
ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

437859Osobní číslo:ArtemJméno:KelpePříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologieStudijní program:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Systém pro tvorbu scénářů platformy F-Tester

Název bakalářské práce anglicky:

System for creating scenarios for F-Tester platform

Pokyny pro vypracování:
Navrhněte systém pro tvorbu testovacích scénářů pro platformu F-Tester. Systém umožní tvorbu definic jednotlivých testů,
ale také z nich složených scénářů. Implementujte modul do serverové části F-Testeru, taktéž navrhněte a implementujte
modul do uživatelského rozhraní F-Testeru. Důraz zaměřte na uživatelskou přívětivost tvorby a konfigurace testů a scénářů.
Navržený systém otestujte.

Seznam doporučené literatury:
[1] Scott, E.: SPA Design and Architecture: Understanding Single PageWeb Applications 1st Edition. Manning Publications,
2015. 275 stran. ISBN: 1-61729-243-5.
[2] Podpůrné materiály platformy FLOWTESTER. Dostupné na: https://flowtester.fel.cvut.cz/ [on-line]
[3] Studijní materiály dostupné na https://openwrt.org/ [on-line]

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Zbyněk Kocur, Ph.D., katedra telekomunikační techniky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 07.01.2020Datum zadání bakalářské práce: 07.02.2019

Platnost zadání bakalářské práce: 20.09.2020

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Zbyněk Kocur, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of computers science

Bachelor’s Thesis

F-Tester Platform Scenario
Creation System

Artem Kelpe
Software Engineering and Technology

January 2020
Supervisor: Ing. Zbyněk Kocur, Ph.D.

/ Declaration

I hereby declare that the present
bachelor’s thesis was composed by my-
self and that the work contained herein
is my own. All formulations and con-
cepts taken verbatim or in substance
from printed or unprinted material or
from the Internet have been cited ac-
cording to the Methodological Guideline
on Ethical Principles for College Final
Work Preparation.

Prague, January 06, 2020

. .

iii

Abstrakt / Abstract

F-Lab je platforma pro testování
vlastností a schopností počítačových
sítí. F-Tester je součástí F-Lab, která
je zodpovědná za měření parametrů
komunikace mezi zařízeními založenými
na protokolu TCP/IP. Test Planner
je modul pro F-Tester, který umož-
ňuje vytvářet testovací konfigurace a
kombinovat je do scénářů, které může
F-Tester provádět. Tento dokument
obsahuje analýzu návrhu Test Planneru
a popis jeho implementace.

Klíčová slova: Počítačová síť, NGN,
NGA, F-Tester, OpenWRT, Lua, LuCI,
VueJS

F-Lab is the platform for testing
properties and abilities of computer
networks. F-Tester is a part of F-Lab
that is responsible for measuring pa-
rameters of communication between
devices based on TCP/IP protocol.
Test Planner is the module for F-Tester
that allows to create test configurations
and combine them into scenarios that
can be executed by F-Tester. This doc-
ument contains design analysis of Test
Planner as well as its implementation
description.

Keywords: Network, F-Tester, NGN,
NGA, OpenWRT, Lua, LuCI, VueJS

iv

/ Contents

1 Introduction .1
1.1 Project goals .1

2 Background .3
2.1 Network flow .3
2.2 F-Tester Platform.3

2.2.1 Technologies.3
2.3 Integration with F-Tester.4

3 Design .5
3.1 Existing solutions5
3.2 Requirements. .5

3.2.1 Functional requirements . . .5
3.2.2 Non-functional re-

quirements5
3.3 Use-case diagram6
3.4 Frontend design requirements . . .6

4 Implementation .9
4.1 Application architecture9
4.2 Technology stack 10

4.2.1 Backend 10
4.2.2 Frontend. 10

4.3 Data transformation 10
4.4 Graphical User Interface. 14
4.5 Backend integration. 17
4.6 Implementation Issues 18

5 Testing . 19
5.1 Test data . 19
5.2 Production data. 20
5.3 Usability testing 20

5.3.1 Target group 21
5.3.2 Conditions of testing 21
5.3.3 Preparation 21
5.3.4 Answers of participants. . 24
5.3.5 Analyse of results 25

6 Installation & Deployment
guide . 27

6.1 Prerequisites 27
6.2 Manual installation 27

7 Conclusion . 29
7.1 Project goals fulfilment 29
7.2 Future development 29

8 Appendix. 31
8.1 Contents of attached archive . . 31
8.2 Abbreviations 32

References . 33

v

Tables /

4.1. Decision table for frontend
frameworks . 10

vi

Chapter 1
Introduction

Networking as the part of IT science is the still growing and fast developing sphere,
new technologies, protocols and specifications appear every day. Their development
and introduction lead to new requirements both for hardware and for software to meet.

One of the possible ways of networks development is transitioning to new standards
called NGA/NGN (Next-Generation Access/Next-Generation Network). This standard
defines network with packet commutation that can be used with different broadband
transport technologies, where service functions do not depend on transport technologies.
NGN is more about software rather than hardware, so it can work with already existing
hardware infrastructures [1]. Some major telecom companies such as China Telecom,
Bulgarian Telecommunication Company, KPN (Netherland) and others are already
implementing this standard.

There are some test and criteria that can determine if the selected network can be
considered as the Next-Generation one. F-Lab, which is a product for measuring net-
work parameters, is one of such tools. In order to prepare and execute test scenarios of
such measurements, it needs a special module, which can add the new way of interac-
tion between the user and the system. Aim of this project is to develop such a module,
which is called Test Planner, and integrate it into the existing system.

This document gives an insight into the F-Tester project (chapter 2), describes the
design and requirements for Test Planner module (chapter 3), its implementation details
(chapter 4), testing (chapter 5), process of deployment on working F-Tester instance
(chapter 6) and conclusion with analysis of fulfilment of project goals (chapter 7).

1.1 Project goals
The goals of this thesis are the following:

. Review F-Lab and F-Tester platforms. Analyze way of development and integration of custom modules for them. Define requirements for Test Planner. Implement Test Planner module. Test the module on specified use cases

1

1. Introduction .

2

Chapter 2
Background

This chapter is dedicated to the technologies and platform upon which Test Planner is
built or that are connected with it.

2.1 Network flow
Network flow (also known as traffic flow or packet flow) is a sequence of packets that
goes through a computer network. Different RFC describe flow in different ways:
RFC 2722: For the purpose of traffic flow measurement we define the concept of a traffic
flow, which is like an artificial logical equivalent to a call or connection [2].
RFC 3697: A flow is a sequence of packets sent from a particular source to a particular
unicast, anycast, or multicast destination that the source desires to label as a flow. A
flow could consist of all packets in a specific transport connection or a media stream.
However, a flow is not necessarily 1:1 mapped to a transport connection [3].
RFC 3917: A flow is defined as a set of IP packets passing an observation point in the
network during a certain time interval. All packets belonging to a particular flow have
a set of common properties [4].
Flows are an essential part of network analysis as they provide more useful data about
network events than single packets.

2.2 F-Tester Platform
F-Tester (previously named as FlowTester) is a part of a complex solution called F-
Lab that is being developed on the Department of Telecommunication Engineering
(Faculty of Electrical Engineering, CTU in Prague). F-Lab is a complex testing and
simulating system that verifies properties and abilities of data networks. F-Tester is
the hardware and software component of this system that allows measuring parameters
of communication devices based on the TCP/IP protocol family.

2.2.1 Technologies
F-Tester runs on the Unix-like open-source operation system OpenWrt. This is a
lightweight highly extendible GNU/Linux distribution built from scratch for embed-
ded devices (typically wireless routers). OpenWrt is rather often used to replace stock
firmware of routers due to its security, stability and extensibility. In 2016 some devel-
opers left the OpenWrt project team and forked original OS and then named it LEDE
(Linux Embedded Development Environment). After two years projects OpenWrt and
LEDE were merged together and since then they exist as a single project under Open-
Wrt name. During the period of existence LEDE F-Tester project had been based on
that operational system.

When configuring a traditional Unix system the user has to fill a big amount of
text configuration files most of which have different syntax. Some services have to be

3

2. Background .
configured via executing the special command with different parameters. Instead of
this OpenWRT has created UCI (Unified Configuration Interface) which allows man-
aging the most of the system parameters via unified syntax of files and command
line parameters. Instead of storing different configuration files in different locations of
filesystem, UCI stores everything under /etc/config path, for example, configuration
of network interfaces which is located at /etc/network/interfaces can be changed by
editing /etc/config/network, or Samba/CIFS can be configured by /etc/config/samba
instead of typical /etc/samba/smb.conf. While running init.d initialization scripts, UCI
simply parses concrete /etc/config files and overrides original configuration files. UCI
files can be modified not only by manual editing text files, but also with the help of
command line utility uci. Moreover, that files are also modifiable via various program-
ming API (like Shell, Lua and C), which is the way how different interfaces like LuCI
make changes to the UCI files.

LuCI is a free, clean and extensible web user interface for embedded devices. It uses
Lua programming language and splits the interface up into logical parts like models and
views, uses object-oriented libraries and templating, what in common ensures better
performance, smaller installation size, faster runtimes and simple maintainability. LuCI
provides user with another way of editing UCI configuration files by simply using web
browser.

2.3 Integration with F-Tester
LuCI provides an easy and well-documented interface for implementing and integrating
custom modules. In terms of LuCI single module is a package with MVC structure,
which allows extending default functionality of LuCI, where

. Model is a necessary part of the module only if it is planned to be used as editor of
configuration files. In that case, it consists of files where the developer describes the
structure of the configuration file. View is one or more HTML files written in special format that can be recognised by
Lua’s regex based template processor. Those files can be used both for controlling
the module and show some results of command execution.. Controller is de facto list of actions that the module can execute on the backend
side. Often actions include editing configuration files, showing statistics or executing
scripts. Actions are defined as functions that are executed on a request from the
client side.

Process of integration of custom module is described in more details in chapter 6.

4

Chapter 3
Design

3.1 Existing solutions
As the F-Tester platform is the product of Dept. of Telecommunication Engineering
at FEE and because the problem is rather specific, currently there is no any kind of
alternative software that can be used as the part of F-Tester for scenarios production.
The only option how to create them is to manually write test scenarios in the text
editor and then send them to the test runner module.

3.2 Requirements

3.2.1 Functional requirements
Functional requirement is such a requirement that describes behaviour or specification
of system, i.e. what the system should do. Test Planner have to be able to accomplish
next functionality:
FRQ1 Create new test configuration
FRQ2 View list of test configurations
FRQ3 Edit existing test configuration
FRQ4 Delete existing test configuration
FRQ5 Create new test scenario
FRQ6 View list of test scenarios
FRQ7 Run existing test scenario
FRQ8 Plan next run of existing scenario at predefined time
FRQ9 Edit existing test scenario
FRQ10 Delete existing test scenario

3.2.2 Non-functional requirements
Non-functional requirements (also known as quality requirements) in contrast to
functional requirements describe how the system should work. Test Planner have to
accomplish next non-functional requirements:
NFRQ1 Application should operate properly in modern browsers (Chrome > 72,
Firefox > 65, Safari > 12, Opera > 58, Edge > 18)
NFRQ2 Application should be able to validate input data in order not to cause error
while running test scenarios
NFRQ3 Application’s GUI should have similar look to other system components design

5

3. Design .

3.3 Use-case diagram

Figure 3.1. Schematic description of application architecture

3.4 Frontend design requirements
As Test Planner tool is planned to be a replacement of manual type of creating scenarios
in the console, it has to be user-friendly and easy to use system - these terms are usually
used as synonyms of UX and UI. UX or user experience is the process of manipulating
of user behaviour that covers all aspects of the person’s experience with the system
including industrial design graphics, the interface, the physical and the manual interac-
tion.[5] UI or user interface is the part of human-computer interaction. Generally the
goal of user interface design is to make the user’s interaction as simple and efficient as
possible, in terms of accomplishing user goals. One of the main tasks of this project
is to implement and test frontend part of Test Planner to be simple, convenient to use
and similar to the other modules of F-Tester. The whole style of system is inspired
by LuCI default minimalistic design, so for implementing frontend of Test Planner was
chosen Bootstrap library, which provides different ready to use components. Design is

6

. 3.4 Frontend design requirements

described in detail in section 4.4, more information about usability testing can be found
in section 5.3

7

3. Design .

8

Chapter 4
Implementation

4.1 Application architecture
Test Planner is a typical web application with backend-frontend architecture and REST
API used as an interface for communication between the server and client side. Backend
side is used mostly for CRUD operations with data that are stored as JSON files on the
system storage. Frontend side consists of Vuex storage (which is the implementation of
Flux architecture for VueJS) and components for each entity in this application. Next
diagram shows relations between components and typical data flows:

Figure 4.1. Schematic description of application architecture

List of operations and dataflows on the schema:

. 1 - System storage provides application with predefined SJSON files. 2 - SJSON parser produces web form based on received SJSON file. 3 - Newly created test configurations are stored in the Vuex storage. 4 - Vuex storage synchronizes with system storage. 5 - Vuex storage provides test scenarios component with test configurations. 6 - Newly created test scenarios from test configurations are stored in Vuex storage. 7 - Vuex storage synchronizes with system storage. 8 - Test scenario is sent to test runner component of F-Tester

9

4. Implementation .

4.2 Technology stack
This section describes technologies, architectures, programming languages and frame-
works that were chosen to implement this project.

4.2.1 Backend
Due to possible limitations of hardware infrastructure and potential isolation from the
Internet, any package for LuCI or OpenWRT is expected to use other pre-installed
packages and not to download/install new packages as dependencies. So in order to
minimise package’s size, Lua was selected as the main programming language to im-
plement the backend side of the Test Planner. In terms of this application, backend is
used only to create, read, edit and delete entities, and the data is stored as serialized
JSON files, so JSONC was used as the library for working with JSON files as it is the
standard library for LuCI. LuCI’s application server is also used to give back HTML
and static files such as Javascript and CSS ones.

4.2.2 Frontend
As the most operations are performed on the frontend side of applications, it was
decided to use JavaScript framework instead of the vanilla version. Moreover, GUI of
application is expected dynamically refresh its content, for example, successful editing
particular item on the web page leads to the view with the preview of all entities, so it is
reasonable to use some kind of Flux storage on the client side of application. Next table
shows criteria that were used while selecting of frontend framework, and the decision
of that criteria, where value ”1” or green colour is the best option and value ”3” or red
color is the worst option from the point of the author.

Framework name React VueJS Angular
Designed for Web apps, SPA Web apps, SPA Web apps
Needed knowledge of languages JavaScript, JSX JavaScript TypeScript
Popularity & knowledgebase 1 2 2
Existing libraries 1 2 2
Easy to start 2 1 3
Standard for Flux-like storage 1 1 2
Already used in whole project 3 1 3

Table 4.1. Decision table for frontend frameworks

Flux-like storage is included in this table as an important criterion as it is a ratio-
nal and suitable technology to use. Commonly, Flux is the architecture for providing
operations with data based on the idea of unidirectional data flow. In VueJS there
is an officially recommended and supported Flux implementation that is called Vuex,
which is also used in Test Planner implementation. Flux pattern makes process of data
handling more organized and ordered, and it also works with framework’s reactivity,
which allows to create independent components that always present actual data.

As it can be seen from the table, VueJS is the most convenient solution as the frontend
JavaScript framework in this case.

4.3 Data transformation
In order to accomplish the task of generating predefined web forms, a special dialect
of JSON called SJSON (Special JSON) was created. This kind of object notation

10

. 4.3 Data transformation

was inspired by JSON Schema - technology for annotating and validating JSON ob-
jects/documents. The main purpose of SJSON is to provide information about possible
structure of the final JSON object, necessity of its attributes and their possible values.
Due to that SJSON files Test Planner can dynamically generate web forms for creating
test configurations. One SJSON file is mapped to one console application that can be
executed in console.

Sample SJSON file contains the name of test type and list of its options:

"testTypeName": [testOption1, testOption2, ...]

Each option is mapped to one attribute of the console application that will be exe-
cuted. It provides rules of validating its value:

"testOption":{
"name" : "optName",
"label": "Option Name",
"type" : "string" OR "number" OR "checkbox" OR "select",
"minVal": 0.1,
"maxVal": 150,
"options": [selectOption1, selectOption2, ...],
"multiselect": true OR false,
"optional" : true OR false,
"defaultValue": "something",
"unmodifiable": true OR false,
"mapping": {mappingScheme}

}

where minVal a maxVal works only for type number and options and multiselect work
only for type select.

In case of type select there should be presented list of possible values:

"selectOpt": {
"label": "Option name",
"value": "value"

}

where label is text that will be shown for this option and value is value that will be
used in test configuration.

The last part of option is mapping object that defines how this value will be used in
console application execution:

"mappingObject": {
"type": "main" OR "opt",
"arg": true OR false,
"str": "-p",
"position": "begin" OR "end"

}

where type describes if this value will be stored as a key-value pair in final test config-
uration object (main) or if it will be added as an option to the string with command
that executes application (opt). If arg is true, then value from str will be used as an
argument for command line, otherwise value of test option will be used without any
prefix. Attribute position allows defining the order of argument in final string.

For example, SJSON object for execution of program ping will look like this:

11

4. Implementation .
"ping":[

{
"name": "program",
"label": "Program",
"type": "string",
"optional": false,
"defaultValue": "ping",
"unmodifiable": true,
"mapping": {

"type": "main"
}

},
{

"name": "target",
"label": "Target host",
"type": "string",
"optional": false,
"mapping":{

"type": "main"
}

},
{

"name": "count",
"label": "Count of icmp packets to send",
"type": "number",
"minVal": 1,
"maxVal": 1000,
"defaultValue": 5,
"optional": false,
"mapping":{

"type": "opt",
"arg": true,
"str": "-c"

}
},
{

"name": "interval",
"label": "Interval between send packets [s]",
"type": "number",
"minVal": 1,
"maxVal": 60,
"defaultValue": 1,
"optional": false,
"mapping":{

"type": "opt",
"arg": true,
"str": "-i"

}
},
{

"name": "packet_size",
"label": "Packet size [bytes]",
"type": "number",

12

. 4.3 Data transformation

"minVal": 1,
"maxVal": 1000,
"defaultValue": 56,
"optional": false,
"mapping":{

"type": "opt",
"arg": true,
"str": "-s"

}
}

]

Web form produced with SJSON will look like this:

Figure 4.2. Screenshot of web form generated by ping example SJSON

And the final test configuration will contain next implementation:

{
"type": "ping",
"name": "eights",
"params": {

"program": "ping",
"target": "8.8.8.8",
"opts": "-c 5 -i 1 -s 56"

}
}

13

4. Implementation .

4.4 Graphical User Interface

Frontend part of Test Planner is implemented leaning on basic principles of SPA. SPA
(Single Page Application) is a modern pattern of building web application when user
once loads an HTML page and then interact with it while page dynamically rewrites its
content. Such approach allows to avoid interruptions of UI between loading pages and
makes an application to look like a native one [6]. That means that user once download
whole web application, all its content and components/graphical elements of UI and
after that communicate with the server only in order to send or retrieve some data via
backend API. SPA are often built with JavaScript MVC/MVVM frameworks such as
React, AngularJS or VueJS.

After opening the application page there are 3 tabs that can be browsed:

. Overview - information about already executed or planned scenarios executions. Scenarios - list of created test scenarios; forms to create new or edit existing sce-
narios. Tests - list of created test configurations; forms to create new or edit existing con-
figurations

Figure 4.3. Screenshot of panel with tabs

Lists of scenarios and configurations are presented as simple tables, where each row
contains name and description of every single item as well as control elements for editing
or executing and deleting them.

Figure 4.4. Screenshot of test configurations preview

14

. 4.4 Graphical User Interface

Figure 4.5. Screenshot of test scenarios preview

On each page there is also a button for creating a new item. Clicking on it opens the
form where user can build up new test configuration or new test scenario from existing
configurations.

Figure 4.6. Screenshot of form for creating test configuration

15

4. Implementation .

Figure 4.7. Screenshot of form for creating test scenario

Same forms are also used for editing selected items.

16

. 4.5 Backend integration

4.5 Backend integration

In order to provide communication between different processes, applications and dae-
mons, there was developed a project called ubus. Basically, it is a message broker that
is integrated into the operational system. The core of ubus is ubusd - daemon that
provides an interface for registering listeners via Unix sockets and sending messages.
Ubus also has a library called libubus that can be used in applications for interacting
with ubus.

Every daemon registers a unique namespace and set of paths under that namespace in
ubus. Every path provides one or more procedures with a predefined list of arguments.
Procedure can also return a message after its execution.

F-Tester has its own namespace in ubus:

root@F-Tester:˜# ubus list
block
flowtester
flowtester_ctl # <-- this one
ftexec
ftrm
log
network
network.device
network.interface
network.interface.loopback
network.interface.mgmt
network.interface.net
network.wireless
service
session
system
uci

List of its procedures can be retrieved this way:

root@F-Tester:˜# ubus -v list flowtester
’flowtester’ @fe68c873

’flowtester_ctl’ @54242849
"schedule":{}
"cancel":{"name":"String"}
"result_list":{}
"version":{}
"config_add":{"data":"String"}
"config_list":{}
"check_mtu":{"ip":"String"}
"status":{}
"result_detail":{"name":"String","results":"String"}
"config_delete":{"name":"String"}
"result_delete":{"name":"String"}

To execute scenario or plan next scenario execution Test Planner sends it in JSON
format encoded with base64 to the procedure config_add.

17

4. Implementation .

4.6 Implementation Issues
There were some issues during the process of project implementations that were caused
by the specificity of platform and technologies.

. Bootstrap
It was planned to use Bootstrap as the main UI library on the frontend for elements

rendering. During its application, it was found that LuCI’s GUI is also built with
Bootstrap, but with an older version, which is incompatible with the actual one.
After loading all content on the page, new Bootstraps overrides old CSS rules and
by this breaks LuCI’s navigation panel, what makes impossible to go ta any other
section of GUI. Finally, another library was chosen to use to prevent conflicts of rules
for already existing elements on the page.. Cascade operations

Test Planner is prepared for cascade editing - if any test configuration is changed,
then the test scenario, where this configuration is used, will produce a test with
changed data. But if the same situation will happen with delete operation, then
generating test from scenario will finish with an error. Solution is described in section
7.2

18

Chapter 5
Testing

As the last phase of development process test Test Planner was tested with different
sets of data. In both test scenarios application worked properly and ended with success.

5.1 Test data

For this kind of data program ping was selected because firstly, it is present in almost
every OS (including OpenWRT), and secondly, it has all kind of parameters that are
used in Data Transformation component of Test Planner. For testing with ping there
were created 2 test configurations:

Figure 5.1. Screenshot of test configuration

and two test scenarios:

Figure 5.2. Screenshot of test scenarios

19

5. Testing .

5.2 Production data
As the example of production data programs iperf3 and flowping were selected as
the ones that are used for network measurements by F-Tester.

Figure 5.3. Screenshot of test configurations

Figure 5.4. Screenshot of test scenarios

5.3 Usability testing
Usability testing is a special technique that allows to evaluate the convenience of us-
ability of the system. During usability testing system is presented to the participants,
then they try to operate with it and finally participants fill the special form, where they
describe their experience with the system.

20

. 5.3 Usability testing

5.3.1 Target group

Before the testing there was predefined target group basing on potential user of system:
people of age 20-40 years with technical (IT) education or experienced in the IT for at
least 2 years. There are no limitations on gender.

5.3.2 Conditions of testing

Testing was conducted in a special Usability Lab - special room that is designed for such
kind of testing. Lab is divided into two parts - for the participant and the moderator.
The participant has cards with tasks that he has to perform on the computer while
moderator is observing the whole process from the beginning until the end. Moderator
also controls the emotions on the participant’s face as they also can influence test
results. If the participants meets some problems during task execution, he is able to
communicate with the moderator - otherwise communication between the sides is not
recommended.

Figure 5.5. Schema of usability lab
Source: https://www.researchgate.net

5.3.3 Preparation

Before starting of test, each participant was introduced to the brief description of the
system and the whole infrastructure. Moreover, each participant was acquainted with
the terminology that is used in the system by next glossary:

21

5. Testing .

Test configuration - list of parameters that will be used for the
execution of concrete program. Examples of test configurations:

config_name1: ping -I eth0 -i 2 -s 32 -W 5 192.168.0.5
or

config_name2: nslookup -query=hinfo -timeout=10 intranet.com

Test scenario - list of test configurations in predefined sequence
with time intervals. When test scenario is executed, system starts to
run each application defined in test configuration with configured
parameters and pauses between test configurations. Examples of test
scenarios:

SCENARIO START
pause 5sec
config_name1
pause 5 sec
config_name2
SCENARIO END

or
SCENARIO START
config_name3
pause 20sec
config_name2
pause 15sec
config_name5
pause 5sec
SCENARIO END

F-Tester - module that hosts Test Planner system and executes test
scenarios

All participants had the same list of tasks:. Task 1 - Create test configuration for application ping with next parameters:
Test configuration name: ping_config_1
Target host: 1.1.1.1
Count of packets: 10
Interval between packets: 2 seconds
Packet size: 56 bytes
Print timestamp on line start: No

. Task 2 - Create test configuration for application ping with next parameters:
Test configuration name: ping_config_2
Target host: internal_nas
Count of packets: 8

22

. 5.3 Usability testing

Interval between packets: 1 seconds
Packet size: 32 bytes
Print timestamp on line start: Yes

. Task 3 - Create test configuration for application flowping with next parameters:
Test configuration name: flowping_config_1
Target host: 10.0.20.105
Target port: 1277
Count of packets: 20
Output CSV: Yes
Busy mode: Yes
Filename: /opt/testdata/data.txt

. Task 4 - Create test configuration for application flowping with next parameters:
Test configuration name: flowping_config_2
Target host: 10.0.20.171
Target port: 8085
Count of packets: 10
Output CSV: No
Busy mode: Yes
Filename: /opt/testdata/data.txt

. Task 5 - Create test scenario with next parameters:
Test scenario name: Scenario_1
Sequence of test configurations:

. ping config 1, duration: 30, delay: 5. ping config 2, duration: 15, delay: 5. flowping config 1, duration: 25, delay: 10. flowping config 2, duration: 25, delay: 10

. Task 6 - Create test scenario with next parameters:
Test scenario name: Scenario_2
Sequence of test configurations:

. flowping config 1, duration: 10, delay: 1. ping config 2, duration: 30, delay: 10. flowping config 2, duration: 20, delay: 10

Card for each task contained not only task description, but also some fields where
participant wrote about their experience during the task:

[... task description ...]

Select an option:
There was no problem during test
There was no problem during test, but ...
There were some problems during test: ...
I was unable to finish the test because ...

23

5. Testing .

Final card contained next questions:
If you have any comments or remarks, please, write them here: ...
Rate the whole experience of your usage of system from 1 (unable to use)
to 10 (nothing can be improved, system is perfect)

5.3.4 Answers of participants

. Participant 1 - man, 21 years old, bachelor student of CTU in Prague, FIT, currently
works as Junior Tester.
Task 1: There was no problem during test.
Task 2: There was no problem during test.
Task 3: There was no problem during test, but some fields are not very understand-
able - it can be a good idea to add description to the parameters.
Task 4: There was no problem during test, but some fields are not very understand-
able - it can be a good idea to add description to the parameters.
Task 5: There was no problem during test.
Task 6: There was no problem during test.
Notes, remarks: System seems to be user-friendly and easy-to-use, but there are
some things that can be improved.
Grade: 8

. Participant 2 - man, 28 years old, no special education, currently works as Network
Engineer.
Task 1: There was no problem during test.
Task 2: There was no problem during test.
Task 3: There was no problem during test, but units could be written on the right
side of the input box.
Task 4: There was no problem during test, but units could be written on the right
side of the input box.
Task 5: There was no problem during test.
Task 6: There was no problem during test.
Notes, remarks: Everything went without any problem, system is ready to be used
in production.
Grade: 9

. Participant 3 - woman, 24 years old, graduated bachelor study of CTU in Prague,
FEL, currently works as Freelance programmer.
Task 1: There was no problem during test.
Task 2: There was no problem during test.
Task 3: There was no problem during test.
Task 4: There was no problem during test.
Task 5: There was no problem during test.
Task 6: There was no problem during test.
Notes, remarks: Test Planner has minimalistic design, but it seems to be an
advantage, as the whole system has almost the same style and design. Anyway, I
met no problems during the test.
Grade: 8

24

. 5.3 Usability testing

. Participant 4 - woman, 29 years old, graduated master study of CTU in Prague,
FIT, currently works as Programmer of embedded systems.
Task 1: There was no problem during test.
Task 2: There was no problem during test.
Task 3: There was no problem during test.
Task 4: There was no problem during test.
Task 5: There was no problem during test.
Task 6: There was no problem during test.
Notes, remarks: Every task went without any problem.
Grade: 9

. Participant 5 - man, 32 years old, no special education, currently works as Frontend
programmer.
Task 1: There was no problem during test.
Task 2: There was no problem during test.
Task 3: There was no problem during test.
Task 4: There was no problem during test.
Task 5: There was no problem during test.
Task 6: There was no problem during test.
Notes, remarks: System looks good, there is validation for preventing errors, but
the system does not look like modern web page, there could be implemented more
things to improve UX.
Grade: 7

5.3.5 Analyse of results

All test participants were able to pass all tests without any problems. Average grade
mark is 8.2, so the system can be claimed as user-friendly and easy to use system with
understandable frontend. Though some participants mentioned that there are some
elements that can be improved for better user experience, all participants said that
they are ready to use such a system in their everyday work routine.

25

5. Testing .

26

Chapter 6
Installation & Deployment guide

6.1 Prerequisites

. Installed Lua interpreter. Installed LuCI interface. Installed ubus daemon & library

Test Planner was designed and implemented to be used only as the part of F-Tester,
but if any system fits all the conditions, it also can be potentially used there.

In order to make some changes in the frontend part user has to edit source files on
a normal computer, build it with NPM and then use them normally as it is described in
next section.

6.2 Manual installation

Installation steps:

1. Backend - Create endpoints and their handlers
Create folder /usr/lib/lua/luci/controller/Test-Planner and move there all

files from archive/backend folder
2. Frontend - Create static view

Create folder /usr/lib/lua/luci/view/Test-Planner/ and copy there
archive/frontend/dist/index-vue.htm file

3. Frontend - Add JavaScript, CSS and images
Create folder /www/luci-static/resources/TestPlanner/vue dist and copy

there all folders archive/frontend/dist/static/

Note: archive is the attached to this thesis archive with files.

This instruction is written for precompiled frontend project, which is located in the
dist folder. User can manually compile compile frontend sources file. In order to
compile the project, next commands should be executed in the console while locating
in the frontend folder, which contains Vue-components, assests, configurational files
and needed modules and libraries:

npm install
npm build

After their execution there will be compiled sources in the dist folder. User must be
sure to have enough space for downloading dependency modules and packages needed

27

6. Installation & Deployment guide .
for compiling process. More info about compiling process via NPM can be found on
official documentation here: https://docs.npmjs.com/

28

Chapter 7
Conclusion

7.1 Project goals fulfilment

. Review F-Lab and F-Tester platforms
Description of F-Lab, F-Tester and main technologies that are used in F-Tester is

presented in section 2.2. Analyse way of development and integration of custom modules for F-Tester
There is an officially supported and well-documented way of extending default

LuCI’s functionality described in section 2.3. Also, section 4.5 contains information
about communication between different applications and processes via the default
system broker.. Define requirements for Test Planner

Functional and non-functional requirements, defined basing on expected function-
ality of Test Planner, as well as use-case diagram, are mentioned in section 3.2.. Choose suitable technologies and implement Test Planner module

Chapter 4 is dedicated to the implementation part of this thesis - planning archi-
tecture, selecting technologies and programming.. Test the module on specified use cases and usability testing

The process of testing Test Planner on test data and production data ended with
success. The process and its results described in chapter 5. Another part of testing
- Usability testing - is described in detail in section 5.3.

As all the project goals are entirely or at least for the most part fulfilled, the project
can be considered a success.

7.2 Future development
As the part of future releases next features are planned to be implemented:

. Overview tab
Dashboard with history of used scenarios, list of planned scenarios execution in

future and graph of network load predicted by parameters of scenarios.. Extending functionality of data transformation module
Add more possible data types and values for test schemas, for example, nested

objects.. Reaction on delete of removal test configuration
Add some kind of warning alert when the user tries to delete the concrete test

configuration that is used in at least one test scenario, and notify him that such
operation leads to breaking that scenario.

29

7. Conclusion .
. UI improvements

Participants of the Usability testing mentioned about possible improvements of
some frontend elements such as using timeline graph, dynamically showing and hiding
of some data etc.. Tool for creating SJSON files

Such a tool was not a part of the task of this bachelor thesis, but can be a useful
part of system and facilitate work routine of the administrators of F-Tester and F-Lab
platform.

30

Chapter 8
Appendix

8.1 Contents of attached archive

/ . Root directory
src . Folder with source files

controller
how to create test type. Manual for creating test types
module.lua. .Script with controller
scenarios.json. .Test scenarios storage
testTypes.json. Test types storage
tests.json. Test configurations storage

frontend
index-vue.htm. .Static view file
dist

static. Folder with compiled frontend components
sources. Folder with sources of frontend components

thesis
thesis.pdf. This document
thesis.tex. .TeX source of this document
glossary.tex. TeX source of glossary section
Technika.pfb. .Font for compiling this document
ctustyle2.tex. TeX template that is used in this document

31

8. Appendix .

8.2 Abbreviations
API . Application programming interface
GUI . Graphical user interface
JS . JavaScript
JSON . JavaScript Object Notation
NGA . Next-Generation Access
NGN . Next-Generation Network
OS . Operating system
Regex . Regular expression
RFC . Requests for comments - formal document drafted by the Internet

Engineering Task Force that describes the specifications for a particular
technology

SJSON . Special JSON - dialect of JSON that was developed by author of this work
UI . User interface
UX . User experience

32

References

[1] MAKARENKO, Sergey Ivanovich, Nikolai Nikolaevich CHALENKO and Aleksei
Gennad’evich KRYLOV. Next Generation Networks. Systems of Control, Com-
munication and Security. 2016, 2016(1), 84-85. ISSN 2410-9916.

[2] Traffic Flow Measurement: Architecture: RFC 2722 [online]. IETF, 1999 [cit.
2019-05-06]. Available from:
https://tools.ietf.org/html/rfc2722

[3] IPv6 Flow Label Specification: RFC 3697 [online]. IETF, 2004 [cit. 2019-05-06].
Available here:
https://tools.ietf.org/html/rfc3697

[4] Requirements for IP Flow Information Export (IPFIX): RFC 3917 [online]. IETF,
2004 [cit. 2019-05-06]. Available from:
https://tools.ietf.org/html/rfc3917

[5] Merholz, Peter Peter in Conversation with Don Norman About UX and Innovation.
Adaptive Path, 2007

[6] SCOTT, Emmit A. SPA design and architecture: understanding single-page web
applications. Shelter Island, NY: Manning, 2016. ISBN 16-172-9243-5

33

https://tools.ietf.org/html/rfc2722
https://tools.ietf.org/html/rfc3697
https://tools.ietf.org/html/rfc3917

	TITLE
	/Declaration
	Abstrakt/Abstract
	Contents
	Tables/
	Introduction
	Project goals

	Background
	Network flow
	F-Tester Platform
	Technologies

	Integration with F-Tester

	Design
	Existing solutions
	Requirements
	Functional requirements
	Non-functional requirements

	Use-case diagram
	Frontend design requirements

	Implementation
	Application architecture
	Technology stack
	Backend
	Frontend

	Data transformation
	Graphical User Interface
	Backend integration
	Implementation Issues

	Testing
	Test data
	Production data
	Usability testing
	Target group
	Conditions of testing
	Preparation
	Answers of participants
	Analyse of results

	Installation & Deployment guide
	Prerequisites
	Manual installation

	Conclusion
	Project goals fulfilment
	Future development

	Appendix
	Contents of attached archive
	Abbreviations

	References

