5 grid type 2D MAPF benchmark maps were used. [13]
One small map (8x8) without obstacles (empty), three medium size maps
(32x32) with different types of obstacles (random, room and maze) and one
big map (194x194) with obstacles (lak303d). Visualization of the maps can
be seen in the figure 5.1.

5.2 Setup

Experiments were run under following assumptions of MAPF instances:

• Maps used are 4 connected grids, i.e. an agent can move up, down, left,
right or stay at its node.

• Each agent occupies only one grid in a time step.

• Edge weights are 1.

• Vertex conflict, edge conflict and swapping conflicts are not allowed.

25

5. Experiments

Figure 5.1: Maps used in experiments. (a) Empty, (b) Random, (c) Room,
(d) Maze, (e) lak303d.

• Agents will stay at their targets.

Experiments were run on a computer with AMD Ryzen 1700 at 3.9Ghz
CPU and 16GB DDR4 at 3433Mhz RAM.

5.3 Implementation

Algorithms and tests were implemented using Ptyhon 3.7. PyCharm was used
as IDE since it provides easy refactoring and debugging tools. Implementation
of the algorithms was done in object oriented manner. Solver classes were
inherited from the base CBS solver class, which saved time and also resulted
in clean and readable code. During tests polymorphism was used to solve
and evaluate different algorithms. Software was designed to be flexible to
evaluate custom MAPF instances with different time limits and number of
agents. Results of the experiments are automatically saved in CSV files under
the results folder.

5.4 Results

In this section comparison results of CBS algorithm under sum-of-costs and
makespan objective functions will be presented. Also comparison of the sug-
gested improvements and their effectiveness will be discussed. Besides giving
numerical results, pros and cons of the algorithms will be analyzed based on
the experiments.

5.4.1 Small map

Comparison CBS and CBS-MS in small map shows that, CBS-MS performs
better. In figure 5.3 we can see that runtime of CBS increase much faster
than CBS-MS. Also figure 5.2 show that success rate of CBS drops more

26

5.4. Results

Table 5.1: Average High Level Node Expansion in 8x8 Empty Grid.

k CBS CBS-MS CBS-MS-HL CBS-MS-HLLL

5 2.5 2.8 2.2 2.7

10 65.5 11.7 7.2 8.7

15 NA 36.5 20.4 24.9

20 NA 89 45 50

25 NA 258 103 114

dramatically than CBS-MS. The reason can be seen in the table 5.1 more
clearly. Although number of nodes expanded for CBS and CBS-MS for 5
agents is similar, CBS expands almost six times more nodes, than CBS-MS
for 10 agents.

Figure 5.2: Success rate in 8x8 empty grid.

Comparing CBS-MS-HL and CBS-MS-HLLL, as figure 5.3 indicates, low
level improvements gain more importance as the number of agents increase.
Although until 20 agents CBS-MS-HL outperforms CBS-MS-HLLL, the pat-
tern shows us that for higher number of agents CBS-MS-HLLL will perform
better.

27

5. Experiments

Figure 5.3: Average runtime (sec) in 8x8 empty grid.

5.4.2 Medium maps

CBS-MS performs better than CBS in all tested medium size maps. In success
rate figures 5.4, 5.5 and 5.6 we can see that success rate of CBS is dominated by
CBS-MS. However the gap of success rate of CBS and CBS-MS differs between
maps. Success rate figures shows that performance of CBS effected by the type
of the map more than CBS-MS. For example, maze map is much more error
prone than random map, since it consist of narrow corridor which limits the
movement of agents more than a 10% randomly blocked map. That is why the
gap between the performances of CBS and CBS-MS in maze increases faster
in maze than random.

Results of high level node expansion in table 5.2 and table 5.3 is parallel
with the results of success rates between CBS and CBS-MS. Even for small
number of agents, number of nodes expanded in high level CBS is double in
maze than random map. Furthermore, the increase in number of expanded
nodes with increasing number of agents is much higher in CBS than CBS-
MS. For example for the random map, from 5 agents to 10 agents, CBS-MS
expands 5 more nodes in average, whereas CBS expands 34 more nodes in
average. This gap gets bigger as the number of agents increase, which makes
CBS to solve the problem slower than CBS-MS.

Except for the maze map, CBS-MS-HL and CBS-MS-HLLL seems to per-

28

5.4. Results

form similarly according to success graphs. However, when average runtime
graphs, graph 5.7 and graph 5.8 are inspected, we can see that average runtime
of CBS-MS-HL increases faster than average runtime of CBS-MS-HLLL, with
the increasing number of agents. Difference is more dramatic in maze grid,
since in a maze an agent may need to move opposite direction of its goal,
which makes low level search to expand much more nodes with conventional
A* search as it was explained in section 4.3.

High level node expansion comparison of CBS-MS-HL and CBS-MS-HLLL
shows that CBS-MS-HLLL may expand more nodes than CBS-MS-HL as it
can be seen in the table 5.3 and table 5.2. Although the difference is much
more significant in maze grid, CBS-MS-HLLL performs much better in average
runtime, as it can be seen in figure 5.8. That is to say, low level node expansion
performance of CBS-MS-HLLL more than enough to compensate for the worse
high level performance.

Figure 5.4: Success rate in 32x32 random obstacle grid.

5.4.3 Big map

Lak303d was the most difficult map to solve among the selected dataset. Maze
like structure of lak303d not makes it difficult for low level algorithm to find
the individual paths, also it increases the possibility of having conflicts and
makes it difficult for high level too. Comparison results show more clearly

29

5. Experiments

Table 5.2: Average High Level Node Expansion in 32x32 Random Grid.

k CBS CBS-MS CBS-MS-HL CBS-MS-HLLL

5 1.1 1.8 2.3 1.5

10 35 6.7 4.3 5.9

15 721 18.8 8.1 13.2

20 732 27 11.6 13.8

25 NA 51.3 21.7 36.7

Table 5.3: Average High Level Node Expansion in 32x32 Maze Grid.

k CBS CBS-MS CBS-MS-HL CBS-MS-HLLL

5 2.2 6.9 5.2 7.2

10 52.4 26 16.2 27.7

15 NA 60.5 35.3 87.8

20 NA 134 63.9 173.4

25 NA 250.8 107.1 255.5

Table 5.4: Average Low Level Node Expansion (in thousands) in 32x32 Ran-
dom Grid.

k CBS CBS-MS CBS-MS-HL CBS-MS-HLLL

5 0.6 0.6 0.6 0.4

10 16 4 3 1

15 168 12 9 2

20 189 18 12 3

25 NA 28 18 5

Table 5.5: Average Low Level Node Expansion (in thousands) in 32x32 Maze
Grid.

k CBS CBS-MS CBS-MS-HL CBS-MS-HLLL

5 NA 74 54 2

10 NA 271 168 5

15 NA 580 355 19

20 NA 1181 748 210

25 NA 2057 1267 229

30

5.4. Results

Figure 5.5: Success rate in 32x32 room grid.

Figure 5.6: Success rate in 32x32 maze grid.

which algorithm performs in difficult scenarios better. Looking at the suc-

31

5. Experiments

Figure 5.7: Average runtime (sec) in 32x32 room grid.

Figure 5.8: Average runtime (sec) in 32x32 maze grid.

32

5.4. Results

cess rate figure 5.9, we can observe CBS has the worst performance among
all other algorithms. CBS-MS-HLLL on the other hand is performing as the
best algorithm overall. It can be observed that for some situations it does
not perform best, such as for 15 and 20 agents in this case, but the trend of
indicates it will perform better for higher number of agents. Finally, com-
parison between CBS-MS and CBS-MS-HL shows that CBS-MS-HL strictly
dominates CBS-MS in this map.

Figure 5.9: Success rate in 194x194 DAO-lak303d map.

33

Conclusion

In this paper we analyzed the adaptation of CBS for makespan objective
function. We purposed two improvements for the algorithm, one addressing
high-level search and one addressing low-level search. Although it is not pos-
sible to talk about domination of one version of the algorithm over others, we
can conclude that CBS is a very flexible algorithm and it can be adjusted and
optimized for different kind of MAPF problems. Empirical comparisons show
that, these adjustments can lower the amount of nodes during search up to a
magnitude of 10.

For future work adaptation of pruning techniques for makespan objective
function can be studied to prune non-goal CT nodes without the need to in-
voke the low-level search of CBS [14]. Also introducing heuristics for high
level search [12] for makespan can be studied to increase the performance of
CBS by changing the node expansion order in high-level search. Also combin-
ation of different improvements, their compatibility and performance can be
investigated.

35

Bibliography

[1] Stern, R.; Sturtevant, N.; Felner, A.; et al. Multi-Agent Pathfinding:
Definitions, Variants, and Benchmarks. arXiv preprint arXiv:1906.08291,
2019.

[2] Bennewitz, M.; Burgard, W.; Thrun, S. Finding and optimizing solvable
priority schemes for decoupled path planning techniques for teams of
mobile robots. Robotics and autonomous systems, volume 41, no. 2-3,
2002: pp. 89–99.

[3] Dresner, K.; Stone, P. A multiagent approach to autonomous intersection
management. Journal of artificial intelligence research, volume 31, 2008:
pp. 591–656.

[4] Pallottino, L.; Scordio, V. G.; Bicchi, A.; et al. Decentralized cooperative
policy for conflict resolution in multivehicle systems. IEEE Transactions
on Robotics, volume 23, no. 6, 2007: pp. 1170–1183.

[5] Dechter, R.; Pearl, J. Generalized best-first search strategies and the
optimality of A. Journal of the ACM (JACM), volume 32, no. 3, 1985:
pp. 505–536.

[6] Ratner, D.; Warrnuth, M. Computer & Information Sciences University
of California Santa Cruz Santa Cruz, CA 95064.

[7] Silver, D. Cooperative Pathfinding. AIIDE, volume 1, 2005: pp. 117–122.

[8] Hönig, W.; Kumar, T. S.; Cohen, L.; et al. Multi-agent path finding
with kinematic constraints. In Twenty-Sixth International Conference on
Automated Planning and Scheduling, 2016.

[9] Standley, T. S.; Korf, R. Complete Algorithms for Cooperative Pathfind-
ing Problems. In Twenty-Second International Joint Conference on Ar-
tificial Intelligence, 2011.

37

Bibliography

[10] Sharon, G.; Stern, R.; Felner, A.; et al. Conflict-based search for optimal
multi-agent pathfinding. Artificial Intelligence, volume 219, 2015: pp.
40–66.

[11] Surynek, P.; Felner, A.; Stern, R.; et al. An empirical comparison of the
hardness of multi-agent path finding under the makespan and the sum of
costs objectives. In Ninth Annual Symposium on Combinatorial Search,
2016.

[12] Li, J.; Felner, A.; Boyarski, E.; et al. Improved heuristics for multi-
agent path finding with conflict-based search. In Proceedings of the 28th
International Joint Conference on Artificial Intelligence, AAAI Press,
2019, pp. 442–449.

[13] Sturtevant, N. R. Benchmarks for grid-based pathfinding. IEEE Trans-
actions on Computational Intelligence and AI in Games, volume 4, no. 2,
2012: pp. 144–148.

[14] Sharon, G.; Stern, R. T.; Goldenberg, M.; et al. Pruning techniques for
the increasing cost tree search for optimal multi-agent pathfinding. In
Fourth Annual Symposium on Combinatorial Search, 2011.

38

Appendix A

Acronyms

GBFS Greedy Best-First Search

MAPF Multi Agent Path Finding

BFS Breath First Search

DFS Depth First Search

HCA* Hierarchical Cooperative A*

CBS Conflict Based Search

CT Constraint Tree

MDD Multi-value Decision Diagram

IDE Integrated Development Environment

39

Appendix B

Contents of enclosed USB

readme.txt the file with CD contents description
src.......................................the directory of source codes

mapf..implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

41

	Introduction
	Path Finding Problem
	Multi Agent Path Finding
	MAPF definition
	Type of conflicts
	Agent behavior at target vertex
	Objective functions

	Conflict Based Search
	Definitions
	High-level
	Low-level
	Optimality

	Contributions
	CBS with makespan
	Improvements on high-level
	Improvements on low-level

	Experiments
	Dataset
	Setup
	Implementation
	Results

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed USB

