
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Bachelor’s Thesis

Organization of master-key
systems

Jiří Zahradník
Open Informatics, Computer Games and Graphics

May 2019
Supervisor: Radomír Černoch, MSc., Ph.D.

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

465916Osobní číslo:JiříJméno:ZahradníkPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačové grafiky a interakce

Otevřená informatikaStudijní program:

Počítačové hry a grafikaStudijní obor:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Správa systémů generálního a hlavních klíčů

Název bakalářské práce anglicky:

Organization of master-key systems

Pokyny pro vypracování:
Cílem práce je vytvoření aplikace pro organizaci systémů generálního a hlavních klíčů (SGHK). Tyto systémy se řadí do
stromové struktury a jsou uložené v relační databázi. Kromě samotné správy tohoto stromu (vytváření uzlů, přesuny,
přejmenovávání, …) je klíčovou operací výběr všech uzlů v podstromu, který exportuje všechny tyto systémy k dalšímu
zpracování. Důležitým bodem zadání je tak návrh vhodné datové struktury.
1. Proveďte rešerši literatury k problému reprezentace stromových struktur v relačních databázích. Vyberte 2-3 nejvhodnější
reprezentace a porovnejte je z hlediska rychlosti vykonávání operací, přenositelnosti a jednoduchosti implementace.
2. Na základě předchozího kroku vyberte jeden modelovací přístup a ten implementujte. Změřte výkonnost na dodaných
datech.
3. Vytvořte aplikaci pro organizaci SGHK do stromové struktury. Kód řádně zdokumentujte a zaveďte automatické testy.

Seznam doporučené literatury:
Literatura:
[1] Avi Silberschatz, Henry F. Korth, S. Sudarshan (2010). Database System Concepts. McGraw-Hill. ISBN 0-07-352332-1.
[2] Mike Hillyer (2012). Managing Hierarchical Data in MySQL. Retrieved from URL:
https://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/
[3] Quassnoi (2009). Retrieved from URL: Adjacency list vs. nested sets: PostgreSQL
[4] Mohamed Taman (2014). JavaFX Essentials. Packt Publishing. ISBN 13-9781784398026

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Radomír Černoch, MSc., Ph.D., Intelligent Data Analysis FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 24.05.2019Datum zadání bakalářské práce: 14.02.2019

Platnost zadání bakalářské práce: 20.09.2020

prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryRadomír Černoch, MSc., Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgement / Declaration

I would like to express my gratitude to
my supervisor Radomír Černoch, MSc.,
Ph.D., for the time he spent with me
discussing the topic, his patience and all
his useful advice that helped me during
the whole period of writing this thesis.
Furthermore, I would also like to thank
my family and friends for the support
they provided me with.

I hereby declare I have written this
thesis independently and quoted all the
sources of information used in accor-
dance with methodological instructions
on ethical principles for writing an aca-
demic thesis.

In Prague, 20. May 2019

v

Abstrakt / Abstract

Cílem této práce bylo vytvořit apli-
kaci pro správu systémů generálního a
hlavních klíčů. Tyto systémy jsou ulo-
ženy ve stromové struktuře v relační da-
tabázi. Z toho důvodu bylo nezbytné na-
vrhnout vhodný databázový model k re-
prezentaci této struktury. Zváženo bylo
několik modelů, které byly testovány a
byla změřena rychlost vykonání jednot-
livých potřebných databázových operací
v rámci těchto modelů.

Poté bylo navrženo a vytvořeno uži-
vatelské rozhraní aplikace. Umožnuje
uživateli manipulaci s daty uloženými v
databázi. Konkrétně mu dovolí vytvářet
nové uzly, přesouvat je, přejmenová-
vat, mazat a nastavovat uzlům uzávěry
klíčů. Pak byl implementován model
se všemi nezbytnými databázovými
dotazy.

Nakonec byla implementace otesto-
vána pomocí testování použitelnosti a
za použití jednotkových testů. Výsled-
kem této práce je plně funkční aplikace
pro interakci uživatele s databází.

Klíčová slova: Stromová Struktura,
SQL, Databáze, GUI, Aplikace

Překlad titulu: Správa systémů gene-
rálního a hlavních klíčů

The goal of this thesis was to cre-
ate an application for the master-key
systems’ organisation. These systems
are stored in a tree-like taxonomy in
a relational database. Therefore it
was essential to devise an appropriate
database model to represent such struc-
ture. A few models were considered,
tested, and the speed of the execution of
the required database operations within
each model was measured.

Afterwards, the graphical user inter-
face for the application was designed
and created. It allows the user to ma-
nipulate the data stored in the database.
To be precise, it enables them to create
new nodes, move them, rename them,
delete them and set them key shapes.
Then the chosen model, with all its
necessary queries, was implemented.

Finally, the implementation was
tested via usability testing and using
unit tests. The result of this thesis
is a fully functioning application for
user-database interaction.

Keywords: Tree Structure, SQL,
Database, GUI, Application

vi

/ Contents

1 Introduction .1
2 Theory .3
2.1 Relational Database3
2.2 JavaFX 2 .4

3 Requirements .7
3.1 Functional requirements7
3.2 Non-functional requirements8

4 Database Models9
4.1 Nested Set Model9

4.1.1 Database Model.9
4.1.2 Set of Operations9

4.2 Adjacency List Model 12
4.2.1 Database Model. 12
4.2.2 Set of Operations 12

4.3 Materialized Path Model 14
4.3.1 Database Model. 14
4.3.2 Set of Operations 14

4.4 Models Comparison 16
4.4.1 Theoretical Comparison . 16
4.4.2 Experimental Compar-

ison (Speed Measure-
ment) . 18

4.4.3 Choosing a Model. 20
4.4.4 Additional Indexing. 20

5 Application Design 23
5.1 Design . 23

5.1.1 GUI. 23
5.1.2 GUI Package 39

5.2 SQL Package 40
5.2.1 Transaction Manage-

ment . 40
5.2.2 TableInitializer 41
5.2.3 Adder . 41
5.2.4 Renamer. 41
5.2.5 Key Renamer 41
5.2.6 Selector 41
5.2.7 Table cleaner 41

5.3 Unit Tests . 42
6 Usability Testing 43
6.1 User Testing . 43

6.1.1 Testing process 44
6.2 Findings and revision 45

7 Conclusion . 47
References . 48

vii

/ Figures

1.1. Mechanical Pin Tumbler Lock . . .1
5.1. Application window 24
5.2. Application start failed dia-

logue . 24
5.3. Application initialization

UML Diagram 25
5.4. Menu. 26
5.5. Failed key shape display dia-

logue . 26
5.6. Failed addition dialogue 27
5.7. Addition UML Diagram 28
5.8. Failed deletion dialogue 29
5.9. Deletion UML Diagram 30

5.10. Failed transfer dialogue 31
5.11. Merge or Paste Folders dia-

logue . 31
5.12. Paste UML Diagram 32
5.13. Rename textfield 33
5.14. Wrong name tooltip 33
5.17. Long name tooltip 33
5.15. Wrong name warning 34
5.16. Empty name warning 34
5.18. Long name warning 34
5.19. Merge folders confirmation 35
5.20. Failed merge dialogue 35
5.21. Failed rename dialogue 35
5.22. Rename UML Diagram 36
5.23. Key shape set dialogue. 37
5.24. Wrong key shape tooltip 37
5.25. Long key shape tooltip. 37
5.26. Key Shape Set UML Diagram . 38
5.27. Key shape delete dialogue 39

6.1. Project deletion conforma-
tion dialogue. 46

viii

Chapter 1
Introduction

Even though some of us might not realise it, we encounter tree structures on everyday
basis. They are extensively used because they are native and most of all, intuitive.
Often there is a need to group some items or some data hierarchically [1], meaning
that some are ‘above’, ‘below’ or ‘at the same level as’ others. The best example from
today’s world is online stores. More specifically, the way they display their merchandise.
It is usually divided into categories such as Electronics, Health, Sport, Accessories or
Hobbies. Under each category, we can see a more specific classification of goods. For
example, under Electronics, we could find PCs, Laptops, Mobile phones, Components
or Printers.

However, what many people do not realise is, that mechanical keys and locks are
also hierarchically categorised. This thesis deals with a particular tree structure in the
domain of mechanical keys and locks. Every key has its unique look defined by the
number of notches, shape of the head, tip bevel etc. A combination of these attributes
is called a platform. Within the platform, there is a profile map which determines the
grooves cut in the key. So the key hierarchy is determined already by the production
process [2].

The most common mechanical lock we use is a pin tumbler lock (Figure 1.1). There
are pins and a tumbler inside the lock. The pins prevent the tumbler of the lock from
rotating. Only when a corresponding key is inserted into this lock’s tumbler, the pins
are aligned with the edge of the tumbler, allowing it to rotate.

Figure 1.1. Mechanical Pin Tumbler Lock with pins (blue) and a tumbler (yellow),
retrieved from [3]

Aside from standard keys which open only one or a few doors within a particular
system, there is a so-called general key [4] which can unlock all the locks within the
system. The general key has the least amount of grooves cut in it. It is essential not

1

1. Introduction .
to assign the same general key to systems in the same area due to security reasons.
The locks within these systems (which accept the general key) have more complex pins.
Because multiple different keys can open them the pins allow the tumbler to rotate at
different pin elevations.

There can only be so many configurations of a key. This means that when a client
asks for a general key with a specified number of notches, head shape and profile, it
might be already taken. That is why the client can also specify the region the key is
going to be used in. In that case, it might be perfectly fine; the key is already being
used because it could even be in a different country. It would be recognised, and the
client’s request would be satisfied completely.

The way the client would ask the contractor for a package of keys which open some
locks is usually by filling a lock-chart. A lock-chart is a table of key accesses to locks.
In other words, the lock-chart states which key(s) open(s) which lock(s). The general
key (if there is one) should also be present in the lock-chart with accesses to all locks
granted. The contractor would then calculate how the shapes of the keys should look
like, how deep the cuts in the keys should be to open the locks in the system. When
calculating the shape of a general key, the contractor has to know which shapes are
already in use to not reuse them. Each key would have a profile which would fit the
corresponding lock. After the lock-chart is solved, meaning every property, including
the general key’s property, is calculated, the package would be ready to be manufactured
and sent to the client.

Since there is a limited but still a vast amount of general keys, they have to be stored
in a database. The downside is, there is no direct support of managing tree structures
in SQL.

The purpose of my thesis is to research the best method of managing such struc-
tures in a database. Come up with the proper queries, which allow the addition of new
projects after they have been computed and also retrieve all the general keys in any
subtree, which are then not to be used again in other computations. Design an appli-
cation for the master-key system [4] projects organisation based on the requirements
specified by the client (chapter 3). The application would allow the user to retrieve
forbidden general key shapes, which are already in use and store commissioned projects
in the database along with the calculated shape of the general key. The application
user interface should provide a smooth interaction between the database and the user.
This thesis is supposed to be an overview of the SQL methods and a report on the
graphical user interface.

2

Chapter 2
Theory

In order to fully understand all the database operations presented in this thesis, the
reader is required to have some substantial knowledge of the relational database theory.
We are going to go through some of the fundamental operations nevertheless in case
the reader was not familiar with the relational database terminology.

We are also going to look into the JavaFX platform architecture and design briefly.

2.1 Relational Database

By the term, Relational Database [5, p. 37] is usually meant not only the database
itself but also its software implementation. A relational database management system
is needed to enable the user to have control over the database. There are many of such
systems including PostgreSQL, MySQL or Apache Derby.

The database itself consists of tables [5, pp. 39-46], which store data. Each table
is composed of columns (attributes) and rows (records, entries). Each attribute has a
specific data type. The rows then serve as data holders.

Every table should have a Primary Key. It is a unique identifier used to identify a
data record. One or more columns at once may form a primary key. The value of the
primary key must be defined (i.e. it can not be NULL). Commonly used are artificial
keys (IDs), which are often automatically generated for each entry.

A similar role is played by a Foreign Key. It determines the dependencies between
data from different tables.

The data in the database are accessed and maintained by a series of database com-
mands and operations called queries [5, pp. 48-52]. The most used query for data
manipulation is the SELECT statement. It allows us to retrieve data from a specific
table or tables. It has a few optional clauses such as the WHERE clause that lets us
specify the rows we wish to retrieve.

However, before we get to fetch data, we need to make a table to store it. We
can achieve this by using the data definition CREATE TABLE command [5, pp. 60-
62]. There we define all the columns we want to have in our table along with the
appropriate data types, keys and constraints. We fill the table with data by using the
INSERT statement.

If we wish to change some data in a table, we use the UPDATE command. We can
update all rows within a table or specify the rows using a condition (WHERE). To get
rid of some of the stored data, we make use of the DELETE statement [5, p. 98]. It
removes one or more records from a table.

The results of multiple queries can be combined into a single result by utilising
database set operations. One of those is the EXCEPT operator. It takes all rows
retrieved by a first query and returns only those that do not appear in a result set of
rows retrieved by a second query.

3

2. Theory .
We can also combine columns from one or more tables, thus JOIN ing the tables.

There are a few types of join, one of which is a self-join. It is a state when a table is
joined to itself.

There is a way to write recursive queries in SQL as well. They are implemented
by means of recursive common table expressions. These expressions consist of two
subqueries. The first one is an initial one. The second one makes use of the data
retrieved by the first one and is called recursively every time a new row or rows are
added to the temporary set.

At times we might want to execute a few queries together. If even one of them
fails to execute, we do not want any of them to execute. To ensure this, we use a
transaction [5, pp. 627-629]. A transaction is a collection of operations, which form a
single logical unit. The database system ensures the proper execution of transactions.
After a transaction begins, we execute the set of queries. In case of successful execution
of all of the queries, we commit the transaction. If any error occurred during the
execution, we rollback the transaction and end it. The commit applies all changes
made within the transaction, and the rollback returns the database to its original state.

Since many queries need to retrieve the data stored in a database table and some of
the queries can be very complicated, their execution might be sluggish. That is why
we might use some mechanism to speed the execution up. The construct we could
use is an INDEX [5, p. 1148]. To create an index, we have to decide which table
column or columns are going to be crucial and most used in our queries. We must
also keep in mind, the PRIMARY KEY column is indexed by default. The index
then stores the positioning of values in the indexed columns. When we then need to
retrieve some data, the table is not searched row by row (sequential scan [5, p. 1153])
but based on the information stored in the index; only the relevant rows are accessed.
The indices individually do no take much memory, but we should not use too many of
them. Then they might take up as much space as the whole table does. The drawback
of using indices is that they slow down operations which change the contents of indexed
columns. When such operation is executed, not only the value in the table must be
changed but also the value in the index. It is essential to choose the index carefully.

2.2 JavaFX 2
Java is one of the most popular object-oriented programming languages in the world
[6]. It is widely used due to its portability for programs running on memory cards,
mobile phones or desktop computers [7]. It is intended to let the developers write the
code once and be able to run it anywhere. On any device with Java virtual machine
regardless of the architecture to be precise.

In 1996 a GUI widget toolkit called Swing came out. Since it had many shortcomings,
it was later replaced. The JavaFX platform is used for creating desktop applications
[8]. It was intended to be the successor of Swing and preferably its replacement as the
standard GUI library.

It has many assets. Mainly the use of declarative layout with FXML files [9]. It allows
us to separate the presentation and application logic, which is useful when building a
user interface because there is no need to fill it with any data. The scene graph is also
a lot more transparent.

JavaFX also provides a new graphics hardware acceleration pipeline [10]. However,
most importantly, a sophisticated system of listeners. These are often used in con-
junction with data binding [11]. Data binding is a mechanism for expressing relations

4

. 2.2 JavaFX 2

between objects. When one object is somehow changed, the changes are automatically
reflected in the other object. More specifically, the data modified in the model alters
the view automatically.

5

2. Theory .

6

Chapter 3
Requirements

The client has given us their job description.
The client calculates the shapes of keys for certain projects. Every key shape is

usually a 4-7 digit number. The client needs to store these calculated key shapes along
with the project names. The client divides the projects into a few categories based
on the key platform, key profile, key type and others. When calculating a key shape,
it usually helps to look at other already calculated shapes from the same or similar
category.

From this explanation, we devised a structure needed for the storage of the calculated
key shapes. We also devised an application allowing the user to interact with the stored
data. This application should serve as a tool used for structuring and creating projects.
Those projects can then be worked out using another application, which is already in
use.

3.1 Functional requirements
The tree structure is fitting for the key shape data storage. That way, the projects
containing key shapes can be divided into categories (where categories are tree nodes).
The projects with the key shapes would be stored as leafs of the tree structure.

Based on the amount of data, there would be almost six thousand nodes in the tree.
The degree of the tree would be eight hundred forty-six, which is the highest degree of
a node in the tree, and the maximal depth would be five. However, there is not given
any maximal degree a node can have. We can see the tree is not deep but wide instead.

The client could also make use of an application which would allow them to interact
with the structure containing the data stored in a database.

Below is a list of suggested criteria laid down in order to judge the suitability of the
application [12].

. The application should be easy to use and intuitive.

. The application should include a simple graphical user interface.

. The user should be able to see at least some parts of the tree structure.

. The user should be able to:

. rename tree nodes. remove tree nodes. add new tree nodes. move tree nodes.

7

3. Requirements .
. Duplicate names are allowed.

. The user should be able to set a key shape in leaf nodes of the tree structure. The
key shape is usually a 5 digit number.

. The application should automatically store all changes made by the user into the
database.

. The user should be able to see all the key shapes set within a particular part of the
tree.

. The application should display the key shapes fast.

. The tree structure management should reflect these demands.

3.2 Non-functional requirements
The client then specified some non-functional criteria judging the operation of the
application.

. The application should run on OS Windows 10.

. The application should be created with Java programming language.

. The application should be easily executable (preferably with a single file).

. The application should be highly reliable.

. The application should resolve all error conditions.

. The application response time should be less than two seconds for single operations.

. The application should be supported by Derby database layer.

. The application should use multithreading model.

8

Chapter 4
Database Models

Let us now go through the models we considered to represent the key hierarchy. First,
explain each query we could use in the final implementation, then compare the models
and choose the one most suitable for our application.

Most of the queries require some input parameters we get from the user. Those
constants are marked in the queries with {}.

The inspiration for this chapter was drawn from [1], [13], [14], which describe the
analysed models. It helped me to understand the models and also advised me to divide
the sections into smaller sections, each dealing with the individual queries. However, I
did not copy any of the queries. I devised every query in this chapter myself.

In the SQL queries, we are going to be using operands += and -=. SQL does not
support the use of such operands; however, we are going to use them in this chapter
for clarity.

4.1 Nested Set Model
In this model, we look at the tree structure as if it were nested containers. By containers
we mean, each node in the tree has an interval containing all its descendants.

4.1.1 Database Model

The Tree table is created using a standard CREATE command.

CREATE TABLE Tree (
id INTEGER PRIMARY KEY,
lft INTEGER NOT NULL UNIQUE,
rght INTEGER NOT NULL UNIQUE

);

The reason we do not use the names ‘left’ and ‘right’ is because they are reserved words
in MySQL. The meaning of these two integers is to form an interval containing all the
child nodes of their parent node (if it has any). We can also say, lft = min(child.lft) - 1
and rght = max(child.rght) + 1. The rght value is always greater than the lft value. To
the root always applies lft = 1 and to every leaf node in the tree applies rght = lft + 1.
All nodes have exactly (rght - lft - 1) / 2 child nodes and there are root.rght / 2 nodes
in the tree. The left and right values are assigned via a pre-order tree traversal. Going
from left to right, we set the left value and descend to the child nodes before setting
the right value while always incrementing by one.

4.1.2 Set of Operations

The main advantages of using this structure are the avoidance of recursion and the
usage of as few queries as possible.

9

4. Database Models .
4.1.2.1 Adding New Nodes

When adding a new node, space must be provided for its left and right values. Meaning,
each node to the right of the added node must increment its left and right values by
two. After that, a simple INSERT can be performed.

UPDATE Tree
SET lft += 2
WHERE lft >= {parent.rght};
UPDATE Tree
SET rght += 2
WHERE rght >= {parent.rght};
INSERT INTO Tree (lft, rght)
VALUES ({parent.rght}, {parent.rght} + 1);

The left and right values of the parent node used in the insertion are pre-update. The
new node is added under the parent node.

4.1.2.2 Deleting a Leaf Node

In order to delete a leaf node (del), we apply the same method as if adding a node,
only in reverse.

DELETE FROM Tree
WHERE id = {del.id};
UPDATE Tree
SET lft -= 2
WHERE lft > {del.rght};
UPDATE Tree
SET rght -= 2
WHERE rght > {del.rght};

We have to delete the node first, so there are no conflicts. If we removed the node after
the updates, we would probably end up with some nodes having the same left and right
values as other nodes (duplicates). That would result in an integrity violation error due
to the left and right columns being unique.

4.1.2.3 Deleting a Subtree

To delete a subtree means to delete a node (subroot) and transitively all its child nodes.
We can delete all child nodes at once using the values left and right, thus generalising
the previous query. Since we know, there are (rght - lft + 1) / 2 nodes in a subtree, each
with 2 values (left and right), there must be precisely rght - lft + 1 values altogether.

DELETE FROM Tree
WHERE lft >= {subroot.lft} AND rght <= {subroot.rght};
UPDATE Tree
SET lft -= ({subroot.rght} - {subroot.lft} + 1)
WHERE lft > {subroot.rght};
UPDATE Tree
SET rght -= ({subroot.rght} - {subroot.lft} + 1)
WHERE rght > {subroot.rght};

4.1.2.4 Selecting Descendants of a Node

Here we use the left and right properties as an interval containing all the child nodes
of a parent node.

SELECT * FROM Tree
WHERE lft >= {parent.lft} AND rght <= {parent.rght};

10

. 4.1 Nested Set Model

4.1.2.5 Finding All the Leaf Nodes

In this query, we need to recall leaf nodes are those that have a difference of one between
their left and right values.

SELECT * FROM Tree
WHERE rght = lft + 1;

4.1.2.6 Finding All the Leaf Nodes of a Subtree

The same approach can be applied to a subtree and its leaves.

SELECT * FROM Tree
WHERE rght = lft + 1
AND lft >= {subroot.lft} AND rght <= {subroot.rght};

4.1.2.7 Transferring a Subtree

In order to relocate a subtree, we must update nodes influenced by the trans-
fer. We also need to change the values within the subtree itself. There are three
types of transfer. It is necessary to differentiate between them. There is a trans-
fer to the right ({subroot.rhgt} < {newparent.rght}) and a transfer to the left
({subroot.lft} > {newparent.rght}). Here we are going to take a look at the transfer
to the right since they are both analogous. The third transfer is moving a subtree a
few levels up in the tree. It works the same way as the transfer to the right.

UPDATE Tree
SET lft =
CASE

WHEN lft BETWEEN {subroot.rght} + 1 AND {newparent.rght} - 1
THEN lft - ({subroot.rght} - {subroot.lft} + 1)
WHEN lft BETWEEN {subroot.lft} AND {subroot.rght}
THEN lft + {newparent.rght} - {subroot.rght} - 1

END
WHERE lft BETWEEN {subroot.lft} AND {newparent.rght} - 1;

UPDATE Tree
SET rght =
CASE

WHEN rght BETWEEN {subroot.rght} + 1 AND {newparent.rght} - 1
THEN rght - ({subroot.rght} - {subroot.lft} + 1)
WHEN rght BETWEEN {subroot.lft} AND {subroot.rght}
THEN rght + {newparent.rght} - {subroot.rght} - 1

END
WHERE rght BETWEEN {subroot.lft} AND {newparent.rght} - 1;

The first WHEN clause handles the part of the tree between the subtree’s original
position and its destination node, the second only the subtree.

The transfer to the left is performed in a similar manner. Specifically, the interval of
nodes the transfer affects is different and also the left and right values of the subtree
are decreased instead of increased.

4.1.2.8 Finding Direct Descendants of a Node

The crucial thing here is to realise that we can divide a subtree into three levels (lev1,
lev2 and lev3). Level one would be the subroot node, level two all its descendants and
level three their descendants. We can achieve this through a self-join (table is joined

11

4. Database Models .
with itself). First, we select all descendants of the subroot. Then we exclude the level
three ones, thus leaving us with only the direct descendants of the node.

SELECT lev2.id, lev2.lft, lev2.rght
FROM Tree AS lev1, Tree AS lev2
WHERE lev1.id = {node.id}

AND (lev1.lft < lev2.lft AND lev1.rght > lev2.rght)
EXCEPT
SELECT lev3.id, lev3.lft, lev3.rght
FROM Tree as lev1, Tree as lev2, Tree as lev3
WHERE lev1.id = {node.id}

AND (lev1.lft < lev2.lft AND lev1.rght > lev2.rght)
AND (lev2.lft < lev3.lft AND lev2.rght > lev3.rght);

4.2 Adjacency List Model

4.2.1 Database Model

Adjacency list model is the most simplistic one. The column parent in the table is a
foreign key referencing the id of every node’s parent.

CREATE TABLE Tree (
id INTEGER PRIMARY KEY,
parent INTEGER REFERENCES Tree(id) ON DELETE CASCADE

);

The root has a NULL value for its parent. Since the only properties of a node are its
id and parent id, there is nothing we can deduce about the rest of the tree based on
just one node.

We do not assume any change of values within the id column. Therefore, there is no
need for an ON UPDATE [5, p. 133] clause in the definition of the parent column.

4.2.2 Set of Operations

This model is straightforward to understand and in most cases, even to implement.
However, there are some queries where we can not avoid recursion.

4.2.2.1 Adding New Nodes

There is no need to update any nodes when adding a new one under a parent node. A
plain insert is sufficient.

INSERT INTO Tree (parent)
VALUES ({parent.id});

Here, we do not insert the id value because we expect it to be generated automatically.

4.2.2.2 Deleting a Leaf Node

Deleting a leaf node (del) in this model is simple. Since no references are pointing to
any leaf node, a simple delete can be executed.

DELETE FROM Tree
WHERE id = {del.id};

12

. 4.2 Adjacency List Model

4.2.2.3 Deleting a Subtree

Thanks to the parent foreign key, we can just delete a single subroot node. All other
nodes which are referencing this node’s id are also deleted. It holds recursively for their
child nodes as well.

DELETE FROM Tree
WHERE id = {subroot.id};

4.2.2.4 Selecting Descendants of a Node

In this query, we need to use recursion [5, pp. 190-192]. To do so, we create a temporary
table Subtree. First we insert the subroot node. The insertion is the initiation of the
table. Then we add all direct child nodes of each node in the table. This step is
automatically repeated every time the table is updated.

WITH RECURSIVE Subtree AS(
SELECT * FROM Tree
WHERE id = {subroot.id}

UNION
SELECT Tree.* FROM Tree

JOIN
Subtree

ON Subtree.id = Tree.parent
) SELECT * FROM Subtree;

4.2.2.5 Finding All the Leaf Nodes

The main characteristic of a leaf node is that it is not parental to any other node. In
other words, there is no node in the tree that has a leaf node for its parent.

SELECT * FROM Tree
WHERE id NOT IN(

SELECT DISTINCT parent FROM Tree
);

4.2.2.6 Finding All the Leaf Nodes of a Subtree

This is the combination of selecting descendants of a node (selecting a subtree) and
finding leaf nodes of a tree.

WITH RECURSIVE Subtree AS(
SELECT * FROM Tree
WHERE id = {subroot.id}

UNION
SELECT Tree.* FROM Tree

JOIN
Subtree

ON Subtree.id = Tree.parent
) SELECT * FROM Subtree
WHERE id NOT IN(

SELECT DISTINCT parent FROM Subtree
);

4.2.2.7 Transferring a Subtree

When transferring a subtree, we only need to redirect the pointer to the parent node
of the subroot node to a newParent node.

13

4. Database Models .
UPDATE Tree
SET parent = {newParent.id}
WHERE id = {subroot.id};

4.2.2.8 Finding Direct Descendants of a Node

Direct descendants are those that have the parent node’s id in their parent column. We
can get those by using a simple where clause.

SELECT * FROM Tree
WHERE parent = {parent.id};

4.3 Materialized Path Model
In this model, we store every ordered path. This way, we get a path to the root node
for every node in the tree.

4.3.1 Database Model
Each database table entry consists of a node id and its predecessor. For each different
node, there is one entry for every path from the predecessor node to the node itself.
We also included reflexive paths from a node to itself to simplify queries.

CREATE TABLE Tree (
id INTEGER NOT NULL,
pred INTEGER NOT NULL

);

There are a few characteristics of this model we can use to make each operation easier.

4.3.2 Set of Operations
When creating the queries in this model, we have to keep in mind that every node’s id
appears multiple times in the table except for the root’s id.

4.3.2.1 Adding New Nodes

We want to add a new node under a parent node. The new node is going to have the
same predecessors as the parent node including the parent itself. Therefore we only
need to select the predecessors of the parent node and insert them into the Tree table
along with a new id.

INSERT INTO Tree (id, pred)
SELECT {idNew}, pred
FROM Tree
WHERE id = {parent.id}

UNION
SELECT {idNew}, {idNew};

We then also need to add a self reference from the added node to the added node.

4.3.2.2 Deleting a Leaf Node

We know that a leaf node has only one entry in the Tree table. A simple delete will
suffice.

DELETE FROM Tree
WHERE id = {del.id};

14

. 4.3 Materialized Path Model

4.3.2.3 Deleting a Subtree

When deleting a whole subtree, we first select all descendants of a subroot node and
then delete all their entries from the table.

DELETE FROM Tree
WHERE id IN (

SELECT id FROM Tree
WHERE pred = {subroot.id}

);

4.3.2.4 Selecting Descendants of a Node

We already mentioned this query in the previous one. For every node of a subtree holds
that one of its predecessors is the subroot node.

SELECT id FROM Tree
WHERE pred = {subroot.id};

This way, we select the subroot node as well. To avoid that we could add a specifying
statement to the WHERE clause (AND id != subroot.id).

4.3.2.5 Finding All the Leaf Nodes

For every leaf node holds, it is a predecessor to only one node, itself.

SELECT pred FROM Tree
GROUP BY pred
HAVING COUNT(pred) = 1

This query does exactly that. It counts the occurrences of each node being a predecessor
and selects only those counted once.

4.3.2.6 Finding All the Leaf Nodes of a Subtree

This query combines the previous two - selecting all descendants and finding all leaf
nodes.

SELECT id FROM Tree
WHERE pred = {subroot.id}
AND id IN (

SELECT pred FROM Tree
GROUP BY pred
HAVING COUNT(pred) = 1

);

4.3.2.7 Transferring a Subtree

To transfer a subtree we first need to delete all paths leading from the subtree to the
predecessors of the subtree (predecessors of the parent node).

DELETE FROM Tree
WHERE id IN (

SELECT id FROM Tree
WHERE pred = {subroot.id}

) AND pred IN (
SELECT pred FROM Tree
WHERE id = {parentOld.id}

);

15

4. Database Models .
Now we need to add new predecessors to the subtree which come into existence by
relocating the subtree. These are the predecessors of the new parent node.

INSERT INTO Tree (id, pred)
SELECT * FROM
(SELECT id FROM Tree
WHERE pred = {subtree.id}) AS X

JOIN
(SELECT pred FROM Tree
WHERE id = {parentNew.id}) AS Y

ON 1 = 1;

We have to join two selects where the first selects the subtree and the second selects
the predecessors of the node under which we transfer the subtree. We want to combine
every node of the subtree with every predecessor of the new parent node. This specific
type of join is called a cross join, and it is a Cartesian product of the selects. To join the
selects correctly, we must name the subselects and also state when the rows retrieved
by the select should join using ON. Here we want them to join every time, so we put
1 = 1. We prefer this to the CROSS JOIN because it is a universal approach.

4.3.2.8 Finding Direct Descendants of a Node

We can find direct descendants of a subroot node by selecting all descendants and
excluding the ones that have other descendants of the same subroot for predecessors.

SELECT id FROM Tree WHERE pred = {subroot.id} AND id != {subroot.id}
EXCEPT

SELECT id FROM Tree WHERE id != pred AND pred IN(
SELECT id FROM Tree WHERE pred = {subroot.id} AND id != {subroot.id});

4.4 Models Comparison
Only a couple of queries defined in the Database Models chapter 4 are going to determine
our choice of the model. The reason is, only some are used often and some rarely in
our application.

4.4.1 Theoretical Comparison
In this section, we are going to compare all three models theoretically. We look at the
models and determine which of the queries should be faster in which model and why.

4.4.1.1 Addition Comparison

In the Nested Set model, the addition of a node into the tree structure may turn out to
be not as fast as expected. With every addition, we must renumber all nodes to the right
from the node we are adding to make a ‘space’ for it. It is still almost instantaneous if
the nodes are added on the right side of the tree, but we might feel the drawback when
adding a considerable amount of nodes at once anywhere.
However, it is a common practice [15], that we would recognise many nodes are being
added in an instance, add the nodes without numbering and then traverse the tree,
numbering every node’s properties in the process. To do this, we would need to have a
parent id column in our table.

When looking at the Adjacency List model, we can see right away; the addition is
going to be nearly instantaneous, no matter the amount of data. Since we are only
adding new rows in the table, we can count on this operation being fast.

16

. 4.4 Models Comparison

The node addition in the Materialized Path model should be slower than the Adja-
cency List addition because we insert more data which we also need to retrieve from
the table first. The amount of data we insert depends on the depth in which we add
the node.

We need to keep in mind that we are never going to add more than one node at a
time. Therefore we are not going to choose the database model based on this operation.

4.4.1.2 Subtree Leaves Find Comparison

It seems as if the Nested Set model was designed specifically for this kind of operation.
All we do, when selecting the leaf nodes is, we go through the table and filter data
using the WHERE clause. This operation is going to be done rapidly.

The Adjacency List model, on the other hand, is not made to deal with this sort of
requests. Here we are forced to use recursion. Diving deeper into the tree with each
iteration and thus adding more rows into the temporary table which can eventually even
contain all the nodes from the database. This query is extremely complex, especially
with deep tree structures. Another drawback is that not all database systems can deal
with this form of recursion.

The disadvantage of using Materialized Path model is that we use the group by clause,
which has to sort the table first. We also use the intersection of two sets, thus slowing
down the query even more.

This query is the most important one, and it seems that the Nested Set model is the
best one to use if we want to execute the query fast.

4.4.1.3 Transfer Comparison

The transfer is somewhat similar to the addition of a node in the Nested Set model.
We are still updating a substantial part of the whole tree. Only this time, we are not
just increasing the left and right values but decreasing as well.

In the Adjacency List model, the transfer is similar to addition as well. All we have
to do is redirect the pointer of a node from its current parent (parent id attribute) to
a different parent. It is only a simple update of one row in the table, which should be
almost just as fast as inserting it.

The Materialized Path model handles node transfer by deleting a part of the tree
that is supposed to be transferred and then inserting it again but somewhere else (with
different predecessors). This in itself would not be much slower than the Adjacency list
addition. However, we have to use the intersection of selects multiple times, which is
going to slow down the query. The joining of two selects after that should not be a
problem.

The Adjacency model is the best one to use when transferring a subtree. This
operation is, however, most likely never going to be used (or only exceptionally). The
problem is before we even allow a subtree to be transferred, we need to check if we are
not transferring it under itself. The Nested Set model handles this check the best by
comparing two values. In the Adjacency List model, we have to use recursion, and in
the Materialized Path model a simple select. Despite that, the Adjacency List model
still comes out on top.

4.4.1.4 Direct Descendants Find Comparison

The JOIN operation is expensive when it comes to time complexity as well as memory
consumption. We have to use it more than once when finding nodes one level deeper in
the tree with the Nested Set model nevertheless. So many times, as is the depth of the

17

4. Database Models .
subtree to be precise. That is why this operation is going to cost us some computing
time.

Again, thanks to the parent attribute, the Adjacency List model deals with this
operation effortlessly. All we need to do is one simple select.

In the Materialized Path model, we only have to use a few selects; however, their
intersection and difference (relative complement) are going to slow down the query
noticeably.

The Adjacency model is the best to use in case of finding direct descendants of a
node. We are, however, most likely not going to mind if the execution of this operations
takes extra time because of the way we are going to be loading the data (Lazy loading
5.1).

4.4.2 Experimental Comparison (Speed Measurement)

After we implemented the Nested Set, Adjacency List and Materialized Path model
queries, we tested them on real data and timed them. For the purpose of testing, we
used a database created in a folder on a hard drive. We are going to go through the
results of the speed testing of some of the queries. Because we implemented these tests
in java, there might be different constructs used for every operation. Every operation’s
speed test is implemented the way it would be in the final application (for example
we have to create objects and store them in lists), and the way each operation would
be implemented is a little bit different. Therefore we can only compare the measured
times within a single operation speed test.

4.4.2.1 Addition Speed Test

There are 5238 nodes in the test tree. We added them one by one into the database.
Regarding the Nested set model, the addition time was 5 minutes and 30 seconds.

This means it took 63 milliseconds for a single node to be added. The more nodes there
are in the tree, the more time it is going to take to add one. The time it took for this
query to execute might be affected by the order in which the nodes are added. The
worst case is when we add every node to the left side of the tree and need to renumber
every other node in the table.

The time it took for all nodes to be added was 5 seconds when using the Adjacency
List model, which means one node was added every millisecond. The time should
remain consistent no matter the order in which we add the nodes into the tree.

The addition of Materialized Path model was indeed slower than the one of the
Adjacency List model. It took 68 seconds for all the 5238 nodes to be added which
makes 13 milliseconds per a single node.

Database model Total time Time per one Node
Nested Set 330s 63ms
Adjacency List 5s 1ms
Materialized Path 68s 13ms

Table 4.1. Addition performance times

4.4.2.2 Subtree Leaves Find Speed Test

The operation we are most interested in is finding all leaf nodes in a subtree. For this
test, we chose ten thousand nodes from the tree at random. These nodes were the
subroots of the subtrees in which we were finding the leaves.

18

. 4.4 Models Comparison

In the Nested Set model, the duration of this query was 410 milliseconds. It means
leaf nodes of one subtree were found in 598 microseconds.

The Adjacency List model found the leaf nodes of a subtree in much longer time -
3 seconds, which makes it 315 microseconds per node. We expected this model to be
much slower here because of the recursion and the intersection of selects.

The Materialized Path model handles this operation quite well. However, it is still
slower than the Nested Set model with a total time of 750 milliseconds and 75 microsec-
onds per single test.

Database model Total time Time per one test
Nested Set 410ms 41µs
Adjacency List 3s 315µs
Materialized Path 750ms 75µs

Table 4.2. Leaf nodes find performance times

4.4.2.3 Transfer Speed Test

The transfer of a subtree is probably not going to be used at all. The client did
not mention they would transfer created projects at all. We should, however, test it
nonetheless, because it is a feature we believe our application should have.

The transfer of a random thousand subtrees took 2 minutes and 41 seconds in the
Nested Set model, which means the transfer of a subtree takes 161 milliseconds. As
stated earlier, these measurements are including the checking whether we are trying to
transfer the subtree under one of its nodes or not.

This check considerable slowed down the subtree transfer in the Adjacency List,
because it took 2 seconds to transfer thousand subtrees and 2 milliseconds to transfer
one.

The transfer speed of the Material Path model is comparable to the Nested Set model
speed but is a bit faster. It took 2 minutes and 18 seconds to transfer all thousand
subtrees and on average 138 milliseconds to transfer one.

Database model Total time Time per one transfer
Nested Set 161s 161ms
Adjacency List 2s 2ms
Materialized Path 138s 138ms

Table 4.3. Subtree transfer performance times

4.4.2.4 Direct Descendants Find Speed Test

The last query we need to time is finding direct descendants of a node. This operation
is one of the more important ones for our application, but it is not going to slow it
down since it is going to be called sooner than the user requests due to our specific
implementation of lazy load (see 5.1). Due to the nature of our test data set, we expect
this query to take longer. The tree topology is not deep but wide instead.

We tested the query on ten thousand randomly selected nodes with the execution
time being 22 seconds, which is 2 milliseconds per node for the Nested Set model.

The Adjacency List model is exceptionally fast when it comes to this operation. It
took 80 milliseconds to find direct descendants of ten thousand nodes and 8 microsec-
onds to find direct descendants of a single node.

The speed of the Materialized Path model was again somewhere between the other
two models with total execution time of 2 seconds and 236 microseconds per node.

19

4. Database Models .
Database model Total time Time per one node

Nested Set 22s 2ms
Adjacency List 80ms 8µs
Materialized Path 2s 236µs

Table 4.4. Direct descendants find performance times

4.4.3 Choosing a Model
Now, let us decide which of these models is going to suit our purpose the best and
contribute to our application the most. The addition of a node is not going to be
frequent. We are most certainly not going to add plenty of data in an instant. The
Adjacency List model, however, still handles this operation a little bit better than the
other models.

Finding leaves of a subtree is probably going to be the deciding factor since this
procedure is going to be called whenever the user clicks on a node. It is apparent, the
Nested Set model it at a considerable advantage over the other models.

The transfer of a subtree is probably not going to happen in practice at all, but
we included it in the decision-making process just in case. The Adjacency List model
comes much better out of this one. However, this operation is not important enough
to tip the scales in its favour.

We can not deny the benefit of retrieving direct descendants. We are going to need
to be able to do this in the implementation of our application. We surely would not
want to retrieve all the data at the application start. The Adjacency List model has
the upper hand when considering this query.

All things considered, we are going to go with the Nested Set model. Most of all
because it is much better at retrieving leaf nodes, which is going to be a regularly used
operation. Also, the drawbacks of this model are only minor, and it is not much slower
regarding the other operations than the other models. This model is also universal.
The Adjacency List model, on the other hand, uses recursion, which is something not
all database systems can deal with.

4.4.4 Additional Indexing
Now that we have chosen a model to implement, we need to find out if we can make it
perform any faster with additional indexing. Here we are going to test the speed of the
queries again, but this time we try indexing some of the table columns. We would test
the speed of the queries multiple times and put an index on different columns every
time, however, in this instance, it only makes sense to put an index on the lft and rght
columns.

4.4.4.1 Indexed Addition Speed Test

We already know how long it takes to add nodes into the tree without indexing from
the previous chapter. This time we add the nodes with an index on the lft and rght
columns. We should not forget, the id column is indexed by default because it is the
PRIMARY KEY. This time the addition was more than twice as slow. The exact time
was 11 minutes and 40 seconds. That makes 133 milliseconds per one node.

The conclusion for us would be that indices can, in fact, slow down the addition of
nodes (or any operation in fact), because there are many updates to be executed. In
our application, only a few nodes at the time are going to be added, so we should not
worry too much about this. If we try to add only a thousand nodes into the database,

20

. 4.4 Models Comparison

we get much more encouraging results. It took only 54 seconds, which is precisely
54 milliseconds per node.

4.4.4.2 Indexed Subtree Leaves Find Speed Test

We do not suspect indexing would help in this case. In the WHERE clause we want
rght to be equal to lft + 1. The index does not know how to deal with the ’+ 1 ’ part.
Not even the whole expression itself is not a constant; therefore, an index should most
likely not help.

After placing an index on the lft and rght columns, this query was executed in
483 milliseconds with leaves of a subroot found in 48 microseconds. We can not see
almost any change here. Because the nodes are selected randomly, there is no way of
determining whether the index sped up the execution or not.

This query is executed so quickly; there is apparently no need for an index. It might
even seem as if the index would slow this query down as well.

4.4.4.3 Indexed Transfer Speed Test

There is much adding a subtracting going on in this query. Because of that, the index
is not going to help, and since we update the entries in the table as well, the additional
indexing might slow the execution down.

When we use an index for the lft and rght columns, we get to 5 minutes and 17
seconds. That is 317 milliseconds per transfer of a subtree. We can see a significant
deceleration of the execution time.

4.4.4.4 Indexed Direct Descendants Find Speed Test

With the lft and rght columns indexed, we get the execution time of finding direct
descendants 21 seconds. This is almost the same as without the index. The small
change could be again caused only by the nodes being selected at random.

4.4.4.5 Indexing Conclusion

To conclude the testing, we must say it turned out as expected. The execution times
usually doubled and in best cases, remained roughly the same. The tests confirmed
adding indices on column tables does not always have to be the right choice. We are
therefore not going to use any additional indices in order to save space in the database
and not slow the query execution down.

21

4. Database Models .

22

Chapter 5
Application Design

We wanted to create an application that would allow the user to manage master-key
systems. Such systems are organised in a tree-like taxonomy which is stored in a
database. We needed to allow the user to manipulate the data in all sorts of ways. To
be precise, it is mainly creating new nodes, moving them, renaming them etc.

In this chapter, we are going to go through the implementation of such an application,
initially in general and then more specifically through the most important classes and
methods in the project. The classes are separated into packages. We wanted the SQL
classes to be independent on the type of the application and enable us to test them
efficiently. This way, we could separate the View layer from the Model. The language
we chose to implement the application in is Java. The reason for it is, it is a well-
established and widespread language, accessible also due to its portability. Also, it is
one of the client’s requirements.

A UML activity diagram [16, pp. 285-308] was created for every non-trivial function
of the application using an online open platform software [17]. The diagrams were
made in order to visualise the way the application should work. They cover exception
handling and transaction management (more on that in chapter 5.2) just as well as all
the interface elements described in this chapter.

5.1 Design
First of all, we had to design the GUI and choose suitable UI components. Then
write all the SQL queries. We used one class per one type of query. Those classes
are supposed to be called from threads. Since the thread class itself implements the
Runnable interface [18], we wanted to make our SQL classes runnable as well and pass
their instances to the threads. That way, the user interface would not freeze if the
database was slow to respond (asynchronous update [5, p. 390]). We had to be sure the
SQL queries are correct, so we introduced Unit tests (see chapter 5.3) and tested every
query thoroughly. Then we connected the GUI classes with the SQL classes.

To lower the memory requirements, we implemented lazy load ([19], [20]). This
means we load data from the database only when we might need them. To be precise,
we load the data just before the user might request to see them. This way, it also helps
with the performance and the speed of the response.

5.1.1 GUI
The main application window (see Figure 5.1) is composed of two parts - a file explorer
and a key shapes display.

The initialization of the application can be seen in the following UML diagram 5.3.
If the application fails to start due to a problem with the database an error dialogue

is shown (see Figure 5.2).
The file explorer shows all folders and projects retrieved from the database. Each

folder can be expanded to show its subfolders by clicking the triangle next to it or

23

5. Application Design .

Figure 5.1. Application window

double-clicking the folder itself, then collapsed by clicking the triangle again. The
selected folder can be renamed (see Figure 5.13) by clicking or using the menu. More
on that in the Rename Menu Item section.

Figure 5.2. Application start failed dialogue

Every time the user adds a new key shape or selects a folder by clicking it, all key
shapes belonging to that folder are shown in the key shape display. More specifically,
the key shapes belong to the folders on the bottom of the hierarchy.

If the key shapes cannot be retrieved from the database, the user is promptly informed
by a dialogue (see Figure 5.5).

A context menu can be brought up by clicking the right mouse button on any folder
in the window, as seen in Figure 5.4.

The functions available in the menu are described in the following chapters.

24

. 5.1 Design

Figure 5.3. Application initialization UML Diagram

25

5. Application Design .

Figure 5.4. Menu

Figure 5.5. Failed key shape display dialogue

26

. 5.1 Design

5.1.1.1 Add Menu Item

After the Add item is clicked, a folder is added into the current one. The new folder
is going to have a unique name. In case there is a problem with the database and the
folder cannot be added, an error dialogue (see Figure 5.6) shows up informing the user
of the issue.

Figure 5.6. Failed addition dialogue

Following a successful addition, the new folder is going to be selected and centred.
To understand this function better, see the Add UML diagram 5.7

27

5. Application Design .

Figure 5.7. Addition UML Diagram

28

. 5.1 Design

5.1.1.2 Delete Menu Item

The Delete item removes the selected folder from the explorer and the database. If the
removal fails an error dialogue (see Figure 5.8) is shown.

Figure 5.8. Failed deletion dialogue

The logic behind this function can be seen on the Deletion UML diagram 5.9.

29

5. Application Design .

Figure 5.9. Deletion UML Diagram

30

. 5.1 Design

5.1.1.3 Cut Menu Item

The user has the option to cut&paste a specific folder. After clicking the Cut item, the
folder is copied to the clipboard. This means that if another folder is then copied, the
previous one is replaced in the clipboard.

The is no diagram included for this function since it is very elementary.

5.1.1.4 Paste Menu Item

The default state of the Paste item is disabled. It is only enabled after a folder is cut
and disabled again immediately after it has been pasted. It is necessary to remember
that if the cut folder is removed, it can no longer be pasted. A folder cannot be pasted
into itself or any subfolder of its own. If the folder could not be pasted, a dialogue (see
Figure 5.10) informs the user.

Figure 5.10. Failed transfer dialogue

When a folder of a particular name is pasted next to another folder of the same name,
the user is given the option of merging those two folders or letting there be two folders
of the same name (see Figure 5.11).

Figure 5.11. Merge or Paste Folders dialogue

Should another folder with the same name be pasted, the user is no longer given the
option of merging the folders since there is no way of knowing which folders should
merge.

This function is quite complicated and can be better explained via a UML diagram
5.12.

31

5. Application Design .

Figure 5.12. Paste UML Diagram

32

. 5.1 Design

5.1.1.5 Rename Menu Item

One way to rename a folder is to click the Rename item in the menu. This creates a
textfield (see Figure 5.13) for the user to type the new name in.

Figure 5.13. Rename textfield

The new name can contain only alphanumeric characters, white spaces and the fol-
lowing symbols: .,- ()

As soon as the user writes any different character, a tooltip (see Figure 5.14) is shown
to notify them.

Figure 5.14. Wrong name tooltip

It disappears once the character is deleted. If the user, however, decides to confirm
the name (by pressing the Enter key), even though the name is not valid, a warning
(see Figure 5.15) pops up.

A different warning (see Figure 5.16) is shown if the new name is empty.
The new name can also not be longer than 255 characters. In case the user types a

name that long, a tooltip (see Figure 5.17) informs them as such.

Figure 5.17. Long name tooltip

33

5. Application Design .

Figure 5.15. Wrong name warning

Figure 5.16. Empty name warning

When confirmed, a warning (see Figure 5.18) advises the user to change the name.
The tooltip again disappears once the length has been shortened.

The length issue supersedes the unsupported character problem.

Figure 5.18. Long name warning

The user is encouraged to use unique folder names. If they decide to change the
name of a folder to an already existing name, they will have the option to merge those
two folders (see Figure 5.19).

If they choose to do so, all the subfolders of the renamed folder will be transferred
under the other folder. This may however result in a database error (see Figure 5.20).

The user may also choose to rename the folder. In which case, there will be two
(possibly more) folders with the same name. It is allowed but not recommended.

In case there are more folders with the same name as the newly renamed folder, the
user is not given the option of merging them.

Renaming a folder might result into a database error (see Figure 5.21).

34

. 5.1 Design

Figure 5.19. Merge folders confirmation

Figure 5.20. Failed merge dialogue

Figure 5.21. Failed rename dialogue

The Cancel option in the merge dialogue (Figure 5.19) cancels the renaming process,
in the same way, pressing the Esc key would.

The rename function can be visualized using the Rename UML diagram 5.22.

35

5. Application Design .

Figure 5.22. Rename UML Diagram

36

. 5.1 Design

5.1.1.6 Set Key Shape Menu Item

The key shape is set using a dialogue (see Figure 5.23) and can be set only in a leaf
folder. If the project already had a key shape, it will be shown in the dialogue window.

Figure 5.23. Key shape set dialogue

The OK button is disabled by default, enabled only after a valid key shape is typed.
A key shape can only contain numeric characters and can not be longer than 255

digits. After breaking these restrictions, an appropriate tooltip is shown (see Figure
5.24 and 5.25).

Figure 5.24. Wrong key shape tooltip

Figure 5.25. Long key shape tooltip

If the new key shape is empty (user deleted the shape from the text field), it will
be deleted from the database. The user is required to confirm the deletion (see Figure
5.27).

When designing this function, the Key Shape Set UML Digram was created 5.26.

37

5. Application Design .

Figure 5.26. Key Shape Set UML Diagram

38

. 5.1 Design

Figure 5.27. Key shape delete dialogue

5.1.2 GUI Package
In this package, all classes handling the user interface are located (see documentation
[21]). Their purpose is to allow the user the interaction with the database.

5.1.2.1 ProjectUI

This is the main class of the project, where the application window is created. The
only thing the main method does is call the launch method, which is the main method
of the application.

In the application window, a TreeView component was used to represent the file
explorer. We then used a ListView component to display the key shapes. As mentioned
in chapter 5.1.1, the key shapes are displayed every time an item is selected. The
selection evokes an event caught by a listener. The key shapes are retrieved by an SQL
query run in a thread. If it fails, the user is informed of it by an Alert (see Figure 5.5).

These two components are placed in a GridPane into two columns. Before the main
window is shown, a connection with the database is established. It is disconnected once
the application is closed. In case the connection can not be established, the application
is closed, and an alert is shown (see Figure 5.2).

5.1.2.2 TreeItemNode

The TreeView mentioned in the ProjectUI chapter is composed of TreeItems. The
TreeItem class is imported from the JavaFX scene control package. Usually, it would
not be a problem to use the TreeItem class as the representation of a single node in
the tree view. However, this way, all the nodes would be stored in memory. Since
there is going to be a massive amount of data, we needed to load into the memory
only those, that are visible to the user. We did this by extending the TreeItem class,
thus creating our own TreeItem (TreeItemNode). Then we had to override the isLeaf
and the getChildren methods. These methods are called automatically by the tree view
in order to display its items correctly. If the isLeaf and the childrenList properties of
a tree item are already set, we simply return them from the superclass. Otherwise,
we load the necessary data from the database and set the properties in the superclass
accordingly.

5.1.2.3 TreeCell

A TreeCell takes care of the selection model of the TreeView. It makes sure, to visually
indicate to the user if they have selected it. It also works as a set of instructions each
node follows. The TreeCell is assigned to the TreeView in the ProjectUI class by using
the setCellFactory method.

39

5. Application Design .
To allow the user renaming of the nodes, we had to override a few methods. So

naturally, our TreeCell class extends the JavaFX scene control TreeCell<> class. The
main thing the overridden methods do is create a TextField for the user to type the
new name in. After that, we only added a few name-checks (more on that in chapter
5.1.1) by checking the length of the typed name and also checking if it matches the
regex ‘ˆ[\w., ()-]+$’. If the name passed the checks, we would rename the node in the
database and displayed a matching alert (see Figure 5.21) in case it failed. Because we
call the SQL classes in threads, we must explicitly use the JavaFX thread Platform [8]
to display the alert.

If the name were already present in the folder (which we find out by checking all
sibling folders), we would alert the user. We give them the options to merge the
current folder with the other one with the corresponding name or rename the folder,
thus having duplicate folder names.

The merge can also be unsuccessful due to a database issue. It is again treated by
cancelling it and informing the user.

We also added a ContextMenu to the tree cell. More about the functionalities of the
menu in chapter 5.1.1. The ContextMenu is composed of MenuItems. We added an
EventHandler to every menu item using lambda functions. There we set the properties
of the nodes in the tree based on the user’s demands and did the same in the database.
Again with proper alerts shown if something went wrong.

5.2 SQL Package
For the purpose of implementation, we chose the Apache Derby database [22]. It runs
on any machine with Java and can be embedded in Java programs, which is why it
was used in this thesis. It is possible to change the database system when releasing the
application. We are not using any unique properties of the Derby database.

Every query needed for the interaction with the database has its own class in this
package. The classes implement the Runnable interface so they can be passed to threads
as arguments.

Let us now go through the way transactions are managed in the implementation of
this thesis.

5.2.1 Transaction Management
To execute a query, we first had to create a statement using the connection with the
database. We used PreparedStatement [23]. The main advantages of using Prepared-
Statements as opposed to classic Statements are that they are much faster to execute
since they are pre-compiled. We can also feed them parameters very easily using ques-
tion mark placeholders.

Sometimes we had to use a few statements that were dependent on one another. If one
of them failed to execute and the others did not, there would be an inconsistency within
the database. To prevent that, we used transactions [5, pp. 625-631]. A transaction is
created with every statement, so there is no need to begin one manually. By default, the
connection commits every transaction once the statement has been executed. However,
we wanted a few statements to be executed together, meaning if one fails, do not
execute the others, so we forbade the auto-commit. Because of it, we had to commit
every transaction manually.

Any database operation can fail and throw an exception. That is why the statements
are surrounded with try/catch blocks. If the exception is thrown, we cancel the transac-

40

. 5.2 SQL Package

tion by using rollback [5, p. 648] and throw another exception which is then handled in
the GUI classes (see 5.1.2), so the user can be informed of the failed database operation.

Some of the statements would return a ResultSet of data in case the executed query
was a SELECT or an INSERT. We would then retrieve the data by using the support
class ResultSetDrainer, which would extract the nodes from the ResultSet.

Since we fetch the data in the void Run methods, we are forced to use Consumers to
‘return’ the data.

The transaction management fulfils client’s hidden functional requirements ([12],
[24]).

Now we are going to take a closer look at a few of the runnable classes in the SQL
package. Some of the classes are essentially the same except they execute different
queries, which are however identical to the ones described in the Database Model chap-
ter 4. So the ones we are going to be interested in are those that have been slightly
changed compared to the original draft or were not there at all.

5.2.2 TableInitializer

Each database record requires a unique identifier (id). Nowadays, mostly artificial ones
are being used. Since it is a common practice, we went with that in our project as well.
However, maintaining an id would be too difficult. Luckily, there is another way. When
creating a table, we can say we want to generate the ids automatically.

In the CREATE TABLE Tree statement we added a clause which states, the id values
are going to be generated starting from id = 1. Thanks to this clause, every time a
record is added into the database, it is automatically assigned a unique id number,
which is always higher by one than the previous one.

5.2.3 Adder

When inserting a record into the database, we added the RETURN GENER-
ATED KEYS option to the PreparedStatement. The statement then after its execution
returns a ResultSet with the generated id.

5.2.4 Renamer

First of the minor classes to mention is the Renamer class. It merely sets the name of
a node with the given id in the database.

5.2.5 Key Renamer

This class is the same class as the Renamer class, except this class, sets key shapes.

5.2.6 Selector

The Selector is only a support class with static methods. It is used to retrieve a node
from the database given the id or all nodes in the table.

5.2.7 Table cleaner

This class allows us to DROP the Tree table. In a typical application run, we would
never need to do such a thing. The table is dropped only in testing. More about that
in the Unit Tests chapter 5.3.

41

5. Application Design .

5.3 Unit Tests
All the queries we used had to be adequately tested to assure the reliability of the final
application. Therefore we devised a series of unit tests [25]. Every single database
query used in our project has its own unit test. For the purpose of testing, we used an
in-memory database and some dummy data.

Before running all the tests in a test class, a connection with a database was estab-
lished. Then before each test in the class, a table was created and a root node inserted
in it. After the test, we would drop the table to give us the option of writing more test
cases. The reason we had to drop the table and not just delete all the data in it is, the
automatically generated id would still be increasing, even with the data deleted, thus
making the individual tests dependent.

42

Chapter 6
Usability Testing

After the implementation of the application had been completed, we had to find out if
the application was fully usable and fulfilled the client’s expectations. In this case, the
client is also the user.

For the purposes of testing, we chose usability testing. Usability testing is a kind of
testing where the user gets a task list, and we watch them go through the list. We also
make notes of the tasks which prove problematic to the user. We also watch for any
hesitations or actions unsuccessfully attempted by the user. It is also important for us
that the user is satisfied and uses the application efficiently.

Before the testing itself, the functionality of the application was tested with an inde-
pendent user. The goal was to find out if the application is fully functional, there are
no bugs, and there is nothing that would endanger future usability testing; for example,
the application does not crash or freeze. This user had skills on a similar level to those
of the target group. Those skills are specified in the next paragraph.

We conducted the usability testing of the application with only one user. This par-
ticular user is the head of the department which is planning on using the application.
The department consists of about three people, therefore the testing of the application
with only one user is sufficient. This user reliably represents the target group. The
users from the target group have these skills and characteristics:

. they often use PC, keyboard and computer mouse. they have at least basic knowledge of English language. they are familiar with the use of Windows File Explorer, MS Excel and MS Word. they do not suffer from any form of visual impairment

Under other circumstances, we would have used a screener [26, pp. 124-127] to select
our test subjects. Since this application is intended for specific users, it is better to test
it with them.

In the following sections, we are going to go through the process of user testing with
this particular participant. We are also going to list all the findings which arose from
the testing and the ways we resolved them.

6.1 User Testing
At the beginning of the testing, we explained the client (hereinafter referred to as the
participant) the reason they came and what is expected from them. We emphasized
that it is the product (application) that is supposed to be tested, not the participant.
Every complication we stumble upon is a fault of the application, not the fault of the
participant. It is also essential that the test participant thinks out loud [26, pp. 199-207].
This helps us understand which tasks from the task list are difficult for the participant
and potential user to execute and most importantly, why.

The task list given to the participant did not test every function of the application,
but it tested the most used and crucial ones. If the participant manages to complete

43

6. Usability Testing .
tasks in this task list, they can complete any task related to this application.

The task list:

. A new project must be inserted into the structure.

. Add a new project under platform ’C-180’, which is located in folder 3760.. Rename the added project to ’3F472 CTU Prg’.. Set the key shape of the added project to 634635.. Collapse folder 3760.

. A project was categorized under a profile map, which is further divided. The project
must be manually transferred.

. Cut project ’3G581 Dell Ost’, which is located under folder 1462 in folder 917.. Paste the project under profile ’B-240’.

. Project ’2B725 HP Mnt’ in folder 917, of profile ’B-240’ was cancelled.

. Delete project ’2B725 HP Mnt’.

6.1.1 Testing process
First of all, the participant tried to maximise the application window. This action failed
since the maximisation function was explicitly forbidden in the implementation.

When adding a new project, the participant was having some difficulty finding the
menu. The reason is, they are used to a different way of adding projects. They managed
to find the menu after some hesitation. The participant was pleased with the menu
being compact. The participant liked that it does not take any space in the application
window because it’s default state is hidden. It is also very similar to the Windows File
Explorer menu and other applications’ menus. In this way, we are keeping up to the
standard, which the participant appreciated. The participant was also confused about
where they should add the new project. They realised they are supposed to add it in
the folder which should contain the added project. The participant, however, almost
added the new project under an already existing project, which can not happen.

Project renaming was not a problem for the participant at all.
At first, the participant was not sure how to set the key shape. As soon as they said

that out loud, they realised the set key option must be in the menu. When setting the
key shape in a dialogue, the participant did not press the OK button but intuitively
pressed the enter key instead. The participant was curious about restrictions regarding
the key shape so, they tried to type more digits. The application allowed them to do
so, but the maximal acceptable number of digits is 7.

The participant then collapsed the folder without any problems, because they
realised, that is what the little triangles next to the folders do.

The participant had no problems with cutting a project, and when it came to pasting
it they already knew, they should paste it in the folder that is supposed to contain the
cut project.

Deleting a project was not an obstacle to the participant. They, however, did not
like that there is no safety check before the deletion. They certainly would not want to
delete a project or a folder accidentally.

44

. 6.2 Findings and revision

After the data collection was completed, we moved to the post-test phase. We asked
the participant about the tasks they had troubles with. There was not much to discuss
in this post-test part of the usability testing since the participant explained his confusion
over certain tasks during the previous part already. We merely confirmed all the things
the participant said during the testing. The participant also added and cut-pasted a
few folders and project in order to verify if they understand the logic behind adding
and pasting well. There however seemed to be room for improvement in this area.

The client was satisfied with the way the application looks and behaves. They had
only a few remarks concerning the issues we already mentioned.

In case there were some troubles during the testing, the participant might feel in-
competent. It is necessary to make sure that the participant leaves in a good mood or
preferably better mood than in which they came.

6.2 Findings and revision
We divided the findings into three categories based on their priority. Priority one is
the lowest. Priority one findings bear on cosmetic or aesthetic problems and do not
have any impact on the usability of the application. Priority two relates to moderately
severe problems. These issues do not impede the usability of the application much, but
they might relate to some features which would be nice to have. Priority three is the
highest. Problems of this priority significantly compromise or restrict the functioning of
the application, thus making it in some cases almost impossible to use [26, pp. 299-300].

In this section, we are going to go through the individual findings and the way we
resolved each of them.

. Finding #1 (priority 2 - moderate)
The participant seemed confused at first about the level where a folder is added.
More specifically, whether it is added next to the selected folder or under it. The
fact that they can add a new project under an already existing project further inten-
sified the confusion.
Solution
Now it is impossible to add a folder/project under another project. The main char-
acteristic of a project is that it has a set key shape.. Finding #2 (priority 2 - moderate)
The client wanted some safety check before the deletion of any project or folder.
Solution
We added a confirmation dialogue (see 6.1) which is displayed after the user at-
tempts to remove a project. Similar dialogue is displayed in case of a folder deletion
attempt. The project/folder is removed solely after the user confirms the deletion in
the dialogue. This hugely improves the prevention of errors caused by the user.. Finding #3 (priority 2 - moderate)
The length of a key shape used to be restricted to 255 digits. In reality, the key
shape can not be longer than 7 digits. The participant pointed out this issue.
Solution
The key shape setting restrictions are now tightened up. A key shape can no longer
contain more than 7 digits. A key shape set tooltip has been adjusted accordingly.. Finding #4 (priority 1 - low)
The test subject tried to maximise the application window or at least enlarge it.
They were unhappy with the application having a maximal size set.

45

6. Usability Testing .
Solution
The application was modified and now can be enlarged, maximised, and the projects
navigation pane and the key shape display pane scale accordingly. And since the
maximisation was the first thing the participant tried to do, the application is now
maximised by default.

Figure 6.1. Project deletion conformation dialogue

All the findings from the usability testing are now resolved.

46

Chapter 7
Conclusion

We have created an application for the master-key system maintenance. The application
comes with a user interface (see Figure 5.1) allowing the user the retrieval of the key
shape data from a database as well as its storage within a project by the use of a context
menu. We discussed every operation the user is likely to make.

We made sure the interface runs as swiftly as possible by using threads for all the
database interactions, implemented lazy loading to lower the memory requirements,
and we also covered all errors and exceptions that may occur.

Before the implementation itself, we had to propose a database model well suitable
for hierarchy management. We considered a few of them, prepared the fundamental
queries needed for the application run and compared them based on their complexity
and comprehensibility and also experimentally measured the execution time of the
queries within each model. We then implemented the most efficient one.

We thoroughly tested every query we used in the implementation using a series of
unit tests.

After the application was fully functional, we tested it via usability testing. We then
processed the results of this testing and resolved any issues, which emerged from it.

For future work, we would suggest expanding the user interface and adding a few
minor features to it. Then prepare the application for the integration into a final
product and eventually its release.

47

References

[1] Hillyer, Mike. Managing Hierarchical Data in MySQL. Mike Hillyer’s Personal
Webspace [online] (n.d.).
Retrieved from:
http://mikehillyer.com/articles/managing-hierarchical-data-in-mysql/.

[2] Pulford, Graham. High-Security Mechanical Locks: An Encyclopedic Reference.
Butterworth-Heinemann, 2007. ISBN 978-0750684378.

[3] Wikimedia Foundation [online], 2008. Retrieved from:
https://commons.wikimedia.org/wiki/File:Pin_tumbler_no_key.svg.

[4] Systém generálního klíče. FAB [online]. ASSA ABLOY (n.d.).
Retrieved from:
http://www.fab.cz/inspirace/prispevek/26740/system_generalniho_klice.

[5] Silberschatz, Abraham, Henry F. Korth, and S. Sudarshan. Database System
Concepts (6th ed.). New York: McGraw-Hill, 2011. ISBN 978-0-07-352332-3.

[6] TIOBE Index for May 2019. TIOBE [online]. TIOBE Software, 2019.
Retrieved from:
https://www.tiobe.com/tiobe-index/.

[7] Langley, Nick. Write once, run anywhere?. ComputerWeekly [online]. TechTar-
get, 2002.
Retrieved from:
https://www.computerweekly.com/feature/Write-once-run-anywhere.

[8] Taman, Mohamed. JavaFX Essentials. Birmingham: Packt Publishing, 2015.
ISBN 978-1-78439-802-6.

[9] Fedortsova, Irina. Why Use FXML. Oracle Docs [online]. Oracle, 2014.
Retrieved from:
https://docs.oracle.com/javafx/2/fxml_get_started/why_use_fxml.htm.

[10] JavaFX 2.2.5 System Requirements. Oracle Docs [online]. Oracle, 2013.
Retrieved from:
https://docs.oracle.com/javafx/2/index.html.

[11] Hommel, Scott. Using JavaFX Properties and Binding. Oracle Docs [online]. Or-
acle, 2013.
Retrieved from:
https://docs.oracle.com/javafx/2/binding/jfxpub-binding.htm.

[12] Functional Requirements. Science Direct [online]. Elsevier, 2019.
Retrieved from:
www.sciencedirect.com/topics/computer-science/functional-requirement.

[13] Quassnoi. Adjacency list vs. nested sets: PostgreSQL. Explain Extended [online].
Explain Extended, 2009.
Retrieved from:

48

http://mikehillyer.com/articles/managing-hierarchical-data-in-mysql/
https://commons.wikimedia.org/wiki/File:Pin_tumbler_no_key.svg
http://www.fab.cz/inspirace/prispevek/26740/system_generalniho_klice
https://www.tiobe.com/tiobe-index/
https://www.computerweekly.com/feature/Write-once-run-anywhere
https://docs.oracle.com/javafx/2/fxml_get_started/why_use_fxml.htm
https://docs.oracle.com/javafx/2/index.html
https://docs.oracle.com/javafx/2/binding/jfxpub-binding.htm
www.sciencedirect.com/topics/computer-science/functional-requirement

. .
https: / / explainextended . com / 2009 / 09 / 24 / adjacency-list-vs-nested-sets-
postgresql/.

[14] Tropashko, Vadim. Nested Sets and Materialized Path SQL Trees. Rampant
Techpress [online]. Oracle, 1996-2017.
Retrieved from:
http://www.rampant-books.com/art_vadim_nested_sets_sql_trees.htm.

[15] Ptáček, Pavel. Ukládáme hierarchická data v databázi – III. Zdroják [online].
Devel.cz Lab, 2012.
Retrieved from:
https://www.zdrojak.cz/clanky/ukladame-hierarchicka-data-v-databazi-iii/.

[16] Arlow, Jim, and Ila Neustadt. UML 2 a unifikovaný proces vývoje aplikací .
Brno: Computer Press, 2011. ISBN 978-80-251-1503-9.

[17] draw.io [online].
Retrieved from:
https://www.draw.io/.

[18] Interface Runnable. Oracle Docs [online]. Oracle, 2018.
Retrieved from:
https://docs.oracle.com/javase/7/docs/api/java/lang/Runnable.html.

[19] Wagner, Jeremy. Lazy Loading Images and Video. Google Developers [online].
Google Inc.
Retrieved from:
https://developers.google.com/web/fundamentals/performance/lazy-loading-
guidance/images-and-video.

[20] What is Lazy Loading?. GeeksforGeeks [online]. GeeksforGeeks (n.d.).
Retrieved from:
https://www.geeksforgeeks.org/what-is-lazy-loading/.

[21] JavaFX 2.2. Oracle Docs [online]. Oracle and/or its affiliates, 2008, 2014.
Retrieved from:
https://docs.oracle.com/javafx/2/api/index.html.

[22] Apache Derby [online]. The Apache Software Foundation, 2004. Retrieved from:
https://db.apache.org/derby/.

[23] Using Prepared Statements. Oracle Docs [online]. Oracle, 2017.
Retrieved from:
https://docs.oracle.com/javase/tutorial/jdbc/basics/prepared.html.

[24] Wazlawick, Raul Sidnei. Object-Oriented Analysis and Design for Information
Systems. Morgan Kaufmann, 2014. ISBN 978-0-12-418673-6.

[25] Unit Testing. Software Testing Fundamentals [online]. STF, 2019.
Retrieved from:
http://softwaretestingfundamentals.com/unit-testing/.

[26] Barnum, Carol M. Usability Testing Essentials : Ready, Set...Test! Morgan Kauf-
mann, 2011. ISBN 978-0-12-375092-1.

49

https://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/
https://explainextended.com/2009/09/24/adjacency-list-vs-nested-sets-postgresql/
http://www.rampant-books.com/art_vadim_nested_sets_sql_trees.htm
https://www.zdrojak.cz/clanky/ukladame-hierarchicka-data-v-databazi-iii/
https://www.draw.io/
https://docs.oracle.com/javase/7/docs/api/java/lang/Runnable.html
https://developers.google.com/web/fundamentals/performance/lazy-loading-guidance/images-and-video
https://developers.google.com/web/fundamentals/performance/lazy-loading-guidance/images-and-video
https://www.geeksforgeeks.org/what-is-lazy-loading/
https://docs.oracle.com/javafx/2/api/index.html
https://db.apache.org/derby/
https://docs.oracle.com/javase/tutorial/jdbc/basics/prepared.html
http://softwaretestingfundamentals.com/unit-testing/

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	/Figures
	Introduction
	Theory
	Relational Database
	JavaFX 2

	Requirements
	Functional requirements
	Non-functional requirements

	Database Models
	Nested Set Model
	Database Model
	Set of Operations

	Adjacency List Model
	Database Model
	Set of Operations

	Materialized Path Model
	Database Model
	Set of Operations

	Models Comparison
	Theoretical Comparison
	Experimental Comparison (Speed Measurement)
	Choosing a Model
	Additional Indexing

	Application Design
	Design
	GUI
	GUI Package

	SQL Package
	Transaction Management
	TableInitializer
	Adder
	Renamer
	Key Renamer
	Selector
	Table cleaner

	Unit Tests

	Usability Testing
	User Testing
	Testing process

	Findings and revision

	Conclusion
	References

