
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague March 28, 2019

ASSIGNMENT OF BACHELOR’S THESIS
 Title: Slevomat Partner - Android application

 Student: Tadeáš Valenta

 Supervisor: Ing. Tomáš Krabač

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of winter semester 2020/21

Instructions

Analyse the existing version of Slevomat Partner application for Android and design and implement a new
version. Slevomat Partner app is for business partners of Slevomat.cz Ltd, and its primary purpose is
voucher validation and reservation management. The backend API design and implementation are not part
of this thesis.

Main goals of the thesis are:
1. Analysis of the existing features, their redesign and reimplementation according to new standards
2. Analysis, design and implementation of an extended set of functionalities
 a. Support for multiple partner accounts on one device
 b. Dashboard screen with data about partners deals
 c. Access to discussions and customer reviews, and the ability to react to them
3. Prepare project for multi-language support
4. Create UI layouts based on graphical designs from the project leader
5. Connect the app to existing Slevomat API
6. Create a user guide for the application

References

Will be provided by the supervisor.

Bachelor’s thesis

Slevomat Partner – Android application

Tadeáš Valenta

Department of Software Engineering
Supervisor: Ing. Tomáš Krabač

January 7, 2020

Acknowledgements

I want to thank my supervisor Ing. Tomáš Krabač for guidance, my colleagues
for advice and my family and friends for their support throughout my whole
studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. I
further declare that I have concluded an agreement with the Czech Technical
University in Prague, on the basis of which the Czech Technical University in
Prague has waived its right to conclude a license agreement on the utilization
of this thesis as school work under the provisions of Article 60(1) of the Act.
This fact shall not affect the provisions of Article 47b of the Act No. 111/1998
Coll., the Higher Education Act, as amended.

In Prague on January 7, 2020 …………………

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Tadeáš Valenta. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Valenta, Tadeáš. Slevomat Partner – Android application. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2020.

Abstrakt

Cílem bakalářské práce je analýza, návrh a vývoj nové verze aplikace Slevo-
mat Partner pro operační systém Android. Funkcionality aplikace jsou: up-
latňování voucherů, správa rezervací a další funkce pro péči o zákazníky. Práce
také obsahuje analýzu současných funkcí i nových požadavků na aplikaci od
společnosti Slevomat, návrh wireframů včetně jejich validace a implementaci
aplikace.

Klíčová slova Android, mobilní aplikace, Kotlin, Gradle, QR kód, správa
rezervací, Slevomat

vii

Abstract

The goal of this bachelor thesis is to analyse, design and develop a new ver-
sion of application Slevomat Partner for Android OS. The application includes:
voucher validation, reservation management and other customer relations fea-
tures. The thesis includes analysis of both the current functionalities and new
requirements from the Slevomat company, wireframe design and its validation
and implementation of the application.

Keywords Android, mobile application, Kotlin, Gradle, QR code, reserva-
tion management, Slevomat

viii

Contents

Introduction 1

1 Project specification and goals 3
1.1 Project specification . 3
1.2 Functional requirements for the new application 3
1.3 Non-functional requirements . 3

2 State of the art 5
2.1 Mobile development . 5
2.2 Native vs Hybrid vs Progressive Web Application development 6
2.3 Slevomat’s existing solution analysis 7
2.4 Other existing solutions . 8

3 Android 13
3.1 Basic elements . 13
3.2 UI elements . 15
3.3 Building an Android application 16
3.4 Kotlin vs Java . 17
3.5 Android SDK . 18
3.6 Libraries . 18
3.7 Android project structure . 19

4 Analysis and design 21
4.1 Use cases . 21
4.2 Data model . 30
4.3 User experience analysis . 30
4.4 Wireframes . 31
4.5 User validation of the prototype 35
4.6 Application architecture . 36

ix

5 Realisation 39
5.1 Used tools . 39
5.2 Libraries used in the project . 39
5.3 Project setup . 41
5.4 Multi-language setup . 41
5.5 User interfaces . 41
5.6 QR code scanner . 43

6 Testing 47
6.1 Separating release and test versions 47
6.2 Unit testing . 48
6.3 Automated UI testing . 49
6.4 Usability testing . 49

Conclusion 51

Bibliography 53

A Acronyms 59

B Contents of enclosed USB drive 61

C User guide 63

x

List of Figures

2.1 Voucher validation with the current version of Slevomat Partner . 8
2.2 GoOut’s scanner after ticket validation 9
2.3 RIS’s rating screen . 10
2.4 Groupon’s feedback screen . 11
2.5 Qerko’s table scanning . 12

3.1 Sample project structure . 20

4.1 Use case diagram . 22
4.2 Sample data model diagram . 30
4.3 Full bottom navigation . 31
4.4 Scanner screen . 32
4.5 Dashboard screen . 33
4.6 Account switcher screen . 34
4.7 List of reservations . 35
4.8 Bottom navigation comparison (top before, bottom after) 36

5.1 Voucher detail for a valid voucher design 44

xi

List of Listings

1 Build type sample . 20
2 Sample from Dependencies.kt file 40
3 Sample of method definition from API interface 42
4 Slevomat Partner’s flavour settings 43
5 Constraint Layout sample . 45
6 Separating release and test versions via Gradle 48

xiii

Introduction

Smartphones are still a young segment of personal electronics, but they expe-
rienced breakneck growth making the worldwide penetration of smartphones
around 40 % as of 2019 [1]. Smartphones capability also increased through-
out the last decade, and their robust computational power, camera, location
services, touch screens and other features make them ready for wide spectrum
of tasks.

Slevomat is originally a Czech company, and it is now part of a British
company – Secret Escapes Limited. Slevomat is branding itself as “inspira-
tional portal”. It offers customers a wide selection of deals ranging from travel
packages and leisure activities to goods. For its business partners, it offers
access to over 1.3 millions of registered users. Slevomat Partner is an Android
application for business partners of the Slevomat company. It helps them
serve customers coming with Slevomat vouchers.

The thesis is split into 6 chapters. In the first chapter of the thesis, you
can find a specification of the project goals and analysis of its requirements.

The second chapter consists of an analysis of the current state of mobile
development, how applications for mobile phones can be developed and what
applications are in the market of voucher scanning and reservation manage-
ment including the current version of Slevomat Partner.

Android operating system and how are native applications created for it
is described in the third chapter.

The fourth chapter deals with the analysis and design of the new applica-
tion. It includes a full wireframe design of the application and its validation.

The fifth chapter talks about the implementation of the application, what
tools were used, what libraries were used and how specific parts of the appli-
cation were implemented.

Testing of the application can be found in the sixth chapter. It contains
description of test types and design and implementation of the tests.

The conclusion contains evaluation of thesis’ goals and the future of the
development of the application.

1

Chapter 1
Project specification and goals

1.1 Project specification
Slevomat Partner application is a business application of Slevomat company.
It is in a functional state but lacking behind the market; therefore, I was
allocated to a project of creating a new application afresh. Below are specified
functional and non-functional requirements for the project.

1.2 Functional requirements for the new
application

1. Voucher scanning and validation

2. View reservations

3. Create and edit reservations

4. Change account without logging out

5. View dashboard with information about deals

6. View deal discussion and reply to questions

7. View deal rating and reply to ratings

1.3 Non-functional requirements
1. Operable on Android OS 5.0 and newer

2. Application is available in Czech

3. Multi-language setup of the project

3

Chapter 2
State of the art

2.1 Mobile development
A mobile application is a piece of software developed primarily for mobile de-
vices like smartphones or tablets. They are limited by lower performance and
shorter battery life of the device compared to a desktop computer. Therefore,
they need to use their resources reasonably, and they should not block the
user from using the phone even when doing heavy computations. If the ap-
plication prevents the user from using the phone for a time longer than the
system allows, it usually kills the application.

Every OS has a different mechanism of asynchronous programming to
avoid this result. It is mostly used for networking, notifications, alarms, load-
ing data from the database and other time-consuming or repeating tasks. A
modern mobile operating system takes over these tasks from the applications
and tries to manage them with as little battery consumption as possible [2].

2.1.1 History of mobile development
Mobile application development is an ever-changing domain because of the
abrupt hardware and software advancement connected with IT field expansion.
In the 1990s, the first mobile OSs were released. In the 2000s, Symbian led the
market but a decline started, and in 2010, the market share leader position
was overtaken by Android. Symbian’s decline continued, and in 2011, Apple’s
iOS gained second place, and today, Symbian’s share of the market is almost
non-existent. Currently, Android leads the market with a 73 %, followed by
iOS with 25 % [3].

Mobile applications started as small units of software to solve a minimal set
of problems – a small game, a web browser, or a music player. Therefore, the
user could have chosen their own set of functionalities for their device without
cluttering it with unwanted functionalities usually coming with larger desktop
applications.

5

2. State of the art

Mobile applications have different standards of data persistence and usage
– they make use of touch screen, gyroscopes, light sensors and other features
that differentiate mobile devices from the desktop versions. With faster hard-
ware and a larger screen with better touch recognition came more complex
applications that can boldly compete with their desktop counterparts.

The development of mobile applications has many variations now – ranging
from native development for a specific platform to progressive web applications
[4].

2.1.2 Process of mobile application development
The process of mobile application development, in general, copies the process
of general software development. The core difference is in the UX/UI design
which needs to be thought-through even more than the desktop one as the
screen size is smaller and due to the fact that the device can lose internet access
at any moment and should be able to still work without it. The developer,
therefore, needs to take care of caching data from the server, updating it in
the background, and other similar operations.

2.2 Native vs Hybrid vs Progressive Web
Application development

Before the application development starts, the first question is what technol-
ogy to use. The three main types are native, hybrid, and Progressive Web
Application (PWA). Native and hybrid applications can be found in the app
stores next to each other, and for the user, they can be indistinguishable.

2.2.1 Native development
Native development means developing and optimising an app for each platform
using its native SDK (such as Android SDK for Android, iOS SDK for iOS).
The advantage of this approach is having the newest features of the SDK
available when they are released, and the performance of native apps is overall
better than with hybrid ones. The cons of this type of development are that
you need to develop and test the application for each platform separately;
therefore, the development costs more.

2.2.2 Hybrid development
Hybrid development is a combination of web development and native devel-
opment. One codebase can serve multiple platforms thanks to the framework,
which runs over the platform OS. The framework works as a middle layer that
translates operating system API calls to platform-specific ones.

6

2.3. Slevomat’s existing solution analysis

A disadvantage of this approach is that the framework SDK is updated
after the native SDK is released, which means that new features cannot be
added to the application before the framework developers implement them
into the framework and that the middle layer may slow down the application,
which leads to a less smooth experience.

For example – React Native, one of the most popular mobile hybrid frame-
works, uses so-called Bridge layer that connects the JavaScript part of the
application with the native part to get functionalities like geolocation, motion
sensor data and above all it uses native components of the operating system
[5].

Examples of compiled frameworks without middle layers include Flutter,
and Xamarin when using Xamarin.Forms (UI building framework) [6] and
AOT (Ahead Of Time) compilation [7]. These two frameworks have the
ability to imitate native components and create the user interface inside the
framework itself. That makes them comparable in terms of speed with native
applications when used carefully [8] [9].

2.2.3 Progressive Web Application development
Progressive Web Applications or PWAs were first named in 2015 by Alex
Russell from Google. Google also defined 10 key concepts of PWAs which
differentiate them from typical web applications – the main difference for the
user is based on three concepts: Internet-free, Installable, and App-like.

These three concepts combined mean that user can use the PWA as an
installable application from the store without the need to install it on their
phone. This behaviour is made possible through Service Workers technology.
Service Worker runs in the background and tries to service requests from the
cache loaded when the PWA was loaded. In combination with background
preloading, the website should load almost instantly and be able to send push
notifications, work offline, and always stay up-to-date [10].

2.2.4 Conclusion
Although the hybrid development is growing, the native application still has
an edge in performance, support from the community and the availability of
libraries. Concerning the fact that the task is to develop the application solely
for the Android OS and that my knowledge of JavaScript is minimal, which
would slow down the development, the native development was chosen.

2.3 Slevomat’s existing solution analysis
Slevomat already has the Slevomat Partner application. It has limited func-
tionalities and falls short in terms of design and ease of use. The current

7

2. State of the art

application’s development started in 2015 and was finished in 2017. The de-
velopment was put on hold until now.

User interface
The application has outdated controls with too many steps needed to solve
simple use cases. All use cases need to start in the main menu screen, and from
there the user can continue to the voucher validation, making reservations or
information about his deals.

An example can be seen in the Figure 2.1. For the voucher validation use
case, which is 90 % of the application usage, the user needs 3 taps and is led
through 4 different screens.

Figure 2.1: Voucher validation with the current version of Slevomat Partner

Technology
The current version is written in Java. One of the significant problems with
the older version was the QR code scanner library which had been discontinued
and needed to be replaced. Although the replacement works, it has also been
discontinued. Another major pitfall of this version is the inability to use
multiple partner accounts on one device without logging out of the account
and then logging in again.

2.4 Other existing solutions
The problem of applications made for partners of other services is that the ap-
plications are mostly publicly available to download, but their functionalities

8

2.4. Other existing solutions

are hidden behind a login screen. That makes them hard to analyse without
a formal contract with the company. Information about the applications was
obtained from public screenshots, public reviews and interviews with users of
the applications.

2.4.1 GoOut Scanner

GoOut Scanner is an application created by GoOut ticket selling company.
Its primary purpose is to scan and validate event tickets as fast as possible.
The tickets can be validated via QR code or text code. An advantage of
the application is the possibility to search for a client by name. It has no
reservation management or other advanced functionalities [11].

Figure 2.2: GoOut’s scanner after ticket validation

2.4.2 Restu RIS

Restu is a company with a business centred around restaurant reservations.
The RIS application helps restaurants organise their reservations and shows
them reviews they have received from guest coming from Restu. It also shows
some statistics about the restaurant and its customers (number of reservations,
guests, average review). The application is no longer developed and its last
update was released in November 2018 [12].

9

2. State of the art

Figure 2.3: RIS’s rating screen

2.4.3 Groupon Merchants

International company Groupon has its own Android application for its part-
ners. It can scan and validate vouchers. The user can respond to reviews
received and can manage the campaigns of the merchant. It has a modern
and clean look in accordance with Material guidelines [13].

10

2.4. Other existing solutions

Figure 2.4: Groupon’s feedback screen

2.4.4 Qerko

Qerko is an application from a company It is paid!. It offers restaurants
payment service via QR codes on the tables. It is the only application listed
focused on an end-user. The user scans the table QR code with the application,
selects what food or drinks he/she want to pay and pays online with his
debit/credit card. The user needs to understand the service quickly; therefore,
the application has a very straightforward and simple UX [14].

11

2. State of the art

Figure 2.5: Qerko’s table scanning

12

Chapter 3
Android

This chapter introduces the Android operating system. It aims is to explain
to the reader the basic inner-workings of Android OS.

Android is a Linux-based operating system initially created by Android
Inc., which Google bought in 2005 and the first beta version was released in
2007. It is widely used around the world thanks to its open-source nature.
Android is not made solely for mobile phones but also for tablets, TVs, car
entertainment systems and can be used on almost any other device that can
run its virtual machine. Even though Android applications can be written in
Java, they are using Dalvik Virtual Machine or Android Runtime (depending
on the version of Android OS) instead of Java Virtual Machine.

Google implemented their version of Java API for its virtual machines and
that lead to a legal case between Oracle and Google [15] [16]. Android Open
Source Project is the core element of the Android OS that has all elementary
features of mobile operating system without Google Mobile Services included.
Many device manufacturers use the AOSP project as the core for their own
OS [17] [18].

3.1 Basic elements

This section describes the most widely used elements of native Android to
introduce most of the elements used in the application design.

Activity It is the main user-interactive component of the Android SDK. All
of the views (basic building blocks for Android user interface) and fragments
exist inside an activity, and their visibility depends on the visibility of the
activity they are attached to. Most of the applications have the Main Activity
(with the same name), which is the first screen the user can interact with
although it is not mandatory.

13

3. Android

An important concept connected with activities is the Back Stack. The
Back Stack holds activities that the user navigated through and allows the
user to return to the previous screen quickly. Every visited activity is pushed
to the Back Stack when a new activity replaces it. When the user taps the
back button, the activity is popped out of the stack, and the replaced activity
is destroyed [19].

Service It performs long-running operations. It does not provide any user
interface. Services can be started by other components of the application and
can run even if the user switches to another application. Services are mostly
used for network connections, media playback, I/O operations, and interacting
with Content Provider.

Services can run in the background, the foreground, and can be bound
to an application. Bound services run only as long as another application is
bound to it. Multiple components can be bound to a service at the same time,
but when all of the components unbind, the service gets destroyed. Foreground
services need to show a non-dismissible notification while they are performing
an operation noticeable by the user, for example, while playing audio.

Background services, on the other hand, are used for operations unnotice-
able by the user (network and I/O operations). With Android 8 (API level
26) the system imposes tighter restrictions on running background services
and Scheduled Jobs were introduced. Scheduled Jobs serve as a replacement
for Services. System’s managers control when Scheduled Jobs are given the
resources to run [20] [21].

Broadcast Receiver It makes use of a publisher-subscriber pattern for
keeping all applications informed about the state of the operating system and
for the applications to be able to send broadcasts to the system. Applica-
tions can subscribe to receive information about internet availability, incom-
ing phone calls, battery level changes and other events. For more information,
refer to [22] [23].

A crucial broadcast that applications can receive is the Intent. Intent’s
main use is in the launching of new activities. Explicit intents are used for
starting another activity inside the same application. Android SDK also de-
fines implicit intents. These are used for calling for an action without re-
quiring a specific application. For example, when the application wants to
start a phone call, the application sends out ACTION_DIAL intent, and the
user can choose any application from the ones subscribed as receivers of the
ACTION_DIAL intent [24].

Content Provider It is a component that manages data sets. Structured
data can be shared via the Content provider with different activities through-

14

3.2. UI elements

out the application and even with other applications. The system holds Con-
tent Providers for the user’s calendar and their contact list [25].

Fragment It represents a modular section of a user interface. Multiple
fragments can sit in one Activity, or one can fill it whole. The fragment must
always be hosted inside Activity and cannot stand on its own. Fragments are
commonly used to combine several screens from a phone-centered interface in
a tablet-sized device [26].

3.2 UI elements
Information on visual and structural elements are in this section. UI elements
serve as the cornerstone of a mobile application that the user interacts with.

These elements can be sorted into two groups: Views, also called widgets,
and View Groups, also called layouts. Views are visible to the user and he/she
interacts with them. View Groups work as containers, they are invisible to
the user but define a structure for the visible Views and other ViewGroups
[27].

View The View class represents a fundamental building block for user in-
terface; it represents a rectangular area of the screen and is responsible for
drawing and event handling. Every other view and view group class inherits
from it. Developer can create custom views inherited from this class [28].

TextView It is the most common visualisation of text on the screen. The
user cannot directly edit it, TextView is editable only by the developer in code
[29].

EditText It looks similar to TextView but can be directly edited by the
user [30].

Button It is a child View that performs an action when the user taps or
clicks it [31].

ImageView It handles displaying images. It can display bitmap or vector
images, scale them and do some types of transformation of the image [32].

ViewGroup It is an abstract class for views that can contain other views
(children). Layouts are inherited from it [33].

FrameLayout The most simple layout is the FrameLayout. It is mostly
used for holding only one child view as it stacks its child views on top of each
other [34].

15

3. Android

LinearLayout It arranges its children into one column or row. It is straight-
forward to use, and, along with nesting, the developer can create almost any
layout with this element. A drawback of this solution is that multiple nesting
slows down the graphic interface [35].

ConstraintLayout It arranges its children using relative positioning. Every
child view needs to have attributes defining their position in relation to its
parent or other view in the layout. It has different types of attributes available
– position, margins, bias, visibility, dimension and others. It has advantage of
minimising the nesting of layouts [36].

RecyclerView The RecyclerView component is an advanced list view that
uses view holders to keep items of the same type in the list. It is used when
the count of the items is unknown, or all of the items cannot fit to the screen
of the phone. It reuses the holders and fills them with data from the items.
Advantage of this approach is lower CPU usage because RecyclerView recycles
the holders and does not destroy them, it loads new items into the recycled
views every time it is needed [37].

3.3 Building an Android application
Building is a process of compiling source code and other dependencies and
combining the compiled files, resources and keystore (cryptographic container)
into an executable application. During this process, obfuscation and minifying
also take place. With advanced build settings, the developer can create two
and more different applications with a shared codebase but different so-called
“flavour” [38].

Gradle
Gradle is an official build tool for Android. It is included with the Android
Studio and works with it out of the box. Gradle has benefits over other the
build tool Maven with its shorter and more clear syntax and faster recurring
building thanks to the better caching.

Gradle DSL and Gradle Kotlin DSL
From the start, Gradle used Gradle domain specific language (DSL) based
on Groovy (a dynamically-typed language) as the programming language for
Gradle files. A drawback of the language is deficient support of syntax check
in Android Studio.

In 2016, Gradle Kotlin DSL was released [39] [40]. As the name states,
it is based on the Kotlin programming language. Kotlin is a statically-typed
language and therefore an IDE can support more of its functionalities than

16

3.4. Kotlin vs Java

Gradle Groovy DSL’s – for example: auto-completion, quick documentation,
navigation to source, refactoring.

Gradle Groovy DSL and Gradle Kotlin DSL [41] are both used in this
project. The disadvantage of Gradle Kotlin DSL is that it is early in its
adoption state, and there are not enough supporting materials for it outside
of official documentation.

3.4 Kotlin vs Java

Java

Java is a class-based, object-oriented programming language which develop-
ment started in 1995 at Sun Microsystems [42]. Java is a statically-typed,
compiled language, and Java Virtual Machine is used to run Java code; there-
fore, Java belongs to the “write once, run anywhere” group of programming
languages. In Android, the JVM is replaced with Dalvik Virtual Machine or
Android Runtime (ART) [43].

Kotlin

Kotlin is an inter-operable statically-typed programming language created by
JetBrains in 2011. The language was fully open-sourced in 2012 under Apache
License 2.0, and the Kotlin Foundation was created by JetBrains and Google
to take over responsibilities for the language development in 2018 [44].

Kotlin can be compiled via different compilers for different environments.
For Android applications, the vital part is Kotlin JVM which is inter-operable
with JVM and therefore also DVM as it uses the same API as stated above
[45].

Comparison

Java has been an officially supported language for Android from the start of
the OS development. Google added support for Kotlin in 2017, and at Google
I/O 2019, they announced their first-class support of Kotlin for Android [46]
and added a Kotlin plugin into their Android Studio IDE out of the box. The
language was quickly spread amongst developers. They name mostly its null
safety, extension functions and Java inter-operability as their fundamental
reasons for switching to Kotlin.

The downsides of the Kotlin language are tightly connected to its novelty.
There are not many Kotlin experts now, and the community around Kotlin is
much smaller than the Java one. Also, Kotlin’s compilation takes longer than
Java compilation, but the difference is not significant for mobile applications
as they are relatively small [47].

17

3. Android

Conclusion
I chose Kotlin for the new Slevomat Partner application for multiple reasons.
The first one is that the Slevomat Client application is written in Kotlin and
the other is a personal fondness for the language as the code is shorter than
Java’s and, from my point of view, more comfortable to read.

3.5 Android SDK
The Android software development kit includes different tools for increasing
developers’ productivity – specifically a debugger, libraries, an emulator, doc-
umentation, sample code, and tutorials. Android SDK is available for Win-
dows, macOS and Linux. Solely the SDK can be used to develop applications,
but programmers mostly use IDEs. Android Studio, the most popular IDE
for Android, comes with Android SDK in its package [48].

3.6 Libraries
Android libraries are not so different from any other software library. They
work as a software unit with API, allowing the developer to use methods
instead of creating their own. Libraries can speed up the development of
a software project, where new or independent implementation is not needed.
Using a library makes the software dependent on the library, and if the library
development stops, it might cause problems for software development. For this
reason, projects, where independence is essential, are created without using
libraries outside of the control of the developer [49].

In 2018, Google introduced Android Jetpack library set. This set of li-
braries contains all kinds of libraries and tools, from ones helping with com-
ponent lifecycles to one making designing UI easier. Not all the libraries are
currently in a stable state.

One of the most important libraries from the Jetpack is AndroidX library
– a replacement for Android Support Libraries. They helped the developer
use new methods even when targeting devices with an older operating system,
AndroidX does the same, but is better organised internally.

In 2018, Google created a guide to app architecture – amongst other things
it contains the usage of lifecycle-aware components. We can find LiveData
and ViewModel libraries in Jetpack; they help the developer with creating the
lifecycle-aware architecture.

The CameraX library needs to be mentioned because the camera is one
of the main system resource used by the Slevomat Partner application. It
aims to replace the Camera library and make using the device camera easier
for the developer, which is quite a challenge because of the different device
manufacturers with different specifications for each camera. The CameraX

18

3.7. Android project structure

library is still in the alpha state though, and it is not suitable for production,
for that reason, it is not used in the Slevomat Partner application [50]. Camera
library from the Android’s Hardware library is used instead.

An important library for this kind of project is a library that can convert
JSONs into POJOs. The most popular libraries (by stars on Github) are
Gson, Moshi and Jackson. All three have pros and cons. They differ in terms
of speed, library size and built-in adapters for different types in Kotlin. In
terms of the speed of deserialization, Gson falls short, and Jackson is larger
in term of library size than the other two [51].

With REST API in mind, Retrofit needs to be mentioned. It is a hugely
popular type-safe HTTP client. It connects the application with the API by
generating methods according to a given interface, and it cooperates (have
prepared adapters) with the Moshi and the Gson, its underlying layer for
HTTP communication is OkHttp library from the same developer as Moshi
and Retrofit [52].

3.7 Android project structure
Android applications can consist of multiple modules. There are different
types of modules: Android app module, dynamic feature module, library mod-
ule and Google Cloud module.

Android app module consists of source files, resource files, and app level
settings, module build files, and others. You can see a sample project structure
in a Figure 3.1. It does not show all files and folders but suits as an example.

Android uses different folder endings to differ language variants [53]. Build
types need to be configured in the Gradle folder, a sample can be seen in
Listing 1.

The main folder is the release build type, and it contains the default files
for the project. The other build type’s source files overwrite the default ones
when another build type is chosen. The developer chooses a build variant –
build variant is a combination of build type and product flavour (explained in
Section 5.4).

19

3. Android

build.grade....................................Gradle configuration file
proguard-rules.pro......................ProGuard configuration rules
src...directory of source codes

main...default build variant
javaJava/Kotlin source codes
res ...other resources

drawable.....................graphical data, vector and raster
layouts layouts in XML
values

strings.xml default text resources
strings-en.xml English text resources
colors.xmlcolour definitions

AndroidManifest.xml.....................application manifest
debug..different build variant

Figure 3.1: Sample project structure

buildTypes {
release {

minifyEnabled true
proguardFiles getDefaultProguardFile

('proguard-android.txt'),
'proguard-rules.pro'

}

debug {
applicationIdSuffix ".debug"
minifyEnabled false

}
}

Listing 1: Build type sample

20

Chapter 4
Analysis and design

In this chapter, the new application design is described from both the user
experience point of view but also from the technical point of view. The chapter
starts with a definition of use cases and a data model. Then the application is
designed including graphical wireframes and their validation. The application
architecture and the multi-language architecture close the chapter.

4.1 Use cases

Slevomat Partner’s goal is to simplify the process of voucher validation for the
business partners of the company. It is designed to help them serve customers
coming through the Slevomat platform. It needs to be able to connect the
application with a partner account via a partner code. When the application is
connected, it is listed in the list of devices at the website. After the onboarding,
the app serves as a voucher scanner for most of its users.

Use case diagram in Figure 4.1 covers all use cases the application offers;
it is followed by a subset of detailed use cases. In the diagram, we can see
the Manager and the User as separate actors. The use cases are prepared for
a permission setup, but it is a part of future development in the designs and
development.

The use case is a written description of a sequence of actions for an actor
(user, another application or time) when the actor wants to perform some
task in the application. The use case starts with the goal of the actor and
continues with the actions leading to accomplishing the goal. The last action
should complete the goal of the use case. Use cases are a vital part of modern
application development. Use cases can be in written in plain-text form, as a
table or as a UML diagram.

21

4. Analysis and design

Figure 4.1: Use case diagram

22

4.1. Use cases

Use Case #1 Login with the first account

Description Every new user needs to log into at least one account.

Actors Visitor, API

Preconditions Application in “fresh after installation” state, User is
online.

Basic flow

1. Application shows a welcome screen and explains its purpose
2. User taps Continue
3. Application asks for camera permission with explanation
4. User accepts it
5. Application shows QR code scanner with info where to search for

partner code
6. User scans QR code from the website
7. Application asks for a name of the device
8. User fills in the name of the device or confirms the pre-generated

one
9. Application sends partner code and name to the API

10. Application sends information about the device to the API
11. API receives information about the device being paired with a spe-

cific partner account from the application, sends back access token
for the device

12. Application shows the user a success login screen, and the user can
continue into the application

23

4. Analysis and design

Alternative flows

3.a User does not grant the camera permission
1. Application shows failure message; camera permission is

mandatory
2. Applications ends itself

7.a User inputs the partner code via text input
1. User taps text input in the corner of QR code scanner
2. User inputs the code in the input field and taps OK

9.a Invalid partner code
1. API sends back information about the invalidity of the partner

code
2. Application shows a failure message
3. User returns to step 5

Use Case #2 Validate and redeem a voucher

Description User wants to validate and redeem a voucher of a
client.

Actors User, API

Preconditions User has at least one account logged in, User is online.

Basic flow

1. (optional) User taps Scanner in the bottom bar
2. Application shows the Scanner screen
3. User aims the device at the QR code of the voucher
4. Application scans the voucher code and sends it to the API
5. API sends back voucher validity status and information about the

voucher
6. Application shows a screen with voucher details and its validity
7. User taps a button to redeem the voucher
8. API receives the redeem request, redeems it and sends back OK

status

24

4.1. Use cases

Alternative flows

3.a User inputs the voucher code via text input
1. User taps text input in the corner of QR code scanner
2. User inputs the code in the input field and taps OK

6.a Invalid voucher
1. Application shows that the voucher is invalid
2. User taps Up/Back button
3. User is taken back to the Scanner

Use Case #3 View deals

Description User sees running and past deals of an active account.

Actors User, API

Preconditions User has at least one account logged in, User is online.

Basic flow

1. User taps Other in the bottom bar
2. Application shows a list of items
3. User taps Deals from a list of items
4. Application asks API for a list of deals for the specific partner ac-

count
5. Application shows a list of deals (running first, past second)

Use Case #4 Create a reservation from a text code

Description Create a reservation from a voucher text code received
from the client.

Actors User, API

Preconditions User has at least one account logged in, User is online.

25

4. Analysis and design

Basic flow

1. User taps Reservation from the bottom bar
2. Application goes to the Reservation page
3. User taps Plus button
4. Application opens up a screen to insert a voucher code
5. User inputs the voucher code
6. Application sends the voucher code to the API to check status
7. API sends back information about the voucher – if it is available for

reservation
8. Application shows form to fill in info about the reservation
9. User fills in the information about the reservation.

10. Application sends the data to the API
11. API received the information and checks it, if successful, it sends

back confirmation
12. Application shows an animation of a successful reservation and

shows a list of reservations

Alternative flows

7.a Voucher is not available for reservation

1. Application shows Error that the voucher is not available for
reservation

2. Application returns the user to the code input screen

11.a Incorrect reservation info

1. API returns error code
2. Application shows the user which part of the information is

incorrect
3. User corrects the information and confirms
4. Use case continues with step 10

26

4.1. Use cases

Use Case #5 Adding another account

Description User adds another account in application with at least
one account already logged in.

Actors User, API

Preconditions User has at least one account logged in, User is online.

Basic flow

1. User taps Other in the bottom bar
2. Application shows a list of items
3. User taps Switch account from the list of items
4. Application shows a list of logged-in accounts
5. User taps the Add another account button
6. Application shows QR code scanner with info where to search for

partner code
7. User scans QR code from the website
8. Application asks for the name of the device
9. User fills in the name of the device or confirms the pre-generated

one
10. Application sends partner code and name to the API
11. Application sends information about the device to the API
12. API receives information about the device being paired with a spe-

cific partner account from the application, sends back access token
for the device

13. Application shows an animation of success and shows the list of the
accounts with the one added as the one logged in

27

4. Analysis and design

Alternative flows

7.b User inputs the partner code via text input
1. User taps text input in the corner of QR code scanner
2. User inputs the code in the input field and taps OK

11.a Invalid partner code
1. Application shows a failure message
2. User returns to step 5

Use Case #6 React to a rating

Description User searches for new rating from a client and reacts
to it.

Actors User, API

Preconditions User has at least one account logged in, User is online.

Basic flow

1. User taps Other in the bottom bar
2. List of items is shown
3. User taps Ratings from list of items
4. Application asks API for a list of ratings
5. API sends back the list of ratings in JSON
6. List of rating is shown
7. User scrolls to rating he/she wants to react to
8. User taps the rating
9. Application shows details of the rating

10. User fills in the reaction and taps Save
11. Application sends the reaction to the API
12. API saves the reaction and publishes it on the website

28

4.1. Use cases

Alternative flows

1.a User uses Rating card in Dashboard
1. User taps Dashboard in the bottom bar
2. User taps Rating card
3. use case continues from Step 4

29

4. Analysis and design

4.2 Data model
The data model is an abstraction of data organisation in the application. It
shows how data relate to one another and how they are structured [54]. The
Slevomat Partner application has its data model derived from the data model
of API. It uses the data description diagram, sample seen in figure 4.2.

1

1

1

*

vouchers

voucherCode varchar

paidTime timestamp

voucherStartTime timestamp

voucherEndTime timestamp

usedTime timestamp

refundedTime timestamp

canceledTime timestamp

productId longr

productName varchar

variantId long

variantName varchar

mainImageUrl varchar

productUrl varchar

variantUrl varchar

reservationDataId integer

reservationData

reservationId long

startTime timestamp

name varchar

phone varchar

email varchar

note varchar

actionPerfomed enum

canBeApplied boolean

canBeRemoved boolean

premiseName varchar

premiseAddress varchar

products

id long

name varchar

voucherStartTime timestamp

voucherEndTime timestamp

mainImage varchar

url varchar

variants id

variants

id long

name varchar

url varchar

partnerAccount

accessToken varchar

name varchar

Figure 4.2: Sample data model diagram

4.3 User experience analysis
There are many definitions of what “user experience” with the product is.
They can be summarised into how the user feels about the product when
interacting with it.

One of the fundamentals of mobile application development is a good user
experience. Users expect an intuitive and self-explanatory application; they
do not have much patience with the application and need to be able to finish
their goal without the need for a guide. This can be achieved with a thorough
analysis of users’ needs.

The analysis started with going through the data logs of the old applica-
tion. There are limitations with the old logging system. However, we could
read that 92,5 % of screens in the application visited by the users were the
Main Menu and screens directly connected with voucher scanning (the QR
code scanner and scanning middle screen). Therefore; it is crucial to make
this process as easy, fast and intuitive as possible. Other parts of the appli-
cation were designed following Material guidelines for user interface design.

30

4.4. Wireframes

For good UX design, it is essential to follow basic rules when designing
wireframes. One of the most important steps is to test the wireframes with
real users after the design process; this is called validation. The validation of
wireframes is described in the Validation section.

4.4 Wireframes

This is section shows examples of how the application looks and can be used.
Wireframes for this application were created in a desktop application called
Adobe XD [55]. Adobe XD is a vector-based design tool created by Adobe Inc.
It can be used for designing user interfaces and prototyping mobile applications
and websites. All of the designs were created with a resolution 640 × 360
px as this is the most wide-spread Android density-independent pixel (DP)
resolution with aspect ratio of 16:9.

Application wireframes are more complex than the usual wireframes used
in production. Lack of designers in the Slevomat company forced me to elevate
my wireframes from simple ones to complete ones so they can also be used as
a base for UI implementation.

4.4.1 Navigation

The application makes use of Material Bottom Navigation [56] as the primary
navigation component. It displays five destinations next to each other and
displays a text label for each. Badges are not part of the design, but the wire-
frame is prepared for their later addition. The navigation does not disappear
when scrolling.

Figure 4.3: Full bottom navigation

4.4.2 QR code scanner

The scanner is an essential part of the application. As stated before, more
than two-thirds of the app usage is linked to voucher validation and scanning.
It was designed with speed in mind. When the user enters the Scanner screen,
the voucher scanner automatically starts scanning. When it scans a voucher,
it goes into the Voucher Detail screen. The user does not need to tap any
button.

31

4. Analysis and design

There is a possibility to input the code via text using the text input button
in the corner of the QR scanner. When tapped, a dialogue box is shown with
a text field.

Figure 4.4: Scanner screen

4.4.3 Dashboard

A dashboard screen shows the user general information about their account.
It shows percents of redeemed vouchers from all vouchers sold by the partner.
It shows an overall rating of the partner, the last received rating and gives the
possibility to tap-through into the Rating screen. The dashboard also shows
a list of running deals with basic info about their performance (sold vouchers,
redeemed).

32

4.4. Wireframes

Figure 4.5: Dashboard screen

4.4.4 Account switch

A new feature of the application is the ability to switch between accounts
without being forced to log out of the other one. Account switcher has a
straightforward design using simple radio buttons to switch accounts. The
ability to log out of an account or register another account is always shown.

33

4. Analysis and design

Figure 4.6: Account switcher screen

4.4.5 Reservations

Reservations are an essential part of restaurant and service agenda; therefore,
it is necessary that they are easily accessible. As the application follows the
Material Design guide, a list of reservations is created using card components.
Each card contains basic information and can be tapped through to show
reservation details with complete information.

34

4.5. User validation of the prototype

Figure 4.7: List of reservations

4.5 User validation of the prototype
User validation tries to unite user expectations with the product design. In
accordance with E. Petrášová [57], during validation, users are asked to do
some task, and the researcher observes their actions.

The first task is to select the respondents. For this validation, two people
were selected. It is less than the ideal number, but only two Slevomat partners
accepted our offer. One of the partners never used the old version of the
application, and the other uses it regularly.

The validation consisted of five tasks and a discussion afterwards:

• Onboarding process. Connect the newly installed application with a
partner account.

• A client came to you with a voucher on his phone. Serve him.

• Find out how is your company rated on Slevomat.

35

4. Analysis and design

• You have received an SMS from a client. He/She wants to create a
reservation for a date specified in the SMS where is also the voucher
code. Create a reservation for him/her.

• Colleague told you that your business received a review. You want to
read it and answer.

Both validations came off successfully. The gathered feedback was turned
into feature changes and was integrated into the application: Dashboard card
click-through action was added to the whole surface of the card, voucher status
in voucher detail changed to look less like a button.

The most visible change was the change of the Scanner button in the
bottom bar. The original highlighted one by a circle was replaced with a
classic menu item to make it look less like a floating-action button. With the
original button, the responders tried to tap it multiple times even though they
were already in the Scanner.

The afterwards discussion also confirmed that the Discussion should be
placed in the bottom bar as it is. The other option was to put the Rating
(hidden other tab Other) in the position of the Discussion and vice-versa. The
discussion is more important for the users because clients ask questions before
buying, and if they have to wait for the answer for too long, they buy a deal
from a different business.

Figure 4.8: Bottom navigation comparison (top before, bottom after)

4.6 Application architecture
Application architecture tries to define how the classes are structured amongst
each other. There are many different design patterns, but the three most pop-
ular are Model-View-Controller, Model-View-Presenter and Model-View-View
model [58]. In the following paragraphs, the advantages and disadvantages of
all of the three are summarised.

36

4.6. Application architecture

Model-View-Controller (MVC)

In MVC, the model contains the application data and rules for data validity
and the valid states of the data. The controller holds business logic, receives
input from the user and sends requests/orders to the model and the view. The
view contains classes and files representing UI, including XML files.

In reactive programming, the view can be an observer of the model and
update itself accordingly [59]. The disadvantage of MVC is the size of the
controller. The controller in Android is the Activity itself. The Activity is
also the view in a way, and that makes its complexity rise quickly even with
smaller applications.

Model-View-Presenter (MVP)

The MVP is a derived pattern from the MVC, but the presenter replaces the
controller. The critical difference between the MVC and MVP is that in the
MVP, the view and the presenter are not tied to each other in any way and
communicate via API. In the MVP, the view receives requests from the user
and passes them to the presenter. The model holds the same data rules and
data as in the MVC.

In Android, the View is Activity as well as it is in MVC, but the presenter is
a stand-alone class. That makes the complexity of the classes and Activities
reasonable. The disadvantage of MVP is that the count of the classes and
interfaces grows abruptly [60].

Model-View-View model (MVVM)

The MVVM pattern tries to use binding to replace the controller or presenter.
It two-way binds data between the view and the view model. The view model
exposes actions and data that can be called and observed by the view. It also
interacts with the model to persist the data. The view binds itself to the view
model, but the view model should not know about the view. Many views can
be bound to one view model.

A concern with the MVVM is that the developer puts presentation logic
in the view as he/she is often used to, but it should not be there. The view
should be bound directly to presentable data which the view model holds [61].

General advantages of the MVVM are that interfaces are not needed as
the view are updated through the binding and that the view model is not tied
to the view in any way. In the Android OS, there is the extra advantage of
Google support. Many classes that the developer does need for the MVVM
architecture are included in the Jetpack libraries.

37

4. Analysis and design

Conclusion
For this application, the MVVM pattern was chosen. It is pattern recom-
mended by Google, and for the MVVM Google introduced the Android Jet-
pack package, which includes libraries for the lifecycle-aware view model, the
LiveData data holder, and the declarative data binding library, which helps
the developers easily create MVVM architecture.

38

Chapter 5
Realisation

This chapter describes the process of the software implementation of the ap-
plication. It consists of tools selection, libraries used and description of an
implementation of interesting parts of the application – what problems oc-
curred and how they were solved. Analysis and design from previous chapters
were used.

5.1 Used tools
It was easy to choose IDE because Android Studio (version 3.5 in time of de-
velopment) is the official application for Android development. It is developed
by JetBrains and Google and is based on IntelliJ IDEA Community IDE.

The second option would be using IntelliJ IDEA Community directly, but
it doesn’t provide any advantages for Android development. The third option
is using Eclipse IDE with plugins for Android, but that would suit a long-term
Eclipse user, not me as I am used to JetBrains’ IDEs.

Git was used for project version control. It supports offline work, is better
at branching the code and mainly as the complete project is downloaded to the
local machine, the local builds used during the project are possible. GitHub is
a code repository used by Slevomat company for all of its projects; therefore,
it was used for this project too. Android Studio has integrated Git support,
which easily connects with GitHub.

5.2 Libraries used in the project
All of the project dependencies, including libraries, are organised in a file called
Dependencies.kt. It is a Kotlin file in buildSrc package that is accessible
from Gradle. The list of dependencies separates names and versions of libraries
which makes maintaining the dependencies more easier. Sample can be seen
in Listing 2.

39

5. Realisation

In this project, a few libraries are used. The most important one is the al-
ready mentioned combination of Retrofit [52], Moshi [62] and OkHttp libraries
which provide API communication (Retrofit) and convert JSONs into Kotlin
objects (Moshi). These are the key libraries for the project as it is heavily
dependent on its API. All of these three libraries come from the Square com-
pany that keeps updating its libraries for years now and is seen as a dependable
developer.

The Koin library is another library used in the project. It is “pragmatic
lightweight dependency inejction framework for Kotlin” according the Koin
website [63]. It is an open-source framework that provides DI using Kotlin
domain-specific language. During the building process, it generates code
needed for the object to be provided where injected. I chose Koin over Dagger,
another dependency injection library, for its ease of use while maintaining the
same functionalities for a project of this size.

ML Kit for Firebase library from Google is another library used in the
project. It is a machine learning library that provides the barcode scanning
functionality for the application. The ML Kit library contains other modules
– facial recognition, text recognition, image labelling [64]. There are many
alternatives to ML Kit library in terms of QR code scanning, but there are
none that are still in active development and are backed by a trustworthy
developer. ZXing library used by many is publicly in maintenance mode, and
others are not updated for months or years without official notice.

The Jetpack library set contains libraries that help with the MVVM de-
velopment – namely the Architecture components. The ViewModel and the
LiveData library are used throughout the whole project. An alternative for
the LiveData is RxJava, but the project is developed in Kotlin; therefore, the
Kotlin option (LiveData) is used.

object Libs {
const val retrofit =

"com.squareup.retrofit2:retrofit:${LibsVersion.retrofit}"
const val retrofitMoshiConverter =

"com.squareup.retrofit2:converter-moshi:${LibsVersion.retrofit}"
const val moshi =

"com.squareup.moshi:moshi:${LibsVersion.moshi}"
}

object LibsVersion {
const val retrofit = "2.6.2"
const val moshi = "1.6.0"

}

Listing 2: Sample from Dependencies.kt file

40

5.3. Project setup

5.3 Project setup
The project was started with Bottom navigation activity template. It auto-
matically prepares Main Activity with 3 different Fragments and adds Bottom
navigation component. Gradle is used as the default build tool, Gradle Groovy
DSL and Gradle Kotlin DSL are combined throughout the project.

Application is very much dependent on the API connection; therefore, the
first thing was to configure the Retrofit library to connect the application to
given API endpoints. Retrofit needs interface and objects for requests and
responses. It also supports query parameters using a map, in Listing 3 is one
sample method and its request, and response object. It requests information
about a voucher from the Slevomat REST API using the POST method.

5.4 Multi-language setup
One of the non-functional requirements is to prepare the Slevomat Partner
application for creating different language mutations, such as Zľavomat Part-
ner is used for a Slovak market. The application uses the same code for the
application logic, but it has different language resources, it is connected to
different API, and it can have differences in logic when needed.

Basic multi-language setup is simple in Android. The developer can set
up a project folder structure that has one default resource file or folder while
others are optional and are only used when the device locale is set to one
matching the folder/file name ending.

This application has more requirements than just different text resources.
It needs a different API connection, a different application name, a differ-
ent icon, and some functionalities are limited. These can be achieved using
flavours.

Flavours work similarly to build types – they differ code used when build-
ing the application. Build type specifies how the application is built, what
certificates are included and other build-related settings. In contrary, flavours
are used for creating a different version in terms of functionalities. They
are used when creating free and paid versions of the application, and in this
project, they are used to differ Slevomat and Zľavomat Partner application.
The flavour setting of the project can be seen in Listing 4.

Every flavour needs to have dimension specified. There can be more than
one dimension in one application, but each flavour can only belong to one
dimension [65].

5.5 User interfaces
Android layouts have a poser for designers and developers that Android de-
vices come with many different screen sizes and resolutions. The layout

41

5. Realisation

@POST("voucher-info")
fun getVoucherInfo(@Body voucherRequest: VoucherRequest):

LiveData<ApiResponse<VoucherResponse>>

data class VoucherRequest(val code: String)

@JsonClass(generateAdapter = true)
data class VoucherResponse(

@Json(name = "code") var voucherCode: String,
val paidTime: String,
val voucherStartTime: OffsetDateTime,
val voucherEndTime: OffsetDateTime,
val usedTime: OffsetDateTime?,
val refundedTime: OffsetDateTime?,
val canceledTime: OffsetDateTime?,
val serverTime: OffsetDateTime,
val canBeApplied: Boolean,
val voucherUsingClosed: Boolean,
val productId: Int,
val productName: String,
val variantId: Int,
val variantName: String,
val mainImageUrl: String,
val productUrl: String,
val variantUrl: String,
val voucherUsageMethod: String?,
val usagePremiseName: String?,
val usagePremiseAddress: String?,
val reservationData: ReservationDataItem?

)

Listing 3: Sample of method definition from API interface

implementation needs to be prepared for different aspects of the screen. It
is important to mention that Android uses density points (DPs) instead of
pixels. 1 DP is calculated from the pixel density of the screen with formula:
dp = (width in pixels ∗ 160) / screen density.

This application uses a combination of Linear Layouts and Constraint
Layouts. The Voucher Detail layout uses both layouts, but the Linear Layout
only aligns the views next to each other vertically or horizontally. The example
shows how the constraints are defined.

The layout contains a thumbnail of the voucher product and information
about it below. It also holds a button area with different background colour
and two buttons and text about the voucher performance. The design can be

42

5.6. QR code scanner

flavorDimensions "language"
productFlavors {

cz {
dimension "language"
applicationId "cz.slevomat.partner"

}
sk {

dimension "language"
applicationId "sk.zlavomat.partner"
manifestPlaceholders = [appName: SK_APP_NAME]

}
}

Listing 4: Slevomat Partner’s flavour settings

seen in the Figure 5.1 and the code in Listing 5. For a moderate length of the
thesis, some attributes were omitted in the sample.

5.6 QR code scanner
The crucial implementation problem with the QR code scanner is that it
needed to work in a Fragment that can be included in different parts of the
application without the need to start new Activity, for example, the Main
Activity holds only a Fragment of the activity. The QR code scanner is based
on the ML Kit Showcase application, but there is the scanner used in an
Activity and has many features not needed for the scanning. The Scanner
uses Camera library from Android and FirebaseVision package from the ML
Kit.

The scanner starts an infinite loop when the Scanner fragment is active. It
analyses every frame and tries to find a QR code in the picture. If a QR code
is found, it is returned into the view model. Although the infinite loop might
seem like an inappropriate approach, the Android device turns the display off
when inactive, thus breaking the loop.

43

5. Realisation

Figure 5.1: Voucher detail for a valid voucher design

44

5.6. QR code scanner

<androidx.constraintlayout.widget.ConstraintLayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:background="@color/lightBlue">

<Button
android:id="@+id/btnValidate"
...
android:layout_marginTop="@dimen/offset_base"
android:layout_marginBottom="@dimen/offset_small"
app:layout_constraintBottom_toTopOf="@+id/btnCreateReservation"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toTopOf="parent" />

<Button
android:id="@+id/btnCreateReservation"
...
android:layout_marginTop="@dimen/offset_small"
android:layout_marginBottom="@dimen/offset_small"
app:layout_constraintBottom_toTopOf="@id/tvReservationHelp"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toBottomOf="@+id/btnValidate" />

<TextView
android:id="@+id/tvReservationHelp"
android:layout_width="300dp"
android:layout_height="wrap_content"
android:layout_marginTop="@dimen/offset_small"
android:layout_marginBottom="@dimen/offset_small"
android:text="@string/reservation_help_text"
app:layout_constraintBottom_toTopOf="@id/tvVoucherStats"
app:layout_constraintEnd_toEndOf="parent"
app:layout_constraintStart_toStartOf="parent"
app:layout_constraintTop_toBottomOf="@+id/btnCreateReservation" />

<TextView
android:id="@+id/tvVoucherStats"
... />

</androidx.constraintlayout.widget.ConstraintLayout>

Listing 5: Constraint Layout sample

45

Chapter 6
Testing

In a book The Art of Software Testing from G. J. Myers and C. Sandler [66]
they say: “Software testing is a process, or a series of processes, designed to
make sure computer code does what it was designed to and, conversely, that
it does not do anything unintended.”

There are different views on how to separate software testing into groups.
Based on approach (static/dynamic, exploratory, white-box/black-box), level
of testing (unit, integration, system, acceptance) or type of test (e.g., smoke,
regression, functional/non-functional, destructive, security). In this chapter,
the view is narrowed to mobile application testing and also is specified how
the new Slevomat Partner application is tested [67].

6.1 Separating release and test versions

The release version is different from the test versions. In this project, two
test versions are prepared: The Debug version and the Alpha version. Their
differences can be seen in the Gradle file sample in Listing 6.

The Debug version is set up to have the shortest build time and to retain
the debug symbols. Its purpose is for the developer to quickly see the code
running when changing the code and to be able to see the debug informa-
tion when needed. If this version would be released, an advanced user could
decompile the application and exploit the code.

The Alpha version is as close to the release version as possible. It is not
debuggable, it is obfuscated, and its resources are shrunk. This process takes
time and can cause bugs in the application. The advantage is the similarity to
the release version – the same process is done during the build of the release
version of the application. For the testing (unit, automated and usability) the
Alpha version is used.

47

6. Testing

buildTypes {
release {

minifyEnabled(true)
shrinkResources(true)
debuggable(false)
productFlavors.cz.signingConfig signingConfigs.releaseCZ
productFlavors.sk.signingConfig signingConfigs.releaseSK
proguardFiles(getDefaultProguardFile(

"proguard-android-optimize.txt"),
"proguard-rules.pro")

}

alpha {
applicationIdSuffix(".alpha")
minifyEnabled(true)
shrinkResources(true)
debuggable(false)
proguardFiles(getDefaultProguardFile(

"proguard-android-optimize.txt"),
"proguard-rules.pro")

matchingFallbacks = ['release']
signingConfig signingConfigs.debug

}

debug {
applicationIdSuffix(".dev")
minifyEnabled(false)
shrinkResources(false)
debuggable(true)
signingConfig signingConfigs.debug

}
}

Listing 6: Separating release and test versions via Gradle

6.2 Unit testing
When a small unit of software (module, class) is tested, it is called unit testing.
Unit tests for Android do not differ from other software unit tests.

Android SDK includes an extension to the JUnit framework and its an-
droid.test package includes testing tools specifically designed for Android use.
The package includes single activity testing, utilities for generating events like
a touch or services testing or an extended set of asserts (e.g., assignables,
regular expression) [68].

48

6.3. Automated UI testing

The amount of unit test in the application is minimal because of the ap-
plication state. It is also caused by the limited amount of logic included in
the application.

6.3 Automated UI testing
Automated UI tests are part of instrumented tests. They require an instance
of Android system, either on a physical device or an AVD (Android Virtual
Device). Automated UI tests simulate input of the user to the application and
check if its behaviour is correct.

Google developed the Espresso framework for Android that is relying on
the mentioned JUnit framework. It provides interfaces for writing automated
UI tests. It uses the grey-box testing approach as the test designer needs to
know how the view tree is built. The framework is capable of checking the
status of activities, whether they are loading or are in a ready state [69].

The application is not covered by automated UI tests as the user interface
is still in the development state and will change throughout the app finishing.

6.4 Usability testing
Usability testing or user testing is a tool to evaluate mobile application with
real users. The most common pattern is giving the users tasks to complete.
In combination with thinking aloud, it can give the researcher much informa-
tion on how the users feel and think about the application. If there are any
problems, and if they are, how severe they are. They can be divided into high
(failure in task execution), medium (task can be executed with difficulties)
and low (minor problems) [70].

The user testing is designed from the base of the wireframe validation. It
has the same 5 tasks covering most of the screens of the application and 1
extra task – editing existing answer to a question in a discussion. These six
tasks cover all important parts of the application. The user change is a minor
use case in terms of quantity of users, but it is important for the few that need
it. That is why it is not tested with general users.

Though the testing was not carried out yet, it is prepared for the execution.
It is important to use the Alpha version of the application. If the release
version would be used, the information would be sent to the real API including
payments.

49

Conclusion

The main goal of a “Slevomat Partner – Android application” thesis was to
design and implement a new version of the application. The goal also included
the analysis of the current version of the application and conducting a market
recherche of mobile applications with a similar purpose.

The goal of the analysis of the current application was fulfilled. Problems
of the current application were pointed out, and they were taken into account
during the design. The thesis also contains an analysis of other applications
in the market; thus, the analysis goal was completed.

The crucial part of this thesis is the design of the new application. The
original goal was to design wireframes only, from which a designer should
have designed the user interface in the details. The Slevomat company failed
to provide the designs. Therefore, the goal was extended to include creating
the whole UI with all the details. The extended goal was accomplished, and
real users of the application validated the application design.

The extended design goal created a significant delay in the implementation
goal which lead to a incomplete implementation goal. Albeit the application
is not yet ready for production, the project has a solid foundation. My work
on the application will continue outside the scope of the thesis.

51

Bibliography

[1] Holst, A. Global smartphone penetration rate as share of pop-
ulation from 2016 to 2020 [online]. Available from: https:
//www.statista.com/statistics/203734/global-smartphone-
penetration-per-capita-since-2005/

[2] Guide to background processing | Android Developers. 2019. Available
from: https://developer.android.com/guide/background

[3] Mobile Operating System Market Share Worldwide. 2019. Available from:
http://gs.statcounter.com/os-market-share/mobile/worldwide/

[4] Stieglitz, S.; Lattemann, C.; et al. Mobile Applications for Knowl-
edge Workers and Field Workers. Mobile Information Systems, volume
2015, no. 2015, 2015: pp. 1–8, ISSN 1574-017X, doi:10.1155/2015/
372315. Available from: http://www.hindawi.com/journals/misy/
2015/372315/

[5] Bartoňková, E. Rozšiřitelná mobilní herní aplikace. 2019.

[6] Xamarin.Forms | .NET. 2019. Available from: https://
dotnet.microsoft.com/apps/xamarin/xamarin-forms

[7] Tillu, J. Flutter Compilation Process [online]. 2019. Available from:
https://dev.to/jay_tillu/flutter-compilation-process-41k0

[8] Dunn, C.; Schonning, N.; et al. Part 1 – Understanding the Xamarin
Mobile Platform - Xamarin | Microsoft Docs [online]. Available from:
https://docs.microsoft.com/en-us/xamarin/cross-platform/
app-fundamentals/building-cross-platform-applications/
understanding-the-xamarin-mobile-platform

[9] Terebetska, A. Flutter vs Xamarin: The Complete 2019 De-
veloper’s Guide [Infographics Included] [online]. Available from:

53

https://www.statista.com/statistics/203734/global-smartphone-penetration-per-capita-since-2005/
https://www.statista.com/statistics/203734/global-smartphone-penetration-per-capita-since-2005/
https://www.statista.com/statistics/203734/global-smartphone-penetration-per-capita-since-2005/
https://developer.android.com/guide/background
http://gs.statcounter.com/os-market-share/mobile/worldwide/
http://www.hindawi.com/journals/misy/2015/372315/
http://www.hindawi.com/journals/misy/2015/372315/
https://dotnet.microsoft.com/apps/xamarin/xamarin-forms
https://dotnet.microsoft.com/apps/xamarin/xamarin-forms
https://dev.to/jay_tillu/flutter-compilation-process-41k0
https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/building-cross-platform-applications/understanding-the-xamarin-mobile-platform
https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/building-cross-platform-applications/understanding-the-xamarin-mobile-platform
https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/building-cross-platform-applications/understanding-the-xamarin-mobile-platform

Bibliography

https://apiko.com/blog/flutter-vs-xamarin-the-complete-2019-
developers-guide-infographics-included/

[10] Bartík, M. Proč a jak psát progresivní webové aplikace [online].
2017. Available from: https://www.ackee.cz/blog/proc-a-jak-psat-
progresivni-webove-aplikace/

[11] GoOut Scanner [software]. 2019. Available from: https:
//play.google.com/store/apps/details?id=net.goout.scanner

[12] RIS [software]. 2018. Available from: https://play.google.com/store/
apps/details?id=com.restu.ris

[13] Groupon Merchants [software]. 2019. Available from: https://
play.google.com/store/apps/details?id=com.groupon.redemption

[14] Qerko [software]. 2019. Available from: https://play.google.com/
store/apps/details?id=com.itispaid

[15] Robertson, A. The Supreme Court will hear Google and Or-
acle’s nearly decade-long copyright fight [online]. 2019. Avail-
able from: https://www.theverge.com/2019/11/15/20946398/oracle-
google-java-copyright-lawsuit-trial-supreme-court-request

[16] Android Open Source Project. 2019. Available from: https://
source.android.com/

[17] Brahler, S. Analysis of the Android Architecture. 2010.

[18] Frequently Asked Questions | Android Open Source Project. 2019. Avail-
able from: https://source.android.com/setup/start/faqs

[19] Activity | Android Developers. 2019. Available from: https://
developer.android.com/reference/android/app/Activity

[20] Services | Android Developers. 2019. Available from: https://
developer.android.com/guide/components/services

[21] Farrel, S. Choosing the Right Background Scheduler in Android [online].
2016. Available from: https://www.bignerdranch.com/blog/choosing-
the-right-background-scheduler-in-android/

[22] Broadcast overview | Android Developers. 2019. Available from: https:
//developer.android.com/guide/components/broadcasts

[23] BroadcastReceiver | Android Developers. 2019. Available from:
https://developer.android.com/reference/android/content/
BroadcastReceiver

54

https://apiko.com/blog/flutter-vs-xamarin-the-complete-2019-developers-guide-infographics-included/
https://apiko.com/blog/flutter-vs-xamarin-the-complete-2019-developers-guide-infographics-included/
https://www.ackee.cz/blog/proc-a-jak-psat-progresivni-webove-aplikace/
https://www.ackee.cz/blog/proc-a-jak-psat-progresivni-webove-aplikace/
https://play.google.com/store/apps/details?id=net.goout.scanner
https://play.google.com/store/apps/details?id=net.goout.scanner
https://play.google.com/store/apps/details?id=com.restu.ris
https://play.google.com/store/apps/details?id=com.restu.ris
https://play.google.com/store/apps/details?id=com.groupon.redemption
https://play.google.com/store/apps/details?id=com.groupon.redemption
https://play.google.com/store/apps/details?id=com.itispaid
https://play.google.com/store/apps/details?id=com.itispaid
https://www.theverge.com/2019/11/15/20946398/oracle-google-java-copyright-lawsuit-trial-supreme-court-request
https://www.theverge.com/2019/11/15/20946398/oracle-google-java-copyright-lawsuit-trial-supreme-court-request
https://source.android.com/
https://source.android.com/
https://source.android.com/setup/start/faqs
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/reference/android/app/Activity
https://developer.android.com/guide/components/services
https://developer.android.com/guide/components/services
https://www.bignerdranch.com/blog/choosing-the-right-background-scheduler-in-android/
https://www.bignerdranch.com/blog/choosing-the-right-background-scheduler-in-android/
https://developer.android.com/guide/components/broadcasts
https://developer.android.com/guide/components/broadcasts
https://developer.android.com/reference/android/content/BroadcastReceiver
https://developer.android.com/reference/android/content/BroadcastReceiver

Bibliography

[24] Intent | Android Developers. 2019. Available from: https://
developer.android.com/reference/android/content/Intent

[25] Content Providers | Android Developers. 2019. Available from:
https://developer.android.com/guide/topics/providers/content-
providers

[26] Fragments | Android Developers. 2019. Available from: https://
developer.android.com/guide/components/fragments

[27] Layouts | Android Developers. 2019. Available from: https://
developer.android.com/guide/topics/ui/declaring-layout

[28] View | Android Developers. 2019. Available from: https://
developer.android.com/reference/android/view/View

[29] TextView | Android Developers. 2019. Available from: https://
developer.android.com/reference/android/widget/TextView

[30] EditView | Android Developers. 2019. Available from: https://
developer.android.com/reference/android/widget/EditText

[31] Button | Android Developers. 2019. Available from: https://
developer.android.com/reference/android/widget/Button

[32] TextView | Android Developers. 2019. Available from: https://
developer.android.com/reference/android/widget/ImageView

[33] ViewGroup | Android Developers. 2019. Available from: https://
developer.android.com/reference/android/view/ViewGroup

[34] FrameLayout | Android Developers. 2019. Available from: https://
developer.android.com/reference/android/widget/FrameLayout

[35] LinearLayout | Android Developers. 2019. Available from: https://
developer.android.com/reference/android/widget/LinearLayout

[36] ConstraintLayout | Android Developers. 2019. Available from:
https://developer.android.com/reference/android/support/
constraint/ConstraintLayout

[37] RecyclerView | Android Developers. 2019. Available from: https:
//developer.android.com/reference/androidx/recyclerview/
widget/RecyclerView

[38] Gradle vs Maven Comparison. 2017. Available from: https://
gradle.org/maven-vs-gradle/

55

https://developer.android.com/reference/android/content/Intent
https://developer.android.com/reference/android/content/Intent
https://developer.android.com/guide/topics/providers/content-providers
https://developer.android.com/guide/topics/providers/content-providers
https://developer.android.com/guide/components/fragments
https://developer.android.com/guide/components/fragments
https://developer.android.com/guide/topics/ui/declaring-layout
https://developer.android.com/guide/topics/ui/declaring-layout
https://developer.android.com/reference/android/view/View
https://developer.android.com/reference/android/view/View
https://developer.android.com/reference/android/widget/TextView
https://developer.android.com/reference/android/widget/TextView
https://developer.android.com/reference/android/widget/EditText
https://developer.android.com/reference/android/widget/EditText
https://developer.android.com/reference/android/widget/Button
https://developer.android.com/reference/android/widget/Button
https://developer.android.com/reference/android/widget/ImageView
https://developer.android.com/reference/android/widget/ImageView
https://developer.android.com/reference/android/view/ViewGroup
https://developer.android.com/reference/android/view/ViewGroup
https://developer.android.com/reference/android/widget/FrameLayout
https://developer.android.com/reference/android/widget/FrameLayout
https://developer.android.com/reference/android/widget/LinearLayout
https://developer.android.com/reference/android/widget/LinearLayout
https://developer.android.com/reference/android/support/constraint/ConstraintLayout
https://developer.android.com/reference/android/support/constraint/ConstraintLayout
https://developer.android.com/reference/androidx/recyclerview/widget/RecyclerView
https://developer.android.com/reference/androidx/recyclerview/widget/RecyclerView
https://developer.android.com/reference/androidx/recyclerview/widget/RecyclerView
https://gradle.org/maven-vs-gradle/
https://gradle.org/maven-vs-gradle/

Bibliography

[39] Gradle Kotlin DSL 1.0 RC3 Release Notes. 2018. Available from: https:
//github.com/gradle/kotlin-dsl-samples/releases/tag/v1.0-RC

[40] Beams, C. Kotlin Meets Gradle [online]. 2016. Available from: https:
//blog.gradle.org/kotlin-meets-gradle/

[41] Gradle Kotlin DSL Primer. 2018. Available from: https://
docs.gradle.org/current/userguide/kotlin_dsl.html

[42] Binstock, A. Java’s 20 Years Of Innovations [online]. 2015. Available
from: https://www.forbes.com/sites/oracle/2015/05/20/javas-
20-years-of-innovation/

[43] Williams, M. Java vs. Kotlin - The No-nonsense Comparison of
Android Programming Languages [online]. 2019. Available from:
https://www.promptbytes.com/blog/java-vs-kotlin-the-no-
nonsense-comparison-of-android-programming-languages

[44] Kotlin Foundation. 2018. Available from: https://kotlinlang.org/
foundation/kotlin-foundation.html

[45] Kukla, G. Differences between .class and .dex files in Java & Android
[online]. Available from: https://www.boldare.com/blog/differences-
between-class-and-dex-files-in-java-android/

[46] Lardinois, F. Kotlin is now Google’s preferred language for An-
droid app development [online]. 2019. Available from: https:
//techcrunch.com/2019/05/07/kotlin-is-now-googles-preferred-
language-for-android-app-development/

[47] Team, A. E. Kotlin vs Java: What is Better for Android Development?
[online]. 2017. Available from: https://applikeysolutions.com/blog/
kotlin-vs-java-what-is-better-for-android-development

[48] What is Android SDK? Available from: https://www.techopedia.com/
definition/4220/android-sdk

[49] What is a Software Library? Available from: https:
//www.techopedia.com/definition/3828/software-library

[50] Android Jetpack | Android Developers. 2019. Available from: https:
//developer.android.com/jetpack

[51] Damsky, D. Here’s why you probably shouldn’t be using the
Gson library in 2018 [online]. 2018. Available from: https:
//medium.com/@dannydamsky99/heres-why-you-probably-shouldn-
t-be-using-the-gson-library-in-2018-4bed5698b78b

56

https://github.com/gradle/kotlin-dsl-samples/releases/tag/v1.0-RC
https://github.com/gradle/kotlin-dsl-samples/releases/tag/v1.0-RC
https://blog.gradle.org/kotlin-meets-gradle/
https://blog.gradle.org/kotlin-meets-gradle/
https://docs.gradle.org/current/userguide/kotlin_dsl.html
https://docs.gradle.org/current/userguide/kotlin_dsl.html
https://www.forbes.com/sites/oracle/2015/05/20/javas-20-years-of-innovation/
https://www.forbes.com/sites/oracle/2015/05/20/javas-20-years-of-innovation/
https://www.promptbytes.com/blog/java-vs-kotlin-the-no-nonsense-comparison-of-android-programming-languages
https://www.promptbytes.com/blog/java-vs-kotlin-the-no-nonsense-comparison-of-android-programming-languages
https://kotlinlang.org/foundation/kotlin-foundation.html
https://kotlinlang.org/foundation/kotlin-foundation.html
https://www.boldare.com/blog/differences-between-class-and-dex-files-in-java-android/
https://www.boldare.com/blog/differences-between-class-and-dex-files-in-java-android/
https://techcrunch.com/2019/05/07/kotlin-is-now-googles-preferred-language-for-android-app-development/
https://techcrunch.com/2019/05/07/kotlin-is-now-googles-preferred-language-for-android-app-development/
https://techcrunch.com/2019/05/07/kotlin-is-now-googles-preferred-language-for-android-app-development/
https://applikeysolutions.com/blog/kotlin-vs-java-what-is-better-for-android-development
https://applikeysolutions.com/blog/kotlin-vs-java-what-is-better-for-android-development
https://www.techopedia.com/definition/4220/android-sdk
https://www.techopedia.com/definition/4220/android-sdk
https://www.techopedia.com/definition/3828/software-library
https://www.techopedia.com/definition/3828/software-library
https://developer.android.com/jetpack
https://developer.android.com/jetpack
https://medium.com/@dannydamsky99/heres-why-you-probably-shouldn-t-be-using-the-gson-library-in-2018-4bed5698b78b
https://medium.com/@dannydamsky99/heres-why-you-probably-shouldn-t-be-using-the-gson-library-in-2018-4bed5698b78b
https://medium.com/@dannydamsky99/heres-why-you-probably-shouldn-t-be-using-the-gson-library-in-2018-4bed5698b78b

Bibliography

[52] Retrofit. 2013. Available from: https://square.github.io/retrofit/

[53] Limantara, M. Overview of Android Project Structure and
Naming Conventions [online]. 2016. Available from: https:
//medium.com/@mikelimantara/overview-of-android-project-
structure-and-naming-conventions-b08f6d0b7291

[54] Brodie, M. L. On the development of data models. In On conceptual
modelling, Springer, 1984, pp. 19–47.

[55] Adobe XD [software]. Available from: https://www.adobe.com/cz/
products/xd.html

[56] Bottom Navigation - Material Design. 2019. Available from: https://
material.io/components/bottom-navigation/

[57] Petrášová, E. Uživatelské testování #1 [online]. 2017. Available from:
https://medium.com/house-of-rezac/uzivatelske-testovani-1-
fb4ad9b5de6e

[58] Sinhal, A. MVC, MVP and MVVM Design Pattern [online]. 2017. Avail-
able from: https://medium.com/@ankit.sinhal/mvc-mvp-and-mvvm-
design-pattern-6e169567bbad

[59] Davis, I. What Are The Benefits of MVC? [online]. 2008.
Available from: https://blog.iandavis.com/2008/12/what-are-the-
benefits-of-mvc/

[60] Ramsdale, C. Building MVP apps: MVP Part I [online]. 2010. Available
from: http://www.gwtproject.org/articles/mvp-architecture.html

[61] Guide to app architecture | Android Developers. 2019. Available from:
https://developer.android.com/jetpack/docs/guide

[62] square/moshi: A modern JSON library for Kotlin and Java. 2013. Avail-
able from: https://github.com/square/moshi

[63] insert-koin.io · a smart Kotlin dependency injection framework. 2019.
Available from: https://insert-koin.io/

[64] ML Kit for Firebase | Firebase. 2019. Available from: https://
firebase.google.com/docs/ml-kit

[65] Configure build variants | Android Developers. 2019. Available from:
https://developer.android.com/studio/build/build-variants

[66] Myers, G. J.; Sandler, C.; et al. The art of software testing. John Wiley
& Sons, 2011.

57

https://square.github.io/retrofit/
https://medium.com/@mikelimantara/overview-of-android-project-structure-and-naming-conventions-b08f6d0b7291
https://medium.com/@mikelimantara/overview-of-android-project-structure-and-naming-conventions-b08f6d0b7291
https://medium.com/@mikelimantara/overview-of-android-project-structure-and-naming-conventions-b08f6d0b7291
https://www.adobe.com/cz/products/xd.html
https://www.adobe.com/cz/products/xd.html
https://material.io/components/bottom-navigation/
https://material.io/components/bottom-navigation/
https://medium.com/house-of-rezac/uzivatelske-testovani-1-fb4ad9b5de6e
https://medium.com/house-of-rezac/uzivatelske-testovani-1-fb4ad9b5de6e
https://medium.com/@ankit.sinhal/mvc-mvp-and-mvvm-design-pattern-6e169567bbad
https://medium.com/@ankit.sinhal/mvc-mvp-and-mvvm-design-pattern-6e169567bbad
https://blog.iandavis.com/2008/12/what-are-the-benefits-of-mvc/
https://blog.iandavis.com/2008/12/what-are-the-benefits-of-mvc/
http://www.gwtproject.org/articles/mvp-architecture.html
https://developer.android.com/jetpack/docs/guide
https://github.com/square/moshi
https://insert-koin.io/
https://firebase.google.com/docs/ml-kit
https://firebase.google.com/docs/ml-kit
https://developer.android.com/studio/build/build-variants

Bibliography

[67] Everett, G. D.; McLeod, R., Jr. Software Testing: Testing Across the
Entire Software Development Life Cycle. John Wiley & Sons, 2007.

[68] Annuzzi Jr., J.; Darcey, L.; et al. Advanced Android Application Devel-
opment. Addison-Wesley Professional, 2014.

[69] Coppola, R.; Raffero, E.; et al. Automated Mobile UI Test Fragility: An
Exploratory Assessment Study on Android. In Proceedings of the 2Nd
International Workshop on User Interface Test Automation, INTUITEST
2016, New York, NY, USA: ACM, 2016, ISBN 978-1-4503-4412-8, pp. 11–
20, doi:10.1145/2945404.2945406. Available from: http://doi.acm.org/
10.1145/2945404.2945406

[70] Kaikkonen, A.; Kekäläinen, A.; et al. Usability Testing of Mobile Applica-
tions: A Comparison Between Laboratory and Field Testing. J. Usability
Studies, volume 1, no. 1, Nov. 2005: pp. 4–16, ISSN 1931-3357. Available
from: http://dl.acm.org/citation.cfm?id=2835525.2835527

58

http://doi.acm.org/10.1145/2945404.2945406
http://doi.acm.org/10.1145/2945404.2945406
http://dl.acm.org/citation.cfm?id=2835525.2835527

Appendix A
Acronyms

GUI Graphical User Interface

XML Extensible Markup Language

UX User Experience

UI User Interface

API Application Programming Interface

REST Representational State Transfer

PWA Progressive Web Application

SDK Software Development Kit

NDK Native Development Kit

MVC Model-View-Controller

MVP Model-View-Presenter

MVVM Model-View-ViewModel

ART Android Runtime

VM Virtual machine

DSL Domain specific language

UML Unified Modeling Language

59

Appendix B
Contents of enclosed USB drive

readme.txt......................file with USB drive contents description
src...directory of source codes

thesis...................directory of LATEX source codes of the thesis
SlevomatPartnerUI.xd......................wireframe design source file
SlevomatPartnerUI.pdf......................exported wireframe design
text..thesis text directory

thesis.pdf................................thesis text in PDF format

61

Appendix C
User guide

63

Slevomat Partner: user guide

Tadeáš Valenta

Faculty of Information Technology,

Czech Technical University in Prague,
Thákurova 9, 160 00 Praha 6

and

Slevomat.cz,

Pernerova 691/42, 186 00 Prague 8 – Karlín

C. User guide

64

How to...
Start using the application 2

Validate voucher 3

Create a reservation 4

Add a new account 5

React in discussion 6

Switch accounts 7

React to a rating 8

1

65

Start using the
application

1. Go to the link
https://play.google.com/store/ap
ps/details?id=cz.slevomat.partner
and tap Install. This will install
the application into your phone.
If you have the application
already installed, you will see an
Uninstall button.

2. Find the application on your
phone and open it.

3. Read the welcome message
4. Give the application the camera

access (it is used for voucher
scanning only)

5. Open administration of your
partner account:
www.slevomat.cz/partner

6. Go to tab ​Mobile application
7. Click ​Add a new device
8. Scan the code with the

application. Or tap the Pen
button to type in the code.

9. Fill in the name for your device or
use the generated one

2

C. User guide

66

Validate voucher
1. Tap the Scanner in the bottom bar
2. Aim the device at the QR code of the voucher you want to scan
3. Voucher status is automatically shown
4. Available action options are shown in the detail. You can always go back with the

Back button, it will not cause any changes to the voucher
5. Below you can see a subset of voucher states that might occur

1) Voucher is valid and it has no
reservations created

2) Voucher is valid and it already has
reservation created

3) Voucher was already redeemed

4) Voucher is expired, it can’t be redeemed

3

67

Create a reservation

1. Tap Reservations in the bottom
bar

2. Tap + sign in the top menu to
create a new reservation

3. Fill in the code of the voucher
you want to create the
reservation for

4. Fill in the details of the
reservation into the form

5. Confirm the reservation by
tapping the Create reservation
button

6. Reservation is created, you can
see it in your list of reservations

4

C. User guide

68

Add a new account

1. Go to the Others tab
2. Tap Account switch
3. Now you are in the Account

switcher menu
4. Tap Add another account to add

another account
5. Login into

www.slevomat.cz/partner
6. Go to tab ​Mobile application
7. Click ​Add a new device
8. Scan the code with the

application. Or tap the Pen
button to type in the code.

9. Fill in the name for your device or
use the generated one

10. Tap Activate the device
11. Your another account was

activated

5

69

React in discussion

1. Tap Discussion in the bottom bar
2. Choose the question you want to

answer by tapping on the Answer
button

3. Type in your answer to the
question

4. Tap Save to send the answer

6

C. User guide

70

Switch accounts

1. Tap Others in the bottom bar
2. Tap Account switcher from the

list
3. List of your accounts is shown

4. Tap the name of the account you
want to use

5. The blue radio button is shown
next to the active account

7

71

React to a rating

1. Tap Others in the bottom bar
2. Tap Rating from the list of

options
3. Choose the rating you want to

react to by tapping on the React
button

4. Type in your reaction
5. Tap Save to send the reaction

8

C. User guide

72

	Introduction
	Project specification and goals
	Project specification
	Functional requirements for the new application
	Non-functional requirements

	State of the art
	Mobile development
	Native vs Hybrid vs Progressive Web Application development
	Slevomat's existing solution analysis
	Other existing solutions

	Android
	Basic elements
	UI elements
	Building an Android application
	Kotlin vs Java
	Android SDK
	Libraries
	Android project structure

	Analysis and design
	Use cases
	Data model
	User experience analysis
	Wireframes
	User validation of the prototype
	Application architecture

	Realisation
	Used tools
	Libraries used in the project
	Project setup
	Multi-language setup
	User interfaces
	QR code scanner

	Testing
	Separating release and test versions
	Unit testing
	Automated UI testing
	Usability testing

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed USB drive
	User guide

