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Abstrakt

Nedávný výzkum ukázal, že je možné navrhnout překladový systém, který se
uč́ı z čistě jednojazyčných text̊u. Ačkoli kvalita výsledného překladu stále za-
ostává za standardńımi systémy trénovanými pomoćı text̊u předem přeložených
člověkem, tyto výzkumné snahy otev́ıraj́ı nové možnosti pro datově chudé
jazykové páry. Tato práce poskytuje přehled technik pro strojový překlad
použitelných právě při nedostatku dat. Nejslibněǰśı př́ıstupy použijeme a po-
rovnáváme jejich výsledky na česko-německém jazykovém páru. Jelikož použité
metody záviśı na vektorové reprezentaci slov ve v́ıcejazyčném prostoru, zkoumáme
tyto reprezentace, abychom ukázali, kolik nesou jazykově neutrálńı informace.

Kĺıčová slova neuronový strojový překlad, nesupervizovaný strojový překlad,
jednojazyčný korpus, v́ıcejazyčné reprezentace slov, XLM, BERT, česko-německý
překlad
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Abstract

Recent research has shown that it is possible to design a model that learns to
translate entirely from monolingual texts. Even though the translation qual-
ity still lags behind the state-of-the art models trained on texts translated
by humans, this line of research opens new doors for low-resource language
pairs. This thesis provides an overview of unsupervised techniques for ma-
chine translation applicable in low-resource conditions. We apply the most
promising approaches and compare their performance on the Czech-German
language pair. Since the proposed methods depend on vector representations
of words in a cross-lingual space, we experiment with these representations to
show how much language-neutral information they carry.

Keywords neural machine translation, unsupervised machine translation,
monolingual corpus, cross-lingual embeddings, XLM, BERT, German-Czech
translation
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Objective of the Thesis

The aim of this work is to explore existing approaches to unsupervised ma-
chine translation (MT), perform experiments on the German and Czech data
sets, and assess the results. Since the unsupervised MT techniques rely on
vector representations of words in a cross-lingual space, a secondary goal is
to experiment with these representation to show how much language-neutral
information they carry.

This work will provide a theoretical background of machine translation
and vector representation of text. It will describe the concept of language
model pretraining and analyze the cross-lingual representations hidden in
cross-lingual language models. Furthermore, it will give an overview of MT
strategies applicable in low-resource conditions. Several of these strategies will
be applied to the translation from German to Czech and Czech to German.
Both a neural and a statistical model will be trained and their performance will
be compared using the BLEU metrics of translation quality. The performance
of the unsupervised MT systems will also be assessed against a supervised
benchmark.
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Introduction

Modern machine translation (MT) heavily relies on parallel corpora, i.e. struc-
tured sets of sentence-aligned text documents in different languages, which
are used for training the models. However, creating a parallel corpus is an
expensive task as the text has to be translated by humans, ideally profes-
sional translators. While there are public sources of parallel data for several
widely-spoken languages (e.g. EU legislation, public domain books, movie
subtitles), many language pairs are so called low-resource, which means they
have insufficient resources of pre-translated texts.

In contrast to the standard machine translation, unsupervised MT models
are trained without any parallel documents, but rather use large monolingual
corpora to learn the structure of each language separately. Since monolingual
texts are usually easily available, unsupervised techniques are of particular
significance for low-resource language pairs.

Significant advancements in the area of machine translation happened for
data abundant language pairs (mostly translation to or from English) where
large parallel corpora allow training of deep neural networks to translate with
impressive results (Wu et al., 2016; Bahdanau et al., 2015; Vaswani et al.,
2017). It is only recently that the focus has been turning to low-resource
languages and scarce data conditions (Lample et al., 2018b). A recent line of
research is exploring the fully unsupervised setting where no parallel data is
available at training time (Artetxe et al., 2018c,b; Lample et al., 2018b). In
our experiments, we compare several existing approaches to unsupervised MT
on translation between German and Czech. We also assess the gap between
supervised and unsupervised MT systems.

The key ingredient to functioning of a translation system trained on strictly
monolingual data is a high quality semantic representation of the input words
in the two languages. In this thesis, we focus on experimenting with these rep-
resentations and we investigate the effect of generative pretraining on trans-
lation quality.

The structure of the thesis is the following. Chapter 1 summarizes the
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Introduction

most important concepts and theoretical building blocks of machine transla-
tion in general. Chapter 2 provides an overview of unsupervised techniques
applicable in low-resource conditions. Chapter 3 focuses on the benefits of
pretrained word embeddings or entire language models for unsupervised MT
and Chapter 4 analyzes the internal representations of such pretrained models.
Chapter 5 applies the unsupervised MT methods to translation between Czech
and German, compares the resulting models and identifies possible directions
for future improvements.

4



Part I

Theoretical Background &
Literature Review
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Chapter 1
Approaches to Machine

Translation

This chapter provides a summary of the theoretical concepts behind machine
translation. The two approaches we will be using in this thesis are neural ma-
chine translation (NMT) and statistical machine translation (SMT). NMT has
recently become the dominant paradigm (Wu et al., 2016), reaching impres-
sive results for many language pairs. However, in situation where not enough
data resources are available, the phrase-based statistical machine translation
approach still plays an important role (Koehn and Knowles, 2017).

After the initial focus of the MT community on data abundant languages,
a recent line of research emerged to explore the extreme setting of unsuper-
vised machine translation trained on strictly monolingual data. Artetxe et al.
(2018b) show that the statistical phrase-based approach can be modified to
the unsupervised settings and yield competitive results.

1.1 Statistical Machine Translation

A phrase-based statistical machine translation (SMT) model is a log-linear
probability model (Koehn et al., 2003) capturing the probability of one sen-
tence being a translation of another one. In order to estimate it, the input
texts are split into phrases (n-grams), aligned and organized in a phrase table
together with their frequencies of occurrence in the training data set. The
following features are statistically measured on the training data to form part
of the log-linear model:

• phrase translation probability (favoring phrase pairs which were fre-
quently observed in the data as a mutual translation);

• language model (favoring phrases which sound fluent in the target lan-
guage, i.e. they were frequently observed in the data);

7



1. Approaches to Machine Translation

Figure 1.1: Training of an SMT model: estimation of bi-directional word-alignment,
phrase extraction, estimation of phrase-based features

Source: Cettolo et al. (2005)

• distortion model (favoring phrases with a natural word ordering);

• word/phrase count penalty (penalizing short phrases and sentences).

Each of the features above is weighted before entering the model. The
weights are tuned to maximize translation quality on a small set of parallel
sentences (development set). Minimum error rate training (MERT) (Och,
2003) is used for the optimization.

The model can be formalized as follows

P (tgt|src) = exp
∑

i λifi(tgt, src)∑
tgt′ exp

∑
i λifi(tgt′, src)

(1.1)

where src is the original source sentence, tgt is the translated target sen-
tence and tgt′ iterates over all possible translations. fis are the features listed
above and λis are the feature weights. When training the model, we first
statistically estimate individual features from the training data set and later
tune the feature weights, maximizing translation quality on a development
data set.

During decoding (translating), beam search is used to generate the most
probable sentence by combining translation candidates for individual phrases
based on their log-probability scores.

8



1.2. Neural Machine Translation

Figure 1.2: Encoder-decoder architecture of NMT
Source: Alammar (2019)

1.2 Neural Machine Translation

Neural machine translation (NMT) models use deep neural networks to find
correspondences between the source and the target language (Sutskever et al.,
2014). They are trained end-to-end and they are able to exploit distributed
representations of text in a continuous space.

NMT models are based on the encoder-decoder architecture illustrated in
Figure 1.2. A source sentence is first processed by an encoder which encodes
every word to a deep vector representation of several hundred dimensions.
The decoder, on the other hand, is trained to generate the target sentence
based on the encoded source words. The concept which allows the decoder to
attend to particular words of the source sentence while translating is called
attention (Bahdanau et al., 2015).

The first successful NMT models of Sutskever et al. (2014) or Cho et al.
(2014) were based on recurrent neural networks (RNNs). Later proposals ex-
perimented with convolutional neural networks (Gehring et al., 2017) and the
currently popular Transformer model uses purely attention-based mechanisms
with no sequential dependency on previous tokens (Vaswani et al., 2017). The
NMT models used in this thesis are Transformer-based and the architecture
will be described in Section 1.2.3.

1.2.1 Vocabulary

The first step of training an NMT model is defining the vocabulary. Machine
translation is an open vocabulary problem which, however, needs to be solved
with a fixed vocabulary size. Sennrich et al. (2016) introduced a method to
create a fixed-size vocabulary by splitting words into subwords using the byte-
pair encoding (BPE) algorithm. The BPE algorithm, originally designed for

9



1. Approaches to Machine Translation

Word BPE Subwords
Preisgestaltung Preis@@ gestaltung
Ausländische Aus@@ ländische
Kellermans Kell@@ er@@ mans
Mittlerweile Mittler@@ weile
střešńıch stře@@ š@@ ńıch
Kyrgyzstánu Kyr@@ gy@@ z@@ stánu
d̊uchodc̊um d̊uchod@@ c̊um
zv́ı̌rátka zv́ı̌r@@ átka

Table 1.1: A sample of Czech and German subwords generated by the BPE encoding
algorithm

data compression, generates the vocabulary by iteratively grouping the most
common pairs of characters or subword tokens together and replacing them
with a new subword token until a desired vocabulary size is reached. Unknown
words are encoded as a sequence of subwords and characters.

In contrast to whole word tokens, subword units reduce the vocabulary size
and they eliminate the presence of unknown words in the output translation.
They also provide flexibility for translating unfamiliar words composed of
familiar word parts which is especially useful for languages which form noun
compounds (e.g. German) or inflections (e.g. Czech). Table 1.1 shows a
sample of segmented words from the Czech and German training corpora. In
some cases, the subword units correspond to linguistic phenomena, in other
cases they are just groups of characters.

In the rest of this work, the term subword and word will be used inter-
changeably to refer to individual tokens which can either represent full words,
subwords or individual characters.

1.2.2 Embeddings

Words are required to have a numeric representation in order to be processed
by any machine learning model. The easiest approach is representing each
word of the vocabulary with a one-hot vector where all but one elements are
zero. However, one-hot encoding generates sparse vectors carrying no semantic
information and are unsuitable for further computations. In contrast, neural
models are able to learn dense representations, i.e. real valued vectors called
word embeddings. An interesting property of these representations is that
words with a similar meaning have a similar embedding vector (Mikolov et al.,
2013c).

The first layer of every NMT system is always an embedding layer. It
is implemented as a lookup table where each word is assigned a column (N -
dimensional vector) of this table and its values are updated during the NMT
training as gradients come from the network. The dimension of the lookup
table is V ×N where V is the vocabulary size, N is the embedding dimension

10



1.2. Neural Machine Translation

N = 1024

0: am 0.189743 -0.546913 … 0.891238 0.36395

1: arrive 0.008008 0.225354 … 0.629252 0.691612

2: buy 0.325167 0.818226 … 0.801882 0.222063

… …

… …

… … V = 60000

→ n: dog 0.92606 -0.327949 … 0.129631 0.797617

… …

… …

… …

60000: zoo 0.546066 0.065946 … -0.952119 0.226917

Figure 1.3: Embedding lookup table corresponding to a vocabulary of size V and
hidden dimension N. Extracting a word embedding for the word dog.

and V » N 1 see Figure 1.3 for illustration. Embeddings can also be viewed as
a mapping from high-dimensional space to lower-dimensional one.

The lookup table can either be initialized randomly or it can be filled with
pretrained embeddings. More details on pretrained embeddings will be given
in Chapter 3. In some applications, pretrained embeddings are fixed and not
updated during training, e.g. Artetxe et al. (2018c).

1.2.3 Transformer Model

Model Architecture

The Transformer NMT model is composed of a stack of encoders and a stack
of decoders (Vaswani et al., 2017). The role of the encoder is to process
the source sentence and return a deep bidirectional representation vector for
each word of the sentence. The role of the decoder is to process the encoded
source sentence and produce a correct translation to the target language. In
addition to the encoded source words, the decoder also sees the target words
it already generated. In Chapter 4, we analyze the vector representations of
words generated by individual encoders in the stack.

Each encoder has the following structure (schematically illustrated in Fig-
ure 1.4):

• self-attention layer;
• feedforward layer;
• normalization layer;
• dropout.

The self-attention layer allows the model to see other words of the sen-
tence when encoding each individual word. The concept of self-attention is
described in Section 3.2. In contrast to the encoders, each decoder has an ad-
ditional attention layer allowing it to also see the words of the source sentence

1In our experiments, V = 60000 and N = 1024
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1. Approaches to Machine Translation

Figure 1.4: Architecture of a Transformer-based NMT model. The arrows illustrate
the attention. The number of encoder/decoders is a hyperparameter that is set before
the training and can be tuned.

Source: Alammar (2019)

and use that knowledge for translation. Since translations are generated left
to right, it is essential that the decoder is only aware of the words on the left
side of the word being decoded. Word masking is used to achieves this.

The feedforward layer is a fully connected layer with ReLU or GELU
activations (Hendrycks and Gimpel, 2017).

Layer normalization is applied both after the self-attention layer and
after the feed forward layer to reduce training time (Ba et al., 2016).

Dropout is a regularization technique applied after each layer to improve
the generalization ability of the model by deactivating a part of the neurons
during training (Srivastava et al., 2014).

The entrance layer of both the encoder and the decoder stack is the input
embedding layer mentioned in the previous section, associating each vocabu-
lary token with a fixed-size embedding vector. The embedding layer is shared
between the encoder and the decoder. To be able to account for the word or-
der of the sentence, each input embedding is enriched with information about
its position in the sentence. The positional embedding vector of a token is de-
rived from its position index and is summed with the token embedding vector
before being processed by the model (Vaswani et al., 2017).

The final layer of the decoder stack is a linear layer which transforms
the decoder output for each word to a V -dimensional vector of next-word
probability scores (V is the vocabulary size). The vocabulary index with the
highest score corresponds to the most probable word to be generated. The
weight matrix of the final linear layer is identical to the input embedding layer
and their parameters are shared.

After each training step, the output probability scores are used to calculate

12



1.2. Neural Machine Translation

the loss of the model and back-propagate its gradients to the entire model.
During inference, the decoder output probability scores are used to predict
the following word of the translated sentence. If greedy decoding is used, the
vocabulary index with the highest score corresponds to the word which will
be generated.

Depending on the design of the model, there can be a separate encoder
and a separate decoder for each language. In our models, we only train one
encoder and one decoder and share them for both translation directions, i.e.
the same encoder is used to encode Czech sentences and German sentences.

More details about the Transformer architecture and the formulas behind
can be found in the original paper Attention Is All You Need by Vaswani et al.
(2017).

1.2.4 Training

Loss Function

NMT models are trained by minimizing the cross-entropy loss function which
measures their ability to predict each following word correctly. The model is
penalized every time the predicted word is not the correct one.

Cross-entropy loss is defined as follows:

H(y, p) =
V∑

i=0
yilog(pi) (1.2)

where p is the V -dimensional decoder output and y is the V -dimensional
vector with real labels which are equal to 1 if the next word corresponds to the
current vocabulary index and 0 otherwise. Therefore, cross entropy penalizes
the model for predicting a less-than-one probability for the correct next word.

In order to be able to interpret decoder outputs as word probabilities, they
first have to be passed through a softmax function which takes a real-valued
vector and transforms it into a non-negative real-valued vector with elements
which add up to one. During next-word prediction in NMT, the decoder
outputs a score for each token in the vocabulary. The softmax function is
used to transform the decoder outputs to probabilities according to

pi = exp oi∑V
j=0 exp oj

(1.3)

where pi is the i-th element of the softmax output and o is the V -dimensional
pre-softmax decoder output and V is the size of the vocabulary.

Learning Rate

Neural models are trained by iteratively adjusting their weights according to
the gradients of the loss function with respect to these weights. The size of

13



1. Approaches to Machine Translation

the adjustment is governed by the learning rate. The initial learning rate is a
hyperparameter which is set before the training. A small learning rate leads to
slower convergence while a high learning rate may cause the model to diverge
(Popel and Bojar, 2018).

When using the stochastic gradient descent (SGD) algorithm, a single
learning rate is maintained for all weight updates and it does not change during
training. In contrast, the Adam optimization algorithm (Kingma and Ba,
2015) uses adaptive learning rates for different parameters and it is commonly
used when training Transformer NMT models.

Batch Size

NMT training is organized in batches. For efficient GPU usage, the model pro-
cesses several sentences at a time. The size of each batch is another hyperpa-
rameter and depends on the available memory. When training a Transformer
model, larger batch size leads to better results (Popel and Bojar, 2018).

1.3 Evaluating Machine Translation

1.3.1 BLEU Score

The quality of a machine translation output can be automatically evaluated by
the BLEU metrics introduced by Papineni et al. (2002). The metric compares
the candidate translation against the reference translation (possibly multiple
translations) and assigns a score, depending on the number of overlapping
words. Despite having its limitations (due to the large number of ways one
can translate a sentence in another language), BLEU has demonstrated a
high correlation with human judgment and is widely used to assess results of
research in machine translation.

1.3.2 Manual Evaluation

While automatic measures are necessary for the development of machine trans-
lation systems, they are only an imperfect substitute for human assessment
of translation quality (Koehn and Monz, 2006). When truly evaluating an
MT system, manual evaluation is crucial. The clear disadvantage of manual
evaluation is that it is expensive, time-consuming, and also subjective.

Evaluators usually assess the translations based on fluency and adequacy
on a scale of 0-100. Fluency only reflects how natural the translated sentence
sounds, regardless of the original text. Fluency improved significantly with the
adoption of neural models which are able to produce very naturally sounding
sentences but sometimes hallucinate a new meaning which is not present in
the source sentence (Lee et al., 2018). Adequacy, on the other hand, refers to

14



1.3. Evaluating Machine Translation

how accurately the translation captures the meaning of the original sentence
and is therefore, in most scenarios, a more reliable metric.

Every year there is a machine translation competition WMT2 where state-
of-the-art translation systems are evaluated both automatically and manually.

2http://www.statmt.org/wmt19/
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Chapter 2
Machine Translation for
Low-resource Languages

According to Ethnologue3, there are 7,111 languages spoken in the world as of
December 2019 and only a small fraction of them is covered by large parallel
data sources, others are considered low-resource. This work summarizes and
compares different approaches applicable in low-resource settings.

2.1 Overview of Methods

2.1.1 Unsupervised Machine Translation

Unsupervised machine translation is the task of performing machine transla-
tion without any pre-translated texts available for training. The model learns
all necessary information from unrelated monolingual texts.

This novel research area has been explored by Artetxe et al. (2018c,b)
and Lample et al. (2018b), who propose both a statistical model, a neural
model and a combination of both in order to extract the necessary translation
information from monolingual data.

2.1.2 Pivoting

Another option for low-resource languages is to use translation through a third
language - a pivot. In such a setup, if we are interested in translating Czech-
German, we train a Czech-English model and an English-German model. This
approach uses the assumption that some languages are mutually low-resource
but there might be a third language (such as English) offering richer paral-
lel data resources with the languages of interest. Among disadvantages of
this approach are the training cost of two models instead of one and also a

3https://www.ethnologue.com/guides/how-many-languages
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2. Machine Translation for Low-resource Languages

more costly inference where we first need to generate the translation to the
pivot languages using one model and then process the pivot translation by the
second model. This procedure also incurs translation quality loss.

2.1.3 Transfer Learning in Machine Translation

Transfer learning is a general concept in machine learning, referring to the
problem of learning some general knowledge when solving one task which
could be exploited to improve generalization when solving a different, but
related task (Goodfellow et al., 2016).

Transfer learning is relevant for NMT in low-resource settings where it
could leverage the knowledge learned when training to translate for a different
language pair (Zoph et al., 2016). Kocmi and Bojar (2018) suggest a simple
transfer learning method, where they first train a parent model for a high-
resource language pair of choice and then simply replace the training corpus
with the small parallel data of the language pair of interest. They show that
the parent model pretraining significantly improves over the baseline trained
on the low-resource data pair only. Interestingly, they observe improvements
even for unrelated languages with different alphabets.

2.1.4 Zero-shot Machine Translation

Zero-shot learning is a special case of transfer learning and generally refers
to solving a task without having received any training examples of that task,
only by exploiting additional information from the training (Goodfellow et al.,
2016). In the NMT setup, it refers to training a multilingual model and
translating between language pairs the model never saw during training. For
example, we train a multilingual model on German-English and English-Czech
translations. If zero-shot is possible, it means that we are able to use such
a model for translating between German and Czech. A successful zero-shot
application means a proof that the deep neural models are able to learn some
sort of an interlingua - language-independent latent representation of meaning
(Lu et al., 2018).

There have been successful attempts at multilingual translation systems
which translate between multiple language pairs via a shared encoder (Johnson
et al., 2017). The architecture of such models is unchanged from a standard
one-to-one setup, but they are trained on parallel data for several language
pairs and an extra token is added to each input sentence indicating the target
language we wish to translate to. Johnson et al. (2017) or Gu et al. (2019)
show that training one model for several languages yield comparable or even
superior results for some language pairs. Furthermore, they show that a zero-
shot translation is possible, albeit yielding lower quality translations than
simple pivoting.
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2.2. Unsupervised Statistical Machine Translation

2.2 Unsupervised Statistical Machine Translation

Unsupervised SMT is a phrase-based model trained only on monolingual data.
As described in Section 1.1, the traditional SMT model has several parts:
phrase table, language model, distortion model and word penalties. When
only monolingual data is available, we can still estimate the language model
without any limitation, as it only depends on monolingual data. We can
also calculate the penalties, which are parameterless and the distortion model
can be disregarded in the first step (Artetxe et al., 2018b). The key element
is populating the initial phrase table from monolingual data only and then
tuning weights of the SMT model.

The following concepts are crucial for the estimation of the unsupervised
SMT model

1. initial phrase table population;

2. unsupervised tuning;

3. back-translation.

2.2.1 Initial Phrase Table Population

The first step towards unsupervised statistical machine translation, as sug-
gested by Lample et al. (2018b) and Artetxe et al. (2018b), is training mono-
lingual phrase embeddings, aligning them to a cross-lingual embedding space
and using them to infer a bilingual lexicon. Details on unsupervised learning
of the alignment will be given in Section 3.1.2.

The resulting bilingual lexicon allows us to derive the initial phrase table
for the SMT model. As shown by Artetxe et al. (2018c) and Lample et al.
(2018a), approximate translations inferred from cross-lingual embeddings can
be used to populate the initial phrase table of a SMT system. A practical
example is illustrated in the second part of this thesis in Section 5.2.1.

2.2.2 Unsupervised Tuning

In standard SMT, the weights of the log-linear model are tuned on a small
parallel data set using MERT. Since parallel data is not available in the unsu-
pervised setting, we create a parallel development set artificially by using the
existing model to translate a small set of monolingual data. When MERT finds
the optimal weights, we use the optimized model to create another synthetic
development set for optimizing the reverse model. The optimized reverse
model is used to again create a synthetic developments set for optimizing the
first model on better data. This iterative procedure is repeated until conver-
gence. The algorithm is described in detail in Artetxe et al. (2018b).
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Figure 2.1: Step-by-step illustration of iterative back-translation

Source: Kvapilikova et al. (2019)

2.2.3 Back-translation

The idea of back-translation was first introduced by Sennrich et al. (2016) as
a method to leverage monolingual data during MT. When we have an existing
SMT model for both translation directions, we can use it to translate both of
our monolingual corpora and generate two synthetic parallel corpora. At that
point we can discard the existing models and train new ones from scratch.
The new SMT models can be trained in a standard supervised way, using
the synthetic corpora for supervision. This procedure can be repeated several
times, creating synthetic corpora of increasing quality. The translation quality
increases over several iterations of back-translation (Artetxe et al., 2018b).
The procedure is illustrated in Figure 2.1.

2.3 Unsupervised Neural Machine Translation

Unsupervised NMT is an encoder-decoder neural model trained only on mono-
lingual data. The models of Lample et al. (2018b), Artetxe et al. (2018c) have
a RNN architecture, the model of Lample and Conneau (2019) is Transformer-
based. They all have a shared encoder which is a requirement for producing
language independent representations of the input text. Lample and Conneau
(2019) show that the decoder can be shared as well.

Model initialization plays an important role in unsupervised MT. The
training is performed iteratively on two sub-tasks: recovering the input from
a noisy version of itself (de-noising) and recovering the input from a synthetic
translation (back-translation). The training pipeline consists of switching be-
tween these two sub-tasks, one batch each in every step.

20



2.3. Unsupervised Neural Machine Translation

2.3.1 Model Initialization

The importance of model initialization in unsupervised NMT indicates that
there is a lot to be gained from careful model pretraining. Lample et al.
(2018b) initialize the embedding layer of their unsupervised NMT model with
pretrained cross-lingual word embeddings. Lample and Conneau (2019) take
this idea even further by pretraining the entire encoder and decoder with a
cross-lingual language model. Fine-tuning the pretrained model with the it-
erative training process for unsupervised MT described in the following para-
graphs brings state-of-the-art results for unsupervised MT.

Different methods of pretraining cross-lingual embeddings or entire lan-
guage models will be described in Section 3.1.2

2.3.2 De-noising

De-noising is a monolingual training objective teaching the model to recover
corrupted sentences. The training data is created by adding noise to the
input sentence. The noise is added by randomly shuffling words within a
predefined window. The de-noising training step is conceptually equivalent to
a translation training step; we are essentially translating from a noisy source
sentence to the original source sentence.

De-noising helps the MT system to learn to generate proper sentences in a
given languages and it is especially important in the beginning of the training
when there is not enough cross-lingual information for actual inter-language
translation.

2.3.3 Back-translation

Back-translation was already mentioned in Section 2.2 in relation to SMT. It
brings significant improvements in translation quality when the training data
is augmented by additional (synthetic) sentence pairs created by translating
monolingual data with the NMT model which is currently being trained. This
procedure is crucial for unsupervised NMT where we do not have any authen-
tic parallel data available at all. Back-translation is happening ”on-the-fly”
during training where the model first generates a batch of synthetic parallel
data and immediately trains itself on it.

In the back-translation step, the model is first set to the inference mode
a used to translate a batch of sentences. The synthetic translations serve
as source sentences for a training step where the target side is the original
sentence.
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2.4 Unsupervised Hybrid Machine Translation

Previous work in the area of unsupervised MT shows that combining features
of both statistical and neural modeling can have a positive complementary
effect on translation quality (Marie et al., 2019; Stojanovski et al., 2019). As
described in Section 2.2, SMT relies on the rotation of monolingual embedding
spaces to induce a seed bilingual lexicon. Therefore, it can be effectively
used to bring the initial cross-lingual signal to the final translation system.
However, NMT is superior over SMT in terms of translation fluency (Popovic,
2017). SMT outputs are composed of n-grams and cannot be as fluent as NMT
outputs which are generated with the knowledge of a full sentence context.

In the hybrid setting, a seed SMT model is estimated as described in Sec-
tion 2.2 and used to translate the monolingual corpus. Synthetic translations
produced in this manner are used to bootstrap the training of a neural model.
In later stages of the training, the synthetic data can be augmented with the
translations produced by the hybrid model itself. As suggested by Artetxe
et al. (2019), the whole procedure can be repeated several times, iteratively
generating synthetic data of increasing quality as the underlying SMT and
NMT systems improve.
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Chapter 3
Unsupervised Pretraining

The previous chapter showed that pretraining plays an important role in un-
supervised MT. The following paragraphs will provide an overview of unsuper-
vised pretraining methods which are available in natural language processing
and applicable to MT in particular.

3.1 Pretrained Word Embeddings

As mentioned in Section 1.2.2, the embedding layer of an NMT system can be
initialized using pretrained embeddings. This technique is especially effective
in low-resource scenarios when training with small amounts of data and it
is absolutely essential in scenarios where no parallel data is available at all.
Similarly, pretrained embeddings are used to initialize the phrase table of an
unsupervised SMT system described in Section 2.2.

Available embedding models include Word2Vec (Mikolov et al., 2013c) or
GloVe (Pennington et al., 2014).

3.1.1 Monolingual Embeddings (Word2Vec)

The Word2Vec model (Mikolov et al., 2013a) is a popular solution for the word
representation task as it was shown to have many favorable properties (e.g.
adding, subtracting of words) as shown below in Figure 3.1. The underlying
idea is that similar words tend to appear in similar context and thus have
similar embedding vectors (as measured by cosine similarity).

Word2Vec is a two-layer neural network which is trained on raw text data
to reconstruct linguistic contexts of words. There are two methods how to
design and train a model - Continuous Bag of Words (CBOW) and Skip-
Gram. The former model learns to predict the current word based on its
context (surrounding words) while the latter learns to predict the surrounding
words given the current word. The architecture is illustrated in Figure 3.2.
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3. Unsupervised Pretraining

Figure 3.1: Relations between Word2Vec embeddings reflect semantic and grammat-
ical notions between the embedded words. Mathematically, the leftmost graphics can
be described with the popularized formula of king −man + woman = queen which
holds for the Word2Vec vectors.

Source: Google (2019)

We are not interested in the solution of the task itself. However, the model
has to create useful internal representations to be able to solve the task and
these representations serve as our word embeddings. They are stored in the
hidden layer of the model and the word embeddings are obtained by simply
taking the hidden weights.

While embeddings of entire words are useful for semantic processing and
tasks such as word similarity search, other tasks, such as machine translation,
operate on subwords. FastText by Bojanowski et al. (2017) extends the Skip-
Gram training to subword units.
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Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

R words from the future of the current word as correct labels. This will require us to do R × 2
word classifications, with the current word as input, and each of the R + R words as output. In the
following experiments, we use C = 10.

4 Results

To compare the quality of different versions of word vectors, previous papers typically use a table
showing example words and their most similar words, and understand them intuitively. Although
it is easy to show that word France is similar to Italy and perhaps some other countries, it is much
more challenging when subjecting those vectors in a more complex similarity task, as follows. We
follow previous observation that there can be many different types of similarities between words, for
example, word big is similar to bigger in the same sense that small is similar to smaller. Example
of another type of relationship can be word pairs big - biggest and small - smallest [20]. We further
denote two pairs of words with the same relationship as a question, as we can ask: ”What is the
word that is similar to small in the same sense as biggest is similar to big?”

Somewhat surprisingly, these questions can be answered by performing simple algebraic operations
with the vector representation of words. To find a word that is similar to small in the same sense as
biggest is similar to big, we can simply compute vector X = vector(”biggest”)−vector(”big”)+
vector(”small”). Then, we search in the vector space for the word closest to X measured by cosine
distance, and use it as the answer to the question (we discard the input question words during this
search). When the word vectors are well trained, it is possible to find the correct answer (word
smallest) using this method.

Finally, we found that when we train high dimensional word vectors on a large amount of data, the
resulting vectors can be used to answer very subtle semantic relationships between words, such as
a city and the country it belongs to, e.g. France is to Paris as Germany is to Berlin. Word vectors
with such semantic relationships could be used to improve many existing NLP applications, such
as machine translation, information retrieval and question answering systems, and may enable other
future applications yet to be invented.

5

Figure 3.2: Word2Vec model architectures. The CBOW architecture predicts the
current word based on the context, the Skip-gram predicts surrounding words given
the current word.

Source: Mikolov et al. (2013a)
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3.1. Pretrained Word Embeddings

3.1.2 Cross-lingual Embeddings

For unsupervised MT, we need to project embeddings to a cross-lingual space
where similar words have similar representations regardless of their language.
Therefore, a cross-lingual extension of Word2Vec is necessary. We present two
unsupervised strategies for projecting words to a cross-lingual space.

Aligning Monolingual Embedding Spaces

One option is to train monolingual Word2Vec embeddings individually as de-
scribed in the previous Section and subsequently align them. The aligned
spaces can be directly used for inferring a bilingual lexicon. This method is
based on the idea that embedding spaces of different languages are approx-
imately the same and there exists a linear mapping between them (Mikolov
et al., 2013b), as illustrated in Figure 3.3.

While there is a range of supervised methods to learn the mapping, other
approaches are completely unsupervised. Conneau et al. (2018) use adversarial
training to align monolingual word embedding spaces and infer a bilingual
lexicon without parallel data (MUSE). This method is particularly effective in
favorable conditions of related languages. In order to overcome this restriction,
Artetxe et al. (2018a) use self-learning to map monolingual embeddings into a
shared space (VecMap). This approach exploits the structural similarity of the
embeddings which holds even for distant languages and iteratively improves
upon it by self-learning.

The procedure can be extended to n-gram embeddings where we learn
a mapping between word sequences. This method is used to initialize an
unsupervised SMT system described in Section 2.2.

Shared Vocabulary

The second option is to simply train FastText subword embeddings on a non-
aligned multilingual corpus created by concatenating the two monolingual
corpora. The requirement for this method is that the two languages have a

Figure 3.3: Mapping monolingual embeddings to cross-lingual space

Source: Conneau et al. (2018)
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common alphabet and the subword vocabulary be generated from the mul-
tilingual corpus to be shared for the two languages. While there is no ex-
plicit objective for the model to learn a joint embedding space instead of two
sub-spaces, (Smith et al., 2017) show that identical character strings (proper
names, digits) serve as anchors and force the representation spaces together.

Lample et al. (2018b) use the cross-lingual embeddings to initialize the
embedding layer of the unsupervised MT model and report better results
than other work (Lample et al., 2018a) relying on aligned monolingual spaces
and inferred bilingual dictionaries.

3.2 Pretrained Language Models

Language models tell us how likely is a given sequence of words to occur in
a language. They play an important role in MT systems in generation of the
translated sentence. SMT systems include an explicit language model as part
of the log-linear model introduced in Section 1.1, which favors translations
with high LM log-probabilities. Encoder-decoder NMT architectures include
a language model implicitly as they have the capacity to learn the same in-
formation as a language model themselves during the MT training (Sennrich
et al., 2016). Lample and Conneau (2019) show that initializing an NMT
model with a pretrained language model leads to a higher translation quality
and faster convergence.

Pretrained language models can be used to initialize models and improve
their performance on a variety of natural language understanding tasks (De-
vlin et al., 2018). The goal of unsupervised pretraining is to use abundant
unlabeled data to learn a general structure of the data. Specifically, languagei
models learn deep bidirectional representations which must carry information
on the syntax and the semantics of text. However, these representations are
not easily interpretable by humans.

Pretrained models can be fine-tuned to a specific task without modifying
the supervised learning objective. There are several benefits to unsupervised
pretraining (Erhan et al., 2010):

• the models are pretrained on large unlabeled data which are abundant,
as opposed to expensive labeled data;

• it is less computationally expensive to fine-tune a pretrained model for
a specific task than to train the model from scratch;

• finding a proper initialization point can lock the training in a region of
the parameter space that is essentially inaccessible for models that are
trained in a purely supervised way;

• pretraining acts as a regularizer, enabling better generalization in deep
neural models.
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3.2. Pretrained Language Models

While pretrained models have been widely used in image processing for
some time, they overtook the NLP field only in 2018 with the introduction
of BERT. Devlin et al. (2018) and Conneau et al. (2018) show that using
pretrained language representation models and only fine-tuning them for par-
ticular NLP tasks leads to state-of-the-art models for a wide range of tasks,
such as question answering, text classification and language inference. The fi-
nal model can be built without substantial architecture changes. Adding just
one additional classification layer can transform BERT to a universal classifier
to detect paraphrases or identify named entities (e.g. geographical or proper
names) in text. Pretraining a shallower model and copying it to both the
encoder and the decoder can be used to intitalize a NMT model. More details
on initializing an NMT model will be given in Section 3.1.2.

Since the textual input is sequential, it can be processed by a RNN ar-
chitecture where the contextual information from past inputs is modeled with
the help of recurrent connections. Bidirectional RNN network can even model
both left and right context (Arisoy et al., 2015). Alternatively, the Trans-
former architecture can be used for language modeling. Devlin et al. (2018)
showed that the Transformer encoder described in Section 1.2.3 can be used
as a very powerful language representation model and gave rise to the famous
BERT.

3.2.1 Monolingual Pretraining (BERT)

BERT (Bidirectional Encoder Representations from Transformers) is a pre-
training language model developed by researchers at Google (Devlin et al.,
2018). It has a Transformer architecture with 12 (24) encoder layers and
110M (340M) parameters in its base (large) version. The English BERT was
trained on a total of around 3,300M words extracted from the BookCorpus4

and English Wikipedia. Google made several pretrained model available for
download5, including a multilingual model trained on 104 languages. Fine-
tuning a pretrained BERT (or one of its offshoots) yields impressive results
in many downstream NLP task6 and requires substantially less computation
resources than training from scratch.

Training

Transformer-based language models can be effectively trained using the masked
language model (MLM) training objective (Devlin et al., 2018), illustrated in
Figure 3.4. In contrast to a left-to-right language modeling objective, MLM

4https://yknzhu.wixsite.com/mbweb
5https://github.com/google-research/bert
6General Language Understanding Evaluation (GLUE) benchmark is a collection of

resources for training, evaluating, and analyzing natural language understanding systems
https://gluebenchmark.com/leaderboard.

27

https://yknzhu.wixsite.com/mbweb
https://github.com/google-research/bert
https://gluebenchmark.com/leaderboard


3. Unsupervised Pretraining

[/s] the [MASK] [MASK] blue [/s] [MASK] rideaux étaient [MASK] 

0 1 2 3 4 5

en en en en en en

curtains les

[/s] 

1 2 3 4 5

[/s] 

0

fr fr fr fr fr fr 

bleus

Transformer

Transformer

Token
embeddings

take drink now[/s]

[/s] [MASK] a seat have a [MASK] [/s] [MASK] [MASK] relax and

0 1 2 3 4 5

en en en en en en

7 8 9 10 116

en en en en en en 

+
Position
embeddings

Language
embeddings

Masked Language
Modeling (MLM)

+ + + + + + + + + + +

+ + + + + + + + + + + +

+ + + + + + + + + + + +

+ + + + + + + + + + + +

Token
embeddings

Position
embeddings

Language
embeddings

Translation Language
Modeling (TLM) were

Figure 1: Cross-lingual language model pretraining. The MLM objective is similar to the one of Devlin et al. (2018), but
with continuous streams of text as opposed to sentence pairs. The TLM objective extends MLM to pairs of parallel sentences. To
predict a masked English word, the model can attend to both the English sentence and its French translation, and is encouraged
to align English and French representations. Position embeddings of the target sentence are reset to facilitate the alignment.

4.1 Cross-lingual classification

Our pretrained XLM models provide general-
purpose cross-lingual text representations. Similar
to monolingual language model fine-tuning (Rad-
ford et al., 2018; Devlin et al., 2018) on En-
glish classification tasks, we fine-tune XLMs on a
cross-lingual classification benchmark. We use the
cross-lingual natural language inference (XNLI)
dataset to evaluate our approach. Precisely, we add
a linear classifier on top of the first hidden state of
the pretrained Transformer, and fine-tune all pa-
rameters on the English NLI training dataset. We
then evaluate the capacity of our model to make
correct NLI predictions in the 15 XNLI languages.
Following Conneau et al. (2018b), we also include
machine translation baselines of train and test sets.
We report our results in Table 1.

4.2 Unsupervised Machine Translation

Pretraining is a key ingredient of unsupervised
neural machine translation (UNMT) (Lample
et al., 2018a; Artetxe et al., 2018). Lample et al.
(2018b) show that the quality of pretrained cross-
lingual word embeddings used to initialize the
lookup table has a significant impact on the per-
formance of an unsupervised machine translation
model. We propose to take this idea one step
further by pretraining the entire encoder and de-

coder with a cross-lingual language model to boot-
strap the iterative process of UNMT. We explore
various initialization schemes and evaluate their
impact on several standard machine translation
benchmarks, including WMT’14 English-French,
WMT’16 English-German and WMT’16 English-
Romanian. Results are presented in Table 2.

4.3 Supervised Machine Translation

We also investigate the impact of cross-lingual
language modeling pretraining for supervised ma-
chine translation, and extend the approach of Ra-
machandran et al. (2016) to multilingual NMT
(Johnson et al., 2017). We evaluate the impact
of both CLM and MLM pretraining on WMT’16
Romanian-English, and present results in Table 3.

4.4 Low-resource language modeling

For low-resource languages, it is often benefi-
cial to leverage data in similar but higher-resource
languages, especially when they share a signifi-
cant fraction of their vocabularies. For instance,
there are about 100k sentences written in Nepali
on Wikipedia, and about 6 times more in Hindi.
These two languages also have more than 80% of
their tokens in common in a shared BPE vocabu-
lary of 100k subword units. We provide in Table 4
a comparison in perplexity between a Nepali lan-

Figure 3.4: Cross-lingual language model design for training with the Masked Lan-
guage Modeling (MLM) objective

Source: Lample and Conneau (2019)

allows the model to see the context from both sides of the predicted word.
Random tokens of a word sequence are masked and the model is trained to fill
in the missing words given the context. The final encoder outputs correspond-
ing to the mask tokens are fed into an output softmax layer transforming the
encoder vector representations to probabilities over all words of the vocabu-
lary. This final step is common to all standard LMs.

By training the model with the MLM objective, it learns interesting statis-
tical properties about the language which are stored in its hidden vector repre-
sentations. These vectors can be extracted as contextualized word embeddings
and used for other downstream NLP tasks. More details on contextualized
word embeddings will be given in Section 1.2.2.

Self-attention

As mentioned in Section 1.2.3, each encoder includes a self-attention layer
which helps it look at other words in the source sentence as it encodes a
specific word. The encoding of each word thus carries information about the
surrounding words and learn the structure of the language.

For example, as illustrated in 3.5, when encoding the word ”it”, the model
is paying attention mostly to the words ”the” and ”animal”. This knowledge
can be used later e.g. for machine translation where it would allow the model
to translate the pronoun correctly in the target language (e.g. as ”to” (neuter)
rather then ”ten” (masculine) or ”ta” (feminine) when translating to Czech).
Such enriched encoding is then fed through a feed-forward layer and passed
on to the following encoder.

In Transformer, all these dependencies are handled by the self-attention
layers. Transformer models have several self-attention heads in each layer and
each head is attending to a different part of the sentence. For more details
refer to Vaswani et al. (2017).
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Figure 3.5: Self-attention: when encoding the word ”it”, the model is paying attention
mostly to the words ”the” and ”animal”, allowing it to translate the pronoun correctly
in the target language

Source: Alammar (2019)

BERT Representations

Encoder hidden states extracted from BERT-like models are sometimes called
contextualized word embeddings. Like Word2Vec embeddings, BERT embed-
dings carry information about the usual context of each word. BERT embed-
dings, however, also change according to the context they word appears in
(are contextualized).

Each word (or subword) of the vocabulary is tied to one input embed-
ding vector. As the vector is passed through the encoder, it is enriched with
information about its context, position etc. Experiments show that different
encoder layers represent different linguistic phenomena, similarly to the image
processing models where the shallow layers represent generic features such as
edges or lines, later curves, and the deepest layers learn to distinguish specific
features such as a human face (Erhan et al., 2010).

When encoding each individual word, BERT sees the context of the entire
sentence and enriches the word vector with the information about the other
words. In contrast to Word2Vec, which provides one vector per word, there
are several BERT vectors for each word and the vector changes when the
word is used in a different sentence. The ability of BERT to model how word
meaning varies across linguistic contexts (i.e., polysemy) makes them superior
to non-contextualized embeddings in many applications. For example, unlike
Word2Vec, they allow us to distinguish homonyms (e.g. the word ”bank”
is represented differently when it is used in the context of ”river bank” vs.
”world bank”).

Contextualized embeddings cannot be directly used in the embedding layer
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of the NMT models because the embedding lookup table only has one vec-
tor per word and there are infinitely many embedding vectors per one word.
However, the entire language model can be used to initialize a NMT system.
Initializing our translation models with a pretrained multilingual LM is among
the experiments that we conduct.

The following Section will show that BERT can also be trained in a mul-
tilingual setting, giving rise to embeddings which exhibit some cross-lingual
features which will be analyzed in the second part of this thesis.

3.2.2 Cross-lingual Pretraining (mBERT and XLM)

Asides from the vanilla BERT model of the English language, Devlin et al.
(2018) released a multilingual model (mBERT) trained on non-aligned Wikipedia
dumps in 104 languages. Similarily, Lample and Conneau (2019) trained a
Transformer-based multilingual model and called it XLM. The architecture
is identical to the monolingual BERT but the models are trained on streams
of sentences in different languages using the MLM objective. Although there
is no cross-lingual training objective and no explicit alignment, these models
learn joint multilingual representations.

Several authors (Pires et al., 2019; Karthikeyan et al., 2019) analyzed how
multilingual these representations really are. Although the training does not
require any parallel data, mBERT and XLM prove surprisingly good at cross-
lingual transfer to NLP tasks such as cross-lingual natural language inference
(XNLI)7 (Pires et al., 2019). Fine-tuning a pretrained XLM model, Lample
and Conneau (2019) reach state-of-the-art performance on both XNLI and
unsupervised machine translation. While Pires et al. (2019) suspect that the
cross-lingual ability of mBERT is linked to the lexical overlap between related
languages, Karthikeyan et al. (2019) show that the transfer exists even for
languages with different alphabets and with no lexical overlap at all, suggesting
that the cross-lingual ability arises rather due to the structural similarities of
languages.

Our experiment with XLM representations of Czech, German and English
sentences is presented in Chapter 4. We use XLM to initialize an NMT model
in Chapter 5.

7https://www.nyu.edu/projects/bowman/xnli/
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Chapter 4
Analyzing Cross-lingual

Representations

Neural models clearly yield impressive results in the area of machine transla-
tion but it is still not clearly understood what they learn. The improvement
in accuracy and performance came at the cost of our understanding of the
system. We understand the architecture and the mechanics of the model, but
it is up to the model to decide how to efficiently store information and repre-
sent the data. Therefore, exploring the structures that the model learns and
assessing the representations is an active research area not only in NLP (e.g.
International Conference on Learning Representations 8 or BlackBoxNLP9

workshop).
Since the topic of this thesis is unsupervised machine translation, we focus

on cross-lingual knowledge of the models gained exclusively from monolingual
data. We dissect the pretrained language model used to successfully initialize
unsupervised MT systems and assess how much cross-lingual information is
hidden in its internal representations on different layers. Since the model
is trained in a completely unsupervised way, any evidence of cross-lingual
transfer is surprising. In this Chapter we present the results of our analysis
of the internal representations of the mBERT multilingual model. Similarly
to Pires et al. (2019), Karthikeyan et al. (2019) or Libovický et al. (2019), we
ask ourselves the following question:

How multilingual is the multilingual BERT?

Previous research has shown that pretrained multilingual models exhibit
a strong ability to transfer knowledge from one language to another. Lample
and Conneau (2019) show that on the task of language inference (XNLI)
where they fine-tune the model on English data and evaluate on data in other

8https://iclr.cc/
9https://blackboxnlp.github.io/
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4. Analyzing Cross-lingual Representations

languages. In our experiment, we explore the multilinguality of mBERT by
assessing its representations directly on a task of parallel sentence matching.

4.1 Experiment Design

The task of parallel sentence matching is defined as follows – find a correct
translation of a sentence in language L1 from a pool of sentences in language
L2. This task is substantially easier than machine translation, since the model
has to pick a sentence out of a pool of possible translations, it does not have to
generate it from scratch. Furthermore, the task is made even easier by the fact
that the correct translation is always there. However, the capability of a model
to perform this task still means that it learned some cross-lingual knowledge
during the unsupervised training which can be leveraged later during fine-
tuning on any downstream task, e.g. unsupervised MT.

We use the pretrained model to encode a set of 3K parallel sentences
in Czech, German and English and observe, how distant are the sentence
embedding vectors of equivalent sentences (in different languages).

We test the following hypothesis:

The nearest neighbor of each encoded sentence is its translation.

4.2 Model Details

We download the pretrained mBERT (bert-base-multilingual-cased) model
published by Google. The mBERT model was trained on 104 languages. It
has 12 encoder layers, 12 attention heads and the embedding dimension is 768.
In total, the model has around 110M parameters.

Since there are 12 layers plus the input embedding layer, there are 13 rep-
resentation layers we can look at when analyzing mBERT. At each layer, the
model outputs one vector per input token and this vector can be interpreted
as a word embedding.

We derive sentence embeddings from word (subword) embeddings by sim-
ply averaging them. Even though mean-pooling seems like a naive approach,
it is often used for its simplicity and gives more reasonable results than max-
pooling (Pires et al., 2019).

Esent =
∑k

i=0Ewordi

k
(4.1)

where S is a sentence embedding, W is a word (subword) embedding and
k is the number of subwords in a sentence (excluding the special [CLS] and
[SEP] tokens marking the beginning and the end of a sentence).

We process all data by mBERT and we keep all interim outputs. The
hidden encoder outputs represent word embeddings on different layers which
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cs Objevená pravicově extremistická śıt’ odhaluje však rozsah, jehož di-
menze už dávno nelze dohlédnout.

de Das aufgedeckte rechtsextremistische Netzwerk offenbart jedoch Aus-
maße, deren Dimension noch längst nicht absehbar ist.

en The right-wing extremist network that has now been discovered, how-
ever, is on a scale that has not yet been fully understood.

Table 4.1: Data excerpt from the newstest2012 data sets in Czech, English and
German

must be averaged to obtain sentence embeddings. For each sentence embed-
ding in language L1, we retrieve the nearest neighbor in languages L2 and L3
and calculate the ratio of sentences where the nearest neighbor corresponds
to the correct translation from the set. The nearest neighbor is retrieved
by selecting the candidate with the highest cosine similarity (lowest cosine
distance) defined as

cossim(E1, E2) = E1E2
|E1||E2| =

∑n
i=0E1iE2i√∑n

i=0Ei

√∑n
i=0Ei

(4.2)

cosdist(E1, E2) = 1− cossim(E1, E2) (4.3)

where E1, E2 are sentence embeddings and n is the dimension of the
embedding (n = 768 in mBERT).

4.3 Tools

The Transformers10 library is used for the PyTorch implementation of the
BERT model. The FAISS11 library is used for efficient similarity search. Ten-
sorBoard is used to visualize embeddings. Data preprocessing is handled by
standard Moses scripts12.

4.4 Data

We use the Czech, English and German versions of the multi-parallel data
set newstest2012 from the WMT workshop. The data set consists of 3,003
sentence triplets, see Table 4.1. The texts belong to the domain of newspaper
articles.

The pretrained mBERT model had been trained (by Google) on the entire
Wikipedia dump (excluding user and talk pages) for each of the 104 languages
selected for training.

10https://github.com/huggingface/transformers
11https://github.com/facebookresearch/faiss
12https://github.com/moses-smt/mosesdecoder/tree/master/scripts/tokenizer
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Figure 4.1: Visualization of embedding spaces at the first layer (a) and at the fifth-
to-last layer (b) of mBERT. The space was reduced by the PCA algorithm, reducing
it to the top three principal components, describing the total variance of 19.5 %.

We performed the following preprocessing steps before encoding the sen-
tences: normalize punctuation, remove non-printable characters, tokenize.
The conversion to subword units is handled by the pretrained BERT tok-
enizer implemented in the Transformers library. Since mBERT was trained
on cased data, we keep the capital letters in the sentences.

4.5 Results

Our experiments show that the extent to which we are able to detect cross-
lingual structures in mBERT differs across layers and the representations seem
to be most language-agnostic in the middle layers of the model. The shallow
layers are probably too close to the input to be able to encode the complex
structure to a cross-lingual space and are representing the sentences in sep-
arate subspaces depending on the source language, as illustrated in Figure
4.1. On the other hand, the deeper layers are close to the final softmax layer
and usually learn task-specific knowledge at the expense of general knowledge
about the language.

The concept of language-agnosticism or language-independence describes
how much the representations depend on the meaning of the represented
sentences and not on their original language. Several examples of embed-
dings extracted from the fifth-to-last layer are depicted in Figure 4.3, show-
ing language-agnosticism in practice. The Figure also demonstrates how the
model recognizes geographical names – a sentence about Portugal is projected
close to a sentence about Syria.

In order to statistically measure the results and test our initial hypothesis,
we evaluated the performance of mBERT on the parallel sentence matching
task described above. The results for embeddings on all 13 layers are depicted
in Figure 4.2. The best accuracy is achieved by the fifth-to-last layer, where
the model is able to find the correct translations in 90% of cases when matching
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Figure 4.2: Results of the parallel sentence matching task

Czech-German and Germa-English. Retrieving translations in Czech-German
seems to be more difficult as the success rate is around 85%.

From our experiments, we conclude that pretrained multilingual language
models such as mBERT are able to learn cross-lingual structures which are
effective for cross-lingual transfer. These structures are most detectable in
the representations from the middle layers of the model. Although the results
are already impressive for an unsupervised model, further alignment of the
representations would be necessary to serve as powerful language-agnostic
sentence embeddings.

As future work, the sentence embeddings could be further aligned and used
as fixed length embedding vectors, e.g. to filter parallel sentences out of non-
parallel corpora. It would also be interesting to explore how the representation
change after fine-tuning the model on a downstream task, e.g. paraphrasing
or sentence similarity.

In the following Chapter, we will use a pretrained Czech-German model
and fine-tune it for machine translation. In the unsupervised scenario, the
cross-lingual transfer capacity of the pretrained model is crucial for jump-
starting the training of the model as it is the only source of initial cross-lingual
information to the model.
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(a)

(b)

Figure 4.3: Neighboring sentences in a cross-lingual space. The space was generated
by the fifth-to-last layer of mBERT. The color of the dots indicates the cosine distance
(the closest points are red).
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Chapter 5
Machine Translation between

Czech and German

5.1 Experiment Design

In the theoretical part of this thesis, we provided an overview of MT techniques
which are applicable in low-resource conditions. In this Chapter, we apply
several of these techniques on translation between German and Czech and
compare the results.

Czech-German is not an authentic low-resource language pair; there are
parallel data sources available (e.g. movie subtitles, EU legislation) exten-
sive enough to train a standard supervised model. However, simulating the
low-resource scenario gives us the opportunity to make a comparison between
supervised and unsupervised techniques. As future work, the tested mod-
els could be compared in authentic low-resource conditions, for example for
translation to or from languages such as Basque or Urdu.

We will compare the following unsupervised systems which were theoreti-
cally described in Chapter 5: statistical (USMT), neural with XLM pretrain-
ing (XLM+UNMT) and hybrid (USMT+NMT). Two other systems will be
used as benchmarks for comparison: supervised NMT model and pivoting
NMT model.

5.2 Model Details

5.2.1 Unsupervised Statistical MT (USMT)

We estimate an unsupervised SMT system following the design by (Artetxe
et al., 2018b) in the following steps. The theory behind unsupervised SMT
was given in Section 2.2.
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Figure 5.1: PCA visualisation of the aligned Wor2Vec embedding spaces. The high-
lighted points are the nearest neighbors of the words ”12” and ”ponděĺı”.

Cross-lingual Embeddings

We apply the methods from Section 3.1. For each language, we extract unique
phrases of one, two and three words from the training data and count their
occurrences in the training corpus. In order to keep the size of the vocabulary
manageable, we restrict it to to the most frequent 200,000 unigrams, 400,000
bigrams and 400,000 trigrams.

We use the Phrase2Vec (Artetxe et al., 2018b) extension of the Word2Vec
skip-gram model with negative sampling to train embeddings of the extracted
phrases individually in the two languages. The embedding model uses a win-
dow size of 5, embedding dimension of 300, 10 negative samples, 5 iterations
and no subsampling.

The VecMap (Artetxe et al., 2018a) technique is used to align the two
monolingual embedding spaces into a cross-lingual space. A visualization of
the cross-lingual space is available in Figures 5.1 and 5.2. In the resulting
space, phrases with the same or similar meaning are close to each other, re-
gardless of the language they are expressed in. Figure 5.1 shows how numeri-
cals and date-related terms are projected close to each other.
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5.2. Model DetailsAligning Monolingual Embedding Spaces (3/3)
Nearest Cosine
Neighbors Distance

sagte 0.000
erklärte 0.099

řekl 0.122
meinte 0.136
uvedl 0.162

prohlásil 0.162
betonte 0.164

sagt 0.180
dodal 0.197
meint 0.273
říká 0.287

betont 0.288
6/14

Figure 5.2: Nearest neighbors of the word ”sagte” (which is a German translation of
”said”) and their cosine distance from the original word

Unsupervised Phrase Table

The next step is to populate the phrase table with translation candidate pairs.
The phrase table is a dictionary of phrases featuring a translation probability
for each phrase. To populate it, we induce a dictionary from the aligned
embedding space. For each Czech phrase, we extract 100 nearest neighboring
phrases in German from the cross-lingual embedding space and vice versa.
When translating from Czech to German, the translation probability of each
candidate pair is calculated as follows

p(de|cs) = exp cossim(cs, de)/τ∑
de′ exp cossim(cs, de′)/τ (5.1)

where cs is the original phrase, de is the selected translation and de′ iterates
over the 100 possible translations. τ is a constant temperature parameter
controlling the confidence of the predictions tuned during the model estimation
(Artetxe et al., 2018b).

An illustration of the nearest neighbors of the word ”sagte” (which is a
German word for ”said”) is available in Figure 5.2, together with the cosine
distances which are used to estimate the translation probabilities of each can-
didate pair. The nearest neighbors, both in German and in Czech, are all
related to the activity of speaking, claiming, announcing etc., proving a suc-
cessful alignment of the two monolingual embedding spaces.

Language Model

We trained a 5-gram language model in both languages using the KenLM
toolkit incorporated in Moses. We pruned n-grams of order three (and higher)
with only one occurrence to eliminate infrequent phrases. Modified Kneser-
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Ney smoothing is used as the default smoothing method of the KenLM toolkit
to deal with unseen phrases.

Unsupervised Tuning

We use the Moses implementation of MERT to iteratively tune the weights of
the log-linear model on 10k synthetic parallel sentences as described in Section
2.2.

Back-translation

We finally have two SMT models (German → Czech and Czech → German)
and we iteratively improve them by three rounds of iterative back-translation,
as described in Section 2.2 and depicted in Figure 2.1. In each round, we
select 2M sentences to be back-translated. We use Moses to estimate the
improved SMT models, supervised by the synthetic corpora generated by back-
translation.

5.2.2 Unsupervised Neural MT (XLM+UNMT)

The unsupervised NMT system with language model pretraining was de-
scribed in Section 2.3. The training pipeline consists of a pretraining phase
and a fine-tuning phase.

Model Architecture

In our experiment we build a Transformer NMT model with 6 encoder layers,
1024 hidden units and 8 attention heads. Following Conneau et al. (2018), we
use GELU activations and a dropout rate of 0.1.

The general architecture of the model was described in Sections 1.2.3 and
3.2, more details can be found in Lample and Conneau (2019).

Vocabulary

We are using a shared subword vocabulary for both the source and the target
language. The BPE segmentation is learned from a concatenation of the two
corpora with a target vocabulary size of 60,000.

Pretraining

We train the model on streams of sentences from three monolingual corpora
(Czech, German ans English) using the masked language model (MLM) train-
ing objective defined in Section 3.2.1. The text streams are 256 tokens long,
the model is trained with an Adam optimizer and the learning rate starts at
10−4. We set the batch size to 2400 tokens per batch in order to fit the model
on a Quadro P5000 GPU with 17 GB of RAM. However, the model is trained
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Figure 5.3: De-noising loss during training of the XLM+UNMT system

Figure 5.4: Back-translation loss during training of the XLM+UNMT system

on several GPUs so the effective batch size is larger. We trained the model on
8 GPUs in parallel for 50k steps (1 day).

Fine-tuning

The model is fine-tuned with a de-noising loss and a back-translation loss
as described in Section 2.3. The noise is added to each de-noising batch by
shuffling the input words within a window of length 3, dropping 10% of the
words and replacing 10% of the words. We train the model to reconstruct
the original sentence from its noised version. In the back-translation step,
the model first translates the batch and then tries to reconstruct the original
sentences from the automatic translation.

One training step consists of processing one de-noising batch and one back-
translation batch. The corrsponding learning curves are shown in Figures 5.3
and 5.4. The model is trained with an Adam optimizer and the learning rate
starts at 10−4. The batch size is 2400 tokens. The training ran on 8 Quadro
P5000 GPUs in parallel for 3 days (35k steps). We used the same hyperparam-
eters as Lample and Conneau (2019) in their original paper. Experimenting
with higher learning rates led to divergence.

The development of the BLEU score on the validation set during training
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Pretraining Fine-tuning
Model Name MLM De-noising Back-translation Translation

USMT - - - -
XLM+UNMT cs,de cs,de cs-de, de-cs -
USMT+NMT - - - de*-cs
Pivoting cs-en cs,de,en - cs-en, en-cs cs-en,en-cs
Pivoting en-de cs,de,en - cs-de, de-cs cs-en,en-cs

Supervised cs,de - cs-de, de-cs cs-de

Table 5.1: Overview of trained models and their training objectives. * indicates
synthetic text.

is shown in Figure 5.5.

5.2.3 Unsupervised Hybrid MT (USMT+NMT)

We generate a synthetic parallel corpus by using the SMT model from Section
5.2.1 to translate 26M sentences of the Czech monolingual corpus and use it
to train a German→Czech NMT model. We do not use a pretrained model to
initialize the training but rather train the entire system from scratch, using the
standard supervised MT objective described in Section 1.2.4. Since the syn-
thetic corpus only works for translation from German to Czech (the synthetic
text must not be on the target side), we only train a unidirectional model and
cannot use on-the-fly back-translation. The training ran on 8 Quadro P5000
GPUs for 11 hours (30 k steps).

As future work, it would be interesting to train the hybrid model iteratively
in both directions as suggested in Artetxe et al. (2019), switching the synthetic
side and possibly improving the translation quality in both directions.

5.2.4 Pivoting Benchmark

Pivoting is applicable in scenarios where parallel data is not available for
language pairs of interest but it is available for other language pairs. In
our case we can use a German-English and Czech-English parallel corpora to
train two models and eventually translate from German to Czech using their
combination.

We pretrain an English-German-Czech cross-lingual language model ac-
cording to the setup from 5.2.2. Since we have twice as many English sentences
as Czech or German sentences, we subsample them to one half.

We train two supervised Transformer-based NMT models initialized with
a pretrained English-German-Czech model. The translation models are fine-
tuned using the back-translation and supervised translation objectives. To
generate final translations between German and Czech, we pass each source
sentence through both of the models in sequence.
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Figure 5.5: Learning curves of the XLM+UNMT, USMT+NMT and Supervised mod-
els. The development of BLEU scores on newstest2019.

5.2.5 Supervised Benchmark

We train one neural model on authentic parallel data to have a supervised
benchmark for comparison. The fine-tuning details are identical to the Pivot-
ing models from Section 5.2.4.

5.3 Tools

We use the Monoses13 (Artetxe et al., 2018b) training pipeline implemented in
Python to estimate the USMT model. The implementation relies on Moses14

(Koehn et al., 2007) for the majority of the training steps. Moses is a system
for automatic training of translation models and Monoses extends it for unsu-
pervised translation from monolingual data. The KenLM15 toolkit (Heafield
et al., 2013) is integrated into Moses for language modeling. Phrase2Vec and
VecMap are integrated in Monoses for learning and mapping of embeddings,
respectively.

Neural models are implemented in Python using the PyTorch (Paszke
et al., 2017) framework. We use the XLM (Conneau et al., 2018) toolkit
for language model pretraining and NMT fine-tuning. TensorBoard16 is used
to visualize the training progress. FastBPE17 is used to generate the subword
vocabulary of the NMT model.

Data preprocessing is handled by standard Moses scripts.

13https://github.com/artetxem/monoses
14http://www.statmt.org/moses/
15https://kheafield.com/code/kenlm/
16https://github.com/tensorflow/tensorboard/blob/master/README.md
17https://github.com/glample/fastBPE
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SOURCE (German)

Raw text Mein Name ist Ivana Kvapilíková.

Tokenized & segmented [CLS] Mein Name ist Ivana Kva## pilí## ková . [SEP] [PAD] [PAD]

Vocabulary IDs 0 49107 15729 10298 50278 148 10362 30678 119 1 2 2

Positional indices 0 1 2 3 4 5 6 7 8 9 10 11

Mask TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE

TARGET (Czech)

Raw text Jmenuji se Ivana Kvapilíková.

Tokenized & segmented [CLS] Jmen## uji se Ivana Kva## pilí## ková . [SEP] [PAD] [PAD]

Vocabulary IDs 0 147 65361 10775 50278 148 10362 30678 119 1 2 2

Positional indices 0 1 2 3 4 5 6 7 8 9 10 11

Mask Variable (masking words which have not yet been generated)

Figure 5.6: Text preprocessing for a Transformer model

5.4 Data

Monolingual training data was obtained from NewsCrawl18 which is a collec-
tion of newspaper articles amounting to 300 million sentences in German and
100 million sentences in Czech. We randomly selected 26M sentences from
each corpus. We used WMT19 test sets for validation (newstest2013) and
testing (newstest2019).

For training the supervised benchmark model, we used the following Czech-
German parallel corpora available at the OPUS20 website: OpenSubtitles
(18M), MultiParaCrawl, Europarl, EUBookshop, DGT (5M), EMEA and
JRC. The combined dataset has 26M sentence pairs.

For training the pivoting Czech-English-German model, we extracted 26M
sentence pairs from the CzEng 1.6 corpus of Czech-English parallel data and
26M sentence pairs from the Europarl (2M), EUBookshop (10M) and Open-
Subtitle (14M) corpora.

Preprocessing for SMT

We tokenized and truecased the data using standard Moses scripts. Sentences
with less than 3 or more than 80 tokens were removed. The text was converted
to its true case to eliminate capital letters in the beginning of sentences while
keeping them when grammatically correct (names, German nouns etc.).

Preprocessing for NMT

When training a Transformer NMT model, we feed it with preprocessed paral-
lel sentences. The preprocessing includes the following steps: normalize punc-
tuation; tokenize; add special tokens ([CLS] for sentence beginning, [SEP]
for sentence ending, [PAD] for padding token); apply BPE codes; and convert
subwords to vocabulary ids. Before applying the BPE segmentation, the BPE

18http://data.statmt.org/news-crawl/
19http://www.statmt.org/wmt19/
20http://opus.nlpl.eu/
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Model Name BLEU de→cs BLEU cs→de

USMT 11.72 12.39
XLM+UNMT 15.93 15.79
USMT+NMT 13.71 -

Pivoting 16.50 17.46
Supervised 20.83 21.03

Table 5.2: Translation quality of our models measured by BLUE scores

sequences are learned with FastBPE on the concatenation of the source and
the target traning corpora.

There are three kinds of input to the model during training (see Figure
5.6): vocabulary ids, position indices and a mask.

5.5 Results

We measured translation quality of the systems by translating 2k sentences
(newstest2019) and measuring the BLEU score. We used the multi-bleu.perl
script from Moses to calculate the score. Table 5.2 summarizes the results.

Out of the unsupervised models we compared, using a pretrained model
and fine-tuning it on a de-noising and back-translation task gives the highest
BLEU scores. Our experiments confirm that neural training yields substantial
improvements over the SMT system. The statistical model can be used as the
initial seed (as in the hybrid USMT+NMT model), but a neural model is
necessary in the final stage for optimal performance.

By training both the neural and the hybrid MT system, we were able to
compare two different approaches to introducing a cross-lingual signal to an
NMT system trained on monolingual data:

1. pretraining a multilingual LM (XLM+UNMT);
2. generating a synthetic parallel corpus from a SMT model (USMT+NMT).

Based on our experiment, we conclude that XLM pretraining is more ef-
fective and converges to a higher BLEU score of 15.93. However, it is more
computationally demanding, both during pretraining and fine-tuning. It took
the hybrid model 11 hours to converge on the synthetic data set whereas the
UNMT model required almost 3 days largely because of the expensive back-
translation steps.

By comparing the unsupervised systems to our benchmarks, we see that
XLM+UNMT does not lag far behind the pivoting approach. However, it
must be noted that the pivoting model was trained mostly on out-of-domain
data (movie subtitles, EU legislation) which might be detrimental to its per-
formance on a test set composed of newspaper articles. The supervised model
is ahead by around 5 BLEU points. The benchmark systems do not directly
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Model Name Sentence

Source Wie vorhergesagt, schwächt sich der Hurrikan Rosa über den kühleren
Gewässern der Nordküste Mexikos ab.

Reference Podle předpovědi hurikán Rosa slábne, jak se přesouvá nad
chladněǰśımi vodami severńıho pobřež́ı Mexika.

USMT Jak předpověděli, oslab́ı se hurikán Milada o chladněǰśıch vodách sev-
erńım pobřež́ı Mexika rozmyslel.

XLM+UNMT Jak bylo odhadnuto, hurikán Rosa se schwäbe nad chladněǰśımi
př́ımořskými př́ıstavy Jižńıho Mexického zálivu.

USMT+NMT Jak předpověděla, oslabuje hurikán Muriel nad mořskými vodami
pobřež́ı Mexika.

Pivoting Jak předpověděl hurikán Rosa slábne nad chladnými vodami na sev-
erńım pobřež́ı Mexika.

Supervised Jak bylo předv́ıdáno, hurikán Rosa se oslabuje nad chladněǰśımi vodami
severńıho pobřež́ı Mexika.

Table 5.3: Sample translations of the sentence: As predicted, the hurricane Rosa is
weakening over the cooler waters of the north coast of Mexico.

compete with the unsupervised systems since they have higher data require-
ments (parallel Czech-German data for the supervised benchmark and parallel
Czech-English and English-German data for the pivoting benchmark) and it
was expected that they will perform significantly better. The were estimated
in order to show a full picture about Czech-German translation and for com-
parison.

To give an idea about the translation quality corresponding to the afore-
mentioned BLEU scores, Table 5.3 shows the following sample sentence trans-
lated from German to Czech.

As predicted, the hurricane Rosa is weakening over the cooler waters of
the north coast of Mexico.

Clearly, the translation produced by the supervised model is the best and
is almost flawless. The translation via an English pivot is slightly misleading
because of a missing comma. Both models with a USMT component have a
problem with translating named entities and translate the hurricane’s name
as Milada or Muriel. This is a frequent phenomenon for this type of models
because vector representations of names are similar and the model is not
able to align them properly. The XLM+UNMT model gets the name right
but it mistranslates other words and also adds an extra word bay which was
not mentioned in the original sentence. Furthermore, it is interesting how the
neural model translated only half of the German word schwächt and generated
a hybrid word schwäbe which does not exist in either of the two languages.

It is clearly visible that different models make different kinds of mistakes.
Efficiently combining the traits of both neural and statistical unsupervised MT
in a more sophisticated hybrid system could lead to further improvements in
the future.
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Conclusion

This thesis contributes to a recent line of research in machine translation based
on monolingual data. We compared several approaches and created three
unsupervised MT systems. Our experiments confirmed that it is possible to
train an MT system exclusively on monolingual texts.

Based on our results, we conclude that neural training initialized with a
pretrained model provides a significant improvement over a pure statistical
phrase-based model. Furthermore, unsupervised statistical and neural models
capture different features of the language and their efficient combination is
desirable.

Since pretraining proves efficient for unsupervised MT, we investigated
the sources of cross-lingual transfer in pretrained multilingual models such
as mBERT or XLM. Such models are trained in a completely unsupervised
way, without having access to any translation resources at training time, and
yet are able to recognize phrases of similar meaning expressed in different
languages. We conclude that multilingual models are learning semi language-
agnostic representations which are hidden in their mid layers. As future work,
further alignment of the representations could lead to improvements not only
in unsupervised MT but also in other downstream tasks.

Language model pretraining brought a significant improvement to the task
of unsupervised MT. While the translation quality of the unsupervised systems
still lags behind the supervised systems, the results and the training algorithms
are impressive both from the linguistic and the machine learning point of view.
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Appendix A
Acronyms

BERT Bidirectional Encoder Representations from Transformers

LM Language Model

mBERT Multilingual BERT

MLM Masked Language Model

MT Machine Translation

NMT Neural Machine Translation

SGD Stochastic Gradient Descent

SMT Statistical Machine Translation

XLM Cross-lingual language model

57





Appendix B
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
src.......................................the directory of source codes

experiments.........................................source scripts
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format
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