FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

ASSIGNMENT OF BACHELOR'’S THESIS

Title: Application of Artificial Neural Networks in Solving the (N#2-1)-Puzzle
Student: Vojtéch Cahlik

Supervisor: doc. RNDr. Pavel Surynek, Ph.D.

Study Programme: Informatics

Study Branch: Knowledge Engineering

Department: Department of Applied Mathematics

Validity: Until the end of summer semester 2019/20

Instructions

Many algorithms exist that solve the (N”A2-1)-puzzle. These algorithms guarantee either optimal or sub-
optimal solutions. Examples of important optimal search-based algorithms include A*, CBS and ICTS. There
is usually a trade-off between the speed of algorithms and the quality of solutions. Relaxations towards
near-optimal solutions usually lead to improved speed.

The goal of the thesis is to investigate the potential of Artificial Neural Networks (ANNs) for finding
interesting trade-offs between the speed and optimality in solving (NA2-1)-puzzle by search-based solvers.
The following steps are expected to be done:

(1) analyze potential applications of ANNs in solving the (NA2-1)-puzzle in a near-optimal manner with
selected search-based methods,

(2) integrate ANNs into selected methods and implement a prototype,

(3) evaluate suggested method theoretically and experimentally on a relevant set of benchmarks.

References

[1] Pavel Surynek, Petr Michalik. The Joint Movement of Pebbles in Solving the (N2-1)-Puzzle Suboptimally and its
Applications in Rule-Based Cooperative Path-Finding. Autonomous Agents and Multi-Agent Systems (JAAMAS), Volume
31, Issue 3, pp. 715-763, IFAAMAS/Springer, 2017, ISSN: 1387-2532.

[2] lan Parberry: A Real-Time Algorithm for the (n”2-1)-Puzzle. Inf. Process. Lett. 56(1): 23-28 (1995)

[3] Guni Sharon, Roni Stern, Meir Goldenberg, Ariel Felner: The increasing cost tree search for optimal multi-agent
pathfinding. Artif. Intell. 195: 470-495 (2013)

[4] Guni Sharon, Roni Stern, Ariel Felner, Nathan R. Sturtevant: Conflict-based search for optimal multi-agent
pathfinding. Artif. Intell. 219: 40-66 (2015)

Ing. Karel Klouda, Ph.D. doc. RNDr. Ing. Marcel Jifina, Ph.D.
Head of Department Dean

Prague February 8, 2019

Acknowledgements

I would like to thank my supervisor, Mr. Surynek, for being very patient with
me and for motivating me to do my best. Without his wisdom and experience,
writing this thesis would have been impossible. I would also like to thank my
family for their support and love.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on January 8, 2020

Czech Technical University in Prague

Faculty of Information Technology

(© 2020 Vojtéch Cahlik. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Cahlik, Vojtéch. Application of Artificial Neural Networks in Solving the
(N?—1)-Puzzle. Bachelor’s thesis. Czech Technical University in Prague, Fac-
ulty of Information Technology, 2020.

Abstrakt

Prace se zaméruje na vyuziti umélych neuronovych siti pri hledani reseni hla-
volamu (N2—1), ktera jsou blizk4 fesenim optimalnim. V prvni éasti prace je
provedena analyza moznosti vyuziti umélych neuronovych siti pii feseni hla-
volamu, a je zjisténo, Ze nejefektivnéjsi je pouzit umélou neuronovou sit jako
heuristiku pro algoritmy prohleddvani stavového prostoru. Pozdéji se prace
zaméruje na natrénovani nékolika heuristik zalozenych na hlubokych umélych
neuronovych sitich, jejichz vykonnost je nasledné experimentalné zmérena.
Pii vyuziti heuristik spolu s algorithem A* jsou nalezend FeSeni nejcastéji
optimalni, a pocet expandovanych stavi je vyrazné nizsi nez pti pouziti srov-
natelnych pripustnych i nepripustnych heuristik.

Klitova slova umélé neuronové sité, hlavolam (N2—1), heuristické pro-
hledavani, reseni blizkd optimalnim, hluboké uceni

Abstract

The thesis focuses on the usage of artificial neural networks in near-optimal
solving of the (N?—1)-puzzle. In the first part of the thesis, possible applica-
tions of artificial neural networks in solving the puzzle are analyzed, and it is
found that the most effective way is to use them as a heuristic for state-space

vii

search algorithms. Later in the thesis, several heuristics based on deep arti-
ficial neural networks are trained, and they are evaluated on a set of bench-
marks. When used together with the A* algorithm, the solutions obtained
with the new heuristics are optimal most of the time, while the number of
expanded nodes is significantly lower than that in comparable admissible and
non-admissible heuristics.

Keywords artificial neural networks, (N?—1)-puzzle, heuristic search, near-
optimal solving, deep learning

viii

Contents

Introductionl 1
[Goal of Thesis 3
I1 Background| 5
1.1 The (N*~1)-puzzle] 5
(1.1.1 History| 5

(.L1.2 Problem definition| 5

(1.1.3 Obtaining random configurations| 6

[1.1.3.1 Random shufflingl 7

[1.1.3.2 Random permutations|. 7

[1.1.3.3 Convergence of the two approaches| 7

(1.1.4 Similar problem domains| 8

[1.2 Rule-based methods for solving| 8
1.3 MAPEF approach tosolvingl 9
(1.3.1 The increasing cost tree search algorithm| 10

[1.3.2 The conflict-based search algorithm| 10

(1.3.3 Discussion of the MAPF approach| 11

[1.4 State-space search approach to solving| 11
[1.4.1 The breadth-first search algorithm| 14

[1.4.2 The depth-first search algorithm| 15

[1.4.3 The A* search algorithm| 16

[1.4.4 The iterative deepening A* algorithm| 16

(L.4.5 Manhattan distance heuristic| 18

(.4.6 Pattern database heuristid. 19

(.o Artificial neural networkslo 0oL 21
[1.5.1 'The backpropagation algorithm|. 23

(1.5.2 Adam optimization|. 24

[1.5.3 'The problem of unstable gradients| 25

ix

(1.5.3.2 He initializationl 26

(.5.3.3 Batch normalizationl 27

[1.5.4 Learning rate] L. 27

[1.5.5 Dropout|. 28

[1.5.6 Deep learning| 28
2_Related Workl 31
3 Designing a New Heuristic| 33
B.I Tntroductionl. 33
B2 Cost functionl 35
[3.2.1 Asymmetric mean squared error| 35

3.3 Input features encoding] 35
3.4 Training set|o 36
[3.5 Training of the ANN-distance heuristics| 38
13.5.1 Hyperparameters and techniques| 38

3.5.2 Training|o o 38

13.5.3 Resulting ANN-distance heuristics| 39

3.6 Discussion| 39

4 Experiments| 41
4.1 Environment description| 41
4.2 Experimental evaluation of the ANN-distance heuristics| 41
M.2.1 Referential heuristicsl 41

4.2.2 FEvaluation datasetl 42

4.2.3 Evaluation on single predictions] 42

“4.2.4 Fvaluation on A* searchesl. 45

4.2.5 Competitive comparison against heuristics presented in |

| other studies| 48
{4.2.6 Analysis of the behavior of A* search with the underly- |

| ing ANN-distance heuristic] 50
[Discussionl 51
[Conclusion| 55
|Bibliography| 57
|IA Acronyms| 61
IB_Contents of Attached CDI 63

List of Figures

1.1 A solved 15-puzzle| 6
1.2 Boards betore and atter moving pebble 10 to the left| 7
1.3 A subproblem ot the 15-puzzle pattern database heuristic, where |
| the blank and the pebbles 1, 2, 3, 4, 5, 6, 7V and 8 must be placed |
| into their goal positions| 20
1.4 Diagram of a fully-connected multilayer perceptron with six neu- |
| rons in the input layer, eight neurons in the first hidden layer, tour |
| neurons in the second hidden layer, and a single neuron in the |
| output layer|. 22
[1.5 Comparison of the sigmoid, ReLLU, and ELU activation functions| . 26
3.1 The AMSE cost of a single instance for various values ot o 36
[3.2 Histogram of optimal solution costs of nodes expanded during A* |
[search with the PDB heuristidl. 37
[3.3 Histogram of optimal solution lengths of boards in the training |
[datasefl 37
4.1 Histogram of optimal solution costs of boards in the evaluation |
[datasefl 42
4.2 PDB heuristics: histogram of single predictions| 43
4.3 ANN-distance heuristics: histogram of single predictions| 43
4.4 PDB heuristics: histogram of errors on single predictions| 44
4.5 ANN-distance heuristics: histogram of errors on single predictions| 44

4.6 Histogram of number of nodes expanded during A* search (trimmed)| 48

4.7 Histogram of optimal solution costs of nodes expanded during A*

| ' with ihe ANN- ot o Wil ihe NSE l

xi

50

List of Tables

4.1 Performance analysis of A* running with various heuristics| 46
4.2 Suboptimality of the solutions found by A¥ 47
4.3 Comparison of search algorithms against heuristics presented in |
| other papers| 49

xiii

Introduction

Artificial neural networks (ANNSs) are a relatively old domain of research, but
have gained most of their popularity only recently. ANNs are very powerful
computing systems which are able to learn how to perform tasks by being given
examples, without the need to be explicitly programmed. ANNs are commonly
used to classify images, perform speech recognition, recommend items to users,
and play games. At the time of writing, new applications of ANNs emerge
every day. It is interesting to analyze the potential for applications of ANNs
in the (N?2—1)-puzzle, a field in which ANNs, and especially deep learning,
has had only little attention.

The (N?—1)-puzzle is a sliding tile puzzle in which the goal is to rearrange
N2—1 pebbles on a square board of size N x N into a goal configuration, where
the numbered pebbles are ordered from 1 to N—1. The pebbles are rearranged
using a single empty position called the blank: a pebble can move by sliding
horizontally or vertically into the adjacent blank position. There are many
versions of this game based on choosing different N, of which the most famous
is the 15-puzzle with a 4 x 4 board.

A solution is a sequence of moves which leads to the goal configuration.
Many different solutions of various lengths exist to every solvable initial con-
figuration of the puzzle. A solution is called optimal if no other solution,
which is composed of a smaller number of moves, exists. It is fairly easy
to solve the (N2—1)-puzzle suboptimally: this is usually approached by sys-
tematically moving more and more pebbles into their goal positions, which
gradually lowers the complexity of the remaining problem. However, finding
optimal solutions is a computationally challenging problem, as it is NP-hard
[1]. Finding optimal solutions is so complicated that up to now, only a hand-
ful of optimal solutions of random 24-puzzle instances have been found [2],
and optimally solving a random instance of the 35-puzzle remains an open
problem.

Problem domains such as the (N?—1)-puzzle are often called “toy domains”.
This is somewhat unfair, as the research of these problems is far from useless:

INTRODUCTION

it has contributed various ideas back into other areas of computer science and
artificial intelligence. Moreover, these puzzles serve as important benchmarks
for various types of heuristics and heuristic search algorithms [2]. Any progress
in these toy domains may quickly be applied elsewhere, which is the reason
why the research of these problem domains is important.

Most of the literature about artificial intelligence focuses on discovering
optimal solutions, yet many real-world problems, such as pathfinding in com-
puter games, robotic navigation, and planning, are so challenging that ob-
taining optimal solutions is often too slow. [3] Because of the complexity of
finding these optimal solutions, a focus of research may be to find subopti-
mal solutions of good quality in satisfactory time. This is the focus of this
thesis: to quickly obtain solutions of the 15-puzzle that are often optimal or
near-optimal, while utilizing artificial neural networks.

The thesis is structured as follows. The first chapter describes the neces-
sary background of solving the (N?—1)-puzzle and defines the essential terms
and concepts of heuristic search. The first chapter also analyzes other ap-
proaches to solving the (N?—1)-puzzle besides heuristic search. The second
chapter gives an overview of the current state of research on the topic of solv-
ing the (N2—1)-puzzle with the use of artificial neural networks. The third
chapter describes the ideas behind designing heuristics based on artificial neu-
ral networks, and discusses the training of these heuristics. The last chapter
focuses on experimental evaluation of the new heuristics.

Goal of Thesis

There are two main goals of this thesis.

The first goal is to perform research of the current state-of-the-art methods
for solving the (N?—1)-puzzle, with the focus on methods employing artificial
neural networks. This will be covered in the first two chapters of this thesis.
Research will explore various philosophies and techniques which have previ-
ously been used for solving the (N2—1)-puzzle, and will present them in a clear
and informative way to the reader. This part of the thesis will also analyze
the history and potential for the use of artificial neural networks in solving
the (N2—1)-puzzle.

The second goal of this thesis is to improve upon the existing applications
of artificial neural networks in solving the (N2—1)-puzzle in a near-optimal
manner. This will be the focus of the third and fourth chapter of this thesis.
A state-of-the-art method utilizing artificial neural networks will be selected
and a prototype will be implemented, which will then be evaluated using
various benchmarks.

CHAPTER 1

Background

1.1 The (N2-1)-puzzle

1.1.1 History

The (N2—1)-puzzle has a long and rich history, with many contradictory claims
and false popular beliefs. While it is known that the 15-puzzle was invented
in the 1870s, it is not known for certain who it’s creator was: while most of
literature states the chess player Sam Loyd, Slocum and Sonneveld disagree
and have stated postmaster Noyes Palmer Chapman as the puzzle’s inventor
[4]. In any case, the 15-puzzle started a world-wide craze in the year of 1880
[4]. This craze initiated partly because of Sam Loyd’s $1000 cash prize offer
for solving a particular state of the puzzle, namely the goal state with the tiles
14 and 15 reversed. However, William Johnson and William Story proved that
this assignment was impossible, as the state space of the 15-puzzle is divided
into even and odd permutations which can’t be transformed into each other.
Solving Loyd’s assignment would require switching between these two types
of permutations and is hence impossible to solve [5].

The popularity of the (N?—1)-puzzle has not faded much over time, as it
remains one of the most popular puzzles in the world. Recently, the puzzle
has appeared in a digital version on computers and smartphones, and even
as a mini-game in larger computer games, such as in The Legend of Zelda
(Nintendo, 2003) and Machinarium (Amanita Design, 2009) [6].

1.1.2 Problem definition

The (N?2—1)-puzzle consists of a set of pebbles P = {1,2,..., N? — 1}, which
are placed on a square board of size N x N with positions numbered from 1 to
N2. A configuration can be expressed as an assignment ¢ : P — {1,2,..., N2},
which maps the pebbles to the positions on the board. [7]

Definition. The (N°—1)-puzzle is a quadruple ® = [N, P, cq,c,], where N

5

1. BACKGROUND

13114 |15

Figure 1.1: A solved 15-puzzle

is the puzzle’s size, P = {1,2,...,N? — 1} is a set of pebbles, cg : P —
{1,2,...,N?} is an initial configuration of tiles and ¢, : P — {1,2,...,N?}
is a goal configuration (an identity with cy(p) =p for p € {1,2,...,N?—1}).

i)

One position on the board always remains empty and is called the blank.
This blank position allows to rearrange the puzzle by sliding a pebble into it.
The objective of the (N?—1)-puzzle is to rearrange the pebbles from the initial
configuration ¢y to the goal configuration ¢, using a set of moves: left, right,
up and down. A move is valid for a given configuration only if the target
position adjacent to the moved pebble is blank.

The solution sequence can be expressed as o = [my, ma, ..., m;| where m; €
{Up, Down, Left, Right} represents a single valid move. We then call | the
solution length or the solution cost and say that the solution is optimal if
there exists no other solution sequence from ¢y to ¢, whose solution length is
shorter. [7]

There is a limited number of the different solvable configurations of the
(N2—1)-puzzle. This set of solvable configurations is called the state-space:
the state-space for the 8-puzzle contains over 10° states (or configurations),
the 15-puzzle space contains over 10'3 nodes, and the 24-puzzle space contains
almost 10%° nodes [2]. This is exactly half of the total number of configura-
tions, as half of them is unsolvable.

1.1.3 Obtaining random configurations

There are two straightforward methods for obtaining random configurations
of the (N2—1)-puzzle: the first method is to randomly shuffle the board, and
the second method is to obtain random permutations of the pebble positions.

6

1.1. The (N?—1)-puzzle

1.1.3.1 Random shuffling

Random shuffling is done by randomly performing n moves, starting from
the goal state. In some implementations, the move opposite to the last move
may be disallowed. In any case, n should be set to a relatively high number,
preferably several thousands of shuffles. Otherwise, the optimal solutions of
the obtained configurations will be very short.

1.1.3.2 Random permutations

Random permutations may be used to directly generate the list of pebble posi-
tions on the board. However, a check must be made to see if such a generated
configuration is actually solvable, as half of the puzzle configurations obtained
with random permutations are unsolvable. This check consists of counting the
number of inversions in the configuration permutation and possibly (based on
N) of counting the distance of the blank from the bottom row [§]. If a gener-
ated configuration is found to be unsolvable, it is discarded and the process is
iterated until a solvable configuration is obtained.

Average and maximum optimal solution costs can be established: for the
15-puzzle, the average optimal solution cost is about 52.6 moves, and the
maximum optimal solution cost is 80 moves. For the 24-puzzle, the average
optimal solution cost is over 100 moves, while the maximum optimal solution
cost is unknown. [2] [5]

1.1.3.3 Convergence of the two approaches

Interestingly, experiments show that these two approaches to obtaining ran-
dom configurations converge, that is, the distributions of optimal solution
lengths become more and more equal as n in random shuffling increases. For
n of 10,000, the distribution of optimal solution lengths obtained by random

11 2|3]| 4 1123]| 4

5|16 |78 516 |78
>

9 10 | 14 9 |10 14

1315|1112 1315|111 |12

Figure 1.2: Boards before and after moving pebble 10 to the left

1. BACKGROUND

shuffling is almost identical to the distribution obtained with random permu-
tations.

1.1.4 Similar problem domains

The (N?—1)-puzzle is quite similar to two other famous problems: the Rubik’s
cube (invented by Erno Rubik in 1974, 100 years later than the 15-puzzle [5])
and the Towers of Hanoi puzzle. Both of these problems have a discrete state-
space and contain only a predefined set of actions. While the state-space of
the Towers of Hanoi is much smaller than that of the (N?—1)-puzzle (for the
respective V), the state-space of the Rubik’s cube is much larger, with about
4.3 x 10'9 states for the 3 x 3 x 3 Rubik’s cube [5]. The Rubik’s cube is
also much more difficult for humans to solve: even once a part of the puzzle
is completed, it must be temporarily dismantled in order for the remaining
portions to be solved.

1.2 Rule-based methods for solving

The most straightforward way to solve the (N2—1)-puzzle is to use a rule-based
algorithm. These algorithms are typically defined by a set of rules, which de-
fine only the next move (or several moves) at a time. Unlike other algorithms,
rule-based algorithms perform very little to no search. Thanks to this, some
rule-based algorithms are real-time, which means that O(1) computation time
is required before computing the next move. [9] On the other hand, some
rule-based algorithms have polynomial complexity. All rule-based algorithms
are sub-optimal, which results in the vast majority of solutions being far from
optimal. Another big disadvantage of rule-based algorithms is that they are
often very domain specific, that is, they can’t be applied to other problem
domains. On the other side, these algorithms are fast and require very little
memory.

An example of a rule-based algorithm for the (N2—1)-puzzle is the real-
time Parberry’s algorithm, which works by recursively arranging pebbles to
their goal positions one by one, starting in the left-most column and the top-
most row, then moving on to do the same on the remaining smaller square
area. Movement of a pebble is enabled by vacating the position next to it in the
direction along a path towards the pebble’s goal. The algorithm handles many
special cases by introducing a number of rules. [9, 10] Some enhancement
techniques exist, such as moving the pebbles in pairs or triplets called snakes,
which slightly pushes the algorithm towards better optimality of solutions.
[10]

Rule-based algorithms may be successfully used when any solution to the
problem is satisfactory, that is, when even solutions which are far from optimal
are sufficient. On the other hand, most algorithms that produce optimal

1.3. MAPF approach to solving

solutions run much slower than rule-based algorithms. Clearly there is a trade-
off between speed and quality of solutions. Because of the high sub-optimality
and limited space for the use of artificial neural networks, the rest of this thesis
does not consider rule-based methods for solving, and instead focuses on other
methods, which produce optimal or near-optimal solutions.

1.3 MAPF approach to solving

Multi-agent path finding (MAPF), sometimes called cooperative path finding
(CPF), is a very different approach to solving the (N2—1)-puzzle. In MAPF,
instead of an NxN board with pebbles, the problem consists of a graph G =
(V, E), k entities called agents and labeled a1, as . ..ay (in the (N?2—1)-puzzle,
the agents play the role of pebbles), and a start and goal vertex start; € V
and goal; € V for each agent. The vertices V represent the positions on the
puzzle’s board, and the edges E represent the neighboring positions. At each
time step, an agent can either stay idle or move to a neighboring vertex. The
goal is to find a sequence of actions for each agent such that each agent gets
from its start; to its goal; vertex without any conflicts, while minimizing a
global cost function. The cost function is usually defined as the number of
time steps required to move all agents into their goal positions. A conflict
occurs when two agents share a vertex at the same time, or when two agents
switch their respective vertices in a single time step (in the (N2—1)-puzzle,
this would seem as two pebbles sliding through each other).

As MAPF is a generalization of the (N?—1)-puzzle [10], many different
kinds of algorithms exist for solving very different kinds of MAPF prob-
lems (with various topologies and sizes of graphs and different placements
of agents). There is no universally dominant algorithm which would excel at
solving all MAPF problems.

MAPF algorithms can be classified by the computing setting, which can
either be centralized (a single CPU which has complete information of all
the agents) or decentralized (each agent having its own computing power and
only limited information of the environment). It is much easier to work in the
centralized computing setting, to which two main approaches exist - decoupled
and coupled. In the decoupled approach, paths are planned for each agent
separately. This results in relatively fast algorithms, but optimality is usually
not guaranteed. The coupled approach formalizes MAPF as a global, single-
agent-like search problem. [IT]

There are two modern centralized, coupled MAPF algorithms: ICTS [12]
and CBS [I1]. Both of these algorithms are guaranteed to produce optimal
solutions. The following sections analyze them and show that none of these
algorithms is suitable for solving the (N2—1)-puzzle.

1. BACKGROUND

1.3.1 The increasing cost tree search algorithm

The Increasing Cost Tree Search (ICTS) algorithm works on two levels: the
high-level and the low-level. The algorithm is based on the understanding
that an optimal solution is built from the individual paths of agents, each of
which has a specific (optimal) length.

In the high-level, a tree called Increasing Cost Tree (ICT) is searched in
a breadth-first manner. In ICT, each node s consists of a vector of individual
path costs, s = [C1, Ca,...Ck], with one cost per agent. Each of these nodes
represents all possible solutions to the problem in which the individual cost of
the path of agent a; is exactly C;. Each node of the ICT has exactly k child
nodes, each of which is generated by adding a unit cost to one of the path
costs. The root node of ICT is defined as [opt1,opte, .. .opts], where opt; is
the cost of an optimal individual path of agent a;, which assumes that this
agent is the only agent present in the graph (in the (N2—1)-puzzle, this would
be the Manhattan distance of the pebble from its goal position). A node
[C1,C,...,Ck] is a goal node if the solution, in which the individual cost of
the path of agent «; is exactly Cj, is without any conflicts.

It is clear that a breadth-first search of the ICT will produce the optimal
solution, given a correct goal function. This goal function, which checks if a
non-conflicting solution composed of individual paths of length C; exists, is
defined by the low-level of the ICTS algorithm. More details can be found in
the original ICTS paper [12].

The ICTS algorithm introduces room for the application of artificial neural
networks. Artificial neural networks could produce a lower-bound estimate of
the costs for the root node of the ICT, given the encoded initial positions of the
agents. Unfortunately, the ICTS algorithm seems to be unsuitable for solving
the (N?2—1)-puzzle. Experimentally, ICTS has outperformed the A* algorithm
only in problems where the depth of the goal node in ICT was lower than the
number of agents, and vice versa. [I1] Clearly, in case of the (N2—1)-puzzle,
the depth of the goal node would be much greater than the number of agents.
However, if a precise artificial neural network predicted exactly the correct
numbers for the estimate of the costs for the root node of the ICT, the search
would degrade to running only the low-level of the algorithm. Unfortunately,
the authors of the original ICTS paper do not state the time complexity of
the low-level. More research is needed to analyze this, however, the analysis
is out of the scope of this thesis.

1.3.2 The conflict-based search algorithm

Like ICTS, the Conflict-Based Search (CBS) algorithm also works at two
levels. The general idea is to decompose the MAPF problem into a large
number of single-agent path-finding problems. In the high-level, a constraint
tree is searched. Each node in the constraint tree carries a set of constraints,

10

1.4. State-space search approach to solving

each of which prohibits a specific agent from occupying a specific vertex at
a specific time. Given the list of constraints for a node, the low-level is run,
which finds a path for each agent such that no constraints of that node are
violated. These paths are then pair-wise searched for conflicts. If no conflict
is found, the paths are returned as the solution, otherwise, a new constraint
must be added to the constraint tree in order to prevent the conflict. It is
clear that in order to resolve a conflict in which two agents share a vertex
at the same time, a constraint must be added which prohibits one of the
agents from occupying that vertex at that time. In order to ensure optimality,
two child nodes are created, each inheriting the parent node’s constraints,
and each adding a new constraint for one of the conflicting agents. Adding
both constraints independently to the constraint tree ensures optimality of
the algorithm. The low-level and other details of the CBS algorithm can be
found in the original paper [11].

Unfortunately, like the ICTS algorithm, CBS is also not suitable for solving
the (N?2—1)-puzzle. The algorithm runs in exponential time with respect to
the number of encountered conflicts. This can be useful for processing sparsely
populated graphs, but not for the dense environment of the (N2—1)-puzzle,
where an enormous amount of conflicts would occur. Experiments have shown
that the A* algorithm dominates CBS even on graphs with a much lower room
for conflicts than in the (N?—1)-puzzle. [IT]

1.3.3 Discussion of the MAPF approach

Overall, the MAPF approach to solving the (N?—1)-puzzle with pebbles as
agents is slow, as almost all of the vertices are occupied by an agent — which
leaves very little room for manipulation with the individual agents at each
time step. It seems to be much more efficient to operate with just the blank
as “an agent” (instead of the pebbles), as this enables working with just four
actions per time step. Because of this, this thesis does not follow the topic of
MAPF any further and instead focuses on other methods.

1.4 State-space search approach to solving

Instead of working with every pebble as an agent, solving the (N?—1)-puzzle
can be approached by working with only one agent, the blank. This “agent”
has a set of actions, which can be used to change the state of the world.
This is the basic idea behind state-space search. In state-space search, each
state represents a configuration of the (N2—1)-puzzle. States are connected by
actions, which come from the set of {Up, Down, Left, Right} and represent
moving the blank between two configurations (or states). States and actions
together create a state-space, or a solution graph, which can then be searched
from the starting position with the intention of obtaining a sequence of actions
that reaches the goal.

11

1. BACKGROUND

Algorithm 1 The tree search algorithm [I3] p. 77]

function TREE-SEARCH (initial_node)
open < empty data structure
add initial_node to open
loop
if open is empty then return failure
node < node chosen by search strategy, removed from open
if node contains a goal state then return SOLUTION-SEQUENCE(node)
expand node, add resulting nodes to open
end loop
end function

With a given initial state, the possible action sequences together create
a search tree, whose root is at the initial state. The branches of the tree
represent actions and the nodes represent the states in the state-space of the
problem. [I3 p. 95| While searching, this sequence of actions is repeated: first,
a node is selected (starting with the initial node), and is checked whether the
underlying state is the goal state. If it is not, the node is “expanded”, meaning
that each legal action is applied, which generates a new set of nodes. These
generated nodes are put aside for later expansion. The set of all nodes which
have already been generated, but not yet expanded, is called the frontier, or
the open list (this is a misnomer as the underlying data structure does not
have to be a list). This general algorithm is called tree search, and virtually all
search algorithms share its structure; they mostly differ only by the method
of selecting a node for expansion (this is called the search strategy).

The main problem of the tree search algorithm is encountered when there
is more than one way to get from one state to another, as is the case of the

Algorithm 2 The graph search algorithm [13] p. 77]

function GRAPH-SEARCH(initial_node)
open < empty data structure
closed < empty set
add initial_node to open
loop
if open is empty then return failure
node < node chosen by search strategy, removed from open
if node contains a goal state then return SOLUTION-SEQUENCE(node)
closed < closed U {node}
expand node, add resulting nodes to open
only if not already in open or closed
end loop
end function

12

1.4. State-space search approach to solving

(N2—1)-puzzle. These redundant paths make the resulting complexity of the
algorithm much higher than necessary, and can sometimes even cause the
algorithm to run forever (e.g. when there are loops in the state-space and an
unsuitable search strategy is used). In case of the (N?—1)-puzzle, a search
tree of depth d has about 4¢ leaves, but the number of distinct states within
d steps from an initial state is only about 2d? [I3, p. 97]. Luckily, it is easy
to improve the tree search algorithm by introducing the closed list, which is
a data structure that stores every expanded node. Upon expanding a node,
each generated node is checked against the closed list (and sometimes also
against the open list) and if it is found there, the generated node is discarded
instead of being added to the open list. This improved algorithm is called
graph search, and is the basis of most of the algorithms discussed later in this
thesis.

Once the goal state is found by a search algorithm, getting the solution
sequence is easy. Each node must simply remember its parent, so that when
the goal state is reached, the sequence of actions is reconstructed backwards.

There are two main classes of search strategies: uninformed and informed.
Uninformed strategies have no special knowledge about the problem states
beyond just the problem definition. All the uninformed search strategies can
do is expand nodes in order to generate successor nodes, and distinguish goal
states from non-goal states. On the other hand, informed search strategies
use problem-specific knowledge, beyond just the problem definition. They
can decide whether one non-goal state is “more promising” than another, so
that the corresponding nodes can be expanded in the right order. [13, p.
81] Informed search algorithms can tell which parts of the state-space are far
away from the solution, so they often expand less nodes than their uninformed
counterparts, which leads to shorter run-time.

The most common way additional knowledge is added to the informed
search strategies is through heuristic functions. A heuristic function, usually
denoted h, estimates the cost of the optimal solution from a node to the
goal state. The value of h(node) can then be useful to the search strategy
of an algorithm. Heuristics can be categorized by two important properties,
admissibility and consistency; optimality of informed search algorithms
usually strongly depends on these two properties. An admissible heuristic
always underestimates or matches the true cost of reaching the goal. This
means that an admissible heuristic is “optimistic”: it never overestimates the
true optimal solution cost. A heuristic h is consistent if “for every node n
and every successor n' of n generated by any action a, the estimated cost of
reaching the goal from n is no greater than the step cost of getting to n' plus
the estimated cost of reaching the goal from n': h(n) < ¢(n,a,n’) + h(n')”
13, p. 95]. All consistent heuristics are also admissible. In algorithms like
IDA*, admissibility is a sufficient condition for guaranteeing optimality, but it
is not a necessary condition, as there are cases in which heuristic search with
a non-admissible heuristic produces an optimal solution [14].

13

1. BACKGROUND

Many heuristic functions of different qualities exist for the (N?—1)-puzzle
problem. These heuristic functions can be compared by the values they return
for different nodes. Ideally, the value returned by a heuristic function would
be admissible and as close as possible to the optimal solution length [3]. A
heuristic function h; is said to dominate hg if for any node n, hi(n) is greater
or equal to hy(n). Dominating heuristics are preferred as they provide tighter
lower-bound estimates, which generally results in fewer states being expanded
by informed algorithms such as A* and IDA*. However, this is only a rule of
thumb. As Robert Holte pointed out in [I5], there are some cases in which
using a more accurate heuristic results in a larger number of states being
expanded.

1.4.1 The breadth-first search algorithm

Breadth-first search (BFS) is a very simple uninformed search algorithm. It
works by first expanding the initial node, then all the successors of the ex-
panded node, then all the successors of the successors, and so on. This effec-
tively means that first the nodes at depth 1 from the initial node get expanded,
then the nodes at depth 2, etc., which ensures that when a state is first encoun-
tered, it must be on the shortest path from the initial node. This behavior is
made possible by using a first in, first out (FIFO) queue as the data structure
for the open list. Because of these properties, the BF'S algorithm is guaranteed

Algorithm 3 The breadth-first search algorithm [13, p. 82]

function BFS(initial_node)
if initial_node contains a goal state
then return SOLUTION-SEQUENCE(initial _node)
open + empty FIFO queue
closed < empty set
push initial_node to open
loop
if open is empty then return failure
node < pop a node from open
closed <+ closed U {node}
for each child_node in EXPAND(node) do
if child_node not in open or closed then
if child_node contains a goal state
then return SOLUTION-SEQUENCE(child_node)
push child_node to open
end if
end for
end loop
end function

14

1.4. State-space search approach to solving

to produce optimal solutions to the (N?—1)-puzzle.

Algorithm [3|shows a slightly augmented version of the original BFS, which
applies the goal test when a node is first generated, rather than when it is
expanded. This improvement lowers time complexity of the algorithm from
O(b%*1) to O(b?), where b is the branching factor (the maximum number of
successors of a node) and d is the optimal solution depth. [I3, p. 82] However,
this time complexity is still not satisfactory and only allows the use of BFS
for solving random instances of the 8-puzzle, or very simple instances of the
15-puzzle. In order to solve random instances of the latter, more advanced
algorithms are necessary.

Another disadvantage of the BFS algorithm is its space complexity, which
is also O(b?). This often results in the algorithm running out of memory early
on during search.

1.4.2 The depth-first search algorithm

Depth-first search (DFS) is another simple uninformed search algorithm. DFS
works by always expanding the deepest node in the open list. The behavior is
as follows: the algorithm first dives directly to the deepest nodes of the state
space, where the nodes have no unexpanded successors. After expanding these
last nodes and removing them from the open list, the algorithm backs up to the
deepest node that still has unexpanded successors. [I3, p. 85] This behavior
is made possible by using a last in, first out (LIFO) queue as the open list of
the tree-search or graph-search algorithm.

The properties of DFS depend on whether the tree-search or the graph-
search version is used [I3], p. 86]. The tree-search version, shown in Algorithm
may run forever when applied to the (N2—1)-puzzle problem, as it would
possibly get stuck in a loop (this depends on the initial state and exact im-
plementation). However, its space complexity is only O(bm), where m is the
maximum depth. In contrast, the graph-search version is guaranteed to find a
solution, but most likely a highly sub-optimal one and with space complexity

Algorithm 4 Tree version of the depth-first search algorithm
function DFS(initial_node)
open < empty LIFO queue
push initial_node to open
loop
if open is empty then return failure
node < pop a node from open
if node contains a goal state then return SOLUTION-SEQUENCE(node)
expand node, add resulting nodes to open
end loop
end function

15

1. BACKGROUND

of O(b™). [13, p. 87] Also, because the algorithm searches the nodes in a
somewhat random manner, it is likely to take a very long time before finding
a solution. The reason for including the definition of DF'S in this thesis, even
though the algorithm is slow and produces highly suboptimal solutions, is
that its modified version, depth-limited search, is part of the IDA* algorithm,
which is discussed later in section

Depth-limited search is a variant of the tree version of the DFS algo-
rithm. Depth-limited search introduces a depth limit, /, which forces nodes at
depth [from the initial node to behave as if they had no successors. This can
be implemented by introducing a new variable [to the DFS algorithm shown
in Algorithm 4] and not adding new nodes to the open list when expanding a
node with depth larger than I.

1.4.3 The A* search algorithm

A* belongs to the family of best-first search algorithms, that is, algorithms
which always expand the most “promising” node first, and arguably is the
most popular informed search algorithm. It evaluates nodes by the function

f
f(n) = g(n) + h(n), (1.1)

where g(n) is the cost of the current path from the start node to node n, and
h(n) is the heuristic estimate of the cheapest path from n to the goal node.
A* always expands the node with the smallest f(n) first. This is achieved by
using a priority queue as the open list.

Properties of A* depend on whether the tree search or the graph search
version is used. The tree search version is guaranteed to always return the
optimal path from the start to the goal if the heuristic function used is ad-
missible. On the other hand, the graph search version, shown in Algorithm
is guaranteed to return the optimal solution only if its heuristic function
is consistent. The disadvantage of the tree search version is that it tends to
recalculate large subtrees if a shorter path to an already processed node is
found.

The time complexity of the algorithm strongly depends on the heuristic
function used. In practice, however, A* search coupled with a reasonably
powerful heuristic usually achieves much better performance than uninformed
search. Once again, a strong disadvantage of the graph version of the A*
search algorithm is its space complexity, as the algorithm must hold all the
generated nodes in memory.

1.4.4 The iterative deepening A* algorithm

The iterative deepening A* (IDA*) algorithm is another informed search algo-
rithm. It works on two levels. First, the high-level establishes a lower bound
of the solution cost, which is provided by the admissible heuristic h. This

16

1.4. State-space search approach to solving

Algorithm 5 Graph version of the A* search algorithm
function A-STAR(initial_node)
open +— empty priority queue
closed < empty set
open.ENQUEUE(initial -node, h(initial _node))
loop
if open is empty then return failure
node < pop the node with lowest priority from open
if node contains a goal state then return SOLUTION-SEQUENCE(node)
for each child_-node in EXPAND(node) do
if child_node not in closed then
child_estimated_cost = COST(node) + 1 + h(child_node)
if child_node not in open then
open. ENQUEUE(child_node, child_estimated_cost)
else
prev_estimated_cost = open.GET-PRIORITY (child_node)
if child_estimated_cost < prev_estimated_cost then
open.UPDATE-PRIORITY (child_node, child_estimated_cost)
UPDATE-PARENT(child_node, node)
end if
end if
end if
end for
closed < closed U {node}
end loop
end function

lower bound is used as a temporary limit of the solution cost. After estab-
lishing the cost limit, the low-level is run. The low-level is basically the tree
version of the depth-limited search algorithm. Unlike depth-limited search,
however, the low-level uses the f(n) value from Equation as the cut-off
value — whether or not a node is included in the search is determined by its
estimated cost, which must be smaller or equal to the current limit [I6]. If the
low-level fails to find a solution within the current cost limit, the high-level
keeps increasing the cost limit by one and re-running the low-level, until the
solution is found.

The solutions found by the IDA* algorithm are guaranteed to be optimal
if the heuristic function h is admissible [16], which is more forgiving than the
graph version of A* (which guarantees optimality only if & is consistent). An-
other improvement over the graph version of A* is that the space complexity
of IDA* is only O(bd), where b is the branching factor and d is the optimal
solution depth. As with A*, the time complexity of IDA* depends on the
properties of the heuristic function used. However, as the low-level of IDA*

17

1. BACKGROUND

Algorithm 6 The iterative deepening A* search algorithm
function IDA-STAR (initial _node)
cost_limit < h(initial_node)
loop
solution_sequence <— LOW-LEVEL(initial_node, cost_limit)
if solution_sequence # failure then return solution_sequence
cost_limit < cost_limit + 1
end loop
end function

function Low-LEVEL(initial _node, cost_limit)
open < empty LIFO queue
push initial_node to open
loop
if open is empty then return failure
node < pop a node from open
if node contains a goal state then return SOLUTION-SEQUENCE(node)
for each child_node in EXPAND(node) do
child_estimated_cost <— COST(node) + h(child_node)
if child_estimated_cost < cost_limit
then push child_node to open
end for
end loop
end function

is based on the tree version of depth-first search, IDA* tends to recalculate
subtrees. Despite this, and despite the fact that the low-level must typically
be run several times (depending on how far the initial cost limit is from the
true optimal solution cost), IDA* coupled with a reasonably powerful heuristic
function is sufficient for solving the (N?—1)-puzzle optimally.

1.4.5 Manhattan distance heuristic

One of the simplest ways to obtain a heuristic for the (N?—1)-puzzle is to just
sum the individual Manhattan distances of the individual pebbles from their
goal positions. This is called the Manhattan distance heuristic. Manhattan
distance is the distance in a world where agents can only move horizontally
or vertically (not diagonally), which is the case of the (N2—1)-puzzle. The
number that the Manhattan distance heuristic returns can also be interpreted
as the optimal solution cost of a relaxed version of the problem, where the
pebbles assume that no other pebbles exist (so the pebbles can slide through
others). Despite its simplicity, the Manhattan distance heuristic is relatively
powerful and was used, along with the IDA* algorithm, to find the first optimal

18

1.4. State-space search approach to solving

solutions of the 15-puzzle [14]. The Manhattan distance heuristic is both
admissible and consistent [13].

The drawback of the Manhattan distance heuristic is that in almost all
instances of the (N?—1)-puzzle, the heuristic heavily underestimates the real
optimal solution cost, which results in the search algorithms searching through
unnecessary parts of the state-space and expanding nodes which are located
far from the optimal path. The information bias of the Manhattan distance
heuristic comes from the fact that the heuristic considers each pebble as inde-
pendent, ignoring the pebble interactions and conflicts [14]. Fortunately, the
heuristic can be improved by introducing various enhancements, resulting in
tighter lower-bound estimates.

The most famous improvement of the Manhattan distance heuristic is the
linear conflict enhancement. It is very simple: when two pebbles are in their
goal row or column, but are reversed relatively to their goal positions, then
two moves must be added to the predicted cost: one move for one of the
pebbles to step out of its row or column, and one for it to step back in. This
does not overestimate the optimal solution length, resulting in an admissible
heuristic.]2, 5] Other similar enhancements can be used, such as the last
moves heuristic, which addresses movements occurring in the last steps of the
solution, or the corner-tiles heuristic, which applies to some pebble situations
around the corners of the board [2]. The downside of these improvements
is that they are merely domain-specific hacks, and have little value outside
of the field of the (N?—1)-puzzle. However, some of these improvements can
be simulated automatically using methods such as pattern databases, without
domain-specific reasoning [2].

1.4.6 Pattern database heuristic

The most basic version of the Manhattan distance heuristic assumes that
pebbles can move freely without colliding with each other. This results in
the heuristic strongly underestimating the optimal solution costs. The heuris-
tic would be more informative if it also took the conflicts which occur be-
tween pebbles into account. This is the improvement brought by the pattern
database (PDB) heuristic.

The pattern database heuristic divides the pebbles into disjoint groups,
each forming a subproblem. In each subproblem, the goal is to get the cor-
responding pebbles and the blank to their goal positions, without caring for
the goal positions of the remaining pebbles. The cost of each subproblem is
the number of moves of the pebbles corresponding to the subproblem — the
moves of pebbles belonging to other subproblems therefore do not contribute
to the subproblem’s cost. The resulting heuristic estimate for a given board
is then the sum of the costs of all subproblems.

The cost of a given subproblem is dependent only on the positions of the
subproblem’s pebbles and on the position of the blank. It is independent of

19

1. BACKGROUND

X|7 1] 6|8
X X | X
X1 4] X |5

Figure 1.3: A subproblem of the 15-puzzle pattern database heuristic, where
the blank and the pebbles 1, 2, 3, 4, 5, 6, 7 and 8 must be placed into their
goal positions

the positions of the other pebbles. The costs of all configurations of the sub-
problem’s pebbles can be stored in a database, where the index is formed by
the positions of the subproblem’s pebbles and the position of the blank. This
means that the larger the subproblem is, the more space the database con-
sumes, as it must store the values of all combinations of the pebble positions.

A disadvantage of the pattern database heuristic is that the databases
must be computed before the heuristic can be used for making predictions.
However, a significant benefit of the pattern database heuristic is that each
subproblem’s database can be computed in a single backward breadth-first
search, which is much faster than performing a search for each of the config-
urations in the database separately. After the databases of all subproblems
have been computed, the heuristic becomes very fast to use, as in order to
make a prediction for a given board, it only must query the databases of all
subproblems once.

Because each subproblem solves a relaxed version of the original problem
and the sets of pebbles corresponding to the subproblems are disjoint, the
pattern database heuristic always produces a lower bound for the optimal
solution cost and is hence admissible [I7]. It is currently unknown whether
the PDB heuristic is also consistent.

It is preferable to divide the pebbles into several large subproblems than
into many small subproblems, as a subproblem with more pebbles accounts
to more potential interactions between pebbles and the resulting heuristic is
thus more informative. For example, the PDB heuristic for the 15-puzzle can
be composed of only two subproblems of sizes 8 and 7, with the first subprob-
lem formed by pebbles 1, 2, 3, 4, 5, 6, 7 and 8, and the second subproblem
formed by pebbles 9, 10, 11, 12, 13, 14 and 15. Such heuristic is then denoted
PDB 7-8.

20

1.5. Artificial neural networks

1.5 Artificial neural networks

Artificial neural networks are a class of machine learning models. ANNs can
be described as computing systems which are able to perform tasks by learning
from data, without the need to be explicitly programmed. ANNs were orig-
inally inspired by the architecture of neurons in the human brain, although
they have gradually become quite different from their biological counterparts.

There are three important properties of ANNs which lead to their current
success. ANNs can form an infinitely flexible function, offer all-purpose pa-
rameter fitting, and are fast and scalable [18]. These properties deserve further
discussion. The ability to form an infinitely flexible function is formally known
as the universal approxrimation theorem, which states that a feed-forward ANN
with at least a single hidden layer composed of a finite number of neurons can
approximate any continuous function with an arbitrary precision. This in
essence means that ANNs can be used to fit arbitrarily complex datasets with
satisfactory results, given that the network is large enough. The second prop-
erty states that there exists a method used to train the parameters of the
model on an arbitrary dataset. This method is called backpropagation, and
will be discussed later in this thesis. The last property states that ANNs can
be used to effectively tackle both easy and complicated problems: a small
network composed of a few neurons can quickly fit a simple dataset, while a
large network with hundreds of thousands of neurons can be trained on large
amounts of data coming from a complicated problem domain.

The most commonly used architecture of an artificial neural network is the
feedforward multilayer perceptron (MLP). A MLP is composed of units called
artificial neurons, which are arranged into layers. The first layer is called the
input layer, the following layers are called hidden layers, and the final layer is
called the output layer. In a fully-connected MLP, all neurons in a layer are
connected with all neurons in their neighboring layers. A diagram showing
this arrangement can be seen in figure [I.4 The neurons in the input layer
simply supply the input data into the network, and the neurons in the output
layer produce the output data. This thesis focuses solely on fully-connected
feedforward ANNSs.

An artificial neuron is simple. Each connection coming from a neuron
in the previous layer is associated with a weight. These weights are used as
coefficients for the output values of the neurons in the previous layer. All that
an artificial neuron does is it first produces a weighted sum of its inputs, then
applies an activation function to this value, and outputs the result. Each layer
also has a special neuron called the bias neuron, whose output value is always
1. These bias neurons are by convention not counted into the total number of
neurons in a layer.

If the outputs from the neurons in the previous layer are stored in the vec-
tor x, the corresponding weights are stored in the vector w, and the activation
function is labeled f, then the output from the neuron is defined as f(w?’x).

21

1. BACKGROUND

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

Figure 1.4: Diagram of a fully-connected multilayer perceptron with six neu-
rons in the input layer, eight neurons in the first hidden layer, four neurons
in the second hidden layer, and a single neuron in the output layer

The weight wg, belonging to the output of the bias neuron xg, is called the
bias term. The activation function must be non-linear, otherwise the ANN
would degrade into a linear model.

A trained artificial neural network produces its output by the following
procedure. First, it is fed its input data in the form of outputs of the input
neurons. Then the neurons in the first hidden layer calculate their outputs,
and these outputs are fed to the next layer. This process is repeated for each
following layer, until the signal reaches the output layer, which produces the
output value (or output values). The data is often processed in batches, or sets
of instances. Multiple outputs are then calculated for multiple input instances
at the same time, which often results in faster computation.

Given the target output data, a cost function can be used to measure the
quality of the outputs produced by the ANN. Arguably, the most commonly

22

1.5. Artificial neural networks

used cost function is the mean squared error (MSE), which is defined as

zn: (1.2)

MSEYY

3\’—‘

where n is the number of instances, Y is a vector of the predicted values, and
Y is a vector of the target values. The higher the cost, the less accurate are
the predictions output by the ANN.

In the following sections, the techniques used while training ANNs for
experiments in this thesis will be described. The exact definitions are out of
the scope of this thesis, so only a brief description and a discussion will be
provided for each of the methods.

1.5.1 The backpropagation algorithm

The algorithm commonly used to train artificial neural networks is called
backpropagation. It was published by Rumelhart et al. in their famous 1986
article [19]. Given its training instances and corresponding target values, the
backpropagation algorithm attempts to minimize the cost of the predictions
on the training data. The algorithm works as follows: first, for each training
instance (or for each batch of training instances), the algorithm feeds the data
to the network and computes the outputs of all neurons in each consecutive
layer. This is called the forward pass. Then, using the outputs of the neurons
in the output layer, the cost of the predictions is calculated, and the algorithm
calculates how much each neuron in the last hidden layer contributed to each
output neuron’s error. The algorithm then proceeds to calculate how much of
these error contributions were produced by each neuron in the previous hidden
layer, and so on for each previous hidden layer, until the algorithm reaches
the input layer. This is called the reverse pass. During the reverse pass, the
algorithm calculates the error gradient (in respect to the cost function) across
all connection weights in the network. Finally, backpropagation updates all
the weights in the network by a small value corresponding to the weights’ error
gradients. [20}, p. 261] This last step is essential, as it readjusts the network’s
weights so that the next time the network would predict the outputs for the
same input data, the predictions would be a little more accurate and the
prediction cost would be a little smaller. The error gradients are scaled by a
coefficient known as the learning rate, which controls the speed at which the
ANN’s parameters are changed.

By repeatedly performing the process descried above for more and more
training instances, the artificial neural network will usually learn to properly
approximate the target outputs. However, the goal is usually not to properly
predict the targets of only the training instances, but of all instances from
the problem domain. It can be expected that as the network is fed more and
more training instances (that represent the problem domain reasonably well),

23

1. BACKGROUND

the network will learn to correctly respond even to instances it has never been
trained on. This is usually the goal of training and when it is successful, it is
said that the ANN generalizes well.

By today’s terms, the backpropagation algorithm would be more accu-
rately described as gradient descent using automatic differentiation [20, p.
261]. This is because backpropagation performs gradient descent in respect
to the cost function, and calculates the gradients using a method called auto-
matic differentiation. Automatic differentiation lies at the heart of all today’s
major artificial neural network libraries.

1.5.2 Adam optimization

Simply performing gradient descent, as described in the backpropagation al-
gorithm, is often not sufficient in practice. The cost function with respect
to the neural network’s parameters is usually not shaped as a simple multi-
dimensional “bowl”, but often contains numerous local minima and long flat
areas known as plateaus, which must be passed in order to get to the global
optimum. The plain gradient descent optimizer suffers from the problems of
getting stuck in the local optima, or taking too long to cross the plateaus.
Also, when a part of the cost function is shaped as a bowl elongated in one
dimension (with respect to one of the ANN’s parameters), gradient descent
would first get to the bottom part of the valley in the steepest dimension,
and only then start to slowly proceed to the bottom of the valley in the other
dimension. It would be faster for the optimizer to detect this early on and
start going in the right direction which points straight to the bottom in the
first place. [20, p. 296]

The Adam optimizer, whose name is derived from the term adaptive mo-
ment estimation, addresses these problems by borrowing methods introduced
by two other optimizers, the momentum optimizer and the AdaGrad optimizer
(or its advanced version, the RMSProp optimizer). The momentum optimizer
works by remembering the past few gradients of the cost function, which en-
ables it to gain momentum while going downhill. This allows the momentum
optimizer to speed up when descending, and quickly cross long plateaus as
it keeps its speed after going downhill. The momentum optimizer can even
escape small local optima, if they are preceded by a large enough hill. On
the other hand, the AdaGrad optimizer mitigates the elongated bowl problem
by gradually slowing down, but doing so faster for the steep dimensions than
for the dimensions with gentler slopes. This would often cause the optimizer
to completely stop before reaching the optimum, however, so the RMSProp
optimizer improves upon AdaGrad by only taking into account the gradients
from the most recent iterations. [20, p. 297] The Adam optimizer simply
combines the ideas of momentum and RMSProp optimization, which turns
it into a very powerful all-purpose optimizer suitable for a large majority of
tasks.

24

1.5. Artificial neural networks

1.5.3 The problem of unstable gradients

As was discussed in the section on the backpropagation algorithm, backprop-
agation works by computing the gradient of the cost function with regard to
the weights in the ANN, and then using these gradients to update the weights’
values. [20, p. 275] The problem with gradients often is that they get smaller
as backpropagation progresses back to the first hidden layers (known as lower
layers), which results in the weights in the lower layers being changed very
little or virtually not at all, slowing training of the lower layers down or even
making it impossible. This is known as the vanishing gradients problem. On
the other hand, sometimes the gradients can get bigger and bigger as back-
propagation progresses to the lower layers, which is known as the exploding
gradients problem. This also makes learning problematic as the neural net-
work’s parameters can diverge. However, exploding gradients usually do not
occur in feedforward ANNs [20, p. 276].

In general, unstable gradients make learning of artificial neural networks
problematic, especially in networks that are composed of multiple hidden lay-
ers. However, several techniques exist that mitigate the problem of unstable
gradients. These techniques include using an appropriate activation function,
initializing the ANN’s weights using a suitable random distribution, and using
a method known as batch normalization.

1.5.3.1 The ELU activation function

The traditionally used activation function in artificial neural networks, the
sigmoid, which is defined as f(z) = 1/(14e~*), suffers from a problem known
as saturation when its inputs are very large or very small. Saturation means
that with a large or small input, the output gets very close to either 0 or 1,
and the derivative becomes very small, so backpropagation has no gradient
to propagate back through the network and training stalls [20, p. 276]. The
rectified linear unit activation function, known as ReLU and defined as f(z) =
max(z,0), attempts to solve this problem by not saturating for positive values,
as the function is not bounded from above. However, the ReLU activation
function suffers from another problem known as dying ReL Us: when the input
to a neuron which uses the ReLLU activation function is negative, the neuron
starts outputting zero, and is unlikely to start outputting anything else as the
gradient of the ReLU function also became zero [20, p. 279].

The exponential linear unit activation function, known as ELU, improves
upon ReLU by having a non-zero derivative everywhere. It is defined as

ale® —1) itz <0

1.3
T if x >0, (13)

ELU(z) = {

where « is a hyperparameter controlling the slope of the negative section
and is usually set to 1. Even though ELU saturates for negative inputs, it

25

1. BACKGROUND

2.0 7
— Sigmoid /
...... ReLU /'

1.5 A .
—-— ELU '/

Figure 1.5: Comparison of the sigmoid, ReLU, and ELU activation functions

won’t usually get absolutely stuck, as there always is at least a small non-zero
gradient to work with. Another benefit of the ELU activation function is that
it can output negative values, which allows the artificial neuron to have an
average output closer to zero, mitigating the vanishing gradients problem [20),
p. 281]. However, ELU is slower for computation than the ReLU activation
function.

1.5.3.2 He initialization

For the signal to flow properly through an ANN, the variance of the inputs of
each layer must be roughly equal to the variance of the outputs [20, p. 277].
Otherwise, problems such as vanishing gradients may occur. For this to work,
connection weights in the network should be initialized using a random distri-
bution which works well together with the activation function used. For the
ELU activation function, the use of He normal initialization is recommended,
which initializes the weights using the normal distribution. The distribution is
calculated separately for each layer of neurons — the standard deviation of the
normal distribution is set using the number of input and output connections
leading from the layer. The formula for the standard deviation is

2
o= , (1.4)
Ninputs T Noutputs

where ninputs and Noutputs is the number of input and output connections
of the layer.

26

1.5. Artificial neural networks

1.5.3.3 Batch normalization

Although using He initialization with the ELU activation function ensures
that the layers’ inputs and outputs are properly distributed at the beginning
of training, plain He initialization does not ensure that the problems won’t
come back during training. Because of this, many today’s ANNs with multiple
hidden layers use a technique called batch normalization. This method adds
an operation in the model after the activation function of each layer, which
converts the outputs of the current batch to have zero mean and normalizes
them. After that, batch normalization scales and shifts the results using two
new parameters per layer, which are learned during training. This ensures
that the distributions of each layer’s outputs are optimal. Batch normalization
strongly mitigates the unstable gradients problem, often to the point that even
saturating activation functions can be used. The downside of the method is
that it slows down network’s training and inference. [20, p. 283]

1.5.4 Learning rate

Learning rate is a very important hyperparameter, which must be set before
training any artificial neural network. Learning rate controls how much the
gradients get applied to the network’s weights at each gradient descent step.
The learning rate hyperparameter must be set carefully — if it is too low,
training can take a very long time, but if it is too high, training can diverge
as the optimizer can start to jump around the parameter space, without ever
settling for an optimum. Luckily there exists a powerful technique for set-
ting the optimal learning rate. In this technique, an experiment is run before
training is started, in which the ANN is trained on a number of batches. The
experiment starts with a very low learning rate, but this learning rate is in-
creased for every batch. Also at each batch, the overall loss on the training
instances is recorded, and after the last batch, these loss data are analyzed.
The learning rate corresponding to the batch during which the loss was de-
creasing most rapidly is then chosen as the target learning rate to be used for
real training, as this is the learning rate with which the neural network seems
to learn fastest.

There also exist methods which gradually decrease the learning rate during
training, which are known as learning rate decay. The rationale behind there
methods is that learning should first be rapid, in order to get near the optimum
quickly, and then slow down, in order for the optimizer to stop precisely at
the optimum. However, the Adam optimizer actually uses adaptive learning
rates for each parameter individually, out of the box. It seems that learning
rate decay is not used as frequently with the Adam optimizer, and this thesis
relies on constant setting of the learning rate hyperparameter.

27

1. BACKGROUND

1.5.5 Dropout

Artificial neural networks can have millions of parameters, which can result
in overfitting of the training data. Various methods, generally known as reg-
ularization, have been developed to prevent this. Arguably, the most popular
regularization technique used with ANNs is dropout. However, dropout does
not only perform regularization, but also makes the model more robust and
helps it generalize better. Actually, many state-of-the-art artificial neural net-
works got a significant accuracy boost after applying dropout. [20, p. 304]

Dropout works by assigning a probability p (called the dropout rate) to
each neuron to “drop out” for a single training step, meaning that the neuron
with all its connections will be entirely ignored at this training step. This
forces the network to become more robust, as it can not rely on information
coming from any single neuron. This also results in the network being less
sensitive to slight changes in the input data, which often makes it generalize
better [20, p. 305].

After training of the network is finished, the neurons do not get dropped
out anymore. In order to compensate for the fact that the neurons sud-
denly sum up data coming from more connections than before, the connection
weights of each neuron get lowered after training by an amount corresponding
to p.

1.5.6 Deep learning

An artificial neural network that has multiple hidden layers of neurons is
known as a deep artificial neural network. The field of training deep ANNs
is called deep learning, and has become the focus of an increasing number of
researchers in recent years. The reason for the increasing popularity of deep
learning is that with today’s algorithms, deep ANNs frequently perform better
than shallow networks — they often achieve better accuracy, require a smaller
total number of neurons, and converge faster during training.

The explanation of why deep neural networks are so powerful is still a
topic of debate. One scientific paper published in 2016 showed that for some
mathematical functions, the number of neurons needed by a shallow ANN to
approximate them is exponentially larger than the total number of neurons
needed by a deep ANN [21]. However, another paper showed that even though
deep ANNS are easier to train using today’s algorithms than shallow networks,
shallow ANNs can be made to “mimic” trained deep neural networks, and
then their performance becomes similar [22]. This would indicate that the
problem is mostly with the way shallow neural networks are trained. In any
case, a popular explanation of why deep neural networks often perform better
than shallow ANNs says that deeper networks can work with several layers
of abstraction. For example, when researchers analyzed the weights of some
deep convolutional ANNs trained to recognize objects in pictures, it turned

28

1.5. Artificial neural networks

out that the lower layers detected low-level features such as edges, upper
layers combined these simple features to produce higher-level features such as
textures and shapes, and the top layers used these features to obtain high-level
features such as faces. It is possible that a similar hierarchy of features is often
present not only in deep convolutional networks, but in other architectures of
deep ANNs as well.

In any case, deep learning only gained its popularity in the recent years,
mostly because deep neural networks were difficult to train before the intro-
duction of methods that mitigate the problem of unstable gradients.

29

CHAPTER 2

Related Work

Some research has already been done in the field of application of ANNs in
solving the (N?2—1)-puzzle. Four studies have been carried out, all of which
focused on the state-space search approach and used ANNs as heuristic func-
tions.

In 2002, Hou, Zhang and Zhou [23] used statistical learning techniques,
namely k-nearest neighbors (k-NN) and ANNS, as heuristics for solving ran-
dom instances of the 8-puzzle. They used the locations of tiles as inputs to the
heuristics, and the estimated optimal solution length as output. The search
algorithm used was A*. In their experiments, they first used plain k-NN and
later an ANN with multiple hidden layers as heuristic functions, with only
limited results. Then they estimated the confidence of the predictions of the
ANN using an auto-encoded ANN, and combined the ANN and k-NN using
these confidence values into a single estimator. This yielded better results
than a single ANN or k-NN model, but was still a less powerful heuristic than
Mannhattan distance.

In 2004, Ernandes and Gori [14] used an ANN as a heuristic for the
15-puzzle, along with a learning scheme which biased the optimal solution
cost predictions towards admissibility. They used only the locations of the
pebbles as input features. The experiments were successful — IDA* with
the neural heuristic achieved an optimal solution in about 50% of cases, and
the time cost was reduced compared to the Manhattan distance heuristic by
a factor of about 500. Unfortunately, the study did not include comparison
against a state-of-the-art heuristic, nor against another powerful inadmissible
heuristic. Also, Ernandes and Gori only used a small neural network (with
a single hidden layer composed of just 15 hidden units), along with a small
training set composed of only 25,000 random instances — factors which could
have lead to a relatively high bias of the model.

In 2008, Samadi, Felner and Schaeffer [3] used a different approach. Instead
of using pebble positions as inputs to the ANN, they used the outputs of
various heuristics as features (such as the Manhattan distance and pattern

31

2. RELATED WORK

database heuristics) and fed them to their model, which they trained using
the corresponding optimal solution costs. The ANN was supposed to discover
the relative influences of the heuristics and their mutual relationships, in order
to produce estimates of the optimal solution costs. Samadi et al. applied
this idea to the 15-puzzle along with an ANN composed of a single hidden
layer and a training set of 10,000 instances. They used RBFS as their search
algorithm, and utilized a modified cost function to bias the ANN heuristic
towards admissibility, in a similar fashion as Ernandes and Gori did in their
study [14]. The results were impressive, the unbiased ANN heuristic resulted
in search trees smaller by a factor of 10 than those created by the 7-8 PDB
heuristic. The generated solutions were inadmissible by about 4%. Using a
neural network which was biased towards admissibility resulted in search trees
of half the size of those created with the 7-8 PDB heuristic, but with solutions
which were by average within 0.1% of optimal. Samadi et al. also compared
their heuristics against the weighted RBFS algorithm with the underlying
weighted 7-8 PDB heuristic. Weighted RBFS with the weighted 7-8 PDB
heuristic lead to similar results as the biased neural heuristic.

In 2011, Arfaee, Zilles and Holte [24] proposed a procedure called boot-
strapping, which they used to suboptimally solve random instances of the
24-puzzle. Bootstrapping is an iterative process that uses machine learning to
create a series of heuristic functions. An initial heuristic hg is used to attempt
to solve a set of given 24-puzzle instances. The heuristic hg can be too weak to
solve all of the instances, but the instances which were solved within the time
limit are used as a training set for the next heuristic function, h;. The trained
heuristic hy is then used to attempt to solve (possibly suboptimally) the re-
maining instances, and this procedure is repeated with gradually stronger and
stronger heuristics ho, hs, ..., until almost all instances from the input set are
solved. Arfaee et al. also came up with an effective procedure for solving an
input which is not a set of instances, but merely a single instance. The training
algorithm used in their experiments was a small artificial neural network with
a single hidden layer of three neurons. The input features were not the raw
positions of the tiles, but instead outputs of Manhattan distance and pattern
database heuristics, position of the blank, and number of out-of-place pebbles.
The results of their experiments were positive, the bootstrapping procedure
was able to solve the vast majority of the set of random 24-puzzle instances.
The suboptimality of the solutions, which was about 6 to 8 percent, was also
relatively satisfactory.

It is interesting that only one study so far has applied ANNs to the solving
of the 24-puzzle. Also, deep learning has never been successfully applied to
the field of the (N?—1)-puzzle.

32

CHAPTER 3

Designing a New Heuristic

3.1 Introduction

As was discussed in Chapter [I} the most promising method for near-optimal
solving of the (N2—1)-puzzle is the state-space search approach. By far the
most widespread way of providing additional information to the search algo-
rithms is via heuristic functions. As this thesis focuses on the application of
artificial neural networks, a natural question is whether artificial neural net-
works can be used in designing a custom heuristic function. The answer is
positive.

The objective of a heuristic function is simple. Given a description of a
state s, the heuristic function h estimates the cost of the optimal solution
from state s to the goal state. The state s can be uniquely described by
the locations of the pebbles. Hence the assignment is as follows: the desired
function h should take pebble locations as input and return the corresponding
estimated optimal solution length as output. The estimated optimal solution
lengths should be calculated as accurately as possible — the hypothesis here
is that in general, the more accurate the predictions are, the less nodes will
have to be expanded by the underlying search algorithm. Since the pattern
database heuristic tends to underestimate the optimal solution costs, there is
potential for the new heuristic to be more accurate than a moderately powerful
PDB heuristic (for example, the PDB 7-8 heuristic), and it is hence possible
that search algorithms running with the new heuristic will expand fewer nodes
than if running with the PDB heuristic. Another important requirement on
the new heuristic is that it should try not to overestimate the predictions —
it can be assumed that the less overestimations occur during search, the more
likely the solutions found by the search algorithms will be optimal. Ideally, the
heuristic would be completely admissible, that is, it would never overestimate
the optimal solution cost.

Most supervised machine learning methods, not just artificial neural net-
works, can be used in creating a heuristic function for the (N?—1)-puzzle. The

33

3. DESIGNING A NEW HEURISTIC

heart of the heuristic will then be a statistical model which will have learned
the relationship between the pebble locations and the corresponding optimal
solution costs. In a sense, this heuristic is similar to a pattern database heuris-
tic as it must be built in a pre-calculation phase, before it can be used to make
predictions. The process is structured as follows: first, a training set must be
built. This set must contain random (N2—1)-puzzle instances along with the
calculated optimal solution costs. Second, the statistical model is trained on
the training set. Third, the trained model is used to make predictions h(s)
for a search algorithm.

This thesis imposes an important constraint on the new heuristic: it can
only learn from the low-level features it is fed, that is, the positions of the
pebbles. The machine learning model can not use, for example, the solution
cost estimates produced by other heuristic functions. The reason for the in-
troduction of this constraint is simple: it is more interesting and challenging
to design a heuristic function which is powerful on its own, without the infor-
mation gain brought by other heuristic functions. In practice, this constraint
is a severe limitation and can be problematic: consider a 15-puzzle instance
proposed by Samadi, Felner and Schaeffer [3]. This instance has all pebbles
placed on their goal positions, except of pebbles 1, 2 and 3, which are placed
at positions 2, 3 and 1. Here the values of the input features are very simi-
lar to those of the goal configuration, which would have an optimal solution
cost of zero, yet the optimal solution length is 18 in this case. This is decep-
tive and the statistical model used must be fine-grained enough to recognize
the complexity of the solution. At this point, another hypothesis is intro-
duced: a well-trained, moderate-sized artificial neural network will be powerful
enough to yield good predictions with only primitive input features, even on
(N2—1)-puzzle instances it has never seen during training. The new heuristic,
based on the artificial neural network, will be called ANN-distance. The
architecture of the artificial neural network used in this heuristic will be a
multilayer perceptron with multiple hidden layers, a model which is often re-
ferred to simply as a deep artificial neural network. Due to reasons discussed
in section it can be assumed that a deep ANN will be more effective
than a shallow ANN. The ANN-distance heuristic will be trained and run on
instances of the 15-puzzle. The 8-puzzle is too simple for the heuristic to yield
interesting results, while the 25-puzzle is too difficult for current computers, as
obtaining a sufficiently sized training dataset would take massive amounts of
resources from today’s perspective. In order to tackle the 24-puzzle, more in-
novative methods such as bootstrapping would have to be used, however, this
thesis will not focus on them, partly because of limited computing resources
— the bootstrapping experiments performed in [24] took days to finish.

34

3.2. Cost function

3.2 Cost function

An important limitation of a heuristic based on a statistical model is that
it can not guarantee admissibility or consistency. However, an advantage
of using an artificial neural network is that admissibility can be controlled
using a custom cost function, which would penalize overestimations more than
underestimations. In effect, a neural network with such cost function can be
expected to prefer underestimating its predictions, which pushes it towards
admissibility.

3.2.1 Asymmetric mean squared error

The asymmetric mean squared error (AMSE) is a novel cost function which pe-
nalizes overestimating the target value more than underestimating it. Asym-
metry between the cost of overestimations and underestimations can be con-
trolled using a parameter. The function is defined as

1 n
AMSE(Y,Y) = — Y, - Y; 2 1
S n;)*(sgn()+ @), (3.1)

where n is the number of instances, Y is a vector of the predicted values,
Y is a vector of the target values, and « is a parameter between 0 and 1,
which controls the skew of the function. The closer « is to 1, the more the
overestimations are penalized. AMSE with a = 0 is equal to the mean squared
error cost function.

For clarity, the cost of an individual instance is defined as

c(d;) = d (sgn(di) +), (3-2)

where d; is defined as Y; —Y;, or the difference between the predicted value and
the real value. The behavior of ¢ for different prediction errors and various
values of « is shown in figure

3.3 Input features encoding

One of the decisions in designing a heuristic function based on machine learn-
ing is how to encode the input features. If the underlying artificial neural
network in ANN-distance was presented plain numbers representing pebble
positions, the model would be deceived into believing that, for example, peb-
ble 8 has more in common with pebble 9 than with pebble 12, while these
pebbles have nothing in common: actually, the former are 4 positions apart
from each other in the solved 15-puzzle, while the latter are only one position
apart. To avoid this deception, the pebble positions will be one hot encoded.
This means that, for the (N2—1)-puzzle with N? positions, the input is defined
by N4 bits, where the bit at position N2 x k+t is high if the square at position

35

3. DESIGNING A NEW HEURISTIC

Figure 3.1: The AMSE cost of a single instance for various values of «

k is occupied by the pebble ¢, and low in every other case [14]. This encoding
is very effective in that the pebbles of similar values are no longer perceived
as related, but the polynomial growth with respect to N means that in case
of the 15-puzzle, 256 input features are needed.

3.4 Training set

Another decision that must be made when designing a heuristic based on a
machine learning model is the character of the set of the training instances
on which the heuristic will be trained. In order for the heuristic to produce
accurate predictions both when the search algorithm is far and close to the
solution, the training set should contain instances of both high and low optimal
solution costs. However, a test which ran the A* algorithm with the pattern
database heuristic revealed that the search algorithm spends most of the time
relatively far away from the solution, only converging close to the solution
towards the end of the search. Distribution of the true optimal solution costs
of the boards which the search algorithm queried for the heuristic estimates
is shown in figure [3.2] The search with the ANN-distance heuristic can be
expected to behave in a similar way to the PDB heuristic, in the sense that it
is likely to spend most of the time far away from the solution. This suggests
that it is preferable for the ANN-distance heuristic to be as accurate as possible
on predictions for the hard instances. The training dataset should therefore
include mostly instances of high optimal solution costs.

In the final training dataset, most instances have a high optimal solution
cost of around 45, while some instances have a lower optimal solution cost.

36

3.4. Training set

0.25 4

=

[\

(=)
1

0.15 4

Relative frequency
=3
S

0.05 4

0.00 -
10 20 30 40 50 60

Optimal solution cost

Figure 3.2: Histogram of optimal solution costs of nodes expanded during A*
search with the PDB heuristic

0.175

0.150

0.125

0.100

0.075

Relative frequency

0.050

0.025

0.000
0 10 20 30 40 50 60 70

Optimal solution cost

Figure 3.3: Histogram of optimal solution lengths of boards in the training
dataset

The distribution can be seen in figure The dataset contains about 6
million instances, and was randomly split into two parts — a training set with
4.8 million instances, and a validation set with 1.2 million instances. The
instances were generated by random shuffling. Different shuffle counts were
used; the hardest instances were generated by shuffling about 10,000 times,
while the easier instances were generated by shuffling about 100 times. The

37

3. DESIGNING A NEW HEURISTIC

algorithm used to obtain optimal solution costs was IDA* with the underlying
PDB 7-8 heuristic. The reason for this choice is as follows: obtaining millions
of training instances in a reasonable time is only possible using a powerful
heuristic, which the PDB 7-8 is. However, because it is unknown whether
the PDB heuristic is consistent, the IDA* algorithm had to be used, as it
guarantees optimality of solutions even with an inconsistent heuristic. No
time limit was imposed on the IDA* searches. Generation time of all the six
million instances and their corresponding optimal solution costs was about
120 minutes.

Besides the relatively large size of the training dataset, the dataset covers
only a tiny portion of the total state-space of the 15-puzzle. The instances
in the dataset were not checked for duplicities, hence it is possible that some
instances are present multiple times.

3.5 Training of the ANN-distance heuristics

3.5.1 Hyperparameters and techniques

For some of the hyperparameters of the ANNs, it was impossible to know
in advance what values they should be set to. These unpredictable hyper-
parameters were the number of layers, number of neurons in each layer, and
the dropout ratio (set to the same value for all layers). In order to determine
what values would work best, several grid searches were run sequentially. Each
grid search tried to train the ANN with several different combinations of layer
sizes and dropout ratios, and for the values that lead to the lowest validation
error, a more fine-grained grid search was run which tried hyperparameter
combinations close to the previous best values. The most powerful architec-
ture turned out to be a deep funnel-shaped network with five hidden layers.
The layer sizes were 256 neurons for the input layer, then 1024, 1024, 512,
128 and 64 neurons for the hidden layers, and a single neuron for the output
layer. Dropout regularization was active for all layers, and the dropout ratio
was set to 0.2.

The learning rate was set to 0.01, a value which was experimentally deter-
mined by the method described in section[I.5.4] The outputs of all layers were
activated using the ELU activation function, except of the output layer, which
used no activation. Outputs of all activation functions were batch normalized.
Weights of all connections were initialized using He normal initialization. Sev-
eral experiments with 12 regularization were performed, but even a small 12
regularization value seemed to severely lower the performance of the networks.

3.5.2 Training

The Adam optimizer was used for training of the ANNs. The cost function
used was either the mean squared error, or the asymmetric mean squared error

38

3.6. Discussion

with an arbitrary value of a.

The ANNs were trained on the training set for around 40 epochs. This
process usually took about 3 hours. At the end of each epoch, the cost on
the validation set was calculated, and if this cost was lower than the previous
best validation cost, the weights of the network were saved. After the last
epoch, the weights corresponding to the best validation performance were
loaded and saved as the final trained network. This technique was necessary
as the validation cost often fluctuated during training, unlike the cost on the
training data, which usually kept decreasing steadily.

3.5.3 Resulting ANN-distance heuristics

Several artificial neural networks were chosen for final evaluation as the un-
derlying ANNs in ANN-distance heuristics. One was a deep artificial neural
network with the hidden layers composed of 1024, 1024, 512, 128 and 64 neu-
rons, trained with the mean squared error cost function. Another artificial
neural network chosen for further experiments was a shallow ANN with a sin-
gle hidden layer composed of 2752 neurons. This shallow ANN therefore had
the same total number of neurons as the deep neural network. Finally, two
deep ANNs (again with the layer sizes described above) were trained using
the asymmetric mean squared error, with the a parameter set to 0.4 and 0.8.

The resulting losses on the validation sets were as follows: the deep ar-
tificial neural network achieved a validation loss of 1.539 with the MSE cost
function. The shallow ANN, which was also trained with the MSE cost func-
tion, achieved a validation cost of 2.339, which is significantly higher than
the cost achieved with the deep ANN, and the shallow neural network can
therefore be expected to produce less accurate predictions. The deep ANN
trained with the asymmetric mean squared error cost function with « of 0.4
achieved a validation loss of 1.539, and the deep ANN trained with the AMSE
cost function with o = 0.8 achieved a validation error of 0.588.

The deep artificial neural networks take up about 23 megabytes of memory,
while the shallow ANN takes up about eight megabytes.

3.6 Discussion

In this chapter, five major hypotheses have been stated:

1. The underlying artificial neural network in the ANN-distance heuristic,
trained with only pebble positions as input features, will generalize well,
that is, it will correctly respond even to instances outside of the training
set.

2. The ANN-distance heuristic, trained with only pebble positions as input
features, will lead to comparable, or even more accurate estimates of the
optimal solution cost than the PDB 7-8 heuristic.

39

3. DESIGNING A NEW HEURISTIC

3. Using a more accurate inadmissible heuristic function will generally lead
to a lower number of nodes expanded by the search algorithm.

4. Using a heuristic function that tends to overestimate the optimal solu-
tion cost less will lead to obtaining an optimal solution more often.

5. Using a heuristic function based on a deep artificial neural network will
result in a better performance than using a shallow artificial neural net-
work with the same number of hidden neurons.

The first hypothesis has already been supported by the study performed by
Ernandes and Gori in 2004 [14], who used a heuristic based on an ANN, trained
it on a small training set with just the pebble positions as input features,
and got much better results than with a Manhattan distance heuristic. The
second hypothesis has never been tested yet — even though Samadi et al.
in 2008 [3] surpassed the performance of the PDB 7-8 heuristic, they trained
their ANN using high-level input features and it is unknown whether such
performance could be reached using only pebble positions. Evidence for the
third hypothesis has been gathered numerous times by running experiments
with admissible heuristics, and it seems that the hypothesis is believed to
be true by a large number of researchers, but it is unclear whether it holds
with inadmissible heuristic functions. As for the fourth hypothesis, Samadi
et al. have found supporting evidence, as using a cost function that penalized
overestimations while training resulted in obtaing optimal solutions four times
more often. The fifth hypothesis has never been tested, as most of previous
research of artificial neural networks in the field of the (N?—1)-puzzle only
used shallow networks with a single hidden layer. The only study which used
a deep ANN never compared it to a shallow network. In summary, the second,
third and fifth hypotheses have never been tested. This thesis will try to find
evidence that supports or contradicts them by performing various experiments
in the next chapter.

40

CHAPTER 4

Experiments

4.1 Environment description

All experiments (including the training of the ANNSs), besides the computation
of the pattern database, were run on a cloud machine with an eight-core Intel
Xeon E5-2623 v4 CPU, 30 GBs of RAM, and an NVIDIA Quadro P4000
graphics card. The use of the high-end graphics card improved the speed of
calculations involved in artificial neural networks, namely the speed of training
and inference, by several times.

The pattern databases for the PDB heuristic were calculated on a cloud
machine with 24 vCPUs and 350 GBs of RAM.

4.2 Experimental evaluation of the ANN-distance
heuristics

4.2.1 Referential heuristics

The ANN-distance heuristics were evaluated against other admissible and
non-admissible heuristics, all based on pattern databases, namely a pattern
database with patterns of sizes of 7 and 8 (also referred to as PDB 7-8).
The pattern databases were calculated in two single backward breadth-first
searches (one for each pattern), a process which took about 10 hours and con-
sumed around 250 GBs of memory. The exact patterns used were defined as
follows: one subproblem database stored the optimal solution costs for the re-
laxed subproblem of correctly placing pebbles 1, 2, 3, 4, 5, 6, 7 and 8, while the
other subproblem database stored the optimal solution costs for the relaxed
subproblem of placing the pebbles 9, 10, 11, 12, 13, 14 and 15.

One heuristic used in the tests simply returns the cost estimated by the
PDB 7-8, yielding an admissible heuristic function. Other heuristics return
the same estimated optimal solution cost, but multiply it by a weight W > 1.
This is called a weighted heuristic and is used to obtain more accurate esti-

41

4. EXPERIMENTS

0.25 4

0.20 ~

0.15 A

Relative frequency
<
)

0.05 A

0.00 -
35 40 45 50 55 60 65 70

Optimal solution cost

Figure 4.1: Histogram of optimal solution costs of boards in the evaluation
dataset

mates of the optimal solution cost, as the optimal PDB 7-8 heuristic tends to
underestimate it. According to experiments such as those performed in [3], us-
ing a higher value of W tends to result in a smaller number of nodes expanded
by the search algorithm, however, weighted heuristics with a W > 1 are in-
admissible and often lead to suboptimal solutions. This makes the weighted
PDB 7-8 heuristic a good reference for the ANN-distance heuristics, which are
also inadmissible.

The larger the subproblems of the pattern database heuristic are, the more
memory it requires. The PDB 7-8 heuristic takes up about 4.5 GBs of memory.

4.2.2 FEvaluation dataset

The evaluation dataset consists of 1172 boards, which were obtained with
random permutations. The distribution of the optimal solution costs of the
boards can be seen in figure The distribution is slightly skewed to the
left, with the mean of 52.8 moves.

4.2.3 Evaluation on single predictions

In the first experiment, all of the heuristics were used to produce estimates of
the optimal solution costs of boards in the evaluation dataset. The distribu-
tions of the optimal solution cost predictions of selected heuristics are shown
in figures and It can be seen that the shapes of the distributions are
similar to the shape of the distribution of optimal solution costs of boards
in the evaluation dataset. The biggest difference over the evaluation dataset

42

4.2. Experimental evaluation of the ANN-distance heuristics

I PDB
s PDB, W=1.15
PDB, W=1.3

0.30 A

0.25 A1

0.20 A

Relative frequency
o
O

30 40 50 60 70 80
Optimal solution cost prediction

Figure 4.2: PDB heuristics: histogram of single predictions

EEE ANN (MSE)
025 | ™ ANN (AMSE, o = 0.8)

o
)
S

0.15

0.10

Relative frequency

0.05

30 35 40 45 50 55 60 65 70
Optimal solution cost prediction

Figure 4.3: ANN-distance heuristics: histogram of single predictions

is that the distributions are shifted to more positive or negative values. The
PDB 7-8 heuristic produces smaller estimates than its weighted counterparts,
and the distributions of the predictions of the weighted PDB 7-8 heuristics
are also spread more widely than the distribution of the optimal solution cost
estimates produced by the original PDB 7-8 heuristic. Although not shown,
the PDB 7-8 heuristic with the weight of 1.45 produces even higher estimates
than the PDB 7-8 heuristic with the weight of 1.3. The ANN-distance heuris-
tic produces optimal solution cost estimates whose distribution is quite similar

43

4. EXPERIMENTS

I PDB
I PDB, W=1.15
PDB, W=1.3

0.30 1

0.25 1

0.20 1

0.15 1

Relative frequency

e

—

(=]
1

0.05

—15 —10 -5 0 5 10 15
Optimal solution cost prediction error

Figure 4.4: PDB heuristics: histogram of errors on single predictions

0.25 | EEE ANN (MSE)
B ANN (AMSE, o = 0.8)

0.20 1

0.15 1

0.10 1

Relative frequency

0.05 1

—10 -8 —6 —4 -2 0 2 4
Optimal solution cost prediction error

Figure 4.5: ANN-distance heuristics: histogram of errors on single predictions

to the true distribution of the optimal solution costs, with the mean of 52.9.
The ANN-distance heuristic that was trained to underestimate its predictions
using an asymmetric cost function with o = 0.8 produces estimates which are
somewhat lower than those produced by the original ANN-distance heuristic
trained with the mean squared error cost function, with the mean of 48.9.
When looking directly at the difference of the estimates from the optimal
solution costs, which is shown in figures [£.4] and it can be seen that the
PDB 7-8 heuristic with the weight of 1.15 tends to produce estimates that are

44

4.2. Experimental evaluation of the ANN-distance heuristics

roughly accurate, while the PDB 7-8 with higher weights tend to strongly over-
estimate the optimal solution costs. On the other hand, the unweighted PDB
7-8 heuristic tends to underestimate the optimal solution costs. The ANN-
distance heuristic trained with the MSE cost function produces estimates that
are accurate on average, with the mean optimal solution cost error of 0.06 and
standard deviation of 1.42. However, the ANN-distance heuristic trained with
the AMSE cost function with o = 0.8 tends to strongly underestimate the op-
timal solution costs, with the mean error of -3.9. The ANN-distance trained
with the AMSE cost function with o = 0.4 tends to underestimate the optimal
solution cost somewhat less, with the mean error of -1.4. The ANN-distance
heuristic whose underlying ANN has only 1 hidden layer produced roughly
accurate estimates, similarly to the deep ANN trained with the MSE cost
function, with the mean error of -0.14. However, the standard deviation of
the error was slightly higher in this case, with the value of 1.49.

It can be concluded that the ANN-distance heuristics trained with the
MSE cost functions tend to give very accurate estimates of optimal solution
costs, with the mean error of roughly 0 and the standard deviation of the error
of only about 1.4. The ANN-distance heuristics trained with the AMSE cost
function tend to underestimate the optimal solution costs, while those trained
with the AMSE cost with a higher value of « tend to underestimate the costs
more than those trained with a smaller value of «.

4.2.4 FEvaluation on A* searches

In the second experiment, the heuristics were evaluated as underlying heuris-
tics in A* searches, whose initial states were represented by boards in the
evaluation dataset. One of the reasons for choosing A* over IDA* for experi-
mentation is that A* usually does not expand as many states as the IDA* algo-
rithm, as IDA* tends to run the low-level many times and the low-level tends
to repeatedly revisit states. The most important reason for choosing A* over
IDA*, however, is that in every run of the IDA* algorithm, the lower bound
of the cost must first be established. However, some of the ANN-distance
heuristics were not trained to underestimate the optimal solution costs, and
establishing the lower bound would thus be problematic.

As in the previous experiment, the performance of the ANN-distance
heuristics was evaluated against the PDB 7-8 heuristic and its weighted deriva-
tives. No time limit was imposed on the searches, hence solutions to all boards
with all heuristics were found. Even though the A* algorithm does not guar-
antee optimality with an inconsistent heuristic, parallel runs of the IDA* algo-
rithm verified that A* running with the unweighted PDB 7-8 heuristic always
found the optimal solutions, and the results for A* with the PDB 7-8 heuris-
tic presented in this thesis can therefore be perceived as optimal. However,
it is important to note that the performance of A* with the PDB 7-8 heuris-

45

4. EXPERIMENTS

Heuristic ‘ Cost ‘ Exp Time \ %O0pt ‘ %Avg sub ‘ Exp/s ‘
PDB 7-8 52.8 | 62,222 | 6.946 | 100 0 8958
PDB 7-8, W=1.15 53.4 | 3,296 | 0.346 | 71 1.19 9526
PDB 7-8, W=1.3 55.2 | 1,017 | 0.107 | 38 4.46 9505
PDB 7-8, W=1.45 57.5 | 540 0.056 | 25 8.86 9643
ANN 53.7 | 355 2.405 61 1.62 148
ANN, 1 h.l. 53.7 | 1,77 | 5.988 | 60 1.69 263
ANN, AMSE (a=0.4) | 53.5 | 532 3.543 | 67 1.34 150
ANN, AMSE («=0.8) | 53.5 | 2,576 16.812 | 69 1.23 153

Table 4.1: Performance analysis of A* running with various heuristics

tic should not be perceived as the performance of an algorithm guaranteeing
optimality.

The results can be seen in table The meaning of the columns is as
follows: the first column represents the heuristic function used with the A*
searches. The second column states the average cost of solutions found by the
searches. The third column shows the average number of states expanded by
the search algorithm. The fourth column represents the average running time
of the searches. The fifth column states what percentage of the solutions found
were optimal. The sixth column represents the precentages of the average
suboptimality of the solutions. Average suboptimality is defined as the average
cost of the solutions, divided by the average optimal cost of the solutions (and
at the end of this computation, 1 is subtracted and the result is multiplied by
100 to obtain percentages). The last column shows the number of expanded
nodes per second, a value which corresponds to the speed of the inference of
the heuristics. In the rows corresponding to the results, the first four rows
represent the PDB 7-8 heuristic and its derivatives. The fifth row represents
the deep ANN-distance heuristic trained with the MSE cost function. The
sixth row represents the shallow ANN-distance heuristic with a single hidden
layer, also trained with the MSE cost function. The last two rows represent
the two deep ANNS trained with the AMSE cost function, with different values
of a.

In the results, it can be seen that A* with the unweighted pattern database
heuristic is already quite powerful, as it is able to find a solution to a random
15-puzzle instance within seconds. This is a very strong result when com-
pared to, for example, weaker versions of the pattern database heuristic (PDB
heuristics with more subproblems composed of smaller numbers of pebbles),
or the Manhattan distance heuristic, which would typically take hours to find
a solution to a random 15-puzzle instance when coupled with A* search. A*
with the PDB 7-8 heuristic always found the optimal solution of all boards in
the evaluation dataset, although it is unknown whether this is merely a coin-

46

4.2. Experimental evaluation of the ANN-distance heuristics

Heuristic ‘ Opt. ‘ Opt.+2 | Opt.+4 | Opt.+6
PDB 7-8 1172 | 0 0 0
PDB 7-8, W=1.15 834 | 309 29 0
ANN 718 | 409 44 1
ANN, 1 h.L 701 | 421 49 1
ANN, AMSE (o =04) | 786 | 357 29 0
ANN, AMSE (a =038) | 814 | 336 21 1

Table 4.2: Suboptimality of the solutions found by A*

cidence, or whether the PDB 7-8 heuristic is truly consistent. The algorithm
expanded about 9 thousand nodes per second on average with this heuristic,
which is relatively slow, and is likely the consequence of choosing the Python
language for implementation.

The weighted variants of the PDB 7-8 heuristic lead to obtaining a solution
much faster than with the unweighted variant. A* with the weighted heuristics
expands much less states on average, with the PDB 7-8 heuristic of weight 1.45
lowering the number of expanded nodes by two orders of magnitude. However,
the higher the weight, the more the suboptimality of the solutions increases,
and with the weight of 1.3, solutions found are already optimal in only about
38 percent of cases.

The ANN-distance heuristic, based on an underlying deep neural network
trained with the MSE cost function, decreases the number of expanded states
even more, with the result of only 355 expanded nodes on average. This is a
relatively low number, as the minimum number of nodes that must definitely
be expanded by any search algorithm is equal to the optimal solution cost,
the average of which is 52 in case of the 15-puzzle. 61 percent of the solutions
found were optimal. The exact suboptimalities of all instances can be seen
in table in which each column represents a solution cost which was at a
specific distance from the optimal solution cost. In the table, it can be seen
that by far, most suboptimal solutions found with the ANN-distance heuristic
are only suboptimal by two extra moves. This leads to average suboptimality
of only 1.62 %. The major disadvantage of the ANN-distance heuristic is its
inference speed, which is very slow, even though the experiment is run on a
GPU. The number of states expanded per second is only about 150, which is
60 times lower than that of the PDB 7-8 heuristic. As a result, the average
time required to find a solution is around 2.4 seconds, which is lower than that
of the unweighted PDB 7-8 heuristic, but still much higher than the runtimes
of the A* algorithm running with the weighted PDB 7-8 heuristics.

The ANN-distance heuristic with the underlying shallow artificial neural
network resulted in a similar optimality of solutions as the deep ANN-distance
heuristic. However, the number of expanded nodes was almost 5 times higher.

47

4. EXPERIMENTS

EEE ANN (MSE)
PDB

Relative frequency
SO -
[}8) w SN (9] (@)} ~ oo

1 1 1 1 1 1 1

e
—
L

=3
(=]
I

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of expanded nodes

as
Figure 4.6: Histogram of number of nodes expanded during A* search
(trimmed)

Another significant difference over the deep neural heuristic is that the shallow
ANN-distance heuristic produced its predictions faster, which resulted in the
number of expanded nodes of about 260 per second, a significant improvement
over the heuristic based on a deep artificial neural network.

The use of ANN-distance heuristics trained with the asymmetric mean
squared error, a cost function which was supposed to bias the heuristics to-
wards higher admissibility, indeed lead to a slightly decreased suboptimality of
the solutions found. Average suboptimality was decreased from about 1.62 %,
corresponding to the unbiased deep neural heuristic, to about 1.34 % and 1.23
%, corresponding to the ANN-distance heuristics with « of 0.4 and 0.8, re-
spectively. However, these heuristics lead to a larger number of nodes being
expanded, which resulted in a higher runtime of the A* algorithm.

The roughly exponential distributions of the number of nodes expanded
by the A* searches with the deep unbiased ANN-distance heuristic and the
unweighted PDB 7-8 heuristic can be seen in figure

4.2.5 Competitive comparison against heuristics presented in
other studies

The ANN-distance heuristic functions presented in this thesis can be directly
compared to neural heuritics presented in two earlier studies, both of which
were described in chapter 2] The first paper by Ernandes and Gori from 2004
[14] created a heuristic function based on an artificial neural network, which
was then evaluated using the IDA* algorithm. The second paper by Samadi et

48

4.2. Experimental evaluation of the ANN-distance heuristics

] Study ‘ Algorithm ‘ Heuristic ‘ Cost ‘ Nodes | Time
This | A* ANN 53.7 | 355 2.405
This | A* ANN, AMSE (a=0.4) 53.5 | 532 3.543
This | A* ANN, AMSE (a = 0.8) 53.5 | 2,576 | 16.812
[14] IDA* ANN 54.5 | 24,711 | 7.38
B3] RBFS ANN (MD+PDB) 54.3 | 2,241 | 0.001
[3] RBFS ANN (MD+PDB, asym. cost) | 52.6 | 16,654 | 0.021

Table 4.3: Comparison of search algorithms against heuristics presented in
other papers

al. from 2008 also designed a heuristic function based on an ANN, but trained
it using outputs of other heuristic functions as features, namely the outputs
of the PDB 7-8 heuristic and the Manhattan distance heuristic. Samadi et al.
evaluated their heuristic using the RBFS search algorithm. Neither of these
studies presented the performance of their network on single predictions, and
the algorithms used differ, so the comparison of these heuristics is difficult.
Nevertheless, the results are presented in table

It is evident that the number of expanded nodes is significantly smaller
with the unbiased ANN-distance heuristic presented in this paper than with
the heuristics presented in the other papers, even by as much as two orders
of magnitude. It is however likely that at least the heuristic presented by
Ernandes and Gori would perform significantly better in number of expanded
nodes if ran as part of the A* algorithm, as IDA*, which they used, tends to
run the low-level multiple times and the low-level revisits large subtrees, and
thus the IDA* algorithm expands more nodes than necessary.

As for optimality, Ernandes and Gori stated that 28.7 % of their solutions
were optimal, which is worse than the roughly 60 % solutions obtained by the
unbiased ANN-distance heuristic presented in this thesis. However, Samadi
et al. stated that suboptimality of their biased heuristic is less than 0.1 %,
which is significantly lower than the suboptimality of 1.23 % of the biased
ANN-distance heuristic trained with the AMSE cost function with @ = 0.8.
Unfortunately, it is not clear whether Samadi et al. used exactly the same met-
ric of suboptimality, however the values of the average solution costs suggest
that their definition of suboptimality is the same as in this thesis.

The runtime comparison is included for completeness, but is not very in-
formative when compared over different studies, as for example Samadi et al.,
whose algorithm only takes a millisecond to find a solution, had likely well
optimized their code.

49

4. EXPERIMENTS

0.25

0.20 A

o

—

5
L

Relative frequency
S
S

0.05 1

0.00 -
0 10 20 30 40 50 60

Optimal solution cost

Figure 4.7: Histogram of optimal solution costs of nodes expanded during A*
search with the ANN-distance heuristic trained with the MSE cost function

4.2.6 Analysis of the behavior of A* search with the
underlying ANN-distance heuristic

When evaluating a heuristic function, it is important to know what parts of
the state-space the algorithm spends the most time in. This analysis can
be performed by calculating the optimal solution cost belonging to each ex-
panded state. The distribution of the optimal solution costs belonging to
nodes expanded by the A* algorithm can be seen in figure The data were
obtained by running an IDA* search with the PDB 7-8 heuristic to get the op-
timal solution cost, for each state the A* search with the deep ANN-distance
heuristic (trained with the MSE cost function) expanded, for boards obtained
with random permutations.

It can be seen that the distribution is much more skewed to the left than the
distribution of optimal solution costs of states expanded by the A* algorithm
with the underlying PDB 7-8 heuristic, which was presented in figure[3.2] This
could mean that the heuristic predictions are very accurate for instances of
high optimal solution costs, so the search algorithm with the ANN-distance
gets faster from the initial state than with the PDB 7-8 heuristic. However,
this is merely a hypothesis and it is possible that a different explanation is
true.

20

Discussion

Experimental evaluation of the ANN-distance heuristics performed in the pre-
vious chapter shows that the ANN-distance heuristics are highly powerful and
competitive, even when compared to other state-of-the-art admissible and in-
admissible heuristic functions.

Supporting evidence for all of the untested hypotheses presented in chapter
[has been found:

e The hypothesis that the ANN-distance heuristic will lead to comparable
or even more accurate estimates of the optimal solution cost than the
PDB 7-8 heuristic: ANN-distance has a mean prediction error of about
zero, and a lower variance of the error than the PDB 7-8 heuristic, which
tends to strongly underestimate the optimal solution cost.

e The hypothesis that using a more accurate inadmissible heuristic func-
tion will generally lead to a lower number of nodes expanded by the
search algorithm: using a more accurate inadmissible heuristic function
truly seems to lower the number of nodes expanded by a search algo-
rithm. The most accurate heuristic, the deep ANN-distance heuristic
trained with the mean squared error cost function, expanded a smaller
number of nodes on average than all other heuristic functions based on
ANN-distance.

e The hypothesis that using a heuristic function based on a deep artificial
neural network will result in a better performance than using a shallow
artificial neural network with the same number of hidden neurons: ex-
periments show that a deep artificial neural network is able to achieve
a lower validation error during training and performs significantly bet-
ter when coupled with the A* algorithm than a shallow artificial neural
network with the same number of hidden neurons.

An interesting result is that using the ANN-distance heuristic biased to-
wards admissibility still often resulted in obtaining suboptimal solutions, even

o1

DiscussioN

though the biased ANN produced predictions which almost always underesti-
mated the optimal solution cost. It is possible that most of this suboptimality
was caused by the properties of the graph version of the A* algorithm, which
guarantees optimality of the solutions only when the heuristic function used is
consistent. As the ANN-distance is inconsistent, it would be interesting to try
the heuristic with a different search algorithm, specifically one that guarantees
optimality of solutions even when the underlying heuristic is inconsistent. If
the obtained solutions were still often suboptimal, it would lead to the con-
clusion that even only occasional overestimations of a heuristic often lead to
suboptimal solutions.

When compared to the results of other papers, the ANN-distance heuristic
turns out to be more powerful than all similar heuristics presented in previous
research. The ANN-distance heuristic trained with the mean squared error
cost function expands by two orders of magnitude less nodes than the most
powerful heuristic in [I4], and by an order of magnitude less nodes than the
most powerful heuristic in [3]. However, the search algorithms utilized in the
experiments performed in these studies differ, and the accuracy of the com-
parison is hence limited. The previous papers unfortunately did not analyze
the single predictions of their ANNs. The optimality of the solutions obtained
with the ANN-distance heuristics is comparable to the optimality of solutions
presented in other papers.

If the ANN-distance heuristic truly is significantly more powerful than
those presented in other papers, it is unclear what exactly caused the ANN-
distance heuristic presented in this paper to be so precise. It is possible that
a good choice of a training set helped. However, it is more likely that the
biggest enhancement was the significant increase of the size of the ANN and
of the training set. Also, utilizing a deep artificial neural network helped, as
experiments confirmed.

A big advantage of the ANN-distance heuristic is its small memory re-
quirements. An underlying ANN in the ANN-distance heuristic consumes
only about 20 MBs of RAM, which is much smaller than around 4.5 GBs of
RAM necessary for the PDB 7-8 heuristic. This would make it possible to use
the ANN-distance heuristic even in cheap embedded systems.

Another possible advantage of the ANN-distance heuristic is that it could
be used in other problem domains similar to the (N?—1)-puzzle. A hypothesis
here is that it could be possible to use the ANN-distance heuristic even in
problem domains which are “opaque”, that is, problem domains whose inner
structure is not understood and therefore other custom heuristic functions
can not be created for these problem domains. This is merely a hypothesis,
however, as it is unknown whether an ANN-distance heuristic could be trained
on these kinds of problem domains.

The method of using artificial neural networks for solving the (N?—1)-
puzzle used in this thesis also has its limitations. It likely could not currently
be applied to the 24-puzzle in the same manner, as it would be computationally

02

difficult to obtain a sufficient number of training instances with corresponding
optimal solution costs. It seems that more advanced methods, such as the one
presented in [24], would have to be used for instances of the (N?—1)-puzzle
with a higher N.

Another disadvantage of the ANN-distance heuristic is that it takes time to
gather the training dataset and train the underlying artificial neural network.
In experiments performed in this paper, the time to generate the training
dataset and train the ANN-distance heuristic was comparable to the time
taken to calculate the databases of the PDB 7-8 heuristic.

93

Conclusion

This thesis focused on the problem of applying artificial neural networks in
solving the (N?—1)-puzzle. Both goals of the thesis have been fulfilled: in the
first part of the thesis, the reader was introduced to the current state-of-the-
art methods for solving the (N?—1)-puzzle, and was presented the history of
the existing applications of artificial neural networks in near-optimal solving
of the (N2—1)-puzzle. In the second part of the thesis, a heuristic function
based on an artificial neural network was introduced, and was experimentally
evaluated against other powerful heuristic functions.

The new heuristic function turned out to be very effective when used to-
gether with the A* algorithm — it helped to quickly find solutions which were
mostly optimal, while expanding a low number of nodes. The number of ex-
panded nodes was improved over the best existing heuristic functions based
on artificial neural networks by an order of magnitude. The new heuristic also
takes up much less memory than a comparable pattern database heuristic.

The thesis confirmed the hypothesis that the philosophy of deep learning
can be successfully applied to the problem domain of the (N?—1)-puzzle, as
the first such experiments in history showed that a deep neural network can
perform better than a shallow neural network. It was also shown that a
heuristic function based on an artificial neural network can be trained to
prefer underestimating its predictions, which results in reaching an optimal
solution more often by the search algorithm.

There is still a lot of room for more research to be performed. Training
larger and deeper artificial neural networks, possibly on much larger datasets,
would likely create more accurate heuristics that would lead to fewer nodes
being expanded by the search algorithms (at the expense of higher time per
prediction). Also, the distribution of the training dataset could be exper-
imented with, in order to obtain the most effective distribution of optimal
solution costs. Other informed search algorithms employing the new heuristic
function could also be tested, particularly algorithms that do not require a
consistent heuristic function to guarantee optimality. And it would be possi-

95

CONCLUSION

ble to move from the domain of the 15-puzzle to the more challenging domain
of the 24-puzzle. Especially, transfer learning could be used, where the ANN
trained on the 15-puzzle could be used as a basis for an ANN designed for
solving random 24-puzzle instances.

o6

Bibliography

Ratner, D.; Warrnuth, M. Finding a Shortest Solution for the NxN Ex-
tension of the 15-Puzzle is Intractable. In Proceedings of AAAI-86, 1986,
pp. 168-172.

Korf, R. E.; Taylor, L. A. Finding Optimal Solutions to the Twenty-Four
Puzzle. In Proceedings of AAAI-96, MIT Press, 1996, pp. 1202-1207.

Samadi, M.; Felner, A.; et al. Learning from multiple heuristics. In Pro-
ceedings of AAAI-08, 2008, pp. 357-362.

Slocum, J.; Sonneveld, D. The 15 Puzzle Book: How it Drove the World
Crazy. Slocum Puzzle Foundation, 2006, ISBN 1890980153.

Korf, R. E. Sliding-tile puzzles and Rubik’s Cube in Al research. In IEEFE
Intelligent Systems, 1999, pp. 8-12.

Parberry, I. A Memory-Efficient Method for Fast Computation of Short
15-Puzzle Solutions. IEEE Transactions on Computational Intelligence
and Al in Games, volume 7, no. 2, June 2014: pp. 200-203.

Cahlik, V.; Surynek, P. On the Design of a Heuristic based on Artificial
Neural Networks for the Near Optimal Solving of the (N2-1)-puzzle. In

Proceedings of the 11th International Joint Conference on Computational
Intelligence - Volume 1: NCTA, (IJCCI 2019), 2019, pp. 473-478.

Ryan, M. Tiles Game. 2004, online. Accessed: 2019-12-30. Available
from: https://www.cs.bham.ac.uk/~mdr/teaching/modules04/java2/
TilesSolvability.html

Parberry, I. A real-time algorithm for the (n? — 1)-puzzle. Information
Processing Letters, volume 56, 1995: pp. 23-28.

o7

https://www.cs.bham.ac.uk/~mdr/teaching/modules04/java2/TilesSolvability.html
https://www.cs.bham.ac.uk/~mdr/teaching/modules04/java2/TilesSolvability.html

BIBLIOGRAPHY

[10]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

o8

Surynek, P.; Michalik, P. The joint movement of pebbles in solving the
(N? — 1)-puzzle suboptimally and its applications in rule-based coopera-
tive path-finding. Autonomous Agents and Multi-Agent Systems, 09 2016,
doi:10.1007/s10458-016-9343-7.

Sharon, G.; Stern, R.; et al. Conflict-based search for optimal multi-agent
pathfinding. Artificial Intelligence, volume 219, 02 2015: pp. 40-66, doi:
10.1016/j.artint.2014.11.006.

Sharon, G.; Stern, R.; et al. The Increasing Cost Tree Search for Optimal
Multi-Agent Pathfinding. In Proceedings of the Twenty-Second Interna-
tional Joint Conference on Artificial Intelligence, volume 195, 01 2011,
pp. 662667, doi:10.1016/j.artint.2012.11.006.

Russell, S.; Norvig, P. Artificial Intelligence: A Modern Approach. Pren-
tice Hall Press, third edition, 2009, ISBN 0136042597, 9780136042594.

Ernandes, M.; Gori, M. Likely-Admissible and Sub-Symbolic Heuristics.
01 2004, pp. 613-617.

Holte, R. Common Misconceptions Concerning Heuristic Search. 09 2010.

Korf, R. E. Depth-first iterative-deepening: An optimal admissible tree
search. Artificial Intelligence, volume 27, no. 1, 1985: pp. 97 — 109, ISSN
0004-3702, doi:https://doi.org/10.1016/0004-3702(85)90084-0.

Korf, R. E.; Felner, A. Disjoint pattern database heuristics. Artif. Intell.,
volume 134, 2002: pp. 9-22.

Howard, J. Fast.ai Massive Open Online Course, Lecture 1. 2018, on-
line. Accessed: 2019-12-14. Available from: https://www.youtube.com/
watch?v=IPBSB1HLNLo

Rumelhart, D. E.; Hinton, G. E.; et al. Learning representations by back-
propagating errors. Nature, volume 323, no. 6088, Oct 1986: pp. 533-536,
doi:10.1038/323533a0.

Geron, A. Hands-On Machine Learning with Scikit-Learn and Ten-
sorFlow: Concepts, Tools, and Techniques to Build Intelligent Sys-
tems. O’Reilly Media, Inc., first edition, 2017, ISBN 1491962291,
9781491962299.

Liang, S.; Srikant, R. Why Deep Neural Networks? CoRR, volume
abs/1610.04161, 2016.

Ba, L. J.; Caruana, R. Do Deep Nets Really Need to be Deep? CoRR,
volume abs/1312.6184, 2013.

https://www.youtube.com/watch?v=IPBSB1HLNLo
https://www.youtube.com/watch?v=IPBSB1HLNLo

Bibliography

[23] Hou, G.; Zhang, J.; et al. Mixture of experts of ANN and KNN on the
problem of puzzle 8. Technical report, Technical report, Computing Sci-
ence Department University of Alberta, 2002.

[24] Arfaee, S. J.; Zilles, S.; et al. Learning heuristic functions for large state
spaces. Artificial Intelligence, volume 175, no. 16, 2011: pp. 2075 — 2098,
ISSN 0004-3702, doi:https://doi.org/10.1016/j.artint.2011.08.001.

99

APPENDIX A

AMSE Asymmetric Mean Squared Error
ANN Artificial Neural Network
CBS Conflict-Based Search

CPF Cooperative Path Finding
BFS Breadth-First Search

DFS Depth-First Search

FIFO First in, First out

ICT Increasing Cost Tree

ICTS Increasing Cost Tree Search
IDA* Iterative Deepening A*
k-NN k-Nearest Neighbors

LIFO Last in, First out

MAPF Multi-Agent Path Finding
MLP Multilayer Perceptron
MSE Mean Squared Error

PDB Pattern Database

61

Acronyms

APPENDIX B

Contents of Attached CD

README. Xt o ovteiiie e iiiie e iiiaaann file with CD contents description
Efifteen—puzzle directory with the source files and data
thesis.pdf......... ...t the thesis text in PDF format

	Introduction
	Goal of Thesis
	Background
	The (N2-1)-puzzle
	History
	Problem definition
	Obtaining random configurations
	Random shuffling
	Random permutations
	Convergence of the two approaches

	Similar problem domains

	Rule-based methods for solving
	MAPF approach to solving
	The increasing cost tree search algorithm
	The conflict-based search algorithm
	Discussion of the MAPF approach

	State-space search approach to solving
	The breadth-first search algorithm
	The depth-first search algorithm
	The A* search algorithm
	The iterative deepening A* algorithm
	Manhattan distance heuristic
	Pattern database heuristic

	Artificial neural networks
	The backpropagation algorithm
	Adam optimization
	The problem of unstable gradients
	The ELU activation function
	He initialization
	Batch normalization

	Learning rate
	Dropout
	Deep learning

	Related Work
	Designing a New Heuristic
	Introduction
	Cost function
	Asymmetric mean squared error

	Input features encoding
	Training set
	Training of the ANN-distance heuristics
	Hyperparameters and techniques
	Training
	Resulting ANN-distance heuristics

	Discussion

	Experiments
	Environment description
	Experimental evaluation of the ANN-distance heuristics
	Referential heuristics
	Evaluation dataset
	Evaluation on single predictions
	Evaluation on A* searches
	Competitive comparison against heuristics presented in other studies
	Analysis of the behavior of A* search with the underlying ANN-distance heuristic

	Discussion
	Conclusion
	Bibliography
	Acronyms
	Contents of Attached CD

