
Faculty of Electrical Engineering

Department of Computer Science

Bachelor’s Thesis

Hybrid algorithm for the Dubins Traveling

Salesman Problem with Neighborhoods

Daniel Váchal

January 2020

Supervisor: prof. Ing. Jan Faigl, Ph.D.

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

420913Personal ID number:Váchal DanielStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Open InformaticsStudy program:

Software SystemsBranch of study:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Hybrid algorithm for the Dubins Traveling Salesman Problem with Neighborhoods

Bachelor’s thesis title in Czech:

Hybridní řešení úlohy obchodního cestujícího s Dubinsovým vozidlem

Guidelines:
1. Familiarize yourself with the Dubins Traveling Salesman Problem (DTSP) [1] and the DTSPwith Neighborhoods (DTSPN)
[2, 3].
2. Familiarize yourself with the algorithms [4] and [5] and available implementations.
3. Propose a combination of the memetic techniques [4] with the unsupervised learning [5] to improve the quality of solutions
provided by [5] and decrease computational requirements of [4].
4. Implement the proposed solution and evaluate its performance in representative benchmarks of the DTSP(N).

Bibliography / sources:
[1] Savla, K., Frazzoli, E., and Bullo, F: On the point-to-point and traveling salesperson problems for Dubins? vehicle.
American Control Conference, 2005, 786-791.
[2] Oberlin, P., Rathinam, S., and Darbha, S.: Today's traveling salesman problem. Robotics & Automation Magazine,
2010, 17(4):70-77.
[3] Isaacs, J. T., Klein, D. J., and Hespanha, J. P. Algorithms for the Traveling Salesman Problem with Neighborhoods
Involving a Dubins Vehicle. American Control Conference, 2011, 1704-1709.
[4] Zhang, X., Chen, J., Xin, B., and Peng, Z.: A memetic algorithm for path planning of curvature-constrained uavs
performing surveillance of multiple ground targets. Chinese Journal of Aeronautics, 2014, 27(3):622-633.
[5] Faigl, J., Váňa, P.: Unsupervised learning for surveillance planning with team of aerial vehicles. IJCNN 2017: 4340-4347.

Name and workplace of bachelor’s thesis supervisor:

prof. Ing. Jan Faigl, Ph.D., Artificial Intelligence Center, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 07.01.2020Date of bachelor’s thesis assignment: 31.01.2018

Assignment valid until: 07.02.2020

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
Head of department’s signatureprof. Ing. Jan Faigl, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 1 from 2CVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 2 from 2CVUT-CZ-ZBP-2015.1

” Time is the kindest thing of all, it will eventually heal
every sorrow. Time is the cruelest thing of all, it will make

everything fade away.”

-TOKISAKI KURUMI, DATE A LIVE (ENCORE OVA)

Prohlášeńı

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl
veškeré použité informačńı zdroje v souladu s Metodickým pokynem o dodržováńı
etických princip̊u při př́ıpravě vysokoškolských závěrečných praćı.

V Praze 7. ledna 2020

ii

iii

Abstract

The thesis presents the Dubins Traveling Problem (DTSP) and its extension,
the Dubins Traveling Salesman Problem with Neighborhoods (DTSPN). The
thesis focuses on solving the DTSPN and studies two existing algorithms for the
problem. One algorithm is the unsupervised learning algorithm based on Self-
Organizing Maps (SOM). The second studied algorithm is a Memetic algorithm
based on crossover and mutation operators to solve the DTSPN. The advantages
and disadvantages of these two approaches can be considered complementary.
Based on that, a novel Hybrid algorithm for solving the DTSPN is proposed
to combine the two algorithms into a single one, that adopts the advantages of
both.

Keywords: dubins traveling salesman problem; dubins traveling salesman
problem with neighborhoods; memetic algorithm; self-organizing map; hybrid
algorithm; unsupervised learning

Abstrakt

Tato práce pojednává o problematice problému obchodńıho cestuj́ıćıho s Du-
binsovým Vozidlem (DTSP) a jeho rozš́ı̌reńı na problém obchodńıho cestuj́ıćıho
s Dubinsovým vozidlem s okoĺımi (DTSPN). Práce se zaměřuje na řešeńı min-
imalizačńı úlohy DTSPN a studuje dva existuj́ıćı algoritmy pro řešeńı tohoto
problému. Prvńı algoritmus je založen na neř́ızeném učeńı postavený na samo-
organizuj́ıćıch se mapách (SOM). Druhý, Memetický algoritmus, využ́ıvá operátory
kř́ıžeńı a mutaćı. Výhody a nevýhody algoritmů se navzájem doplňuj́ı. V práci
je toho využito v navrženém hybridńım algoritmu pro řešeńı DTSPN, který
kombinuje výhody obou stávaj́ıćıch algoritmů.

Kĺıčová slova: problém obchodńıho cestuj́ıćıho s Dubinsovým vozidlem; problém
obchodńıho cestuj́ıćıho s Dubinsovým vozidlem s okoĺımi; memetický algoritmus;
samo-organizuj́ıćı se mapy; hybridńı algoritmus; neř́ızené učeńı

iv

i
Contents

1 Introduction 1

2 Problem Statement 3

3 Related Work 5

4 Source Algorithms 7
4.1 Memetic Algorithm . 7
4.2 Unsupervised learning algorithm 9

4.2.1 Self Organizing Maps for the TSP and the DTSP 9
4.2.2 SOM for the DTSPN . 10

5 Proposed Hybrid Algorithm 13

6 Results 17
6.1 SOM initialization count for the Hybrid algorithm 17
6.2 Basic settings . 18
6.3 Changing the density of the map 20
6.4 Changing the number of targets on the map 21
6.5 Changing the turning radius . 22
6.6 Changing the sensing radius . 23
6.7 Discusion . 23

7 Conclusion 25

Bibliography 27

v

i
List of Figures

1.1 [1]: Carbonix Volanti: fixed wing carbon composite industrial
drone . 1

2.1 An example of the Dubins manuever connecting points pi and pj
using the departure angle θi and arrival angle θj , adapted from [2] 4

3.1 A solution for the DTSP for a given sequence of the targets, using
the uniformed sampling and the informed sampling. Source of the
picture: [2] . 6

4.1 In a chromosome, two indices i = 3, j = 6 are chosen and the
mutation is done around them, creating a new chromosome. . . . 8

4.2 Representation of the crossover operator. In step 1, red gene is
chosen from parent 1. In step 2, red genes are no longer consid-
ered, as they were used already. The first viable gene is chosen
from the parent 2 according to the sequence generated at the
start of the operator. In the example, (1,2,2,1,2). By repeating
the process the offspring is created. 9

4.3 Example of the ring evolution towards the targets. After the
adaptation process is finished the headings are determined, and
the final Dubins path is constructed [3] 11

4.4 A search graph showing how the headings are connected in the
neuron ring, source: [3] . 11

4.5 Graphic showing the winner selection procedure and the point op
towards which the network is adapted [3] 12

5.1 Ilustration of the best solutions provided by the Memetic algo-
rithm and the Hybrid algorithm in their initial population. This
example has the basic setting from which all other experiments
are made. That is δ = 4, ρ = 4, with 30 targets. 14

vi

5.2 The visiting point of the target Oi is moved while converting
the solution from one representation to the other. The original
location of the visiting point is the neuron νi. The converting
function moves the visiting point to the point pi on the boundary
of the neighborhood in the direction of the heading, resulting in
the change of Dubins path. 15

6.1 Test of the Hyrid algorithm with different number of SOM initial-
izations, conducted on 10 intsances, with settings n = 100, D =
20, δ = 4, ρ = 4. 18

6.2 Test of the Hyrid algorithm with few and many SOM initializa-
tions, conducted on 10 instances, with settings n = 100, D =
20, δ = 4, ρ = 4. 18

6.3 Test conducted on 10 maps with basic settings n = 30, D =
20, δ = 4, ρ = 4. 19

6.4 Test conducted on 100 instances with settings n = 30, δ = 4, ρ = 4
for 10 different values of D. 20

6.5 Test conducted on 100 instances with settings D = 20, δ = 4, ρ =
4 for 10 different values of n. 21

6.6 Test conducted on 100 instances with settings n = 30, D =
20, δ = 4 for 10 different values of ρ. 22

6.7 Test conducted on 100 instances with settings n = 30, D =
20, ρ = 4 for 10 different values of δ. 23

vii

i
List of Algorithms

1 The function transforming the representation of the solution from
the SOM alghorithm into the Memetic 15

2 The pseudocode of the Hybrid algorithm describing also the Memetic
part presented in [4] . 16

viii

i
Abbreviations

UAV Unmanned Aerial Vehicle
TSP Traveling Salesman Problem
TSPN Traveling Salesman Problem with Neighborhoods
DTSP Dubins Traveling Salesman Problem
DTSPN Dubins Traveling Salesman Problem with Neighbor-

hoods
SOM Self-Organizing Map
GSOA Growing Self-Organizing Array
DTP Dubins Touring Problem
AA Alternating Algorithm
ATSP Asymmetric Traveling Salesman Problem
ETSP Euclidean Traveling Salesman Problem
GTSP Generalised Traveling Salesman Problem
GTSPN Generalised Traveling Salesman Problem with Neigh-

borhoods

ix

i
Symbols Used

ρ Turning radius limit
n Natural number
δ Sensing radius
v Constant forward velocity
q State of the Dubins vehicle
p Position of the Dubins Vehicle in R2 (waypoint)
(x, y) Coordinates in R2

θ Heading of the Dubins vehicle
SE (2) Special Euclidean Space R2 × S
S Sequence of waypoints si
P Set of waypoints pi
u Control input
O Target location

r Vehicle number
N Neural network (neuron ring)
νi Vehicle configuration in the input space
m Number of neurons in the ring
σ Learning gain
µ Learning rate
α Gain decreasing rate
ν∗ Winner neuron
Θv Set of heading values of the neuron v
po Closest point on the Dubins path to the target o
νprev Neuron on the path previous to the winner neuron de-

termined so that the length of the Dubins path is mini-
mized

νnext Neuron on the path next to the winner neuron deter-
mined so that the length of the Dubins path is mini-
mized

D The target density in testing instances
Q Set of all possible configurations qi of the Dubins Vehi-

cle.

x

CHAPTER 1
Introduction

The problem addressed in this thesis is motivated by surveillance missions performed by
Unmanned Aerial Vehicles (UAVs). In surveillance missions, the goal is to visit a set of
locations to gather information on the objects of interest. An example can be data collection of
household energy consumption, where data can be collected remotely from measuring devices.
Another instance of a surveillance mission is taking snapshots of the given target locations.
In that case, it is not necessary to visit the location of the object exactly, but it is sufficient
to reach a location from which the object can be photographed with the requested level of
details. There can be several optimization criteria used in surveillance mission planning. The
most straightforward way is to shorten the time UAV spends on the mission because keeping
the UAV airborne is the most expensive part of the mission. Therefore the mission needs to be
planned such that the UAV visits all the required target locations with minimal possible time.
If the UAV is moving with constant speed, the problem can be considered as a minimization
of the total travel cost to visit all the target locations. A common type of UAV used for the
surveillance missions is a fixed-wing aircraft, which is constrained by its turning radius. An
example of such fixed-wing aircraft is shown in Figure 1.1.

The problem of finding minimal tour length visiting all the given locations is the Traveling
Salesman Problem (TSP), which is known to be NP-hard (in its decision variant) [5], with

Figure 1.1: [1]: Carbonix Volanti: fixed wing carbon composite industrial drone

1

Chapter 1. Introduction

several existing approaches [6], [7]. However, the motivational scenario of the here studied
problem is to find a smooth multi-goal trajectory that is suitable for UAVs such as fixed-wing
aircraft, which is constrained by its minimal turning radius. Therefore, we focus on a solution
of the TSP-like problems with curvature-constrained trajectories for which we consider the
vehicle motion constraints modeled as Dubins vehicle [8].

Dubins vehicle models a vehicle that moves only forward with a constant speed and is
limited by a minimum turning radius ρ. Then, the TSP becomes the Dubins Traveling
Salesman Problem (DTSP) [9]. The task is to find the shortest path connecting a given
set of points with a curvature constraint, such that the path visits all the given locations. In
this case, when it is not required to visit the exact locations, we can save additional resources
by only visiting their vicinity. That leads to a generalization of the DTSP, where particular
waypoints can be chosen from an area surrounding the object of interest. This generalization
is called the Dubins Traveling Salesman Problem with Neighborhoods (DTSPN) [10].

A novel hybrid algorithm for the DTSPN is introduced in this thesis. It leverages on to the
existing methods: Memetic algorithm [4] and Unsupervised learning-based algorithm, based
on Sel-Organizing Maps (SOM) [3]. Although, the SOM-based algorithm has evolved and the
authors have introduced an updated version, called GSOA: Growing Self-Organizing Array -
Unsupervised learning for the Close Enough Traveling Salesman Problem and other routing
problems, we use the original abbreviation (SOM) for the rest of the thesis.

Both of these algorithms have their pros and cons. But these pros and cons can be
considered complementary to each other. While the SOM algorithm can be considered a quick
constructive heuristic, it does not improve the provided solution with more computational time
at its disposal. The memetic algorithm is relatively slow in providing the first competitive
solution, but with enough computational time, it can converge to high-quality solutions,
eventually to the optimum. In chapter 4, both algorithms are presented to the reader in
detail, as they are essential for the rest of the thesis.

Chapter 5 presents the proposed hybrid algorithm. The Hybrid generates solutions using
the SOM and uses them for the initial population of the memetic part. It can provide high-
quality solutions quickly, while still being able to improve upon them, when provided with
more computational time.

In chapter 6, the empirical results of the proposed solutions are reported and discussed.
The proposed hybrid algorithm is compared to the two algorithms from which it was devel-
oped. In chapter 7, the thesis is concluded.

2

CHAPTER 2
Problem Statement

The problem studied in this thesis is motivated by surveillance missions performed by the
UAVs, where a set of locations to visit is given. The problem of connecting all the points in a
plane and determining the order of their visits is known as the Traveling Salesman Problem
(TSP). The target location does not always have to be visited directly. Hence, it is enough to
approach the object of interest from a certain distance, and the particular waypoint can be
chosen from an area surrounding the target. With this generalization, the problem becomes
the Traveling Salesman Problem with Neighborhoods (TSPN). The shape of the surrounding
area can vary in real situations, but for the computation, it has to be determined first. For
simplicity, we consider that the area around each target is of the disk shape with a center in
the target location with a given radius δ. In our case, each location has to be visited by the
UAV, and the curvature constrained non-holonomic vehicle.

A mathematical model of the vehicle is needed for computations. Such a model has been
proposed in [8]. The model is called the Dubins vehicle, which is a vehicle moving always
forward with constant speed v and its motion limited by the minimal turning radius ρ. At
each point in time, the state of the vehicle is described by its position in the plane and its
heading. The represantation of the state is q = (p, θ), where p ∈ R2 is the position p = (x, y)
and θ ∈ S1 is the heading of the vehicle, i.e., q ∈ SE (2), that can be expressed by the
equation [2]. ẋẏ

θ̇

 = v

 cos θ
sin θ
u ρ−1

 , |u| ≤ 1, (2.1)

where u is the control input.

Dubins shows in [8], that the optimal path connecting two states q1 ∈ SE(2) and q2 ∈
SE(2) can be constructed only of the circular segments (C) with maximal possible turning
radius and straight-line segments (L). Where the circular segments are either turn to the left
(L) or to the right (R). Path constructed from these segments connecting two states of the
Dubins vehicle is further called Dubins maneuver. Dubins maneuver can be of two kinds. One
composed of only circular segments (CCC) and the other composed of two circular segments
connected by a straight line (CSC). Thus, the options for Dubins maneuver are LRL, RLR for
the CCC case and LSL, LSR, RSL, RSR for the CSC case. For a demonstration, an example

3

Chapter 2. Problem Statement

of the Dubins maneuver is visualized in Figure 2.1.

RSR maneuver

Figure 2.1: An example of the Dubins manuever connecting points pi and pj using the departure
angle θi and arrival angle θj , adapted from [2]

The DTSP stands to find the optimal sequence, of the visits to targets as in the TSP. DTSP
includes determination of the optimal headings at each target, to connect all the points by a
Dubins path. The Dubins Traveling Problem with Neighborhoods (DTSPN) is the problem
to find the shortest possible curvature-constrained path connecting all the target regions.

A formal definition of the DTSPN is adopted from [10], as follows

Problem 1 (DTSPN)

minimize
Σ,Q

L (qσn , qσ1) +

n−1∑
i=1

(
qσi , qσi+1

)
subject to |pi ∈ Ri, qi| < δ,

where R = (R1, . . . , Rn) is the set of n regions Ri ⊂ R2 to be visited by Dubins vehicle.
Σ = (σ1, . . . , σn) is the ordered permutation of {1, . . . , n}, pi is the point of visit to the
region Ri, qi ∈ SE (2) is the state of the Dubins vehicle, and δ is the sensing radius. The
DTSPN is an optimization problem over all possible permutations Σ and all configurations
Q = {q1, . . . , qn}, where L (qi, qj) is Dubins distance between qi and qj .

4

CHAPTER 3
Related Work

In this chapter, existing approaches for the DTSP and the DTSPN are discussed. As Dubins
has shown in [8], the shortest path for Dubins vehicle connecting two points in a plane is one
of the six Dubins maneuvers consisting only of straight-line segments and arc curves with the
minimal turning radius. However, the path expects that headings of the vehicle are known
for both points connected by the Dubins maneuver. In the case of planning the path for the
DTSP, the headings at waypoints are unknown. Thus, the solutions for the Euclidean TSP
cannot be applied directly, and the problem of finding the optimal headings for each waypoint
needs to be solved. For the sequence of n waypoint locations p1, . . . , pn, the problem to find
optimal headings θ1, . . . , θn at each waypoint in order to minimize the total length of Dubins
path connecting all the waypoints is a continuous optimization problem known as the Dubins
Touring Problem (DTP) [2].

One of the first solutions to the DTP is the Alternating Algorithm (AA) described in [11].
Another solution to the DTP is used in [12]. The headings are determined for even edges and
then optimal Dubins maneuvers are determined for odd edges. Another solution was proposed
in [2], a refinement procedure to create an informed sampling method for solving the DTP.
The comparison between the informed sampling and uniform sampling is shown in Figure 3.1.
Using the informed sampling method, the authors claim to be able to find a solution as close
to optimum as 0.1 %.

Approaches to solving the DTSP and the DTSPN found in literature can be divided into
four main groups. The first group is decoupled approaches, which solve the problem of deter-
mining the headings and the problem of finding the sequence separately. The second group is
formed by transformation approach algorithms where the idea is to sample headings of a pos-
sible set of discrete values first and then transform the problem to Asymmetric TSP (ATSP).
The third group represents evolutionary algorithms with high computational requirements
but with a chance of providing solutions of high quality. The fourth group is the approaches
based on unsupervised learning of self-organizing maps.

The Decoupled approach to the DTSP is presented in [11], where the authors first obtain
the upper bound on the point-to-point problem. The effectiveness of decoupling methods
mainly relies on the similarities between the DTSP and the ETSP. It makes them unsuitable
for situations where the Euclidean distance between waypoints is too rough of an approxima-
tion of the Dubins maneuver to the minimal turning radius.

5

Chapter 3. Related Work

1

4

3

2

7

6 5

(a) Uniform sampling

1

4

3

2

7

6 5

(b) Informed sampling

Figure 3.1: A solution for the DTSP for a given sequence of the targets, using the uniformed sampling
and the informed sampling. Source of the picture: [2]

An example of the transformation approach to the DTSP can be a graph-based algorithm
presented in [13]. The authors use a sampling method to cast the DTSPN to the Generalised
Traveling Salesman Problem (GTSP) with intersecting node sets, which can be described by
a directed graph. Then, using the Noon-Bean transformation, the GTSP is transformed into
ATSP. And the optimal solution of the GTSP is recovered from the solution of the ATSP.
Transformation methods are highly dependant on the sampling density of headings. To acquire
better results, they usually require tremendous computational resources.

The third group represents evolutionary algorithms, which improve solutions by mutating
existing solutions and creating crossbreeds of these solutions in generations. The fourth group
is algorithms based on neural networks. We chose two algorithms from these last two groups
to create the hybrid algorithm. As these algorithms are essential for this work, they are
described in detail in the following chapter.

6

CHAPTER 4
Source Algorithms

From the known algorithms for solving the DTSPN, two are chosen in this thesis. The first is
a Memetic algortihm [4]. It has been chosen for its ability to improve the provided solution
in time. The second chosen algorithm is the unsupervised learning algorithm [3] that has
been chosen for its ability to provide a competitive solution quickly. The proposed Hybrid
algorithm combines these two algorithms into one, adopting advantages of both.

Memetic Algorithm

The chosen Memetic algorithm for the DTSPN has been presented in [4]. This approach first
generates a population of random valid solutions to the DTSPN. Then, the individuals in the
population can be mutated and crossbred, creating new individuals for the next population.
The higher quality solutions are kept for the next generations, thus improving the found
solution. The process can be repeated for the time provided to the algorithm, eventually
converging to high-quality solutions. The main specifics of the chosen Memetic algorithm [4]
are presented in the rest of this section.

The authors of [4] introduce several optimizations of the general evolutionary approach to
address the DTSPN. The first introduced optimization is terminal heading relaxation. The
article shows that reaching the target from an initial state with a fixed position and initial
heading always reduces to circular arcs and straight-line segments. Also, these paths to the
target are symmetric to both sides from the initial position. This is a special situation of the
paths with terminal headings studied by Dubins [8]. This improvement allows determining the
terminal heading from its relative position to the initial heading, once that is fixed. Therefore
only the initial heading needs to be found, reducing the overall difficulty of the DTSPN.

The article presents and uses a boundary-based encoding scheme. Using the fact that the
UAV has to always pass through the boundary of the target region, this point on the boundary
can be used as the visiting point of each region. Using the position of the target as a center
of the disk area of the neighborhood, the polar angle can be used to describe every point on
the boundary. The encoding scheme is following. The waypoints P = (p1, p2, . . . , pn) , where
pi = (xi, yi) is the visiting point of the region. Their sequence is S = (s1, s2, . . . , sn) and θi
represents the initial heading at the waypoint. Then the representation of the visiting point

7

Chapter 4. Source Algorithms

2 3456 7

1 2 3 4 5 6 7

1
Figure 4.1: In a chromosome, two indices i = 3, j = 6 are chosen and the mutation is done around
them, creating a new chromosome.

is
pi = (xOi + δi cos θi, yOi + δi sin θi) .

According to the authors of [4], the fact, that only the sequence of visits of each target
and initial heading at the entry point needs to be determined, the overall complexity of the
DTSPN reduces from 4n to 2n, where n is the number of targets to be visited. The authors also
mention the fact that in real situations, the data collection is not instant but can take some
time. When the visiting point of each region is on the border, the UAV is not guaranteed to
spend enough time in the target region. This issue is solved by calculating with neighborhoods
where the diameter of the disk area is reduced by a constant.

Another reduction to the computational difficulty of the DTSPN presented in [4] is an
approximate gradient-based search. The authors present that if the visiting sequence of two
solutions is the same, then the difference is only in visiting points of each region. While
changing the visiting point of one target region affects all the other target regions, the farther
from the changed point, the effect weakens. Thus to reduce the computational cost, only a
part of the solution is adapted when one visiting point is changed.

The evolutionary algorithm has two mutation operators and a crossover. The swapping
mutation operator changes the sequence of the visited targets. Randomly choosing two indices
i, j ∈ 1, 2, . . . , n, i 6= j. It reverses the gene in the chromosome in part bordered by the two
chosen indices, creating a new solution. The example of the mutation can be seen in Figure 4.1,
where indices i = 3, j = 6 are chosen and the sequence between them is reversed.

The other mutation operator is shifting the visiting point of the region. Index i is again
randomly chosen and the polar angle of the gene is reset within the interval (0, 2π]. The i-th
gene in the chromosome is changed by changing the point of the visit to the region.

The crossover operator creates a child chromosome by combining two parent chromosomes.
First, a random sequence is generated. For each position in the chromosome, the sequence
determines the parent who will provide the gene to the offspring. The first gene is copied from
the chosen parent to the offspring and is no longer considered in either parent. The process
is repeated with the remaining sequences until the offspring is complete. In the example in
Figure 4.2, the operator is shown, with the chosen sequence of parents (1,2,2,1,2), and the
first step is highlighted in red.

The memetic algorithm has been chosen mainly for its ability to converge to the high-
quality solutions and when enough computational time is available. On the other hand,
its main disadvantage is that the first solution with solution quality competitive to simple
heuristics (e.g., such as are SOM-based) needs relatively high computational requirements
and cannot be provided quickly. Therefore, we can change that, by initializing the starting
generation with a feasible solution generated by a faster method rather than using random
values.

8

Chapter 4. Source Algorithms

123 4 5

1 23 45

3

Parent 1

Parent 2

Offspring

5

Step 1

Step 2

1 4 2

Figure 4.2: Representation of the crossover operator. In step 1, red gene is chosen from parent 1. In
step 2, red genes are no longer considered, as they were used already. The first viable gene is chosen
from the parent 2 according to the sequence generated at the start of the operator. In the example,
(1,2,2,1,2). By repeating the process the offspring is created.

Unsupervised learning algorithm

The second chosen algorithm is the unsupervised learning algorithm based on Self-Organizing
Maps (SOM) [3]. This approach uses an artificial neural network to solve the DTSPN. The
neurons in the network, which is called a neuron ring, represent the state of the Dubins
vehicle. The ring is adapted towards the target locations, and once each target is covered by
the path connecting the neurons, the final path can be determined. Thus solving the DTSPN.
Regarding the results reported in [3], the SOM-based approach quickly provides high-quality
solutions in comparison to existing approaches.

The algorithm implements a method to find the waypoint in the disk area around the
target during the selection of the winner neuron, which has been firstly proposed in [14] and
then used in [15] and further improved in [16]. In [3], the method has also been used to solve
the DTSPN for multiple vehicles. The unsupervised learning method [3] is detailed in the rest
of this section.

Self Organizing Maps for the TSP and the DTSP

SOM is a type of artificial neural network using unsupervised learning to adapt its neurons. It
can be used for mapping high-dimensional data into a low dimensional grid [17]. Therefore it
is a useful tool for data visualization that could not be displayed otherwise. It is also used for
clustering data and other classification problems. SOM for such type of a problem is typically
a 2D map. However, SOM for the TSP maps the input space and the targets into the neural
network with a one-dimensional array of the output units [18]. The neuron weights and the
input signals share the same space. Thus, the connected neuron ring represents the path
between the target locations. [19].

When using SOM for solving the ETSP, neural network N = (ν1, . . . , νm) is created,
where νi is a neuron represeting the location of the vehicle in the input space R2, and m is
the number of neurons in the ring. The final solution for the ETSP is found by connecting
neurons by straight lines [19]. For the SOM-based solution of the DTSP, the neuron contains

9

Chapter 4. Source Algorithms

the information about Dubins vehicles heading. Therefore, each neuron νi represents the state
of the Dubins vehicle νi ∈ SE(2). The final Dubins path is constructed by connecting the
neurons by corresponding Dubins maneuvers. Although the final solutions of the ETSP and
the DTSP differ in constructing the final path and in what the neurons represent, the same
learning framework can be utilized to find the final state of the network. To complete the
description, the framework is sourced directly from [3].

1. Initialization: For n target locations O, create a ring of neurons with randomly initial-
ized weights, e.g., with 2n neurons [15]. Initialize the learning parameters as follows:
the learning gain σ = 10, the learning rate µ = 0.6, the gain decreasing rate α = 0.1,
and set the learning epoch counter i = 1.

2. Randomizing : Create a random permutation of locations Π (O) to avoid local minima.

3. Learning epoch: For each o ∈ Π (O)

(a) Select winner neuron v∗ for o as the best matching neuron i.e., the closest neuron
to o.

(b) Adapt v∗ and its neighbors to o using the neighbouring function (4.1), i.e., set the
neuron weights to the new locations v determined as:

v
′

= v + µf (σ, d) (o− v)

4. Update learning parameters: σ = σ (1− iα) , i = i+ 1

5. Termination condition: If solution is not improving or i ≥ imax Stop the adaptation.
Otherwise go to step 2.

6. Construct the final (Dubins) tour using the last winners

The used neighbouring function follows the existing SOM for the TSP [19] and it has the
form

f (σ, d) =

{
e
−d2
σ2 for d < 0.2mr

0 otherwise
, (4.1)

which decreases the power of adaptation of the neighbouring nodes to the winner neuron ν∗

with increasing distance d of the neuron to ν∗ counted in the number of neurons in the ring.
The adaptation can be viewed as a movement of the neurons to new position ν

′
which replaces

the neuron weights ν. Figure 4.3 shows the evolution of the ring of neurons towards the target
locations.

SOM for the DTSPN

In solution of the DTSPN, the neurons in the ring represent the waypoints on Dubins path.
Unlike in the SOM-based solution of the TSP, to connect the neurons with Dubins maneuvers
into the resulting path, each neuron needs to keep the expected headings [20]. The headings
have a major effect on the resulting path after connecting the neurons. Thus each neuron
νi ∈ N holds a set of headings Θi = {θ−ki , θ−k+1

i , . . . , θ2
i , θ

k
i }. To find the optimal solution,

the heading that matches the shortest possible path needs to be determined. To acquire
this heading, the neuron ring can be treated as a search graph, where the headings of the

10

Chapter 4. Source Algorithms

(a) Epoch 12 (b) Epoch 28 (c) Epoch 35

(d) Epoch 42 (e) Final Path
(f) Final Dubins Path

Figure 4.3: Example of the ring evolution towards the targets. After the adaptation process is
finished the headings are determined, and the final Dubins path is constructed [3]

neighboring neurons are connected. The heading can be determined from the graph by a
feedforward search with the computational complexity bounded by O

(
ms3

)
, where m is the

current number of neurons in the ring and s is the number of headings that each neuron keeps
in its structure. The search graph representation is shown in Figure 4.4.

ν1

θ1
1

θ1
2

...

θ1
s

ν2

θ2
1

θ2
2

...

θ2
s

ν3

θ3
1

θ3
2

...

θ3
s

νm

θm1

θm2

...

θms

. . .

for all combinations

Figure 4.4: A search graph showing how the headings are connected in the neuron ring, source: [3]

The path aquired after this procedure is then used when searching for the winner neuron
ν∗. The procedure of adapting the network towards a target O used in the algorithm starts by
finding the closest point of the current path pO to the target O. If there is no neuron, within
location of the point, new neuron is created and its state is set to the location. The vehicle
heading θp from the point pO is set as the main heading for the new neuron and the other
headings are set around θp as Θν∗ = {θp, θ1

p, . . . , θ
i
p, θ

−1
p , . . . , θ−ip }, where θip = θp + iπ/l, 1 ≤

i ≤ l and l is set to l = 12. The process is shown in Figure 4.5. Next, the point Op is found on

11

Chapter 4. Source Algorithms

νprev

νnext

θp o
p

*ν θpp
o

δ

o

p
o=(,)

Figure 4.5: Graphic showing the winner selection procedure and the point op towards which the
network is adapted [3]

the bound of the region of target O as the point on the line connecting point pO and target
O. The point Op is at the distance equal to the radius δ from O. Then, the network adapts
towards Op rather than to O to save the travel distance. In a case that the winner neuron is
already within the sensing radius δ from O, the network is not adapted at all, as the target
can already be covered from pO. After the adaptation of the winner neuron, the neighboring
neurons are adapted as well. The neighborhood is defined by two neurons νprev and νnext.
These neurons are determined to minimize the expected Dubins path towards O. According
to the equation

Lg = l (νprev, (O, θ)) + l ((O, θ) , νnext) , (4.2)

The neurons νprev and νnext are determined from equation 4.1. Where θ is one of the
headings of the winner neuron ν∗. νprev and νnext are from the activation bubble around ν∗.
For the neuron to belong into the activation bubble, its neighbouring function needs to be
above the activation limit, which is set to 10−5. As the neighbouring function depends on the
correct value of the learning gain σ, which decreases during the learning, the neurons νprev
and νnext may not be found. In that case, only the winner neuron ν∗ is adapted towards Op.
Otherwise all neurons between νprev and νnext are adapted towards Op including the winner
neuron. The adaptation is made so that the winner neuron ν∗ is moved to the location of
Op and then Dubins maneuvers are determined between νprev, ν

∗ and νnext. If a new neuron
has been added during the winner selection, one neuron between νprev and νnext is removed,
if such a neuron exists.

The Unsupervised learning algorithm has been chosen for its ability to provide a competi-
tive solution quickly. However, its main disadvantage is that once it converges to the solution,
the solution is not improved with more computational time.

12

CHAPTER 5
Proposed Hybrid Algorithm

The proposed Hybrid algorithm combines the advantages of the two studied algorithms, SOM-
based and memetic. The unsupervised learning algorithm [3] can quickly provide a high-
quality solution. However, it does not further improve the solution, even when additional
computational time is available. The Memetic algorithm [4] is able to provide high-quality
solutions for the given problem. In a case, the local optimum has been reached. The Memetic
algorithm can leave the local optimum and improve the solution further if enough computa-
tional time is given. This makes it convenient for a combination with the unsupervised learning
algorithm. Because the solution quickly provided by the SOM can be further improved.

The Hybrid algorithm generates the initial population by the SOM [3]. The SOM generates
high-quality solutions in a reasonably short time. Therefore the first generation of the Memetic
algorithm is filled with the solutions provided by the SOM. The solutions are improved using
mutation and crossbreeding. To improve the diversity in the population, the Hybrid algorithm
alternates solutions generated by the SOM with random valid solutions. In Figure 5.1, two
valid solutions to a problem are shown. One is a randomly generated solution, which was the
best solution in the initial population of the Memetic algorithm. The other is a solution, that
was the best for the initial population of the Hybrid algorithm for the same instance. The
picture shows that the initial population has much better quality solutions than the initial
population in the original Memetic algorithm. The different solutions generated by the SOM
take turns in populating the initial population while alternating with random solutions to get
higher diversity in the initial population.

The main issue of using the SOM generated solutions as the first-generation solutions for
the Memetic algorithm is the different encoding for the path in both algorithms. The Hybrid
approach needs to transform the SOM generated solution into the encoding of the Memetic
algorithm. The SOM uses the neurons as its waypoints. In a valid solution, each target
needs to be covered by one or more neurons from the final neural network. From the neuron
point of view, each neuron can cover one or more targets in the final network. The neurons
are connected to the final path. Each neuron has the link to the next neuron in the ring,
which determines the order in which the targets are visited. Each neuron knows its location
and the direction in which Dubins vehicle will be heading when leaving the point represented
by the location of the neuron. The Memetic algorithm uses a system where one solution is
represented by the targets. To determine the order of the visits, each target remembers its

13

Chapter 5. Proposed Hybrid Algorithm

(a) Initial solution by Memetic [4] (b) Initial solution by the proposed Hybrid

Figure 5.1: Ilustration of the best solutions provided by the Memetic algorithm and the Hybrid algo-
rithm in their initial population. This example has the basic setting from which all other experiments
are made. That is δ = 4, ρ = 4, with 30 targets.

number in the sequence. For each target, one point of its neighborhood is chosen as the point
of the visit. This point is always at the border of the neighborhood, and the heading of the
vehicle is also remembered.

The function transforming the representation of a solution from the SOM to the Memetic
needs to address two main problems. The first is the fact that the number of neurons can
be different from the number of actual targets that need to be visited. To determine the
sequence of the neurons which will be used in the new solution, the function iterates through
all the neurons, and with each neuron, it searches for all the targets covered by the neuron.
Labeling the target as covered. Only uncovered targets are considered by the rest of the
neurons. Therefore each target has exactly one neuron chosen to cover it. In this sequence of
neurons, each neurons heading and the location is stored. The sequence determines the order
of the locations. The second issue that needs to be addressed is that the representation of the
waypoints in the Memetic algorithms is always at the border of the neighborhood for each
target. The location of the neurons is not always on the boundary of the neighborhood. The
location of the neuron is moved to the boundary of the circular neighborhood. It is moved
on the line defined by the target location and the position of the neuron, to the point where
the line crosses the boundary of the neighborhood. The change of the visiting point in the
neighborhood is portrayed in Figure 5.2. The original visiting point is the location of the
neuron νi. The converting function moves the visiting location to point pi to the boundary.
The change affects the final Dubins path through the neighborhood of the target Oi.

This adjustment means that the solution used in the first generation of the Memetic part
of the Hybrid may not be identical to the solution provided by the SOM itself. By moving the
location, additional curves might arise, prolonging the initial length of the solution. To be able
to transform the solution, the points in which the Dubins path enters the neighborhoods would
have to be found. This would require additional computational time. However, the memetic
algorithm itself addresses this issue in the first new generation, due to the approximate-
gradient search optimization described in [4]. The pseudocode of the transformation function

14

Chapter 5. Proposed Hybrid Algorithm

pi
νi

Oi

Figure 5.2: The visiting point of the target Oi is moved while converting the solution from one
representation to the other. The original location of the visiting point is the neuron νi. The converting
function moves the visiting point to the point pi on the boundary of the neighborhood in the direction
of the heading, resulting in the change of Dubins path.

can be seen in Algorithm 1

Algorithm 1: The function transforming the representation of the solution from the
SOM alghorithm into the Memetic

Data: N∗ - ring of winner neurons, set of target locations O, C empty array of the
covered targets

Result: f - the solution for the Memetic algorithm
1 foreach νi ∈ N∗ do
2 foreach o ∈

∏
(O) do

3 if |νi, o| < δ ∩ o /∈ C then
4 C ← o;
5 f ← νi;

// Add the location and heading of the neuron to the solution

6 end

7 end

8 end
9 foreach fi ∈ f do

10 fi ← moveToEdge(fi);
11 end

The Hybrid algorithm runs the SOM k times and stores all the solutions. The memetic
part is then initialized. The initial population has size of 500 + 20n, where n is the number
of targets, which is suggested in [4]. Filling this population, the k SOM generated solutions
take turns, and the pattern is always one SOM solution and one random solution. From this
point, the Memetic part of the Hybrid algorithm is ran until no more computational time
is left. Then the best found solution is returned. The pseudocode for the complete Hybrid
algorithm can be seen in Algorithm 2.

15

Chapter 5. Proposed Hybrid Algorithm

Algorithm 2: The pseudocode of the Hybrid algorithm describing also the Memetic
part presented in [4]

Data: tmax - The time limit for the algorithm, pm - Probability of the mutation, k -
number of SOM initializations, nF - number of solutions in one generation of
the Memetic algorithm

Result: fbest - Final solution
1 for i ∈ k do
2 N∗

i ← SOM();
3 fsom ← convert(N∗

i , O);
4 if |fsom| < |fbest| then
5 fbest ← fsom;
6 end

7 end
8 for i ∈ nF do
9 fi ← fsom ∨ randomSolution();

// SOM solutions take turns and alternate with random solutions

10 F ← fi;

11 end
12 while t < tmax do
13 for i ∈ nF do
14 fi = tournament(F);
15 fj = tournament(F);
16 f ← crossover(fi,fj);
17 m = rnd();
18 if m < pm then
19 f ← mutate(f);
20 end

21 F
′ ← f ;

22 if |f | < |fbest| then
23 fbest ← f ;
24 end

25 end

26 F ← F
′
;

27 end

16

CHAPTER 6
Results

In this chapter, we report on the performance of the proposed Hybrid algorithm. The Hybrid
algorithm is a combination of the Unsupervised learning algorithm and the Memetic algorithm.
Therefore in the series of conducted tests, it has been compared to the two original algorithms.
The Hybrid solution aims to provide competitive solutions quicker than the Memetic algorithm
and improve them with more computational time, unlike the SOM-based algorithm.

Each testing problem has been randomly generated. The parameters of the instances
are the number of targets n, sensing radius of each target δ, representing the size of the
neighborhood. Turning radius of the Dubins vehicle ρ and the density of the targets D. That
is computed as the dependency of the size of the square area S on n.

D =
S

n

The basic settings chosen for the experiments are n = 30, D = 20, δ = 4, ρ = 4. Afterwards,
one parameter is changed and 10 instances with different values of the parameter are tested
with each algorithm. In each setting, 10 different instances have been generated and tested.
All of the tests have been conducted on a server cluster with 20 CPU nodes, each having 24
cores/48 threads 3.2GHz (2 x Intel Xeon 6146) with 384GB RAM. Each algorithm has been
run on every individual problem instance 10 times. All the tests were run with maximum
provided time set to 30 minutes. The results are shown in relative length to the best found
solution for each instance in each setting. A non-parametric confidence interval of 60% is
shown, and the median is highlighted for each algorithm.

SOM initialization count for the Hybrid algorithm

The decision needed to be made about how many times the SOM should be run for the
initialization of the proposed Hybrid algorithm. The test had been conducted on 10 problem
instances with n = 100, D = 20, δ = 4, ρ = 4. Figure 6.1 shows that after 30 minutes of
computational time, the differences between settings are within a 2% interval, while with only
2 minutes of computational time, the best results are provided by the Hybrid initialized with
least amount of different runs of the SOM. Another test is shown in Figure 6.2, where the
Hybrid algorithm has been run with small and large numbers of different initializations for

17

Chapter 6. Results

10 20 30 40 50 60 70 80 90 100

Number of SOM initializations

0.95

1.00

1.05

1.10

1.15

1.20

R
e
la

ti
ve

 l
e
n

g
th

 o
f

th
e
 f

in
a
l

so
lu

ti
o
n

(a) Presented are results found in 2 minutes

10 20 30 40 50 60 70 80 90 100

Number of SOM initializations

1.00

1.01

1.02

1.03

1.04

1.05

1.06

R
e
la

ti
ve

 l
e
n

g
th

 o
f

th
e
 f

in
a
l

so
lu

ti
o
n

(b) Presented are results found in 30 minutes

Figure 6.1: Test of the Hyrid algorithm with different number of SOM initializations, conducted on
10 intsances, with settings n = 100, D = 20, δ = 4, ρ = 4.

12345 60 70 80 90 100

Number of SOM initializations

0.98

1.00

1.02

1.04

1.06

1.08

1.10

R
e
la

ti
ve

 l
e
n

g
th

 o
f

th
e
 f

in
a
l

so
lu

ti
o
n

(a) Presented are results found in 10 seconds.

12345 60 70 80 90 100

Number of SOM initializations

0.98

1.00

1.02

1.04

1.06

1.08

1.10

R
e
la

ti
ve

 l
e
n

g
th

 o
f

th
e
 f

in
a
l

so
lu

ti
o
n

(b) Presented are results found in 10 minutes.

Figure 6.2: Test of the Hyrid algorithm with few and many SOM initializations, conducted on 10
instances, with settings n = 100, D = 20, δ = 4, ρ = 4.

10 minutes, and once again, it shows that the Hybrid with a smaller number of initializations
does not have worse performance than with a high number of initializations. The results of the
second test after 10 seconds are also shown, where in short amounts of time, running the SOM
fewer times means that the Hybrid gets to the Memetic part sooner and can start improving
provided solutions. With longer computational times, the Memetic algorithm can provide
high-quality solutions. Based on the performance evaluation, the count of initializations
chosen for the Hybrid algorithm is k = 3 for the rest of this thesis.

Basic settings

For the basic settings n = 30, D = 20, δ = 4, ρ = 4 the results for each algorithm are shown
after 10 seconds and after 50 seconds in Figure 6.3. The Hybrid algorithm has the best results
in both scenarios. The memetic algortihm provides solutions of competitive quality to the
Hybrid algorithm after 50 seconds, but not as reliably.

18

Chapter 6. Results

Hybrid Memetic SOM

Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
R

e
la

ti
ve

 l
e
n

g
th

 o
f

th
e
 s

o
lu

ti
o
n

(a) Presented are solutions found in 10 seconds

Hybrid Memetic SOM

Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
e
la

ti
ve

 l
e
n

g
th

 o
f

th
e
 s

o
lu

ti
o
n

(b) Presented are solutions found in 50 seconds

Figure 6.3: Test conducted on 10 maps with basic settings n = 30, D = 20, δ = 4, ρ = 4.

19

Chapter 6. Results

Changing the density of the map

The settings for this test are n = 30, D = 20, ρ = 4 and the δ changes from 1 to 10. The
results for each algorithm are shown. In Figure 6.4.

5 10 15 20 25 30 35 40 50 60

Density

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
e
la

ti
ve

 l
e
n

g
th

 o
f

th
e
 f

in
a
l

so
lu

ti
o
n hybrid

memetic

som

(a) Presented are results found in 10 seconds

5 10 15 20 25 30 35 40 50 60

Density

1.0

1.2

1.4

1.6

1.8

R
e
la

ti
ve

 l
e
n

g
th

 o
f

th
e
 f

in
a
l

so
lu

ti
o
n hybrid

memetic

som

(b) Presented are results found in 2 minutes

5 10 15 20 25 30 35 40 50 60

Density

1.0

1.2

1.4

1.6

1.8

R
e
la

ti
ve

 l
e
n

g
th

 o
f

th
e
 f

in
a
l

so
lu

ti
o
n hybrid

memetic

som

(c) Presented are results found in 15 minutes

5 10 15 20 25 30 35 40 50 60

Density

1.0

1.2

1.4

1.6

1.8

R
e
la

ti
ve

 l
e
n

g
th

 o
f

th
e
 f

in
a
l

so
lu

ti
o
n hybrid

memetic

som

(d) Presented are results found in 30 minutes

Figure 6.4: Test conducted on 100 instances with settings n = 30, δ = 4, ρ = 4 for 10 different values
of D.

20

Chapter 6. Results

Changing the number of targets on the map

The settings for this test are D = 20, ρ = 4, δ = 4 and the n changes by 10 from 10 to 100.
The results for each algorithm are shown. In Figure 6.5.

10 20 30 40 50 60 70 80 90 100

Number of targets

1

2

3

4

5

6

7

R
e
la

ti
ve

 l
e
n

g
th

 o
f

th
e
 f

in
a
l

so
lu

ti
o
n hybrid

memetic

som

(a) Presented are results found in 10 seconds

10 20 30 40 50 60 70 80 90 100

Number of targets

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

R
e
la

ti
ve

 l
e
n

g
th

 o
f

th
e
 f

in
a
l

so
lu

ti
o
n hybrid

memetic

som

(b) Presented are results found in 2 minutes

10 20 30 40 50 60 70 80 90 100

Number of targets

1.0

1.5

2.0

2.5

3.0

R
e
la

ti
ve

 l
e
n

g
th

 o
f

th
e
 f

in
a
l

so
lu

ti
o
n hybrid

memetic

som

(c) Presented are results found in 15 minutes

10 20 30 40 50 60 70 80 90 100

Number of targets

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

R
e
la

ti
ve

 l
e
n

g
th

 o
f

th
e
 f

in
a
l

so
lu

ti
o
n hybrid

memetic

som

(d) Presented are results found in 30 minutes

Figure 6.5: Test conducted on 100 instances with settings D = 20, δ = 4, ρ = 4 for 10 different values
of n.

21

Chapter 6. Results

Changing the turning radius

The settings for this test are n = 30, D = 20, δ = 4 and the ρ changes from 1 to 10. The
results for each algorithm are shown. In Figure 6.6.

1 2 3 4 5 6 7 8 9 10

Turning radius

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

R
e
la

ti
ve

 l
e
n

g
th

 o
f

th
e
 f

in
a
l

so
lu

ti
o
n hybrid

memetic

som

(a) Presented are results found in 10 seconds

1 2 3 4 5 6 7 8 9 10

Turning radius

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

R
e
la

ti
ve

 l
e
n

g
th

 o
f

th
e
 f

in
a
l

so
lu

ti
o
n hybrid

memetic

som

(b) Presented are results found in 2 minutes

1 2 3 4 5 6 7 8 9 10

Turning radius

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

R
e
la

ti
ve

 l
e
n

g
th

 o
f

th
e
 f

in
a
l

so
lu

ti
o
n hybrid

memetic

som

(c) Presented are results found in 15 minutes

1 2 3 4 5 6 7 8 9 10

Turning radius

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

R
e
la

ti
ve

 l
e
n

g
th

 o
f

th
e
 f

in
a
l

so
lu

ti
o
n hybrid

memetic

som

(d) Presented are results found in 30 minutes

Figure 6.6: Test conducted on 100 instances with settings n = 30, D = 20, δ = 4 for 10 different
values of ρ.

22

Chapter 6. Results

Changing the sensing radius

The settings for this test are n = 30, D = 20, ρ = 4 and the δ changes from 1 to 10. The
results for each algorithm are shown. In Figure 6.7.

1 2 3 4 5 6 7 8 9 10

Sensing radius

1.0

1.1

1.2

1.3

1.4

1.5

1.6

R
e
la

ti
ve

 l
e
n

g
th

 o
f

th
e
 f

in
a
l

so
lu

ti
o
n hybrid

memetic

som

(a) Presented are results found in 10 seconds

1 2 3 4 5 6 7 8 9 10

Sensing radius

0.9

1.0

1.1

1.2

1.3

1.4

1.5

R
e
la

ti
ve

 l
e
n

g
th

 o
f

th
e
 f

in
a
l

so
lu

ti
o
n hybrid

memetic

som

(b) Presented are results found in 2 minutes

1 2 3 4 5 6 7 8 9 10

Sensing radius

0.9

1.0

1.1

1.2

1.3

1.4

1.5

R
e
la

ti
ve

 l
e
n

g
th

 o
f

th
e
 f

in
a
l

so
lu

ti
o
n hybrid

memetic

som

(c) Presented are results found in 15 minutes

1 2 3 4 5 6 7 8 9 10

Sensing radius

0.9

1.0

1.1

1.2

1.3

1.4

1.5

R
e
la

ti
ve

 l
e
n

g
th

 o
f

th
e
 f

in
a
l

so
lu

ti
o
n hybrid

memetic

som

(d) Presented are results found in 30 minutes

Figure 6.7: Test conducted on 100 instances with settings n = 30, D = 20, ρ = 4 for 10 different
values of δ.

Discusion

The results suggest that the Hybrid algorithm can provide higher quality solutions faster than
the Memetic algorithm. The Hybrid is then able to improve upon the solutions with more
computational time. The results provided by the Hybrid algorithm in these tests are of a
higher quality than the results provided by the SOM-based algorithm even in short amounts
of time. With long computational times, The Memetic algorithm can provide solutions of
simillar quality to those provided by the Hybrid algorithm. The most significant difference is
made by adding more targets to the instance, where the Memetic algorithm can need a lot of
resources before being able to provide competitive solution.

23

Chapter 6. Results

24

CHAPTER 7
Conclusion

The thesis focuses on solutions to the Dubins Traveling Salesman Problem with Neighbor-
hoods (DTSPN). The motivation for solving the DTSPN are surveillance missions performed
by the Unmanned Aerial Vehicles (UAV). First, the Traveling Salesman Problem (TSP) and
the Traveling Salesman Problem with Neighborhoods (TSPN) are presented. These are prob-
lems of connecting locations of interest by a path visiting all of the locations minimizing
the traveled distance. However, the model for vehicle constrained by its turning radius is
needed in planning surveillance missions with the UAVs. Dubins vehicle [8] is used. When
searching for a curvature constrained path connecting all locations of interest, the problem
can be addressed as the Dubins Touring Problem (DTP). After presenting these prerequisites,
the thesis presents the Dubins Traveling Salesman Problem (DTSP) and Dubins Traveling
Salesman with Neighborhoods (DTSPN) to the reader.

The main contribution of this thesis is a novel Hybrid algorithm for solving the DTSPN.
The algorithm is a combination of the unsupervised learning algorithm based on Self Orga-
nizing Map (SOM) [3] and the Memetic algorithm [4]. Both these algorithms are presented to
the reader as they are essential for the proposed Hybrid algorithm. The SOM algorithm can
provide a competitive solution quickly but is not able to improve the solution with more com-
putational time. The Memetic algorithm is more demanding to provide the first competitive
solution. On the other hand, it can converge to high-quality solutions. The Hybrid algorithm
combines the advantages of both algorithms by initializing the first generation of the memetic
approach by quality solutions provided by SOM, while also being able to improve the solution
over time.

The results suggest that the proposed Hybrid algorithm has the best performance with
fewer different SOM solutions in the initial population, as there were no significant improve-
ments in solution quality with high numbers of different SOM solutions. The proposed Hybrid
algorithm can provide high-quality solutions within short periods of time and is able to im-
prove the solutions with more resources at its disposal.

25

Chapter 7. Conclusion

26

i
Bibliography

[1] https://newatlas.com/carbonix-volanti-vtol-fixed-wing-industrial-uav/

48253. Accesed: 17.5.2019.

[2] J. Faigl, P. Váňa, M. Saska, T. Báča, and V. Spurný, “On solution of the dubins touring
problem,” in 2017 European Conference on Mobile Robots (ECMR), pp. 1–6, Sept 2017.

[3] J. Faigl and P. Váňa, “Unsupervised learning for surveillance planning with team of
aerial vehicles,” in 2017 International Joint Conference on Neural Networks (IJCNN),
pp. 4340–4347, May 2017.

[4] B. X. X. Zhang, J. Chen and Z. Peng, “A memetic algorithm for path planning of
curvature-constrained uavs performing surveillance of multiple ground targets,” Chinese
Journal of Aeronautics, vol. 27, no. 3, pp. 622–633, 2014.

[5] V. C. D. Applegate, R. Bixby and W. Cook, The Traveling Salesman Problem: A Com-
putational Study. Princeton University Press, 2007.

[6] S. Gupta and P. Panwar, “Solving travelling salesman problem using genetic algorithm,”
International Journal of Advanced Research in Computer Science and Software Engineer-
ing, vol. 3, pp. 376–380, 01 2013.

[7] S. Saud, H. Kodaz, and İ. Babaoğlu, “Solving travelling salesman problem by using
optimization algorithms,” KnE Social Sciences, vol. 3, no. 1, pp. 17–32, 2018.

[8] L. E. Dubins, “On curves of minimal length with a constraint on average curvature,
and with prescribed initial and terminal positions and tangents,” American Journal of
Mathematics, vol. 79, no. 3, pp. 497–516, 1957.

[9] J. Ny, E. Feron, and E. Frazzoli, “On the dubins traveling salesman problem,” IEEE
Transactions on Automatic Control, vol. 57, pp. 265–270, Jan 2012.

[10] P. Váňa and J. Faigl, “On the dubins traveling salesman problem with neighborhoods,”
in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 4029–4034, Sept 2015.

27

https://newatlas.com/carbonix-volanti-vtol-fixed-wing-industrial-uav/48253
https://newatlas.com/carbonix-volanti-vtol-fixed-wing-industrial-uav/48253

Bibliography

[11] K. Savla, E. Frazzoli, and F. Bullo, “On the point-to-point and traveling salesperson
problems for dubins’ vehicle,” in Proceedings of the 2005, American Control Conference,
2005., pp. 786–791 vol. 2, June 2005.

[12] R. Pěnička, J. Faigl, P. Váňa, and M. Saska, “Dubins orienteering problem,” IEEE
Robotics and Automation Letters, vol. 2, pp. 1210–1217, April 2017.

[13] J. Isaacs and J. Hespanha, “Dubins traveling salesman problem with neighborhoods: A
graph-based approach,” Algorithms, vol. 6, pp. 84–99, 02 2013.

[14] J. Faigl, “Approximate solution of the multiple watchman routes problem with restricted
visibility range,” IEEE Transactions on Neural Networks, vol. 21, pp. 1668–1679, Oct
2010.

[15] J. Faigl and L. Přeučil, “Self-organizing map for the multi-goal path planning with
polygonal goals,” in Artificial Neural Networks and Machine Learning – ICANN 2011
(T. Honkela, W. Duch, M. Girolami, and S. Kaski, eds.), (Berlin, Heidelberg), pp. 85–92,
Springer Berlin Heidelberg, 2011.

[16] J. Faigl and G. A. Hollinger, “Unifying multi-goal path planning for autonomous data col-
lection,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 2937–2942, Sep. 2014.

[17] T. Kohonen, “The self-organizing map (som),” 2001.

[18] B. Angéniol, G. de La Croix Vaubois, and J.-Y. L. Texier, “Self-organizing feature maps
and the travelling salesman problem,” Neural Networks, vol. 1, no. 4, pp. 289 – 293, 1988.

[19] E. Cochrane and J. Beasley, “The co-adaptive neural network approach to the euclidean
travelling salesman problem,” Neural Networks, vol. 16, no. 10, pp. 1499 – 1525, 2003.

[20] J. Faigl and P. Váňa, “Self-organizing map for the curvature-constrained traveling sales-
man problem,” in Artificial Neural Networks and Machine Learning – ICANN 2016 (A. E.
Villa, P. Masulli, and A. J. Pons Rivero, eds.), (Cham), pp. 497–505, Springer Interna-
tional Publishing, 2016.

28

	Introduction
	Problem Statement
	Related Work
	Source Algorithms
	Memetic Algorithm
	Unsupervised learning algorithm
	Self Organizing Maps for the TSP and the DTSP
	SOM for the DTSPN

	Proposed Hybrid Algorithm
	Results
	SOM initialization count for the Hybrid algorithm
	Basic settings
	Changing the density of the map
	Changing the number of targets on the map
	Changing the turning radius
	Changing the sensing radius
	Discusion

	Conclusion
	Bibliography

