
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague May 26, 2019

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Generating Plutus Smart Contracts from DEMO Process Models

 Student: Ondřej Šelder

 Supervisor: Ing. Marek Skotnica

 Study Programme: Informatics

 Study Branch: Information Systems and Management

 Department: Department of Software Engineering

 Validity: Until the end of winter semester 2020/21

Instructions

Blockchain smart contracts (SC) are an emerging technology that aspires to change the way people conduct
contracts. However, the language of smart contracts is a domain-specific programming language Plutus
that is hard to understand by humans and is prone to errors. Based on preliminary research, DEMO models
seem to provide a better way to define smart contracts. A goal of this thesis is to propose a way how to
generate Plutus smart contracts from DEMO models.

Steps to take:
1. Explore the state-of-the-art Cardano blockchain technology and assess its strengths and weaknesses.
2. Analyze ways to generate Plutus smart contracts from DEMO models.
3. In .NET Core implement and test an algorithm that generates Plutus smart contracts from DEMO models.

References

Will be provided by the supervisor.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Bachelor’s thesis

Generating Plutus Smart Contracts from

DEMO Process Models

Ondřej Šelder

Supervisor: Ing. Marek Skotnica

7th January 2020

Acknowledgements

I would like to express my gratitude to everyone who helped me or supported
me to complete my thesis. First and foremost, I would like to thank my
supervisor Ing. Marek Skotnica for his help, time and guidance.

My appreciation goes also towards my partner, family, and friends for all
their support, not only during the time I was working on this thesis but also
during the whole university studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive author-
ization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on 7th January 2020 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2020 Ondřej Šelder. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Šelder, Ondřej. Generating Plutus Smart Contracts from DEMO Process Mod-
els. Bachelor’s thesis. Czech Technical University in Prague, Faculty of In-
formation Technology, 2020.

Abstract

The current way of people conducting contracts can be updated in the future
using blockchain technology. This decentralized automated system supports
the concept of smart contracts, codes that extend the possibilities of the block-
chain. The Plutus programming language is a domain-specific language for
writing smart contracts. The disadvantage of this language is that it is hard to
understand by people without advanced skills. Defining smart contracts with
DEMO methodology models solves this obstacle and even reduces error-prone.
The main goal of this thesis is to propose a way how to generate Plutus smart
contracts from DEMO process models.

This thesis evaluates the benefits of the Cardano project, which is de-
veloping the Plutus platform for writing smart contracts. Furthermore, it
introduces an approach of the generation using templates and a concept of
state machines. The last part of the text demonstrates this generative process
on an actual use-case of land title transfer recording. An implementation of an
algorithm that performs the process of a model conversion to a smart contract
can also be found in the attachment.

Keywords blockchain, smart contract, Cardano, Plutus, DEMO methodo-
logy, process models

ix

Abstrakt

Technologie blockchain v budoucnu změńı zp̊usob, jakým dnes lidé uzav́ıraj́ı
smlouvy. Tento decentralizovaný automatizovaný systém podporuje koncept
smart kontrakt̊u, kód̊u, které rozšǐruj́ı možnosti blockchainu. Jedńım z pro-
gramovaćıch jazyk̊u, které slouž́ı pro psańı smart kontrakt̊u, je doménově spe-
cifický jazyk Plutus. Nevýhodou tohoto jazyka je jeho náročné pochopeńı
lidmi bez pokročilých znalost́ı. Definováńı smart kontrakt̊u pomoćı model̊u
metodiky DEMO tuto překážku odstraňuje, a dokonce snižuje náchylnost k
chybám. Hlavńım ćılem této práce je navrhnout zp̊usob, jak generovat smart
kontrakty Plutus z procesńıch model̊u DEMO.

Tato práce hodnot́ı př́ınosy projektu Cardano, který vyv́ıj́ı platformu Plu-
tus pro psańı smart kontrakt̊u. Dále představuje zp̊usob generace pomoćı
šablon a konceptu stavových automat̊u. Posledńı část textu ukazuje tento
generativńı proces na skutečném př́ıpadu užit́ı, který se týká převodu vlast-
nictv́ı pozemku. V př́ıloze je také implementace algoritmu, který provád́ı
proces překladu model̊u DEMO na smart kontrakt.

Kĺıčová slova blockchain, smart kontrakt, Cardano, Plutus, DEMO meto-
dika, procesńı modely

x

Contents

Introduction 1

1 Theoretical Foundations 3
1.1 Blockchain Technology . 3
1.2 Smart Contracts and Blockchain 2.0 7
1.3 Cardano Blockchain . 9
1.4 Business Process Modeling (BPM) 13
1.5 Chapter Summary . 18

2 Plutus Smart Contract Generation from DEMO Models 19
2.1 DEMO and Extended UTXO Compatibility 19
2.2 Generation of On-Chain Code 23
2.3 Generation of Off-Chain Code 30
2.4 Chapter Summary . 35

3 Proof of Concept 37
3.1 Used Technologies . 37
3.2 Software Architecture . 38
3.3 Testing . 39
3.4 Chapter Summary . 47

Conclusion 49

Bibliography 51

A Acronyms 55

B Contents of enclosed CD 57

xi

List of Figures

1.1 Graphic Representation of the Blockchain 4

1.2 Unspent Transaction Output Definitions 5

1.3 Plutus Tx Code Example . 11

1.4 Plutus Core Code Example . 11

1.5 Plutus Tx Function Example . 12

1.6 The Four Ontological Submodels 14

1.7 Transaction Pattern Diagram . 16

2.1 Contract Meta-model: UML Diagram 21

2.2 Transaction Axiom State Machine 22

2.3 Generated Pseudo-code: Process ID 24

2.4 Generated Pseudo-code: Data Type Representing Facts 25

2.5 Generated Pseudo-code: Initiator and Executor Actor Roles 25

2.6 Generated Pseudo-code: States of the Transaction Kinds’ State
Machines . 26

2.7 Generated Pseudo-code: Inputs of the Transaction Kinds’ State
Machines . 27

2.8 Generated Pseudo-code: Transition Functions of the Transaction
Kinds’ State Machines . 28

2.9 Generated Pseudo-code: Check Functions of the State Machines . 29

2.10 Generated Pseudo-code: Final Functions of the State Machines . . 29

2.11 Generated Pseudo-code: Transaction Kinds’ State Machines 30

2.12 Generated Pseudo-code: Transaction Kinds’ State Machines In-
stance and Client . 31

2.13 Generated Pseudo-code: Parameters of the Endpoint Functions . . 32

2.14 Generated Pseudo-code: Schema Definition 32

2.15 Generated Pseudo-code: Endpoint Functions 33

2.16 Generated Pseudo-code: Endpoint Functions 34

2.17 Generated Pseudo-code: Registration of the Endpoints 34

xiii

3.1 Component Diagram of the Implementation 39
3.2 Land Title Transfer Recording: Processes’ Approaches Compared . 41
3.3 Land Title Transfer Recording: OCD 42
3.4 Land Title Transfer Recording: PSD 43
3.5 Land Title Transfer Recording: OFD 44
3.6 Land Title Transfer Recording: Action Rule Resolving Transfer . . 44
3.7 Simulation: Initializing the Land Title Transfer Recording 45
3.8 Simulation: Sending the Land Title Transfer 45
3.9 Simulation: Sending the Payment 46
3.10 Simulation: Resolving the Land Title Transfer Recording 46

xiv

Introduction

Since 2003, the time required to enforce a contract (the day from filing the
lawsuit until its closure) has increased and normally exceeds 600 days. [1] Be-
cause of that, a well-designed contract is a crucial part of all legal agreements.
For its completion, it is necessary to deeply understand contract law which
deals with detailed requirements for both sides of the deal. Because these
subjects must abide by so much information, there is a need, and in many
cases, it is obligatory, to hire a third party to oversee the transaction.

The contract comes to importance when one party to the contract breaches
the terms of the contract. In that case, the legal system has to intervene. In
the process of legal fact-finding related to the case, a great amount of money
and time is invested by both sides.

Using information technology approaches it is possible to save costs in these
situations and eliminate many unnecessary middle parties. The blockchain
network has been proven to be secure and suitable for storing and managing
money transfers. A recent generation of blockchain with suffix 2.0 allows
extended functionality of the network via executable code. This feature of so-
called smart contracts is applicable in the use-case mentioned above and also
in many different fields but mostly in finance, law and state administration.

Cardano is an open-source blockchain platform for smart contracts. Its
developing company Input Output HK Limited marks it as a third-generation
blockchain. It aims primarily at solutions brought by not only their developers
but also by academia, and business. For the construction of smart contracts
the programming language Plutus is used. Unlike imperative languages, it is
built as a Haskell-like functional programming language.

A possible disadvantage in the future may be regarding the implement-
ation of such a blockchain solution by professionals with little knowledge in
computer science. This problem is solved by communicating the concepts to
programmers familiar with blockchain and smart contract developing. That
still leads to expensive and ineffective work and it increases the risk of causing
a fault that would be permanent in the blockchain network.

1

Introduction

The Design and Engineering Methodology for Organizations (DEMO) is
a modeling methodology used in business. It not only models enterprise pro-
cesses but has also been proven to be suitable for describing a smart con-
tract. [2] Generating a smart contract from this concept model saves money,
time and lowers the risk of error and serves as a useful tool to non-programmers
who need to implement a blockchain network.

The goals of this thesis are to explore the state-of-the-art of the Cardano
blockchain and to propose a way to generate Plutus smart contracts from
DEMO models. The thesis will also analyze and implement a smart contract
generator for one specific programming language.

Structure of the Thesis

The thesis is structured as follows:

Chapter 1 – Theoretical Foundations – provides information about
blockchain and smart contracts to understand basics which are then
subsequently used. It describes the state-of-the-art Cardano blockchain
technology and its strengths and weaknesses in contrast to other ap-
proaches. Lastly, the section outlines DEMO Methodology and its mod-
els.

Chapter 2 – Plutus Smart Contract Generation from DEMO Models
– contemplates a suitable structure to record DEMO models and finds
ways to interpret it as a Plutus smart contract.

Chapter 3 – Proof of Concept – describes own implementation of Plu-
tus smart contract generator: the technologies used and a draft of the
software architecture. This chapter also introduces one possible use-case
of blockchain technology, converts it into the DEMO model and uses it
as an example for simulation.

Conclusion – sums up and evaluates the used solution to generate a
Plutus smart contract from the DEMO process models, ensures that
research goals have been met, and offers possible directions for future
research and implementation.

2

Chapter 1

Theoretical Foundations

In this chapter, the thesis will lay background information an concepts that
are needed to generate Plutus smart contracts from process models of the
DEMO methodology. The chapter begins with describing blockchain and its
cores to understand the advantages and limitations of the technology to sup-
port the goals and motivation behind the generation itself. It also leads to
a definition of what a smart contract is. Then the programming language
Plutus of Cardano blockchain is explored as it was chosen for writing smart
contracts in the thesis. Finally, the DEMO methodology and its models are
outlined.

1.1 Blockchain Technology

Fundamentally, the blockchain network is a set of nodes that are trying to
achieve state replication. [3] This technology combines many others intro-
duced decades [3] before the release of the first conceptualization that was
Bitcoin cryptocurrency in 2008 by Satoshi Nakamoto. [4] The concept of Bit-
coin and blockchain in general works on four essential principles: Decentraliza-
tion, Transparency, Immutability, and Security. These principles are achieved
by following information technology approaches: Distributed ledger techno-
logy (DLT), cryptography, consensus mechanism, peer-to-peer network, and
software code base. [5]

1.1.1 Distributed Ledger Technology

Blockchain database filesystem contains specifically stored data in the form
of lists of records. Otherwise, the terms chains of blocks or digital ledgers
are used. Data are built up and stored in successive blocks [7]. Each of
these blocks includes data, timestamp, digital signature and additional hash
that refers to the previous block. [2] This ensures that any manipulation with
records in the blockchain can be detected.

3

1. Theoretical Foundations

Figure 1.1: Graphic Representation of the Blockchain[6]

All the users of blockchain have control over the data validity because each
one of them is storing an identical copy of the database. If any participator
wants to perform a new transaction, it needs to be verified by some portion
of other participants in the network. After the verification, a new block is
created and connected on top of the last block. [5]

This process is irreversible and the record is permanent. All mentioned
delivers security that is otherwise entrusted to middle-party despite created
redundancy, which is actually the tool of distributed systems to tolerate node
failures. [3] Exemplary graphic representation of the blockchain’s core idea
can be seen in Figure 1.1.

1.1.2 Cryptographic Techniques in Blockchain

”We define an electronic coin as a chain of digital signatures. Each owner
transfers the coin to the next by digitally signing a hash of the previous trans-
action and the public key of the next owner and adding these to the end of the
coin. A payee can verify the signatures to verify the chain of ownership.” [4]

Blockchain has to use many techniques of cryptography in different parts
of its filesystem. For example, Bitcoin is dependent on the use of public and
private keys, hash functions and digital signatures. [5]

The user’s node is represented by a public address that is derived from the
public key. The transaction is sent to the address and the virtual money is
accessible only with the private key of the account’s owner. This also excludes
any restoration of access when the private key is lost and responsibility is
entirely on the user. [5]

Block can hold a certain amount of transactions in the size of Bytes. If the
user stops sending transactions or he reaches the limit, the previous block is
calculated into a hash that is then stored in the new block of transactions. [2]
Hash functions are also used in the Proof of Work consensus algorithm. Each

4

1.1. Blockchain Technology

block is also marked with a digital signature created through an algorithm
from private key and transaction. [5]

1.1.3 Unspent Transaction Output

Traditional accounting views the flow of money as transfers between two dif-
ferent bank accounts. Bitcoin and other platforms are using an accounting
style called Unspent Transaction Output (UTXO). This approach documents
money transfers from one transaction to another. [8]

Figure 1.2: Unspent Transaction Output Definitions[8]

It can be seen from the Figure 1.2 that the structure (derived type utxo)
that contains the information about the transactions is a finite map with the
pair of transaction ID and an index as a key and the pair of an address and a
currency value as a map’s value. The index is a unique identifier within a set
of outputs and the address is referring to the public key of the coin’s owner. [8]

The main distinction of UTXO accounting from traditional accounting is
that the money being spent comes from unspent transaction outputs (identi-
fied by mentioned index) which reside on the blockchain after previous trans-
actions. Aside from the mentioned types, transactions obtain certificates,
hashes and other data. [8]

1.1.4 Proof of Work Consensus Algorithm

Decentralized systems must deal with some problems due to the malicious
behavior of certain nodes in communication between nodes. One of them was
described in a 1982 paper The Byzantine Generals’ Problem. [9] The problem

5

1. Theoretical Foundations

works with the concept of an army consisting of units that need to coordinate
an attack with a twist that one of the generals is a traitor. [5]

Proof of Work is one of the implementations of the Byzantine fault toler-
ance solution. This implementation was introduced in 1999 [10] and Satoshi
Nakomoto used it in his Bitcoin blockchain. In this case, the role of a gen-
eral is represented by a node in the network. The user is called miner and
performs mining. Mining is a competitive act, in which miners puts their
computational resources to solve Proof of Work mathematical puzzle (finding
a hash of the block with a certain amount of zeros at the beginning). The
miner who finishes first adds the new block to the network and gets a reward
in the form of Bitcoins. [5]

In theory, this solution can be still bypassed but at the cost of too much
electric energy consumption. A potential attacker would have to has 51% of
all computational power in the blockchain network. And also he would only be
able to change blocks in his list of records for example to double-spend money.
Other accounts would be secure because the attacker still doesn’t have users’
private key. [5]

1.1.5 Peer-to-Peer network

The verification process can be time-consuming when the blockchain grows in
transactions and therefore in storage size. Because of that, Bitcoin chose an
approach in which there are two types of nodes: Full nodes and lightweight
nodes. [5]

The difference between them is that full nodes store a full copy of the
blockchain, unlike lightweight nodes which store only partial copy. Light-
weight nodes or Simplified Payment Verification (SPV) are using a top-down
approach from the newest transaction to older parts of the list. It also stores
only block headers thus reducing the size. They are used in mobile devices
and serves for verification. [5]

Two types of the Bitcoin blockchain (and many others) are distinguished:
The mainnet and the testnet. The mainnet is the network as the thesis de-
scribed it before. The testnet is used for research and testing new Bitcoin
protocol features without disruption of the mainnet. [5]

The network is also divided into two types: Public and private blockchain.
Although the latter is not recognized by part of the community as a true
blockchain. Public blockchain allows anyone with the right hardware to join
the network. More users make consensus algorithms more efficient. On the
other hand, private blockchains secure the privacy of their operation from
unwanted parties by granting permission to the network from the so-called
gatekeeper. [5] Often, the terms permissionless and permissioned system is
used as an alternative. [3]

6

1.2. Smart Contracts and Blockchain 2.0

1.1.6 Code Base of Bitcoin

The initial protocol was introduced by Satoshi Nakamoto in 2008. [4] After
the launch, Satoshi passed the development and maintenance of the Bitcoin
to software developers that made it an open-source project. [11]

Bitcoin was constructed as a programmable cryptocurrency. For that pur-
pose serves the high-level programming language Script that was designed
limited in scope to run on most of the devices and to reduce coding errors.
It allows time-locks, conditional clauses, and functions. Despite that, Script
is not a Turing-complete language and that limits it in solving various prob-
lems. [5]

Aside from the network, many supporting tools were developed and are
available on the platform of the blockchain. Wallets are the basic tool that
gives the user access to the blockchain. They are storing users’ private keys,
therefore, allowing them to access their cryptocurrencies. They could be in
the form of desktop wallets, mobile wallets, and web wallets. To increase
safety, the offline wallets were created as a hardware wallet or simple paper
wallet. [5]

1.2 Smart Contracts and Blockchain 2.0

Previously mentioned code base of Bitcoin and early blockchains were inad-
equate and restrictive towards this technology full potential. The first gener-
ation of blockchain is a designation of all cryptocurrencies based on this tech-
nology. Etherum blockchain was the first that allowed programmable block-
chain and is marked as Blockchain 2.0. The second-generation blockchains
are enhanced by smart contracts and they are used beyond cryptocurrency in
financial services. [12]

1.2.1 Smart Contract

”A set of promises, including protocols within which the parties perform on
the other promises. The protocols are usually implemented with programs on
a computer network, or in other forms of digital electronics, thus these con-
tracts are ”smarter” than their paper-based ancestors. No use of artificial
intelligence is implied.” [13]

The first use of the term smart contract was used and described by Nick
Szabo in 1993 [14]. It is an executable code integrated into the blockchain
that is executed every time there are certain conditions met. Smart contracts
are not necessarily concept dependent on blockchain technology but use it for
its security benefits. [12]

Smart contracts are secure and unstoppable thus their implementation has
to be thorough and fault-tolerant. They are also not necessarily automatic.

7

1. Theoretical Foundations

Automatable smart contracts allow manual human input in certain scenarios
via Oracles. [12]

Smart contracts need to be deterministic because if any node was provided
with different output then consensus in the network is broken. As examples
could serve numbers with a floating-point that differs on different hardware. [12]

1.2.2 Smart Contract Templates

It is a question on how to approach smart contract in a court of law that now
does not understand code as a contract. It could be more acceptable in legal
situations by making it readable both by machines and humans. [12]

Clack et al proposed an idea in their paper Smart Contract Templates:
Foundations, design landscape and research directions [15] to build standard
templates to provide a framework. This framework should support legal agree-
ments for financial instruments.

There has been also research for developing domain-specific languages.
These languages are limited in expressiveness to serve a particular applic-
ation or area of interest. This idea could be further extended to graphic
domain-specific languages. A platform working with this concept allows non-
programmer domain expert to design financial contract in the graphic inter-
face. [12]

1.2.3 Oracle

The execution of the business logic often requires decision making based on
some external data. These data could be provided to the blockchain by Or-
acles. Oracle is an interface that delivers data from an external source to a
smart contract. This could also serve for communication in the Internet of
Things (IoT). [12]

Smart contract subscribes to the Oracle and is able to pull the data. Or-
acles can also push the data to the smart contract. It has to be secured that
the data are unchanged in the Oracle and that the data source is reliable and
authorized. This backward causes the need for a trusted party that delivers
the external data but it is sometimes necessary for certain processes. The
problem of trust could be partially solved by making the third party decent-
ralized for example making it private blockchain. [12]

1.2.4 Proof of Stake Consensus Algorithm

The Proof of Work consensus algorithm is becoming ineffective when comput-
ing power in the blockchain network is growing. Electricity usage in Bitcoin
exceeds that of some countries electricity consumption just for verification. [16]
Peercoin first proposed an alternative to this consensus algorithm with Proof
of Stake. [12]

8

1.3. Cardano Blockchain

The idea of the algorithm is based on the assumption that the user puts
into the blockchain enough stake that will discourage him from making any
malicious behavior. Mining is here easier for the user who demonstrably owns
more coin thus having more stake in correctly verifying the transaction. Again,
this consensus could be broken by node owning more than half of all coins but
this approach would damage user himself. [12]

1.2.5 Other Consensus Algorithms

Aside from Proof of Work and Proof of Stake algorithms there are other
that can manage to gain consensus. In Proof of Stake, all users who have
a stake in the blockchain are called stakeholders. In its modified version
Delegated Proof of Stake these stakeholders votes to delegate the validation
of a transaction. [12]

As an alternative, Intel Corporation introduced Proof of Elapsed Time that
uses Trusted Execution Environment (TEE) to provide randomness and safety
in the leader election process via a guaranteed wait time. The disadvantage of
this consensus algorithm is that it requires only Intel processors with Software
Guard Extension (SGX). [12]

Proof of Importance extends Proof of Stake with consideration of preferring
user who is more active in the network. Proof of Space or Proof of Capacity
is a similar concept to PoW except for using disk storage space instead of
computing resources of the device. There are many other implementations of
consensus. For example Practical Byzantine Fault Tolerant, Tangle, Deposit-
based consensus, etc. [17]

1.3 Cardano Blockchain

Cardano is a blockchain platform developed by a company Input Output HK
Limited (IOHK). This platform patronizes various software around Cardano
Blockchain Mainnet. [18]

The company was created in 2015 when one of its creators Charles Hoskin-
son did not agree with Etherum founder Vitalik Buterin about future direc-
tion. They split up and Hoskinson brought together a team of scientists and
engineers to start developing Cardano Blockchain. [19] Aside from Charles
Hoskinson, Jeremy Wood is stated as the founder. [18]

1.3.1 ADA and Ouroboros Algorithm

ADA is a cryptocurrency of the Cardano network. It is used for the movement
of digital funds but it also serves as a cryptocurrency for internal transactions
in the smart contracts. [20]

It features the Ouroboros algorithm which is a variation of Proof of Stake
algorithm. IOHK marks other description Proofs of Stake algorithms as super-

9

1. Theoretical Foundations

ficial and dealing with only some types of attacks. They introduced a rigorous
Proof of Stake algorithm that is promoted as a first provable algorithm of its
kind. [21]

From a pool of stakeholders, the slot leader is randomly chosen and he
is allowed to mine. He is elected in a process called fair lottery by electors,
stakeholders who have a certain amount of stake. For creating the randomness
the multiparty computation (MPC) is used. The Ouroboros protocol split time
into epochs and then to shorter periods of time slots. For each slot, the slot
leader is assigned and he has the right to mine only one block during this slot.
The election of the slot leader is divided into four phases: Commitment phase,
Reveal phase, Recovery phase, and Follow the Satoshi. [21]

1.3.2 Extended Unspent Transaction Output

The basic UTXO model is limited strictly to digital currency accounting. The
extended UTXO is a combination and an extension of the UTXO-based model
and Etherum’s account-based scripting model. Its two main components are
an extension to the data carried by the transaction and an extension to the
wallet backend. [8]

The first component consists of the validation of the transaction and wit-
nessing to every action the transaction is performing. The scripts are a way
to add functionality to the smart contract and are carried by the transaction.
These expressions have their own address that can hold coins until certain
conditions and processing. [8]

The main script is a validator function stored in a map with the corres-
ponding hash. It returns a boolean value representing the validation result.
It is a function of three types: data script, redeemer script, and transaction
and ledger data. The data script is carried by a transaction that is paying to
the validator script and the redeemer script is carried by a transaction that is
collecting from the validation script. The data scripts are stored full on the
digital ledger. It also should be noted, that only on-chain code is compiled
into the Plutus Core. [8]

1.3.3 Plutus Platform

Authors of an ebook about Plutus programming language Brünjes and Vino-
gradova [8] describe Plutus as ”a functional development and execution plat-
form for distributed contract applications on the Cardano settlement and com-
putational layers.” In Plutus’ software development kit, the libraries’ APIs,
tools and documentation are available. [22] One of them, Plutus Playground,
is an environment for writing, compiling and simulating smart contracts on
the blockchain without setting up a full blockchain despite using same pro-
gramming language and library interfaces as the smart contracts deployed to
the Cardano mainnet. It is also available online. [23]

10

1.3. Cardano Blockchain

1.3.4 Plutus Core and Plutus Tx

Several components of Plutus Platform are called Plutus or its variations. Plu-
tus Core is the assembly programming language for running smart contracts
on the Cardano blockchain. The Plutus Tx is the actual language for writing
smart contracts. [8]

Figure 1.3: Plutus Tx Code Example[8]

1 integerIdentity :: CompiledCode (Integer -> Integer)

2 integerIdentity = $$(compile [|| \(x:: Integer) -> x

||])

Figure 1.4: Plutus Core Code Example[8]

1 {- |

2 >>> pretty $ getPlc integerIdentity

3 (program 1.0.0

4 (lam ds [(con integer) (con 8)] ds)

5)

6 -}

To highlight the distinction between these programming languages the
code examples are provided in this section. The Plutus Tx code is shown in
Figure 1.3 that is more clear to the human and Figure 1.4 shows the same code
translated into the Plutus Core that is actually running on the blockchain.

Plutus was developed as a functional programming language based on
Haskell. It utilizes the safety advantages of Haskell that are necessary to run
on distributed systems. Plutus was also designed to be easier to analyze than
Haskell. One of Plutus’ most prominent features is its automatic separation
of code executed by the wallet (off-chain code) and the internal code of the
network (on-chain code) that could be written both in the same smart con-
tract. It also should be noted, that only on-chain is compiled into the Plutus
Core. [8]

1.3.5 Functional Principles of Haskell

Haskell is a programming language created in the late 1980s and extended in
2010. It is characterized by three main attributes: purely functional, lazy and
statically typed. [24]

The first attribute refers to the functional programming paradigm, in
which a programmer looks at computation as on the evaluation of mathem-
atical functions. [25] This specific style for solving problems is supported by
features of Haskell and its design restrictions make it purely functional. That

11

1. Theoretical Foundations

means that all variables (in Haskell treated as functions) are immutable and
cannot be changed. All adjustments are done by creating a new processed
value from the original. [24]

The laziness manages that a specific part of code is never executed until
it is needed in some computation. This attribute adds to programs’ perform-
ance a clearness of the algorithms. It also allows having concepts like infinite
arrays. [24]

Compared to languages Perl, Javascript or Python that are dynamically
typed, Haskell ranks among programming languages like Java and C# that
are statically typed. Meaning that compilers guarantees for strict usage of
types only in the place where it can be used. [24]

1.3.6 Constructs of Plutus Tx

Because the Plutus Tx is heavily based on the Haskell functional program-
ming language, the syntax is also very similar. An example of the function’s
definition (in this case incrementing an integer by one) without compilation
can be seen in Figure 1.5.

Figure 1.5: Plutus Tx Function Example[8]

1 plusOne :: Integer -> Integer

2 plusOne x = x ‘addInteger ‘ 1

Most of the constructs in Haskell and Plutus behaves like a function. Vari-
able is just a function returning its value and that applies for arrays and more
complex data structures too. This raises limitation, that user cannot have
two identical names of members in two different data types because getting
the member is just function named as the member with its data type as a
parameter. [24]

There is also an exception when defining pieces of the code dynamically
meaning running the main program. It can be done by writing the static code
(being a function) and then pass it as an argument at runtime by so-called
lifting. [8]

1.3.7 Haskell’s Monads in Plutus

The concept of monads in Haskell is one of its main and powerful features.
Because states of objects in Haskell cannot change as easily as in imperative
programming, the communication with input and output devices must be
designed differently to preserve the functional paradigm. The monad used for
this example is monadic type IO. Monad is basically a container where the
packed content cannot be unpacked. [26]

12

1.4. Business Process Modeling (BPM)

Monadic functions are functions that have a monad as an output value
type. Every monad supports return function (not the same concept as in im-
perative programming) which packages an ordinary value inside the monadic
function. Bind function is another essential function that allows us to make
operations on monads by unpacking, computing and packing them again. For
making the code more readable and intuitive, the do-notation was implemen-
ted inside monadic functions. [26]

One of the big advantages of the Plutus Tx is that the programmer can
write on-chain code together with off-chain code. Off-chain code is represented
by the monadic computation of type class MonadWallet or any monad which
implements it. [8]

1.3.8 Advantages and Disadvantages of Cardano

The team that is developing Cardano blockchain has chosen a very specific
methodology that is the main advantage of the platform that differs itself from
other projects. Cardano methodology is based on the academic research, pro-
totyping, technical specifications and rigorous formal development methods.
At last, the functional paradigm approach is very unambiguous and less prone
to human errors. Functional programming is also easy to mathematically
verify and test. [27]

The limitations that come with the mentioned approach could be seen as
disadvantages but all decisions are made by the nature of the technology. On
the other hand, the Plutus platform is missing many functionalities in the
time of writing this thesis that is planned for the future. [27]

1.4 Business Process Modeling (BPM)

For the constant analysis and improvement in the processes of the enterprise
the Business Process Management lifecycle was introduced. Aside from its
simulation instruments, it is formed by Business Process Modeling (BPM). In
general, the model is a description and abstraction of a system. Its conceptual
model represents entities and relations between them. A process model is a
conceptualization of the business processes in an enterprise. These types of
models are often considered synonyms. [28]

1.4.1 Purpose of Business Process Modeling

One of the reasons for BPM is in relation to modeling and examining all
the aspects of the enterprise (Enterprise Engineering). BPM is crucial for
analysis, design, engineering, and implementation of enterprises because the
first step in information system development’s successful implementation is to
understand the business processes of an organization. [28]

13

1. Theoretical Foundations

Phalp [29] was describing three elements that came out of his observation
and together they form purposes of the process modeling: capturing, analyz-
ing and presenting the business process. Capturing serves for the business
users to save time in understanding complex and formal approaches. Analyz-
ing allows the modeler to gain a thorough understanding of the processes, also
significantly on account of executable models. The need to easily understand
the business processes is met by presenting the purpose of the process mod-
eling. All these aspects improve efficiency and decrease the number of errors
in the processes in an enterprise. [28]

1.4.2 DEMO Methodology

When modeling processes, the methodology is a set of methods, rules, and
notations. DEMO [30] is a methodology that aims at modeling the construc-
tion and the operation of an organization. [28] It was first described by Di-
etz [31] and then developed and improved by the academic community and it
has a deep theoretical background. The main developing purpose of DEMO
Methodology is for the creation of an ontological model of an enterprise. [28]

It is based on Performance in Social Interaction (PSI) theory and it is
consisting (as seen in Figure 1.6) of four types of models: Construction Model,
Process Model, Action Model, and Fact Model. [28]

Figure 1.6: The Four Ontological Submodels[32]

14

1.4. Business Process Modeling (BPM)

Throughout the time, the DEMO methodology has been created devel-
oping its extensive theory, ways to represent DEMO process models in the
software language were explored [33] and a big amount of terminology has
been established. It is not the purpose of this text to explain them in detail,
but for the right introduction of the models, the sections will give definitions
of the terms from the methodology’s specification. [34]

1.4.3 Construction Model

The main component of the Construction model is Organization Construction
Diagram (OCD) which shows the boundary of the process of the enterprise.
It identifies transaction types, actor roles participating in the processes, and
relations between them. [28]

DEMO Specification Language describes it as follows: ”The Construction
Model (CM) of an organisation is the ontological model of its construction:
the composition (the internal actor roles, i.e. the actor roles within the border
of the organisation), the environment (i.e. the actor roles outside the border
of the organisation that have interaction with internal actor roles), the in-
teraction structure (i.e. the transaction kinds between the actor roles in the
composition, and between these and the actor roles in the environment), and
the interstriction structure (i.e. the information links from actor roles in the
composition to internal transaction kinds and to external transaction kinds).

The CM of an organisation is represented in an Organisation Construction
Diagram (OCD), a Transaction Product Table (TPT), and a Bank Contents
Table (BCT).” [34]

1.4.4 Process Model

The Process Model describes the deep structure of the business processes in
an enterprise. This model is also fits as a starting point for creating use
cases. The part of it called the Process Structure Diagram (PSD) describes
the process steps for every transaction and relationship between them of each
process. [28] The Transaction Pattern Diagram (TPD) is a crucial component
used in subsequent chapter and it is depicted in Figure 1.7.

DEMO Specification Language describes it as follows: ”The Process Model
(PM) of an organisation is the ontological model of the state space and the
transition space of its coordination world. Regarding the state space, the PM
contains, for all internal and border transaction kinds, the process steps and
the existence laws that apply, according to the complete transaction pattern.
Regarding the transition space, the PM contains the coordination event kinds
as well as the applicable occurrence laws, including the cardinalities of the
occurrences. The occurrence laws within a transaction process are fully de-
termined by the complete transaction pattern. Therefore, a PSD contains only
the occurrence laws between transaction processes, expressed in links between

15

1. Theoretical Foundations

Figure 1.7: Transaction Pattern Diagram[34]

process steps. There are two kinds: response links and wait links (which rep-
resent interventions).

A PM is represented in a Process Structure Diagram (PSD), optionally
complemented by a Transaction Pattern Diagram (TPD) for one or more of
the transaction kinds.” [34]

1.4.5 Action Model

The Action Model specifies actions that correspond with situations outlined
in the PSD. It contains specifications of action rules written in a pseudo-
algorithmic language. [28]

DEMO Specification Language describes it as follows: ”The Action Model
(AM) of an organisation organisation is the ontological model of its operation.
It consists of a set of action rules and a set of work instructions. There
is an action rule for every agendum kind for every internal actor role. An
action rule specifies the (production and/or coordination) acts that must be
performed, as well as the facts in the production world and/or the coordination
world whose presence or absence in the state of the world must be assessed.
Work instructions are optional. They guide the executor of a transaction in
executing the production act.

An AM is represented in Action Rule Specifications (ARS) and Work In-
struction Specifications (WIS).” [34]

16

1.4. Business Process Modeling (BPM)

1.4.6 Fact Model

The Fact Model is partly the specification of the processed data and it is
based on the Action Model. Its Object Fact Diagram declares result types
and describes relations between object classes that occur in the processes.
Formerly it was called the State Model. [28]

The current version of the DEMO Specification Language describes it as
follows: ”The Fact Model (FM) of of an organisation is the ontological model
of the state space and the transition space of its production world. Regard-
ing the state space, the FM contains all identified fact kinds (both declared
and derived), and the existence laws. Three kinds of existence laws are spe-
cified graphically: reference laws, unicity laws, and dependency laws; the other
ones are specified textually. Regarding the transition space, the FM contains
the production event kinds (results of transactions) as well as the applicable
occurrence laws.

The transition space of the production world is completely determined by
the transition space of its coordination world. Yet it may be illustrative to
show the implied occurrence laws in an OFD.

The FM is represented in an Object Fact Diagram (OFD), possibly com-
plemented by Derived Fact Specifications and the (textual) Existence Law Spe-
cifications that cannot be expressed in the OFD.” [34]

1.4.7 DEMO Machine

The DEMO methodology uses approaches that are harder to understand than
other process modeling methods like Business Process Model and Notation
(BPMN). The theoretical computation foundations were introduced to sim-
plify access to this concept with the preservation of its expressiveness. [33]

The DEMO machine is such an abstract formalization of DEMO meth-
odology suitable for software implementation. It describes the DEMO model
as an ordered tuple consisting of an identifier, transaction kinds, actor kinds,
conditional links, causal links, facts, and rules. The subsequent transaction
then behaves according to this model. [33]

1.4.8 Current Solutions of Translation from BPM to SC

The graphic domain-specific language usage of DEMO Methodology was ex-
plored [35] but the translation from it for the Cardano blockchain was never
implemented or analyzed.

Other solutions are using BPM as a description of the logic of the contract.
Caterpillar compiler has chosen methodology BPMN, which is good for graphic
process modeling. The models are then translated into the smart contract.
This contract is written in the Solidity language of Ethereum blockchain. [36]

17

1. Theoretical Foundations

1.5 Chapter Summary

The chapter Theoretical Foundations laid base knowledge to realize the gen-
eration of the contract. It described all necessary components as a blockchain
network where the smart contract will be executed, the Plutus Platform in
which the smart contract will be written and the DEMO Methodology that
will capture the model of the process that represents the logic behind the
contract.

Bitcoin was a boom in cryptocurrencies, but the blockchain technology
has bigger potential. Its advantages together with smart contracts in making
processes more effective are undoubted, but the scale of deployment will be
shown in practice.

Cardano blockchain has a unique approach to create its products by being
particular about a research basis. This mitigates the potential risk in unex-
pected undesirable future use. Its programming language builds on Haskell
which prevents many unintended side effects. The conclusion of the first goal,
exploring the state-of-the-art Cardano, is that it is suited for running safe and
effective smart contracts but the current absence of specific functionalities
could be a limitation in generation from the DEMO models.

The models of the DEMO methodology well illustrates processes both in
an enterprise and a contract. In the following chapter, the thesis will analyze
the transformation into the smart contract.

18

Chapter 2

Plutus Smart Contract
Generation from DEMO Models

In contrast with the previous chapter that laid out a theoretical basis, this
chapter moves onto the practical part of exploring the generation of the smart
contract itself. The first step will be an analysis of the technology’s compat-
ibility and conversion of DEMO models into a suitable object from which the
smart contract is easily generated. In the second part, the chapter describes
general ways the smart contract written in Plutus programming language
could be generated.

Two approaches can be applied. The analysis can be done by taking
and converting each of the DEMO models. The second approach starts with
the general layout of the smart contract using the model currently needed.
The chapter will begin by exploring how to represent each model in the smart
contract as a whole and exploring the limitations of the representations. Then
the analysis will focus on the generation mainly using the second approach
with depictions of the output’s pseudo-code.

2.1 DEMO and Extended UTXO Compatibility

The generation process, that this thesis is analyzing, has DEMO models on
input represented as data structures and functioning Plutus Tx smart contract
on the output. Because smart contracts written using the Plutus platform are
domain-specific, they cannot describe reality as much as is possible in the
DEMO methodology. The limitations of blockchain technology implicate that
the generation will not utilize all parts of the DEMO models and all the
practices of the methodology. Previous research about generation was related
to Solidity and Etherum that differs in the accounting style base, and therefore
the translation approach will differ too.

19

2. Plutus Smart Contract Generation from DEMO Models

2.1.1 Domains of Smart Contracts

The technologies described in the previous chapter Theoretical Foundations
enable the desired state replication. But with the combination of these tech-
nologies comes the limitations that make the blockchain network effective and
reasonable only in specific situations. The blockchain despite basically being
database is not suited as storage of unnecessary data. Its main domain is
undeniably capturing history of ownership of the tokens. Tokens are meant
any subject of value like coins of the cryptocurrencies or unique identification
numbers representing real estates.

The blockchain’s domain implies that the main action around which the
processes are built consists of sending the token from one address to another.
The logic applied to the sending utilizes virtual mediator. The validator script
is that mediator and it splits the action into two: the payment of the token
to the script’s address and its collection.

2.1.2 Immutable Data in Validator Script

The extended UTXO allows introducing a condition or additional computation
on the token’s payment or collection. But the data supporting the condition
are stored on-chain together with the script so it uses the same attributes as
the tokens that they are immutable. The actualization of the data variables
is also impossible by the nature of the Plutus programming language’s func-
tional paradigm and the idea of the blockchain. This creates an obstacle when
implementing DEMO models in the Cardano.

To represent the DEMO model in the smart contract, the different chan-
ging states in the validator script are needed. This requirement can be solved
by using the libraries supporting the state machine. The concept of the state
machine bypasses immutability by predefined states of the data script keeping
the previous states still stored.

2.1.3 Contract Meta-Model

There are various ways to describe DEMO models. This thesis will base the
input structure of the generation process on the meta-model that depicts the
DEMO process models. The information and the logic declared in the model
seen in Figure 2.1 will be the only source of the generation.

This thesis does not examine the right ways to model processes using the
DEMO methodology. The meta-models used in generation by users could be
the outcome of different modeling tools or derived from non-software formal-
ization like DEMO Machine [33] which uses formalization and it is based on
mathematical concepts.

20

2.1. DEMO and Extended UTXO Compatibility

Figure 2.1: Contract Meta-model: UML Diagram [37]

2.1.4 Representation of Construction Model

The Construction Model is the basic model that captures an outline of the
process and addresses its actor types. The generation will use it as a stepping
stone. The Organisation Construction Diagram is the more important part
of the CM. The Transaction Product Table and the Bank Contents Table are
not crucial for the generation. In the smart contract, they will be used for
name definitions or for the logs informing the users.

The OCD of the Construction Model describes the relation between actor
roles and transaction kinds. Actors’ representation in the smart contract has
two variations: actors controlled through the interface in the wallet and actors
controlled by an automatic code. This distinction is clear from the elementary
and composite type of actor role. The generation will utilize two different
translation approaches for the variations.

The initiator and the executor are needed information that will be re-
gistered in the start step of specific DEMO transactions and then used for

21

2. Plutus Smart Contract Generation from DEMO Models

verification of the participators’ access. The initiator of the whole process is
derived from the self-generating attribute of the actor. Other self-generating
actors will be able to request transaction kind without the context of other
transactions that will be each represented by validator script and a state ma-
chine.

2.1.5 Representation of Process Model

The Process Model is essential for the generation and it describes elementary
steps in the process. It also connects transaction kids between themselves as
they progress. The structure of the Plutus’ state machine will be based on
the transaction axiom state machine from the DEMO Machine depicted in
Figure 2.2. The Process Structure Diagram will serve for a description of the
behavior depending on the context of other state machines.

The wallet’s interface will be based on the coordination acts of the TPD.
These endpoint functions will trigger the stepping of the state machine. The
states are derived from coordination acts extended by the initial state.

Figure 2.2: Transaction Axiom State Machine[33]

The relations between the transactors from the Process Structure Diagram
in the form of response and wait links portraying the dependence of one state
machine on others. If the actor role is not represented by the public address

22

2.2. Generation of On-Chain Code

of the user, the response coordination acts will be sent by the internal code
controlling conditional states each slot.

2.1.6 Representation of Fact Model

As a representation of the data structures used in the process, the Object Fact
Diagram is used. It contains entities and their properties and attributes con-
nected to others. The contract data model will represent these connections,
types of entities or attributes, and product kinds. It also differentiates with at-
tribute value types that are overlapping with Cardano blockchain value types.
The other members of the FM like Derived Law Specifications and Existence
Law Specifications are ignored.

The problem with implementing the FM is how to capture the flow of
the data. The state made from a combination of constructors derived from
coordination act and the data of that act is one possibility. Creating another
type of the state machine in the contract where the changes of the process’ data
model are captured as a new state of its machine is another. There comes a
problem with both of them. The state machine client returns state on request.
The verification of a specific actor role that has access could be done off-chain
but this violates contracts’ security. The alternation of the client is needed
to be implemented in the Plutus but in the following generation, the analysis
will assume its existence.

2.1.7 Representation of Action Model

The AM specifies all action rules that serve as guides for actors on how to deal
with coordination events. They are described the most loosely than any other
model in DEMO. For a generation, there is a need for a pattern in actor rules.
The rules of the smart contract will mostly define coordination actions but
will be extended with payment and collection actions. The meta-model only
defines the formulation of the action rules but the logic behind them is not
described. The part of the generation where they are implemented is outlined
in the endpoint function’s template described later in this chapter.

2.2 Generation of On-Chain Code

The on-chain code of the smart contract generated from the DEMO models
that run on the network itself consists mainly of the state machine definition,
its instance, and the client. These concepts, like all constructs, are only func-
tions in the functional paradigm so the thesis will use both terms. The two
following sections will analyze all parts of the code with examples written in
pseudo-code. There are also parts where the modules are imported and lines
with pragmas instructing the GHC Haskell compiler.

23

2. Plutus Smart Contract Generation from DEMO Models

2.2.1 Process Identification

There will be many running instances of the processes captured in the smart
contract. When sending actions to the state machine, there is a need for a
distinction of specific state machines. For that, the machine will be initialized
together with an identification number unique for the process instance and
shared between DEMO transactions. The part of the pseudo-code for the
process identification can be seen in Figure 2.3.

Figure 2.3: Generated Pseudo-code: Process ID

1 data <ProcessName > = <ProcessName >

2 { id<ProcessName > :: ByteString

3 }

4 deriving (<Type1 >, <Type2 >, ... , <TypeN >)

5
6 makeLift ’’<ProcessName >

2.2.1.1 Figure 2.3: Explanatory Notes

• The blockchain uses ByteString type to store strings for its space and
time efficiency.

• The deriving keyword serves to inherit the behavior of other types.

• The data types stored on-chain needs to be lifted to the Plutus Core
using makeLift keyword.

2.2.2 Data Type Representing Facts

The next part of the smart contract will be definitions of facts, their entities,
and their attributes. This data type will be used as a part of the state for
the state machine. It is necessary to consider implementing some of the facts
outside the Cardano blockchain. The blockchain, in general, should store only
necessary data because every node has a copy of all instances and could be
storage heavy. The part of the pseudo-code for the representation of the facts
can be seen in Figure 2.4.

2.2.2.1 Figure 2.4: Explanatory Notes

• The data keyword introduces new value with multiple possible construct-
ors and multiple arguments.

• The data types that are used in states or data scripts, in general, need
to be adjusted to Plutus Core using makeIsData keyword.

24

2.2. Generation of On-Chain Code

Figure 2.4: Generated Pseudo-code: Data Type Representing Facts

1 data Fact <FactName > = Fact <FactName >

2 { attr <AttributeName1 > :: <AttributeType1 >

3 , attr <AttributeName2 > :: <AttributeType2 >

4 ...

5 , attr <AttributeNameN > :: <AttributeTypeN >

6 }

7 deriving (<Type1 >, <Type2 >, ... , <TypeM >)

8
9 makeLift ’’Fact <FactName >

10 makeIsData ’’Fact <FactName >

2.2.3 Initiator and Executor Actor Roles

In the initialization of the state machines representing the Transaction Kinds,
the initiator and executor roles have to be remembered. These roles will be
referred by the public keys of the actors’ wallets. If one of the roles is held by
function’s code then the role attribute is the address of the script. The data
type containing the roles serves for verification when accessing the DEMO
transaction from the wallet and it is used in a state of the transaction kinds’
machine. The part of the pseudo-code for the data type that contains initiator
and executor roles can be seen in Figure 2.5.

Figure 2.5: Generated Pseudo-code: Initiator and Executor Actor Roles

1 data Roles = Roles

2 { initiator :: PubKey

3 , executor :: PubKey

4 }

5 deriving (Prelude.Eq, Prelude.Show , Prelude.Ord ,

Generic , IotsType , ToSchema)

6
7 makeLift ’’Roles

8 makeIsData ’’Roles

2.2.4 States of Transaction Kinds’ State Machines

The functions portraying the state machines of the Plutus programming lan-
guage take two arguments: State and input. The states of the state machine
representing transaction kinds refer to phases’ locations in the TPD. The
names are derived from the names of the coordination acts and they are ex-
tended by the initial state. The part of the pseudo-code for the states of the
transaction kinds’ state machines can be seen in Figure 2.6.

25

2. Plutus Smart Contract Generation from DEMO Models

Figure 2.6: Generated Pseudo-code: States of the Transaction Kinds’ State
Machines

1 data TransactionKind <FactName >State =

2 Initial <FactName > Roles

3 | Requested <FactName > Roles Fact <FactName >

4 | Promised <FactName > Roles Fact <FactName >

5 | Stated <FactName > Roles Fact <FactName >

6 | Accepted <FactName > Roles Fact <FactName >

7 | Declined <FactName > Roles Fact <FactName >

8 | Quitted <FactName > Roles Fact <FactName >

9 | Rejected <FactName > Roles Fact <FactName >

10 | Stopped <FactName > Roles Fact <FactName >

11 deriving (Prelude.Eq, Prelude.Ord , Prelude.Show ,

Generic , IotsType)

12
13 makeLift ’’TransactionKind <FactName >State

14 makeIsData ’’TransactionKind <FactName >State

15
16 instance E.Eq TransactionKind <FactName >State where

17 (Initial <FactName > _) == (

Initial <FactName > _) = True

18 (Requested <FactName > _ _)

== (Requested <FactName > _ _) = True

19 (Promised <FactName > _ _)

== (Promised <FactName > _ _) = True

20 (Stated <FactName > _ _)

== (Stated <FactName > _ _) = True

21 (Accepted <FactName > _ _)

== (Accepted <FactName > _ _) = True

22 (Declined <FactName > _ _)

== (Declined <FactName > _ _) = True

23 (Quitted <FactName > _ _)

== (Quitted <FactName > _ _) = True

24 (Rejected <FactName > _ _)

== (Rejected <FactName > _ _) = True

25 (Stopped <FactName > _ _)

== (Stopped <FactName > _ _) = True

26 _ == _ = False

2.2.4.1 Figure 2.6: Explanatory Notes

• The instance together with the where keyword implements equality func-
tion instance for the newly defined constructors.

26

2.2. Generation of On-Chain Code

2.2.5 Inputs of Transaction Kinds’ State Machines

The second argument of the state machine is the input argument. The input
argument is taken when the state machine is told to change a state. The
names of the inputs correspond with the names of the coordination acts with
the addition of initial input that gives the roles to the transaction kind. The
complete transaction patter also contains the possibility to revoke previous
actions. It is done similarly and it is omitted. The part of the pseudo-code for
the inputs of the transaction kinds’ state machines can be seen in Figure 2.7.

Figure 2.7: Generated Pseudo-code: Inputs of the Transaction Kinds’ State
Machines

1 data TransactionKind <FactName >Action =

2 Initiate <FactName > Roles

3 | Request <FactName > Fact <FactName >

4 | Promise <FactName >

5 | State <FactName >

6 | Accept <FactName >

7 | Decline <FactName >

8 | Quit <FactName >

9 | Reject <FactName >

10 | Stop <FactName >

11 deriving (Prelude.Eq, Prelude.Ord , Prelude.Show ,

Generic , IotsType)

12
13 makeLift ’’TransactionKind <FactName >Action

14 makeIsData ’’TransactionKind <FactName >Action

2.2.6 Transition Functions of Transaction Kinds’ State
Machines

The state machine data type has three members. The first of them is a
transition function that takes a current state and an input and returns a new
state. The names of the output state will mostly correspond with the names
of the input’s coordination acts but in the states: Requested, Declined, Stated
and Rejected, there are two choices. The roles of the initiator and executor are
taken from the previous state. The part of the pseudo-code for the transition
functions of the transaction kinds’ state machines can be seen in Figure 2.8.

2.2.6.1 Figure 2.8: Explanatory Notes

• The Maybe data type returns value Just a where a is some other type
or Nothing.

27

2. Plutus Smart Contract Generation from DEMO Models

Figure 2.8: Generated Pseudo-code: Transition Functions of the Transaction
Kinds’ State Machines

1 transition <TxKN > :: <ProcessName > -> TransactionKind

<FactName >State -> TransactionKind <FactName >Action

-> Maybe TransactionKind <FactName >State

2 transition <TxKN > _ (Initial <FactName > ie) (Request

<FactName > fct) = Just (Requested <FactName > ie fct)

3 transition <TxKN > _ (Requested <FactName > ie fct) Decline

<FactName > = Just (Declined <FactName > ie fct)

4 transition <TxKN > _ (Requested <FactName > ie fct) Promise

<FactName > = Just (Promised <FactName > ie fct)

5 transition <TxKN > _ (Declined <FactName > ie fo) (Request

<FactName > fct) = Just (Requested <FactName > ie fct)

6 transition <TxKN > _ (Declined <FactName > ie fct) Quit

<FactName > = Just (Quitted <FactName > ie fct)

7 transition <TxKN > _ (Promised <FactName > ie fct) State

<FactName > = Just (Stated <FactName > ie fct)

8 transition <TxKN > _ (Stated <FactName > ie fct) Reject

<FactName > = Just (Rejected <FactName > ie fct)

9 transition <TxKN > _ (Stated <FactName > ie fct) Accept

<FactName > = Just (Accepted <FactName > ie fct)

10 transition <TxKN > _ (Rejected <FactName > ie fct) State

<FactName > = Just (Stated <FactName > ie fct)

11 transition <TxKN > _ (Rejected <FactName > ie fct) Stop

<FactName > = Just (Stopped <FactName > ie fct)

12 transition <TxKN > _ _ _ = Nothing

• The TxKN is a shortcut for Transaction Kind Name and was selected
to streamline comprehensive examples.

2.2.7 Check Functions of State Machines

The second member of the state machine is the check function. The check
function adds conditions considering the data type. In the generation from
the DEMO is not necessary because its data type in validator script contains
only the id of the process instance. The part of the pseudo-code for the check
functions of the state machines can be seen in Figure 2.9. Its structure is the
same for both state machines.

2.2.8 Final Functions of State Machines

The last member of the state machine definition is the final function. It
simply returns if the current state is final or not. It is also universal for all
transaction kinds. The part of the pseudo-code for the check functions of the
state machines can be seen in Figure 2.10

28

2.2. Generation of On-Chain Code

Figure 2.9: Generated Pseudo-code: Check Functions of the State Machines

1 check <TxKN > :: <ProcessName > -> TransactionKind <

FactName >State -> TransactionKind <FactName >Action ->

PendingTx -> Bool

2 check <TxKN > _ _ _ _ = True

3 check <TxKN > _ (Initial <FactName > roles) (Request

<FactName > _) penTx = txSignedBy penTx (ini roles)

4 check <TxKN > _ (Declined <FactName > roles _) (Request

<FactName > _) penTx = txSignedBy penTx (ini roles)

5 check <TxKN > _ (Declined <FactName > roles _) Quit

<FactName > penTx = txSignedBy penTx (ini roles)

6 check <TxKN > _ (Stated <FactName > roles _) Accept

<FactName > penTx = txSignedBy penTx (ini roles)

7 check <TxKN > _ (Stated <FactName > roles _) Reject

<FactName > penTx = txSignedBy penTx (ini roles)

8 check <TxKN > _ (Requested <FactName > roles _) Promise

<FactName > penTx = txSignedBy penTx (exe roles)

9 check <TxKN > _ (Requested <FactName > roles _) Decline

<FactName > penTx = txSignedBy penTx (exe roles)

10 check <TxKN > _ (Promised <FactName > roles _) State

<FactName > penTx = txSignedBy penTx (exe roles)

11 check <TxKN > _ (Rejected <FactName > roles _) State

<FactName > penTx = txSignedBy penTx (exe roles)

12 check <TxKN > _ (Rejected <FactName > roles _) Stop

<FactName > penTx = txSignedBy penTx (exe roles)

Figure 2.10: Generated Pseudo-code: Final Functions of the State Machines

1 isFinal <TxKN > :: TransactionKind <FactName >State -> Bool

2 isFinal <TxKN > (Quitted <FactName > _ _) = True

3 isFinal <TxKN > (Stopped <FactName > _ _) = True

4 isFinal <TxKN > (Accepted <FactName > _ _) = True

5 isFinal <TxKN > _

= False

2.2.9 Definition of State Machines

In this part of the on-chain code generation, it is needed to define a state
machine. But this definition does not suffice on itself. The code needs to be
assigned to a specific validator script and compiled to Plutus Core. The part
of the pseudo-code for the definition of the transaction kinds’ state machines
can be seen in Figure 2.11.

29

2. Plutus Smart Contract Generation from DEMO Models

Figure 2.11: Generated Pseudo-code: Transaction Kinds’ State Machines

1 machine <TxKN > :: <ProcessName > -> StateMachine

TransactionKind <FactName >State TransactionKind <

FactName >Action

2 machine <TxKN > pn = StateMachine

3 { smTransition = transition <TxKN > pn

4 , smCheck = check <TxKN > pn

5 , smFinal = isFinal <TxKN >

6 }

7
8 validator <TxKN > :: <ProcessName > -> ValidatorType (

StateMachine TransactionKind <FactName >State

TransactionKind <FactName >Action)

9 validator <TxKN > pn = mkValidator (machine <TxKN > pn)

10
11 script <TxKN > :: <ProcessName > -> ScriptInstance (

StateMachine TransactionKind <FactName >State

TransactionKind <FactName >Action)

12 script <TxKN > pn =

13 let val = $$(compile [|| validator <TxKN > ||])

14 ‘applyCode ‘

15 liftCode pn

16 wrap = wrapValidator @TransactionKind <FactName >

State @TransactionKind <FactName >Action

17 in validator @(StateMachine TransactionKind <

FactName >State TransactionKind <FactName >Action)

18 val $$(compile [|| wrap ||])

2.2.10 Transaction Kinds’ State Machines Instance and
Client

The last part of the on-chain code is the definition of the state machine in-
stances and clients. The clients support many useful functions to operate
with state machines more easily. The part of the pseudo-code for the defini-
tion of the transaction kinds’ state machine instances and clients can be seen
in Figure 2.12.

2.3 Generation of Off-Chain Code

In the second part of the smart contract’s generation, the focus is set on the
off-chain code. This code runs only on the wallet and it is the weakest point
of security. In the current state of the Plutus programming language, many
components to generate smart contracts from the DEMO methodology are
missing and have to be revised in the future. The generation assumes that

30

2.3. Generation of Off-Chain Code

Figure 2.12: Generated Pseudo-code: Transaction Kinds’ State Machines In-
stance and Client

1 instance <TxKN > :: <ProcessName > -> StateMachineInstance

TransactionKind <FactName >State TransactionKind <

FactName >Action

2 instance <TxKN > pn = StateMachineInstance

3 { stateMachine = machine <TxKN > pn

4 , validatorInstance = script <TxKN > pn

5 }

6
7 allocate <TxKN > :: TransactionKind <FactName >State ->

TransactionKind <FactName >Action -> Value ->

ValueAllocation

8 allocate <TxKN > _ _ currentValue =

9 ValueAllocation

10 { vaOwnAddress = currentValue

11 , vaOtherPayments = mempty

12 }

13
14 client <TxKN > :: <ProcessName > -> StateMachineClient

TransactionKind <FactName >State TransactionKind <

FactName >Action

15 client <TxKN > pn = mkStateMachineClient (instance <TxKN >

pn) allocate <TxKN >

some features will be implemented in the future, for example, logging that
was deleted because of revisions of the Wallet module.

2.3.1 Parameters of Endpoint Functions

The parameters are data types from which the on-chain data are then filled.
They cannot be lifted to the Plutus Core that is why the existing custom data
types cannot be used. The part of the pseudo-code for the definition of the
parameters of the endpoint functions can be seen in Figure 2.13.

2.3.2 Schema Definition

The schemes are used for the wallet to render buttons of the interface and
demanding the user for necessary parameters. It is necessary to define it before
the functions are used in it. The part of the pseudo-code for the definition of
the schema can be seen in Figure 2.14.

31

2. Plutus Smart Contract Generation from DEMO Models

Figure 2.13: Generated Pseudo-code: Parameters of the Endpoint Functions

1 data Parameters <TxKN ><CAct > = Parameters <TxKN ><CAct >

2 { param <AttributeName1 > :: <AttributeType1 >

3 , param <AttributeName2 > :: <AttributeType2 >

4 ...

5 , param <AttributeNameN > :: <AttributeTypeN >

6 }

7 deriving (<Type1 >, <Type2 >, ... , <TypeM >)

8
9 makeLift ’’Parameters <TxKN ><CAct >

10 makeIsData ’’Parameters <TxKN ><CAct >

Figure 2.14: Generated Pseudo-code: Schema Definition

1 type Schema = BlockchainActions

2 .\/ Endpoint "<Transaction_Kind_Name_Action_1 >"

Parameters <TxKN1 ><CAct >

3 .\/ Endpoint "<Transaction_Kind_Name_Action_2 >"

Parameters <TxKN2 ><CAct >

4 ...

5 .\/ Endpoint "<Transaction_Kind_Name_Action_M >"

Parameters <TxKNM ><CAct >

6
7 mkSchemaDefinitions ’’Schema

2.3.3 Endpoint Coordination Functions

The endpoint functions that deal with coordination acts from the users. A
lot of the DEMO logic is implemented here but should be moved on-chain
for security reasons when the technology allows that in the future. Aside
from response and wait links from the PSD positioned here using conditions.
The roles of actors of the initiator and executor could be represented by the
code. The logic of the code is realized in this function. The methods of the
state machine client used here are: runInitialise to initial setting of the state
machine, runStep to move machine to another state, and getOnChainState to
get facts or states used in conditions.

This is another weak area for security because computing is partly done
in the node’s wallet. Because this solution won’t be used in the practical
generation of this will be only an outline but not examined in detail. The same
relates to the application of the action rules that would be implemented in this
part and the logic of the automatic code represented by the event handler. The
outlined part of the pseudo-code for the definition of the endpoint functions
can be seen in Figure 2.15.

32

2.3. Generation of Off-Chain Code

Figure 2.15: Generated Pseudo-code: Endpoint Functions

1 do<TxKN ><CAct > :: (AsContractError e

2 , AsSMContractError e TransactionKind <FactName1 >

State TransactionKind <FactName1 >Action

3 , AsSMContractError e TransactionKind <FactName2 >

State TransactionKind <FactName2 >Action

4 ...

5 , AsSMContractError e TransactionKind <FactNameN >

State TransactionKind <FactNameN >Action

6) => Contract Schema e ()

7 do<TxKN ><CAct > = do

8 params <- endpoint @"do <TxKN ><CAct >" @Parameters <

TxKN ><CAct >

9 let pn = <ProcessName > (param <TxKN ><CAct >Id <

ProcessName > params)

10 <TxKInitializationFunction1 >

11 <TxKInitializationFunction2 >

12 ...

13 <TxKInitializationFunctionM >

14 if <Condition1 > && <Condition2 > && ... && <ConditionK >

15 then

16 <TxKResponseFunction1 >

17 <TxKResponseFunction2 >

18 ...

19 <TxKResponseFunctionL >

20 --

21 <TokenActionFunction1 >

22 <TokenActionFunction2 >

23 ...

24 <TokenActionFunctionJ >

25 else

26 pure ()

2.3.4 Error Instances of State Machines

It is necessary to implement new errors on which wallet responds for each of
the created state machines. This implementation causes problems with multi-
parameter type classes that are necessary for the usage of state machines. The
part of the pseudo-code for the definition of the error instances of the state
machine can be seen in Figure 2.16.

2.3.5 Registration of Endpoints

The final part of the whole code is a registration of the endpoint function
to the Plutus Playground interface. We need to distinct endpoint functions
available to the users and the supporting functions. The part of the pseudo-

33

2. Plutus Smart Contract Generation from DEMO Models

code for the definition of the registration of the wallets’ endpoints can be seen
in Figure 2.17.

Figure 2.16: Generated Pseudo-code: Endpoint Functions

1 data ErrorTransactionKind <FactName > =

2 ContractErrorTransactionKind <FactName >

ContractError

3 | SMErrorTransactionKind <FactName > (SMContractError

TransactionKind <FactName >State TransactionKind <

FactName >Action)

4 deriving (Show)

5
6 makeClassyPrisms ’’ErrorTransactionKind <FactName >

7
8 instance AsContractError ErrorTransactionKind <FactName >

where

9 _ContractError

10 = _ContractErrorTransactionKind <FactName >

11
12 instance AsSMContractError ErrorTransactionKind <

FactName > TransactionKind <FactName >State

TransactionKind <FactName >Action where

13 _SMContractError

14 = _SMErrorTransactionKind <FactName >

Figure 2.17: Generated Pseudo-code: Registration of the Endpoints

1 endpoints :: (AsContractError e

2 , AsSMContractError e TransactionKind <FactName1 >

State TransactionKind <FactName1 >Action

3 , AsSMContractError e TransactionKind <FactName2 >

State TransactionKind <FactName2 >Action

4 ...

5 , AsSMContractError e TransactionKind <FactNameN >

State TransactionKind <FactNameN >Action

6) => Contract Schema e ()

7 endpoints = <FunctionName1 > <|> <FunctionName2 > <|> ...

<|> <FunctionNameM >

34

2.4. Chapter Summary

2.4 Chapter Summary

In this chapter, it was examined the analysis of the generation of the Plutus
smart contracts from the DEMO process models. It provides various examples
of pseudo-code capturing parts of the smart contract that will be used as
templates in the implementation.

The Cardano blockchain differs from other networks by having its pro-
gramming language for the smart contracts built in the principles of functional
paradigms. This narrows the options to represent DEMO models because the
data stored on-chain are immutable. The solution to this limitation is the
usage of the state machines.

The examples of the smart contract’s part are divided into on-chain and off-
chain parts. It was discovered that a considerable part of the code capturing
the logic of the DEMO methodology has to be moved to the off-chain section.
This brings big security problem and the state machines need to be adjusted
before the use of the generation in practice. Despite the presented obstacles,
the generation of the Plutus smart contracts is successful and the outlined
pseudo-code examples will solve as templates in the implementation.

35

Chapter 3

Proof of Concept

The last chapter of the thesis implements the actual generator of Plutus smart
contracts from DEMO models. The result is then tested and simulated on a
use-case describing one part of the simplified land title recording process.

3.1 Used Technologies

In addition to the tools of the Plutus Platform, the implementation utilizes
technologies for application development and templating languages. The pro-
gram for generating smart contracts is built as an extension of a basic templat-
ing processor (or engine). In general, templating processors combine templates
and a data model into a functional desired code. Various templating engines
are providing their own templating languages. The Fluid templating engine
was used in this proposed solution.

3.1.1 .NET Core

In general, .NET technology is a cross-platform for developing applications for
the web, mobile technology, desktop computers and the Internet of Things.
It is an open-source project from the independent organization .NET Found-
ation. It provides multiple languages, tools, and libraries supporting software
development.

.NET Core is an implementation of .NET for websites, servers, and a
console application that runs on Windows, Linux and macOS operating sys-
tems. [38] It uses the same standard as other .NET implementations which
allows utilization of the common APIs.

3.1.2 Liquid Language

Liquid is an open-source project developed by e-commerce company Shopify
Incorporated. [39] It is both templating languages that have their own syntax

37

3. Proof of Concept

without a concept of a state. The designer doesn’t need to know data content
so it can be applied to multiple stores. It combines own Liquid language with
HTML. Liquid also allows manipulating data in a template by using filters
and the use of logic in a template.

3.1.3 Fluid Templating Engine

Fluid is a templating processor rendering and parsing Liquid templates (with
additional extensions). It is developed as open-source software by Microsoft’s
software development engineer Sébastien Ros. [40] Another useful feature is
registering .NET types and proprieties that are used in the data model dis-
played in a template. The Fluid is also better in performance than other
processors generating Liquid templates such as DotLiquid or Liquid.NET.

3.1.4 Plutus Playground

Plutus Playground is an application of the Plutus platform for the GHC com-
pilation of the code written in Plutus Tx. The output can be then simulated
without real blockchain. The online version can be found on the Cardano
testnet. The implementation of this thesis used the local version from Github
repository [22]. This version was updated in September 2019 and it brings
necessary components for this thesis but lacks others like logging. Because
of that, the output of the generator will be compiled but not simulated on
Plutus Playground.

3.2 Software Architecture

The implementation that realizes actual generation from DEMO process mod-
els to the smart contract written on the Plutus platform is divided into mul-
tiple components. Aside from supporting classes and templates introduced
in the previous chapter, the crucial parts are the File Generator, the Fluid
Template Renderer, and the Smart Contract Model. The organization of the
components can be seen in Figure 3.1. The implementation also contains test
classes with the use-case which is described later.

3.2.1 Contract Classes

The Contract Library contains classes describing DEMO models captured by
the contract meta-model. This model was slightly altered (for example more
value types) to purposes of Cardano and this thesis. The specific model should
be delivered using a modeling tool. The test class contains a model derived
from one use-case implementation and it was filled manually.

38

3.3. Testing

Figure 3.1: Component Diagram of the Implementation

3.2.2 Smart Contract Model

The Smart Contract Model utilizes classes defined in the Model Library that
is used as the data model for the template processor. It also provides methods
that transform the contract model created from DEMO process models to the
smart contract model. The structures that represent functions also use the
Fluid Template Renderer described below to prerender functions then filling
the main template.

3.2.3 File Generator and Fluid Template Renderer

The output of the File Generator is the actual compile-able smart contract
with suffix .hs for Haskell codes. It saves the file with the given path and a file
name. First, it registers custom classes and structures unknown to the Fluid
templating engine. Then it passes the smart contract model and a string of
final template to the Fluid Template Renderer that combines both objects.

3.3 Testing

The generator also implements a test class that contains the contract model
derived from the DEMO models describing one use case from the actual pro-
cess. The process used and described below is called land title recording.
Specifically, the thesis is describing the transfer part of the process because it

39

3. Proof of Concept

is different from the ones like initial appropriation or splitting the land title
into multiple ones.

3.3.1 Land Title Transfer Recording

The following outline of the process of land title recording is just one of many
that governments introduced for knowing on which subjects’ property to col-
lect taxes. In 2017, Cook Country recorder of deeds issued a report that
explored the adoption of blockchain in real estate and the conclusions showed
a success. [41] In the present times, when all land in the country is divided
between state and private subjects, the transfer is the most common recording
of the land title.

3.3.2 Steps of Land Title Transfer Recording

The following steps of a land title transfer recording are simplified to the basic
thoughts behind the process. There are too many law systems of different
countries that deal with several theoretical bases. Their analysis is not the
subject of this thesis. The process described below was based on the multiple
definitions in the Legal Dictionary of the Free Dictionary. [42]

Step 1 – After a buyer and a seller agree on the subject and price of the
transaction, the notary checks the validity of the transaction and con-
firms it by his authority. In this case, the transaction is called the deed.
A deed is a verified document conveying an interest in real property.

Step 2 – In this step, the settlement agent get in. The settlement
agent is responsible to oversee that all laws and regulations are followed
in transferring real estate. Mainly he performs title search: Research
done to trace a title back to its original owner to ensure that there are
no collisions with other claims. He does this by contacting the county
recorder for records of the real estate.

Step 3 – When the title search is successfully done, the buyer is informed
to submit verification of the payment for the property. After this, the
settlement agent notifies the county recorder to change his records and
the transaction between buyer and seller is completed.

40

3.3. Testing

Figure 3.2: Land Title Transfer Recording: Processes’ Approaches Compared

41

3. Proof of Concept

3.3.3 Process Captured by Smart Contract

The previously described process is captured in Figure 3.2 together with its
version using a smart contract which is much simpler. The complexity made
up mainly of administration is necessary from the need to archive evidence
that can later serve as a proof in a contractual dispute about the land title.
The thesis showed an example that doesn’t require any other authority. The
state will probably demand a presence and control of another actor, which
could make the process different.

3.3.4 DEMO Models of Land Title Transfer Recording

This section shows parts of DEMO models that the generation uses in the
forming of the meta-contract. The OCD is described in Figure 3.3, the PSD
in Figure 3.4 and the OFD in Figure 3.5. the thesis also outlines one of the
Action Rule in Figure 3.6.

Figure 3.3: Land Title Transfer Recording: OCD

42

3.3. Testing

Figure 3.4: Land Title Transfer Recording: PSD

43

3. Proof of Concept

Figure 3.5: Land Title Transfer Recording: OFD

Figure 3.6: Land Title Transfer Recording: Action Rule Resolving Transfer

3.3.5 Generated Code

The implementation generates a correct smart contract that is comprehensive
and the Plutus Playground is not able to compile it as a whole. When dividing
it into multiple parts the code is successfully compiled.

3.3.6 Simulation

Because of the division mentioned in the previous section, the simulation in the
Plutus Playground is not possible. The lack of wallet logs and incompatibility
of the state machine error in the type signature of the endpoint functions
makes Plutus Playground unfit for simulation. In spite of the simulation not
being supported by the Plutus Playground and not being the specified goal of
this thesis, it will be done at least manually.

44

3.3. Testing

3.3.6.1 Initializing Land Title Transfer Recording

Figure 3.7 shows the starting point of the land title transfer recording. The
seller owns a token representing the land title and wants to exchange it with
another person. He initializes all state machines representing transactions and
requests the Land Title Transfer Completion (T-1).

Figure 3.7: Simulation: Initializing the Land Title Transfer Recording

3.3.6.2 Sending Land Title Transfer

The Land Title Transfer Completion (T-1) moves to the promised state only
after the seller sends Land Title Transfer containing all necessary information
and the token. Figure 3.8 depicts the part where the seller paid the token
together with the Land Title Transfer to the T-1’s address and the state
machine portraying the Land Title Transfer Sending (T-2) is stated.

Figure 3.8: Simulation: Sending the Land Title Transfer

45

3. Proof of Concept

3.3.6.3 Sending Payment

In the part where the Land Title Transfer was sent and the T-1 moved to the
promised state, the Payment Sending (T-3) was requested. After the buyer
paid the specific amount ADAs, the T-3 moves to the stated state as seen in
Figure 3.9.

Figure 3.9: Simulation: Sending the Payment

3.3.6.4 Resolving Land Title Transfer Recording

The last Figure 3.10 shows the resolution of the transfer. The amount specified
in the Land Title Transfer is compared and if it is equal or greater than the
amount in the Payment, the land title’s token is sent to the buyer and the
value of the Payment is sent to the seller. If the condition is not fulfilled, the
T-6 the T-7 are requested instead of the T-4 and the T-5 and the result is
that the tokens are returned to the former owners.

Figure 3.10: Simulation: Resolving the Land Title Transfer Recording

46

3.4. Chapter Summary

3.4 Chapter Summary

The final chapter exploring the generation of the Plutus smart contracts to
the DEMO process models introduced an implementation. Then it tested the
use-case of the land title recording. In the first part of the chapter, the imple-
mentation was described from different point of views. The used technologies
were summarized and the section explored the implementation’s organization
of the components.

Aside from testing, the second part of this chapter provided examples of
DEMO models depicting the land title transfer recording. The visual simula-
tion outlined the usefulness of such a process and the possibilities of such a
concept. The specific solution of the recording can be extended using revokes
or time limits. The same principle will also apply to any exchange of other
types of tokens.

47

Conclusion

The goal of this thesis was to describe way to generate process models from
DEMO to a smart contract written in Plutus (specifically Plutus Tx). Pre-
viously to this description, Cardano and Plutus technologies were explored
to decide whether they were fit for generating such contracts. Finally, after
providing this information, proof of concept implementation was presented.

Cardano is a promising platform for technology with a working blockchain
supporting ADA cryptocurrency and its Plutus programming language. It
bases all development on precise research backed up by many professional
publications. Some aspects still need to be considered as the whole project
is unfinished. Plutus Tx is a very useful programming language for smart
contracts because its functional paradigm reduces fault-creation and increases
efficiency.

To capture DEMO process models with the Plutus Platform, the use of
state machines was chosen as the proper way to generate smart contracts.
Despite limitations of the state machines’ interface that is solvable, the de-
vised procedure using templates for the process of generation was successful.
Overall, the final generation of smart contracts will significantly simplify their
construction thus reducing costs and time on the development of a blockchain.

The presented approach was then implemented using .NET Core. As a
method to transform models to code, a template engine was used. The ad-
vantages of this generation model are clearly visible in the comparison of the
current land title recording and one achieved using the smart contract.

For future research, this thesis submits and makes a proposal of extending
the capabilities of state machines by implementing more logic on-chain. The
generation described in this thesis could be also just a part of a larger tool for
the generation of smart contracts. Tools designed for specific DEMO process
models can be a useful and efficient way to support such a generation. Plutus
is also only one of many platforms that could be explored.

49

Bibliography

[1] World Bank Group. Time Required to Enforce a Contract (Days).
[online], [2019-12-09]. Available from: https://data.worldbank.org/
indicator/IC.LGL.DURS

[2] Hornáčková, B. Using Blockchain Smart Contracts in the DEMO Meth-
odology. Master’s thesis, Czech Technical University in Prague, Faculty
of Information Technology, Prague, 2018.

[3] Wattenhofer, R. Blockchain Science: Distributed Ledger Technology. In-
verted Forest Publishing, third edition, 2019, ISBN 978-1793471734, 289
pp.

[4] Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. [online],
2008, [2019-12-09]. Available from: https://bitcoin.org/bitcoin.pdf

[5] Lipovyanov, P. Blockchain for Business 2019: A user-friendly introduc-
tion to blockchain technology and its business applications. Birmingham:
Packt Publishing, 2019, ISBN 978-1789956023.

[6] Jimi, S. How does blockchain work in 7 steps — A clear
and simple explanation. [online], 2018, [2019-12-09]. Available
from: https://blog.goodaudience.com/blockchain-for-beginners-
what-is-blockchain-519db8c6677a

[7] Maldonado, F. C. Introduction to Blockchain and Ethereum: Use distrib-
uted ledgers to validate digital transactions in a decentralized and trustless
manner. Birmingham: Packt Publishing, 2018, ISBN 978-1789612714.

[8] Brünjes, L.; Vinogradova, P. Plutus: Writing reliable smart contracts.
Input Output HK, 2019. Available from: https://leanpub.com/plutus-
smart-contracts

51

https://data.worldbank.org/indicator/IC.LGL.DURS
https://data.worldbank.org/indicator/IC.LGL.DURS
https://bitcoin.org/bitcoin.pdf
https://blog.goodaudience.com/blockchain-for-beginners-what-is-blockchain-519db8c6677a
https://blog.goodaudience.com/blockchain-for-beginners-what-is-blockchain-519db8c6677a
https://leanpub.com/plutus-smart-contracts
https://leanpub.com/plutus-smart-contracts

Bibliography

[9] Lamport, L.; Shostak, R.; Pease, M. The Byzantine Generals
Problem. [online], 1982, [2019-12-09]. Available from: https://

people.eecs.berkeley.edu/~luca/cs174/byzantine.pdf

[10] Jakobsson, M.; Juels, A. Proofs of Work and Bread Pudding Protocols.
[online], 1999, [2019-12-09]. Available from: http://www.hashcash.org/
papers/bread-pudding.pdf

[11] Bitcoin Core. Bitcoin Core: Bitcoin. [online], [2019-12-09]. Available
from: https://bitcoincore.org

[12] Bashir, I. Mastering Blockchain: Deeper insights into decentralization,
cryptography, Bitcoin, and popular Blockchain frameworks. Birmingham:
Packt Publishing, 2017, ISBN 978-1787125440.

[13] Szabo, N. Smart Contracts Glossary. [online], 1995, [2019-12-09].
Available from: https://nakamotoinstitute.org/smart-contracts-
glossary/

[14] Szabo, N. Multinational Small Business. [online], 1993, [2019-12-09].
Available from: https://nakamotoinstitute.org/multinational-
small-business/

[15] Clack, C. D.; Bakshi, V. A.; Braine, L. Smart Contract Templates: found-
ations, design landscape and research directions. [online], 2016, [2019-
12-09]. Available from: http://www.resnovae.org.uk/fccsuclacuk/
images/article/sct2016.pdf

[16] Sherman, L. Bitcoin’s Energy Consumption Can Power An Entire
Country – But EOS Is Trying To Fix That. [online], 2018, [2019-12-
09]. Available from: https://www.forbes.com/sites/shermanlee/
2018/04/19/bitcoinsenergy-consumption-can-power-an-entire-

country-but-eos-istrying-to-fix-that/#7a45bd5b1bc8

[17] Wahab, A.; Memood, W. Survey of Consensus Protocols. [online], 2018,
[2019-12-09]. Available from: https://arxiv.org/ftp/arxiv/papers/
1810/1810.03357.pdf

[18] IOHK Limited. About Input Output - IOHK. [online], [2019-12-09]. Avail-
able from: https://iohk.io/en/about/

[19] Chan, J. Who is Cardano Founder Charles Hoskinson? [online], 2019,
[2019-12-09]. Available from: https://www.asiacryptotoday.com/who-
is-cardano-founder-charles-hoskinson

[20] Cardano Foundation. What is Cardano? [online], [2019-12-09]. Available
from: https://www.cardano.org/en/what-is-cardano/

52

https://people.eecs.berkeley.edu/~luca/cs174/byzantine.pdf
https://people.eecs.berkeley.edu/~luca/cs174/byzantine.pdf
http://www.hashcash.org/papers/bread-pudding.pdf
http://www.hashcash.org/papers/bread-pudding.pdf
https://bitcoincore.org
https://nakamotoinstitute.org/smart-contracts-glossary/
https://nakamotoinstitute.org/smart-contracts-glossary/
https://nakamotoinstitute.org/multinational-small-business/
https://nakamotoinstitute.org/multinational-small-business/
http://www.resnovae.org.uk/fccsuclacuk/images/article/sct2016.pdf
http://www.resnovae.org.uk/fccsuclacuk/images/article/sct2016.pdf
https://www.forbes.com/sites/shermanlee/2018/04/19/bitcoinsenergy-consumption-can-power-an-entire-country-but-eos-istrying-to-fix-that/#7a45bd5b1bc8
https://www.forbes.com/sites/shermanlee/2018/04/19/bitcoinsenergy-consumption-can-power-an-entire-country-but-eos-istrying-to-fix-that/#7a45bd5b1bc8
https://www.forbes.com/sites/shermanlee/2018/04/19/bitcoinsenergy-consumption-can-power-an-entire-country-but-eos-istrying-to-fix-that/#7a45bd5b1bc8
https://arxiv.org/ftp/arxiv/papers/1810/1810.03357.pdf
https://arxiv.org/ftp/arxiv/papers/1810/1810.03357.pdf
https://iohk.io/en/about/
https://www.asiacryptotoday.com/who-is-cardano-founder-charles-hoskinson
https://www.asiacryptotoday.com/who-is-cardano-founder-charles-hoskinson
https://www.cardano.org/en/what-is-cardano/

Bibliography

[21] Kiayias, A.; Russell, A.; David, B.; et al. Ouroboros: A Provably Secure
Proof-of-Stake Blockchain Protocol. [online], 2017, [2019-12-09]. Avail-
able from: https://eprint.iacr.org/2016/889.pdf

[22] IOHK Limited. The Plutus Language Implementation and Tools. [online],
[2019-12-21]. Available from: https://github.com/input-output-hk/
plutus

[23] IOHK Limited. Plutus Playground. [online], [2019-12-09]. Available from:
https://prod.playground.plutus.iohkdev.io/

[24] Joeris, B. Haskell Fundamentals Part 1. [online], 2013, [2019-12-
09]. Available from: https://app.pluralsight.com/library/courses/
haskell-fundamentals-part1/

[25] Taylor, N. Functional Programming: The Big Picture. [online], 2018,
[2019-12-09]. Available from: https://app.pluralsight.com/library/
courses/functional-programming-big-picture/

[26] Joeris, B. Haskell Fundamentals Part 2. [online], 2014, [2019-12-
09]. Available from: https://app.pluralsight.com/library/courses/
haskell-fundamentals-part2/

[27] IOHK Limited. Cardano Roadmap. [online], [2019-12-16]. Available from:
https://cardanoroadmap.com/en/

[28] Vejrážková, Z. Business Process Modeling and Simulation: DEMO,
BORM and BPMN. Master’s thesis, Czech Technical University in
Prague, Faculty of Information Technology, Prague, 2013.

[29] Dietz, J. L. G. Enterprise Ontology: Theory and Methodology. Berlin:
Springer, 2006, ISBN 978-3540291695.

[30] Enterpirse Enigineering Institute. Enterpirse Enigineering and DEMO.
[online], [2019-12-09]. Available from: http://www.ee-institute.org/
en/demo

[31] Phalp, K. T. The CAP Framework for Business Process Modelling. In-
formation and Software Technology, volume 40, no. 13, 1998: pp. 731–744.

[32] Dietz, J. L. G. The Essence of Organisation - Preview. [online],
2015, [2019-12-09]. Available from: http://www.ee-institute.org/
download.php?id=130&type=doc

[33] Skotnica, M.; van Kervel, S. J.; Pergl, R. A DEMO Machine - A
Formal Foundation for Execution of DEMO Models. [online], 2017,
[2019-12-16]. Available from: https://link.springer.com/content/
pdf/10.1007%2F978-3-319-57955-9_2.pdf

53

https://eprint.iacr.org/2016/889.pdf
https://github.com/input-output-hk/plutus
https://github.com/input-output-hk/plutus
https://prod.playground.plutus.iohkdev.io/
https://app.pluralsight.com/library/courses/haskell-fundamentals-part1/
https://app.pluralsight.com/library/courses/haskell-fundamentals-part1/
https://app.pluralsight.com/library/courses/functional-programming-big-picture/
https://app.pluralsight.com/library/courses/functional-programming-big-picture/
https://app.pluralsight.com/library/courses/haskell-fundamentals-part2/
https://app.pluralsight.com/library/courses/haskell-fundamentals-part2/
https://cardanoroadmap.com/en/
http://www.ee-institute.org/en/demo
http://www.ee-institute.org/en/demo
http://www.ee-institute.org/download.php?id=130&type=doc
http://www.ee-institute.org/download.php?id=130&type=doc
https://link.springer.com/content/pdf/10.1007%2F978-3-319-57955-9_2.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-319-57955-9_2.pdf

Bibliography

[34] Dietz, J. L. G. DEMO Specification Language 3.6. [online],
2017, [2019-12-09]. Available from: http://www.ee-institute.org/
download.php?id=208&type=doc

[35] Hornáčková, B.; Skotnica, M.; Pergl, R. Exploring a Role of Blockchain
Smart Contracts in Enterprise Engineering. [online], 2019, [2019-12-16].
Available from: https://link.springer.com/content/pdf/10.1007%
2F978-3-030-06097-8_7.pdf

[36] Pintado, O. L.; Bañuelos, L. G.; Dumas, M.; et al. CATERPIL-
LAR: A Business Process Execution Engine on the Ethereum
Blockchain. [online], 2018, [2019-12-10]. Available from: https:

//www.researchgate.net/publication/326988238_CATERPILLAR_A_
Business_Process_Execution_Engine_on_the_Ethereum_Blockchain

[37] Skotnica, M. Lecture notes in Software Team Project: Functional Spe-
cification - PSI Contract Designer. 2019.

[38] Microsoft Corporation. .NET Website. [online], [2020-01-07]. Available
from: https://dotnet.microsoft.com/

[39] Shopify. Shopify: Liquid Reference. [online], [2020-01-07]. Available from:
https://help.shopify.com/en/themes/liquid

[40] Ros, S. Fluid Template Engine. [online], [2020-01-07]. Available from:
https://github.com/sebastienros/fluid

[41] Mirkovic, J. Blockchain Cook County — Distributed Ledgers
for Land Records. [online], 2017, [2020-01-07]. Available from:
https://illinoisblockchain.tech/blockchain-cook-county-
final-report-1f56ab3bf89

[42] Farlex Incorporated. Legal Dictionary. [online], [2020-01-07]. Available
from: https://legal-dictionary.thefreedictionary.com/

54

http://www.ee-institute.org/download.php?id=208&type=doc
http://www.ee-institute.org/download.php?id=208&type=doc
https://link.springer.com/content/pdf/10.1007%2F978-3-030-06097-8_7.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-030-06097-8_7.pdf
https://www.researchgate.net/publication/326988238_CATERPILLAR_A_Business_Process_Execution_Engine_on_the_Ethereum_Blockchain
https://www.researchgate.net/publication/326988238_CATERPILLAR_A_Business_Process_Execution_Engine_on_the_Ethereum_Blockchain
https://www.researchgate.net/publication/326988238_CATERPILLAR_A_Business_Process_Execution_Engine_on_the_Ethereum_Blockchain
https://dotnet.microsoft.com/
https://help.shopify.com/en/themes/liquid
https://github.com/sebastienros/fluid
https://illinoisblockchain.tech/blockchain-cook-county-final-report-1f56ab3bf89
https://illinoisblockchain.tech/blockchain-cook-county-final-report-1f56ab3bf89
https://legal-dictionary.thefreedictionary.com/

Appendix A

Acronyms

AM Action Model

BPM Business Process Modeling

BPMN Business Process Model and Notation

CM Construction Model

DEMO Design and Engineering Methodology for Organizations

FM Fact Model

IOHK Input Output HK Limited

OCD Organization Construction Diagram

OFD Object Fact Diagram

PM Process Model

PoS Proof of Stake

PoW Proof of Work

PSD Process Structure Diagram

TPD Transaction Pattern Diagram

UTXO Unspent Transaction Output

55

Appendix B

Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

scgenerator................................implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

57

	Introduction
	Theoretical Foundations
	Blockchain Technology
	Smart Contracts and Blockchain 2.0
	Cardano Blockchain
	Business Process Modeling (BPM)
	Chapter Summary

	Plutus Smart Contract Generation from DEMO Models
	DEMO and Extended UTXO Compatibility
	Generation of On-Chain Code
	Generation of Off-Chain Code
	Chapter Summary

	Proof of Concept
	Used Technologies
	Software Architecture
	Testing
	Chapter Summary

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

